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Abstract Path planning and trajectory planning are crucial issues in the field of
Robotics and, more generally, in the field of Automation. Indeed, the trend for robots
and automatic machines is to operate at increasingly high speed, in order to achieve
shorter production times. The high operating speed may hinder the accuracy and
repeatability of the robot motion, since extreme performances are required from
the actuators and the control system. Therefore, particular care should be put in
generating a trajectory that could be executed at high speed, but at the same time
harmless for the robot, in terms of avoiding excessive accelerations of the actu-
ators and vibrations of the mechanical structure. Such a trajectory is defined as
smooth. For such reasons, path planning and trajectory planning algorithms assume
an increasing significance in robotics. Path planning algorithms generate a geomet-
ric path, from an initial to a final point, passing through pre-defined via-points,
either in the joint space or in the operating space of the robot, while trajectory
planning algorithms take a given geometric path and endow it with the time infor-
mation. Trajectory planning algorithms are crucial in Robotics, because defining the
times of passage at the via-points influences not only the kinematic properties of the
motion, but also the dynamic ones. Namely, the inertial forces (and torques), to which
the robot is subjected, depend on the accelerations along the trajectory, while the
vibrations of its mechanical structure are basically determined by the values of the
jerk (i.e. the derivative of the acceleration). Path planning algorithms are usually
divided according to the methodologies used to generate the geometric path, namely:
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• roadmap techniques
• cell decomposition algorithms
• artificial potential methods.

The algorithms for trajectory planning are usually named by the function that is
optimized, namely:

• minimum time
• minimum energy
• minimum jerk.

Examples of hybrid algorithms, which optimize more than a single function, are
also found in the scientific literature. In this chapter, the general problem of path
planning and trajectory planning will be addressed, and an extended overview of the
algorithms belonging to the categories mentioned above will be carried out, with
references to the numerous contributions to this field.

Keywords Path planning · Trajectory planning · Roadmap · Cell decomposition ·
Artificial potential · Minimum time · Minimum energy · Minimum jerk

1 Introduction

Human activity in many sectors is nowadays supported or substituted by robots,
which range from standard robots for industrial applications to autonomous robots for
complex tasks, such as space exploration. Indeed, the great versatility and flexibility
of robots allows them to be employed in different sectors, to perform even very
diverse tasks. Referring to the industrial environment, a robot can be defined [78]
as a mechanical structure made of several rigid bodies (links) connected one to
another by means of joints. Within the robot, it is possible to identify a structure that
implements mobility, a wrist which provides dexterity, and an end-effector which
performs the task given to the robot.

Regardless of the specific mechanical structure, in all types of applications a
generic task is achieved by a robot by imposing a specific motion to the end-effector.
This motion may be free or bound: the former case applies if the end-effector does
not have a physical interaction with the environment, while the latter case applies if
the end effector interacts with the environment by exchanging forces and/or torques.

The input of the control systemof the robot is generally given by the lawofmotion,
which is generated by a dedicatedmodule formotion planning. Suchmotion planning
module can operate off-line, by using a knowledge of the robot and the environment
which is given a priori, or can operate on-line: in this case, suitable sensors must be
employed to monitor the robot motion and enable the control system to adjust the
movements in real time.

Ultimately, controlling the robot means determining the forces and torques that
the actuators must develop at the joints, so as to ensure that the reference trajectories
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are properly followed. However, this problem turns out to be very complex, because
a robot is an articulated structure, so the motion of a single link arm affects the other
links. Mathematically, this is expressed by the fact that the dynamic equations of
a robot (with the exception of Cartesian structures), contain some terms due to the
coupling effects between different links.

In most cases, robot controllers are based on closed loops, driven by the error
between the reference and the actual position, which allows to achieve the accuracy
required to the robot in executing the planned trajectory. In the case that, during a
manipulation task, there is contact between the end-effector and the environment,
the control problem is further complicated because not only the motion, but also the
forces exchanged in the interaction should be monitored and controlled.

In this chapter, we will focus on the path planning and trajectory planning prob-
lems, which constitute the two main parts of the general motion planning problem.
The interest for such topics is dramatically increasing, because operations at high
speed are required to robots in themodern automatic systems; hence, smoothmotions
should be planned (where smooth means that such motions must avoid excessive val-
ues of accelerations of the actuators, aswell as vibrations of themechanical structure).

Many algorithms have been proposed, both for path planning and for trajectory
planning, in the scientific literature of the robotic domain. The aim of this chapter is
to provide a general overview of such algorithms, which have been subdivided into
suitable categories.

2 Path Planning

Path planning is a merely geometric matter, because it is defined as the generation
of a geometric path, with no mention of any specified time law. On the other hand,
trajectory planning consists in assigning a time law to the geometric path. In most
cases, path planning precedes trajectory planning; however, these two phases are not
necessarily distinct; for instance, if point-to-point trajectories are considered (i.e.
only the initial and final positions are specified), the two problems may be solved at
the same time.

In this section the analysis of available works in literature deals with the case of
systems without non-holonomic constraints.

Different types of paths are possible, depending on the specific case. For instance,
for industrial manipulators, the standard path is usually defined by the geometry of
the task, which is defined in a static way. In more advanced applications, or for
robots operating in dynamic environments, some extra features, such as the need for
automatic obstacle avoidance, may be added.

In applications of advanced robotics, the problem of path planning is definitely
very challenging, especially for robots characterized by a large degree of autonomy
or for robots that must operate in hostile environments (space, underwater, nuclear,
military, etc.).
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The definition of the path planning problem is very straightforward: “find a
collision-free motion between an initial (start) and a final configuration (goal) within
a specified environment”. The simplest situation is when the path is to be planned in
a static and known environment; however, more generally, the path planning prob-
lem can be formulated for any robotic system subject to kinematic constraints, in a
dynamic and unknown environment.

Much work can be found the robotic literature, dealing with path planning. The
first definitions and algorithms date back to the 1970s. In [57] a complete overview
of the path planning techniques can be found. An overview of many techniques cited
in this work can be found also in the classic book [23] or in the recent book [48].
Other useful reviews of path planning techniques are [49, 55].

Somebasic definitions are needed to introduce the path planning problem, namely:
the configuration space (C-space), the space of free configurations (C-free) and the
obstacles’ representation in the C-space (C-obs).

The configuration space is the space of all possible robot configurations, where
a configuration q is the specification of position and orientation of the robot A with
respect to a fixed reference frame FW . Referring to Fig. 1, the C-space of the robot
A is R3, since the configuration of A is specified by the origin of FA with respect to
FW , and by its orientation.

For an articulated robot (Fig. 2), the C-space is given by its joint space (in this
case, R2). The C-obs is given by the image of the obstacles in the C-space, and the
C-free is defined as {C-space—C-obs}.

Path planning algorithms are usually divided in three categories, according to the
methodologies used to generate the geometric path, namely:

• roadmap techniques
• cell decomposition algorithms
• artificial potential methods.

Fig. 1 Mobile robot in a
2-dimensional space with
obstacles
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Fig. 2 C-space, C-free and C-obs for an articulated robot with two joints

2.1 Roadmap Techniques

The roadmap techniques are based upon the reduction of the N-dimensional config-
uration space to a set of one-dimensional paths to search, possibly on a graph.

In other words, this approach maps the free space connectivity into a system
of one-dimensional curves (the roadmap) in the C-free space or in its closure. The
roadmap R thus obtained contains a set of paths: hence, the path planning consists in
linking the initial and final configurations to R. In this way a feasible path between
the two configurations is found.

It is very natural to associate a graph to the roadmap and to define some optimality
index (e.g. the Euclidean length): the graph can then be searched in order to get the
optimal solution to the path planning problem (in most cases, this is represented by
the shortest path).

Figure3 represents the so-called visibility graph, i.e. the graphwhose nodes are the
vertices of all the obstacles in the configuration space. Searching the graph would
lead to get the shortest Euclidean path in the C-space. The nodes of the graphs
indicate point locations, while edges represents visible connections between the
nodes. Grey areas indicate obstacles to be avoided. The concept of visibility graph,
which represents amilestone in the literature related to path planning, was introduced
by Lozano-Pérez [63, 64].

Another kind of roadmap algorithms are those based on Voronoi diagrams, which
are defined as a way to divide the space into regions having the following charac-
teristic: given a set of points {p1, . . . pn}, each point belonging to the ith region is
closer to pi than to any other p j �= pi . This approach is dual to that based on the
visibility graph, because the Voronoi diagrams enable one to obtain a path lying at
the maximum distance from the obstacles, whereas the visibility graph generates a
path that passes as close as possible to the obstacle vertices.
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Fig. 3 Visibility graph

Figure4 shows some path generated by usingVoronoi diagrams. The three squares
in the diagram represents obstacles, while the blue lines are the set of points equidis-
tant from at least two obstacles. Therefore the paths defined with this technique are
designed to be as far away as possible from nearby obstacles. Examples of path
planning algorithms may be found in [15, 35, 84].

2.2 Cell Decomposition Methods

According to the cell decomposition methods, the free space of the robot is subdi-
vided into several regions, called cells, in such a way that a path between any two
configurations lying in the same cell is straightforward to generate. It is then natural
to define a so-called connectivity graph, which represents the adjacency relations
between cells. Namely, the nodes of the graph represent the cells extracted from
the free space, and there is an arch between two nodes are connected if and only
if the corresponding cells are adjacent. The path planning problem is, again, turned
into a graph searching problem, and can therefore be solved using graph-searching
techniques.

Figure5 illustrates the procedure described above, which is named exact cell
decomposition technique, because the union of the cell represents exactly the free
space. In some cases, an exact computation of the free space is not possible or
convenient. Approximate cell decomposition methods must therefore be employed.
Figure6 shows how these techniques work:
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Fig. 4 Paths resulting from Voronoi diagrams

• the whole C-space (assumed 2-dimensional) is divided into four cells;
• the algorithm checks if each cell is completely empty, completely full or mixed
(such words obviously refer to the occupancy by the obstacles);

• eachmixed cell is in turn divided into four subcells, and the algorithm is recursively
applied to check the status of every subcell and recursively divide each mixed
subcell into four sub-subcells.

The graph that may be naturally associated to the approximate cell decomposition is
a tree, named quadtree for 2-dimensional spaces (Fig. 7), octree for 3-dimensional
spaces (Fig. 8), 16-tree for 4-dimensional spaces, and so forth.

2.3 Artificial Potential Methods

The artificial potential methodologies are a different approach to the path planning
problem. The basic idea is to consider the robot in the configuration space as a
moving point subject to a potential field generated by the goal configuration and
the obstacles in the C-space: namely, the target configuration produces an attractive
potential, while the obstacles generate a repulsive potential. The sum of these two
contribution is the total potential, which can be seen as an artificial force applied
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Fig. 5 Exact cell decomposition: a subdivision of space into numbered polygons, b connectivity
graph, c regions to be crossed, d path

Fig. 6 Approximate cell decomposition

to the robot, aimed at approaching the goal and avoiding the obstacles. Thus, given
any configuration during the robot motion, the next configuration can be determined
by the direction of the artificial force to which the robot is subjected. This normally
represents the most promising direction of motion in terms of free path. An example
of the application of the artificial potential method is shown in Fig. 9.

The artificial potential method was originally conceived by Khatib [50] and fur-
ther developed by Volpe [91, 92]. Such a technique can find applications in many
fields, because it can be successfully implemented online, thus moving the obstacle
avoidance problem from the higher (and slower) level of path planners to the lower
(and faster) level of online motion controllers. This implies that the good features
of the artificial potential methods, especially the reactivity to environment changes,
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duly detected by the robot sensors, enable the robot controller to manage unexpected
workspace changes in a fast way.

However, the artificial potential methods are intrinsically affected by a major
problem, namely the presence of local minima, where the robot may find itself
trapped. In order to overcome this problem, several solutions have been proposed:
for instance, using potential functions which do not have local minima [25, 26, 51,
53]. Such functions are called navigation functions.

In [39, 42] alternative applications of the artificial potential method are presented.
Another approach to solve the path planning problem is found in [5], where a

special kind of planners, named RPP (Random Path Planners), is proposed: local
minima are avoided by combining the concepts of artificial potential field with ran-
dom search techniques. Albeit with some limitations, RPP proved to be able to solve
path planning problems for robots with a high number of degrees of freedom, with
reasonable computation times.

Other examples of RPP can be found in [18–21].
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Fig. 9 The artificial potential method

2.4 Alternative Approaches to Path Planning

A possible alternative approach, which had remarkable results in very complex path
planning problems, is given by the Probabilistic Roadmap Planners (PRM). It is
a technique which employs probabilistic algorithms, such as random sampling, to
build the roadmap. The most important advantage of PRM is that their complexity
do not strictly depend on the complexity of the environment and on the dimension
of the configurations space. The basic idea is to consider a graph where the nodes
are given by a set of random configurations in the C-free. A local planner can then
try to connect these configurations by means of a path: if a path is found, a new node
is added to the graph. In this way the graph reflects the connectivity of the C-free.
In order to find a path between two configurations, these configurations are added to
the graph, then a graph search is performed in order to find a feasible path. Given the
probabilistic nature of the algorithm, post-processing is often necessary to improve
the quality of the path. PRM algorithms have been successfully applied to robotic
manipulators with up to 16 degrees of freedom. Examples of PRM can be found in
[1, 24, 45, 66].

There are some examples [29, 34] of path planners that take into account kinematic
and dynamic constraints of the robot, in addition to the pure geometric problem of
obstacles avoidance. This problem is referred to as kinodynamic motion planning.
Kinodynamic and nonholonomic motion planning can be handled by the Rapidly-
exploring Random Tree (RRT) method [58]. This method allows to search non-
convex high-dimensional spaces by randomly building a space-filling tree.

Another important version of the general problem is given by path planning in
presence of mobile obstacles. As it can be easily understood, this kind of problem
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results very complex with respect to the basic version. This approach is used, for
instance, in [32, 33].

A general overview of the path planning problem can be found in [54] and in [43],
where the most important results achieved in the field of path planning, including
PRMandRPP techniques, are reported. In [43] it is claimed that all themethodologies
that haveproven tobepractically usable for path planning are basedon adiscretization
of the configuration space. There are two crucial requirements in order to ensure an
efficient implementation of path planning methodologies, namely: the efficiency of
collision detection algorithms and the efficiency of graph searching techniques.

3 Trajectory Planning

Solving the trajectory planning problem means generating the reference inputs for
the control system of the robot, so as to ensure that the desired motion is performed.
Usually, the algorithm employed for trajectory planning takes as inputs the path
generated by the path planner, as well as the kinematic and dynamic constraints of
the robot. The output of the trajectory planning module is given by the trajectory of
the joints, or of the end-effector, in form of a sequence of values of position, velocity
and acceleration.

The geometric path is normally defined in the operating space of the robot, because
the task to be performed, as well as the obstacles to avoid, are described in the
operating space more naturally than in the joint space. Thus, planning the trajectory
in the operative spacemeans generating a sequence of values that specify the position
and orientation that the end-effector of the robot must assume at every time interval.
Planning the trajectory in the operating space is usually donewhen themotion follows
a path with specific geometric characteristics defined in the operating space; in this
case, the path can be specified in an exact form (i.e. taking the original path), or in an
approximate form, by allocating some path points and connecting them by means of
polynomial sequences. However, in most cases the trajectory is planned in the joint
space of the robot because, since the control action on the manipulator is made on the
joints, planning in the operating space requires a kinematic inversion to transform
the end-effector position and orientation values into the joint values.

In order to plan a trajectory in the joint space, first a sequence of via-points should
be extracted from the desired end-effector path, then a kinematic inversion is to be
performed to get the corresponding values of the robot joints. The trajectory is then
generated in the joint space by means of interpolation functions, taking into account
the kinematic and dynamic limits imposed to the robot joints (in terms of position,
velocity, acceleration and jerk). Normally, this way of planning the trajectory can
also avoid the problems involved in moving near singular configurations, and can
efficiently deal with the possible presence of redundant degrees of mobility. The
main drawback of planning a trajectory in the joint space is given by the fact that
the execution of a motion planned in the joint space is not so straightforward to
predict in the operative space, due to the nonlinearities introduced by the direct
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kinematics. However, no matter if the trajectory is planned in the operating space or
in the joint space, it is crucial that the laws of motion resulting from the planning do
not generate forces and torques at the joints that are not compatible with the given
constraints: in this way the possibility of exciting mechanical resonance modes can
be greatly reduced. For this reason, the planning algorithms must output smooth
trajectories, i.e. trajectories represented by a curve whose derivatives are continuous
up to a certain order. In particular, it is highly desirable to ensure the continuity
of the accelerations of the joints, in order to get trajectories with a limited jerk,
because limiting the jerk is crucial in order to reduce the vibrations induced to the
robot (which may lead to considerable wear of the mechanical structure), as well
as to avoid the excitation of the resonance frequencies of the robot. The vibrations
caused by non-smooth trajectories may seriously damage the actuators and degrade
the tracking performance of the trajectory. Furthermore, low-jerk trajectories can be
executed faster and with a higher accuracy as demonstrated in [6]. In addition, there
are some applications where abrupt motions can jeopardize the quality of the work
or constitute a risk to the human operators working near the robot.

In order to classify the different trajectory planningmethodologies into categories,
it is useful to consider that a trajectory is usually planned after some optimality
criterion has been set. The most significant optimality criteria that can be found in
the literature are:

• minimum execution time;
• minimum energy (or actuator effort);
• minimum jerk.

In addition to the above, hybrid optimality criteria have been proposed, such as,
for instance, time-energy optimal trajectory planning. With respect to the minimum
energy criterion, a short clarification is necessary. In most of the cases related with
trajectory planning, the term “energy” does not correspond to a physical quantity
measured in Joules, but it is defined as the integral of squared torques: in other
words, it measures the effort of the robot actuators. However, in the robotic literature
it is possible to find also trajectory planning algorithms where the optimality index
is “energy” in its strict meaning. Actually, this is not really a problem, because in
the electric motors used on the robots, the torque can be assumed proportional to the
current, so there is a correlation between the actuators’ effort and the energy required
to the system.

3.1 Minimum Execution Time Algorithms

The optimality criterion based on minimum execution time was the first to be con-
sidered in trajectory planning, because short execution times are strictly related
to high productivity in automatized production plants in industrial environments.
Thus, no wonder that many papers can be found, in the robotic literature, proposing
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trajectory planning algorithms aimed at minimizing the performance index given by
the execution time.

The algorithms described in [7, 80] are defined in the position-velocity phase
plane. The basic idea of these algorithms is to write the dynamic equation of manip-
ulator in a parametric form using the curvilinear abscissa s of the path as the inde-
pendent parameter. The curvilinear abscissa s (path parameter) and its derivative s′
pseudo-velocity) constitute the state of the system, while the second derivative of s
(i.e. the pseudo-acceleration s′′) is chosen as the control variable. In this way, it is
possible to transform the constraints given by the nonlinear robot dynamics, as well
as the constraints on the actuators, into constraints on the control variable depending
from the state of the system. For every point on the path, the maximum admissible
value for the pseudo-velocity of the end-effector is determined from the constraints; it
is then possible to build in the position-velocity phase plane (i.e. in the (s, s′) plane),
a velocity limit curve (VLC). The optimal trajectory is then computed by finding the
admissible control that yields, for each point of the path, the maximum velocity that
does not exceed the limit curve. The solution turns out to be in the form of a curve
(named switching curve) in the phase plane.

An alternative approach to minimum time trajectory planning consists in using
dynamic programming techniques, such as those described in [2, 81]. The basic
idea is to take the state space and discretize it by building a grid of points (called
state points). On the basis of the limits set on velocity, acceleration and jerk, it is
possible to associate to each point the set of the subsequent admissible state points,
and to define the cost of each possible solution by considering the time needed for
the motion. This cost is defined by assuming a constant value of acceleration for each
step. Finally, an algorithm based on dynamic programming generates the minimum
time trajectory. Compared with the phase plane methods, the dynamic programming
methods do not require the parameterization of the path and enables to choose an
arbitrary performance index. Therefore, such algorithms may be used as a general
technique for trajectory optimization. On the other hand, the phase plane approach
turns out to be very efficient in terms of computational load; moreover, it may also
be used for on-line trajectory planning, as in [28, 67].

A model-based approach is used to maximize the speed of industrial robots by
obtaining the minimum-time trajectories that satisfy various constraints commonly
given in the application of industrial robots in [52]. Conventional trajectory patterns,
such as trapezoidal velocity profiles and cubic polynomial functions.

The algorithms described above produce trajectories with discontinuous accelera-
tions and joint torques, because the dynamicmodels used consider the robotmembers
as perfectly rigid and do not take into account the actuator dynamics. Neglecting the
link flexibility and the actuator dynamics normally leads to some undesired effects.
First, in reality the robot actuators cannot generate discontinuous torques: this causes
the joint motion to be delayed with respect to the reference trajectory. This accuracy
in trajectory following is thus greatly reduced, and the tracking controller has to be
often activated during the execution of the trajectory. Moreover, each switching of
the actuators may cause the so-called chatter phenomenon, i.e. high frequency oscil-
lations inducing vibrations of the mechanical structure of the robot. This obviously
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results in wearing of the mechanical components and in a decrease of the accuracy
in trajectory following. Again, the tracking controller is activated more frequently
and the actuators are further stressed. Another undesired effect resulting from an
inaccurate model is that, since the time-optimal control requires saturation of at least
one robot actuator at any time instant, it is impossible for the controller to correct
the tracking errors arising from disturbances or modelling errors.

In [26, 27] a possible solution to these kind of problems is proposed: in these
works, the phase plane method is used, together with a limitation set on the torque
variations (actuator jerks). The proposed algorithm takes the pseudo-jerk, defined
as the third derivative of the curvilinear abscissa, as the control variable: a dynamic
equation of the third order is thus obtained. The experimental results presented in [26]
show that, if some upper bound is set on the pseudo-jerk, time-optimal trajectories
can be practically obtained by simply employing a conventional PID controller.
This proves the correlation between accuracy in trajectory following and low values
of jerk.

Adifferentway to limit the torque variations is to consider in the objective function
not only the execution time, but also an energy contribution: for instance in [79]
the integral of squared torques along the whole trajectory is taken into account.
The experimental results presented in [79] show that the increase of the overall
motion time is compensated by a greater accuracy in trajectory following, even if
conventional PD controllers are used. This results in a reduction of actuator stresses,
with obvious advantages in the total lifetime of the electro-mechanical components
of the robot.

It is possible to approach the problem of minimum-time trajectory planning by
defining a priori the primitives of the motion, i.e. the curves that define the trajectory
in the joint space. Such curves must be smooth functions, so that the control signals
and, consequently, the torque signals at the actuators, result also smooth functions.
The most common situation is that in which the path is specified using a limited
number of via-points: the solution is then given by spline interpolation. In the lit-
erature, several methodologies are proposed to compute time-optimal trajectories
for robot manipulators based on optimization of splines, whose order may be three
(cubic splines) or higher. The main differences among these techniques are:

• the type of constraints considered (either kinematic or dynamic);
• the algorithm used to compute the optimal trajectory;
• the possibility to extend the optimization problem, by taking into account other
optimization criteria, in addition to the minimum time.

The distinction based on the type of constraints can be considered themost important.
It can be extended to any type of trajectory planning algorithm, so that the two
categories of kinematic trajectory planning and dynamic trajectory planning can
be defined. The kinematic trajectory planning algorithms take as their input upper
(sometimes also lower) bounds on velocity, acceleration and jerk. In most cases
such bounds are considered constant. The dynamic trajectory planning algorithms
consider the dynamic model of the robot and define an optimization problem taking
into account dynamic constraints, such as bounds on the actuator torques, or on
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the actuator jerks, defined as the variation of the torques. In some cases kinematic
constraint (typically the velocity) are also considered. Both approaches have pros and
cons: the kinematic trajectory planning has its main advantage in the simplicity and
in the lower computational load; on the other hand, the dynamic trajectory planning
features a better capacity to use the robot actuators. In other words, the kinematic
methods are based on a simplified computational model that yields a non-optimal
use of the robot actuators, although in most cases reasonably good trajectories are
planned.Dynamicmethods are basedon amore accuratemodel and therefore produce
better solutions, but at the cost of a heavier computational load, since they have to deal
with non-trivial issues, such as identification of the dynamic parameters of the robot,
or the efficiency in implementing efficient algorithms to solve the robot dynamic
equations.

An interesting example of an algorithm based on the inverse dynamic of a parallel
robot is given by [17]. In this work, a multi-objective optimisation problem is for-
mulated and a dedicated genetic algorithm is employed to find an optimal trajectory
based upon spline functions.

Splines function are therefore used as trajectory primitives in order to ensure
the continuity of the acceleration. Another example can be found in [59], where a
nonlinear optimization problem is set, namely the computation of the value of the
time intervals between the via-points, so as to minimize the total execution time
of the trajectory subject to kinematic constraints. The technique is based upon an
unconstrained optimization algorithm named FPS (Flexible Polyhedron Search), in
combination with an algorithm called FSC (Feasible Solution Converter), which
converts the solutions that are not physically feasible (i.e. that are not compatiblewith
the kinematic constraints) into feasible ones, by implementing a suitable time scaling
of the trajectory generated by the FPS algorithm. In [93], the same optimization
algorithm presented in [59] is used, but instead of cubic splines, cubic B-splines are
taken as primitives of motion.

The algorithms described above produce a local optimal solution, while other
minimum-time trajectory planning methods output a global optimal solution. Piazzi
and Visioli use interval analysis to calculate a minimum-time trajectory subject to
kinematic constraints at the joints. Such kinematic constraints are on the maximum
value of velocity, acceleration and jerk. In [71] they extend the results already pre-
sented in [71, 72]. The simulations presented in [71] showed an improvement of 18%
of the total execution time with respect to the results yielded by a local optimization
algorithm.

In [40, 41] a global optimization method is presented, which combines a stochas-
tic technique, such as a genetic algorithm, with a deterministic procedure based on
interval analysis. The proposed technique can be applied to solve general global opti-
mization problems where semi-infinite constraints are defined. In [40] this algorithm
is applied to the problem of minimum-time trajectory planning with specific kine-
matic and dynamic constraints: namely, the trajectories, represented by cubic splines,
are subject to restrictions on the maximum actuator torques, as well as on the linear
and angular velocities of the end-effector in the operating space. It is remarkable
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that, differently from usual, in [40] the velocity constraint is not imposed in the joint
space, but in the operating space of the end-effector.

A composition of polynomial functions of different orders are used in [11, 12] to
obtain jerk continuity along a trajectory planned from a set of pre-defined via-points,
obtaining a global minimum time solution.

Another example of minimum-time trajectory planning for robotic manipulators
can be found in [16]. In this case the objective function is made of two terms: the first
term takes the squared values of the optimization variables (i.e. of the time intervals
between the via-points), while the second term is the sumof the squared accelerations
computed at the via- points. The introduction of this second term has the effect of
increasing the trajectory smoothness with respect to a pure minimum-time approach.
The optimization is performed by using the DFP (Davidon-Fletcher-Powell) algo-
rithm,which does not consider the kinematic bounds, therefore performing an uncon-
strained minimization. The solution obtained by means of the DFP algorithm is then
subjected to a procedure of time-scaling, until the more restrictive kinematic bound
has been saturated. The resulting trajectory, although respecting the limits on veloc-
ity, acceleration and jerk, is sub-optimal with respect to time.

In [30] a technique for determining time-optimal path-constrained trajectories
subject to velocity, acceleration and jerk constraints, actingonboth the robot actuators
and on the task to be executed, is presented. The solution of the optimization problem
is based upon a hybrid optimization strategy, which takes into account the path
description, the kinematic model of the robot and constraints defined by the user.
The resulting trajectories are optimal with respect to time, but not with respect to
smoothness.

In the work [60] a combination of spline functions up to the seventh order are
used together to achieve minimum time solutions with velocities, acceleration and
jerk bounds. Other examples of minimum-time algorithms subject to kinematic con-
straints may be found in [31, 49, 85, 86, 89]. In [74] the minimum-time trajectory
problem is solved under kinematic and dynamic constraints, i.e. teorque, power, jerk
and energy, taking into account both the robot dynamics and the obstacle presence.

3.2 Minimum Energy Algorithms

As already remarked, the minimum-time trajectory planning algorithms received a
lot of consideration in the robotic literature, mainly because of the strong industrial
interest to reduce the length of the production cycles. However, the minimum-time
optimization criterion is not the only one that can be considered: other criteria are
definitely more suitable for different needs and requirements.

The trajectory planning based on energetic criteria is interesting under many
aspects. On one hand, it generates smooth trajectories which are easier to track,
and reduce the stresses induced to the actuators and to the mechanical structure of
the robot. On the other hand, this optimization criterion enables one to better com-
ply with energy saving requirements, which are driven not only by mere economic
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considerations, but may be imposed by specific applications in which the energy
source is limited by technical factors, such as robotic applications for outer space,
for underwater exploration or for military tasks.

A classical example of minimum-energy trajectory planning algorithm is con-
tained in [65], where a trajectory is optimized with respect to energy taking into
account constraints on the motion of the end-effector, as well as the physical limits
of the joints. The proposed objective function is the integral of squared torques. The
trajectories are expressed by cubic B-splines and, by exploiting some property of the
convex hull, it is possible to transform the joint limits into some limits set on the
optimization parameter, which are the control points of the B-splines. The resulting
motion thus minimizes the effort of the actuators.

In [2, 79] some techniques for optimal trajectories planning,with respect to energy
and time, are described: the function to optimize is made of two terms, the first
related to the execution time, the second related to the energy consumption. Such
algorithms are intended to reduce the stresses of the actuators and to facilitate the
trajectory tracking. In [79], the integral of the squared torques along the trajectory
is considered in the objective function, while in [2] the function of total energy is
considered.

Other examples of optimized trajectories, with respect to energy as well as to time,
are presented in [75–77, 90, 95]. In [75] the Authors consider a trajectory parame-
terized by cubic splines, subject to kinematic constraints set on the maximum value
of velocity, acceleration and jerk, and to dynamic constraint given by the maximum
torque applicable to the joints. In [76] the same Authors consider a trajectory para-
meterized by cubic B-splines, where the physical limits of the joints are added to the
torque and kinematic constraints. The objective function includes also an additional
term (penalty function), in order to avoid mobile obstacles expressed as spherical or
hyperspherical safety zones. In [77], two strategies for offline 3-dimensional optimal
trajectory planning of industrial robots, in presence of fixed obstacles, are presented.
In [90], a nonlinear change of variables is employed to convert the time-energy opti-
mal trajectory planning problem into a convex control problem based on only one
state variable. In [95], amethodology based on theminimization of an objective func-
tion which considers both the total execution time and the total energy spent along
the whole trajectory is presented; the via-points of the trajectory are interpolated
by means of cubic splines. Kinematic and dynamic constraints, in terms of upper
bounds on velocity, acceleration, jerk and input forces and torques are also consid-
ered. It is worth noting that in algorithms such as the one presented in [79] the energy
term is added in order to produce trajectories which result slower but smoother with
respect to those generated by minimum-time trajectory planning algorithms; on the
other hand, in approaches such as the one presented in [76] the objective function is
primarily designed to minimize the energy and to plan trajectories with no regard to
the execution time.

Recently, due to the development and installation of energy recovery and redistri-
bution devices in robotic systems, the minimum-energy topic has gained new interest
among the research community, e.g. [44, 68].
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3.3 Minimum Jerk Algorithms

The importance of generating trajectories that do not impose discontinuities of the
actuator torques at the robot joints has already been remarked; for instance, in [26]
and in [27] this result is obtained by imposing upper bounds to the rate of change of
the actuator torques. However, this kind of approach requires the computation of the
third order dynamics of the robot.

An alternative method to obtain smooth profiles of the actuator torques is based
on the idea of limiting the jerk, defined as the time derivative of the acceleration.
Indeed, the torque variations depend upon the dominant term of the matrix of inertia
multiplied by the vector of the joint jerk. Thus, some trajectory planningmethods take
the jerk as the variable to be minimized, in order to obtain smooth trajectories. The
minimization of the jerk yields positive results, such as: reduction of the error during
the trajectory tracking phase, reduction of the excitation of resonance frequencies,
reduction of the stresses induced to the mechanical structure of the robot and to the
actuators.

This results in a natural and coordinated motion: indeed, some studies suggest
that the movements of the human arm satisfy an optimization criterion based upon
the minimization of the jerk, or of the torque variations [82]. The minimum-jerk
trajectory planning for robotic manipulators are an example of optimization based
on physical criteriawhichmimic the human ability to produce naturalmovements [8].

In [56] the analytical solution of a trajectory planning problem for a point-to-point
path, based on a minimum-jerk optimization criterion, is presented. The optimiza-
tion, performed by applying Pontryagin’s principle, involves two objective functions,
namely: the maximum absolute value of jerk (minimax approach) and the time inte-
gral of the squared jerk.

In some cases, the total execution time of the trajectory is not imposed, so it can
be chosen so as to comply with the kinematic limits on velocity and acceleration.
However, most of the minimum-jerk algorithms that can be found in the robotic
literature consider an execution time imposed a priori.

In [82], the integral of the squared jerk is minimized along the executed trajec-
tory. In order to have a trajectory with a smooth start and stop, the values of velocity,
acceleration and jerk are set to zero at the first and at the last via-points. The proposed
algorithm is based upon a stochastic optimization technique performed by means of
neural networks. The algorithm does not ensure the exact interpolation of interme-
diate nodes, but allows a tolerance, which can be set by tuning appropriate weights.
This does not constitute a problem in cases where the exact interpolation is not
needed, but just the passage in the neighbourhood of the via-points is required. The
main limitation of this technique is that the resulting trajectories are not analytical
functions, but are numerically defined.

Another approach is contained in [83], where the interpolation of the via-points
is performed by means a trigonometric spline, thus ensuring the continuity of the
jerk. The algorithm assumes that the time interval between the via-points is known
and constant, and takes as input the values for the velocity, the acceleration and the
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jerk, at the first and at the last via-points (such values are typically all set to zero).
There are some advantages in using trigonometric splines to interpolate the trajectory
via-points, for instance the property of locality: namely, if a via-point is changed,
it is not necessary to recalculate the whole trajectory, but only the two splines that
are connected to the via-point need to be recomputed. This property allows fast
computation, thus making it possible to implement obstacle avoidance procedures
in real time. The most significant aspect, in terms of trajectory optimization, is that
parameterizing the trajectory allows some degrees of freedom, namely those given
by the values of the first three derivatives (velocity, acceleration and jerk) at the
intermediate via-points. Such values can be adjusted in order tominimize an objective
function, such as the time integral of the squared jerk. The optimization presented in
[83] is not bounded, since no kinematic limits are imposed, and yields a closed form
solution, thus not requiring iterative minimization procedures.

In [70, 73] an algorithm based on interval analysis is presented. This technique
seeks the minimum of the maximum absolute value of the jerk along a trajectory
whose execution time is imposeda priori. It is therefore a so-calledminimax approach
bounded on the trajectory execution time. The trajectories primitives are cubic splines
and the intervals between the via-points are computed, so as to obtain the lowest
maximum absolute jerk value. In [70] the Authors present a comparison with the
method based on trigonometric splines [83], reporting the highest values of the jerk,
of the torques and of the torque variations. The simulation, which calculates the
robot dynamics using the MatLabTM Robotics Toolbox, highlights the efficiency of
the minimax algorithm with respect to other approaches.

3.4 Hybrid Optimization Approaches

Optimal trajectory planning with respect to time, energy and jerk has been discussed
in the foregoing. Hybrid optimization approaches have also been proposed in the
robotic literature. For instance, in order to get the advantages of the jerk reduction
while executing fast trajectories, hybrid time-jerk optimal techniques are proposed,
for instance [9, 11, 36–38, 46, 69]. These algorithms differ from the primitives used
to interpolate the path, or from the optimization procedures implemented.

In [9, 11, 36–38] aminimum time-jerk trajectory planning technique is described,
based upon two algorithms aimed at theminimization of an objective function, which
is designed so as to ensure fastness in execution and smoothness of the trajectory at
the same time. Such an objective function is composed of a term which is propor-
tional to the total execution time and of a term which is proportional to the integral of
the squared jerk along the path. The proposed algorithm enables one to define con-
straints on the robot motion before the execution of the trajectory. The constraints
are expressed in form of upper bounds on the velocity, acceleration and jerk values
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of all robot joints. In this way, any physical limitation of the real robot can be taken
into account when planning the trajectory. Unlike most jerk-minimization methods,
this technique does not ask for an a priori setting of the total execution time.

In [61, 62], the methodology is extended by taking into account also the power
consumption of the actuators and physical limits of the joints. In this way, the tech-
nique becomes a time-jerk-energy planning algorithm.

Several objectives are taken into account in the work [51]: in particular minimum
elctrical and kinematic energy, minimum time and maximum maniuplability are
obtained with the solution of a single optimization problem.

Minimum effort trajectories planned trough model-based approaches are pre-
sented in [10, 14]. The first one includes bounds on jerk, while second one has
bounded joint speed. The work [13] introduces the novel topic of robustness in tra-
jectory planning algorithms. Such approach allows to increase the tolerance of the
resulting trajectory to the inevitable mismatches between the dynamic model used
for the planning and the actual robot dynamics.

The problem of finding minimum time-effort trajectories for motor-driven paral-
lel platform manipulators, subject to the constraints imposed by the kinematics and
dynamics of the manipulator structure is the topic of the paper [21]. Computational
efficiency is obtained trough a hybrid scheme comprising the particle swarm opti-
mization method and the local conjugate gradient method. Also in [22] a constrained
multi-objective genetic algorithm (MOGA) based technique is proposed to address
this problem for a general motor-driven parallel kinematicmanipulator. The planning
process is composed of searching for a motion ensuring the accomplishment of the
assigned task, minimizing the traverse time, and expended energy subject to various
constraints imposed by the associated kinematics and dynamics of the manipulator.

All the trajectory planning methods introduced above are applicable to rigid link
robot, with either serial or parallel kinematic configurations. However, it is worth-
while to mention that also cable-driven robots application are gaining a growing
interest in robotics. Among the advantages brought by this class of manipulators,
low overall mass and high stiffness make them very advantageous in many applica-
tions. On the other hand, the fact that they often require to use actuation redundancy
and that they operation must avoid cable interference [94], has led to the develop-
ment of trajectory planning algorithms specifically designed for them. The work
[87] presents a method to compute trajectories for underconstrained parallel robot
that ensures positive and bounded cable tension, while in [88] a similar procedure
is also experimentally validated. A detailed study of the dynamics of cable-driven
parallel robot is reported in [47], as a tool for developing accurate path planning
algorithms. The time-optimality of trajectories designed for cable-driven robot is the
topic covered in the works [3, 4].
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4 Conclusions

In this paper, the fundamental problems of path planning and trajectory planning in
Robotics have been addressed. An overview of the most significant methods, that can
be found in the robotic literature to generate collision-free paths, has been presented.
Then, the problem of finding an optimal trajectory given a planned path has been
discussed and the most significant approaches have been described.
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