
Mechanisms and Machine Science

Motion and
Operation Planning
of Robotic Systems

Giuseppe Carbone
Fernando Gomez-Bravo Editors

Background and Practical Approaches

Mechanisms and Machine Science

Volume 29

Series editor

Marco Ceccarelli, Cassino, Italy

More information about this series at http://www.springer.com/series/8779

http://www.springer.com/series/8779

Giuseppe Carbone • Fernando Gomez-Bravo
Editors

Motion and Operation
Planning of Robotic Systems
Background and Practical Approaches

123

Editors
Giuseppe Carbone
University of Cassino
Cassino, Frosinone
Italy

Fernando Gomez-Bravo
Engineering School
University of Huelva
La Rábida, Huelva
Spain

ISSN 2211-0984 ISSN 2211-0992 (electronic)
Mechanisms and Machine Science
ISBN 978-3-319-14704-8 ISBN 978-3-319-14705-5 (eBook)
DOI 10.1007/978-3-319-14705-5

Library of Congress Control Number: 2015932073

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

Robot motion planning and its applications have attracted the attention of the
robotic community along the last decades. This book is an attempt to address this
wide topic with a multidisciplinary approach. While other publications focus on
describing the theoretical basis of robot motion, this work pays special attention to
explain the fundamentals through real applications. Thus, it represents a perfect
combination for studying this topic along with other theoretical books.

Each chapter has been authored by an expert or a team of experts in a specific
area spanning from the mechanics of machinery to control theory, informatics,
mechatronics. Chapters have been divided into five parts. The first one aims to give
a theoretical background. Then, Parts II–V discuss the main specific issues for a
proper path planning of different types of robots such as robotic manipulators,
wheeled robots, legged robots, cooperation and coordination of multiple aerial or
underwater robots.

This book project can be foreseen as a reference for young professionals/
researchers to overview the most significant aspects in the field of path planning.
Given the wideness of the topic, this book can be considered as a first edition and,
as Editors, we shall be pleased to consider additional contents/suggestions for a
future edition.

We wish to acknowledge all the authors and expert blind reviewers for their
significant contributions to this project. Also acknowledged is the professional
assistance by the staff of Springer Science+Business Media that have supported this
project with their help and advice in the preparation of the book.

Last but not least we are indebted to our families. Without their patience and
understanding it would not have been possible for us to work on this book.

January 2015 Giuseppe Carbone
Fernando Gomez-Bravo

v

Contents

Part I Theoretical Background

Path Planning and Trajectory Planning Algorithms:
A General Overview . 3
Alessandro Gasparetto, Paolo Boscariol, Albano Lanzutti
and Renato Vidoni

Off-Line and On-Line Trajectory Planning . 29
Zvi Shiller

Open Architecture for Vision-Based Robot Motion Planning
and Control. 63
Theodor Borangiu, Florin Anton and Silvia Anton

Grasping and Manipulation of Unknown Objects Based
on Visual and Tactile Feedback . 91
Robert Haschke

Part II Motion Planning of Robotic Manipulators

Obstacle Avoidance with Industrial Robots . 113
T. Petrič, A. Gams, N. Likar and L. Žlajpah

Path Planning Kinematics Simulation of CNC Machine
Tools Based on Parallel Manipulators . 147
Luc Rolland

Planning Automatic Surgical Tasks for a Robot Assistant 193
Enrique Bauzano Nuñez, Belen Estebanez Campos,
Isabel Garcia Morales and Victor F. Muñoz Martinez

vii

http://dx.doi.org/10.1007/978-3-319-14705-5_1
http://dx.doi.org/10.1007/978-3-319-14705-5_1
http://dx.doi.org/10.1007/978-3-319-14705-5_2
http://dx.doi.org/10.1007/978-3-319-14705-5_3
http://dx.doi.org/10.1007/978-3-319-14705-5_3
http://dx.doi.org/10.1007/978-3-319-14705-5_4
http://dx.doi.org/10.1007/978-3-319-14705-5_4
http://dx.doi.org/10.1007/978-3-319-14705-5_5
http://dx.doi.org/10.1007/978-3-319-14705-5_6
http://dx.doi.org/10.1007/978-3-319-14705-5_6
http://dx.doi.org/10.1007/978-3-319-14705-5_7

Part III Motion and Operation Planning for Wheeled Robots

Motion Planning Using Fast Marching Squared Method 223
S. Garrido, L. Moreno and Javier V. Gómez

Motion Planning of Large Scale Vehicles for Remote Material
Transportation . 249
Alberto Vale and Isabel Ribeiro

Car-Like Robot Manoeuvre Generation . 293
F. Gomez-Bravo

Vehicle Autonomy Using Cooperative Perception
for Mobility-on-Demand Systems . 331
Seong-Woo Kim, Tirthankar Bandyopadhyay, Baoxing Qin,
Zhuang Jie Chong, Wei Liu, Xiaotong Shen, Scott Pendleton,
James Guo Ming Fu, Marcelo H. Ang Jr., Emilio Frazzoli
and Daniela Rus

Motion Planning of a Spherical Mobile Robot. 361
Qiang Zhan

Part IV Motion Planning for Legged Robots

A Minimum Jerk-Impedance Controller for Planning Stable
and Safe Walking Patterns of Biped Robots . 385
Amira Aloulou and Olfa Boubaker

Online Walking Pattern Generation Using FFT for Humanoid
Robots . 417
Kenji Hashimoto, Hideki Kondo, Hun-Ok Lim and Atsuo Takanishi

Hexapod Walking Robot Locomotion . 439
Franco Tedeschi and Giuseppe Carbone

Part V Robot Cooperation and Interaction

Distributed Cooperation of Multiple UAVs for Area Monitoring
Missions . 471
José J. Acevedo, Begoña C. Arrue, Iván Maza and Anibal Ollero

viii Contents

http://dx.doi.org/10.1007/978-3-319-14705-5_8
http://dx.doi.org/10.1007/978-3-319-14705-5_9
http://dx.doi.org/10.1007/978-3-319-14705-5_9
http://dx.doi.org/10.1007/978-3-319-14705-5_10
http://dx.doi.org/10.1007/978-3-319-14705-5_11
http://dx.doi.org/10.1007/978-3-319-14705-5_11
http://dx.doi.org/10.1007/978-3-319-14705-5_12
http://dx.doi.org/10.1007/978-3-319-14705-5_13
http://dx.doi.org/10.1007/978-3-319-14705-5_13
http://dx.doi.org/10.1007/978-3-319-14705-5_14
http://dx.doi.org/10.1007/978-3-319-14705-5_14
http://dx.doi.org/10.1007/978-3-319-14705-5_15
http://dx.doi.org/10.1007/978-3-319-14705-5_16
http://dx.doi.org/10.1007/978-3-319-14705-5_16

Robotic Manipulation Within the Underwater Mission Planning
Context . 495
Javier Pérez, Jorge Sales, Antonio Peñalver, J. Javier Fernández,
Pedro J. Sanz, Juan C. García, Jose V. Martí, Raul Marín
and David Fornas

Erratum to: Motion and Operation Planning of Robotic Systems. E1
Giuseppe Carbone and Fernando Gomez-Bravo

Contents ix

http://dx.doi.org/10.1007/978-3-319-14705-5_17
http://dx.doi.org/10.1007/978-3-319-14705-5_17
http://dx.doi.org/10.1007/978-3-319-14705-5_18

Part I
Theoretical Background

Path Planning and Trajectory Planning
Algorithms: A General Overview

Alessandro Gasparetto, Paolo Boscariol, Albano Lanzutti
and Renato Vidoni

Abstract Path planning and trajectory planning are crucial issues in the field of
Robotics and, more generally, in the field of Automation. Indeed, the trend for robots
and automatic machines is to operate at increasingly high speed, in order to achieve
shorter production times. The high operating speed may hinder the accuracy and
repeatability of the robot motion, since extreme performances are required from
the actuators and the control system. Therefore, particular care should be put in
generating a trajectory that could be executed at high speed, but at the same time
harmless for the robot, in terms of avoiding excessive accelerations of the actu-
ators and vibrations of the mechanical structure. Such a trajectory is defined as
smooth. For such reasons, path planning and trajectory planning algorithms assume
an increasing significance in robotics. Path planning algorithms generate a geomet-
ric path, from an initial to a final point, passing through pre-defined via-points,
either in the joint space or in the operating space of the robot, while trajectory
planning algorithms take a given geometric path and endow it with the time infor-
mation. Trajectory planning algorithms are crucial in Robotics, because defining the
times of passage at the via-points influences not only the kinematic properties of the
motion, but also the dynamic ones. Namely, the inertial forces (and torques), to which
the robot is subjected, depend on the accelerations along the trajectory, while the
vibrations of its mechanical structure are basically determined by the values of the
jerk (i.e. the derivative of the acceleration). Path planning algorithms are usually
divided according to the methodologies used to generate the geometric path, namely:

A. Gasparetto (B) · P. Boscariol
DIEGM – Dipartimento di Ingegneria Elettrica Gestionale E Meccanica,
University of Udine, Via Delle Scienze, 206, 33100 Udine, UD, Italy
e-mail: alessandro.gasparetto@uniud.it

A. Lanzutti
MBP, Via Toscanini, 48/B, 46043 Castiglione Delle Stiviere, MN, Italy

R. Vidoni
Faculty of Science and Technology,
Free University of Bozen-Bolzano Piazza Università,
39100 Bolzano, Italy

© Springer International Publishing Switzerland 2015
G. Carbone and F. Gomez-Bravo (eds.), Motion and Operation Planning
of Robotic Systems, Mechanisms and Machine Science 29,
DOI 10.1007/978-3-319-14705-5_1

3

4 A. Gasparetto et al.

• roadmap techniques
• cell decomposition algorithms
• artificial potential methods.

The algorithms for trajectory planning are usually named by the function that is
optimized, namely:

• minimum time
• minimum energy
• minimum jerk.

Examples of hybrid algorithms, which optimize more than a single function, are
also found in the scientific literature. In this chapter, the general problem of path
planning and trajectory planning will be addressed, and an extended overview of the
algorithms belonging to the categories mentioned above will be carried out, with
references to the numerous contributions to this field.

Keywords Path planning · Trajectory planning · Roadmap · Cell decomposition ·
Artificial potential · Minimum time · Minimum energy · Minimum jerk

1 Introduction

Human activity in many sectors is nowadays supported or substituted by robots,
which range from standard robots for industrial applications to autonomous robots for
complex tasks, such as space exploration. Indeed, the great versatility and flexibility
of robots allows them to be employed in different sectors, to perform even very
diverse tasks. Referring to the industrial environment, a robot can be defined [78]
as a mechanical structure made of several rigid bodies (links) connected one to
another by means of joints. Within the robot, it is possible to identify a structure that
implements mobility, a wrist which provides dexterity, and an end-effector which
performs the task given to the robot.

Regardless of the specific mechanical structure, in all types of applications a
generic task is achieved by a robot by imposing a specific motion to the end-effector.
This motion may be free or bound: the former case applies if the end-effector does
not have a physical interaction with the environment, while the latter case applies if
the end effector interacts with the environment by exchanging forces and/or torques.

The input of the control systemof the robot is generally given by the lawofmotion,
which is generated by a dedicatedmodule formotion planning. Suchmotion planning
module can operate off-line, by using a knowledge of the robot and the environment
which is given a priori, or can operate on-line: in this case, suitable sensors must be
employed to monitor the robot motion and enable the control system to adjust the
movements in real time.

Ultimately, controlling the robot means determining the forces and torques that
the actuators must develop at the joints, so as to ensure that the reference trajectories

Path Planning and Trajectory Planning Algorithms: A General Overview 5

are properly followed. However, this problem turns out to be very complex, because
a robot is an articulated structure, so the motion of a single link arm affects the other
links. Mathematically, this is expressed by the fact that the dynamic equations of
a robot (with the exception of Cartesian structures), contain some terms due to the
coupling effects between different links.

In most cases, robot controllers are based on closed loops, driven by the error
between the reference and the actual position, which allows to achieve the accuracy
required to the robot in executing the planned trajectory. In the case that, during a
manipulation task, there is contact between the end-effector and the environment,
the control problem is further complicated because not only the motion, but also the
forces exchanged in the interaction should be monitored and controlled.

In this chapter, we will focus on the path planning and trajectory planning prob-
lems, which constitute the two main parts of the general motion planning problem.
The interest for such topics is dramatically increasing, because operations at high
speed are required to robots in themodern automatic systems; hence, smoothmotions
should be planned (where smooth means that such motions must avoid excessive val-
ues of accelerations of the actuators, aswell as vibrations of themechanical structure).

Many algorithms have been proposed, both for path planning and for trajectory
planning, in the scientific literature of the robotic domain. The aim of this chapter is
to provide a general overview of such algorithms, which have been subdivided into
suitable categories.

2 Path Planning

Path planning is a merely geometric matter, because it is defined as the generation
of a geometric path, with no mention of any specified time law. On the other hand,
trajectory planning consists in assigning a time law to the geometric path. In most
cases, path planning precedes trajectory planning; however, these two phases are not
necessarily distinct; for instance, if point-to-point trajectories are considered (i.e.
only the initial and final positions are specified), the two problems may be solved at
the same time.

In this section the analysis of available works in literature deals with the case of
systems without non-holonomic constraints.

Different types of paths are possible, depending on the specific case. For instance,
for industrial manipulators, the standard path is usually defined by the geometry of
the task, which is defined in a static way. In more advanced applications, or for
robots operating in dynamic environments, some extra features, such as the need for
automatic obstacle avoidance, may be added.

In applications of advanced robotics, the problem of path planning is definitely
very challenging, especially for robots characterized by a large degree of autonomy
or for robots that must operate in hostile environments (space, underwater, nuclear,
military, etc.).

6 A. Gasparetto et al.

The definition of the path planning problem is very straightforward: “find a
collision-free motion between an initial (start) and a final configuration (goal) within
a specified environment”. The simplest situation is when the path is to be planned in
a static and known environment; however, more generally, the path planning prob-
lem can be formulated for any robotic system subject to kinematic constraints, in a
dynamic and unknown environment.

Much work can be found the robotic literature, dealing with path planning. The
first definitions and algorithms date back to the 1970s. In [57] a complete overview
of the path planning techniques can be found. An overview of many techniques cited
in this work can be found also in the classic book [23] or in the recent book [48].
Other useful reviews of path planning techniques are [49, 55].

Somebasic definitions are needed to introduce the path planning problem, namely:
the configuration space (C-space), the space of free configurations (C-free) and the
obstacles’ representation in the C-space (C-obs).

The configuration space is the space of all possible robot configurations, where
a configuration q is the specification of position and orientation of the robot A with
respect to a fixed reference frame FW . Referring to Fig. 1, the C-space of the robot
A is R3, since the configuration of A is specified by the origin of FA with respect to
FW , and by its orientation.

For an articulated robot (Fig. 2), the C-space is given by its joint space (in this
case, R2). The C-obs is given by the image of the obstacles in the C-space, and the
C-free is defined as {C-space—C-obs}.

Path planning algorithms are usually divided in three categories, according to the
methodologies used to generate the geometric path, namely:

• roadmap techniques
• cell decomposition algorithms
• artificial potential methods.

Fig. 1 Mobile robot in a
2-dimensional space with
obstacles

Path Planning and Trajectory Planning Algorithms: A General Overview 7

β

α

270

360

180

90

0 90 18013545

qgoal

q start

β

α

Cfree

Cobs

Fig. 2 C-space, C-free and C-obs for an articulated robot with two joints

2.1 Roadmap Techniques

The roadmap techniques are based upon the reduction of the N-dimensional config-
uration space to a set of one-dimensional paths to search, possibly on a graph.

In other words, this approach maps the free space connectivity into a system
of one-dimensional curves (the roadmap) in the C-free space or in its closure. The
roadmap R thus obtained contains a set of paths: hence, the path planning consists in
linking the initial and final configurations to R. In this way a feasible path between
the two configurations is found.

It is very natural to associate a graph to the roadmap and to define some optimality
index (e.g. the Euclidean length): the graph can then be searched in order to get the
optimal solution to the path planning problem (in most cases, this is represented by
the shortest path).

Figure3 represents the so-called visibility graph, i.e. the graphwhose nodes are the
vertices of all the obstacles in the configuration space. Searching the graph would
lead to get the shortest Euclidean path in the C-space. The nodes of the graphs
indicate point locations, while edges represents visible connections between the
nodes. Grey areas indicate obstacles to be avoided. The concept of visibility graph,
which represents amilestone in the literature related to path planning, was introduced
by Lozano-Pérez [63, 64].

Another kind of roadmap algorithms are those based on Voronoi diagrams, which
are defined as a way to divide the space into regions having the following charac-
teristic: given a set of points {p1, . . . pn}, each point belonging to the ith region is
closer to pi than to any other p j �= pi . This approach is dual to that based on the
visibility graph, because the Voronoi diagrams enable one to obtain a path lying at
the maximum distance from the obstacles, whereas the visibility graph generates a
path that passes as close as possible to the obstacle vertices.

8 A. Gasparetto et al.

Fig. 3 Visibility graph

Figure4 shows some path generated by usingVoronoi diagrams. The three squares
in the diagram represents obstacles, while the blue lines are the set of points equidis-
tant from at least two obstacles. Therefore the paths defined with this technique are
designed to be as far away as possible from nearby obstacles. Examples of path
planning algorithms may be found in [15, 35, 84].

2.2 Cell Decomposition Methods

According to the cell decomposition methods, the free space of the robot is subdi-
vided into several regions, called cells, in such a way that a path between any two
configurations lying in the same cell is straightforward to generate. It is then natural
to define a so-called connectivity graph, which represents the adjacency relations
between cells. Namely, the nodes of the graph represent the cells extracted from
the free space, and there is an arch between two nodes are connected if and only
if the corresponding cells are adjacent. The path planning problem is, again, turned
into a graph searching problem, and can therefore be solved using graph-searching
techniques.

Figure5 illustrates the procedure described above, which is named exact cell
decomposition technique, because the union of the cell represents exactly the free
space. In some cases, an exact computation of the free space is not possible or
convenient. Approximate cell decomposition methods must therefore be employed.
Figure6 shows how these techniques work:

Path Planning and Trajectory Planning Algorithms: A General Overview 9

Fig. 4 Paths resulting from Voronoi diagrams

• the whole C-space (assumed 2-dimensional) is divided into four cells;
• the algorithm checks if each cell is completely empty, completely full or mixed
(such words obviously refer to the occupancy by the obstacles);

• eachmixed cell is in turn divided into four subcells, and the algorithm is recursively
applied to check the status of every subcell and recursively divide each mixed
subcell into four sub-subcells.

The graph that may be naturally associated to the approximate cell decomposition is
a tree, named quadtree for 2-dimensional spaces (Fig. 7), octree for 3-dimensional
spaces (Fig. 8), 16-tree for 4-dimensional spaces, and so forth.

2.3 Artificial Potential Methods

The artificial potential methodologies are a different approach to the path planning
problem. The basic idea is to consider the robot in the configuration space as a
moving point subject to a potential field generated by the goal configuration and
the obstacles in the C-space: namely, the target configuration produces an attractive
potential, while the obstacles generate a repulsive potential. The sum of these two
contribution is the total potential, which can be seen as an artificial force applied

10 A. Gasparetto et al.

Fig. 5 Exact cell decomposition: a subdivision of space into numbered polygons, b connectivity
graph, c regions to be crossed, d path

Fig. 6 Approximate cell decomposition

to the robot, aimed at approaching the goal and avoiding the obstacles. Thus, given
any configuration during the robot motion, the next configuration can be determined
by the direction of the artificial force to which the robot is subjected. This normally
represents the most promising direction of motion in terms of free path. An example
of the application of the artificial potential method is shown in Fig. 9.

The artificial potential method was originally conceived by Khatib [50] and fur-
ther developed by Volpe [91, 92]. Such a technique can find applications in many
fields, because it can be successfully implemented online, thus moving the obstacle
avoidance problem from the higher (and slower) level of path planners to the lower
(and faster) level of online motion controllers. This implies that the good features
of the artificial potential methods, especially the reactivity to environment changes,

Path Planning and Trajectory Planning Algorithms: A General Overview 11

Mixed cell

Full cell

Empty cell

Fig. 7 Quadtree

Mixed cell

Full cell

Empty cell

Fig. 8 Octree

duly detected by the robot sensors, enable the robot controller to manage unexpected
workspace changes in a fast way.

However, the artificial potential methods are intrinsically affected by a major
problem, namely the presence of local minima, where the robot may find itself
trapped. In order to overcome this problem, several solutions have been proposed:
for instance, using potential functions which do not have local minima [25, 26, 51,
53]. Such functions are called navigation functions.

In [39, 42] alternative applications of the artificial potential method are presented.
Another approach to solve the path planning problem is found in [5], where a

special kind of planners, named RPP (Random Path Planners), is proposed: local
minima are avoided by combining the concepts of artificial potential field with ran-
dom search techniques. Albeit with some limitations, RPP proved to be able to solve
path planning problems for robots with a high number of degrees of freedom, with
reasonable computation times.

Other examples of RPP can be found in [18–21].

12 A. Gasparetto et al.

Fig. 9 The artificial potential method

2.4 Alternative Approaches to Path Planning

A possible alternative approach, which had remarkable results in very complex path
planning problems, is given by the Probabilistic Roadmap Planners (PRM). It is
a technique which employs probabilistic algorithms, such as random sampling, to
build the roadmap. The most important advantage of PRM is that their complexity
do not strictly depend on the complexity of the environment and on the dimension
of the configurations space. The basic idea is to consider a graph where the nodes
are given by a set of random configurations in the C-free. A local planner can then
try to connect these configurations by means of a path: if a path is found, a new node
is added to the graph. In this way the graph reflects the connectivity of the C-free.
In order to find a path between two configurations, these configurations are added to
the graph, then a graph search is performed in order to find a feasible path. Given the
probabilistic nature of the algorithm, post-processing is often necessary to improve
the quality of the path. PRM algorithms have been successfully applied to robotic
manipulators with up to 16 degrees of freedom. Examples of PRM can be found in
[1, 24, 45, 66].

There are some examples [29, 34] of path planners that take into account kinematic
and dynamic constraints of the robot, in addition to the pure geometric problem of
obstacles avoidance. This problem is referred to as kinodynamic motion planning.
Kinodynamic and nonholonomic motion planning can be handled by the Rapidly-
exploring Random Tree (RRT) method [58]. This method allows to search non-
convex high-dimensional spaces by randomly building a space-filling tree.

Another important version of the general problem is given by path planning in
presence of mobile obstacles. As it can be easily understood, this kind of problem

Path Planning and Trajectory Planning Algorithms: A General Overview 13

results very complex with respect to the basic version. This approach is used, for
instance, in [32, 33].

A general overview of the path planning problem can be found in [54] and in [43],
where the most important results achieved in the field of path planning, including
PRMandRPP techniques, are reported. In [43] it is claimed that all themethodologies
that haveproven tobepractically usable for path planning are basedon adiscretization
of the configuration space. There are two crucial requirements in order to ensure an
efficient implementation of path planning methodologies, namely: the efficiency of
collision detection algorithms and the efficiency of graph searching techniques.

3 Trajectory Planning

Solving the trajectory planning problem means generating the reference inputs for
the control system of the robot, so as to ensure that the desired motion is performed.
Usually, the algorithm employed for trajectory planning takes as inputs the path
generated by the path planner, as well as the kinematic and dynamic constraints of
the robot. The output of the trajectory planning module is given by the trajectory of
the joints, or of the end-effector, in form of a sequence of values of position, velocity
and acceleration.

The geometric path is normally defined in the operating space of the robot, because
the task to be performed, as well as the obstacles to avoid, are described in the
operating space more naturally than in the joint space. Thus, planning the trajectory
in the operative spacemeans generating a sequence of values that specify the position
and orientation that the end-effector of the robot must assume at every time interval.
Planning the trajectory in the operating space is usually donewhen themotion follows
a path with specific geometric characteristics defined in the operating space; in this
case, the path can be specified in an exact form (i.e. taking the original path), or in an
approximate form, by allocating some path points and connecting them by means of
polynomial sequences. However, in most cases the trajectory is planned in the joint
space of the robot because, since the control action on the manipulator is made on the
joints, planning in the operating space requires a kinematic inversion to transform
the end-effector position and orientation values into the joint values.

In order to plan a trajectory in the joint space, first a sequence of via-points should
be extracted from the desired end-effector path, then a kinematic inversion is to be
performed to get the corresponding values of the robot joints. The trajectory is then
generated in the joint space by means of interpolation functions, taking into account
the kinematic and dynamic limits imposed to the robot joints (in terms of position,
velocity, acceleration and jerk). Normally, this way of planning the trajectory can
also avoid the problems involved in moving near singular configurations, and can
efficiently deal with the possible presence of redundant degrees of mobility. The
main drawback of planning a trajectory in the joint space is given by the fact that
the execution of a motion planned in the joint space is not so straightforward to
predict in the operative space, due to the nonlinearities introduced by the direct

14 A. Gasparetto et al.

kinematics. However, no matter if the trajectory is planned in the operating space or
in the joint space, it is crucial that the laws of motion resulting from the planning do
not generate forces and torques at the joints that are not compatible with the given
constraints: in this way the possibility of exciting mechanical resonance modes can
be greatly reduced. For this reason, the planning algorithms must output smooth
trajectories, i.e. trajectories represented by a curve whose derivatives are continuous
up to a certain order. In particular, it is highly desirable to ensure the continuity
of the accelerations of the joints, in order to get trajectories with a limited jerk,
because limiting the jerk is crucial in order to reduce the vibrations induced to the
robot (which may lead to considerable wear of the mechanical structure), as well
as to avoid the excitation of the resonance frequencies of the robot. The vibrations
caused by non-smooth trajectories may seriously damage the actuators and degrade
the tracking performance of the trajectory. Furthermore, low-jerk trajectories can be
executed faster and with a higher accuracy as demonstrated in [6]. In addition, there
are some applications where abrupt motions can jeopardize the quality of the work
or constitute a risk to the human operators working near the robot.

In order to classify the different trajectory planningmethodologies into categories,
it is useful to consider that a trajectory is usually planned after some optimality
criterion has been set. The most significant optimality criteria that can be found in
the literature are:

• minimum execution time;
• minimum energy (or actuator effort);
• minimum jerk.

In addition to the above, hybrid optimality criteria have been proposed, such as,
for instance, time-energy optimal trajectory planning. With respect to the minimum
energy criterion, a short clarification is necessary. In most of the cases related with
trajectory planning, the term “energy” does not correspond to a physical quantity
measured in Joules, but it is defined as the integral of squared torques: in other
words, it measures the effort of the robot actuators. However, in the robotic literature
it is possible to find also trajectory planning algorithms where the optimality index
is “energy” in its strict meaning. Actually, this is not really a problem, because in
the electric motors used on the robots, the torque can be assumed proportional to the
current, so there is a correlation between the actuators’ effort and the energy required
to the system.

3.1 Minimum Execution Time Algorithms

The optimality criterion based on minimum execution time was the first to be con-
sidered in trajectory planning, because short execution times are strictly related
to high productivity in automatized production plants in industrial environments.
Thus, no wonder that many papers can be found, in the robotic literature, proposing

Path Planning and Trajectory Planning Algorithms: A General Overview 15

trajectory planning algorithms aimed at minimizing the performance index given by
the execution time.

The algorithms described in [7, 80] are defined in the position-velocity phase
plane. The basic idea of these algorithms is to write the dynamic equation of manip-
ulator in a parametric form using the curvilinear abscissa s of the path as the inde-
pendent parameter. The curvilinear abscissa s (path parameter) and its derivative s′
pseudo-velocity) constitute the state of the system, while the second derivative of s
(i.e. the pseudo-acceleration s′′) is chosen as the control variable. In this way, it is
possible to transform the constraints given by the nonlinear robot dynamics, as well
as the constraints on the actuators, into constraints on the control variable depending
from the state of the system. For every point on the path, the maximum admissible
value for the pseudo-velocity of the end-effector is determined from the constraints; it
is then possible to build in the position-velocity phase plane (i.e. in the (s, s′) plane),
a velocity limit curve (VLC). The optimal trajectory is then computed by finding the
admissible control that yields, for each point of the path, the maximum velocity that
does not exceed the limit curve. The solution turns out to be in the form of a curve
(named switching curve) in the phase plane.

An alternative approach to minimum time trajectory planning consists in using
dynamic programming techniques, such as those described in [2, 81]. The basic
idea is to take the state space and discretize it by building a grid of points (called
state points). On the basis of the limits set on velocity, acceleration and jerk, it is
possible to associate to each point the set of the subsequent admissible state points,
and to define the cost of each possible solution by considering the time needed for
the motion. This cost is defined by assuming a constant value of acceleration for each
step. Finally, an algorithm based on dynamic programming generates the minimum
time trajectory. Compared with the phase plane methods, the dynamic programming
methods do not require the parameterization of the path and enables to choose an
arbitrary performance index. Therefore, such algorithms may be used as a general
technique for trajectory optimization. On the other hand, the phase plane approach
turns out to be very efficient in terms of computational load; moreover, it may also
be used for on-line trajectory planning, as in [28, 67].

A model-based approach is used to maximize the speed of industrial robots by
obtaining the minimum-time trajectories that satisfy various constraints commonly
given in the application of industrial robots in [52]. Conventional trajectory patterns,
such as trapezoidal velocity profiles and cubic polynomial functions.

The algorithms described above produce trajectories with discontinuous accelera-
tions and joint torques, because the dynamicmodels used consider the robotmembers
as perfectly rigid and do not take into account the actuator dynamics. Neglecting the
link flexibility and the actuator dynamics normally leads to some undesired effects.
First, in reality the robot actuators cannot generate discontinuous torques: this causes
the joint motion to be delayed with respect to the reference trajectory. This accuracy
in trajectory following is thus greatly reduced, and the tracking controller has to be
often activated during the execution of the trajectory. Moreover, each switching of
the actuators may cause the so-called chatter phenomenon, i.e. high frequency oscil-
lations inducing vibrations of the mechanical structure of the robot. This obviously

16 A. Gasparetto et al.

results in wearing of the mechanical components and in a decrease of the accuracy
in trajectory following. Again, the tracking controller is activated more frequently
and the actuators are further stressed. Another undesired effect resulting from an
inaccurate model is that, since the time-optimal control requires saturation of at least
one robot actuator at any time instant, it is impossible for the controller to correct
the tracking errors arising from disturbances or modelling errors.

In [26, 27] a possible solution to these kind of problems is proposed: in these
works, the phase plane method is used, together with a limitation set on the torque
variations (actuator jerks). The proposed algorithm takes the pseudo-jerk, defined
as the third derivative of the curvilinear abscissa, as the control variable: a dynamic
equation of the third order is thus obtained. The experimental results presented in [26]
show that, if some upper bound is set on the pseudo-jerk, time-optimal trajectories
can be practically obtained by simply employing a conventional PID controller.
This proves the correlation between accuracy in trajectory following and low values
of jerk.

Adifferentway to limit the torque variations is to consider in the objective function
not only the execution time, but also an energy contribution: for instance in [79]
the integral of squared torques along the whole trajectory is taken into account.
The experimental results presented in [79] show that the increase of the overall
motion time is compensated by a greater accuracy in trajectory following, even if
conventional PD controllers are used. This results in a reduction of actuator stresses,
with obvious advantages in the total lifetime of the electro-mechanical components
of the robot.

It is possible to approach the problem of minimum-time trajectory planning by
defining a priori the primitives of the motion, i.e. the curves that define the trajectory
in the joint space. Such curves must be smooth functions, so that the control signals
and, consequently, the torque signals at the actuators, result also smooth functions.
The most common situation is that in which the path is specified using a limited
number of via-points: the solution is then given by spline interpolation. In the lit-
erature, several methodologies are proposed to compute time-optimal trajectories
for robot manipulators based on optimization of splines, whose order may be three
(cubic splines) or higher. The main differences among these techniques are:

• the type of constraints considered (either kinematic or dynamic);
• the algorithm used to compute the optimal trajectory;
• the possibility to extend the optimization problem, by taking into account other
optimization criteria, in addition to the minimum time.

The distinction based on the type of constraints can be considered themost important.
It can be extended to any type of trajectory planning algorithm, so that the two
categories of kinematic trajectory planning and dynamic trajectory planning can
be defined. The kinematic trajectory planning algorithms take as their input upper
(sometimes also lower) bounds on velocity, acceleration and jerk. In most cases
such bounds are considered constant. The dynamic trajectory planning algorithms
consider the dynamic model of the robot and define an optimization problem taking
into account dynamic constraints, such as bounds on the actuator torques, or on

Path Planning and Trajectory Planning Algorithms: A General Overview 17

the actuator jerks, defined as the variation of the torques. In some cases kinematic
constraint (typically the velocity) are also considered. Both approaches have pros and
cons: the kinematic trajectory planning has its main advantage in the simplicity and
in the lower computational load; on the other hand, the dynamic trajectory planning
features a better capacity to use the robot actuators. In other words, the kinematic
methods are based on a simplified computational model that yields a non-optimal
use of the robot actuators, although in most cases reasonably good trajectories are
planned.Dynamicmethods are basedon amore accuratemodel and therefore produce
better solutions, but at the cost of a heavier computational load, since they have to deal
with non-trivial issues, such as identification of the dynamic parameters of the robot,
or the efficiency in implementing efficient algorithms to solve the robot dynamic
equations.

An interesting example of an algorithm based on the inverse dynamic of a parallel
robot is given by [17]. In this work, a multi-objective optimisation problem is for-
mulated and a dedicated genetic algorithm is employed to find an optimal trajectory
based upon spline functions.

Splines function are therefore used as trajectory primitives in order to ensure
the continuity of the acceleration. Another example can be found in [59], where a
nonlinear optimization problem is set, namely the computation of the value of the
time intervals between the via-points, so as to minimize the total execution time
of the trajectory subject to kinematic constraints. The technique is based upon an
unconstrained optimization algorithm named FPS (Flexible Polyhedron Search), in
combination with an algorithm called FSC (Feasible Solution Converter), which
converts the solutions that are not physically feasible (i.e. that are not compatiblewith
the kinematic constraints) into feasible ones, by implementing a suitable time scaling
of the trajectory generated by the FPS algorithm. In [93], the same optimization
algorithm presented in [59] is used, but instead of cubic splines, cubic B-splines are
taken as primitives of motion.

The algorithms described above produce a local optimal solution, while other
minimum-time trajectory planning methods output a global optimal solution. Piazzi
and Visioli use interval analysis to calculate a minimum-time trajectory subject to
kinematic constraints at the joints. Such kinematic constraints are on the maximum
value of velocity, acceleration and jerk. In [71] they extend the results already pre-
sented in [71, 72]. The simulations presented in [71] showed an improvement of 18%
of the total execution time with respect to the results yielded by a local optimization
algorithm.

In [40, 41] a global optimization method is presented, which combines a stochas-
tic technique, such as a genetic algorithm, with a deterministic procedure based on
interval analysis. The proposed technique can be applied to solve general global opti-
mization problems where semi-infinite constraints are defined. In [40] this algorithm
is applied to the problem of minimum-time trajectory planning with specific kine-
matic and dynamic constraints: namely, the trajectories, represented by cubic splines,
are subject to restrictions on the maximum actuator torques, as well as on the linear
and angular velocities of the end-effector in the operating space. It is remarkable

18 A. Gasparetto et al.

that, differently from usual, in [40] the velocity constraint is not imposed in the joint
space, but in the operating space of the end-effector.

A composition of polynomial functions of different orders are used in [11, 12] to
obtain jerk continuity along a trajectory planned from a set of pre-defined via-points,
obtaining a global minimum time solution.

Another example of minimum-time trajectory planning for robotic manipulators
can be found in [16]. In this case the objective function is made of two terms: the first
term takes the squared values of the optimization variables (i.e. of the time intervals
between the via-points), while the second term is the sumof the squared accelerations
computed at the via- points. The introduction of this second term has the effect of
increasing the trajectory smoothness with respect to a pure minimum-time approach.
The optimization is performed by using the DFP (Davidon-Fletcher-Powell) algo-
rithm,which does not consider the kinematic bounds, therefore performing an uncon-
strained minimization. The solution obtained by means of the DFP algorithm is then
subjected to a procedure of time-scaling, until the more restrictive kinematic bound
has been saturated. The resulting trajectory, although respecting the limits on veloc-
ity, acceleration and jerk, is sub-optimal with respect to time.

In [30] a technique for determining time-optimal path-constrained trajectories
subject to velocity, acceleration and jerk constraints, actingonboth the robot actuators
and on the task to be executed, is presented. The solution of the optimization problem
is based upon a hybrid optimization strategy, which takes into account the path
description, the kinematic model of the robot and constraints defined by the user.
The resulting trajectories are optimal with respect to time, but not with respect to
smoothness.

In the work [60] a combination of spline functions up to the seventh order are
used together to achieve minimum time solutions with velocities, acceleration and
jerk bounds. Other examples of minimum-time algorithms subject to kinematic con-
straints may be found in [31, 49, 85, 86, 89]. In [74] the minimum-time trajectory
problem is solved under kinematic and dynamic constraints, i.e. teorque, power, jerk
and energy, taking into account both the robot dynamics and the obstacle presence.

3.2 Minimum Energy Algorithms

As already remarked, the minimum-time trajectory planning algorithms received a
lot of consideration in the robotic literature, mainly because of the strong industrial
interest to reduce the length of the production cycles. However, the minimum-time
optimization criterion is not the only one that can be considered: other criteria are
definitely more suitable for different needs and requirements.

The trajectory planning based on energetic criteria is interesting under many
aspects. On one hand, it generates smooth trajectories which are easier to track,
and reduce the stresses induced to the actuators and to the mechanical structure of
the robot. On the other hand, this optimization criterion enables one to better com-
ply with energy saving requirements, which are driven not only by mere economic

Path Planning and Trajectory Planning Algorithms: A General Overview 19

considerations, but may be imposed by specific applications in which the energy
source is limited by technical factors, such as robotic applications for outer space,
for underwater exploration or for military tasks.

A classical example of minimum-energy trajectory planning algorithm is con-
tained in [65], where a trajectory is optimized with respect to energy taking into
account constraints on the motion of the end-effector, as well as the physical limits
of the joints. The proposed objective function is the integral of squared torques. The
trajectories are expressed by cubic B-splines and, by exploiting some property of the
convex hull, it is possible to transform the joint limits into some limits set on the
optimization parameter, which are the control points of the B-splines. The resulting
motion thus minimizes the effort of the actuators.

In [2, 79] some techniques for optimal trajectories planning,with respect to energy
and time, are described: the function to optimize is made of two terms, the first
related to the execution time, the second related to the energy consumption. Such
algorithms are intended to reduce the stresses of the actuators and to facilitate the
trajectory tracking. In [79], the integral of the squared torques along the trajectory
is considered in the objective function, while in [2] the function of total energy is
considered.

Other examples of optimized trajectories, with respect to energy as well as to time,
are presented in [75–77, 90, 95]. In [75] the Authors consider a trajectory parame-
terized by cubic splines, subject to kinematic constraints set on the maximum value
of velocity, acceleration and jerk, and to dynamic constraint given by the maximum
torque applicable to the joints. In [76] the same Authors consider a trajectory para-
meterized by cubic B-splines, where the physical limits of the joints are added to the
torque and kinematic constraints. The objective function includes also an additional
term (penalty function), in order to avoid mobile obstacles expressed as spherical or
hyperspherical safety zones. In [77], two strategies for offline 3-dimensional optimal
trajectory planning of industrial robots, in presence of fixed obstacles, are presented.
In [90], a nonlinear change of variables is employed to convert the time-energy opti-
mal trajectory planning problem into a convex control problem based on only one
state variable. In [95], amethodology based on theminimization of an objective func-
tion which considers both the total execution time and the total energy spent along
the whole trajectory is presented; the via-points of the trajectory are interpolated
by means of cubic splines. Kinematic and dynamic constraints, in terms of upper
bounds on velocity, acceleration, jerk and input forces and torques are also consid-
ered. It is worth noting that in algorithms such as the one presented in [79] the energy
term is added in order to produce trajectories which result slower but smoother with
respect to those generated by minimum-time trajectory planning algorithms; on the
other hand, in approaches such as the one presented in [76] the objective function is
primarily designed to minimize the energy and to plan trajectories with no regard to
the execution time.

Recently, due to the development and installation of energy recovery and redistri-
bution devices in robotic systems, the minimum-energy topic has gained new interest
among the research community, e.g. [44, 68].

20 A. Gasparetto et al.

3.3 Minimum Jerk Algorithms

The importance of generating trajectories that do not impose discontinuities of the
actuator torques at the robot joints has already been remarked; for instance, in [26]
and in [27] this result is obtained by imposing upper bounds to the rate of change of
the actuator torques. However, this kind of approach requires the computation of the
third order dynamics of the robot.

An alternative method to obtain smooth profiles of the actuator torques is based
on the idea of limiting the jerk, defined as the time derivative of the acceleration.
Indeed, the torque variations depend upon the dominant term of the matrix of inertia
multiplied by the vector of the joint jerk. Thus, some trajectory planningmethods take
the jerk as the variable to be minimized, in order to obtain smooth trajectories. The
minimization of the jerk yields positive results, such as: reduction of the error during
the trajectory tracking phase, reduction of the excitation of resonance frequencies,
reduction of the stresses induced to the mechanical structure of the robot and to the
actuators.

This results in a natural and coordinated motion: indeed, some studies suggest
that the movements of the human arm satisfy an optimization criterion based upon
the minimization of the jerk, or of the torque variations [82]. The minimum-jerk
trajectory planning for robotic manipulators are an example of optimization based
on physical criteriawhichmimic the human ability to produce naturalmovements [8].

In [56] the analytical solution of a trajectory planning problem for a point-to-point
path, based on a minimum-jerk optimization criterion, is presented. The optimiza-
tion, performed by applying Pontryagin’s principle, involves two objective functions,
namely: the maximum absolute value of jerk (minimax approach) and the time inte-
gral of the squared jerk.

In some cases, the total execution time of the trajectory is not imposed, so it can
be chosen so as to comply with the kinematic limits on velocity and acceleration.
However, most of the minimum-jerk algorithms that can be found in the robotic
literature consider an execution time imposed a priori.

In [82], the integral of the squared jerk is minimized along the executed trajec-
tory. In order to have a trajectory with a smooth start and stop, the values of velocity,
acceleration and jerk are set to zero at the first and at the last via-points. The proposed
algorithm is based upon a stochastic optimization technique performed by means of
neural networks. The algorithm does not ensure the exact interpolation of interme-
diate nodes, but allows a tolerance, which can be set by tuning appropriate weights.
This does not constitute a problem in cases where the exact interpolation is not
needed, but just the passage in the neighbourhood of the via-points is required. The
main limitation of this technique is that the resulting trajectories are not analytical
functions, but are numerically defined.

Another approach is contained in [83], where the interpolation of the via-points
is performed by means a trigonometric spline, thus ensuring the continuity of the
jerk. The algorithm assumes that the time interval between the via-points is known
and constant, and takes as input the values for the velocity, the acceleration and the

Path Planning and Trajectory Planning Algorithms: A General Overview 21

jerk, at the first and at the last via-points (such values are typically all set to zero).
There are some advantages in using trigonometric splines to interpolate the trajectory
via-points, for instance the property of locality: namely, if a via-point is changed,
it is not necessary to recalculate the whole trajectory, but only the two splines that
are connected to the via-point need to be recomputed. This property allows fast
computation, thus making it possible to implement obstacle avoidance procedures
in real time. The most significant aspect, in terms of trajectory optimization, is that
parameterizing the trajectory allows some degrees of freedom, namely those given
by the values of the first three derivatives (velocity, acceleration and jerk) at the
intermediate via-points. Such values can be adjusted in order tominimize an objective
function, such as the time integral of the squared jerk. The optimization presented in
[83] is not bounded, since no kinematic limits are imposed, and yields a closed form
solution, thus not requiring iterative minimization procedures.

In [70, 73] an algorithm based on interval analysis is presented. This technique
seeks the minimum of the maximum absolute value of the jerk along a trajectory
whose execution time is imposeda priori. It is therefore a so-calledminimax approach
bounded on the trajectory execution time. The trajectories primitives are cubic splines
and the intervals between the via-points are computed, so as to obtain the lowest
maximum absolute jerk value. In [70] the Authors present a comparison with the
method based on trigonometric splines [83], reporting the highest values of the jerk,
of the torques and of the torque variations. The simulation, which calculates the
robot dynamics using the MatLabTM Robotics Toolbox, highlights the efficiency of
the minimax algorithm with respect to other approaches.

3.4 Hybrid Optimization Approaches

Optimal trajectory planning with respect to time, energy and jerk has been discussed
in the foregoing. Hybrid optimization approaches have also been proposed in the
robotic literature. For instance, in order to get the advantages of the jerk reduction
while executing fast trajectories, hybrid time-jerk optimal techniques are proposed,
for instance [9, 11, 36–38, 46, 69]. These algorithms differ from the primitives used
to interpolate the path, or from the optimization procedures implemented.

In [9, 11, 36–38] aminimum time-jerk trajectory planning technique is described,
based upon two algorithms aimed at theminimization of an objective function, which
is designed so as to ensure fastness in execution and smoothness of the trajectory at
the same time. Such an objective function is composed of a term which is propor-
tional to the total execution time and of a term which is proportional to the integral of
the squared jerk along the path. The proposed algorithm enables one to define con-
straints on the robot motion before the execution of the trajectory. The constraints
are expressed in form of upper bounds on the velocity, acceleration and jerk values

22 A. Gasparetto et al.

of all robot joints. In this way, any physical limitation of the real robot can be taken
into account when planning the trajectory. Unlike most jerk-minimization methods,
this technique does not ask for an a priori setting of the total execution time.

In [61, 62], the methodology is extended by taking into account also the power
consumption of the actuators and physical limits of the joints. In this way, the tech-
nique becomes a time-jerk-energy planning algorithm.

Several objectives are taken into account in the work [51]: in particular minimum
elctrical and kinematic energy, minimum time and maximum maniuplability are
obtained with the solution of a single optimization problem.

Minimum effort trajectories planned trough model-based approaches are pre-
sented in [10, 14]. The first one includes bounds on jerk, while second one has
bounded joint speed. The work [13] introduces the novel topic of robustness in tra-
jectory planning algorithms. Such approach allows to increase the tolerance of the
resulting trajectory to the inevitable mismatches between the dynamic model used
for the planning and the actual robot dynamics.

The problem of finding minimum time-effort trajectories for motor-driven paral-
lel platform manipulators, subject to the constraints imposed by the kinematics and
dynamics of the manipulator structure is the topic of the paper [21]. Computational
efficiency is obtained trough a hybrid scheme comprising the particle swarm opti-
mization method and the local conjugate gradient method. Also in [22] a constrained
multi-objective genetic algorithm (MOGA) based technique is proposed to address
this problem for a general motor-driven parallel kinematicmanipulator. The planning
process is composed of searching for a motion ensuring the accomplishment of the
assigned task, minimizing the traverse time, and expended energy subject to various
constraints imposed by the associated kinematics and dynamics of the manipulator.

All the trajectory planning methods introduced above are applicable to rigid link
robot, with either serial or parallel kinematic configurations. However, it is worth-
while to mention that also cable-driven robots application are gaining a growing
interest in robotics. Among the advantages brought by this class of manipulators,
low overall mass and high stiffness make them very advantageous in many applica-
tions. On the other hand, the fact that they often require to use actuation redundancy
and that they operation must avoid cable interference [94], has led to the develop-
ment of trajectory planning algorithms specifically designed for them. The work
[87] presents a method to compute trajectories for underconstrained parallel robot
that ensures positive and bounded cable tension, while in [88] a similar procedure
is also experimentally validated. A detailed study of the dynamics of cable-driven
parallel robot is reported in [47], as a tool for developing accurate path planning
algorithms. The time-optimality of trajectories designed for cable-driven robot is the
topic covered in the works [3, 4].

Path Planning and Trajectory Planning Algorithms: A General Overview 23

4 Conclusions

In this paper, the fundamental problems of path planning and trajectory planning in
Robotics have been addressed. An overview of the most significant methods, that can
be found in the robotic literature to generate collision-free paths, has been presented.
Then, the problem of finding an optimal trajectory given a planned path has been
discussed and the most significant approaches have been described.

References

1. Amato NM,Wu Y (1996) A randomized roadmap method for path and manipulation planning.
In: Proceedings of the 1996 IEEE international conference on robotics and automation, pp
113–120

2. Balkan T (1998) A dynamic programming approach to optimal control of robotic manipulators.
Mech Res Commun 25(2):225–230

3. Bamdad M (2013) Time-energy optimal trajectory planning of cable-suspended manipulators.
Cable-driven parallel robots. Springer, Berlin, pp 41–51

4. Barnett E, Gosselin C (2013) Time-optimal trajectory planning of cable-driven parallel mech-
anisms for fully-specified paths with g1 discontinuities. In: ASME 2013 international design
engineering technical conferences and computers and information in engineering conference.
American Society of Mechanical Engineers

5. Barraquand J, Latombe JC (1991) Robot motion planning: a distributed representation
approach. Int J Robot Res 10(6):628–649

6. Barre PJ, Bearee R, Borne P, Dumetz E (2005) Influence of a jerk controlled movement law
on the vibratory behaviour of high-dynamics systems. J Intell Robot Syst 42(3):275–293

7. Bobrow JE, Dubowsky S, Gibson JS (1985) Time-optimal control of robotic manipulators
along specified paths. Int J Robot Res 4(3):554–561

8. Bobrow JE, Martin BJ, Sohl G, Wang EC, Kim J (2001) Optimal robot motion for physical
criteria. J Robot Syst 18(12):785–795

9. Boscariol P, Gasparetto A, Lanzutti A, Vidoni R, Zanotto V (2011) Experimental validation of
minimum time-jerk algorithms for industrial robots. J Intell Robot Syst 64(2):197–219

10. Boscariol P, Gasparetto A (2013)Model-based trajectory planning for flexible linkmechanisms
with bounded jerk. Robot Comput Integr Manuf 29(4):90–99

11. Boscariol P, Gasparetto A, Vidoni R (2012) Jerk-continous trajectories for cyclic tasks. In: Pro-
ceedings of the ASME 2012 international design engineering technical conferences (IDETC),
pp 1–10

12. Boscariol P, Gasparetto A, Vidoni R (2012) Planning continuous-jerk trajectories for industrial
manipulators. In: Proceedings of the ESDA 2012 11th biennial conference on engineering
system design and analysis, pp 1–10

13. Boscariol P, Gasparetto A, Vidoni R (2013) Robust trajectory planning for flexible robots. In:
Proceedings of the 2013 ECCOMAS multibody dynamics conference, pp 293–294

14. Boscariol P, Gasparetto A, Vidoni R, Romano A (2013) A model-based trajectory planning
approach for flexible-link mechanisms. In: Proceedings of the ICM 2013—IEEE international
conference on mechatronics, pp 1–6

15. Canny J, Donald B (1988) Simplified voronoi diagrams. Discret Comput Geom 3(1):219–236
16. Cao B, Dodds GI (1994) Time-optimal and smooth constrained path planning for robot manip-

ulators. In: Proceedings of the 1994 IEEE international conference on robotics and automation,
pp 1853–1858

17. Carbone G, Ceccarelli M, Oliveira PJ, Saramago SF, Carvalho JCM (2008) An optimum path
planning for Cassino parallel manipulator by using inverse dynamics. Robotica 26(2):229–239

24 A. Gasparetto et al.

18. Caselli S, Reggiani M (2000) ERPP: an experience-based randomized path planner. In: Pro-
ceedings of the ICRA’00—IEEE international conference on robotics and automation, pp 1002–
1008

19. Caselli S, Reggiani M, Rocchi R (2001) Heuristic methods for randomized path planning in
potential fields. In: Proceedings of the 2001 IEEE international symposium on computational
intelligence in robotics and automation, pp 426–431

20. Caselli S, ReggianiM, Sbravati R (2002) Parallel path planningwithmultiple evasion strategies.
In: Proceedings of the ICRA’02—IEEE international conference on robotics and automation,
pp 260–266

21. ChenCT,LiaoTT (2011)Ahybrid strategy for the time-and energy-efficient trajectory planning
of parallel platform manipulators. Robot Comput-Integr Manuf 27(1):72–81

22. Chen CT, Pham HV (2012) Trajectory planning in parallel kinematic manipulators using a
constrained multi-objective evolutionary algorithm. Nonlinear Dyn 67(2):1669–1681

23. Choset HM, Lynch KM, Hutchinson S, Kantor GA, Burgard W, Kavraki LE, Thrun S (2005)
Principles of robot motion: theory, algorithms, and implementation. MIT Press, Cambridge

24. Clark CM, Rock S (2001) Randomized motion planning for groups of nonholonomic robots.
In: Proceedings of the 6th international symposium on artificial intelligence, robotics and
automation in space, pp 1–8

25. Connolly CI, Burns JB (1990) Path planning using Laplace’s equation. In: Proceedings of the
1985 IEEE international conference on robotics and automation, pp 2102–2106

26. Constantinescu D (1998) Smooth time optimal trajectory planning for industrial manipulators.
Ph.D. Thesis, The University of British Columbia, 1998

27. Constantinescu D, Croft EA (2000) Smooth and time-optimal trajectory planning for industrial
manipulators along specified paths. J Robot Syst 17(5):233–249

28. Croft EA, Benhabib B, Fenton RG (1995) Near time-optimal robot motion planning for on-line
applications. J Robot Syst 12(8):553–567

29. Donald BR, Xavier PG (1990) Provably good approximation algorithms for optimal kinody-
namic planning for Cartesian robots and open chain manipulators. In: Proceedings of the sixth
annual symposium on computational geometry, pp 290–300

30. Dong J, Ferreira PM, Stori JA (2007) Feed-rate optimizationwith jerk constraints for generating
minimum-time trajectories. Int J Mach Tools Manuf 47(12–13):1941–1955

31. Dongmei X, Daokui Q, Fang X (2006) Path constrained time-optimal robot control. In: Pro-
ceedings of the international conference on robotics and biomimetics, pp 1095–1100

32. Fiorini P, Shiller Z (1996) Time optimal trajectory planning in dynamic environments. In:
Proceedings of the 1996 IEEE international conference on robotics and automation, pp 1553–
1558

33. Fraichard T (1999) Trajectory planning in a dynamic workspace: a state-time space approach.
Adv Robot 13(1):74–94

34. Fraichard T, Laugier C (1993) Dynamic trajectory planning, path-velocity decomposition and
adjacent paths. In: Proceedings of the 1993 international joint conference on artificial intelli-
gence, pp 1592–1597

35. Garrido S, Moreno L, Lima PU (2011) Robot formation motion planning using fast marching.
Robot Auton Syst 59(9):675–683

36. Gasparetto A, Zanotto V (2007) A new method for smooth trajectory planning of robot manip-
ulators. Mech Mach Theor 42(4):455–471

37. GasparettoA,ZanottoV (2008)A technique for time-jerk optimal planningof robot trajectories.
Robot Comput-Integr Manuf 24(3):415–426

38. GasparettoA, Lanzutti A,VidoniR, ZanottoV (2012) Experimental validation and comparative
analysis of optimal time-jerk algorithms for trajectory planning. Robot Comput-Integr Manuf
28(2):164–181

39. Ge SS, Cui YJ (2000) New potential functions for mobile robot path planning. IEEE Trans
Robot Autom 16(5):615–620

40. Guarino Lo Bianco C (2001a) A semi-infinite optimization approach to optimal spline trajec-
tory planning of mechanical manipulators. In: Goberna MA, Lopez MA (eds) Semi-infinite
programming: recent advances. Springer, pp 271–297

Path Planning and Trajectory Planning Algorithms: A General Overview 25

41. Guarino Lo Bianco C, Piazzi A (2001b) A hybrid algorithm for infinitely constrained opti-
mization. Int J Syst Sci 32(1):91–102

42. Guldner J, Utkin VI (1995) Sliding mode control for gradient tracking and robot navigation
using artificial potential fields. IEEE Trans Robot Autom 11(2):247–254

43. Gupta K, Del Pobil AP (1998) Practical motion planning in robotics: current approaches and
future directions. Wiley

44. Hansen C, Oltjen J,MeikeD, Ortmaier T (2012) Enhanced approach for energy-efficient trajec-
tory generation of industrial robots. In: Proceedings of the 2012 IEEE international conference
on automation science and engineering (CASE 2012), pp 1–7

45. Hsu D, Kindel R, Latombe JC, Rock S (2002) Randomized kinodynamic motion planning with
moving obstacles. Int J Robot Res 21(3):233–255

46. Huang P, XuY, Liang B (2006) Global minimum-jerk trajectory planning of spacemanipulator.
Int J Control, Autom Syst 4(4):405–413

47. Ismail M, Samir L, Romdhane L (2013) Dynamic in path planning of a cable driven robot.
Design and modeling of mechanical systems. Springer, Berlin, pp 11–18

48. Jing XJ (2008) Edited by. Motion planning, InTech
49. Kazemi M, Gupta K, Mehrandezh M (2010) Path-planning for visual servoing: a review and

issues. Visual servoing via advanced numerical methods. Springer, London, pp 189–207
50. Khatib O (1985) Real-time obstacle avoidance for manipulators and mobile robots. In: Pro-

ceedings of the 1985 IEEE international conference on robotics and automation, pp 500–505
51. Kim JO, Khosla PK (1992) Real-time obstacle avoidance using harmonic potential functions.

IEEE Trans Robot Autom 8(3):338–349
52. Kim J, Kim SR, Kim SJ, Kim DH (2010) A practical approach for minimum-time trajectory

planning for industrial robots. Ind Robot: Int J 37(1):51–61
53. Koditschek DE (1992) Exact robot navigation using artificial potential functions. IEEE Trans

Robot Autom 8(5):501–518
54. Kumar V, Zefran M, Ostrowski JP (1999) Motion planning and control of robots. In: Nof

Shimon Y (ed) Handbook of industrial robotics, 2nd edn, vol 2. Wiley
55. Kunchev V, Jain L, Ivancevic V, Finn A (2006) Path planning and obstacle avoidance for

autonomousmobile robots: a review.Knowledge-based intelligent information and engineering
systems. Springer, Berlin, pp 537–544

56. Kyriakopoulos KJ, Saridis GN (1988) Minimum jerk path generation. In: Proceedings of the
1988 IEEE international conference on robotics and automation, pp 364–369

57. Latombe JC (1991) Robot motion planning. Kluwer
58. LaValle SM (2006) Planning algorithms. Cambridge University Press
59. Lin CS, Chang PR, Luh JYS (1983) Formulation and optimization of cubic polynomial joint

trajectories for industrial robots. IEEE Trans Autom Control 28(12):1066–1073
60. Liu H, Lai X, Wu W (2013) Time-optimal and jerk-continuous trajectory planning for robot

manipulators with kinematic constraints. Robot Comput-Integr Manuf 29(2):309–317
61. Lombai F, Szederkenyi G (2008) Trajectory tracking control of a 6-degree-of-freedom robot

arm using nonlinear optimization. In: Proceedings of the 10th IEEE international workshop on
advanced motion control, pp 655–660

62. Lombai F, Szederkenyi G (2009) Throwing motion generation using nonlinear optimization
on a 6-degree-of-freedom robot manipulator. In: Proceedings of the 2009 IEEE international
conference on mechatronics, pp 1–6

63. Lozano-Pérez T, Wesley MA (1979) An algorithm for planning collision-free paths among
polyhedral obstacles. Commun ACM 22(10):560–570

64. Lozano-Perez T (1983) Spatial planning: a configuration space approach. IEEE Trans Comput
100(2):108–120

65. Martin BJ, Bobrow JE (1999) Minimum effort motions for open chain manipulators with
task-dependent end-effector constraints. Int J Robot Res 18(2):213–224

66. Nissoux C, Simon T, Latombe JC (1999) Visibility based probabilistic roadmaps. In: Proceed-
ings of the 1999 IEEE international conference on intelligent robots and systems, pp 1316–1321

26 A. Gasparetto et al.

67. Pardo-Castellote G, Cannon RH (1996) Proximate time-optimal algorithm for on-line path
parameterization and modification. In: Proceedings of the 1996 IEEE international conference
on robotics and automation, pp 1539–1546

68. Pellicciari M, Berselli G, Leali F, Vergnano A (2013) A method for reducing the energy con-
sumption of pick-and-place industrial robots. Mechatronics 23(3):326–334

69. Petrinec K, Kovacic Z (2007) Trajectory planning algorithm based on the continuity of jerk.
In: Proceedings of the 2007 Mediterranean conference on control and automation, pp 1–5

70. Piazzi A, Visioli A (2000) Global minimum-jerk trajectory planning of robot manipulators.
IEEE Trans Ind Electron 47(1):140–149

71. Piazzi A, Visioli A (1997b) A cutting-plane algorithm for minimum-time trajectory planning of
industrial robots. In: Proceedings of the 36thConference on decision and control, pp 1216–1218

72. Piazzi A, Visioli A (1997a) A global optimization approach to trajectory planning for industrial
robots, In: Proceedings of the 1997 IEEE-RSJ international conference on intelligent robots
and systems, pp 1553–1559

73. PiazziA,Visioli A (1997c)An interval algorithm forminimum-jerk trajectory planning of robot
manipulators. In: Proceedings of the 36th Conference on decision and control, pp 1924–1927

74. Rubio F, Valero F, Sunyer J, Cuadrado J (2012) Optimal time trajectories for industrial robots
with torque, power, jerk and energy consumed constraints. Ind Robot Int J 39(1):92–100

75. Saramago SFP, Steffen V Jr (1998) Optimization of the trajectory planning of robot manipu-
lators tacking into account the dynamics of the system. Mech Mach Theory 33(7):883–894

76. Saramago SFP, Steffen V Jr (2000) Optimal trajectory planning of robot manipulators in the
presence of moving obstacles. Mech Mach Theory 35(8):1079–1094

77. Saravan R, Ramabalan R, Balamurugan C (2009) Evolutionary multi-criteria trajectory mod-
eling of industrial robots in the presence of obstacles. Eng Appl Artif Intell 22(2):329–342

78. Sciavicco L, Siciliano B, Villani L, Oriolo G (2009) Robotics.Modelling, planning and control.
Springer, London

79. Shiller Z (1996) Time-energy optimal control of articulated systems with geometric path con-
straints. J Dyn Syst Meas Control 118:139–143

80. Shin KG, McKay ND (1985) Minimum-time control of robotic manipulators with geometric
path constraints. IEEE Trans Autom Control 30(6):531–541

81. Shin KG, McKay ND (1986) A Dynamic programming approach to trajectory planning of
robotic manipulators. IEEE Trans Autom Control 31(6):491–500

82. SimonD (1993) The application of neural networks to optimal robot trajectory planning. Robot
Auton Syst 11(1):23–34

83. Simon D, Isik C (1993) A trigonometric trajectory generator for robotic arms. Int J Control
57(3):505–517

84. Takahashi O, Schilling RJ (1989) Motion planning in a plane using generalized Voronoi dia-
grams. IEEE Trans Robot Autom 5(2):143–150

85. Tangpattanakul P, Meesomboon A, Artrit P (2010) Optimal trajectory of robot manipulator
using harmony search algorithms. Recent advances in harmony search algorithm. Springer,
Berlin, pp 23–36

86. Tangpattanakul P,Artrit P (2009)Minimum-time trajectory of robotmanipulator using harmony
search algorithm. In: Proceedings of the IEEE6th international conference onECTI-CON2009,
pp 354–357

87. Trevisani A (2010) Underconstrained planar cable-direct-driven robots: a trajectory planning
method ensuring positive and bounded cable tensions. Mechatronics 20(1):113–127

88. Trevisani A (2013) Experimental validation of a trajectory planning approach avoiding cable
slackness and excessive tension in underconstrained translational planar cable-driven robots.
Cable-driven parallel robots. Springer, Berlin, pp 23–29

89. Van Dijk NJM, Van de Wouw N, Nijmeijer H, Pancras WCM (2007) Path-constrained motion
planning for robotics based on kinematic constraints. In: Proceedings of the ASME 2007 inter-
national design engineering technical conference and computers and information in engineering
conference, pp 1–10

Path Planning and Trajectory Planning Algorithms: A General Overview 27

90. VerscheureD,Demeulenaere B, Swevers J, De Schutter J, DiehlM (2008) Time-energy optimal
path tracking for robots: a numerically efficient optimization approach. In: Proceedings of the
10th international workshop on advanced motion control, pp 727–732

91. Volpe RA (1990) Real and artificial forces in the control of manipulators: theory and experi-
ments. The Robotics Institute, Carnegie Mellon University, Pittsburgh, 1990

92. Volpe RA, Khosla PK (1990) Manipulator control with superquadric artificial potential func-
tions: theory and experiments. IEEE Trans Syst, Man, Cybern 20(6):1423–1436

93. Wang CH, Horng JG (1990) Constrained minimum-time path planning for robot manipulators
via virtual knots of the cubic B-spline functions. IEEE Trans Autom Control 35(5):573–577

94. Williams RL, Gallina P (2002) Planar cable-direct-driven robots: design for wrench exertion.
J Intell Robot Syst 35(2):203–219

95. Xu H, Zhuang J, Wang S, Zhu Z (2009) Global time-energy optimal planning of robot tra-
jectories. In: Proceedings of the international conference on mechatronics and automation, pp
4034–4039

Off-Line and On-Line Trajectory Planning

Zvi Shiller

Abstract The basic problem of motion planning is to select a path, or trajectory,
from a given initial state to a destination state, while avoiding collisions with known
static and moving obstacles. Ideally, it is desirable that the trajectory to the goal be
computed online, during motion, to allow the robot react to changes in the envi-
ronment, to a moving target, and to errors encountered during motion. However, the
inherent difficulty in solving this problem, which stems from the high dimensionality
of the search space, the geometric and kinematic properties of the obstacles, the cost
function to be optimized, and the robot’s kinematic and dynamic model, may hinder
a sufficiently fast solution to be computed online, given reasonable computational
resources. As a result, existing work on motion planning can be classified into off-
line and on-line planning. Off-line planners compute the entire path or trajectory to
the goal before motion begins, whereas on-line planners generate the trajectory to
the goal incrementally, during motion. This chapter reviews the main approaches to
off-line and on-line planning, and presents one solution for each.

Keywords Motion planning · Trajectrory optimization · Online planning

1 Introduction

One of the basic problems in robotics is that of motion planning, which attempts
to move a robot from a given initial state to a destination state, while avoiding
collisions with known static and moving obstacles. We distinguish between a path
and a trajectory: a path italic represents a sequence of positions, defined in the robot’s
configuration space, which is the space of all positions, or configurations, that the
robot can achieve [1]. A trajectory italic can be viewed as a path with a velocity
profile along it, defined in the higher dimensional state space, where every point
defines a position, or a configuration, and the velocity vector at that point. Thus, path

Z. Shiller (B)

Department of Mechanical Engineering and Mechatronics, Ariel University, Ariel, Israel
e-mail: shiller@ariel.ac.il

© Springer International Publishing Switzerland 2015
G. Carbone and F. Gomez-Bravo (eds.), Motion and Operation Planning
of Robotic Systems, Mechanisms and Machine Science 29,
DOI 10.1007/978-3-319-14705-5_2

29

30 Z. Shiller

planning solves a geometric, or kinematic, problem, whereas trajectory planning
solves a dynamic problem [1]. In this chapter, we will focus on trajectory italic
planning.

Generally, it is desirable that the trajectory to the goal be computed online, during
motion, to allow the robot to react to changes in the environment to a moving target,
and to errors encountered during motion. However, the inherent difficulty in solving
this problem, which stems from the high dimensionality of the search space, the
geometric nature of the obstacles, the cost function to be optimized, and the robot’s
kinematic and dynamic model, prevents it from being solved sufficiently fast to be
done online, given reasonable computational resources. As a result, two branches
of research have emerged in the area of motion planning: off-line planning, where
the trajectory to the goal is computed before motion begins, and on-line planning
where the trajectory to the goal is computed incrementally during motion. We thus
associate off-line with the computation of the entire trajectory to the goal, and on-line
with incremental planning, regardless of the computational resources available for
the planning process.

Another distinction between off-line and on-line planners is that the former may
produce globally optimal solutions if the environment is fully known, whereas the
latter is locally optimal at best. The challenges in off-line planning are therefore: opti-
mality (local and global), completeness (will a solution be found if one exists), and
overall computational complexity. The challenges in online planning are: complete-
ness (is the planner guaranteed to reach the goal if a solution exists), computational
complexity at each step, and optimality (how far is a solution from the optimal and
is it bounded by an upper limit).

Off-line planners aremost useful for repeatable tasks in static environments where
optimality is essential, as is the case inmany industrial applications. On-line planners
are required in applications where the target states are determined on the fly, obsta-
cles are discovered during motion, the environment is changing during motion, the
computation time required for a global solution delays the task execution, or simply
as an alternative to a computationally expensive off-line search [2].

The different nature of the two types of planners has resulted in distinct strategies
to reaching the goal: the off-line planner takes generally a global view of the envi-
ronment to select the optimal trajectory to the goal, whereas the on-line planner may
select the next move based on a partial view of the environment. Both approaches
were pursued at the early stages of the development of the field of motion planning
in the early 80s [3–6]. The main focus then was on path planning, with the goal
of computing the shortest path from start to goal in the presence of static obstacles
[3, 4, 6].

Focusing on the shortest path resulted in geometric planners that account for the
geometry of the moving object and obstacles. While the computation of an obstacle-
free path may solve many important problems in industrial settings, where the robot
may move slowly, it is insufficient, and almost useless, when the robot needs to
move at reasonably high speeds, such as mobile robots moving through cluttered
environments, and autonomous vehicles negotiating freeway traffic. Furthermore,
the computed geometric path is insufficient to move the robot along the path unless

Off-Line and On-Line Trajectory Planning 31

some speed profile along the path is specified. Selecting the speed profile that can be
followed without the robot deviating from the path requires knowledge of the robot
dynamic behavior. This brings to focus the problem of trajectory planning, whichwas
addressed using tools rooted in optimal control theory. The two fields of research,
path planning and trajectory planning, were developed in parallel over the years until
recently when geometric planners were extended to searching for trajectories in the
state space [7, 8]. While the focus in this chapter is off-line and on-line trajectory
planning, we begin the literature review with geometric planners.

1.1 Geometric Planners

The introduction of the configuration space as the basic geometric motion planning
tool [4, 9, 10] reduced the search for an obstacle-free path to computing a continu-
ous path for a point from start to goal that avoids the forbidden regions representing
the physical static obstacles. Being a geometric problem, most off-line planners are
based on a geometric representation of the environment, through which a global
search produces the shortest path to the goal. The geometric representations may
consist of roadmaps or graphs that capture the topology of the free-space, generated
e.g. by a Voronoi diagram, a visibility graph, a tangent graph [11, 12], or by cell
decomposition [13]. Although each representation differs in the way it represents
the free space, they all consist of a connected network of path segments that can be
traversed from start to goal. The main computational effort in these planners is the
representation of the free-space. This includes mapping of obstacles to the config-
uration space and the initial construction of the roadmap. Once the roadmap was
constructed, the search for the shortest path is done using standard graph search
techniques such as Dijkstra’s search [14] or A* [15]. The remaining difficulties
stem from the dimensionality of the search space and the number of edges (seg-
ments) in the roadmap. The main computational effort here is the construction of the
roadmap.

An alternative approach to constructing roadmaps is to overlay a uniform grid over
the search space and represent the entire space by an undirected graph [2]. Assigning
high costs to edges that intersect obstacles, effectively separates between inacces-
sible nodes and nodes in the free space. As a result, this, like all approaches that
are based on a discrete representation of the search space, is resolution complete,
implying that at low grid resolutions one may miss paths that pass through tight
spaces between obstacles. Increasing graph resolution would severely impact the
computational complexity. Compared to the roadmap-based algorithms, the number
of nodes for the uniform grid representation is much greater. However, this rep-
resentation, which is quite general, is applicable to problems where obstacles are
not clearly defined, such as for mobile robots moving over rough terrain [16], as is
demonstrated later in this chapter.

The increased interest in solving high dimensional problems, such as motion
planning for humanoids or multi degrees-of-freedom arms, gave rise to a class of

32 Z. Shiller

sampling-based planners [17]. The most popular version of sampling-based planners
is based on rapidly exploring random trees (RRT) [17–19]. They search the way to
the goal by probing the configuration space (can be also done in the workspace) and
incrementally expanding a collision-free tree from an initial configuration. Because
the entire search is done “in the dark,” the planner attempts to reach unexplored parts
of the search space, resulting eventually in a uniform coverage of the free space.
The efficiency of these planners stems from the incomplete coverage of the free
space and from terminating the search when the goal is first reached. The solution
found is feasible but not optimal in any way. RRT based planners may not produce
optimal solutions even when exploring the entire search space [7, 20]. In addition,
they inherently have difficulties with tight spaces. Nevertheless, the RRT algorithms
were demonstrated for solving very complex problems [21].

An extension called RRT* was developed to asymptotically produce the opti-
mal solution [7]. The asymptotic optimality was achieved by adding a lower bound
estimate to the RRT search. Optimality is achieved iteratively at a great computa-
tional cost by running the algorithm repeatedly while refining the solution until either
exhausting the available computation time or reaching a desired level of optimality
[7]. Despite the great promise, the RRT* algorithm was demonstrated in [7, 20] for
the kinematic avoidance of very few planar and widely spaced obstacles, producing
a smooth near-optimal solution after a large number of iterations (10,000). Solving
a dynamic problem in a higher dimensional state space is expected to be much more
challenging. Recently, a path generated by an RRT search was further optimized
using a genetic algorithm to produce the shortest path for a hybrid manipulator with
six degrees-of-freedom [22]. The idea of further optimizing paths that were gen-
erated by a geometric planner is similar in nature to the off-line planner presented
here, except that the objective of the off-line planner is to produce a global optimal
trajectory, not only the shortest path.

The sampling-based planners represent a paradigm shift in the motion planning
community by (1) accepting probabilistic completeness, which is to say that the goal
may not be reached in a finite time, (2) accepting any solution, not necessarily the
optimal, and (3) abandoning the explicit geometric representation of the free config-
uration space in terms of roadmaps or graphs. This is a significant departure from
the previous practices that evaluated motion planning algorithms for completeness
and optimality.

1.2 Trajectory Planning (Off-Line)

The trajectory planning problem concerns the computation of robot motions that
move the robot between two given states, while avoiding collision with obstacles,
satisfying robot dynamics and actuator constraints, and usually minimizing some
cost function, such as energy or time.

Early work on trajectory planning, from the 1960s to the 1980s, was rooted in the
field of optimal control theory, which provides powerful tools to characterize and

Off-Line and On-Line Trajectory Planning 33

generate optimal trajectories when high speed motion is desired [23]. The elegant
necessary conditions, stated by the Pontryagin’s maximum principle, lead to the
formulation of the optimal control problem as a two-point boundary value problem,
and the development of algorithms that searched for the optimal control that generates
the optimal trajectories [23]. For time optimization problems, it was shown that the
time-optimal control is bang-bang. This in turn reduces the optimal control problem
to a parameter optimization by iterating on the switching times between the maximal
controls [24, 25].

The first attempt to use these theories for robotics was by Khan and Roth [26],
who computed the multi-axis time optimal trajectory for a linearized model of robot
dynamics. Solving this problem for the full robot’s dynamic model was computa-
tionally very difficult. The typically non-linear and coupled robot dynamics makes
such solutions computationally extensive.Adding obstaclesmakes the computational
challenge even harder.

One approach to reducing the complexity of the problemand facilitating a practical
realization of time-optimal motion planning is to decouple the problem by represent-
ing robot motions by a path and a velocity profile along the path. This decoupling
allows reducing the trajectory planning problem to two smaller problems: (a) com-
puting the optimal velocity profile along a given path, and (b) searching for the
optimal path in the n-dimensional configuration space.

The time optimal velocity profile along a specified path is computed using an effi-
cient algorithm, originally developed Bobrow, Shin andMcCay and Pfeiifer [27–29],
and later improved by Shiller and Lu [30] and Slotine and Yang [31]. Assuming a
second order system, the solution to this problem was found to be bang-bang in
the acceleration, that is, applying the maximum or minimum acceleration so as to
maximize the velocity along the path. The switching times are computed efficiently
to avoid crossing the velocity limit curve, which reflects the actuator constraints and
the robot dynamics. This approach was later extended to computing time optimal
velocity profiles along specified paths for nonlinear third order systems, subject to
general jerk constraints [32].

The optimal path was computed using a nonlinear parameter optimization over
path parameters, such as the control points of a cubic B spline [33, 34]. In each
iteration of the optimization process, the optimal velocity profile along the path is
efficiently computed to produce the minimum time for that iteration. One advantage
of this approach is that each iteration yields a feasible trajectory, albeit not neces-
sarily optimal. The optimization can therefore be terminated at any time to yield an
acceptable solution.

A similar approach, known as direct optimization, differential inclusion [35],
and inverse dynamics optimization [36], was proposed by the aerospace community.
Common to these methods is the direct search for the optimal trajectory as opposed
to a search for the optimal control in the higher dimensional state and co-state spaces
[23]. Attempts to solve the multi-axis problem using graph search techniques in the
state space, solving the so called “kinodynamic” problem, did not yield practical
solutions [37, 38].

34 Z. Shiller

1.3 Online Planning

Early on-line planners were developed to address the lack of apriori information
about the environment. Called “sensor-based” algorithms, they navigate a point robot
equippedwith position and touch sensors among unknown obstacles to reach a global
goal. A series of “bug” algorithms were developed, starting with the basic bug that
navigates by circumventing the detected obstacle always clockwise or counterclock-
wise until reaching the straight line to the goal, then continuing along that line until
either reaching the goal or hitting another obstacle [5]. Assuming long range vision
sensors, the bug strategies were extended to the Tangent Bug algorithm, which fol-
lows the tangent line to the next obstacle that obstructs the straight line to the goal
[39, 40]. It was shown that complete online navigation can be achieved with only a
finite amount of memory [5, 41, 42].

Another approach to online motion planning is based on potential functions
[43–45]. Representing the goal with an attractive potential, and the obstacles with
repulsive potentials, the path is generated online by following the negative gradient of
the potential function.While this approach is computationally efficient and is suitable
for on-line feedback control, it suffers from localminima,whichmay cause the path to
terminate at a point other than the goal. This problem was overcome using harmonic
potentials [43] and navigation functions [45]. These potentials, however, address only
the obstacle avoidance problem with no concern for path optimality. Furthermore,
the generation of the potential function is done off-line and may be time consuming.

A similar approach generates the shortest path by following the direction of steep-
est descent of a discretized distance function [46]. The main computational effort is
in numerically computing the distance function, which is done off-line. The com-
putation complexity increases rapidly with the number of obstacles and with grid
resolution.

The potential functions used to guide the trajectory towards the goal resemble
the value function, which is the solution to the Hamilton- Jacobi-Bellman (HJB)
equation [47–49]. The HJB equation states a sufficient condition of global optimality
(unlike the Pontryagin Maximum Principle, which is only a necessary condition),
and the value function represents the cost-to-go from any feasible state. The globally
optimal trajectory is then generated by selecting the controls that minimize the time
derivative of the value function. For time invariant systems, this amounts to following
the negative gradient of the value function, which drives the system time-optimally
to the goal from any initial state. This is similar to the potential field method, except
that the value function may be regarded as the “optimal” potential function.

Although the theoretical framework exists for deriving optimal feedback con-
trollers, it is impractical to derive a time-optimal control law, using the HJB equation,
for a typical obstacle avoidance problem that accounts for robot’s dynamics.

A recently developed online algorithm navigates towards the goal by optimally
avoiding one obstacle at a time [50, 51]. This transforms the multi-obstacle problem
with m obstacles to m simpler sub-problems with one obstacle each, thus reduc-
ing the size of the problem from exponential to linear in the number of obstacles.

Off-Line and On-Line Trajectory Planning 35

The incremental generation of the trajectories and the relatively low computational
effort at each step make this algorithm an efficient on-line alternative to the com-
putationally expensive off-line planning, thus trading optimality for efficiency. This
algorithm will be later discussed in this chapter.

This chapter is organized as follows: it starts with a formal problem statement of
the motion planning problem, focusing on trajectory planning rather than on path
planning. It continues with the theoretical solution for the optimization problem
using the Hamilton Jacobi equation. It then describes an efficient off-line planner
and a very efficient online planner. Both algorithms are demonstrated for a point
robot moving at high speeds over rough terrain (the off-line planner) and through
very cluttered environments (the online planner).

2 Problem Statement

In a typical motion planning problem, we wish to solve the following optimization
problem:

min
u

∫ t f

0
L(x, u)dt (1)

subject to the system dynamics:

ẋ = f (x, u), (2)

where x ∈ R
n is a point in the robots state space, and u ∈ R

m is a vector of actuator
efforts, subject to the actuator constraints:

uimin ≤ ui ≤ uimax, i ∈ {1, . . . , m}, (3)

obstacle constraints:
g(x) ≥ 0; g ∈ R

k, (4)

and the boundary conditions:

x(0) = x0; x(t f) = x f , (5)

where k is the number of obstacles and t f is the final time. If the objective function
is time, i.e. L(x, u) = 1, then t f is free. We assume that the obstacles (4) do not
overlap with each other and with the goal x f .

Problem (1) is a two point boundary value (TPBV) problem: of all trajectories that
satisfy the boundary conditions (5), select the one thatminimizes the cost function (1)
and satisfies system dynamics (2), control constraints (3) and obstacle constraints (4).

36 Z. Shiller

The global optimal trajectory can be computed using the Hamilton-Jacobi-
Bellman (HJB) equation, which states a sufficient condition for global optimality
[47–49]. Denoting the set of obstacles as O:

O = {x : g(x) < 0}, (6)

The control u∗ that is the solution to problem (1), satisfies, on R
n − {x0} − O , the

HJB equation:

min
u

{vt (x, t) + < vx (x, t), f (x, u) >} = −L(x, u) (7)

subject to (3) and (4), where v(x, t) is a C2 scalar function, satisfying

v(x0, t) = 0 (8)

v(x, t) > 0, x /∈ x0 (9)

The subscripts x and t represent partial derivatives with respect to x and t , respec-
tively, and < ·, · > denotes the inner product on Rn .

The scalar function v(x, t) is the value function [47, 48, 52], representing the
minimum cost-to-go to the origin (goal) from any given state. For an autonomous
system (time-invariant) and for fixed boundary conditions, vt = 0; assuming in
addition that the cost function to be minimized is time (L(x, u) = 1), reduces (7) to:

min
u

{< vx (x), f (x, u) >} = −1 (10)

To satisfy (10), the projection of ẋ = f (x, u) on vx (x) must equal −1. It follows
that the optimal control u∗ that minimizes (10) drives the optimal trajectory ẋ∗(x, u)

in the direction of the negative gradient, −vx (x), of the value function, as shown
schematically in Fig. 1. This is similar to the trajectory generation by potential field
methods [43–45, 53], except that here the potential function is the value function.
Since the value function has a unique minimum at the goal, trajectories generated
by following the negative gradient of the value function are globally optimal and are
guaranteed to reach the goal from any initial state.

Fig. 1 The optimal
trajectory ẋ∗(x, u∗) slides
opposite to the gradient
vx (x) of the value function

vx

x*
•

Value function

Goal

x

Off-Line and On-Line Trajectory Planning 37

The on-line planner for the multi-obstacle avoidance problem, described later in
this chapter, can be viewed in the context of the value function as following the
negative gradient of an approximate value function for this problem. It generates
near-optimal trajectories by avoiding obstacles one at a time, or equivalently, by
sequentially following the negative gradient of the return function for each obsta-
cle avoidance problem. The trajectory is generated incrementally, permitting robot
motion before the entire trajectory to the goal has been computed.

Obtaining an analytical expression for the value function is practically impossible
for other than for very simple cases. Computing the value function numericallywould
require solving the optimization problem from every point in the state space. This is
essentially the approach used in [46] for solving the shortest path problem.

A discrete version of the HJB equation is the basis for the Bellman’s Princi-
ple of Optimality and Dynamic Programming [54]. Dynamic programming is the
optimization method used in most grid based optimizations, including the off-line
optimization discussed next in this chapter.

3 Off-Line Planner

The off-line planner presented here computes the global time optimal trajectory
between given boundary states in the presence of known static obstacles [2]. It com-
bines a grid search in the configuration space with a continuous local optimization.
In lieu of an expensive search in the 2n dimensional state space for one (globally
optimal) trajectory, this planner searches for many paths in the n dimensional con-
figuration space for an n degree of freedom robot. The reduction of the search to the
configuration space yields a significant (exponential) computational gain compared
to a full search in the state space. The complexity of this approach is exponential in the
dimension of the configuration space and linear in the number of nodes in the graph.

3.1 Summary of the Approach

This planner is based on a branch-and-bound search for the global optimal trajectory
between given end states in a static environment. It assumes an efficient mapping
from a curve in the configuration space to the optimal traversal time along that
curve. This mapping allows us to search for the optimal trajectory in the lower
dimensional configuration space. We call the projection of the optimal trajectory on
the configuration space the optimal path.

The branch-and-bound search begins by reducing the infinite set of paths between
given end points to a final set by representing the configuration space by an undirected
graph. The branch-and bound search then reduces this set to a small set of the most
promising paths. The paths in the final set are then pruned to retain the best path in
each path-neighborhood. These paths are then optimized using a nonlinear parameter

38 Z. Shiller

optimization to further reduce motion time. This last step significantly relaxes the
grid resolution required for the initial search to ensure global optimality.

This process was proven to generate the global optimal trajectory in addition to
producing a set of local minima [2]. The optimality of the solution depends on the
number of paths selected in the first step, grid resolution with respect to the distance
between obstacles, and the fidelity of the local optimization. This optimization was
demonstrated for a six DOF manipulator moving in a cluttered environment [2] and
for a mobile robot moving on general terrain [16].

3.2 The Graph Search

The purpose of the graph search is to efficiently produce a set of paths that explore all
regions in the configuration space and that may contain the optimal path. Obstacles
are accounted for by setting high costs to edges that penetrate obstacles. For motion
over rough terrain, obstacles are accounted for by considering their geometric shape
and determining if the robot can safely traverse these obstacles, similarly to traversing
other terrain features [16].

In the context of this algorithm, the optimal path is the one that can be traversed
at the minimum time between given end points, subject to robot dynamics, and
to control and obstacles constraints. Since metrics measured in the configuration
space are not good predictors for path optimality, it is necessary to consider a large
number of paths to ensure that they contain at least one path in the neighborhood of
the optimal path. By representing the configuration space with a uniform grid, we
reduce the infinite number of obstacle-free paths to a finite set.

One approach to generating a large set of paths, using a graph search, is to use
the k-best search by Dreyfus [55] to produce a set of shortest paths. It is similar
to a shortest path search except that it effectively excludes the k − 1 best paths
from the searched space while searching for the next kth best path. This allows
us to sequentially generate the paths until some upper bound on the cost function,
determined by the branch and bound search, is reached. The cost functionmay be path
length, or some other function that produces a lower bound estimate of the optimal
motion time along the path [2]. While this approach guarantees that the global and
a few local minima (within grid resolution) are found, it has the drawback that it
first generates a large number of paths in the neighborhood of the best path (k = 1),
usually in one homotopy class, before exploring other homotopy classes, as shown
schematically in Fig. 2. A homotopy class contains all paths that can be continuously
deformed into one another [1], as shown schematically in Fig. 3. Depending on grid
resolution, using the k-best search may require a very large number of paths in order
to cover the entire space. In addition, identifying a local minimum (that is not global
optimal) is quite tedious. The difficulty arises from the regions of optimality not
being easily quantified, and hence requiring that each new path be tested if it is in
the neighborhood of any path generated so far. The large number of paths required
by this approach thus imposes a high computational cost, first with the k-best search,
which is linear in k, and then in the pruning process, which is O(k log k).

Off-Line and On-Line Trajectory Planning 39

Fig. 2 Near shortest paths
found by the K shortest path
algorithm tend to group
around the shortest path

Start

Goal

Fig. 3 Paths in one
homotopy class

Start

Goal

The pruning process consists of selecting the best (shortest in time or distance)
of all paths in the initial set of paths, then discarding all paths that are within some
tube of a predefined diameter around the best path. The paths within a tube around
the next best path are similarly discarded, and the process repeats until all paths in
the initial set are either discarded or retained as the best path in their neighborhood.
The pruning process thus reduces an initially large set of paths to a smaller set of
promising paths, each is then locally optimized, as discussed later.

An alternative approach efficiently generates a large number of paths that cover
the entire search space [56, 57] and can be easily reduced to the most promising
path in each homotopy class, as shown schematically in Fig. 4. In two steps, each
consisting of a shortest path search, it generates all shortest paths that pass through

Fig. 4 Paths of various
homotopy classes

Start

Goal

40 Z. Shiller

each node in the graph. This allows an efficient coverage of the entire free-space and
the identification of a few promising local minima in addition to the global optimal
path .

This is essentially a single-pair search for n constrained paths through a graphwith
n nodes. It starts with a single-source search, such as Dijkstra’s [14], that generates
the shortest path from the source s to the goal g (Fig. 5). The cost as,i stored at
each node i is the cost from s to that node. Repeating this search from the goal
g to s stores the cost bg,i at each node i (Fig. 6). Summing the two costs cs,g,i =
as,i +bg,i yields the optimal cost cs,g,i for the path between s and g that passes through
node i (Fig. 7).

If each local minimum represents a homotopy class, the computational cost of
this approach is O(2) for the initial search, and on average O(m/p logm/p) for the
pruning process, where m is the number of nodes and p is the number of homotopy
classes generated by this search [57]. Compare to the k-best search, O(m) for the
initial search and O(m logm) for pruning. This efficiency is achieved at the cost of
generating only a subset of all possible local minima, but at a computational cost far
smaller than the alternative.

Figure8 shows a topographic surface that is to be traveresed from Start to Goal.
The surface was first tesselated by a unofrm grid, then the shortest paths through all
nodes were computed using the algorithm discussed earlier [56, 57]. Color marking

Fig. 5 Shortest paths from
start to all nodes

Start

Goal

Fig. 6 Shortest paths from
goal to all nodes

Start

Goal

Fig. 7 Shortest paths
through via points

Start

Goal

Off-Line and On-Line Trajectory Planning 41

Fig. 8 A surface map

Start

Goal

Fig. 9 A color coded surface
map. The color at each node
represents the optimal cost
for passing through that node

the nodes according to the cost of passing through each node produced the cost
map shown in Fig. 9. The cost function for this case was a traversability measure,
calculated by dividing distance by the maximum safe velocity along each segment
along the graph [16]. Here, blue represents the lowest cost (global minimum), then
yellow, green and red represent gradually increasing costs. The cost map clearly
shows the traversability of each region, thus offering sub-optimal alternatives to the
global optimal path, which is colored blue. The blue “river”, whose nodes all have
the same (optimal) cost, might be wider in regions where the neigboring edges have
identical costs. In such cases, the global optimal grid path may not be unique, which
is a common artifact of the uniform discretization of the search space.

3.3 Branch and Bound Search

The goal of the branch-and-bound search is to efficiently reduce the initially large
set of paths in each homotopy class to a smaller set that contains the local optimal
path. This is done by dividing the initial set of paths into two smaller subsets: one
that contains all paths having a lower bound estimate on their cost that is higher

42 Z. Shiller

than the lower bound estimate of all paths in the second subset. The second subset is
discarded, and the process repeats by subdividing the remaining subset using a more
accurate lower bound estimate. Repeating this process, using a series of gradually
increasing lower bounds, thus reduces the initial large set of paths to a much smaller
set of promising paths. The search is terminated when the last subset has been shown
to contain no better solution than the one already at hand. The best solution found
during this search is the optimal path [15]. The fastest among the local minima found
in this process is the global optimal path.

In this search, the objective function is the minimum traveling time between the
two end points, whereas the initial set consists of all feasible (collision-free) paths
between the given end points. It remains to determine appropriate approximations of
the cost function that are guaranteed to produce lower bounds on the traveling time
along a given set of paths. The computational efficiency of this approach depends on
the proper selection of the lower bound estimates at each step. The most conservative
but efficient approximations are used first, when the number of path candidates is
large, and the more accurate but computationally expensive are used last. The last
test is the exact solution, which is the optimal traveling time along the path.

We use three lower bound estimates on the optimal motion time along a given
path, each represented by a different velocity profile: (1) maximum constant speed,
(2) velocity limit, and (3) optimal velocity along the path. The cost estimate is
computed by integrating the respective velocity profile along the path.

Maximum Speed: The first lower bound estimate, t1, assumes motion everywhere
at the maximum speed the robot can reach. It can be the tip velocity reached by
assuming no load speeds at all joints at the most stretched configuration, or the
maximum speed a mobile robot can reach on flat terrain. Dividing the distance along
each edge of the graph by the maximum speed produces a lower bound estimate,
obtained by the summation:

t1 =
∑ �xi

vmax
, (11)

where �xi is the Euclidean distance of the i th segment along the path, and vmax is
the maximum speed.

Having assigned a fixed cost to all edges, the paths produced by the graph search
are rated by a lower bound estimate on the optimal motion time along each path.
Paths with lower bound estimates higher than the optimal motion time along some
arbitrary path can be discarded early in the search process.

Velocity Limit: Once a path has been selected from the grid search, it is smoothed
by cubic B splines, using the nodes of the graph along the path as control points.
This eliminates the sharp corners produced by the grid segments. If the smoothed
path penetrates an obstacle because of the rounded corners, it can be either discarded
or kept for the next lower bound test. Eventually, the local optimization, discussed
later, will divert the path away from the obstacle.

Off-Line and On-Line Trajectory Planning 43

Here we assume that the speed along the path follows the velocity limit curve
ṡmax(s), s being the distance parameter along the path, that accounts for robot
dynamics, actuator constraints, and path curvature, at every point along the path
[27–29, 32].

The lower bound t2 is obtained by the integral

t2 =
∫ s f

0

ds

ṡmax
, (12)

The computation of the velocity limit and the optimal velocity profile are briefly
discussed later.

The value t2 is a true lower bound and greater than t1 since the velocity limit
curve represents the true upper limit for the velocity profile along the path. This
evaluation is computationally more demanding than the previous one but is less
expensive than computing the time optimal velocity profile. This lower bound takes
into account the combined effects of robot dynamics, actuator constraints, and path
geometry.

Optimal Velocity: This is the exact solution for the optimal motion time and an
upper bound to the previous lower bounds. The optimal velocity profile is always
below the limit curve and at most tangent to the limit curve at a finite number of
points [30]. The computation of the optimal velocity profile is briefly discussed next.

3.4 Time Optimal Motions Along Specified Paths

The optimal motion time along the path represents the exact cost function for the
global search. It is computed using a well established algorithm [27–31, 58], which
accounts for robot dynamics, actuator constraints, and path geometry. It is applicable
to any fully actuated system such as industrial and mobile robots [16]. The algorithm
will not be repeated here, referring the reader to the respective literature [27–31, 58].

Key to this algorithm is the mapping of system dynamics to path coordinates.
This reduces the multi dimensional configuration space, in which the robot oper-
ates, to a single degree-of-freedom system, where the distance and speed along the
path, s, ṡ, are its two states, and the tangential acceleration s̈ is its control input.
The actuator constraints, coupled with path geometry, are mapped to constraints
on ṡ and s̈, as shown schematically in Fig. 10 at some point s along the path. The
boundary of the range of speeds and accelerations, FSA, represents states where at
least one actuator reaches its limit. States outside of FSA are therefore dynamically
infeasible.

At a given speed, the acceleration is bounded between its maximum andminimum
values, as shown in Fig. 10. The speed ṡm , where the range of feasible accelerations
reduces to a point, represents the highest speed at which the robot can still move
along the prescribed path. Plotting ṡm along the path produces the velocity limit

44 Z. Shiller

Fig. 10 The range of
feasible speeds and
accelerations (FSA)

m
2

2

S
S

S

FSA

Fig. 11 Velocity limit curve
and time optimal velocity
profile

s

s

Velocity Limit Curve

Time optimal velocity profile

S1

S2

S3

curve, as shown schematically in Fig. 11. It serves as the upper limit for any velocity
profile along the path, optimal or not. Crossing the velocity limit curve implies that
the robot is moving at speeds that are not sustainable by the robot’s actuators or that
it does not follow to prescribed path.

The time optimal velocity profile is computed using “bang-bang” control, switch-
ing between maximum acceleration and maximum deceleration along the path. The
switching times are selected so that the optimal velocity profile avoids crossing the
velocity limit curve [30], as shown schematically in Fig. 11. In the schematic exam-
ple shown in Fig. 11, the time optimal velocity profile is integrated from the initial
point at zero speed, using the maximum acceleration. At some point s1 along the
path, the acceleration is switched to the maximum deceleration until point s2, where
the optimal velocity profile is tangent to the velocity limit curve. From s2, the maxi-
mum acceleration is again integrated until some point s3, from where the maximum
deceleration is used to reach the final point at zero speed. The number of switches
is usually odd for a 2nd order system, and it depends on the shape of the velocity
limit curve, and the robot’s dynamic properties. This algorithm is computationally
very fast and can be used to efficiently assign the optimal motion time to every path
in the last set of paths of the branch and bound search.

Off-Line and On-Line Trajectory Planning 45

3.5 Local Optimization

The paths generated over the graph are forced to pass through the nodes of the graph
defined by the grid used to represent the search space. To relax the demands on the
grid resolution, a local optimization is used to locally alter the path to further reduce
motion time [33, 34]. The optimization problem is formulated as an unconstrained
parameter optimization, using the control points of cubicB splines as the optimization
variables, and the optimal motion time along the path as the cost function. Obstacles
are represented by penalty functions that account for the distance between the robot
and the obstacles. At each iteration of the local optimization, the optimal motion time
along the current path is computed using the method discussed earlier in Sect. 3.4,
and the control points are modified by the optimization algorithm so as to produce
paths with gradually decreasing optimal motion times. This process repeats until the
optimal motion time reaches a local minimum. This optimization is obviously local
since the path cannot “jump” over obstacles.

To reduce computation time and improve the convergence of the local optimiza-
tion, the number of control points is reduced by retaining only a few points for each
straight line segment along the grid path. It is important to note that a small num-
ber of control points may not adequately represent the true optimal path, however, a
large number of parameters may be computationally costly. The true optimum can be
approached asymptotically by successively increasing the number of control points
and repeating the local optimization.

The local optimization is used to optimize only a small number of promising
paths, selected from the paths remaining after the branch and bound search. These
paths are selected as the best in each homotopy class [57] or as the best in some
defined neighborhood of radius Dmax. The classification of the paths into homotopy
classes is discussed in [57] and will not be repeated here. The selection of the best
path in each neighborhood is done by first discarding all paths that are contained in
a tube around the best path, each satisfying the inequality:

D = max|(pi (w) − p0(w)| < Dmax, w = [0, 1]; i = 1 . . . N , (13)

where p0(w) is a point along the best path in the neighborhood, with w being a
normalized path distance, and pi (w) is a point along any path in the remaining set
of N − 1 paths. This process is repeated for the next best path among the remaining
paths until only a few paths, representing distinct regions, remain.

3.6 Summary of the Off-Line Planner

The off-line planner that uses the K-best search, is summarized in the following
pseudo code. In the following, “best path” refers to the path along which the optimal
motion time or a lower bound estimate is the smallest of all paths in the given set.

46 Z. Shiller

Algorithm 1: Off-line planning
Step 0: Initialize.
Receive the geometric description of the workspace, robot dynamics, actuator
constraints, dynamic and state constraints, current state x , target state x f ;
Determine the robot maximum speed vmax for Eq. (11);
Set an upper bound tup to be used to terminate the first search;
Set diameter R for path filtering.
Step 1: Generate a graph over the workspace
Assign cost, usually Euclidean distance, to all edges on the graph.
Assign high cost to edges that connect unreachable nodes.
Step 2: Use the K-best search to generate the set P0 of shortest paths between the
end points (the projections into the configuration space of the current and target
states). Stop the search when t1(K) ≥ tup.
Step 3: Smoothing.
Smooth all paths in P0 by B-splines, using the nodes along each path as control
points. P1 is the set of K smoothed paths.
Step 4: For all paths in P1, compute a lower bound estimate t2(i), i = 1, . . . , K ,
using (12).
Step 5: Select the best path j : t2(j) = min{t2(i), i = 1, . . . , K}. Compute the
optimal motion time t3(j); t3(j) serves as the next upper bound in the branch and
bound search.
Step 6: Move all paths in P1 that satisfy t2(i) ≤ t3(j), i = 1, . . . , K , to P2.
Step 7: Compute the optimal motion time t3(i) for all paths in P2.
Step 8: Pruning.
Select the best path in P2 and discard all paths that are inside a tube of radius R
around that path, using (13); Move the best path to P3; Repeat for the next best
path in P2 until P2 is empty. P3 now contains a small set of “good” paths.
Step 9: Local optimization.
Submit all paths in P3 to a local optimization. The resulting paths form the set of
local minima P4.
Step 9: Global optimum.
The best path in P3 is the global optimal path, along which the optimal motion
time is globally optimal.
STOP.

3.7 Example 1

Figure12 shows the near-global time optimal trajectory, computed using the global
optimization discussed here, for a vehiclemoving over general terrain. For this exam-
ple, the k-best search was used to generate the initial set of 500 paths, all shown in
Fig. 13. The grid resolution was set low at 1m between nodes for a 10× 10m terrain
segment. The branch and bound search retained 22 best paths, each was smoothed by

Off-Line and On-Line Trajectory Planning 47

Fig. 12 A (near) global time
optimal path over general
terrain, generated by the
global planner

Fig. 13 500 shortest paths
generated over the uniform
grid overlayed over the
terrain

Fig. 14 22 best smoothed
paths retained by the branch
and bound search

a cubic B spline, as shown in Fig. 14. All 22 paths were locally optimized to further
reduce motion time, and the best path, shown in Fig. 12, was selected as the global
optimal solution. The time optimal velocity profile along the best path is shown in
Fig. 15. Also shown in Fig. 15 is the velocity limit curve. Note that the vehicle slows
down before accelerating again to prevent it from reaching high speeds that would
cause it to airborne over the bump in the upper part of the terrain segment. The effect
of the bump on the vehicle speed is reflected in the drop of the velocity limit curve.

48 Z. Shiller

Fig. 15 The optimal
velocity profile and the
velocity limit curve along the
time optimal path

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

S [m]

 [m
/s

]
S

The solution obtained is near global optimal due to the choices of the grid resolution
and the termination condition of the local optimization.

Computation time depends on the number of paths generated in the graph search,
the number of promising paths left for the local optimization, and the number of
control points used to represent each path. The global planner was implemented in
C and run on an Intel core-i7 3:4GHz desktop computer. For example1, the global
optimal pathwas computed in 20s, most of whichwas spent on the local optimization
of 22 paths.

The global optimization presented here is inherently off-line as it produces the
complete solution to the goal. It combines a search for a set of the best paths in
a grid in the configuration space with a local path optimization. This combination
allows to reduce the search to the lower dimensional configuration space without
compromising optimality. There are only few global planners that we can compare
to, especially those computing time optimal trajectories [7, 37].

The solution produced by this planner is a global optimum if the grid is suffi-
ciently small. The requirement on grid resolution is relaxed by assuming that the
region of convergence around the optimal path is large compared to the grid size.
Despite this approach being presented long ago, it is still computationally efficient
compared to more recent global optimizations [7, 37]. Lacking information on the
use of RRT* to solving dynamic problems, it is difficult to compare this popular
approach to ours.

4 Online Planner

We now address the online time-optimal obstacle avoidance problem for robots
moving in cluttered environments. Motivated by the observation that the effect of
an obstacle on the value function (the global cost-to-go function) in (10) is local
[51], we solve the multi-obstacle problem by avoiding obstacles one at a time. This

Off-Line and On-Line Trajectory Planning 49

is equivalent to approximating the value function of the multi-obstacle problem by
switching between the value functions of the individual problems, each avoiding a
single obstacle. Computationally, this transforms the multi-obstacle problem with m
obstacles to m simpler sub-problems with one obstacle each, thus reducing the size
of the problem from exponential to linear in the number of obstacles. As a result, this
approach produces an on-line planner, i.e. the trajectory is generated incrementally,
one step at a time, requiring a low computational effort at each step relative to the
original, inherently off-line, problem.

While the approach of avoiding obstacles optimally one at a time applies to any
robot dynamics, and convergence can be guaranteed for any obstacle shapes, we treat
here a point mass robot in the plane and convex obstacles.

We begin with the optimal avoidance of one obstacle.

4.1 Optimal Avoidance of a Single Obstacle

The time optimal avoidance of a single obstacle in the plane is relatively simple. It
can be computed using a global optimization [2], or by running a local optimization
[34] twice (one for each side of the obstacle for a planar problem).

Consider the following point mass model:

ẍ = u1 ; |u1| ≤ 1

ÿ = u2 ; |u2| ≤ 1 (14)

where (x, y)T ∈ R
2 and (u1, u2)

T ∈ R
2 represent the configuration space variables

and actuator efforts, respectively.
We first derive the unconstrained trajectory, for states not affected by the presence

of the obstacle.

4.1.1 The Unconstrained Trajectory

The unconstrained trajectory for the decoupled system (14) is determined by the
minimum motion time of the slowest axis.

Consider first a single axis, represented by the double integrator

ẋ1 = x2
ẋ2 = u ; |u| ≤ 1. (15)

Using optimal control theory [23], it is easy to show that the time-optimal control for
system (15) is bang-bang with at most one switch [50]. In the following, we denote
x = (x1, x2) and x f = (x1 f , x2 f).

50 Z. Shiller

The minimum time-to-go from any state x to x f can be computed analytically
[59, 60]:

t f (x, x f) = (16)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−x2 − x2 f + 2

√
−x1 + x1 f + x22

2 + x22 f
2 , if x ∈ R

x2 + x2 f + 2

√
+x1 − x1 f + x22

2 + x22 f
2 , otherwise

where
R = {(x) | S1(x) > 0, S2(x) < 0}, (17)

and the switching curves S1(x), S2(x), shown in Fig. 16, are:

S1(x) = x22 − 2

(
x1 − x1 f + x22 f

2

)
= 0,

S2(x) = x22 + 2

(
x1 − x1 f − x22 f

2

)
= 0. (18)

The switching time ts is [60]:

ts(x, x f) = (19)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−x2 +
√

−x1 + x1 f + x22
2 + x22 f

2 , if x ∈ R

x2 +
√

+x1 − x1 f + x22
2 + x22 f

2 , otherwise

Fig. 16 Switching curves in
the state space of a single
axis

0

x2

x1

u = -1

u = +1

xf
x0

S1 (x)

S2(x)

R

Off-Line and On-Line Trajectory Planning 51

Equation (16) computes the optimal time-to-go from any given state. It is used to
determine the slowest axis of a multi axis system and set the motion time for the
slowest axis, as discussed later.

The time-optimal trajectory thus first follows a parabola from the initial state to
the switching curve, then follows the switching curve to the target state, as shown
schematically in Fig. 16. Trajectories starting from initial states left of the switching
curves (region R in Fig. 16) begin with u = 1, and right of the switching curves
with u = −1. Trajectories starting from states on the switching curve follow the
switching curve to the target with no switch. The switching time is determined by
the initial and final states.

Since the minimum time trajectory has only one switch (excluding trajectories
that emanate from initial states on the switching curves), reaching the target at a time
greater than the minimum time, t f , using bang-bang control, requires more than one
switch [50].

For the two axis system (15), each axis may reach the target at a different optimal
time. Obviously, the optimal time t f to reach the target is determined by the slow-
est axis. Assuming, without loss of generality, that the faster axis from any initial
state x0 = (x10, x20, y10, y20) to the target state x f is the y-axis, the time-optimal
trajectory is obtained by driving the x-axis optimally, and driving the y-axis so that
it reaches the target at the same final time, t f .

The trajectory of the x-axis is unique since it is optimal and hence has only one
switch, whereas the trajectory of the y-axis is not optimal and hence has at least two
switches.1 It follows that the time-optimal path between the end points is not unique.
The set of all time-optimal paths is bounded by two extremal paths, generated by the
extremal trajectories, which are in turn generated by the extremal controls, umax and
umin [50]:

umax(t) =

⎧⎪⎨
⎪⎩
1 if t ∈ [0, ts1]
−1 if t ∈ [ts1, ts2]
1 if t ∈ [ts2, T]

(20)

umin(t) =

⎧⎪⎨
⎪⎩

−1 if t ∈ [0, ts3]
1 if t ∈ [ts3, ts4]
−1 if t ∈ [ts4, T]

(21)

where T > t f is specified, and

ts1 = 1

2α

(
x1 f − x10 + 2αT − x20T − T 2

2
− α2

)

ts2 = ts1 + α

α = (T + x20 − x2 f)

2
, (22)

1The switching time of the slowest axis occurs when its trajectory reaches one of the switching
curves given in (18).

52 Z. Shiller

ts3 = 1

2β

(
x1 f − x10 − 2βT − x20T + T 2

2
+ β2

)

ts4 = ts3 + β

β = (T − x20 + x2 f)

2
. (23)

We call the two-switch trajectories the extremal trajectories. Note that if the optimal
motion times of both axes are identical, then the time-optimal trajectory is unique.

The unconstrained trajectory of system (14) from any state x = (x1, x2, y1, y2) to
the target state x f = (x1 f , x2 f , y1 f , y2 f) is thus determined by the optimal motion
time of the slowest axis. It can be used to drive the system as long as at least one
extremal trajectory avoids the obstacle. Otherwise, the obstacle must be avoided
using the constrained trajectory discussed next.

4.2 The Constrained Trajectory

The constrained trajectory is needed for points in the state-space from which all
unconstrained time-optimal trajectories to the target intersect the obstacle. We refer
to the set of suchpoints as theObstacleShadow. In thekinematic case [51], the shadow
corresponds to the shadow created behind the obstacle by a point light source at the
target. The physical analogy for the dynamic problem is not as obvious.

The intersection of all the extremal time-optimal paths with the obstacle implies
the intersection of all unconstrained optimal paths. It is therefore sufficient to check
if both extremal trajectories intersect the obstacle to conclude that an avoiding tra-
jectory, with optimal motion time greater than the optimal motion time of each axis,
should be computed. Since the motion times of both axes are non-optimal, and hence
greater than the unconstrained time t f , it follows that both axes have at least two
switches.

We compute the time optimal trajectory from x0 to x f that avoids the obstacle,
numerically, using a line search over the traveling time, tc = t f + δ. The search ter-
minates when the first trajectory that reaches the goal without intersecting the obsta-
cle is found. The computation of the constrained trajectory for one obstacle is, thus,
obtained by solving the followingminimization problem over the single parameter, δ:

tc(x0, x f , OB) = min
δ

t f (x0, x f) + δ (24)

such that there exists j = 1, . . . , 4 that satisfies:

xex, j (t) �∈ OB, (25)

where t f (x0, x f) is the unconstrained optimal time (16), and xex, j (t), t ∈ [0, t f +
δ] represents the j th extremal trajectory. The four extremal trajectories xex, j (t)

Off-Line and On-Line Trajectory Planning 53

correspond to the four combinations of the initial controls of both axes: (1, 1),
(−1,−1), (1,−1), (−1, 1). Although only two of these four trajectories are true
extremals, it is simpler to test all four. It is sufficient that only one extremal satisfies
(25).

4.3 Multi-obstacle Avoidance

The optimal avoidance of one obstacle is relatively simple, and is hence suitable
for on-line computation. We use it to solve the multi-obstacle problem by avoiding
obstacles one at a time. Key to this approach is the selection of the current obstacle
to be avoided at any given time, as discussed next.

4.4 The Current Obstacle

We select the current obstacle as the maximum cost obstacle, which takes the longest
time to avoid from the current state x to the goal x f . Denoting tc(x, x f , OB(j)),
j = [1, m] as the minimum time it takes to avoid obstacle OB(j) from x to x f , the
current obstacle, k, maximizes tc:

tc(x, x f , OB(k)) ≥ tc(x, x f , OB(j)) for all j = 1, . . . , m. (26)

The current obstacle is thus selected byfirst determining all obstacleswith shadows to
the goal x f containing the current state x , then computing the constrained trajectories
avoiding each obstacle to x f , and selecting the one with the longest motion time. If x
does not lie in the shadow of any obstacle, then the cost of all obstacles equals to the
unconstrained trajectory to the goal and none is selected to be avoided. One of the
extremals of the set of unconstrained trajectories is then selected for navigation. The
algorithm may switch between the extremals in case they collide with any obstacle,
until either reaching the goal or entering the shadow of any obstacle, in which case
the current obstacle is selected by (26).

Selecting at each step the obstacle with the highest cost to the goal produces a tra-
jectory that is close to optimal, since the other obstacles have a smaller impact on the
motion time to the goal, as is shown schematically in Fig. 17. In Fig. 17, the state x
is in the shadows of obstacles 1 and 4. Of those, the trajectory avoiding OB(4),
denoted X (x, x f , OB(4)), takes longer time than X (x, x f , OB(1)) (not shown).
Hence OB(4) is selected as the current obstacle. Obviously, any solution to the goal
must avoid obstacle 4. Hence, recognizing it early in the avoidance process increases
the likelihood that the resulting trajectory will be close to optimal. The intersection
of X (x, x f , OB(4)) with OB(1) will prompt a recursive process, discussed next.

While selecting the maximum cost obstacle is likely to result in near optimal
trajectories, other selection criteria, such as the nearest obstacle (obstacle 1 in Fig. 17)
may suffice for convergence.

54 Z. Shiller

Fig. 17 Selecting the
current obstacle from x to x f

OB1

OB2

OB4 x
xf

OB3

X(x,xf,OB(4))

Unconstrained extremals
Current obstacle

4.5 The Avoidance Algorithm

The avoidance algorithm assumes convex and non-overlapping obstacles (in the
configuration space). It selects the current obstacle to be avoided, computes the time
optimal trajectory that avoids that obstacle, selects an intermediate goal along that
trajectory on the boundary of that obstacle, and attempts to reach that goal. It repeats
the process recursively until reaching the closest intermediate goal.

Algorithm 2: Online Avoidance
Step 0: Initialize. Receive current state x , target state x f ;
Set i = 0, g(i) = x f ;
Step 1: Determine the current obstacle, OB(k), from x to g(i).
If k = 0 (x not in the shadow of any obstacle), go to Step 3.
Compute the optimal trajectory avoiding OB(k) to g(i).
Step 2: i = i + 1; Select an intermediate goal g(i) on the boundary of OBk along
the trajectory that avoids OB(k) to g(i − 1).
Check that the velocity at g(i) is not in theobstacle hole2 of anyobstacle, consisting
of infeasible states from which the obstacle is unavoidable. If it is, reduce speed
at g(i) as needed.
Go to Step 1.
Step 3: Follow the optimal trajectory to g(i). Set x = g(i).
If i = 0, STOP.
i = i − 1
Go to Step 1.

Algorithm 2 generates a series of intermediate goals until one is reachable by a
time optimal trajectory without colliding with any obstacle. Each intermediate goal
g(i) (i ≥ 1) is selected along the constrained trajectory xc(t) from the current state
x to the current goal g(i − 1) at a point where xc(t) is tangent to the current obstacle
OBk . Usually, there is just one such point. In case xc(t) follows the obstacle for some

2The obstacle hole is a subset of the obstacle shadow.

Off-Line and On-Line Trajectory Planning 55

distance, the point closest to the goal g(i − 1) is selected. When an intermediate
goal is reached, a new avoidance problem is attempted from that intermediate goal
to the next goal in the queue. Note that once an intermediate goal was reached, it is
removed from the queue and a new goal may be assigned the same index i . The goals
are added and removed from the queue while the trajectory gradually progresses to
the final goal x f = g(0). Remembering the intermediate goals generated during the
process is key to the convergence of this algorithm, as discussed later.

Step 2 of Algorithm 2 selects the speed at the intermediate goal g(i) that is both
safe and feasible. A safe velocity is one that does not penetrate any obstacle hole,
from which the obstacle is unavoidable. To simplify the search for the safe velocity,
we choose to reduce it to the maximum velocity at which the robot can circle the
current obstacle at its maximum lateral acceleration (the acceleration normal to its
direction of motion). Denoting this velocity as the curvature velocity, it is easily
proven that the curvature velocity does not lie in the obstacle hole of any obstacle.

Definition 4.1 Curvature Velocity. The curvature velocity, vc, is defined as:

vc = √
umax R (27)

where umax is the maximum lateral acceleration, and R is the radius of the obstacle.

It remains to verify that the velocity at g(i) is reachable from the current state x .
This is done by checking that a direct time optimal trajectory exists from x to g(i). A
direct trajectory is one that does not include loops. In case the velocity at g(i) is too
high, we scale it down until it is reachable from x ; if the velocity at g(i) is too low,
the current speed, which was set to the curvature velocity, can be reduced by circling
the nearby obstacle at a decreasing speed. The curvature velocity (27) ensures that
the obstacle can be circled to allow a safe reduction in speed when necessary. While
this feature is necessary to ensure safety, it was not needed in any of the many cases
tested by this algorithm.

The adjustment of speeds at the intermediate goals would ensure that any con-
secutive intermediate goals are connected by a feasible trajectory. This implies that
a too high final velocity may be compromised for the sake of safety. Similarly, not
every initial velocity is feasible for the obstacle avoidance case, even if it does not
penetrate any individual obstacle hole. The speed reduction at the intermediate goals
to the curvature velocity is a conservative measure to ensure safety.

4.6 Convergence

Convergence implies that the algorithm can reach the target state from an arbitrary
feasible state, in a finite time. Since we cannot a priory determine the feasibility of
arbitrary initial and target velocities, convergence ofAlgorithm2 can be proven under

56 Z. Shiller

the assumption of zero terminal speeds (the speeds at the initial and final points), for
convex obstacles that do not overlap with each other [50].

Algorithm 2 progresses incrementally towards the goal by moving through a
sequence of intermediate goals. Every intermediate goal subdivides the trajectory to
the goal into two smaller segments, and in fact breaks the avoidance problem into two
smaller problems. Repeating this process recursively further reduces the avoidance
problem until two consecutive intermediate goals are connected by an unconstrained
trajectory. The motion time along each segment is finite since it is traversed at the
minimum time. The number of such segments is bounded by the number of obstacles,
which is assumed finite. It follows that the total travel time from start to goal is also
finite, which proves convergence.

4.7 Optimality

The trajectory generated by Algorithm 2 is not necessarily optimal, since each step is
only locally optimal. While the paths (the projection of the trajectory to the configu-
ration space) generated by Algorithm 2 are generally close to the time optimal paths
computed by a global planner [16], as demonstrated next, the motion time along the
on-line trajectory is higher than the global optimal motion time due to the curvature
velocity (27) imposed at the intermediate goals.

4.8 Numerical Examples and Experiments

Algorithm2 is demonstrated for a planar environment, consisting of 70 tightly spaced
circular obstacles.

4.8.1 Example 2

This example shows an on-line trajectory that avoids 70 obstacles, from the initial
state (x1, x2, y1, y2) = (10.46m, 0.001m/s, 58.26m, 0.001m/s) to the goal state
(x1 f , x2 f , y1 f , y2 f) = (52.55m, 0m/s, 7.33m, 0m/s), as shown in Fig. 18. The
spacing between the dots represents the speed along the path.

The motion time along this trajectory is 35.2 s, with a top speed of 3.4m/s and an
average speed of 2.1m/s. There were 12 intermediate goals generated for this case,
shown as empty circles along the trajectory. The total computation time was 4.3 s,
with a time step �t of 0.1 s, and an average computation time of 11ms per-step. The
speed along the trajectory, as a function of distance traveled, is shown in Fig. 19.
The oscillations in the speed profile are due to the curvature velocity imposed at the
intermediate goals.

Off-Line and On-Line Trajectory Planning 57

Fig. 18 Trajectory
generated on-line in a tightly
spaced environment with 70
circular obstacles for
Example 2

0 10 20 30 40 50 60

0

10

20

30

40

50

60
Start

Goal

meter

m
et

er

Fig. 19 Speed as a function
of distance traveled along the
online trajectory of
Example 2

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

3.5

Distance Traveled [m]

S
pe

ed
 [m

/s
]

4.8.2 Experiment–Global Optimality

This experiment compares the online planner with the global planner [16] for the
obstacle setup shown in Fig. 20 (48 obstacles).

Shown in Fig. 20 are the trajectories generated by the online planner and the
global planner. The online and globally optimal paths have similar topologies as
they pass between the same obstacles. The velocity profiles along both trajectories
are shown in Fig. 21. The motion time along the online trajectory was 28.9 s over a
total distance of 93.8m, with an average speed of 3.2m/s, compared to the global
optimal motion time of 20.7 s over a total distance traveled of 99m, and an average
speed of 4.8m/s. This difference is caused primarily by the reduction in speeds to
the curvature velocities (27) at the intermediate goals.

58 Z. Shiller

Fig. 20 The trajectories
generated by the global and
online planners, among 48
obstacles

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90
Goal

Start

meter

m
et

er

GlobalOnline

Fig. 21 Speed as a function
of distance traveled for the
online and global optimal
trajectories

0 20 40 60 80 100
0

2

4

6

8

10

Online
Global

Distance Traveled [m]

S
pe

ed
 [m

/s
]

Repeating this test for 50 randomly selected end points yielded similar results,
with the average motion time of the online trajectories being 30.52 s, compared to
the average optimal time of 22.63 s. The average path length of the online trajectories
was 111.51m, compared with 115.26m for the optimal trajectories. Here too, the
increase in the motion time despite the comparable path lengths is due to the imposed
curvature velocity at the intermediate goals, which is determined by the obstacle size.

4.9 Computational Issues

The consideration of the obstacles one at a time reduces the original problem with
m obstacles to m simpler sub-problems with one obstacle each.

The cost for this reduction is the loss of optimality, and the need to check at
each time step if all obstacles intersect the unconstrained optimal path from the
current state, and for those that do, solve the single obstacle problem. This may

Off-Line and On-Line Trajectory Planning 59

seem excessive, but the alternative (solving the original exponential problem) is
much worse. Our approach generates the trajectory incrementally, unlike the original
problem that requires a complete solution before making the first move. In fact, for
problems with many obstacles, such as in example 2 with 70 obstacles presented
earlier, the on-line (heuristic) solution may be the only viable alternative.

Practically, itmay not be necessary to consider all obstacles at all times, but instead
consider only the obstacles within some radius of visibility around the robot. It would
be then necessary to limit robot’s speed to the stopping speed at the boundary of its
visibility range to ensure that it does not collide with an unforeseen obstacle.

To appreciate the computational advantage of this approach, we attempted to
compare it to the performance of efficient state-of-the-art algorithms. Currently, the
most popular approach is the RRT planner, which rapidly explores a random tree
to produce the first feasible solution to the goal [17–19]. The solution found is not
optimal in any way, and this class of algorithms is known to have inherent difficulties
with tight spaces. Yet, RRT is currently considered as the fastest algorithm to connect
between two points through cluttered environments.

We compared a kinematic version of our online algorithm to the RRT and RRT*
planners for avoiding 70 tightly space obstacles, all running on similar computers
[50]. Testing the algorithms for 100 randomly generated end points, the run time of
the online algorithm was on average 0.5ms, compared to 3.5ms of the RRT planner,
7 times faster. However, the path lengths produced by the RRT planner were twice
as long as those produced by the online planner, which were near global optimum.
Attempting to optimize the paths using the RRT* planner took 0.5 s to reach the
optimality levels of the online planner; this is 1,000 times slower than the online
algorithm. These results demonstrate the sound efficiency, in both computation time
and optimality, of the online planner presented here. This is not surprising as the
online planner consistently executes locally optimal paths at each incremental step,
as opposed to the sampling-based planners which essentially search for a solution in
the dark.

5 Summary

Motion planning is one of the basic problems in robotics as very few robotic tasks do
not involve motion. The main challenge in motion planning is to produce a trajectory
that safely and efficiently moves the robot from one state to another while accounting
for its dynamic behavior. It is also desirable that themotion plan reflects the changing
nature of the task or of the environment. While this is obviously the ultimate goal,
early works on motion planning in the 80s settled for much less by focusing on geo-
metric path planning with no account for robot dynamics. The resulting algorithms
were useful for determining the shortest path from start to goal, but were useless for
moving the robot at other than very low speeds. To account for robot dynamics, opti-
mal control theory, developed in the late 60s, was applied then to robotics but failed
because of insufficient computation power and the high sensitivity of the numerical

60 Z. Shiller

solutions to the initial guess. Like in many other endeavors, the solution emerged by
solving a simpler problem.

The failure of the geometric algorithms to solve high dimensional problems gave
rise to a class of sampling-based planners, with the goal of producing any feasible
path in lieu of the shortest path expected by earlier work. The multi-dimensional
optimal trajectory planning problem was eventually solved by first computing the
optimal velocity profile along a given path. This lead to a local optimization of the
path and eventually to a global planner that computes “good” initial guesses for the
local optimization.

In this chapter, we reviewed the main approaches to off-line and on-line motion
planning, and presented one solution for each with a focus on trajectory planning.
It was shown that any motion planning problem can be theoretically solved using
the Hamilton Jacobi Bellman (HJB) equation. If the return function is known or
approximated, this approach offers an online solution. In its discrete form, the HJB
equation leads to dynamic programming, which is the basis for the combinatorial
optimizations used in off-line planning.

We presented an off-line planner that takes advantage of the efficient computation
of the optimalmotion time along any path. The on-line planner presented converts the
original problem of optimally avoiding many obstacles to many simpler problems,
each avoidingoptimally only oneobstacle. Thehigh correlation between the solutions
of the on-line and off-line planners is not surprising since both planners are based
on sound optimal control theories.

As the basic problemof trajectory planning is considered solved, and as computers
are becomingmore powerful, the remaining challenge rests with online planning that
adapts or reacts to the changing nature of real life scenarios in the industry, in the
home, and on the road.

References

1. Choset H, Lynch KM, Hutchinson S, Kantor GA, Burgard W, Kavraki LE, Thrun S (2005)
Principles of robot motion: theory, algorithms, and implementations. MIT Press, Cambridge

2. Shiller Z, Dubowsky S (1991) On computing the global time optimal motions of robotic manip-
ulators in the presence of obstacles. IEEE Trans Robot Autom 7(6):785–797

3. Canny JF (1988) The complexity of robot motion planning. MIT Press, Cambridge
4. Lozano-Perez T, Wesley MA (1979) An algorithm for planning collision-free paths among

polyhedral obstacles. Commun ACM 22(10):560–570
5. LumelskyVJ, StepanovA (1987) Path planning strategies for a pointmobile automatonmoving

amidst unknown obstacles of arbitrary shape. Algorithmica 2:403–430
6. Schwartz JT, Sharir M (1983) On the piano movers’ problem: the case of a two-dimensional

rigid polygonal bodymoving amidst polygonal barriers. Commun Pure ApplMath 36:345–398
7. Karaman S, Frazzoli E (2011) Sampling-based algorithms for optimal motion planning. Int J

Robot Res 30(7):846–894
8. Manor G, Rimon E (2013) Vc-method: high-speed navigation of a uniformly braking mobile

robot using position-velocity configuration space. Auton Robot 34(4):295–309
9. Lozano-Perez T (1987) A simple motion planning algorithm for robotic manipulators. IEEE

Trans Robot Autom RA-3(3):224–238

Off-Line and On-Line Trajectory Planning 61

10. WeinR, vandenBerg JP,HalperinD (2005)Thevisibility-Voronoi complex and its applications.
In: Proceedings of 21st symposium on computational geometry, pp 63–72

11. Alexopolous C, Griffin PM (1992) Path planning for a mobile robot. IEEE Trans Syst Man
Cybern 22(2):318–322

12. Liu YH, Arimoto S (1992) Path planning using a tangent graph for mobile robots among
polygonal and curved obstacles. Int J Robot Res 11(4):376–382

13. LaValle SM (2010) Motion planning: the essentials. IEEE Robot Autom Mag 110
14. DijkstraEW(1959)Anote on twoproblems in connexionwith graphs.NumerischeMathematik

1:269–271
15. Papadimitriou CH, Steiglitz K (1982) Combinatorial optimization, algorithms and complexity.

Prentice-Hall, Englewood Cliffs
16. Shiller Z, Gwo YR (1991) Dynamic motion planning of autonomous vehicles. IEEE Trans

Robot Autom 7(2):241–249
17. Lavalle SM (1998) Rapidly-exploring random trees: a new tool for path planning. Technical

Report 98-11, Department of CS, Iowa State University
18. Hsu D, Latombe JC, Motwani R (1999) Path planning in expansive configuration spaces. Int J

Comput Geom Appl 4:495–512
19. Mazer E, Ahuactzin JM, Bessiere P (1998) The Ariadnes clew algorithm. J Artif Intell 9:295–

316
20. Karaman S, Walter MR, Perez A, Frazzoli E, Teller S (2011) Anytime motion planning using

the rrt*. In: International conference on robotics and automation
21. Amato NM, Bayazit OB, Dale LK (2000) Choosing good distance metrics and local planners

for probabilistic roadmap methods. IEEE Trans Robot Autom 16(4):442–447
22. Gmez-Bravo F, Carbone G, Fortes JC (2012) Collision free trajectory planning for hybrid

manipulators. Mechatronics 22(6):836–851. Special Issue on Intelligent Mechatronics
23. BrysonAE,HoYC (1969) Applied optimal control. Blaisdell Publishing Company, Cambridge
24. Kiriazov P, Marinov P (1985) A method for time-optimal control of dynamically constrained

manipulator. Theory and practice of robotics and manipulators. MIT Press, Cambridge, pp
169–178

25. Niv M, Auslander DM (1984) Optimal control of a robot with obstacles. In: Proceedings of
American control conference (San Diego, CA), June 1984, pp 280–287

26. Khan ME, Roth B (1971) The near-minimum time control of open loop articulated kinematic
chains. J Dyn Syst Meas Control 93(3):164–172

27. Bobrow JE, Dubowsky S, Gibson JS (1985) Time-optimal control of robotic manipulators.
IJRR 4(3):3–17

28. Pfeiffer F, Johanni R (1987) A concept for manipulator trajectory planning. IEEE Trans Robot
Autom RA-3(3):115–123

29. Shin KG, McKay ND (1985) Minimum-time control of robotic manipulators with geometric
path constraints. IEEE Trans Autom Control AC-30(6):531–541

30. Shiller Z, Lu HH (1992) Computation of path constrained time-optimal motions with dynamic
singularities. ASME J Dyn Syst Meas Control 14(1):34–40

31. Slotine JE,YangHS (1989) Improving the efficiency of time optimal path following algorithms.
IEEE Trans Robot Autom 5(1):118–124

32. Tarkiainen M, Shiller Z (1993) Time optimal motions of manipulators with actuator dynamics.
In: Proceedings of 1993 IEEE international conference on robotics and automation, vol 2, pp
725–730

33. Bobrow JE (1988) Optimal robot path planning using the minimum time criterion. IEEE Trans
Robot Autom 4(4):443–450

34. Shiller Z, Dubowsky S (1989) Time-optimal path-planning for roboticmanipulators with obsta-
cles, actuator, gripper and payload constraints. IJRR 8(6):3–18

35. Seywald H (1994) Trajectory optimization based on differential inclusion. J Guid, Control,
Dyn 17(3):480–487

36. Bryson AE (1999) Dynamic optimization. Addison Wesley, New York

62 Z. Shiller

37. Donald B, Xavier P (1989) A provably good approximation algorithm for optimal-time trajec-
tory planning. In: Proceedings of IEEE conference on robotics and automation, May 1989, pp
958–963

38. Sahar G, Hollerbach JM (1985) Planning of minimum-time trajectories for robot arms. In:
Proceedings of IEEE international conference on robotics and automation (St. Louis, MO),
March 1985, pp 751–758

39. Kamon I, Rimon E, Rivlin E (1998) Tangentbug: a range-sensor based navigation algorithm.
Int J Robot Res 17(9):934–953

40. Laubach S, Burdick J, Matthies L (1998) A practical autonomous path-planner for the rocky7
prototype microrover. IEEE international conference on robotics and automation

41. Choset H, Burdick JW (1995) Sensor based planning, part ii: incremental construction of the
generalized Voronoi graph. In: Proceedings of IEEE international conference on robotics and
automation, ICRA’95, pp 1643–1649

42. Sankaranarayanan A, Vidyasagar M (1991) Path planning for moving a point object amidst
unknown obstacles in a plane: the universal lower bound on worst case path lengths and a
classification of algorithms. In: Proceedings of IEEE international conference on robotics and
automation, ICRA’91, pp 1734–1941

43. Connoly CI, Burns JB, Weiss R (1991) Path planning using Laplace’s equation. In: IEEE
conference on robotics and automation, Cincinnati, OH, vol 1, pp 102–2106

44. Khatib O (1986) Real time obstacle avoidance for manipulators and mobile robots. Int J Robot
Res 1:65–78

45. Rimon E, Koditschek DE (1992) Exact robot navigation using artificial potential functions.
IEEE Trans Robot Autom 8:501–518

46. Jarvis R (1985) Collision-free trajectory planning using distance transforms. Trans Inst Eng
Aust Mech Eng ME10(3):187–191

47. AthansM (1965) Optimal control: an introduction to the theory and it’s applications. Academic
Press, New York

48. Cesari L (1983) Optimization—theory and applications: problems with ordinary differential
equations. Springer, New York

49. Moskalenko AI (1967) Bellman equations for optimal processes with constraints on the phase
coordinates. Autom Remote Control 4:1853–1864

50. Shiller Z, Sharma S, Stern I, Stern A (2013) On-line obstacle avoidance at high speeds. Int J
Robot Res 32(9–10):1030–1047

51. Sundar S, Shiller Z (1997) Optimal obstacle avoidance based on sufficient conditions of opti-
mality. IEEE Trans Robot Autom 13(2):305–310

52. Lee EB, Markus L (1967) Foundations of optimal control theory. Wiley, New York
53. Koditschek DE, Rimon E (1990) Robot navigation functions on manifolds with boundary. Adv

Appl Math 11:412–442
54. Bellman R (1957) Dynamic programming. Princeton University Press, Princeton
55. Lawler EL (1976) Combinatorial optimization. Holt, Rinehart and Winston, New York
56. Fujita Y, Nakamura Y, Shiller Z (2003) Dual dijkstra search for paths with different topologies.

In: ICRA, pp 3359–3364
57. Shiller Z, Fujita Y,Ophir D,NakamuraY (2004) Computing a set of local optimal paths through

cluttered environments and over open terrain. In: ICRA, pp 4759–4764
58. PhamQC (2013) Characterizing and addressing dynamic singularities in the time-optimal path

parameterization algorithm. In: 2013 IEEE/RSJ international conference on intelligent robots
and systems (IROS), pp 2357–2363

59. Dreyfus S (1965) Dynamic programming and the calculus of variations. Academic Press, New
York

60. Sundar S (1995) Time-optimal obstacle avoidance for robotic manipulators. Doctoral Disser-
tation, Mechanical and Aerospace Engineering, University of California, Los Angeles, June
1995

Open Architecture for Vision-Based Robot
Motion Planning and Control

Theodor Borangiu, Florin Anton and Silvia Anton

Abstract This chapter introduces a methodology for the vision-based motion
control of robot manipulators. The motion control problem is decomposed into three
computational stages: motion planning, trajectory generation and trajectory tracking.
While the two latter activities are always executed in real time, motion is planned
in traditional robot systems off line, by learning robot points or by using numerical
output data from programs that plan minimal paths, avoid obstacles, etc. Guidance
vision is introduced as an advancedmotion controlmethod,which provides flexibility
when integrating industrial robots in computer-controlled manufacturing structures.
A dynamic look-and-move system architecture is discussed, as a robot-vision system
which is closed at task level. An open architecture is proposed as implementing solu-
tion for vision-based scene management and robot guidance, which integrates any
types of robot controllers and image processing libraries. The chapter also presents
a motion control algorithm for robots which are required to pick objects randomly
moving on conveyor belts. The algorithm for visual tracking of conveyor belts for
“on–the-fly” object grasping is partitioned in two stages: (i) visual planning of the
instantaneous destination of the robot, (ii) dynamic re-planning of the robot’s destina-
tion while tracking the object moving on the conveyor belt. The ensemble [conveyor
belt + actuator + sensor] is configured as a single-axis Cartesian robot, leading to
a cooperation problem between robot manipulators subject to multitasking control.
Experimental results are finally reported in what concerns the statistics of object
locating errors and motion planning errors function of the size of the objects of the
belt speed and of the light strobe.

Keywords Robot-vision system · Vision guided robot planning · Visual robot
servoing · Joint-space trajectory planning

T. Borangiu (B) · F. Anton · S. Anton
Department of Automation and Applied Informatics,
University Politehnica of Bucharest, Bucharest, Romania
e-mail: theodor.borangiu@cimr.pub.ro

© Springer International Publishing Switzerland 2015
G. Carbone and F. Gomez-Bravo (eds.), Motion and Operation Planning
of Robotic Systems, Mechanisms and Machine Science 29,
DOI 10.1007/978-3-319-14705-5_3

63

64 T. Borangiu et al.

1 Introduction

The motion control problem refers to controlling the robot manipulator such that it
follows a pre-planned path. Themotion control problem is generally decomposed into
three computational stages (Fig. 1): (1) Motion planning; (2) Trajectory generation;
(3) Trajectory tracking [1].

In themotion planning stage, desired paths are described in the r-dimensional task
space T (i.e. the locus of the positions and orientations that the robot tool must attain
in O ⊆ Rm—the operational space, T ⊆ O), which is isomorphic to the special
Euclidian group SE3.

T = {
x(t)

∣∣x ∈ Rr , t ∈ R+ }
, T ⊆ SE3 = R3 × SO3

The vectors x = x0n = [p φ]T, n = no. of d.o.f. express the location of the nth
coordinate frame (xn, yn, zn), attached to the end-effector, relative to theworld frame
(x0, y0, z0) attached to the base of the robot, p ∈ R3 specifies the coordinates of the
origin of the task frame (or end-effector frame), whereas the current orientation φ of
the task frame is described either by the rotation matrix R—amember of the special
orthogonal group SO3, or minimally by a set of 3 Euler angles (in the sequel, the yaw,
pitch and roll angles will be considered). If the tool is a single rigid body moving
arbitrarily in the Cartesian 3D workspace, then T = SE3 = R3 × SO3, m = 6.

Because on one hand robotic tasks are specified with respect to one or more
coordinate frames, and on the other hand visual servoing of robots makes intensive

Motion
planner

Trajectory
generator

Trajectory
tracking Manipulator

Working
environment

Internal sensors
(encoders)

External sensors
(video)

MOTION CONTROL

Off line Real time
computation (non-vision robot systems)

Fig. 1 Functional architecture for the global robot motion planning and control problem

Open Architecture for Vision-Based Robot Motion Planning and Control 65

use of a number of specific, additional coordinate frames, coordinate transformations
are used in motion planning and tracking as a generalisation of poses to express
relative locations between such frames of interest [2, 3].

Coordinate transformations must be often composed in the stage of motion plan-
ning and tracking, off line or at run time, to obtain the desired pose of the end-effector.
Assuming that we are given the coordinate transformations x0vis and xvis

obj expressing
respectively the location of the coordinate frame (xvis, yvis)attached to the image
plane relative to the world frame (x0, y0, z0) in the base of the robot, and the loca-
tion of the frame (xobj , yobj) attached to an object relative to (xvis, yvis), then the
coordinates Mobj of a point in the object frame can be expressed in the world frame
by the composition rule (:):

M0 = x0vis[xvis
obj [Mobj]] = (x0vis : xvis

obj)[Mobj] = x0obj [Mobj]

The associated relative rotation matrix and translation are given by R0
obj =

R0
visRvis

obj , p0
obj = R0

vispvis
obj +p0

vis . In the V+ structured robot programming environ-
ment, the simple transformations: to.cam[cam]—available from camera-robot
calibration, and vis.loc—the object location computed at run time, stand respec-
tively for x0vis and xvis

obj ; the object-attached frame is related to the world frame by
the composed transformation obj.loc ← to.cam[cam]:vis.loc

During motion planning stage, the desired paths are generated without timing
information, i.e., without specifying the velocity and the acceleration along the path.
Of primary concern is the definition of collision-free paths in the workspace. A
secondary objective may be included, for example the optimization of some cost
functions like: minimization of the total travel time or distance, keeping as low as
possible changes in direction, continuity of velocity, etc. [4].

The trajectory planner (generator) parameterises the end-effector path directly
in the task space either as a curve in SE3, or in R6 when a minimal Euler rep-
resentation is used for SO3. The trajectory planner may also compute a trajectory
for the individual joints of the manipulator as a curve in the configuration space
C = {

q(t)
∣∣q ∈ Rn, t ∈ Z+, n = no. of d.o.f.

}
.

The trajectory planner TP, represented as block—and connection diagram in
Fig. 2, is a software module, component of the basic software system of the robot
controller, being characterised as follows:

1. The inputs to the TP are the path description and constraints, and the constraints
imposed by the manipulator’s dynamics.

2. The output from the TP is the joint—or end-effector trajectory data, expressed
as a discrete time sequence of the values which must be attained by the position,
velocity and acceleration computed respectively in the configuration space q ∈ C
or in the task space x = (p, φ) ∈ Rr , from the initial to the final pose.

3. The trajectory planning task is executed by the TP in one of the two following
modes:

• Assuming that a set of constraints (e.g. continuity or smoothness) on position,
velocity and acceleration of themanipulator’s joint variables has been explicitly

66 T. Borangiu et al.

Path constraints

Path
specification

Dynamic constraints
of the manipulator

{ }
{ } Zxxx

qqq

∈tttt

ttt

,)(),(),(

or)(),(),(

Trajectory planner

• interpolating support points
• time parameterization of path
• speed, acceleration profile
• (Inverse Kinematics)

Fig. 2 Trajectory planner task and I/O representation

specified at selected joint configurations (called support—or interpolating
points) along the trajectory, the TP selects then a parameterised trajectory from
a class of polynomial functions in the total travelling time interval, which inter-
polates and satisfies the imposed constraints at the support points.

• A path that the end-effector must traverse is explicitly specified by an analyt-
ical function (e.g. a 3D straight-line path, a 2D circular-arc path in Cartesian
coordinates or any computed curve), and the TP adds a time law to compute
a trajectory that approximates the desired path either in joint coordinates or in
Cartesian coordinates.

In the first mode, the constraint specification and the planning of the manipulator
trajectory are performed in joint coordinates. In the secondmode, the path constraints
are specified in Cartesian coordinates, and the joint actuators are servoed in joint
coordinates.

To compute a joint-space trajectory, a given end-effector pathmust be transformed
into a joint-space path via the Inverse Kinematics (IK) mapping. Due to the difficulty
of computing on line this mapping, the usual approach is to compute a discrete set of
joint vectors along the end-effector path (joint support vectors), and then to interpolate
in joint space between these support points in order to complete the joint-space
trajectory. Common approaches to trajectory interpolation include polynomial spline
interpolation using trapezoidal velocity profiles and time laws of blended polynomial
type, cubic polynomial trajectories, or trajectories generated by referencemodels [5].

2 The Trajectory Generation Problem in Robot
Motion Control

A path can be defined either in the joint space or in the operational space. Usually,
the latter is preferred since it allows:

• a natural description of the task the manipulator has to do,

Open Architecture for Vision-Based Robot Motion Planning and Control 67

• a simple description of the path constraints—these are due to regions of the
workspace which are forbidden to the manipulator (e.g. due to the presence of
obstacles), and

• a direct knowledge of the pose of the end-effector in the workspace [6].

A geometric path cannot be fully specified by the user due to complexity reasons.
Typically, a reducednumber of parameters are specified, such as: final points, possible
intermediate points, geometric primitives interpolating the points. Also, the motion
time law is not typically specified at each point of the geometric path, but rather
it regards: the total trajectory time, the constraints on the maximum velocities and
accelerations or the eventual assignment of velocity and acceleration at some points
of particular interest.

This section presents algorithms and implementing solutions for operational-
space and joint-space and motion planning. Real-time computational aspects and
performances are analysed.

2.1 Joint-Space Trajectory Planning

For this type of trajectory planning, the time history of all joint variables and of their
first two derivatives is planned to describe the desired motion of the manipulator.
Planning in the joint space has the following advantages:

• the trajectory is planned directly, in terms of the controlled joint variables q(t)
during motion execution;

• the trajectory planning can be done nearly in real time;
• the joint trajectories are planned with a reasonable computational effort.

The main disadvantage is the difficulty in determining the locations of the various
links and of the end-effector in the operational space, a condition which is usually
required to guarantee obstacle avoidance along the trajectory.

The global algorithm for generating joint-trajectory set points is given next:

0tt = ;

loop: wait for next control interval;
ttt Δ+= ;

Update the trajectory planner →)(ttp compute the necessary joint posture

of the manipulator: { })(),(),(ttt qqq at time t ;

if finaltt = exit;

else go to loop.

Four constraints are imposed to the planned joint-space trajectory:

1. The trajectory set points must be non-iteratively readily calculable.
2. Intermediate points must be evaluated in a deterministic mode.

68 T. Borangiu et al.

3. The continuity of the joint position and its first two time derivatives must be
guaranteed so that the planned joint trajectory is smooth.

4. Extraneous motions must be avoided.

The constraints 1–4 for the planned trajectory will be satisfied if the time history
of the joint variables can be specified by polynomial sequences.

Robot controllers use electronic gearing in the joint-space trajectory generator in
order to synchronize the movement of one or more slave axes to the movement of a
master device, which can be an encoder, A/DC, or the trajectory of another axis, e.g.
the robot’s leading axis which must execute the longest displacement.

2.2 Operational-Space Trajectory Planning

The general case of Cartesian-space planning is considered, for which the global
algorithm is given below:

0tt = ;

loop: wait for next control interval;
ttt Δ+= ;

Update the operational hand planner →)(tTP compute the necessary

position and orientation of the end-effector: { })(),(),(),(tttt ωpp φ
in the operational space at current control time interval t ;

Compute the closed IK joint solution – CIKS,)]([IK tTP , corresponding to

)(tTP ;

if finaltt = exit;

else go to loop.

In general, task-space planning is done in two steps:

STEP 1: Generating or selecting the set of support points in operational coordinates
according to some rules, along the operational path

STEP 2: Specifying a class of functions to link the support points defined in STEP
1 (or to approximate the path segments) according to some criteria. The
criteria which are chosen are often dictated by the control algorithm fol-
lowing the trajectory planning, which tracks the desired path.

There are two approaches which can be used for achieving STEP 2:

1. The operational space—oriented approach: support points are generated along
the task path in operational coordinates. Then, the TP interpolates in operational
space between these support points and adds the time law expressed in terms
of the desired speed and acceleration profiles. The result will be the discrete

Open Architecture for Vision-Based Robot Motion Planning and Control 69

time sequence of values that must be attained by the end-effector’s position and
velocity computed in the task space, i.e. the trajectory in the task space.

Next, the task-space trajectory is converted into the corresponding joint-space
trajectory, by applying for inverse kinematics computation. Several techniques can
be used to this purpose:

• The kinematics inversion using the Jacobean pseudo-inverse J+ or the Jacobean
transpose JT [1, 7];

• The resolved motion rate control (RMRC) algorithm in the form:

δqc(t) = J−1(qc(t))δxc(t)

where:

δqc(t) = q(tk+1) − q(tk), δqc(t) = IOS(xd(tk+1) − dk(q(tk))

This corresponds to an incremental IK task space computation IOS, δxc(t) being
the incremental displacement along the operational path, and dk(q) is the time func-
tion that computes the Direct Kinematics model. Hence it can be observed that the
two time-consuming computing tasks:

– operational path interpolation between support points, and
– conversion of the task-space trajectory to a joint-space trajectory

are performed incrementallywith arguments representing relative position and speed
values. This will consequently reduce the computation time and augment the band-
width of the TP (Fig. 3).

Operational
path

description

Generating
support points

along the opera-
tional path

Linking
support points by
interpolating in

operational space

Incremental
),IK(1 TJJ −

Numerical
integration

Absolute DK
(Direct

Kinematics)
Speed and ac-

celeration
profiles

)(),(tt cc xx δδ)(),(tt cc qq δδ

)(tx

)()(tt dc qq ≡

Real-time computation

Fig. 3 Linking support points by interpolating in operational space

70 T. Borangiu et al.

Moreover, in order to additionally reduce the computing time, truncation of
results and approximations like sin θ ≈ 0, cos θ ≈ 1 − θ2/2 for |θ | < ε with ε

a small, positive quantity, or reduced-order series development are accepted for the
IK computation task. This is because any induced errors will be compensated by
the DK task, placed on the feedback path and operating with the absolute values of
the argument “qc—the computed joint configuration on the operational path” [5, 8].
In the case of linear interpolation, the resulting output trajectory generated by the TP
is a piecewise straight line in the task space.

Attention must be paid as IK transformations do not produce unique solutions; in
addition, if themanipulator dynamics is included in the trajectory planning, then path
constraints will be specified in operational coordinates, while physical constraints
such as force, torque, velocity and acceleration limits of each joint motor will be
bounded in joint coordinates.

2. The joint space—oriented approach: converts first the support points that have
been defined along the operational path into their corresponding joint coordi-
nates, and the uses low-degree polynomial functions to interpolate between these
converted support points (Fig. 4). Figures3 and 4 represent two approaches used
for interpolating between support points generated along the operational path.

If the TPmust generate a linear trajectory in the task space, the support points will
be on this linear path, but the linear joint-space interpolation between support points
will produce a final output trajectory which is a non–piecewise straight line in the
task space. According to the maximum allowed deviation in position of the planned
trajectory with respect to the ideal, linear one in the task space, a certain number of
support points will be defined on the operational path. The smaller the admitted devi-
ation, the larger the number of support points to be defined on the operational path.
This second approach is widely used, because of its reduced computational effort.

In the trajectory tracking stage, the computed reference trajectory is input to the
motion controller, whose function is to determine the end-effector to track the given
trajectory as close as possible. The trajectory tracking task is executed in real time

Operational
path

description

Selecting support
points along the
operational path

Linking support
points by joint

space interpolation

Absolute
IK

Speed and acceleration profiles

)(tcx)(tdq

Real-time computationOff-line computation

)(tcq

Fig. 4 Linking support points by interpolating in joint space

Open Architecture for Vision-Based Robot Motion Planning and Control 71

by the motion controller and consists in computing the time history of joint control
inputs u, i.e. the vector of control voltages for the n axes’ servomotors.

Task description is in most cases expressed in the m-dimensional operational
space (with a particular minimal representation for the end-effector orientation),
whereas control inputs (control velocities or forces/torques for the joint actuators)
are generated in the n-dimensional joint space. Consequently, two types of motion
control schemes have been thought of: with joint-space trajectory tracking and with
operational-space trajectory tracking.

3 The Taxonomy of Visual Robot Servoing

The AI approach to intelligent robot automation is best characterised as the attempt
to provide a robot with a symbolic representation of its environment and of its own
actions, to be exploited by some kind of inference procedure. In this field, the main
contributions of AI have been significant in two directions [9–11]:

• perception,with particular regard to object recognition and locating throughvision;
• planning, i.e. the automatic construction of a sequence of actions capable to achieve
a predefined goal.

The behavioural intelligence of a robotic system refers to the following properties:

1. Flexibility: in different situations, the robot controller is able to produce appro-
priately different behavioural patterns in pursuit of different goals.

2. Robustness: the robotic system can absorb and neutralise the effects of incomplete
and noisy information and of limited changes in the environment’s structure and
dynamics.

3. Adaptiveness: the ability of the robotic system to alter behaviour significantly in
response to radical changes in the environment.

Robot-vision systems use intelligent image processing to detect, recognize or
track object features and act in consequence to plan and guide the motion of the
robot. The chapter introduces the Look-and-Move approach for guidance vision
(visually planning the robot’s motion—the industry solution), see Fig. 5.

This is a hierarchicalmotion control structure, with the vision processor providing
(planning) set-points as references to the robot’s joint-level controller—thus using
joint data feedback to internally stabilise the robot. This structure leads to an inter-
laced look-and-move control scheme, where motion tracking and image processing
are pipelined as follows:

• while a motion segment is executed, no image is acquired and processed, and
• while an image is taken and treated according to the specific needs of a robot task,
the motion controller does not start generating a trajectory and tracking it.

72 T. Borangiu et al.

Cartesian-space
trajectory
generator

Joint
controllers

Pose
estimation

Image feature
extraction

Σ Power
amp

est
obj
n)(x

d
obj
n)(x

+

−
ms)(0x

drcn ux =)(0

)(dk
mn)(0x

mmq ,

motors

encoders

Camera
Robot

manipulator

Trajectory tracking

est)(f
Object's image

s
visx

Camera-robot
calibration

u

est
vis
obj)(x

Robot-object
calibration

Fig. 5 Position-based look-and-move visual servoing architecture for object tracking

It can be observed that, whereas the global robotic system operates in an open
loop structure at motion control level, it is subject to a closed loop control at the
global task level.

Position-based look-and-move control is further discussed in this section. As
described in Fig. 5, features are extracted from the image and used to estimate
the pose x̂vis

obj = (xvis
obj)est of the target (object, point) with respect to the camera.

Using these values, an error between the current estimated and the desired pose
of the robot, (xvis

obj)d is defined in the task space T . Thus, position-based control
neatly separates the control actions, i.e. the computation of the feedback signal
(x0s)m = dk(qm ,s), n − 3 ≤ s ≤ n using the direct kinematics model dk(·) of
the robot manipulator, from the estimation problem involved in computing position
or pose x̂vis

obj from visual data (f)est .
A visual positioning task is expressed by an error function E : T → Rm . This

function is referred to as the virtual kinematic error function VKE. A positioning
task is fulfilled when the end-effector has been moved in pose xn = x0n if E(xn) = 0.

Once a suitable VKE function defined and its parameters instantiated from visual
data, a compensator can be designed that reduces the value of the VKE function
to zero. This compensator computes at every sampling time instant the necessary
end-effector position (xn)c that is sent as dynamic reference to the joint-space
(or operational-space) motion tracking controller [1]. Since the VKE functions are
defined usually in the Cartesian space, it is common sense to develop the compen-
sator’s control law through geometric insight.

Open Architecture for Vision-Based Robot Motion Planning and Control 73

4 Guidance Vision for Robot Motion Planning

The problem of visual feature tracking for robot motion planning and object access
control will be further presented for two types of working environments: (1) fixed
scene, e.g. workstation, storage, ASRS, and (2) mobile scene, e.g. conveyor belts
[12, 13].

4.1 Open, Vision-Based Robot Motion Planning for Fixed
Scene Foreground

An open, vision-based robot motion planning and control method and implementing
solution is presented in this section. The method allows using any general purpose
machine vision system (here an industrial camera with c-mount and AdeptSight
software) with any type of industrial robot controller (here ABB), with a proper
interfacing (Ethernet or serial communication).

In order to be used, a camera calibration is needed (which is provided by vision
any image processing library based on a calibration pattern), and also a robot-camera
calibration (which must be done manually by the robot technician); the models of
the objects to be accessed by the robot and the robot-object (class) grasping will be
off-line taught for collision free motion at execution time.

In industrial applications of position-based dynamic look-and-move control struc-
tures, the robot-vision systemworks inmost cases with off line learned objects which
can be visually recognised and located at run time [14, 15]. It becomes thus possible:

• to recover the object’s pose, x̂obj , relative to the base frame of the robot, from the
direct estimate x̂vis

obj of the object’s pose in the vision frame and by composing it
with the camera-robot calibration estimate x̂vis ;

• to define stationing points Sobj on the object’s image, relative to a suitable object-
attached frame (xobj , yobj).

Figure6 shows a fixed camera configuration and related camera-robot transfor-
mations; this is an endpoint open-loop (EOL) system that only observe the target
object to guide the robot’s motion for grasping it.

The physical camera is related to the base coordinate system of the robot by the
time-invariant pose evaluated a single time during an interactive off line camera-
robot calibration session, and to the object in the scene by. The camera image of
the object is independent of the robot motion (unless the target is the end-effector
itself, described for example by image feature of the gripper’s fingerprints pro-
jected onto the image plane). The pose is computed at run time, and involves
the search, recognition and locating of image features(s) on the object of interest
[16–18].

74 T. Borangiu et al.

Stationary
camera

Image
plane

Visualised
object surface

Projection of visualized
object surface onto),(visvis yx0x

0y

vis
objx0

visx

0
nx 0

objx

obj
nx

z0

Fig. 6 Stationary camera configuration and related camera—robot relative transformations x0obj , x0n
respectively for the feature tracking and feature tracking for object grasping tasks

For object grasping, the image features must unambiguously describe the entire
object for its successful identification and locating at run time. In addition, the pose
of the gripper, relative to the frame attached to the object in its current location, is
required.

For a stationary camera, the relationship between these poses is:

x0n = x0vis : xvis
obj : xobj

n , for feature tracking for object grasping.

Assuming a random part presentation in the robot workstation, the object’s pose
relative to a (unique) camera frame, x̂vis

obj_1 will be estimated at run time in a first
stage in terms of the following image feature parameters:

• xC , yC : coordinates of the centre of mass C of the 2D projection of the object’s
visualised surface onto the image plane (xvis, yvis);

• orient = ∠(MIA, xvis): orientation angle of the object.

The object-attached frame (xobj_1, yobj_1) has the origin in C and the abscissa
xobj_1 ≡ MIA, where MIA stands for the object’s Minimum Inertia Axis (Fig. 7).

To move the robot to grasp objects of a certain class always in the same way,
irrespective of their location in the robot scene, the desired (unique) pose of the
gripper, xobj

n∗ , relative to the object-attached frame must be a priori learned.
Let us denote by G the projection of the end-tip point T, the origin of the gripper-

attached frame (xn, yn, zn), onto the image plane: G = proj|(xvis ,yvis)
{T}.

For a desired grasping style,Gobj_1 is a stationing point in the object’s coordinates
(xobj_1, yobj_1), irrespective of the current position and orientation of the object. Its

Open Architecture for Vision-Based Robot Motion Planning and Control 75

visy

visx

Cy

Cx

1_objx
1_objy MIA

,C(rid)G

G

C

nx

ny

n

objynirpregniF t1

nirpregniF t 2

Gripper in desired
grasping location Visualised

object surface
T

alpha

objx

z

Fig. 7 Definition of the object-attached coordinate frame

coordinates are: xG = dCG · cos(alpha); yG = dCG · sin(alpha), where dCG =
dist(C, G), and alpha = ∠(dir(C, G), MIA) measured CCW from the Minimum
Inertia Axis MIA) to dir(C, G). In a second stage, the object-attached frame will be
shifted to originG, by a translationof distancedCG alongdir(MIA) followedbya rota-
tion of angle alpha about the normal in C to the image plane, as represented in Fig. 7.

Given an object pose, xvis
obj , estimated visually at run time, and assuming that the

object was recognised as a member of that class for which a relative grasping pose
xobj

n∗ was a priori learned using a stationary camera calibrated to the robot base frame
by xvis , then the positioning error can be defined by the VKE function

E(xn; x̃obj
n∗ , x̂vis

obj , x̂vis) = xn
n∗ = x̂n

0 : x̂vis : x̂vis
obj : x̃obj

n∗ ,

where:

x̃obj
n∗ =

{
xobj

n∗ a priori known from learning, particular “grasping style”

x̂obj
n∗ visually updated at run time, general “grasping style"

.

With an EOL system, x̂n
0 = inverse(x̂0n) will be dynamically updated by the

trajectory generator to bring to zero the positioning error xn
n∗ . This can be simply

done applying for an IK-based Resolved Motion Rate Control algorithm.
The closed-loop servo control uses the visually estimated pose of the object, x̂vis

obj ,
the estimated camera-robot calibration pose x̂vis , and assumes that reduced-error
direct kinematics (x̂0n)—and inverse kinematics (x̂n

0) models are available. As for
the imposed grasping pose, for a priori unknown object location in the scene, some
components in x̂obj

n∗ must be estimated at run time whenever the “style" in which the
object will be grasped is general, i.e. such that G
≡ C and G /∈ MIA [19–21].

76 T. Borangiu et al.

For object access and handling using vision, the problem is reduced to expressing
the object position in the image relative to the robot base. This is done in the robot-
camera calibration session, the result ofwhich is a relative transformation expressing
the position and orientation of the vision frame relative to the robot base. Once the
calibration is executed, robot points will be computed relative to the position and
orientation of the vision-attached frame, and the robot motion planning follows the
procedure described in Sect. 2.

The robot-camera calibration procedure requires the usage of an object that will
be handled by the robot; during the execution of the procedure the robot will move
the object to different locations and will acquire pictures, generating a set of pairs
of descriptions of the object’s location: (a) from the camera and (b) from the joint
encoders. The solution of this set of equations will describe the camera’s field of
view location relative to the robot base.

For testing purpose an AdeptSight system and ABB robot manipulator were used,
the robot-vision calibration process and the training of the object graspingmodel have
been integrated in a single procedure. The procedure consists in four human-robot
interactive steps where the robot grasps the object and places it different positions in
the workspace for image acquisition and processing [2]:

The calibration object is placed in theworkspace and grasped by the robot and then
released (position P1), after which the robot clears the vision plane and the object’s
position in the vision plane is computed by the AdeptSight library. The point P1 is
the point which will be used to express all the positions of the objects in the image.
For example a position of an object will be computed as Po where Po is P1 shifted
with a set of offsets (for translations on X and Y and rotation on the Z axis). The
position of the object in point P1 is also computed in the vision plane, having the
coordinates P1Xv, P1Y v (the position of the coordinate system attached to the object
model) [22, 23].

In the second step the robot grasps the object and places it in the same position, but
rotated with 180◦ (point P1′), in the vision coordinates P1′

Xv, P1′
Y v. By comparing

the position of the coordinate system of the object in these positions the system can
compute the position of the mass centre of the object (the mass centre of the model
relative to the grasping point). In this case the grasping point is located in the image
on the middle of the segment [P1, P1′] (see Fig. 8).

Pgvis

{
Pgvisx = min(P1x , P1′

x) + ∣∣P1x − P1′
x
∣∣

Pgvisy = min(P1y, P1′
y) + ∣∣P1y − P1′

y
∣∣ ,

where Pgvis is the grasping point in the vision workspace.
Next the object is placed in a position P2 which is trained relative to the position

P1 shifted with 100mm on X axis of the base coordinate system of the robot.
In the final step the robot places the object in the position P3 which is trained

relative to the position P1 shifted with 100mm on Y axis of the base coordinate
system of the robot. By knowing the correspondence robot-point—image-point, the
system can compute now the orientation of the vision plane relative to the robot base

Open Architecture for Vision-Based Robot Motion Planning and Control 77

dist(P1,P1’)

Fig. 8 The relationship robot point—vision point

coordinate system, and also the distancewhich the robotmust cover to reach an object
which is placed at a certain distance from the initial point P1 in the image plane.

This can be expressed as follows: for 100mm travelling length along the X coor-
dinate system (base coordinate system) the object moves in the image P2x − P1x

along the Xvis axis, and P2y − P1y along Yvis; the same travelling length on the Y
coordinate system generates P3x − P1x on Xvis axis, and P3y − P1y on Yvis , in
the vision workspace. It results also that the vision system is rotated with the angle:

α = a tan 2(P2Y − P1Y , P2X − P1X)

toward the base coordinate system. Hence for an object which is recognized in the
image at the location Pv, the object will be grasped at the coordinates:

Px = PG_x +
√

(P1_x − Pv_x)2 + (P1_x − Pv_x)2

· cos(α + a tan 2(Pv_y − P1_y, Pv_x − P1_x)

Py = PG_y +
√

(P1_x − Pv_x)2 + (P1_x − Pv_x)2

· sin(α + a tan 2(Pv_y − P1_y, Pv_x − P1_x)

Prot = PG_rot + (Pv_rot − P1_rot)

where Px , Py, Prot are the position coordinates and the rotation of the grasping
point of the object which was located in the vision workspace at the location Pv

(Pv_x , Pv_y, Pv_rot); PG (PG_x , PG_y, PG_rot) is the grasping point (in the object’s
centre of the mass in the base coordinates system) for the object located in the image
in P1 (P1_x , P1_y, P1_rot).

78 T. Borangiu et al.

After the calibration is executed, the object model must be trained; this stage
involves object edges processing in order to obtain the geometrical model of the
object. The grasping position must be also trained in order to validate a collision
free point for accessing the object. The grasping position (for grasping validation)
is defined by two or more rectangular areas placed around the object and linked to
the object frame. These areas represent the projections of the gripper fingerprints on
the image plane and by processing the image colour inside these areas the program
detects the presence of obstacles and can invalidate the grasping position.

These three pieces of information are used for robot motion planning; first the
location of the field of view is used by extracting it from the calibration data, then
the location of the object in the field of view is computed (online) using the object
model and in the last stage the action of grasping the object is validated by using the
grasping model and collision free tests. Experimental results validating the proposed
solution are shown from a robotized ceramic production line (Fig. 9).

The experimental application runs two communications threads: a TCP/IP server
and a serial communication thread. Both threads have the same role, they are lis-
tening and if they receive an acquisition request, they initialize the execution of the
AdeptSight sequence of tools (the vision program), returning three numbers specify-
ing the position and orientation of the plate (X, Y in mm, and the angle in degrees).
The position and orientation is specified relative to the calibration object.

Fig. 9 Real-time locating a ceramic plate for robot motion planning and grasping control

Open Architecture for Vision-Based Robot Motion Planning and Control 79

The requests are sent as ASCII characters, and they are of two types (i—
information for debugging or r—real requests); when the vision server receive a
request the vision sequence is executed, the object is recognized based on its bound-
ary contours, and the values (X, Y and rotation) relative to the initial grasping point
(from the calibration procedure) are computed and sent to the ABB robot.

When the robot receives the three values, it shifts the initial grasping position
(from the calibration) and grasps the plate. The following pseudo-code describes
how the communication is integrated with the vision server [24]:

Open the communication channel (Serial line)
Clear the serial line buffer
Request object coordinates from vision
Read the data streams (X,Y coordinates and rotation)
Transform the coordinates from string to real
Request object coordinates from vision
Read the data streams (X,Y coordinates and rotation)
Transform the coordinates from string to real
/*In order to avoid problems caused by communication errors
the coordinates are sent twice and only if they are the
same at the destination then the position can be computed*/
Verify if the coordinates are the same
IF YES

Compute the grasping position
//The position is computed relative to a predefined
//position p1
Close the communication

ELSE
Repeat the request

The presented image processing system, AdeptSight, is robust, offers generic
robot-vision functions, and canbe easily integratedwith controllers of other industrial
equipment (robots, measuring machines, ASRS, part feeders). AdeptSight allows a
rapid development of visually planned applications, based on visual tools which
can be combined and configured leading to sequences which can be executed from
external C# applications.

4.2 Multitasking Robot Motion Planning for Object Tracking
on Mobile Scenes

The problem of robot tracking objects of interest moving on conveyor belts and
randomly entering the robot’s dexterous space can be solved by integrating the fol-
lowing devices in a multitasking control structure, implemented on multiprocessor
robot controllers:

• the robot manipulator, tracking a conveyor belt;
• the conveyor belt, driven at constant, regulated speed;
• the vision module, inspecting parts on the conveyor belt.

80 T. Borangiu et al.

Conceptually, the problem is solved by defining a number of user tasks which
attach two types of “robots”: the n—d.o.f. manipulator grasping on-the-fly objects
moving on the conveyor belt, and one m ≤ 3—axis “robot” emulating the conveyor
belt under vision control;m is the number of non-null projections of the conveyor belt
displacement direction on the 3 axes of an orthonormal reference frame (e.g., defined
in the belt tracking robot environment). These user tasks run concurrently with the
internal system tasks of a multitasking belt tracking robot controller, which are
responsible for trajectory generation, axis servoing and resources management [20].

In this respect, theminimumnumber of tasks to be defined for the tracking problem
is equal to 3:

• Task 1: Dynamic re planning of the destination location (grasping the moving
object) for the robot manipulator.

• Task 2: Continuously moving (driving) the m-axis vision belt. (e.g., m = 1)
• Task 3: Reading once the belt’s location the very moment an object of interest
has been recognised, located and its grasping estimated as collision-free, and then
continuously until the object is effectively picked.

4.2.1 Tasks and Priorities for the Multitasking Robot Motion
Planning Problem

Consider that each control system cycle of the robot is divided into 16 time slices of
one millisecond, the time slices being numbered 0 through 15.A single occurrence
of all 16 time slices is referred to as a major cycle. For a robot system, each of these
cycles corresponds to one output from the trajectory generator to the digital servos. A
number of user tasks, e.g. from 0 to 6, can be used and configured to suit the needs of
specific applications. Tasks are normally assigned default time slices and priorities
according to the current system configuration [5, 8].

An execution cycle is terminatedwhen aSTOP instruction is executed, aRETURN
instruction is executed in the top-level program, or the last defined step of the program
is encountered. Tasks are scheduled to run with a specified priority in one or more
time slices. Tasks may have priorities from −1 to 64, and the priorities may be
different in each time slice. The priority meanings are: 1–31 (normal user tasks); 32–
62 (used by robot controller’s device drivers and system tasks); 63 (used by trajectory
generator); 64 (used by the servo).

4.2.2 Scheduling Program Execution Tasks with Simultaneous
Belt Tracking

An analysis of the time slice and priority allocation for the system, and of default user
tasks imposes several requirements for timing and priority assignment of tasks: vision
guided robot planning (“object recognition and locating”), anddynamical re planning
of robot destination (“robot tracking the belt”) should always be configured on user

Open Architecture for Vision-Based Robot Motion Planning and Control 81

tasks 0 and/or 1, in “Look-and-Move” interlaced robot motion control applications,
due to the continuous assignment of these two tasks, over the first 13 time slices,
with high priorities [25].

Because vision guidance andmotion re planning programs complete their compu-
tation in less than the 13 time slices (0–12), in order to give the chance to conveyor-
associated tasks (“drive” the vision belt, “read” the current position of the vision
belt) to provide the “robot tracking” programs with the necessary position update
information earlier than the slice 13, and to the high-priority trajectory generation
system task to effectively use this updates, a WAIT instruction should be inserted in
the loop-type vision guidance and motion re planning programs of tasks 0 and/or 1.

All time slices are checked, wrapping around from slice 15 to slice 0 until the
original slice is reached. If no runnable tasks are encountered, a null task executes.
Whenever a 1ms interval expires, the multitasking OS performs a similar search of
the next time slice. If the next time slice does not contain a runnable task, execution
of the current task continues. If more than one task in the same time slice has the
same priority, they become part of a round-robin scheduling group. Programs that
execute in continuous loops, like vision guidance and motion re planning for belt
tracking, should generally execute a WAIT instruction occasionally (for example,
once through each loop execution). This should not be done, however, if timing
considerations for the tracking application preclude such execution delays in some
stages of vision and motion processing [6, 26].

As previously stated, the problem of conveyor tracking with vision guiding for
moving part identification and locating requires the definition of three user tasks, to
which the following programs were associated:

1. Task 1: program“track” executes in this task,with robot 1 (e.g., SCARA) selected.
This program has two main functions, carried out in a 2–stage sequence:

STAGE 1: Continuous checking whether an object travelling on the conveyor
belt (it will be called in the sequel vision belt) entered the field of
view of the camera and the reachable workspace of the SCARA
robot. If such an event occurs, the vision is activated to identify
whether the object is of interest and to locate it. Processing on this
stage terminates with the computation of the end-effector’s location
which would move the SCARA robot in the object picking location
evaluated once by vision.

STAGE 2: Continuously re planning the end-effector’s location, computed
when the object of interest was located by vision, by consuming
the belt position data produced by encoder reads in the program
“read” which executes on task 3, and by dynamically altering the
robot’s target in the current motion segment.

2. Task 2: program “drive” executes in this task, with robot 2 ((m = 1)-axis robot,
i.e. the conveyor belt) selected. This program moves the belt in linear displace-
ment increments, at a sufficiently high rate to provide a jerk-free, continuous belt
motion. This program executes in stages 1 and 2 previously defined.

82 T. Borangiu et al.

3. Task 3: program “read” executes in this task, with robot 2 selected. This program
executes differently in the two stages of the application:

STAGE 1: Executes a single time upon receiving an input signal (“la_reco”,
e.g. for “LA” objects of interest) from vision in task 1, confirming
the recognition and successful locating of an “LA” part. In response,
“drive” reads the instantaneous belt position, which from now on
will be used as an offset for the position updates.

STAGE 2: Continuously reads the belt position, upon a request (“info” in the
example of the first case study) issued by “track” in task 1, when it
starts its dynamic target re planning process.

From the three user tasks, the default priority assignment is maintained. This leads
to the following priority analysis for a major cycle:

• Task 1 has the highest priority in time slices 0–12 (inclusively), with values of 19,
21, 9 and 11.

• Task 2 has the highest priority (20) in a single time slice: 13.
• Task 3 never detains a position of highest priority with respect to tasks 1 and 2.
• The three tasks become part of a round-robin group as follows:

– tasks 2 and 3 in slices 0–12 inclusively,
– tasks 1, 2 and 3 in slices 14 and 15.

Because tasks 2 and 3 are in more than one round-robin group on different slices,
then all three tasks in the corresponding pairs of different slices appear to be in a big
group. This property can cause, in general, a task to be run in a slice one does not
expect; however, this risk is eliminated for task 1 in STAGE 2 since it will never be
runnable in slices 14 and 15 (after generating a WAIT).

As for tasks 2 and 3, they cannot generate this risk in the remaining slices
from 0–12, after “track” generates the WAIT, because they will switch continuously
between them at the beginning of each new time slice.

As a result of the priority scan and scheduling, the programs in the three user tasks
execute as follows:

• STAGE 1—vision is processing, the SCARA robot is not moving and no WAIT is
issued by task 1 (Fig. 10):

• STAGE 2—vision is not processing, the SCARA robot is moving and WAIT
commands are issued in task 1 by the “track” program after each re planning of
the end-effector’s target destination within a V+ major cycle of 16ms:

– Task 1 runs in slices i − j, i ≤ j, i ≥ 0, j ≤ 12, (when it detains the highest
priority), i.e., starting with the time moment when it is authorised to run by the
highest-priority system tasks “trajectory generation” and “servo” (in slice i), and
executing until it accesses the position update provided by task 3 from the most
recent belt encoder read, alters the last computed end-effector destination and
issues a WAIT (in slice j), to give the trajectory generator a chance to execute.

Open Architecture for Vision-Based Robot Motion Planning and Control 83

10

10

10

20

20

20

P
ro

gr
am

 p
ri

or
it

y

RR RR

RR RR

RR RR

RR

13 14 15120 1 2

One major system cycle

= task waiting

= task running

= round-robin member selection

1 millisecond time slices

task 1 running "track", task priority >=9

task 2 running "drive", task priority =20

task 3 running "read", task priority =15

before request for
belt offset read
after request for
belt offset read

before request

after request

before request

after request

Fig. 10 Priority assignment and tasks running in STAGE 1 of vision guidance for motion planning
in the belt tracking problem

– Task 2 runs: in slices (j + 1)− 12 switching alternatively with task 3 whenever
it is selected as the member of the round-robin group following task 3 that run
most recently, in slice 13 (it detains the highest priority), and in slice 15 (it is
member of the round-robin group following task 3 that run more recently—in
slice 14). Task 2 runs always exactly for 1ms whenever selected, so that the
round-robin group scanning authorises task 3 to run always at the beginning of
the next time slice.

– Task 3 runs in slices (j + 1)− 12 switching alternatively with task 2 when-ever
it is selected as the member of the round-robin group following task 2 that run
most recently, and in slice 14 (it is member of the round-robin group following
task 2 that run more recently—in slice 13). The task 3 runs, whenever selected,
for less than 1ms and issues a RELEASE “to anyone” command.

4.2.3 Dynamically Altering Belt Locations as Robot Motion References

The three previously discussed user tasks,when runnable and selected by the system’s
task scheduler, attach respectively the robots:

• Task 1: robot 1—a SCARA-type robot (e.g. Adept Cobra 600) is considered in
this case

• Task 2, 3: robot 2—the “vision conveyor belt” of a flexible feeding system is
considered.

84 T. Borangiu et al.

Program “track” executing in task 1 has two distinct timing aspects: during
STAGE 1, “track” waits first the occurrence of the on-off transition of a signal from
the photocell, indicating that an object passed over the sensor and will enter the field
of view of the camera. Then, after waiting for a period of time set up function of the
belt’s speed, “track” commands the vision system to acquire an image, identify an
object of interest and locate it [27, 28].

During STAGE 2, “track” alters continuously, once per each major 16ms sys-
tem cycle, the target location of the end-effector, part.loc, that was computed (when
one “LA”-part was located by vision and returned in the vis.loc transformation) by
composing the following relative transformations (the “:” character stands for com-
position)

part.loc=to.cam[1]:vis.loc:grip.la

Here grip.la is the off line learned grasping transformation for the class of “LA”
objects. The updating of the end-effector target location for picking-on-the-fly “LA”
objects according to a predefined grasping style uses the V+ operation:

ALTER () Dx,Dy,Dz,Rx,Ry,Rz

which specifies the magnitude of the real-time path modification that is to be applied
to the robot path during the next trajectory computation (Dx,Dy,Dz/Rx,Ry,Rz
are the translations/ rotations respectively along the X, Y, Z axes).

This operation is executed by “track” in task 1 that is controlling the robot 1
(SCARA) in alter mode, enabled by the ALTON command. When alter mode is
enabled, this instruction should be executed once during each trajectory cycle. The
stopping decision is taken in “track” by using the STATE (select) function,
which returns information about the state of robot 1 (“Motion stopped at planned
location”) selected by task 1 executing the ALTER loop. The ALTOFF operation
was used to terminate real-time path-modification mode (alter mode) [3, 10, 14].

Program “drive” executing in task 2 has a unique timing aspect in both STAGES 1
and 2: when activated by the main program, it issues continuously motion commands
for the individual joint number 1 of robot 2—the vision belt.

Program “read” executing in task 3 evaluates the current motion of robot 2—the
vision belt along its single axis, in two different timing modes. During STAGE 1,
upon receiving from task 1 the request la_reco (an instance of “LA” was recog-
nised) to compute the belt’s offset, reads the current robot 2 location and extracts the
component along Y .

This invariant offset component, read when the “LA” was successfully located by
vision and the grasping authorised as collision-free, will be further used in STAGE
2 to estimate the updates of the y_off motion, to alter the SCARA robot’s target
location along the Y axis.

The program below shows how the STATE function is used to stop the con-
tinuous updating of the end-effector’s target location by altering at every major
cycle the position along the Y axis. The altering loop will be exit when motion
stopped at planned location, i.e. when the robot’s gripper, moving to track the part

Open Architecture for Vision-Based Robot Motion Planning and Control 85

travelling on the conveyor belt, arrives in the imposed picking position relative to
the moving part.

ALTON () 2 ;Enable altering mode

;The robot is commanded to move towards the grasping position

;computed when the object was VLOCATEd by vision.

MOVES part.loc

WHILE STATE(2)<>2 DO

;While the robot is far from the moving target (motion not

;completed at planned location...

ALTER(),-pulse.to.mm*y_off

;Continuously alter the target grasping location

WAIT

;Wait for the next major time cycle to give the trajectory

;generator a chance to execute

END

ALTOFF ;Disable altering mode

CLOSEI ;Robot picks the tracked object

DEPARTS ;Robot exits the belt tracking mode

MOVES place

;Robot moves towards the fixed object-placing location place

In the example presented, the ALTOFF operation has been used to terminate
real-time path-modification mode (alter mode). The instruction suspends program
execution until any previous robot motion has been completed (similarly to a BREAK
instruction), and then terminates real-time path-modification mode.

After alter mode terminates, the robot is left at a final location that reflects both
the destination of the last robot motion and the total ALTER correction that has been
applied [13, 17, 29].

The cooperation between the tasks on which run “track”, “drive” and “read” is
shown in Fig. 11.

86 T. Borangiu et al.

Task
Scheduler

run
alter
mode

check
sensor

run
read

encoder

run inactive

check
enable

Select
new task

Round-robin
switched selection

Disable by
ALTOFFinfo

Enable belt drive
Disable by

end_application

Task 2WAIT

trajectory
generator

Major sys-
tem cycle/
16 msec

Task 1

Task 3

inactive

inactive
la_reco

y_off

offset,
pos

STATE(2)=2

Setup
belt

1 millisecond
timing

Image
acquisition

VLOCATE success,
collision-free

Vision
Processing

Fig. 11 Cooperation between tasks in the robot-vision belt tracking problem

5 Experimental Results and Conclusions

Visual robot motion planning allows relaxation of the numerous constraints which
arise when setting up a manufacturing environment, as well as the need for high-
precisionmaterial transportation and presentation devices, such as conveyors, vibrat-
ing bowls, a.o. The look-and-move motion planning methodology offers a robust
solution to createworkstationswith components fromdifferentmanufacturers: image
sensors and cameras, vision software, robot manipulators, shop floor conveyors and
other mechanical devices.

The open architecture system for vision-based robot motion planning application
wasdeveloped inC#andmanaged the robot-vision communication and sequence exe-
cution. Also the camera-robot calibration procedure and the learning of the grasping
model learning were developed in the same open system concept based on standard
communication means [30, 31].

Figure12 shows a screen capture of the open architecture robot-vision user appli-
cation interface. The application consists in precision locating with AdeptSight of

Open Architecture for Vision-Based Robot Motion Planning and Control 87

Fig. 12 Screen of the application interface for high-precision plate locating and vision-based robot
motion planning for stationary plate grasping

ceramic plates travelling on a conveyor belt and guiding the motion of an ABB
robot with help of the location data sent via standard communication channels and
interfaces.

The motion control method presented above for robots picking on-the-fly objects
on moving scenes was implemented in the V+ robot programming environment
with AdeptSight vision extension, and tested on a robot vision platform containing
one Adept Cobra 600 SCARA-type manipulator, a 3-belt flexible feeding conveyor
Adept Flex Feeder 250 and a stationary, down looking matrix camera Panasonic GP
MF 650 inspecting the vision belt with backlighting [10]. The vision belt on which
parts are travelling and are viewed by a fixed, down looking camera was positioned
parallel to the Y0 axis of the manipulator, for a convenient robot access within a
window of 460mm. Experiments have been carried out at several speed values of
the conveyor belt, in the range from 5 to 180mm/s.

Table1 shows the correspondence between the belt speeds and the maximum time
intervals from the visual detection of a part up to its effective grasping.

It can be observed that at the maximal speed of 180mm/s, the robot-vision mul-
titasking controller is still able to direct the SCARA-type manipulator to access
visually detected, recognised and located objects.

88 T. Borangiu et al.

Table 1 Correspondence
between belt speed and part
access time

Belt speed (mm/sec) 5 10 30 50 100 180

Grasping time (max) (sec) 1.4 1.6 1.9 2.0 2.3 2.5

In the experiment reported in Chap. 4.1, the vision library was successfully inter-
faced to an ABB 1570 vertical articulated robot.

The novelty of the research consist in developing an open architecture system
for vision-based robot motion planning, allowing to use closed vision systems (here
AdeptSight), that can be integratedwith proprietary systems (for exampleAdeptSight
has native functions which can be integrated only with Adept robots), with any other
devices (robots, machines, feeders, a.o.) using standard communication mechanisms
(serial line or Ethernet). Another novel contribution is the multitasking solution for
picking objects in motion from any type of conveyor modelled as a m ≤ 3 degree of
freedom Cartesian robot.

References

1. Siciliano B, Sciavicco L, Villani L, Oriolo G (2010) Robotics, modelling, planning and control.
Springer, Berlin

2. Borangiu Th, Ecaterina O, Manu M (2000) Multi-processor design of nonlinear robust motion
control for rigid robots. Lecture notes in computer science, vol 1798. Springer, Berlin, pp
224–238

3. Borangiu Th (2002) Advanced robot motion control. Romanian Academy Press, Bucharest
4. Braun BM, Starr GP, Wood JE, Lumia R (2004) A framework for implementing cooperative

motion on industrial controllers. IEEE Trans Robot Autom 20:583–589
5. Gueaieb W, Karray F, Al-Sharhan S (2003) A robust adaptive fuzzy position/force control

scheme for cooperative manipulators. IEEE Trans Control Syst Technol 11:516–528
6. Battilotti S, Lanari L (1996) Tracking with disturbance attenuation for rigid robots. In: Pro-

ceedings of IEEE international conference on robot automation, Minneapolis, April 1996, pp
1570–1583

7. Borangiu Th, Anton F, Dumitrache A (2010) Robot programming. AGIR Publishing House,
Bucharest

8. Kawasaki H, Ueki S, Ito S (2006) Decentralized adaptive coordinated control of multiple robot
arms without using a force sensor. Automatica 42:481–488

9. Borangiu Th, Ionescu F, Manu M (2003) Visual servoing in robot motion control. In: Pro-
ceedings of 7th multi-conference on systemics, cybernetics and informatics SCI’03. Orlando,
27–30 July 2003, pp 987–992

10. Hutchinson S, Hager G, Corke P (1996) A tutorial on visual servo control. IEEE Trans Robot
Autom 12:6561–6670

11. Xie WF, Li Z, Tu XW, Perron C (2009) Switching control of image based visual servoing with
laser pointer in robotic assembly systems. IEEE Trans Ind Electron 520–529

12. Mendes JM, Restivo F, Leitao P, Colombo A (2010) Injecting service-orientation into multi-
agent systems in industrial automation. Lecture notes in computer science, vol 6114, pp 313–
320

13. Allotta B, Fioravanti D (2005) 3D motion planning for image-based visual servoing tasks. In:
Proceedings of the IEEE international conference on robotics and automation, Barcelona, pp
2173–2178

http://dx.doi.org/10.1007/978-3-319-14705-5_4

Open Architecture for Vision-Based Robot Motion Planning and Control 89

14. NelsonBJ, Papanikoloupoulos P, Khosla PK (1996) Robotic visual servoing and robotic assem-
bly tasks. IEEE Robot Autom Mag 23:97–102

15. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. J Comput Vis
60(2):91–110

16. HossuA,Borangiu Th, CroicuA (1995)RobotVisionpromachine vision software for industrial
training and applications. Version 2.2, Cat. #100062, Amsterdam, Tel Aviv, New Jersey, Eshed
Robotec

17. WilsonW, Hulls C, Bell G (2006) Relative end-effector control using Cartesian position-based
visual servoing. IEEE Trans Robot Autom 12:684–696

18. Miyabe T, Konno A, UchiyamaM, YamanoM (2004) An approach toward an automated object
retrieval operation with a two-arm flexible manipulator. Int J Robot Res 23:275–291

19. ABB, Technical Reference Manual, RAPID Instructions, Functions, and Data types, 2004
20. Adept Reference Guide, V+ Programming, Adept Technology Inc. 2011
21. Bilen H, Hocaoglu M, Unel U, Sabanovic A (2012) Developing robust vision modules for

microsystems applications. Mach Vis Appl 23(1):25–42
22. Borangiu Th, Ivanescu N, Brotac S (2002) An analytical method for visual robot -object

calibration. In: Proceedings of the 7th international workshop robotics in Alpe-Adria-Danube
region RAAD’98. Balatonfüred, pp 149–154

23. Chaumette F, Hutchinson S (2006) Visual servo control. Part I: basic approaches. IEEE Robot
Autom Mag 13(4):82–90

24. Martinez-Rosas JC, Arteaga MA, Castillo-Sanchez A (2006) Decentralized control of cooper-
ative robots without velocity-force measurements. Automatica 42:329–336

25. Gudiño-Lau J, Arteaga MA (2006) Dynamic model, control and simulation of cooperative
robots: a case study, mobile robots, moving intelligence. ARS/pIV

26. Chaumette F, Hutchinson S (2005) A general and useful set of features for visual servoing.
IEEE Trans Robot Autom 21:1116–1127

27. LippielloV, SicilianoB,Villani L (2007) Position-based visual servoing in industrialmultirobot
cells using a hybrid camera configuration. IEEE Trans Robot 23:73–86

28. Borangiu Th (2004) Intelligent image processing in robotics and manufacturing. Romanian
Academy Press, Bucharest

29. Corke P, Hutchinson S (2001) A new partitioned approach to image-based visual servo control.
IEEE Trans Robot Autom 17:507–515

30. Lazar C, Burlacu A (2009) Visual servoing of robot manipulators usingmodel-based predictive
control. In: Proceedings of the 7th IEEE international conference on industrial informatics,
Cardiff, pp 690–695

31. Lazar C, Burlacu A, Copot C (2011) Predictive control architecture for visual servoing of robot
manipulators. In: Proceedings of the 18th IFAC world congress, Milano, pp 9464–9469

Grasping and Manipulation of Unknown
Objects Based on Visual and Tactile
Feedback

Robert Haschke

Abstract The sense of touch allows humans and higher animals to perform
coordinated and efficient interactions within their environment. Recently, tactile sen-
sor arrays providing high force, spatial, and temporal resolution became available
for robotics, which allows us to consider new control strategies to exploit this impor-
tant and valuable sensory channel for grasping and manipulation tasks. Successful
dexterous manipulation strongly depends on tight feedback loops integrating propri-
oceptive, visual, and tactile feedback. We introduce a framework for tactile servoing
that can realize specific tactile interaction patterns, for example to establish andmain-
tain contact (grasping) or to explore and manipulate objects. We demonstrate and
evaluate the capabilities of the proposed control framework in a series of preliminary
experiments employing a 16 × 16 tactile sensor array attached to a Kuka LWR arm
as a large fingertip.

Keywords Grasping · Tactile servoing · Online motion planning

1 Introduction

The sense of touch allows humans to perform coordinated and efficient interactions
within their environment.Without the sense of touch, subjects have severe difficulties
maintaining a stable grasp or performing a complex action such as lightning matches
[1, 2]. Also in robot applications, lacking tactile feedback results in loosing an ini-
tially grasped object or failing to robustly carry out manipulation tasks [3]. In recent
years, the resolution and sensitivity of tactile sensors only sufficed for basic force
feedback during blind grasping [4]. However, tactile sensor arrays providing high
spatial and temporal resolution as well as high sensitivity [5, 6] emerged recently,
allowing for more advanced control methods involving tactile feedback too.

R. Haschke (B)

Cognitive Interaction Technology Excellence Cluster (CITEC),
Bielefeld University, Inspiration 1, 33619 Bielefeld, Germany
e-mail: rhaschke@techfak.uni-bielefeld.de

© Springer International Publishing Switzerland 2015
G. Carbone and F. Gomez-Bravo (eds.), Motion and Operation Planning
of Robotic Systems, Mechanisms and Machine Science 29,
DOI 10.1007/978-3-319-14705-5_4

91

92 R. Haschke

Such control approaches—which we denote as tactile servoing in accordance
to corresponding control approaches involving direct visual feedback—require
advanced tactile perception methods and their integration into control programs for
direct robot control. Tactile servoing includes important tasks like sliding a finger tip
along an object’s surface, tracking specific surface structures like ridges, searching
for distinctive tactile patterns, or exploring the object shape by groping. Most of
these tasks are essential for both in-hand object manipulation [7], and haptic object
identification [8].

Drawing on ideas for visual servoing and applying image processing algorithms
to the tactile force image provided by modern tactile sensor arrays, it is possible to
extract basic tactile features in real time and employ them for robot control. The
challenging mission is to find generic features, which not only work in specific hard-
coded control scenarios on a specific type of tactile sensor, but that generalize to a
rich set of control tasks and sensor types.

We argue for a unified and open control framework that can cover many grasping
and manipulation tasks including tactile exploration. The proposed control approach
facilitates the exploitation of task symmetries to unleash redundancies which can be
efficiently utilized by subordinated tasks. Different, challenging tasks can be eas-
ily composed from a set of basic control primitives without the need for a detailed
situation modeling (object and hand shape, friction properties, etc.), thus providing
the foundation to yield robust manipulation skills also in unknown and unstructured
environments.

The remaining chapter is organized as follows: In the next section we introduce
the general concept of the control basis framework and discuss how efficient local
motion generation methods can reduce the need for explicit planning in grasping of
unknown objects. The subsequent Sect. 3 will introduce some recent tactile sensor
developments and vision-based feature extraction methods to yield tactile features,
which are at the basis of four tactile servoing control primitives. Finally, in Sect. 4 we
describe and evaluate some tactile exploration tasks that impressively demonstrate
the power of the proposed control framework.

2 Planning-Less Grasping in the Control Basis Framework

Grupen et al. first developed the idea of the control basis framework (CBF), which
allows to realize complex tasks by composition of several basic controllers [9, 10].
Each of those controllers realizes resolved motion rate control, mapping updates
of task control variables Δx to joint angle updates Δq of the robot. An important
key idea was to stack controllers by priority allowing a subordinate controller to
operate in the null-space of a higher-priority controller only, which can be easily
achieved using appropriate null-space projections. Given any nonlinear relationship
x(q) between joint and task-space variables, the relation of their velocities at any
point t in time is linear and given as

ẋ(t) = J (q(t)) · q̇(t), (1)

Grasping and Manipulation of Unknown Objects … 93

where Jij(q) = ∂xi/∂q j is the task Jacobian at time t . Then, the solution to realize
three priority-ordered task space motions ẋ1, ẋ2, ẋ3 looks like this:

q̇ = q̇1 + N1 (q̇2 + N2q̇3) (2)

= J+
1 (q)ẋ1 + N1

(
J+
2 (q)ẋ2 + N2 J+

3 (q)ẋ3
)
, (3)

where J+
i denotes theMoore-Penrose pseudoinverse of Ji and Ni = 1−J+ J denotes

the corresponding null-space projector of task i = 1, 2, 3.
Towork in practice, it’s important, that every controller’s null-space is rich enough

to accommodate lower-priority motions, i.e. that there is enough redundancy. How-
ever, classicalmotion planning approaches attempt to control the end-effectormotion
in all six degrees of freedom (dof) and thus do not leave the necessary redundancy.
But, exploiting the inherent symmetry of many everyday tasks, we can restrict our-
selves to a few task-relevant dofs and thus gain the required redundancy.

As a prominent example, consider the grasping of a spherical object. Nowadays
grasp planning approaches attempt to generate and evaluate grasps that approach the
sphere from all possible directions [11]. However, in this particular task, it’s only
important to drive the hand towards the sphere—no matter from which direction.
This reduced task description only consumes a single dof, namely the hand-object-
distance, and frees up all other dofs. The resulting task-space motion ẋ is a straight-
line towards the goal,much like in classicalCartesian control.However, the redundant
space at a given goal distance is the complete sphere around the target and any null
spacemotion is automatically projected onto this sphere. In thismanner,we can easily
approach spherical objects for grasping from any direction, without the need to pre-
compute a multitude of feasible grasps in advance. The corresponding task Jacobian
J‖·‖ can be easily computed from the Jacobian J of the standard forward transform:

J‖·‖ = (x − xgoal)t · J (4)

Similarly, grasping a cylindrical object, like a bottle, only requires to align the hand
axis with the object axis—the orientation angle around this axis can freely be chosen
[12]. To allow even more flexibility, one may specify a task-space interval instead
of a unique target value [13]. Within the original control basis framework, Platt et
al. also propose more abstract controllers, e.g. to maintain force closure, to optimize
grasp quality, manipulability, or visibility [14].

2.1 Collision Avoidance

In the context of motion planning, an important subordinate control task is collision
and joint-limit avoidance. Joint limits can be easily avoided minimizing a quadratic
or higher-order polynomial function [12, 15]:

Hq =
∑

wi (qi − qref
i)p wi = (qmax

i − qmin
i)−1, (5)

94 R. Haschke

where qref defines a reference pose, e.g. in the middle of the joint range, and the wi ’s
weight the contribution of individual joints according to their overall motion range.

Local collision avoidance is achieved by a repelling force field originating from
each object. To this end, Sugiura [16] proposed to minimize a quadratic cost function
defined on the distance dp = ‖p1 − p2‖ between the two closest points p1 and p2 on
the robot and the obstacle:

Hca(p1, p2) =
{

η (dp − dB)2 dp < dB

0 otherwise
(6)

Here, dB acts as a distance threshold below which the force field becomes active and
η is a gain parameter. The gradient of this cost function directly serves as a joint-level
control target and can be easily computed in terms of the body point Jacobians Jpi

by applying the chain rule:

q̇ca = −∇ t
q Hca = −2η (1 − dB/dp)(Jp1 − Jp2)

t (p1 − p2). (7)

Thus we yield straight-line task-space motions (e.g. of the end-effector in Cartesian
space), while the redundancy is exploited to circumvent obstacles as schematically
shown in Fig. 1, left. To allow more flexible obstacle avoidance, Behnisch [17] pro-
posed a relaxed motion control scheme, which allows deviations from straight-line
motions, if the robot gets too close to obstacles:

q̇ = J+(ẋ − β ẋca) − N (∇Hca + ∇Hq). (8)

Here, additionally to the null-space motion, which minimizes a superposition of both
cost functions Hq and Hca , an obstacle avoidance motion ẋca is directly allowed in
task-space as well. This contribution is determined by projecting the cost gradient
(7) to the task space:

ẋca = J ∇ t
q Hca . (9)

−1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

2

2.5

3

−1 0 1 2 3

−0.5

0

0.5

1

1.5

2

2.5

β = 0

β = 0.5

β = 1

−1 0 1 2 3

−0.5

0

0.5

1

1.5

2

2.5

β = 1

β = 0.5

β = 0

Fig. 1 Goal-directed task-spacemotionwith collision avoidance.Left restricting avoidancemotions
to redundant space yields a straight line motion of the end-effector. Middle using relaxed motion
control (8), the trajectory more strongly avoids the obstacle for larger weights β, but does not
converge to the target anymore. Right dynamic adaption of β achieves both goals, target reaching
and obstacle avoidance

Grasping and Manipulation of Unknown Objects … 95

Choosing different values of the weight β, we can smoothly adjust the importance
of collision avoidance and target reaching as shown in Fig. 1, middle. However,
because both contributions might be conflicting, the target is not always reached.
To prevent this, we can ensure, that the goal-directed motion always dominates the
collision avoidance motion with a margin ε by dynamically adapting β, such that the
following condition is fulfilled:

‖ẋ‖ − ε ≥ β‖ẋca‖. (10)

The resulting motion is shown in Fig. 1, right. Please note, that this approach—as
a local method—is prone to get stuck in local minima, if a straight target-reaching
motion is not collision-free. To avoid this failure, a deliberative planning method
at a global level is required. To this end, Behnisch [17] proposed to augment the
local motion generation with a globally acting, sampling-based planning method,
that, however, searches within the low-dimensional task-space instead of the full
joint space. This sharing of workload between a local, reactive planner and a global,
deliberative planner turned out to be very successful and computationally efficient.

2.2 Vision-Based Grasp Selection

Employing the outlined control basis framework to realize approaching motions for
grasping and exploiting the passive compliance ofmodern, often underactuated hands
[18, 19], grasp planning is extremely simplified: The fingers will automatically wrap
around the object due to the inherent compliance of the hand. Thus, the only task for
grasp planning is to choose a suitable grasp prototype and to align the hand to the
object during the approach phase.

As already observed by Cutkosky, humans employ only a very small number
of grasp postures that can be roughly separated into power and precision grasps.
Cutkosky’s taxonomy then further subdivides grasps by the shape of the object [20].
From our experience it suffices to use the three basic grasp prototypes shown in
Fig. 2 (power, precision, and pincer grasp). To chose an appropriate grasp for a given

power grasp
precision

grasp pincer grasp

Fig. 2 Three basic grasp prototypes used for the Shadow Dexterous Hand. Depending on object
size, estimated weight, and envisionedmanipulation task we choose from a power grasp, a precision
grasp, and a pincer grasp (left to right)

96 R. Haschke

object, we employ a real-time, model-free scene segmentation method [21], which
yields individual point clouds for all objects within the scene. Into each point cloud,
a superquadrics model is fitted that captures the coarse shape of the object, smoothly
varying between sphere, ellipsoid, cylinder, and box [22]. This model provides an
estimation of the position and orientation as well as the coarse size and shape of
the object. This information is utilized on the one hand to chose the grasp prototype
and on the other hand to setup an appropriate approaching controller, utilizing the
symmetries inherent to all recognized object shapes. A video illustrating the seg-
mentation capabilities and the achieved grasping skills is available at youtube [22].

3 Tactile Servoing

In order to extend traditional grasp and manipulation planning approaches beyond a
mere trajectory-centric view towards robust closed-loop controllers also integrating
multi-modal feedback from proprioception, vision, and tactile sensing, in the follow-
ing we discuss how the control basis framework (CBF) can be augmented by tactile
servoing controllers. The main idea of these controllers is to define an inverted task
Jacobian J−1

s that directly maps errors in the tactile feature vector onto a suitable
Cartesian velocity twist Vs of the sensor frame. Subsequently we employ the power
of CBF [23] to realize the computed sensor frame motion with appropriate joint
motions. However, before looking into the details of these control primitives, we
first review some recent developments in tactile sensing and discuss, which tactile
features can be extracted from latest tactile sensing arrays.

3.1 High Resolution Tactile Sensing

In the past decades tactile sensors were developed exploiting a variety of physical
principles—ranging from piezo-resistive or capacitive to optical or ultrasonic effects
(cf. Dahiya et al. [24] for a compact review). The BioTac® sensor can be considered a
breakthrough in tactile sensing, integrating high-frequency temperature and pressure
sensing with a grid of electrodes to resolve the point of contact as well as normal
and shear forces [25]. Analyzing high-frequency vibrations induced by slip-stick
transitions, the sensor is able to detect incipient slippage and to distinguish various
materials showing characteristic vibration patterns [26, 27].

Independently, Schürmann et al. developed a modular sensor design tailored
towards high-frequency sensing for slip detection too, but also providing a high
spatial resolution for normal force sensing (on an array of 16 × 16 tactels spaced
at 5mm) at the high frame rate of 1.9kHz. Employing a multilayer perceptron net-
work, trained to predict slip velocities from Fourier coefficients of the tactile time
series, they were able to adjust the required grasping force to stably hold an object

Grasping and Manipulation of Unknown Objects … 97

without knowledge about its weight or friction properties: Every time, when incipient
slippage is detected, the grasping force is increased by a fixed amount. Otherwise, it
is exponentially decaying to minimize the applied contact forces [28].

While these two sensors provide excellent sensitivity to high-frequency, small
amplitude vibrations, they are both rather bulky and not suited to be integrated into
human-sized robotic fingertips. Although there exists an adaptation of the BioTac®

sensor to the anthropomorphic Shadow Dexterous Hand™ [29], this integration
design removes the distal finger joint, which is important in various manipulation
tasks. Utilizing a new technology to realize 3D-shaped PCBs, Zenker et al. [30]
miniaturized the tactile sensor array, integrating 12 tactels and the measurement
electronics within a fingertip-shaped sensor-electrode that exactly matches the size
of the robotic fingertip (cf. Fig. 3).

All these sensors are rather rigid and thus not suitable to be worn by a human.
In order to measure interaction forces between the human hand and a manipulated
object too, a more flexible sensor hardware is required. A first approach into this
direction is the tactile glove developed by Büscher et al. [31] which is composed
from conductive and piezo-resistive fabrics layers. In contrast to previous attempts
to measure interaction forces, utilizing instrumented objects [32, 33], the sensorized
glove allows to measure tactile interaction patterns with arbitrary objects. Its low
construction height as well as the flexibility and stretchability of the fabrics, make
this sensor concept well suited to cover larger parts of robots too, e.g. to yield a
tactile-sensitive skin.

Given their high data frame rates, all sensor designs open up the opportunity to
be employed for closed-loop robot control, thus for the first time offering large-scale
reactivity to touch comparable to human sensitivity. Looking into the literature, only
a very few approaches exist that directly utilize tactile sensor information for control,
e.g. a very early [34] or amore recent one [35] on tactile contour tracking. However, a
generic tactile servoing framework allowing to achieve a multitude of tasks from the
composition of simple, basic controllers ismissing so far. In the following sectionswe
will get a glimpse on the enormous potential that can be unleashed when combining
concepts from the control basis framework with tactile sensor information, thus
lifting grasping and manipulation skills for robots to the next level of robustness and
dexterity.

Fig. 3 Recent tactile sensors from Bielefeld University. From left to right a modular, flat 16 × 16
tactile sensor array, a 3D shaped tactile fingertip suitable for the Shadow Robot Hand, and a flexible
tactile glove manufactured from conductive fabrics

98 R. Haschke

Fig. 4 Sensor characteristics
of all 256 tactels (and an
individual one—red solid
line) as acquired on a
calibration bench

3.2 Feature Extraction from Tactile Images

Many tactile sensor designs propose an array of tactile sensing elements (tactels)
providing normal force information [6, 36, 37] for each element. Sometimes it is
also possible to compute contact force directions from this information [37]. Most
array structures also have a reasonable spatial resolution to allow for an explicit
control of the tactile force pattern sensed in a contact region. As a consequence, in
our control framework, we assume the availability of a tactile sensor array providing
a tactile image of normal force values measured by individual tactels.

Particularly, the device employed in our experiments is the 16 × 16 sensor array
depicted in Fig. 3, left. This sensor exploits the piezo-resistive sensing principle,mea-
suring changes in resistance of a conductive foam due to an applied force. The analog
measurement of each individual tactel is converted to a 12bit digital value covering
a pressure range of 0.1–10kPa.1 Due to varying local conductive properties of the
foam, every tactel has a distinguished, squashed and noisy sensor characteristics as
shown in Fig. 4. To obtain a coarse force calibration, the characteristic measurement
function of each individual tactel is inverted in its linear range.

The intended tactile servoing tasks aim for controlling (a) the contact position on
the fingertip, (b) the contact force, and (c) the orientation of an object edge relative
to the sensor array. Hence, we propose feature extraction methods to provide the
current values of these control variables.

As a first processing step, the contact region on the sensor is identified, which
typically extends over several tactels due to the softness of the sensor foam. To
this end, we employ connected component analysis [38], well known from image
processing, to extract all connected regions in the binarized tactile image and choose
the largest one as the considered contact region R—neglecting all smaller regions
as originating from noise or spurious contacts. The binarization threshold is chosen
rather small, just above the noise level, to consider as much tactile information as

1The sensor’s sensitivity and force range can be adjusted to the task. Here, we have chosen the
characteristics to provide a linear range from 0.1–1kPa.

Grasping and Manipulation of Unknown Objects … 99

Fig. 5 Estimated (red) and
expected (green) contact
position (COP) of a
2mm-diameter probe tip

possible. Subsequently, the overall contact (normal) force f is determined as the sum
of forces fij within the contact region and the contact position c as the force-weighted
center of pressure (COP) of R:

f =
∑
ij∈R

fij c = f −1
∑
ij∈R

fij cij, (11)

where cij are the discrete coordinates of the tactels on the sensor surface. Due to the
averaging effect from multiple tactels composing a contact region, we obtain a sub-
tactel resolution for the contact position as illustrated in Fig. 5. In this experiment a
probe tip, 2mm in diameter, was moved across the sensor from one tactel to another,
i.e. about a distance of 5mm. At every point, the estimated and real probe position
(obtained from the robot’s end-effector pose) are compared.

Usually, we want to control the contact pressure instead of the overall contact
force. Considering manipulation of fragile objects, like an egg, it is the local pressure
that should be limited to not damage the object. To obtain a pressure value, we
normalize the overall measured force by the size of the contact region (measured as
the number of pixels in R):

p = f

|R| (12)

To extract the orientation of an object edge that maps onto a line-shaped contact
region, we utilize the Hough transform, also well known from image processing [39].

3.3 Tactile Control Primitives

The proposed tactile servoing controller aims at realizing sliding and rolling motions
about the contact point while maintaining a specified normal contact force during
manipulation. Dependent on the actual task at hand, specific control primitives can
be selectively turned on or off. Additionally to this purely tactile-driven motion,

100 R. Haschke

an external task planner can provide a motion component Vext
s , which is a twist

expressed in terms of the sensor frame Os . This motion component allows to realize
externally controlled tactile object exploration, e.g. to follow an object edge or to
run the sensor over the whole object surface as detailed in the experimental Sect. 4.

The general control scheme of our proposed controller is depicted in Fig. 6. The
control cycle starts by computing the deviation of the current tactile feature vector
f from the targeted one. This error is fed into PID-type controllers, acting inde-
pendently on all feature-error components. The resulting control variable u is a
linearly transformed version of Δf . Please notice, that for effective force control a
non-zero integral component is required to compensate for static errors caused by
a pure P-controller. Additionally, the derivative component is necessary to suppress
undesired oscillations.

Subsequently,we compute a sensormotionVtact
s aiming to reduce the feature error.

This is realized with a fixed, task-independent, inverted Jacobian matrix J−1
s . Both

entities are expressed in terms of the sensor coordinate frame Os , which is located
in the center of the sensor surface and aligned with the sensor such that the z-axis
equals the surface normal. This choice tremendously facilitates the determination of
J−1

s , which maps feature errors onto sensor motions.
The subsequent application of a task-dependent projector matrix P selecting cer-

tain twist-components for control and neglecting others, allows to selectively switch
on or off specific motion components. To this end, P is a simple 6 × 6 diagonal
matrix, where ones and zeros indicate, that the corresponding twist component is
or is not used for control. Summarizing, the feedback-part of the tactile servoing
controller is determined by the following equation:

Vtact
s = P · J−1

s ·
(

K P ·Δf(t)+ K I ·
∫

Δf(t)dt + K D · (Δf(t)−Δf(t −1))
)
. (13)

Here Vs = [vs,ωs] denotes the 6-dimensional twist vector composed of linear
and angular velocity components vs , ωs . K P,I,D denote diagonal matrices of PID-
controller gains andΔf(t) = [Δxs,Δys,Δ f,Δα]denotes the deviationof the feature
vector composed of the positional errorΔxs,Δys , the normal force errorΔ f , and the

task planner PID
 controller

projector
matrix

robot

feature
extraction

+

CBF
IK

tactile imagetactile feature

++ -

ftgt Δ f u
J−1
s

Vtact
s

Vext
s

Vs AdTgs
Vg q̇

f

Fig. 6 Control scheme for tactile servoing: the core feedback part computes a sensor motion Vtact
s

from tactile-feature deviations Δf , which is superimposed with an external motion signal Vext
s and

subsequently fed into CBF’s inverse kinematics

Grasping and Manipulation of Unknown Objects … 101

angular errorΔα of the line orientation. Note, that the latter one is measured modulo
π in order to obtain angular errors in the range (−π

2 , π
2] and thus circumventing

singularities due to their circular nature. The rotational symmetry allows to restrict
the errors to this range instead of (−π, π].

Finally, the twists originating from the tactile feedback-loop and the external task
planner are superimposed and fed to the inverse kinematics module of the control
basis framework. To this end, the twist Vs expressed in terms of the sensor frame
Os needs to be transformed to the global frame Og , which is realized by the adjoint
matrix derived from the forward kinematics Tgs = (Rgs, pgs):

AdTgs =
(

Rgs p̂gs Rgs

0 Rgs

)
(14)

At the core of the tactile-feedback controller is the inverse Jacobian that maps
feature deviations onto a motion twist of the tactile sensor array:

Vtact
s = J−1

s · Δf =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎝

Δxs

Δys

Δ f
Δα

⎞
⎟⎟⎠ (15)

This matrix can be easily determined in the sensor coordinate frame Os : Positional
deviations are simply mapped onto corrective tangential motions in the x-y-plane of
the sensor. Normal force errors are mapped onto a corrective translational motion
along the z-axis of the sensor frame, which is normal to the sensor plane, pointing
towards the object. These linear motion components are determined by the first three
rows of J−1

s . The rotational errorΔα is mapped onto a rotational velocity around the
z-axis (last row). The motion components corresponding to the fourth and fifth row
of the inverted Jacobian realize a rolling motion of the sensor. These are triggered by
positional deviations again. Thus, an errorΔxs is not only reduced by an appropriate
tangential linear motion of the sensor, but also by a rolling motion around the y-axis
of the sensor, that also moves the COP of the contact region closer towards its target
location.

The task-dependent projector matrices P can be used to toggle these individual
twist components on and off. For example, if contact position control is desired, one
will choose P = diag(1, 1, 0, 0, 0, 0). When additionally force control is required,
the third diagonal entry should be set to 1 too. In order to enable or disable the
orientation tracking of an object edge, you will set the last diagonal entry to 1 or
0 respectively. Finally, the fourth and fifth entries in the diagonal projector matrix
determine, whether rolling is enabled or not. In the following section, we will discuss
several application scenarios of the proposed tactile-servoing framework.

102 R. Haschke

4 Experimental Evaluation

As shown in Fig. 7, we mounted the tactile sensor pad as a large fingertip to a 7-dof
Kuka lightweight robot arm operated in joint-space compliance mode. The control
basis framework maps Cartesian-space twists into joint-angle velocities, thus chang-
ing the equilibrium posture of the robot controller. The tactile sensor pad provides
an array of 16 × 16 tactels measuring contact forces with 12bits resolution [6]. The
sampling frequency of the tactile sensor as well as the control cycle frequency of the
robot arm are set to 250Hz. We use manually tuned PID parameters for the tactile
servoing controller.

All the experiments discussed in the following are also shown in a youtube video
[40] and follow the same course: Initially the robot is moved to its working area,
holding this posture until object contact is established.As soon as a pressure threshold
is exceeded, the robot switches to a specific, previously determined tactile servoing
task.

In order to reduce the noisiness of the feature signals, we apply a smoothing filter
to both the force/pressure feature and the line orientation feature α. To this end,
we average the ten most recent measurements, i.e. in a time window of 40ms. The
position feature is smooth enough due to the averaging of Eq. (11).

4.1 Tracking Contact Points

Contact point tracking has an important application for multi-finger grasping and
manipulation. In both cases, fingers need to maintain object contact with a given
contact force and they should ensure, that the contact location remains on the fin-
gertip area—optimally in its center—to avoid slipping off. Consequently, the task-
dependent projector matrix has the form P = diag(1, 1, 1, 0, 0, 0) enabling contact
position and force control.

Fig. 7 Experimental setup:
tactile sensor mounted on
Kuka LWR

Grasping and Manipulation of Unknown Objects … 103

Table 1 Statistical tracking results for force and position control

Object Steady state error Standard deviation Response time

Rigid pen 0.0032 0.039 2.5 s

Toy box 0.0026 0.039 2.0 s

Soft ball 0.0010 0.043 2.0 s

X 0.0041 pixel 0.1146 pixel 1.8 s

Y 0.0082 pixel 0.1158 pixel 1.8 s

0 0.5 1 1.5 2 2.5 3 3.5 4
−5

0

5

pi
xe

l e
rr

or

0 0.5 1 1.5 2 2.5 3 3.5 4
0.5

1

1.5

2

t (s)

pr
es

su
re

x axis

y axis

Fig. 8 Tracking results for combined position and force control

Please notice, that the quality of force control depends on the stiffness of objects
(softer objects allow for a largermotion range given afixed force range).We evaluated
the control performance on various objects of different stiffnesses: a rigid pen, a toy
box fromstiff foam, and a soft ball. The results formaintaining adesired pressure level
of p = 1 are shown in Table1. As expected, stiffer objects take longer to converge to
a stable tracking result (response time) and exhibit stronger force oscillations given
similar deflections. However, in all cases the desired force level will eventually be
well maintained with a small steady state error2

For contact position tracking, the goal is to maintain the COP of the contact
region at the center of the tactile sensor frame. The evolution of the errors in contact
position and force are shown in Fig. 8. As can be seen from the top sub-figure an
initial position offset is corrected within half a second. The steady state error and

2The steady state errors and standard deviations are computed from a time series of 20 s duration
starting after convergence (response time). All values are obtained by averaging over 20 trials.

104 R. Haschke

response time are summarized in Table1. As can be seen from bottom sub-figure the
normal force applied in this experiment evolves randomly as it is not controlled. Note,
that a large normal force—due to friction—will also cause large tangential forces,
rendering the sliding motion more difficult. Hence, normal force control should be
generally enabled.

4.2 Track Contact Point and Increase Contact Area by Rolling

The fourth and fifth row of the task Jacobian (Eq.13) provide another mode of oper-
ation to compensate for positional errors of the COP: Instead of realizing a transla-
tional sliding motion, this control behavior realizes a rolling motion, thus changing
the contact point both on the tactile sensor and the object’s surface. While previous
approaches to realize rolling employed complex algorithms to determine the point
of revolution and a corresponding joint-space robot motion [41], the tactile servoing
approachproposedhere, is conceptuallymucheasier: a deviation in contact position is
simplymapped to a rotational twist within the tangential plane of the sensor. Because
we do not explicitly compute the point of revolution and do not know the shape of
the object, the normal force will probably be disturbed due to this motion. However,
the normal force controller, running in parallel, will counteract and maintain a pre-
defined force level. The employed projector matrix equals P = diag(1, 1, 1, 1, 1, 0),
i.e. simultaneously realizing sliding and rolling as well as force control.

The resulting rolling motion is visualized in Fig. 9. An initial positional off-
set along the y-axis is compensated by a rolling motion about the sensor’s x-axis

Fig. 9 Orientation control of surface normals by rolling

Grasping and Manipulation of Unknown Objects … 105

(stage S1). When the contact point error decays, the rolling motion ceases as well
(stage S2). After 4 s the object was displaced yielding a negative position offset that
was compensated by a rolling motion into the opposite direction (stage S3). This
behavior can nicely be seen in the video [40] as well.

The rolling behavior has the beneficial side-effect of increasing the area of contact
between the finger tip and the object. This is an important capability for grasp sta-
bilization. Although classical grasp planning considers point contacts only, a large
contact area naturally increases the grasp wrench space and thus increases the ability
to resist to external disturbances. Furthermore, a prerequisite for successful tactile
object exploration will be to maintain a large contact area during exploration in order
to collect as much shape information about the object as possible.

How this side effect is achieved? Assuming large object and sensor surfaces, a
small contact area typically results from a badly tilted sensor w.r.t. the object surface.
In this situation the sensor only touches an object edge instead of the whole surface.
This contact is often located off-center on the sensor array. The corrective rolling
motion to move the COP into the sensor’s center will also reduce the tilting and
eventually result in the desired surface contact. This state also constitutes a fixed
point of the controller dynamics, because the COP will be in the center of the tactile
array in this case.

4.3 Tracking an Object Edge on the Sensor Surface

The orientation around the normal axis is controlled using the orientation angle α of
a line in the tactile image emerging from an object edge on the sensor. For this control
task the last row of the Jacobian matrix is important, resulting in a projector matrix
P = diag(0, 0, 1, 0, 0, 1). The tracking result for this experiment is qualitatively
shown in the video [40] only. However, the next experiment also employs this control
primitive and provides an evaluation in Fig. 10.

Fig. 10 Tracking of a cable of unknown shape: tracking result is superimposed onto a scene photo
as a blue trajectory

106 R. Haschke

4.4 Tracking of an Unknown Object Edge

The previous experiments illustrated the performance of the proposed tactile ser-
voing controllers in various scenarios, neglecting external motion commands Vext

s .
However, the aim of the following two tasks is to illustrate, that complex explo-
ration behavior emerges if the tactile servoing motion and some externally provided
guidance motion are combined.

In the first experiment, we consider the task of tracking the unknown shape of a
cable lying flat on the table. To this end, the sensor should (i) be aligned to the local
orientation of the cable, (ii) maintain the tactile imprint within its sensor boundaries
(optimally in the center), and (iii) actively control the contact force. Accordingly
we choose a projector matrix P = diag(1, 1, 1, 0, 0, 1) selecting those subtasks. In
order to follow the cable in space, we additionally impose an external tangential
motion onto the sensor along its y-axis, which coincides with the desired orientation
of the cable. Thus Vext

s = [0, 1, 0, 0, 0, 0]t .
Figure10 shows a photo of the tracked cable superimposed with the object shape

(blue line) estimated from the forward kinematics of the robot arm when tracking
the cable with tactile servoing. After some initial oscillations, the robot manages to
align the cable imprint on the sensor with its y-axis.

4.5 Exploring the Shape of an Unknown Object

The second experiment illustrating the power of the proposed tactile servoing frame-
work, aims at tactile object exploration: The sensor should slide over the unknown
surface of the object in order to accumulate a dense shapemodel. Lacking an appropri-
ate control framework, previous work acquired the corresponding tactile information
by repeated establishment and breaking of object contact [42].

To realize this complex task,wedecompose it into several phases: after establishing
contact to the object, the robotmaximizes the sensed contact area and aligns its y-axis
with the major axis of the contact region applying the control schemes of Sects. 4.2
and 4.3 simultaneously.

Subsequently, by imposing a tangentialmotion along the sensor’s x-axis (orthogo-
nal to the major axis of contact region), we induce the exploratory motion. The tactile
servoing controllermaintains the optimal orientation and position of the tactile sensor
on the object’s surface by generating appropriate sliding and rolling motions. This
task exploits all tactile servoing behaviors employing the projector matrix P = 1.
As a result the object exploration behavior emerges automatically.

Similarly we can explore the object along the other direction, if we follow the
contact’s major axis instead (cf. previous task in Sect. 4.4). Please notice, that in the
accompanying video [40] we change the direction of the external guidance motion
Vext

s in order to realize a scanning of the object into both directions. Figure11 shows,
how this exploration behavior can be utilized to construct an object shape estimation
by touch.

Grasping and Manipulation of Unknown Objects … 107

−0.1
−0.05

0
0.05

0.1

0.2

0.25

0.3

0.35

0.4 0.15
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

Fig. 11 Tactile object exploration using two tactile sensor arrays mounted onto Kuka LWR arms
(left) and the resulting tactile point cloud as a local estimation of object shape (right)

5 Conclusion

The introduced tactile servoing control framework allows to realize a large range of
tactile tracking and exploration tasks. To this end, it’s only necessary to choose the
task-specific projector matrix P choosing which tactile servoing primitives (sliding,
rolling, turning, force control) should be applied.

The integration of an externally driven guidance motion Vext
s allows to realize

complex exploratory behavior. In the shown example tasks, we only used very sim-
ple, static guidance motions. However, if those guidance motions are computed from
tactile feedback aswell, one can easily realize evenmore complex exploration behav-
ior, e.g. to drive the tactile sensor towards interesting spots on the object’s surface,
like ridges, edges or corners.

As you have seen, the formulation of tasks as a clever chosen set of primitive
controllers relaxes the need for explicit planning and modeling to a large extend,
such that both grasping and manipulation tasks become feasible also for unknown
objects. Such situations frequently occur in unstructured human environments, like
homes or hospitals, which are natural environments for service robots.

References

1. Jenmalm P, Johansson RS (1997) Visual and somatosensory information about object shape
control manipulative fingertip forces. J Neurosci 17:4486–4499

2. Johansson RS, Westling G (1984) Roles of glabrous skin receptors and sensorimotor memory
in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain
Res 56:550–564

3. Steffen JF, Elbrechter C, Haschke R, Ritter H (2010) Bio-inspired motion strategies for a
bimanual manipulation task. In: Proceedings of international conference on humanoid robots

4. DangH,Weisz J,Allen PK (2011)Blind grasping: stable robotic grasping using tactile feedback
and hand kinematics. In: Proceedings of ICRA

5. Ho V, Nagatani T, Noda A, Hirai Sh (2012) What can be inferred from a tactile arrayed sensor
in autonomous in-hand manipulation? In: Proceedings of CASE, p 461

108 R. Haschke

6. Schürmann C, Kõiva R, Haschke R (2011) A modular high-speed tactile sensor for human
manipulation research. In: World haptics conference

7. Li Q, Haschke R, Bolder B, Ritter H (2012) Grasp point optimization by online exploration of
unknown object surface. In: Proceedings of international conference on humanoid robots

8. Pezzementi Z, Plaku E, Reyda C, Hager GD (2011) Tactile-object recognition from appearance
information. Trans Robot 27(3):473–487

9. Hart S, Sen S, Ou S, Grupen R (2009) The control basis API—a layered software architecture
for autonomous robot learning. In: 2009 workshop on software development and integration
in robotics at ICRA

10. Huber M (2000) A hybrid architecture for adaptive robot control. PhD thesis, University of
Massachusetts

11. León B, Ulbrich S, Diankov R, Puche G, Przybylski M, Morales A, Asfour T, Moisio S, Bohg
J, Kuffner J (2010) OpenGRASP: a toolkit for robot grasping simulation. In: Proceedings of
SIMPAR. Springer, Darmstadt, pp 109–120

12. Gienger M, Toussaint M, Goerick C (2010) Whole-body motion planning—building blocks
for intelligent systems. In: Harada K, Yoshida E, Yokoi K (eds) Motion planning for humanoid
robots. Springer, London, pp 67–98

13. GiengerM, Janßen H, Goerick C (2006) Exploiting task intervals for whole body robot control.
In: Proceedings of IROS, pp 2484–2490

14. Platt R, Fagg AH, Grupen RA (2010) Null-space grasp control: theory and experiments. IEEE
Trans Robot 26(2):282–295

15. Liegeois A (1977) Automatic supervisory control of configuration and behavior of multibody
mechanisms. IEEE Trans Syst, Man Cybern 7(12):861–871

16. Sugiura H, Gienger M, Jannsen H, Goerick C (2010) Reactive self collision avoidance with
dynamic task prioritization for humanoid robots. Int J Humanoid Robot 7(01):31–54

17. Behnisch M, Haschke R, Ritter H, Gienger M (2011) Deformable trees—exploiting local
obstacle avoidance. In: Proceedings of international conference on humanoid robots

18. Catalano MG, Grioli G, Farnioli E, Serio A, Piazza A, Bicchi C (2014) Adaptive synergies for
the design and control of the Pisa/IIT SoftHand. Int J Robot Res 33(5):768–782

19. Odhner LU, Ma RR, Dollar AM (2013) Open-loop precision grasping with underactuated
hands inspired by a human manipulation strategy. IEEE Trans Autom Sci Eng 10(3):625–633

20. Cutkosky M, Howe RD (1990) Human grasp choice and robotic grasp analysis. In: Venkatara-
man ST, Iberall T (eds) Dextrous robot hands. Springer, New York

21. Ückermann A, Haschke R, Ritter H (2013) Realtime 3D segmentation for human-robot inter-
action. In: Proceedings of IROS

22. Ückermann A, Haschke R, Ritter H (2012) Real-time 3D segmentation of cluttered scenes for
robot grasping. In: Proceedings of international conference on humanoid robots. Video: www.
youtube.com/watch?v=Z2SwggQTBC8

23. Schöpfer M, Schmidt F, Pardowitz M, Ritter H (2010) Open source real-time control software
for the Kuka light weight robot. In: Proceedings of WCICA, pp 444–449

24. Dahiya RS, Metta G, Valle M, Sandini G (2010) Tactile sensing: from humans to humanoids.
IEEE Trans Robot 26(1):1–20

25. Wettels N, Santos VJ, Johansson RS, Loeb GE (2008) Biomimetic tactile sensor array. Adv
Robot 22(8):829–849

26. Fishel JA, Loeb GE (2012) Sensing tactile microvibrations with the BioTac— comparison with
human sensitivity. In: International conference on biomedical robotics and biomechatronics
(BioRob), pp 1122–1127

27. Xu D, Loeb GE, Fishel JA (2013) Tactile identification of objects using Bayesian exploration.
In: Proceedings of ICRA, pp 3056–3061

28. Schürmann C, Schöpfer M, Haschke R, Ritter H (2012) A high-speed tactile sensor for slip
detection. In: Prassler E, Burgard W, Handmann U, Haschke R, Hägele M, Lawitzky G,
Nebel B, Nowak W, Plöger P, Reiser U, Zöllner M (eds) Towards service robots for everyday
environments, vol 76. Springer, New York, pp 403–415. Video: www.youtube.com/watch?v=
mSq8e4PU90s

www.youtube.com/watch?v=Z2SwggQTBC8
www.youtube.com/watch?v=Z2SwggQTBC8
www.youtube.com/watch?v=mSq8e4PU90s
www.youtube.com/watch?v=mSq8e4PU90s

Grasping and Manipulation of Unknown Objects … 109

29. Shadow Robot Company. Shadow Dexterous Hand (2013). http://www.shadowrobot.com/
products/dexterous-hand

30. Kõiva R, Zenker M, Schürmann C, Haschke R, Ritter H (2013). A highly sensitive 3D-shaped
tactile sensor. In: International conference on advanced intelligent mechatronics (AIM)

31. Büscher G, Kõiva R, Schürmann C, Haschke R, Ritter H (2012) Tactile dataglove with fabric-
based sensors. In: Proceedings of international conference on humanoid robots

32. Maycock J, Essig K, Haschke R, Schack T, Ritter H (2011) Towards an understanding of
grasping using a multi-sensing approach. In: Proceedings of ICRA, pp 1–8

33. Roa M, Kõiva R, Castellini C (2012) Experimental evaluation of human grasps using a
sensorized object. In: International conference on biomedical robotics and biomechatronics
(BioRob)

34. Chen N, Zhang H, Rink R (1995) Edge tracking using tactile servo. In: Proceedings of IROS,
vol 2. August 1995, pp 84–89

35. Martinez-Hernandez U, Lepora NF, Barron-Gonzalez H, Dodd TJ, Prescott TJ (2012) Towards
contour following exploration based on tactile sensing with the iCub fingertip. In: Herrmann
G, Studley M, Pearson M, Conn A, Melhuish C, Witkowski M, Kim J-H, Vadakkepat P (eds)
Advances in autonomous robotics. Lecture notes in computer science, vol 7429. Springer,
Berlin, pp 459–460

36. Schmitz A, Maiolino P, Maggiali M, Natale L, Cannata G, Metta G (2011) Methods and
technologies for the implementationof large-scale robot tactile sensors. TransRobot 27(3):389–
400

37. Wettels N, Loeb GE (2011) Haptic feature extraction from a biomimetic tactile sensor: force,
contact location and curvature. In: Proceedings of ROBIO, pp 2471–2478

38. Suzuki K, Horiba I, Sugie N (2003) Linear-time connected-component labeling based on
sequential local operations. Comput Vis Image Underst 89(1):1–23

39. Duda RO, Hart PE (1972) Use of the Hough transformation to detect lines and curves in
pictures. Commun ACM 15(1):11–15

40. Li Q (2013) A control framework for tactile sensing. Video: https://www.youtube.com/watch?
v=TcWipks3qJ0

41. Schöpfer M, Ritter H, Heidemann G (2007) Acquisition and application of a tactile database.
In: Proceedings of ICRA, pp 1517–1522

42. Meier M, Schöpfer M, Haschke R, Ritter H (2011) A probabilistic approach to tactile shape
reconstruction. Trans Robot 27(3):630–635

http://www.shadowrobot.com/products/dexterous-hand
http://www.shadowrobot.com/products/dexterous-hand
https://www.youtube.com/watch?v=TcWipks3qJ0
https://www.youtube.com/watch?v=TcWipks3qJ0

Part II
Motion Planning of Robotic Manipulators

Obstacle Avoidance with Industrial Robots

T. Petrič, A. Gams, N. Likar and L. Žlajpah

Abstract One of the important features that a robot must possess when working in
an unstructured environment is the ability to deal with objects. Such objects can be a
part of the task, e.g., in assembly operations, or they can represent an obstacle. In the
case when contact with the objects is not desired, the main issue is how to perform
the desired task without any risk of collisions with the objects in the workspace. A
general strategy for obstacle avoidance is to reconfigure the robot so that it is not
in the contact with the obstacle. However, a reconfiguration without changing the
task motion is only feasible if the robot has sufficient redundant degrees of freedom
(DOFs). In this chapter we present different approaches to the control methods of
redundant robot manipulators performing multiple tasks with obstacle avoidance.
The pros and cons of the presented methods and the differences between them are
also discussed. The performance of the methods is also demonstrated by simulation
and on real robots.

Keywords Redundant robots ·Obstacle avoidance ·Kinematic control · Prioritized
task control · Dynamic movement primitives

T. Petrič · A. Gams · N. Likar · L. Žlajpah (B)

Department for Automation, Biocybernetics and Robotics, Jožef Stefan Institute,
Jamova Cesta 39, Ljubljana, Slovenia
e-mail: leon.zlajpah@ijs.si

T. Petrič
e-mail: tadej.petric@ijs.si

A. Gams
e-mail: andrej.gams@ijs.si

N. Likar
e-mail: nejc.likar@ijs.si

© Springer International Publishing Switzerland 2015
G. Carbone and F. Gomez-Bravo (eds.), Motion and Operation Planning
of Robotic Systems, Mechanisms and Machine Science 29,
DOI 10.1007/978-3-319-14705-5_5

113

114 T. Petrič et al.

1 Introduction

In this chapter we give a brief overview of the most commonly applied
obstacle-avoidance algorithms. In general, the algorithms can be divided into global
and local. While the former rely on planning, the latter are control-based. We present
different control-based approaches, that rely on kinematic algorithms to avoid the
obstacles with the end-effector or with any other part of the body of the robot.We also
discuss how to include obstacle-avoidance algorithms in novel trajectory-generation
methods, such as dynamic movement primitives.

Just as with humans, robotic mechanisms have to act in environments with other
objects and agents moving around, interacting with them, influencing the very same
environment. The environment can be highly structured, like an industrial setting, or
it can be very cluttered, like a kitchen or a workshop. Contact between the robot and
an object is very likely to happen in any environment. The contacts can be part of
the task, but they may very well also be an undesired event, and consequently, it is
necessary to give the highest priority to avoiding them. Different obstacle algorithms
have been proposed for this to ensure that tasks that demand no contact with objects,
perceived as obstacles either at the end-effector or at any other point of the robot,
can be successfully fulfilled.

A natural strategy of obstacle avoidance is to move the manipulator into a con-
figuration where it is not in contact with the obstacle. In order to avoid interference
with the motion of the end-effector, redundant degrees of freedom (DOFs) have to be
utilized to achieve a collision-free configuration. The amount of flexibility depends
on the degree of redundancy, i.e., on the number of redundant DOFs. The kinematic
control of redundant mechanisms, where the redundancy is defined as the difference
between the required and available DOFs, was thoroughly studied [1–4].

Two different strategy classes can be employed when solving the obstacle-
avoidance problem, i.e., global and local. Global strategies rely on planning. They
guarantee to find a collision-free path from the initial point to the goal point, if such a
path exists. Typically, they are applied in the configuration space, which is also where
themanipulator and all the obstacles aremapped. A collision-free path is found in the
unoccupied portion of the configuration space [5–7]. One of the major drawbacks is
that suchmethods rely on the assumption that the environment is not changing, as the
computational complexity of the algorithms prevents any re-calculation within the
typical response time of a manipulator. Despite efforts to reduce the computational
complexity of such global algorithms [8–10], these methods cannot offer ability for
real-time implementations. This limits their applicability to static and well-defined
environments.

Local strategies, on the other hand, treat obstacle avoidance as a control prob-
lem. They exploit the capabilities of low-level control, e.g., they can use the sensor
information to change the path if an obstacle appears or moves in the workspace.
They are primarily suitable when the obstacle position is not known in advance, but
is detected in real-time during the task’s execution. In this sense, they are not meant
to replace the global, higher-level path-planning methods. Local methods are also

Obstacle Avoidance with Industrial Robots 115

computationally less demanding than global methods. However, local methods may
cause suboptimal behavior or may even become stuck when a collision-free path
cannot be found from the current configuration.

The collision avoidance of redundant manipulators was thoroughly studied
[11–20]. The approach proposed by Maciejewski and Klein [17] is to assign to
the critical point an avoiding task-space motion, with which the point is then moved
away from the obstacle. Colbaugh et al. [12, 13] used configuration control and
they defined the constraints representing the obstacle avoidance. On the other hand,
Khatib [15] proposed to use potential fields where obstacles generate repulsive forces
that prevent the roboto to come too close to the obstacle. Similar approaches were
used later by several authors proposed potential functions where a repulsive potential
is assigned to obstacles and an attractive potential is assigned to the goal position
[16, 18, 20–25]. Yet another approach uses the optimization of an objective function
maximizing the distance between the manipulator and the obstacles [14].

Many of the methods are applied at the kinematic level of control, using null-
space velocity control for the internal motion of a redundant manipulator. However,
some of the control strategies are acceleration based or torque based, considering
also the manipulator dynamics [11, 15, 26, 27]. It has been established that cer-
tain acceleration-based control schemes exhibit instabilities [28]. An alternative is
the augmented Jacobian, as introduced in [2]. Here, a secondary task is added to
the primary task to obtain a square and, therefore, an invertible Jacobian matrix.
The drawback to this technique is the algorithmic singularities, which occur when
the secondary task causes a conflict with the primary task. The use of the second-
order inverse kinematic, either at the torque or acceleration level, was thoroughly
explored by Khatib [29], resulting in the recent task-prioritized humanoid applica-
tions [30–32].

Most of the local obstacle-avoidance strategies at the kinematic level aimat assign-
ing a motion component away from the obstacle for every point on the manipulator
close to the obstacle [12–14, 16, 17, 19]. A similar situation applies to the pre-
sented proposed strategies. The emphasis of the presentation is on the definition of
the avoiding motion. The latter is typically defined in Cartesian space, and this can
be used to define the obstacle avoidance as a simple one-dimensional problem, with
a one-dimensional operational space for each critical point. This avoids singularity
issues when the redundancy level is locally too low. Alternatively, an approximative
calculation can be used for the avoiding motion. In contrast to the exact avoiding
motion as proposed in [17], the obtained velocity direction does not exactly coincide
with the direction away from the obstacle [33]; however, the calculation is faster. In
the case of multiple obstacles the situation is even more complex and more specific
methods have to be applied, which also consider the relationship between the obsta-
cles and the required avoidance movements. In the chapter we discuss strategies that
consider multiple, simultaneously active obstacles in the neighborhood of the robot.

Control of a manipulator, that is redundant with respect to the task can be broken
down to control subtasks with different priorities. The main, also called the primary,
task is commonly associated with the end-effector pose (position and orientation).
Other sub-tasks, such as obstacle avoidance, joint configuration, etc., are then given

116 T. Petrič et al.

lower priorities. Sometimes, this is not the case. For example, the safety of the robot or
objects/people in its workspace could be more important, and should also be fulfilled
if the end-effector motion is disturbed. In dynamical environments the priority of the
tasks can also change with time. In general, task-priority algorithms do not provide
a simple means of changing the priority of tasks or transitions between them [34]. In
the chapter we present a formulation that makes the end-effector pose the secondary
task and obstacle avoidance the primary one. The novelty is in making the primary
task (the obstacle avoidance) active only when necessary, i.e., only when the robot
crosses a predefined distance-to-the-obstacle threshold. In this aspect, while far from
the obstacle, the algorithm allows undisturbed control of the secondary task (as if it
were the primary task) [35–37]. Upon reaching the threshold distance, the primary
task (obstacle-avoidance) smoothly takes over and only allows motion in the null-
space of the primary task. A similar approach was proposed by Sugiura et al. [38],
who proposed a blending solution for the end-effector motion, and by Mansard et al.
[30], with a generic solution to build a smooth control law for any kind of unilateral
constraints.

The last approach we present is solving the obstacle-avoidance problem with
the use of novel methods of generating and encoding trajectories with dynamical
systems.We show howDMPs offer themeans for on-linemodulation and adaption of
the trajectory in order to take into account the dynamic events from the environment.
Introducing a coupling term to the dynamical equations encoding the trajectory, we
can modulate its spatial evolution to avoid an obstacle. The choice of the coupling
term may be specialized for a given task. Various aspects and applications of the
proposed dynamical systems approach are discussed and evaluated.

The computational efficiency of the proposed algorithms, both at the kinematic
level using classic control, and using the dynamical systems, allows real-time applica-
tion in cluttered and/or time-varying environments. We demonstrate the applicability
with simulations of a highly redundant planar manipulator moving in an unstructured
and time-varying environment and by experiments on a real robot manipulator.

2 Background

The robotic systems under study are redundant serial manipulators. We consider
the robot as a redundant system when the dimension of the joint space n exceeds
the dimension of the task space m. The difference between n and m is denoted as the
degree of redundancy r = n − m. Note that this definition of the redundancy is not
only a characteristics of the manipulator itself, but also of the task. This means that a
nonredundant manipulator may also become a redundant manipulator for a specific
task.

The relationship between the configuration variable q and the task variable x can
be described by the following equation

x = f (q) (1)

Obstacle Avoidance with Industrial Robots 117

where f is an m-dimensional vector function. The corresponding relationship
between the joint velocities q̇ and the task velocities ẋ is obtained by differenti-
ating (1)

ẋ = Jq̇ (2)

where J is the m × n Jacobian matrix. The control problem is how to generate the
motion in joints that will result in the desired task-space motion. At the velocity
kinematic level this means calculating q̇ using the desired task-space velocities ẋ.
For a non-redundant manipulator (n = m) and when the robot is not in a singular
configuration q̇ (J has full rank, rank(J) = n) the joint velocities q̇ can be calculated
from (2) as

q̇ = J−1 ẋ (3)

where J−1 is the inverse of the Jacobian matrix J. To avoid any drifts, a task-space
controller is usually implemented for ẋ, namely

ẋ = ẋe + Ke (4)

where ẋe is the desired task-space velocity, e, e = xd − x, is the task-space error,
and K is a positive definite gain matrix.

In the case of a kinematically redundant manipulator, the manipulator possesses
more DOFs then required to execute a task, i.e., the dimension of the joint space n
exceeds the dimension of the task space m, n > m. It is obvious that the Jacobian J
is no longer a square matrix, but an m ×n matrix, and hence the inverse J−1 does not
exist and (3) cannot be used. The classic general solution of (2) for a kinematically
redundant manipulator is

q̇ = J# ẋ + Nϕ̇ (5)

where J# is a generalized inverse of the Jacobian matrix J, N is a matrix representing
the projection into the null space of J, and ϕ̇ is an arbitrary n-dimensional joint-
velocity vector. From (5) it is clear that N projects the velocity q̇n into the null-space
of J and the corresponding motion does not affect the task motion. Remarkably,
there is an infinite number of solutions q̇. In most cases it is required to pursue a
minimum-norm velocity leading, to the selection of the Moor-Penrose inverse J+,
J+ = JT (JJT)−1, as the generalized inverse in (5)

q̇ = J+ ẋ + (I − J+J)ϕ̇ (6)

The first r.h.s. term in (6), i.e., the particular solution, provides the least-squares
solution, i.e., it minimizes ‖ẋ − Jq̇‖, with a minimum joint-velocity norm. With the
second r.h.s. term in (6) different joint velocities q̇ can be obtained that result in
the same end-effector velocity ẋ. This additional joint motion can be exploited to

118 T. Petrič et al.

achieve some additional goals, i.e., some kind of optimization, obstacle avoidance,
to fulfill some functional constraints or to execute additional constraint tasks. To
perform this additional subtask, the velocity ϕ̇ is used. Then the secondary task is
defined by some motion xt = ft (q) like in the case of obstacle avoidance, the
velocity ϕ̇ can be defined as

ϕ̇ = J+ ẋ (7)

Another possibility is to define ϕ̇ as

ϕ̇ = Kp∇ p, (8)

where, p is a function representing the desired performance criterion, ∇ p is the
gradient of p, and Kp is a gain. So, using (8) the optimization of p can be achieved.

3 Obstacle-Avoidance Strategy

The obstacle-avoidance problem usually defines how to control the manipulator
in order to track the desired end-effector trajectory while simultaneously ensuring
that no part of the manipulator collides with any obstacle in the workspace of the
manipulator. To avoid any possible obstacles the manipulator has to move away from
them into a configuration where the distance between them becomes larger, as shown
in Fig. 1. Reconfiguration of themanipulator without changing themotion of the end-
effector is only possible if the manipulator has redundant DOFs. Note that in some
cases it is possible that the redundant manipulator cannot avoid an obstacle, because
it might be in a configuration where the avoiding motion in the desired direction is
not feasible. Having a high degree of redundancy reduces the chance of getting into
a such configuration, especially if the manipulator is working in an environment that
has many potential collisions with obstacles.

Usually, the basic strategy for obstacle avoidance is to identify the points on the
robotic arm that are near obstacles and then assign to them the motion component
that moves those points away from the obstacle, as shown in Fig. 1. The robot motion
(configuration) is changed if at least one part of the robot is at a critical distance from
an obstacle. We denote the obstacles that are closer to the critical distance as the
active obstacles and the corresponding closest points on the body of the manipulator
as the critical points.

For industrial robots it is usually assumed that the motion of the end-effector is
not disturbed by any obstacle. If such a situation occurs, either the task execution
has to be interrupted and the higher-level path planning has to recalculate the desired
motion of the end-effector or if the path-tracking accuracy is not important the control
algorithms that move the end-effector around obstacles on-line can be used.

Since the position of the obstacle is usually not known in advance, the obstacle-
avoidance algorithm must work in real-time. In order to ensure these requirements

Obstacle Avoidance with Industrial Robots 119

Obstacle

Task pathDesired
motion

Critical
distance F0

d0dm

A0

J0

x0

Fig. 1 Manipulator motion in the presence of some obstacles

some sensors have to be used to determine the position of the obstacles or to measure
the distance between the obstacles and the body of the manipulator. There is a variety
of sensor systems that can be used for such obstacle detection. In many cases a vision
system is used to detect obstacles. Another possibility is offered by tactile sensors,
like artificial skin, which can detect the obstacle only if they touch it, or by proximity
sensors, which can sense the presence of an obstacle in the neighborhood.

4 Obstacle Avoidance Using Kinematic Control

The basic strategy for obstacle avoidance considers the obstacle-avoidance problem
at the kinematic level. We denote ẋe as the desired velocity of the end-effector, and
Ao as the critical point on the obstacle (see Fig. 1). To avoid a possible collision, one
possibility is to assign a velocity to Ao such that it would move the manipulator away
from the obstacle, as proposed in [17]. Here, the motion of the end-effector and the
critical point can be defined as

Jq̇ = ẋe Jo q̇ = ẋo (9)

where Jo is a Jacobianmatrix associated with the point Ao. In the following, different
possibilities for finding the solution for both equations will be presented.

4.1 Exact Solution

Let ẋ in (5) be equal to ẋe. Then, by combining (5) and (9) we obtain

ϕ̇ = (JoN)#(ẋo − JoJ# ẋe) (10)

120 T. Petrič et al.

Using ϕ̇ in (5) gives the final solution for q̇ in the form

q̇ = J# ẋ + (JoN)#(ẋo − JoJ# ẋe) (11)

Note that N is both hermitian and idempotent [4, 17]. Here the first term J# ẋ guar-
antees the tacking of the desired end-effector. Also, ẋ is used in (11) instead of ẋe

to indicate that a task-space controller can be used to compensate for any task-space
tracking errors

ẋ = ẋd + Ke. (12)

where ẋd is the desired task-space velocity, K is an m × m positive-definite matrix
and e is the task-position error, defined as

e = xd − x. (13)

Here, xd is the desired task-space position. The second term in (11), i.e., the homo-
geneous solution q̇h , represents the part of the joint velocity causing the motion of
the point Ao. The term JoJ# ẋe is the velocity in Ao due to the end-effector’s motion.
The matrix JoN is used to transform the desired critical point velocity from the oper-
ational space of the critical point into the joint space. Note that the above solution
guarantees that we achieve exactly the desired ẋo only if the degree of redundancy
of the manipulator is sufficient.

4.2 Exact Solution with Reduced Operational Space

The system’s ability to avoid obstacles is defined with the matrix JoN, which com-
bines the kinematics of the critical point Ao and the null-space matrix of the whole
manipulator. Here, the properties of the matrix JoN depend on the position of the
point Ao and also on the definition of the operational space associated with the crit-
ical point Ao. Usually, all the critical points are defined in Cartesian space, which
implies that the velocity ẋo is a 3-dimensional vector and the dimension of the matrix
JoN is 3× n. This means that at least 3 DOFs are needed to move one point from an
obstacle. Consequently, it might seem that a manipulator with two redundant DOFs
is not capable of avoiding obstacles. However, we know from our experience that
this is not true. For example, consider a planar 3 DOF manipulator that can move
along a straight line and only the positions of the end-effector are important. In this
case, the task space is 2-dimensional and the manipulator has one free degree of
redundancy. Defining the velocity ẋo in the same space as the end-effector velocity,
i.e., as a 2-dimensional vector, reveals the matrix JoN to have the dimension 2 × 3.
Furthermore, due to one degree of redundancy the components of the velocity vector
ẋo are not independent. Hence, the rank of JoN is one, and the pseudo-inverse (JoN)#

does not give a feasible solution, at least the desired avoiding velocity ẋo cannot be
achieved.

Obstacle Avoidance with Industrial Robots 121

On the other hand, as the obstacle-avoidance strategy only requires motion in the
direction of the line connecting the critical pointwith the closest point on the obstacle,
this is a one-dimensional constraint for which only one degree of redundancy is
needed. Therefore,we propose using a reduced operational space [39] for the obstacle
avoidance and define the Jacobian Jo as follows.

Let do be the vector connecting the closest points on the obstacle and the manip-
ulator (see Fig. 1) and let the operational space in Ao be defined as one-dimensional
space in the direction of do. Then, the Jacobian that relates the joint-space velocities
q̇ and the velocity in the direction of do can be calculated as

Jdo = nT
o Jo (14)

where Jo is the Jacobian defined in the Cartesian space and no is the unit vector
in the direction of do, no = do‖do‖ . Now, the dimension of the matrix Jdo is 1 × n,

and the velocities ẋo and Jdo J# ẋe become scalars. Consequently, the computation
of (Jdo N)# is also much faster [33, 35, 39]. Note that in this case we do not have to
invert any matrix because the term (Jdo NJT

do
) is a scalar.

4.3 Selection of Avoiding Velocity

The performance of the obstacle-avoidance algorithm mainly depends on the selec-
tion of the desired critical point velocity ẋo. We propose changing ẋo with respect to
the distance to the obstacle ‖do‖

ẋo = αvvo (15)

where vo is the nominal velocity and αv is the obstacle-avoidance gain defined as

αv =
⎧⎨
⎩

(
dm‖do‖

)2 − 1 for ‖do‖ < dm

0 for ‖do‖ ≥ dm

(16)

where dm is the critical distance to the obstacle. If the obstacle is too close (‖do‖
≤ db) the main task should be stopped. The distance db is subjected to the dynamic
properties of the manipulator and can also be a function of the relative velocity ḋo.
To ensure smooth transitions it is important that the magnitude of ẋo at dm is zero.
Special attention has to be given to the selection of the nominal velocity vo. Large
values of vo would cause unnecessarily high velocities, which results in a rapid
movement far from the obstacle. Suchmotion is undesirable andmay cause problems,
especially if there are more obstacles in close proximity. Namely, the manipulator
may bounce between them. On the other hand, too small a value of vo would not
move the manipulator away from the critical point, which is undesirable as well.
Selecting the right vo is a trade-off between how quickly and how smoothly the robot
avoids the obstacle.

122 T. Petrič et al.

For smoothing the motion Maciejewski et al. [17] proposed a factor αh , which
changed the amount of homogenous solution to be included in the total solution

q̇ = J# ẋ + αh(Jdo N)#(ẋo − Jdo J# ẋe) (17)

In our case we have selected αh as

αh =

⎧⎪⎪⎨
⎪⎪⎩

1 for ‖do‖ ≤ dm
1
2

(
1 − cos

(
π

‖do‖−dm
di −dm

))
for dm < ‖do‖ < di

0 for di ≤ ‖do‖
(18)

where di is the distance at which the obstacle influences the motion. Note that in
the region between db and dm the complete homogenous solution is included in the
motion specification and the avoidance velocity is inversely related to the distance.
Between dm and di the avoidance velocity is zero and only a part of the homogenous
solution is included. As the homogenous solution compensates for the motion in
the critical point due to the end-effector motion, the relative velocity between the
obstacle and the critical point decreases when approaching from di to dm , if the
obstacle is not moving. With such a selection of αv and αh , smooth velocities can be
obtained.

The control law given by (17) was derived for a single obstacle. When more than
one obstacle is active at the same time, then the worst-case obstacle, which is the
nearest, has to be used. This solution may result in discontinuous velocities and
may cause oscillations in some cases. In particular when switching between active
obstacles the particular homogenous solutions are not equal and a discontinuity in
the joint velocities may occur. To improve this behavior we propose using a weighted
sum of the homogenous solution of all the active obstacles

q̇ = J# ẋ +
no∑

i=1

wiαh,i q̇h,i (19)

where no is the number of active obstacles, and wi , αh,i and q̇h,i are the weighting
factor, the gain and the homogenous solution for the i th active obstacle, respectively.
The weighting factors wi are calculated as

wi = di − ‖do,i‖∑no
i=1(di − ‖do,i‖) (20)

Although the actual velocities in the critical points differ from the desired ones, using
an exact solution significantly improves the performance.

As an illustration we present the simulation of a planar manipulator with five
revolute joints. The primary task is to move along a straight line from point P1
to point P2. The desired trajectory is shown by the green line in Fig. 2. The task

Obstacle Avoidance with Industrial Robots 123

Fig. 2 Planar 5 DOF
manipulator: tracking of a
line from point P1 to P2 and
obstacle avoidance using an
exact solution

P1

P2

trajectory has a trapezoid velocity profile with an acceleration of 4ms−2 and a max.
velocity of 0.4ms−1. We chose the critical distance dm = 0.2m and the radius of the
obstacle was r = 0.2m. The initial configuration of the manipulator was selected
such that the motion was obstructed by an obstacle. The simulation results using the
exact velocity controller EX (17) are presented in Figs. 2 and 3.

In the top plot in Fig. 3 we can see that the critical distance dm is always above
the predefined threshold d0 = 0.2. However, in the middle plot we can see that with
the exact method in some cases the joint velocities may not be smooth, which may
also reflect in the tracking accuracy, as shown in the bottom plot. Even so, note that
the tracking accuracy of the end-effector is in the range of 10−6.

4.4 Approximate Solution

Another possible solution for ϕ̇ is to calculate the joint velocities for the secondary
goal as

ϕ̇ = J#do
ẋo (21)

without compensating for the contribution of the end-effector motion and then sub-
stituting ϕ̇ into (5) yields

124 T. Petrič et al.

0

0.1

0.2

0.3

−1

0

1

2

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3
x 10

−6

d m
[m

]
e
[m

]
q d

[r
ad
]

t [s]

link1
link2
link3
link4
link5

Fig. 3 Top plot shows the distance between the obstacle and the nearest link. Middle plot shows
the joint velocities and the bottom plot shows the end-effector tracking error

q̇ = J# ẋ + NJ#do
ẋo (22)

This approach avoids the singularity problem of (Jdo N) [1]. The formulation (22),
however, does not guarantee that the desired ẋo will be exactly achieved even if the
degree of redundancy is sufficient. This is because in general Jdo NJ#do

ẋo is not equal
to ẋo.

To avoid the obstacle the goal velocity in Ao is represented by the vector ẋo.
Using the original method (11) the velocity in Ao is exactly ẋo. The joint velocities
in the exact solution ensure that the component of the velocity at point Ao (i.e., Jo q̇)
in the direction of ẋo is as required. The approximate solution gives, in most cases, a
smaller magnitude of the velocity in the direction of ẋo. Therefore, the manipulator
moves closer to the obstacle when an approximate solution is used. This is not
so critical, because the minimum distance also depends on the nominal velocity vo,
which can be increased to achieve largerminimumdistances, if needed. Additionally,
the approximate solution possesses certain advantages when many active obstacles
have to be considered. The joint velocities can be calculated as

q̇ = J# ẋ + N
no∑

i=1

J#do,i ẋo,i (23)

Obstacle Avoidance with Industrial Robots 125

Fig. 4 Planar 5 DOF
manipulator: tracking of a
line from point P1 to P2 and
obstacle avoidance using an
approximate solution

P1

P2

where no is the number of active obstacles and, therefore, the matrix N has to be
calculated only once. However, the pseudo-inverses J#o,i have to be calculated for
each active obstacle.

We have implemented the approximate velocity controller AP (22) for the
same system and the task as shown in Figs. 2 and 3. The results are presented in
Figs. 4 and 5. We can see that the links are coming closer to the obstacle compared to
the case of using the exact controller. Note that discontinuities in the joint velocities
may also occur here, and that the tracking error of the end-effector is in the same
range as in the case of the exact controller.

4.5 Experimental Results

To support the simulation results we applied the obstacle-avoidance control using
the approximated solution (23) to the 7 DOF Kuka LWR robot. The primary task for
the robot was manipulating the ball in the Cartesian task space and the secondary
task was avoiding human contact (a human was treated as an obstacle for the robot).
The experimental setup is shown in Fig. 6.

The human motion is captured using the Microsoft Kinect sensor. Microsoft
Kinect is based on a range camera developed by PrimeSense, which interprets
3D scene information from a continuously projected infrared structured light.

126 T. Petrič et al.

0

0.05

0.1

0.15

0.2

−1

0

1

2

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3
x 10

−7

d m
[m

]
e
[m

]
q d

[r
ad
]

t [s]

link1
link2
link3
link4
link5

Fig. 5 Top plot shows the distance between the obstacle and the nearest link. Middle plot shows
the joint velocities and the bottom plot shows the end-effector tracking error

Fig. 6 Experimental setup for the manipulation task with the KUKA LWR robot, while avoiding
the human in the robot workspace. The picture is taken with the Microsoft Kinect camera. Note
that the picture from the Microsoft Kinect camera is mirrored

Obstacle Avoidance with Industrial Robots 127

Fig. 7 The image sequence shows obstacle avoidance using an approximate solution

By processing the depth image, the PrimeSense API enables the tracking of human
limbmovements in real time. To acquire the closest points (interpreted as point obsta-
cles) between the human and the robot, we calibrated the Microsoft Kinect sensor
to the robot base coordinate system. To obtain the proper transformation matrix, we
recorded at least four pairs of points in both coordinate systems. During the cal-
ibration procedure the human placed his hand at the same locations as the robot
end-effector and the position of the human hand and the position of end-effector
were measured in the Kinect and robot base coordinate systems, respectively. The
transformation matrix was calculated using least-squares fitting of two points set, as
described in [40].

The results are shown as a sequence of photos in Fig. 7, where we can see a
successful pose adaptation in order to prevent human contact, while maintaining the
position of the end-effector.

5 Obstacle Avoidance as a Primary Task

The development of multi-arm robot mechanisms and humanoid robots emphasized
the importance of being able to perform multiple tasks simultaneously [41–43], like
controlling multiple points on the robot structure, stability, pose control or obstacle
avoidance. Whether it is feasible that the robot can achieve all the goals at the
same time depends on the one hand upon the robot’s dexterity and its configuration,
and on the other hand upon the goals themselves. Although highly redundant robot
manipulators can perform multiple tasks, it is not likely that all the tasks can be
fulfilled simultaneously or at least not all the time. For example, the robot may be
able to perform all the tasks in one configuration, but when the robotmoves to another
configuration, some goals may become conflicting with the motion. In this case, it is

128 T. Petrič et al.

impossible to satisfy all the goals and the conflict can be handled in the framework
of the task priority, where the tasks are arranged by their relevance. The priority
indicates how important a task is compared to others and it can also imply some
other things, like how important it is to execute the task accurately. Typically, the
lower-priority tasks are less important and they are fulfilled completely only if not
they are interfering with higher-priority tasks. The task with the highest priority is
usually referred to as the primary task.

With multiple tasks it is important to know the relationship between the tasks.
Assuming that each task can be executed per se, i.e., a feasible solution exists for
all the tasks, this is not a guarantee that all tasks can be executed simultaneously.
Namely, the motion necessary to perform one task can disturb the execution of other
tasks and, hence, some tasks may become unfeasible with respect to others. The
dependency between tasks can be determined by analyzing the range of the associated
Jacobian inverse mappings [44–46]. It is important to know the relationship between
the mapping, but it is not essential for the solution. When two tasks are disturbing
each other, then it is necessary to ensure that the task with higher priority is fulfilled
and then we should try to fulfil the lower-priority task as well as possible.

For a redundant robot one possible solution for obstacle avoidance is to consider
the obstacle-avoidance task as a primary task Ta , and the end-effector tracking as a
secondary task Tb defined by

xa = f a(q) xb = f b(q) (24)

For each of the tasks, the corresponding Jacobian matrices can be defined as Ja and
Jb, with the corresponding null-space projections denoted by Na and Nb. Assuming
that task Ta is the primary task, Eq. (5) can be rewritten as

q̇ = J#a ẋa + NaJ#b ẋb (25)

Previously, we have assumed that the end-effector motion is not disturbed by an
obstacle. Now, it is assumed that the motion of the end-effector can be disturbed by
anyobstacle. If such a situation occurs, the task execution usually has to be interrupted
and higher-level path planning has to be employed to recalculate the desired motion
of the end-effector. However, if the end-effector path tracking is not essential, we
can use the proposed control (25). Consequently, no end-effector path recalculation
or higher-level path planning is needed.

Figure8 shows an example of the prioritized control where we can see that in this
case the robot can avoid obstacles even if they appear on the Cartesian task path. The
same parameter set was used as in Sect. 4, except for the obstacle diameter, which
was now set to r = 0.4m. In Fig. 9 we can also see that the critical distance dm is
exactly the same as the predefined d0 = 0.2, which was expected since the obstacle-
avoidance task is now the task with the highest priority. In contrast, in this particular
example, we can see that such an approach has a disadvantage when compared to
the global path search algorithms since the resulting motion may be suboptimal and
as a result it may become stuck.

Obstacle Avoidance with Industrial Robots 129

P1 P2

Fig. 8 Planar 5 DOF manipulator: tracking of a line from point P1 to P2 is a secondary task and
obstacle avoidance is the primary task

0

0.05

0.1

0.15

0.2

−0.5

0

0.5

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

d m
[m

]
e
[m

]
q d

[r
ad
]

t [s]

link1
link2
link3
link4
link5

Fig. 9 Top plot shows the distance between the obstacle and the nearest link. Middle plot shows
the joint velocities and the bottom plot shows the end-effector tracking error

5.1 Smooth Transition Between Tasks

Another important aspect that should be considered with multiple tasks is the ability
to change the task priority. When a robot is working in a changing environment, it
may happen that the situation requires that one task becomes more important than
before. A good example is obstacle avoidance, where the priority of the avoiding task

130 T. Petrič et al.

may depend on the type of obstacle and on the distance to the obstacle. Therefore, it
is beneficial if the control method enables a smooth change of task priorities. Using
formulation (25) this cannot be done in a smooth way. Therefore, we propose a new
definition of the velocity q̇ [35]. The velocity q̇ is now defined as

q̇ = J#a ẋa + N′
aJ#b ẋb, (26)

where the matrix N′
a is given as

N′
a = I − λ(xa)J#J, (27)

where λ(xa) is a scalar measure of how “active” is the primary task Ta , scaling the
vector xa to the interval [0, 1]. When the primary task Ta is active λ is λ(xa) = 1,
and when the task Ta is not active, it is λ(xa) = 0.

The proposed algorithm allows a smooth transition in both ways, i.e., between
observing the task Ta and the task Tb in the null-space of the task Ta or just the
unconstrained movement of the task Tb. The proposed approach is general and can
be used for different robotic tasks.

For obstacle avoidance using (26), we define the primary task Ta to be the motion
in the direction d0 and the motion of the end-effector to be the task Tb. Using the
reduced operational space yields

Ja = Jdo , (28)

Jb = J. (29)

Next, (26) can be rewritten in the form

q̇ = J#do
ẋo + N′

0J# ẋ. (30)

Here, ẋ is the task controller for the end-effector tracking and let λ (d0) = αh , then
N′
0 is given by

N′
0 = I − αhJ†oJo. (31)

Formulation (30) allows an unconstrained joint movement while αh is close to
zero (αh ≈ 0). Thus, the robot can track the desired task-space path while it is
away from the obstacle. On the other hand, when the robot is close to the obstacle
(αh ≈ 1), the null space in (31) takes the form N′

0 = N0, and only allows movement
in the null space of the primary task, i.e., the obstacle-avoidance task. In this case,
we can still move the end-effector, but the tracking error can increase due to the
obstacle-avoiding motion.

Simulation results using the control algorithm (30) are presented in Figs. 10
and 11. We can see in Fig. 10 and in the top plot of Fig. 11 that in the case of a
smooth transition between tasks the tracking error may become significant while

Obstacle Avoidance with Industrial Robots 131

P1 P2

Fig. 10 Planar 5 DOF manipulator: smooth transition between the primary task of obstacle avoid-
ance and the secondary task of tracking a line from point P1 to point P2

0

0.05

0.1

0.15

0.2

−0.1

0

0.1

0.2

0.3

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

d m
[m

]
e
[m

]
q d

[r
ad
]

t [s]

link1
link2
link 3
link4
link5

Fig. 11 Top plot shows the distance between the obstacle and the nearest link. Middle plot shows
the joint velocities and the bottom plot shows the end-effector tracking error

the robot is close to the obstacle. The main reason for such behaviour is that in this
case the obstacle-avoidance becomes primary and the end-effector tracking is the
secondary task projected into the null space of the obstacle-avoidance task. Even
though this may seen impractical, it is useful in situations when the obstacle is in the
path of the end-effector. Since by using such control, the robot can avoid obstacles
in real-time without using any additional path-planners if obstacles appear on the
end-effector path during the motion.

132 T. Petrič et al.

An important observation is also that for this particular task and for the same
configuration and parameter set as used in the example presented in Fig. 9, the robot
does not become stuck in the local minimum. The main reason for such behaviour
is that the transition to obstacle avoidance is now smooth and consistent. However,
as we can see in the top plot in Fig. 11, as a consequence the robot comes closer to
the obstacle. Note that this minimal distance to the obstacle could be increased by
increasing the value of d0.

5.2 Prioritized Damped Least-Squares Inverse

Another possibility for simultaneous end-effector tracking and obstacle-avoidance
simultaneously is to treat them equally. Let us stack all the tasks the robot should
perform xi , i = 1, . . . , k into an extended task vector

xE =
[

xT
1 , xT

2 , . . . , xT
k

]T
(32)

Then, the relation between the task space velocities and the joint velocities is given as

ẋE = JE q̇ (33)

where the extended Jacobian is given in the form

JE =
[
JT
1 , JT

2 , . . . , JT
k

]T
(34)

The solution to (33) (denoted later as E) is given in the form

q̇ = J#E ẋE (35)

As all the tasks are included in ẋE there is no need to consider the homogenous part
of the solution, i.e., the null-space velocity, to solve these tasks. If the rank of JE

equals at least the dimension of all the tasks, rank(JE) ≥ mt , then the solution to
(35) results in q̇, which fulfill all the tasks.

Even though the approaches proposed by [2, 44, 47–49], for the calculation of
joint velocities in the case of multiple prioritized tasks, solve the inverse kinematic
problemwhen the systemof equations is not ill-conditioned, it is likely that during the
execution of multiple tasks the manipulator moves toward the configuration where
one of the Jacobian matrices is near singularity and, consequently, the obtained joint
velocities q̇ become unfeasible. To overcome the problem of unfeasible velocities
we could apply the damped least-squares (DLS) technique. Applying DLS to the
extended Jacobian method gives feasible joint velocities. However, if the rank of the
extended Jacobian JE is not sufficient with respect to the dimensions of all the tasks

Obstacle Avoidance with Industrial Robots 133

rank(JE) <

k∑
i=1

mi (36)

then (35) results in a “best fit” (in a least-squares sense) solution. Since in (35) all
the tasks are treated equally, it is not possible to prioritize some of the tasks in favor
of others. To overcome this drawback we propose an approach in the framework of
a DLS extended Jacobian [48, 50].

The basis of this method is a combination of the extended Jacobian approach (35)
and the DLS inverse technique. The proposed solution is given in the form

q̇ = J#E ẋE (37)

where

J#E = JT
E (JE JT

E + λ2P)−1 (38)

and (P) is an mt × mt diagonal matrix

P =

⎡
⎢⎢⎢⎣

p1I1 0 . . . 0
0 p2I2 . . . 0
...

...
. . .

...

0 0 . . . pkIk

⎤
⎥⎥⎥⎦ (39)

where pi are scalars depending on the desired priority of the task Ti , and Ii are
mi × mi unit matrices. We denote this method as the priority weighted damped
least-squares Jacobian method (denoted later as PWDLS). The proposed solution
(38) with priority factors (39) minimizes

λ2‖q̇‖ +
k∑

i=1

pk‖ẋk − Jk q̇‖ (40)

The method is similar to the method proposed in [50] except that the weighting
factors are defined by the priority of the tasks. For improving the performance it
is essential to suitably select the factors in the damping term in (38). To focus on
the priority issue of the problem, we assume that the optimal value for the damping
factor λ has been selected using one of the well-known methods [48, 51–54]. To
determine the optimal value of λ all the values pi are set to 1, i.e., P = I.

When dealing with the priority in the framework of redundancy resolution, the
terms primary task, secondary task, and so on, imply that the control has fulfilled
the primary task first, and next the secondary task, without disturbing the primary
task. This philosophy is used by all redundancy-resolution schemes dealing with
prioritized tasks. None of the redundancy schemes can deal with the information
about “how much” one task is more important than the other. For example, even for

134 T. Petrič et al.

the obstacle-avoidance schemes, where the distance to the obstacle can be used as a
measure of the importance of particular critical points, this information is actually
used only to order the critical points. On the other hand, the parameters pi can be
used to quantify the relative importance of the tasks Ti . So, it is possible to quantify
the priorities of the tasks [55]. It is obvious that the following relation must hold

Priority(Ti) > Priority(Tj) ⇔ pi < p j , i, j ∈ {1, . . . , k} (41)

To gain more insight into the relation between the tasks Ti one can compare the
desired task velocities ẋ and the task velocities ẋa obtained as a solution of (42)

ẋEa = JE q̇ = JE J#E ẋe = Aẋ (42)

The ma ×ma matrix A represents the mapping between ẋ and ẋa and can be divided
into several submatrices

A =

⎡
⎢⎢⎢⎣

A1,1 A1,2 . . . A1,k
A2,1 A2,2 . . . A2,k

...
...

. . .
...

Ak,1 Ak,2 . . . Ak,k

⎤
⎥⎥⎥⎦ (43)

where Ai, j are mi × m j matrices. Remarkably, the diagonal matrices Ai,i represent
the transformation of the task velocity ẋi in the space of the task Ti , and the off-
diagonal submatrices represent the influence between the tasks. Note that as pi are
not equal, A is a non-symmetric matrix. The explanation is apparent, the task with
higher priority influences the task with lower priority more a vice versa.

An example of using the (42) algorithm is shown in Figs. 12 and 13. Here we can
see similar behaviour as when using a smooth transition between tasks, e.g., Figs. 10
and 11. By comparing the results, the main difference between those two approaches
while using the same parameter set is that in the case of PWDLS the robot comes
closer to the obstacle.

In the following we present how the selection of pi influences the solution of (42).
For a better understanding we present a 4 DOF planar manipulator with revolute

Fig. 12 Planar 5 DOF
manipulator: tracking of a
line from point P1 to point
P2 and obstacle avoidance
using PWDLS Jacobi

P1 P2

Obstacle Avoidance with Industrial Robots 135

0

0.05

0.1

0.15

0.2

−0.5

0

0.5

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

d m
[m

]
e
[m

]
q d

[r
ad
]

t [s]

link1
link2
link3
link4
link5

Fig. 13 Top plot shows the distance between the obstacle and the nearest link. Middle plot shows
the joint velocities and the bottom plot shows the end-effector tracking error

joints where three control points have to be moved in different directions due to
the obstacles near the robot. Note that in this example, the distance between each
obstacle and the robot body is the same for all obstacles. Consequently, the desired
avoiding motion is similar for all the critical points (except the direction, of course).
We assume that only the positions of the control points are important and so the
tasks are 2-dimensional, mi = 2. Consequently, mt = 6 and n = 4. As JE has
more rows than columns, the system is overdetermined and no exact solution exists.
Figure14 shows the situation for four different selections of P . The case a) presents
the solution without prioritizing tasks (as a classic extended Jacobian approach). The

T1

T2

T3 T1

T2

T3 T1

T2

T3 T1

T2

T3

(a) (b) (c) (d)

Fig. 14 Influence of different priority factors in (42) for three tasks and for four priorities sets:
a p = [1, 1, 1], b p = [1, a, a2], c p = [a, 1, a2], d p = [a, a2, 1], where a = 5 and λ =
10−8. The circles represent the geometrical representation of submatrices Ai,i : unit sphere (red)→
ellipsoid (blue). Red vectors are the desired task velocities ẋ and blue vectors are the resulting task
vectors ẋa

136 T. Petrič et al.

other three cases show the situation when each of the tasks becomes the main task.
Note that the motion in a particular control point is not only due to the desired motion
in that point but in other control points the desired motion contributes to. Actually,
in case (d) most of the motion in control point 2 is due to the motion of the other two
tasks. As one can see, with a suitable selection of pi the proposed method makes it
possible to achieve the desired behavior of the whole system.

As the priority can be defined by changing the controller parameters rather a
by changing the controller structure, the proposed method is also suitable when the
priority has to change during the tasks’ execution.Note that the priority change can be
done continuously and no discontinuity in the joint-space solution q̇ is experienced.
A method for determining the actual values of pi is beyond the scope of this chapter.
In general, it depends on the needs of all the tasks and the specific circumstances
during the tasks’ execution.

5.3 Experimental Results

To demonstrate the properties of the algorithm given with (42) we extended the task
of the bimanual cooperation of two Kuka LWR robots equipped with Barret-Hand
grippers holding a plate while balancing a bottle [56] with the task of preventing
human contact. As in the case of the experiment in Sect. 4, the human motion was
obtained using the Microsoft Kinect sensor. The results are shown in Fig. 16 and
as a sequence of photographs in Fig. 15, where we can see that robots are able to
successfully perform multiple tasks simultaneously, i.e., preventing human-robot
contact and preserving the plate’s orientation.

Fig. 15 A sequence of still photographs shows the movement of two Kuka LWR robots, while
they successfully avoid a human arm that is approaching the robot in the robot’s work space. The
detection and tracking of the human arm was done in real time using a Microsoft Kinect sensor

Obstacle Avoidance with Industrial Robots 137

0

0.5

1

−0.2

0

0.2

−0.5

0

0.5

0 1 2 3 4 5 6 7
−5

0

5
x 10

−4

d m
[m

]
e
[m

]
q̇ L

[r
ad
]

q̇ R
[r
ad
]

t [s]

Fig. 16 Results of a bimanual cooperation of two Kuka LWR robots equipped with Barret-Hand
grippers holding a plate while balancing a bottle with the task of preventing human contact. The
top plot shows the closest distance between human and nearest robot link. Second and third plot
shows the joint velocities for obstacle avoidance for left and right robot respectively. Bottom plot
shows the task error of balancing a bottle on a plate

6 Obstacle Avoidance Using Dynamical Systems

In this section we introduce dynamic movement primitives, which can be used
to encode arbitrary trajectories, and are often associated with the learning-by-
demonstration approach of controlling robots. We first provide the basics of the
dynamic motor primitives, followed by obstacle-avoidance modulation. The obsta-
cle avoidance in the DMP framework presented here is a modified approach of [57].
Simulated and real-world results are presented.

6.1 Dynamic Movement Primitives

The theoretical foundations of the dynamic movement primitives (DMPs) trajec-
tory representation was developed by Ijspeert et al. [58]. Here the discussion is
limited to discrete movement primitives, which can encode control policies for
discrete point-to-point movements. See [59–61] for the discussion of rhythmic
DMPs. The representation proposed by Ijspeert et al. is based on a set of nonlinear

138 T. Petrič et al.

differential equations with a well-defined attractor dynamics. We used the most
current formulation as outlined in [57]. For a single degree of freedom denoted by
y, which can either be one of the internal joint angles or one of the external task-
space coordinates, the following system of linear differential equations with constant
coefficients denotes a dynamic movement primitive

τ ż = αz(βz(g − y) − z) + f (x), (44)

τ ẏ = z. (45)

f (x) is defined as a linear combination of nonlinear radial basis functions

f (x) =
∑N

i=1 wiΨi (x)∑N
i=1 Ψi (x)

x, (46)

Ψi (x) = exp
(
−hi (x − ci)

2
)
, (47)

where ci are the centers of radial basis functions distributed along the trajectory and
hi > 0 their widths. Provided that the parameters αz, βz, τ > 0 and αz = 4βz , the
linear part of the system (44) and (45) is critically damped and has a unique attractor
point at y = g, z = 0. A phase variable x is used in (44), (46) and (47). It is utilized
to avoid the direct dependency of f on time. Its dynamics is defined by

τ ẋ = −αx x, (48)

with the initial value x(0) = 1. αx is a positive constant.
The weight vector w, composed of weights wi , defines the shape of the encoded

trajectory. [58, 62] describe the learning of the weight vector. Multiple DOFs are
realized by maintaining separate sets of (44)–(47), while a single canonical system
given by (48) is used to synchronize them.

6.2 Obstacle Avoidance

A control policy given by the DMP can encode either separate joint trajectories,
or external task-space coordinates. Obstacle avoidance in Cartesian space is easier
to implement since the trajectory is usually planned in Cartesian space as well.
Let us assume a three degree-of-freedom DMP system that encodes point-to-point
reaching in Cartesian space. The 3-D position vector of the 3DOF discrete dynamical
system is encoded by y = [y1, y2, y3]T . The objective is to generate a reaching
movement to a goal state g = [g1, g2, g3]T . On the way to the goal state, an obstacle
is positioned at o = [o1, o2, o3]T and needs to be avoided. A suitable coupling term
Ct = [Ct,1, Ct,2, Ct,3]T for the obstacle avoidance can be formulated as follows:

Ct = γ sig (‖o − y‖) Rẏ (π − φ) exp (−βφ), (49)

Obstacle Avoidance with Industrial Robots 139

where

φ = arccos

(
(o − y)T ẏ
‖o − y‖‖ẏ‖

)
, (50)

sig(x) = 1

1 + eη(x−d)
, (51)

R = exp
((π

2
− φ

)
n
)
, (52)

n = (o − y) × ẏ
‖o − y‖‖ẏ‖ . (53)

γ , β, and η are the scaling factors and d is the distance at which the obstacle should
start affecting the robot’s motion. The coupling term as defined above generates a
velocity component that is in a plane defined by the vectors o − y and ẏ. It is also
orthogonal to the line o−y, which is connecting the tip of the robot and the obstacle.

We can ensure that the tip of the robot, i.e., the end-effector, avoids the obstacle
by adding the coupling term Ct to Eq. (45)

τ ż = αz(βz(g − y) − z) + f(x) + Ct (54)

The resulting behavior is shown in Fig. 17. Note that in this way we can only ensure
that the robot tip avoids the obstacle. However, the rest of the robot could still collide
with it. Effectively, such an implementation of obstacle avoidance treats the problem
of the end-effector collision as the primary task. Given that the DMP encodes a
task-space trajectory, the actual joint trajectories are calculated using IK algorithms.
Null-space obstacle avoidance such as discussed in Sect. 4 can be employed for the
obstacle avoidance of separate segments of the robot.

6.3 Experimental Results

To show the applicability of the dynamic system for trajectory generation we applied
it to two Kuka LWR robots. The task was a bimanual cooperative manipulation
while avoiding obstacles. The obstacles in this example were detected using the

Fig. 17 The obstacle is the
black sphere, which is
directly in the path of the
robot, denoted by green.
When the obstacle-avoidance
term is introduced, the robot
takes the blue trajectory

P1 P2

140 T. Petrič et al.

Fig. 18 The image sequence shows a bimanual task, controlled with dynamical systems

stereo-vision cameras. The results are shown in Fig. 19 and as an image sequence in
Fig. 18. As we can see one of the arms encounters an obstacle, given by the orange
ball, and has to adapt its predefined trajectory (straight line) similar to that shown in
the example given in Fig. 17. The control of the other arm is adapted as well in order
to maintain a constant distance between them.

7 Conclusion

The presented approaches for on-line obstacle avoidance for redundant manipulators
are based on redundancy resolution at the velocity level. For the first presented
methods, the primary task is determined by the end-effector trajectories and for the
obstacle avoidance the internal motion of the manipulator is used. The goal is to
assign each point on the body of the manipulator, which is close to the obstacle, a
velocity component in a direction that is away from the obstacle. We have shown
that it is reasonable to define the avoiding motion in a one-dimensional operational
space. In this way, some singularity problems can be avoided when not enough
“redundancy” is available locally. Additionally, the calculation of the pseudo-inverse
of the Jacobian matrix Jo is simpler as it includes a scalar division instead of a
matrix inversion. Using an approximate calculation of the avoiding velocities has
its advantages computationally and it makes it easier to consider more obstacles
simultaneously.

Next, the control algorithms are presented, where the tasks’ priorities can be
altered during the execution of the motion. In the context of obstacle avoidance this
means that the obstacle can also appear on the desired end-effector trajectory. For
changing the priorities of the task we first show how to modify the prioritized task-
control algorithm at the velocity level to implement smooth transitions between tasks
with different priorities. The higher-priority task will only be active when the desired

Obstacle Avoidance with Industrial Robots 141

0

0.1

0.2

−0.2

−0.1

0

0.1

0.2

−0.2

−0.1

0

0.1

0.2

0 2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

d
m

[m
]

q̇ L
[r
ad
]

q̇ R
[r
ad
]

e
[m

]

t [s]

Fig. 19 Top plot shows the distance between the obstacle and the nearest link. Note that obstacle
avoidance is active only under 0.25m and that it only acts while the velocity is towards the obstacle.
Once the robot is past the obstacle, the perturbation-rejection properties of DMPs ensure smooth
return to the original trajectory. Second and third plot shows the joint velocities for left and right
robot respectively, which are continuous and derivable. Bottom plot shows the task error

criterion is met and otherwise the higher-priority task is smoothly deactivated. This
characteristic to separate tasks and to activate them only when necessary, improves
the performance of the robot significantly. Furthermore, the presented method does
this activation/deactivation of tasks in a smooth way. We also explain how to find
the necessary motion of the robot for all the tasks simultaneously using the extended
Jacobian. As such an approach does not always give a feasible solution we propose
to use a priority weighted damped least-squares Jacobian for arranging the tasks
by priority. In this way the best solution can be found for the particular situation.
With some examples we show how the priority-based damping factors influence the
motion generation for particular tasks. With a proper choice of these factors it is
possible to get such joint velocities which ensure the desired behavior in the best
possible way.

142 T. Petrič et al.

Finally, we show how a dynamical system for trajectory generation can be
modified to be suitable for online control. Since the dynamical system can only
avoid obstacles that appear in the trajectory path, it is necessary to use a control
method that can modify the robot null-space configuration if needed. The combina-
tion of both dynamical systems for trajectory generation and control with obstacle
avoidance is a powerful framework that can easily be used in different applications.

References

1. Chiaverini S (1997) Singularity-robust task-priority redundancy resolution for real-time kine-
matic control of robot manipulators. IEEE Trans Robot Autom 13(3):398–410. doi:10.1109/
70.585902

2. Egeland O (1987) Task-space tracking with redundant manipulators. IEEE J Robot Autom
3(5):471–475. doi:10.1109/JRA.1987.1087118

3. Lenarcic J, Stanisic M (2003) A humanoid shoulder complex and the humeral pointing kine-
matics. IEEE Trans Robot Autom 19(3):499–506

4. NakamuraY,HanafusaH,Yoshikawa T (1987) Task-priority based redundancy control of robot
manipulators. Int J Robot Res 6(2):3–15

5. Kuffner JJ, Lavalle SM (2000) RRT-connect: an efficient approach to single-query path plan-
ning, April, pp 995–1001

6. Lozano-Perez T (1983) Spatial planning: a configuration space approach. IEEE Trans Comput
100(2):108–120

7. Lozano-Pérez T, Wesley MA (1979) An algorithm for planning collision-free paths among
polyhedral obstacles. Commun ACM 22:560–570

8. Burns B (2005) Toward optimal configuration space sampling. In: Proceedings of robotics:
science and systems, pp 1–6

9. Diankov R, Kuffner J (2007) Randomized statistical path planning. In: Proceedings of
IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp 1–6. doi:10.
1109/IROS.2007.4399557. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
4399557

10. ToussaintM (2009)Robot trajectory optimization using approximate inference. In: Proceedings
of the 26th annual international conference on machine learning—ICML’09. ACM Press, New
York, pp 1049–1056. doi:10.1145/1553374.1553508. http://portal.acm.org/citation.cfm?doid=
1553374.1553508

11. Brock O, Khatib O, Viji S (2002) Task-consistent obstacle avoidance and motion behavior
for mobile manipulation. In: Proceedings of IEEE international conference on robotics and
automation, ICRA’02, vol 1, pp 388–393. doi:10.1109/ROBOT.2002.1013391

12. Colbaugh R, Seraji H, Glass K (1989) Obstacle avoidance for redundant robots using config-
uration control. J Robot Syst 6(6):721–744

13. Glass K, Colbaugh R, Lim D, Seraji H (1995) Real-time collision avoidance for redundant
manipulators. IEEE Trans Robot Autom 11(3):448–457

14. Guo Z, Hsia T (1993) Joint trajectory generation for redundant robots in an environment with
obstacles. J Robot Syst 10(2):199–215

15. Khatib O (1986) Real-time obstacle avoidance for manipulators and mobile robots. Int J Robot
Res 5(1):90–98. doi:10.1177/027836498600500106

16. Kim JO, Khosla PK (1992) Real-time obstacle avoidance using harmonic potential functions.
IEEE Trans Robot Autom 8(3):338–349

17. Maciejewski AA, Klein CA (1985) Obstacle avoidance for kinematically redundant manip-
ulators in dynamically varying environments. Int J Robot Res 4(3):109–117. doi:10.1177/
027836498500400308

http://dx.doi.org/10.1109/70.585902
http://dx.doi.org/10.1109/70.585902
http://dx.doi.org/10.1109/JRA.1987.1087118
http://dx.doi.org/10.1109/IROS.2007.4399557
http://dx.doi.org/10.1109/IROS.2007.4399557
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4399557
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4399557
http://dx.doi.org/10.1145/1553374.1553508
http://portal.acm.org/citation.cfm?doid=1553374.1553508
http://portal.acm.org/citation.cfm?doid=1553374.1553508
http://dx.doi.org/10.1109/ROBOT.2002.1013391
http://dx.doi.org/10.1177/027836498600500106
http://dx.doi.org/10.1177/027836498500400308
http://dx.doi.org/10.1177/027836498500400308

Obstacle Avoidance with Industrial Robots 143

18. McLean A, Cameron S (1996) The virtual springs method: path planning and collision avoid-
ance for redundant manipulators. Int J Robot Res 15(4):300–319

19. Seraji H, Bon B (1999) Real-time collision avoidance for position-controlled manipulators.
IEEE Trans Robot Autom 15(4):670–677

20. Volpe R, Khosla P (1993) A theoretical and experimental investigation of impact control for
manipulators. Int J Robot Res 12(4):351–365

21. Feder HJS, Slotine JJE (1997) Real-time path planning using harmonic potentials in dynamic
environments. In: Proceedings of IEEE international conference on robotics and automation,
April, pp 874–881

22. Iossifidis I, Sch G (2006) Dynamical systems approach for the autonomous avoidance of
obstacles and joint-limits for an redundant robot arm. In: Proceedings of IEEE/RSJ international
conference on intelligent robots and systems, pp 580–585

23. Khansari-Zadeh SM, Billard A (2012) A dynamical system approach to realtime obstacle
avoidance.AutonRobot 32(4):433–454. doi:10.1007/s10514-012-9287-y. http://link.springer.
com/10.1007/s10514-012-9287-y

24. Park DHPDH, Hoffmann H, Pastor P, Schaal S (2008) Movement reproduction and obstacle
avoidancewith dynamicmovement primitives and potential fields. In: Proceedings of 8th IEEE-
RAS international conference on humanoid robots, humanoids 2008. IEEE, vol 121, pp 91–
98. doi:10.1109/ICHR.2008.4755937. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=4755937

25. Sprunk C, Lau B, Pfaff P (2011) Online generation of kinodynamic trajectories for non-circular
omnidirectional robots. In: Proceedings of IEEE international conference on robotics and
automation, pp 72–77

26. Newman WS (1989) Automatic obstacle avoidance at high speeds via reflex control. In: Pro-
ceedings of IEEE international conference on robotics and automation. IEEE, pp 1104–1109

27. Xie F, Qu Z, Garfinkel A (1998) Dynamics of reentry around a circular obstacle in cardiac
tissue. Phys Rev E 58(5):6355

28. O’Neil K (2002)Divergence of linear acceleration-based redundancy resolution schemes. IEEE
Trans Robot Autom 18(4):625–631. doi:10.1109/TRA.2002.801046

29. Khatib O (1987) A unified approach for motion and force control of robot manipulators:
the operational space formulation. IEEE J Robot Autom 3(1):43–53. doi:10.1109/JRA.1987.
1087068

30. Mansard N, Khatib O, Kheddar A (2009) A unified approach to integrate unilateral constraints
in the stack of tasks. IEEE Trans Robot 25(3):670–685. doi:10.1109/TRO.2009.2020345

31. Sentis L, Park J, Khatib O (2010) Compliant control of multicontact and center-of-mass behav-
iors in humanoid robots. IEEE Trans Robot 26(3):483–501. doi:10.1109/TRO.2010.2043757

32. Stasse O, Escande A, Mansard N, Miossec S, Evrard P, Kheddar A (2008) Real-time (self)-
collision avoidance task on a HRP-2 humanoid robot. In: IEEE international conference on
robotics and automation, pp 3200–3205

33. Žlajpah L, Petrič T (2012) Serial and parallel robot manipulators—kinematics, dynamics, con-
trol and optimization, chap obstacle avoidance for redundant manipulators as control problem.
InTech, pp 203–230

34. Sciavicco L, Siciliano B (2005) Modelling and control of robot manipulators, 2nd edn.,
Advanced textbooks in control and signal processingSpringer, London

35. Petrič T, Žlajpah L (2013) Smooth continuous transition between tasks on a kinematic control
level: obstacle avoidance as a control problem. Robot Auton Syst 61(9):948–959

36. Petrič T, GamsA,Babič J, ŽlajpahL (2013)Reflexive stability control framework for humanoid
robots. Auton Robot 34(4):347–361. doi:10.1007/s10514-013-9329-0

37. Petrič T, Žlajpah L (2011) Smooth transition between tasks on a kinematic control level:
application to self collision avoidance for two kuka lwr robots. In: 2011 IEEE international
conference on robotics and biomimetics, pp 162–167

38. Sugiura H, Gienger M, Janssen H, Goerick C (2007) Real-time collision avoidance with whole
bodymotion control for humanoid robots. In: IEEE/RSJ international conference on intelligent
robots and systems, IROS 2007, pp 2053–2058. doi:10.1109/IROS.2007.4399062

http://dx.doi.org/10.1007/s10514-012-9287-y
http://springerlink.bibliotecabuap.elogim.com/10.1007/s10514-012-9287-y
http://springerlink.bibliotecabuap.elogim.com/10.1007/s10514-012-9287-y
http://dx.doi.org/10.1109/ICHR.2008.4755937
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4755937
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4755937
http://dx.doi.org/10.1109/TRA.2002.801046
http://dx.doi.org/10.1109/JRA.1987.1087068
http://dx.doi.org/10.1109/JRA.1987.1087068
http://dx.doi.org/10.1109/TRO.2009.2020345
http://dx.doi.org/10.1109/TRO.2010.2043757
http://dx.doi.org/10.1007/s10514-013-9329-0
http://dx.doi.org/10.1109/IROS.2007.4399062

144 T. Petrič et al.

39. Žlajpah L, Nemec B (2002) Kinematic control algorithms for on-line obstacle avoidance for
redundant manipulators. In: IEEE/RSJ international conference on intelligent robots and sys-
tems, vol 2, pp 1898–1903. doi:10.1109/IRDS.2002.1044033

40. Arun KS, Huang TS, Blostein SD (1987) Least-squares fitting of two 3-d point sets. IEEE
Trans Pattern Anal Mach Intell 5:698–700

41. Khatib O, Brock O, Chang KS, Ruspini D, Sentis L, Viji S (2004) Human-centered robotics
and interactive haptic simulation. Int J Robot Res 23(2):167–178

42. Konietschke R, Hirzinger G (2009) Inverse kinematics with closed form solutions for highly
redundant robotic systems. In: Proceedings of IEEE international conference on robotics and
automation. IEEE, pp 2945–2950

43. Santis AD, Siciliano B (2008) Inverse kinematics of robot manipulators with multiple moving
control points. In: Lenarčič J, Wenger P (eds) Advances in robot kinematics: analysis and
design. Springer, New York, pp 429–438

44. Antonelli G (2009) Stability analysis for prioritized closed-loop inverse kinematic algorithms
for redundant robotic systems. IEEE Trans Robot 25(5):985–994. doi:10.1109/TRO.2009.
2017135

45. Chiaverini S, Oriolo G, Walker ID (2008) Kinematically redundant manipulators. In: Siciliano
B, Khatib O (eds) Springer handbook of robotics, chap 11. Springer, Berlin, pp 245–268

46. Park J, Choi YJ, ChungWK,YoumY (2001)Multiple tasks kinematics usingweighted pseudo-
inverse for kinematically redundant manipulators. In: Proceedings 2001 ICRA. IEEE interna-
tional conference on robotics and automation (Cat. No.01CH37164), vol 4. IEEE, pp 4041–
4047

47. Baerlocher P, Boulic R (1998) Task-priority formulations for the kinematic control of highly
redundant articulated structures. In: Proceedings of IIEEE/RSJ international conference on
intelligent robots and systems, vol 1, October, pp 323–329

48. Chiaverini S, Siciliano B, Egeland O (1994) Review of the damped least-squares inverse kine-
matics with experiments on an industrial robot manipulator. IEEE Trans Control Syst Technol
2(2):123–134

49. SciaviccoL, SicilianoB (1986) Solving the inverse kinematic problem for roboticmanipulators.
In: Morecki A, Bianchi G, Kdzior K (eds) Proceedings of the 6th CISM-IFToMM symposium
on theory and practice of robots and manipulators. Springer, Krakow, pp 107–114

50. Egeland O, Sagli J, Spangelo I, Chiaverini S (1991) A damped least-squares solution to redun-
dancy resolution. In: Proceedings 1991 IEEE international conference on robotics and automa-
tion. IEEE Computer Society Press, pp 945–950

51. Buss SR, Kim JS (2004) Selectively damped least squares for inverse kinematics. J Graph
Tools 10:37–49

52. Deo A, Walker I (1992) Robot subtask performance with singularity robustness using optimal
damped least-squares. In: Proceedings 1992 IEEE international conference on robotics and
automation. IEEE Computer Society Press, pp 434–441

53. Maciejewski A, Klein C (1988) Numerical filtering for the operation of robotic manipulators
through kinematically singular configurations. J Robot Syst 5(6):527–552

54. Nakamura Y, Hanafusa H (1986) Inverse kinematics solutions with singularity robustness for
robot manipulator control. Trans ASME J Dyn Syst Meas Control 108(3):163–171

55. ŽlajpahL (2013)Multi-task control for redundant robots using prioritized damped least-squares
inverse kinematics. In: 22nd international workshop on robotics in Alpe-Adria-Danube region,
Portorož, Slovenia, 11–13 September 2013

56. Likar N, Nemec B, Žlajpah L (2012) Virtual mechanism approach for dual-arm manipulation.
Robotica 1:1–16

57. Ijspeert A, Nakanishi J, Pastor P, Hoffmann H, Schaal S (2013) Dynamical movement primi-
tives: learning attractor models for motor behaviors. Neural Comput 25(2):328–373

58. Ijspeert A,Nakanishi J, Schaal S (2002)Movement imitationwith nonlinear dynamical systems
in humanoid robots. In: IEEE international conference on robotics and automation (ICRA), vol
2. Washington, DC, pp 1398–1403

http://dx.doi.org/10.1109/IRDS.2002.1044033
http://dx.doi.org/10.1109/TRO.2009.2017135
http://dx.doi.org/10.1109/TRO.2009.2017135

Obstacle Avoidance with Industrial Robots 145

59. Gams A, Ijspeert AJ, Schaal S, Lenarčič J (2009) On-line learning and modulation of periodic
movements with nonlinear dynamical systems. Auton Robot 27(1):3–23

60. Ijspeert AJ, Nakanishi J, Schaal S (2002) Learning rhythmic movements by demonstration
using nonlinear oscillators. In: Proceedings of IEEE/RSJ international conference intelligent
robots and systems. Lausanne, pp 958–963

61. Petrič T, Gams A, Ijspeert AJ, Žlajpah L (2011) On-line frequency adaptation and movement
imitation for rhythmic robotic tasks. Int J Robot Res 30(14):1775–1788

62. Ude A, Gams A, Asfour T, Morimoto J (2010) Task-specific generalization of discrete and
periodic dynamic movement primitives. IEEE Trans Robot 26(5):800–815

Path Planning Kinematics Simulation
of CNC Machine Tools Based on Parallel
Manipulators

Luc Rolland

Abstract Since the very successful application of parallel robots in material
handling, many projects attempted to implement the Gough platforms as milling
machine manipulators with limited success mainly achieving roughing. The displace-
ment of the milling tool should meet surface finish requirements while increasing
tool feedrate in order to improve productivity. This work introduces geometric for-
malization of surface finish which is more realistic then classic error calculations.
This research work also proposes an off-line simulation tool analysing the milling
task feasibility using a robot constituted by a general hexapod parallel manipulator,
controlled by a typical CNC controller implementing classic position based algo-
rithms where joint space polynomial interpolation is utilized. High and very high
speed milling simulation results show the implementation of linear and third order
interpolation between the actuator set-points calculated from the CAD/CAM com-
puted end-effector or tool set-points. Linear interpolation is not sufficient for high
speed milling and then third order interpolation reach the required surface finish at
feasible CNC sampling rates.

Keywords Parallel manipulator · CNN · Kinematics simulation

Since the very successful application of parallel robots in material handling, many
projects attempted to implement the Gough platforms as milling machine manipula-
tors with limited success mainly achieving roughing.

The displacement of the milling tool should meet surface finish requirements.
Users also wish to increase tool feedrate in order to improve productivity thereby
reaching high speed milling levels. Even a constant high speed feedrate brings im-
portant challenges since they mean higher actuator accelerations even on straight
lines. This work introduces geometric formalization of surface finish which is more
realistic then classic error calculations.

L. Rolland (B)

High Performance Robotics Laboratory, Memorial University of Newfoundland,
St-John’s Campus, St-John’s, NL, Canada
e-mail: lrolland@mun.ca

© Springer International Publishing Switzerland 2015
G. Carbone and F. Gomez-Bravo (eds.), Motion and Operation Planning
of Robotic Systems, Mechanisms and Machine Science 29,
DOI 10.1007/978-3-319-14705-5_6

147

148 L. Rolland

This research work proposes an off-line simulation tool analysing the milling
task feasibility using a robot constituted by a general hexapod parallel manipulator,
namely the Gough Platform, often referred as the Stewart Platform. Moreover, in
order to meet the machine-tool standards, the parallel robot will be controlled by
a typical CNC controller implementing classic position based algorithms adapted
to the parallel robots with any kind of actuator polynomial interpolation. Control
sampling rates are studied and their impact evaluated.

High and very high speed milling simulation results show the implementation
of linear and third order interpolation between the actuator set-points calculated
from the CAD/CAM computed end-effector or tool set-points. The results show that
linear interpolation are not sufficient for high speed milling and then third order
interpolation reach the required surface finish at fast and feasible CNC sampling
rates.

1 Introduction

After the confirmed success of parallel robots as flight simulators followed by their
more recent breakthroughs in material handling, they are actually implemented as
machine-tools. Several commercialization attempts were made over the years. With
the promise of increased productivity, we aim to achieve the two following goals:

1. To reach higher feedrates while keeping excellent surface finish quality
2. To obtain faster accelerations during path transfers between task trajectories.

The main advantages of these robotic manipulators compared to serial ones are
simpler construction, more rigid structures, non-cumulative kinematics chain deflec-
tions, greater throughputs from higher accelerations and less energy consumption
from smaller actuators. On the other hand, these manipulators feature drawbacks
such as limited workspace and complex non-linear kinematics.

In material handling applications the ratio between actuator displacement travel
and accuracy is around 1,000 over 1 mm, whereas in milling applications the ratio
becomes 1,000 over 1 micron, meaning it 1,000 times larger.

Due to the highly non linear nature of parallel robots, their implementation still
poses serious challenges.

Initial path planning investigations for parallel robots were trying to determine
if any task would include their entire paths inside the robot workspace, where the
notion of trajectory quality has been formulated in terms of distances from actu-
ator limits [39]. Kinematics chain collision was added to the analysis [11]. Path
planning involved singularity investigation to avoid instantaneous self-motion [46].
Singularities were extensively studied [3, 21, 23]. The problem evolved into multi-
objective optimization finding the optimum path according to a certain number of cri-
terias [9, 10]. Chablat and Wenger [41] introduced collision avoidance to singularity
analysis to answer the question of moveability in the presence of obstacles. Planning
time-minimal trajectories were introduced by [1, 27]. In [29], the authors minimize

Path Planning Kinematics Simulation of CNC Machine Tools … 149

electrical energy, kinetic energy, robot motion time separating two sampling periods,
and maximize a measure of manipulability allowing singularity avoidance.

More specifically, implementing the Gough platform as a milling machine, often
referred as the Stewart platform, path planning was studied where the contour error
was used as a performance criteria to determine the effect of PID controls applied on
each actuator [38]. The redundant sixth degree-of-freedom was utilized for optimiza-
tion according to various criterias [44]. Path planning schemes also targeted the axial
force minimization [65], where maximum constant cutting force along the contour
were maximized [49]. Then, added objectives included stiffness maximization [52].

This research work addresses the feasibility of a successful machining task in
terms of surface finish quality, the manipulator type, the sensor accuracy, the control
strategy (position or velocity control), typical feedback servo loops, signal digiti-
zation, time digitization, inter-point polynomial interpolation, the related computer
numerical control algorithms and even signal synchronization. This general frame-
work allows to study any specific robot controlled by any typical Computer Numer-
ical Controls (CNC). A novel formal approach to evaluate surface finish is proposed
including a milling task description. A CNC module simulation block is introduced
where the effect of time and signal digitization can be studied allowing to adjust
sampling rates. The task is analyzed from a pure kinematics point of view, allowing
to determine the best achievable result and eventually increase machining parameters
such as feedrates.

In the next section, the high speed milling problem and context are explained.
It includes the theoretical background on parallel manipulator kinematics and CNC
control The third section reviews the machining Process. The fourth section covers
the geometric formalization of surface finish. The fifth section presents the path
planning simulation results with position control.

2 General Issues with Parallel Kinematic Machines

2.1 Problem Statement

To obtain five axis CNC machining at high speed feedrate levels, the Gough platform
or hexapod has to be envisaged with six kinematics chains between the fixed base
and the mobile platform where the tool is located, Fig. 1. Then, three possible cases
can be derived. The 6UPS/6SPU configuration contains each kinematics chain with
a free prismatic actuator (P) between one Universal joint (U) and one ball joint
(S); the 6RUS/6RSU includes kinematics chains constituted by a revolute actuator
(R) operating a crank moving a bar including one Universal joint (U) and one ball
joint (S); and finally the 6PUS/6PSU replacing the crank by a tracked prismatic
actuator (P).

In reality, any robotic system is never constructed identical to the ideally designed
one. A significant difference can be often observed between the theoretical and

150 L. Rolland

RRPS

RRRS

PRRS

A1
A2

A4

A5
A6

B2

B4

Yc

B1 B6

B5

B3

Xc

A3

C

E6

E4E1

E2

Zc

E3

Xo

Zo

E5

O
YoA5

B2

B4

Yc

B1 B6

B3

Xc

Zc

Xo

Zo

C

Yo

A3

A1 A2 O
A4

A6

L1

B5
l4

Xo

Zo

O oY

B2

B4

Yc

B1 B6

B3

Xc

Zc

C

L1

B5
l4

A1

A6
E1

E2 A2

A5
A3

A4

E3

E5

E4

E6

Fig. 1 Typical 6-6 parallel robots: the 6UPS/6SPU, 6RUS/6RSU and 6PUS/6PSU

practical configurations translating into errors on the passive joint positions of the
mobile platform and the fixed base. These configuration errors will without doubt
have a significant impact on milling precision. These discrepancies will usually grow
following various milling operations where unpredictable wear is occurring in the
joints. These will also appear following maintenance where the manipulator was
reassembled if not followed by an adequate calibration procedure [20].

In the literature, we can identify several procedures and software analysing the
characteristics and performance of robotic manipulators [76]. These studies seek
to evaluate the extremes of a certain number of criterions. More specifically, in
parallel robotics, lets highlight some interesting packages proposing some level of
verifications:

1. Localisation of robot trajectories inside the workspace [39, 43].
2. Singularities over nominal trajectories inside the workspace [21, 39, 46].
3. Power and torque of motors [61].
4. Positioning errors [38, 50].

These analyses concern the entire workspace where performance can be affected
by large variations. In many scenarios, it may be possible to achieve the task over a
large portion of the workspace and then the task quality may not reach the desirable

Path Planning Kinematics Simulation of CNC Machine Tools … 151

levels in certains specific areas of the workspace. The performance analysis shifted
away from workspace studies towards the task trajectories themselves studying the
following factors:

1. the joint travel in terms of the actuators and passive joints [39]
2. the kinematics chain and platform collisions [11, 39], extrapolated from serial

robotics work [71]
3. maximum velocity [35]
4. dynamic rigidity [62]
5. servo modeling [38, 62]
6. robot control [38]
7. tool deformation in milling tasks [25]
8. sixth rotation angle optimization for milling tools [20, 44].

These research works do not include all the important criterias. The displacement
of the milling tool should meet surface finish requirements and tool feedrate. The
second criterion will be increased in order to improve productivity. Even a constant
feedrate brings important challenges on trajectories such as arcs since they mean
higher accelerations.

The goal of this work is to propose tools analysing the milling task feasibility
using a robot constituted by a 6-6 hexapod parallel manipulator, namely the Gough
Platform, often referred as the Stewart Platform. Moreover, in order to meet the
standards of the machine-tool domain, the parallel robot will be controlled by a
typical CNC controller implementing classic algorithms adapted to parallel robots.

The factors influencing robot trajectory following are the sub-space of task execu-
tion, tool feedrate, position sensor accuracy and the choice of control algorithms. The
milling task is in turn described by several robot trajectories. For high speed milling,
surface finish is required to obtain asperities not exceeding 10–20µ over the entire
trajectories constituting a milling task. To qualify as high speed milling (HSM), the
feedrate should reach 20 m/min and the target is even 60 m/min, classified as ultra
high speed milling (UHSM).

The simulation system will require solving the kinematics problems several times.
To alleviate many problems related to usual numerical methods, an exact and cer-
tified method was derived and will be applied to perform end-effector position and
orientation calculations [59, 60]. This method implements ideal based techniques
utilizing Groebner bases and rational univariate representations (RUR) insuring that
the produced equivalent system is exactly corresponding to the original system. The
RUR system includes one univariate equation from which the real roots are calcu-
lated and proven in one-to-one objective correspondence with the original kinematics
problem. Then, proven root isolation techniques will provide for all the exact real
roots. The system applies the modular black-box approach where any user can re-
place the selected kinematics solver by any other, at the condition that it provides for
sufficient accuracy to study milling tasks.

In practice, during design, construction, start-up or after robot maintenance, these
simulation tools will allow to select the complete control approach including sen-
sors and the path planning algorithms; The operator will be able to study the control

152 L. Rolland

scheme, the path following algorithms, the joint interpolation functions, the axis
servo controls, the response-time of the various control levels, the effect of time dis-
cretization, the effect of digital conversions and parameter fine-tuning. The proposed
tools will allow to determine milling task feasibility.

2.2 Kinematics of the General 6-6 Parallel Manipulator

Any manipulator is characterized by its mechanical configuration parameters and the
posture variables. The configuration parameters are thus OA|R f

, the base attachment
point coordinates in R f (the base reference frame, located at O), and CB|Rm

, the
mobile platform attachment point coordinates in Rm (the mobile platform reference
frame, located at C). The kinematics model variables are the joint coordinates and
end-effector generalized coordinates. The joint variables are described as li , the
prismatic joint or linear actuator positions. The generalized coordinates are expressed
as

−→
X comprising the end-effector position and orientation.
The kinematics model is an implicit relation between the configuration parameters

and the posture variables, F(
−→
X , L, OA|R f

, CB|Rm
) = 0 where L = {l1, . . . , l6}. For

the sake of clarity and simplicity, OA|R f
will be replaced by OAO and CB|Rm

by
CBO .

This simulator shall only require successive passages from the joint space to the
task space and vice versa, Fig. 2. The Inverse Kinematics Problem (IKP) is defined
as:

Definition 1 Given the generalized coordinates of the manipulator end-effector, find
the joint positions.

Accordingly, the Forward Kinematics Problem (FKP) is defined as:

Definition 2 Given the joint positions, find the generalized coordinates of the ma-
nipulator end-effector.

Fig. 2 Kinematics model

X

OA , CB
Rf Rm

1

6

Manipulator configuration

coordinates Generalized

...
F=0

MODEL

Joint

coordinates
l

l

Path Planning Kinematics Simulation of CNC Machine Tools … 153

Usually the IKP is required to model the FKP. To solve the FKP, an exact method
based on Groebner bases and rational univariate representations shall be applied
[59, 60].

The forward kinematics problem (FKP), Fig. 2, has been identified as a difficult
problem [57]. Usually the inverse kinematics problem is required to model the FKP
and is defined as [56]: given the generalized coordinates of the manipulator end-
effector, find the joint positions.

Accordingly, the forward kinematics problem is defined as [56]: given the joint
positions, find the generalized coordinates of the manipulator end-effector.

The kinematics problem can be described that, contrarily to serial manipulators,
the inverse kinamtics problem yields a closed-form explicit solution and the for-
ward kinematics involves the resolution of at least six non-linear equations. These
kinematics models play an increasingly important role when robotic manipulator
accuracy is decreased to the micron level.

2.3 Vectorial Formulation of the Implicit Kinematics Model

Containing as many equations as variables, vectorial formulation constructs an equa-
tion system for each kinematics chain [54], as a closed vector cycle between the Ai

and Bi kinematics chain attachment points, the fixed base reference frame O and the
mobile platform reference frame C . For each kinematics chain, an implicit function−−→
Ai Bi = U1(X) can be written between joint positions Ai and Bi . Each vector

−−→
Ai Bi

is expressed knowing the joint coordinates L and X giving function U2(X, L). The
following equality has to be solved: U1(X) = U2(X, L). The distance between Ai

and Bi is set to li . Thus, the end-effector position X or C can be derived by one
platform displacement

−→
OC and then one platform general rotation expressed by the

rotation matrixR. For each distinct platform point
−→
Bi O with i = 1, . . . , 6, see Fig. 3,

the position can be calculated in terms of the base reference frame [53]:

−−→
O Bi O = −→

OC + R
−−→
C Bi (1)

The vectorial formulation evolves as a displacement based equation system using
the following relation:

−−→
Ai Bi = −→

OC + R
−−→
C Bi − −−→

O Ai (2)

These six equations cannot be applied as such. Hence, each kinematics chain can
be expressed using the distance norm constraint [53]:

l2
i = ||Ai Bi ||2 (3)

The rotation matrix R can be written utilizing various orientation models with
their specific rotation variable sets such as navigation angles (yaw, pitch and roll),
Euler angles, quaternions or even taking the nine rotation matrix components as

154 L. Rolland

Fig. 3 Kinematics chain and
mobile platform vectors

O

C
B1

A1

B1

B2

u1 u2

u3

C Bi

B3

variables [60]. Implementing the Eq. (3) directly, various displacement based equa-
tion models can be derived depending on the selected orientation variables [60].

Another excellent approach is called the position based modeling and consists
in considering any rigid object to be positioned into three dimensional space by
three distinct points, Fig. 3. Any rigid body three points are actually characterized by
three distinct distance constraints and a pointing axis which remain constant. This
principle was then applied to the forward kinematics model of parallel manipulators
by Lazard [55]. It is easy to choose three distinct points which are not collinear on
most mobile platforms. These three points are usually selected to coincide with three
joint centers connecting the mobile platform to the kinematics chains allowing to
utilize the vectorial model, Fig. 3 and to rewrite of

−−→
Ai Bi , Eq. (2) as it is explained in

details in [60].
Two reasons justify the choice of the position based model. Every variable yield

the same units and their ranges are equivalent leading to the same weight in the

Path Planning Kinematics Simulation of CNC Machine Tools … 155

equation system. The rotation impact is included into the point parameters and made
equivalent to the translation impact.

The coordinates of the three distinct joint center points become the nine variables
from which constraints equation can be written. The three platform distinct points
are usually selected as the three first joint centers, namely B1, B2 and B3. Each
coordinate of the selected joint centers becomes a variable. The nine end-effector
variables are set to:

−→
O Bi |O = [xi , yi , zi] for i = 1 . . . 3. To simplify computations,

we choose one non-Cartesian reference frame Rb1 to be located at B1 joint center.
Then, we define u1, u2 and u3 as Rb1 reference frame axes which are calculated by:

u1 =
−−−→
B1 B2

||−−−→
B1 B2||

, u2 =
−−−→
B1 B3

||−−−→
B1 B3||

, u3 = u1 ∧ u2 (4)

This new reference frame Rb1 is applied instead of Rm as the mobile platform Carte-
sian reference frame and has its origin located at B1 and the reference frame axes
u1 and u2 point towards B2 and B3 respectively. The third reference frame u3 points
perpendicular to the plane determined by B1, B2 and B3. It becomes the mobile plat-
form pointing axis. This transformation is achieved to produce a simpler equation
system.

Knowing that the mobile platform is supposed infinitely rigid, any platform point
M can be expressed in the reference frame Rb1 by calculating the following linear
composition: −−→

B1 M = aM u1 + bM u2 + cM u3 (5)

where aM , bM , cM are constants in terms of these three points. Hence, in the case
of the IKP , the constants are noted aBi , bBi , cBi , i = i . . . 6 and can explicitly be
deduced from the mobile platform fixed distances CB|C by solving the following
linear system of equations:

−−→
B1 Bi |Rb1

= aBi u1 + bBi u2 + cBi u3, i = 1 . . . 6. (6)

where
−−→
B1 Bi |Rb1

= −−→
B1 Bi |C .

Note that the mobile platform fixed distances CB|C are given by the configuration
which is obtained from the design values or deduced from a calibration procedure
after the Gough platform manipulator construction. The configuration file is provid-
ing the position of all six joints of the mobile platform relative to the mobile platform
reference frame and this ensure that the points belong to the same rigid body which
is the mobile platform.

Equation 7 requires that we calculate the configuration distances with:

−−→
B1 Bi |C = −−→

C Bi − −−→
C B1, i = 1 . . . 6. (7)

Hence, the remaining three mobile platform joint centers B4, B5 and B6 are ex-
pressed in terms of the nine end-effector variables.

156 L. Rolland

Using the relations Eq. (6), the distance constraint equations l2
i = ||−−→Ai Bi |O ||2, i =

1 . . . 6 can be expressed. Thus, for i = 1 . . . 6, the IKP is obtained by isolating the
li actuator variables in the six following equations:

l2
i = (xi − O Aix)

2 + (yi − O Aiy)
2 + (zi − O Aiz)

2, i = 1 . . . 3 (8)

l2
i = ||−−→

B1 Bi |Rb1
− −−→

O Ai O ||2, i = 4 . . . 6 (9)

2.4 The Inverse Kinematics Problem

The Eqs. (3) or (9) are actually the two general forms of the explicit IKP.

2.5 The Forward Kinematics Problem

For the general Gough platform parallel manipulator, it is actually not possible to
express the FKP directly or explicitly [45]. We have to revert to the IKP expression
which gives an algebraic system comprising six equations in terms of three point vari-
ables: x1, y1, z1, x2, y2, z2, x3, y3, z3, Eq. (9). This system contains algebraic (poly-
nomial) functions which can be handled by the numerical solvers implemented in all
genetic algorithms.

The usual method advocated for writing the FKP equation system starts by rewrit-
ing the IKP as functions. This produces an algebraic system of three leg equations
and three functions in terms of the nine variables: xi , yi , zi , i = 1, 2, 3.

Fi = (xi − O Aix)
2 + (yi − O Aiy)

2 + (zi − O Aiz)
2 − l2

i , i = 1 . . . 3 (10)

Fi = ||−→Bi |Rb1
− −−→

O Ai O ||2 − l2
i , i = 4 . . . 6 (11)

When solving the FKP with numeric or algebraic methods, it is necessary to
provide a zero-dimensional system, meaning an equation system which contains as
many equations as their are variables [59, 60]. In this case, this means that to the six
equations provided by the IKP, three more shall be selected to close the system.

Moreover, the actual FKP is derived directly from the IKP model, Eq. (11), and it
does not provide for any information to constrain the position of the mobile platform
joint positions which are necessary to describe the FKP.

Hence, to complete the algebraic system and to constrain the mobile platform
joint positions, three constraints are derived from the following three functions. Two
functions can be written using two characteristic platform distances, expressed as
norms between the B1, B2 distinct points and the B1, B3 ones. The computations
will select the variables which are only at the right distance from the B1 reference
joint point. These constraint equations require one last equation. The points are

Path Planning Kinematics Simulation of CNC Machine Tools … 157

known relative to each other in terms of distance but the mobile platform alignment
is left undetermined. To alleviate this problem, the third constraint equation will
determine where the mobile platform is pointing. The pointing vector is selected as
the one perpendicular to the three points Bi , i = 1, 2, 3 by calculating the vectorial
multiplication of the two vectors separating B2 and B3 from B1:

F7 = (x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2 − ||−−−→

B2 B1|Rb1
||2 (12)

F8 = (x3 − x1)
2 + (y3 − y1)

2 + (z3 − z1)
2 − ||−−−→

B3 B1|Rb1
||2 (13)

F9 = (x3 − x1)(x2 − x1) + (y3 − y1)(y2 − y1) + (z3 − z1)(z2 − z1)

−||−−−→
B3 B1|Rb1

|| ∧ ||−−−→
B2 B1|Rb1

|| (14)

The choice of F9, the last function, provided an important mobile platform con-
straint related to the pointing axis. For F9, it would be possible to write a function
related to the distance between B2 and B3 but our experience shows us that it does
lead to better results then the platform pointing function.

The result constitutes then an algebraic system with nine equations in the former
nine unknowns.

2.6 Machine Tool Control

In a high speed milling machine, a typical Gough platform being a general 6-6
or hexapod robot is constituted by several parts driven by a controller connected
to a remotely located CAD-CAM computer. As it is explained in [45], one CNC
machine-tool is essentially considered identical to a robot achieving the predeter-
mined continuous path following encountered in machine tool processes.

The CNC is defined as the control system capable to manage the machine-tool
and its control in order to follow a program achieving a milling task [45].

Practically, the CNC handles a written program in a standard format constituded
by G codes from the ISO standard [36, 37]. Note that the machine-tool industry
considers this format mandatory for machine-tool controls. Any simulation package
shall consider that CNC systems handle these codes and simulate their operations.

In typical CNC, the control unit is divided into three control stages or levels:
the off-line CAD-CAM level providing the task set-points describing the nominal
paths, the on-line nominal path following as the upper controller level and the mo-
tor servoing as the lower controller level, usually driving directly the actuators by
implementing one PID feedback loop for each axis. Each stage operates in discrete
time according its own cycle time or sampling rates:

• Tc: The task trajectory set-point file sampling rate produced by the CAM program.
• Tp: The path following cycle time corresponding to the time required to calculate

the joint servo trajectory set-points.

158 L. Rolland

• Ts : The motor servo cycle time corresponding to the time dedicated to PID loop
computation.

• Ta : The motor amplifier sampling rate which gives the time at which their output
is being refreshed.

The simulation module will allow to test and verify the three first cycle times.
The amplifier sampling rates will not be included in the simulation work. The task
follows one or several nominal functions from which discretization produces the task
path file containing a large number of points being dependent on the sampling rates.
The number of points will have an impact on surface finish and impact CNC’s ability
to follow the nominal path.

The machine-tool operates in a spatial continuous domain which is completely
described by 6 dimensions (3 translations and 3 rotations), λ = 6, with parameters
∈ �. To execute a milling task, the path following algorithm may require from three
to five axes control. The sixth axis corresponds to the tool spindle rotation axis and
therefore does not participate to the trajectory pursuit. The CNC should then receive
five analog inputs or encoder inputs for actuator axis positions and drive five analog
or direct pulse-width-modulation outputs for actuator positioning. The simulation
will not include the tool spindle axis angular speed control.

The CNC can either implement one of the two control types: position and speed
control [15]:

• Position control is preferred when you can calculate the IKP. Joint position control
follows the trajectory profile at the axis level from interpolated point to interpo-
lated point and does not control the velocities between these points leading to a
discrepancy between the exact nominal trajectory and the achieved trajectory at the
tool level. If the range of motion is important then the robot reaches its destination
with larger inaccuracies. The traditional solution is to slowdown robots.

• Speed control is based on small displacements and implements the computation
of the inverse Jacobian matrix. You will need to calculate the FKP.

2.7 Task Space Conversion to Joint Space

In principle, implemented in the off-line CAM, the trajectory planning algorithm
calculates one inverse kinematics problem from the Cartesian-space set-point trajec-
tory functions to determine the six actuator-space functions which are then called
the joint set-point trajectories. The real continuous signals are computed from these
functions. Then, the continuous signals are sampled according to the first level cycle
time Tp corresponding to the time required to calculate these points and the signal
magnitude discretized into a certain number of bits (Fig. 4).

When planning and following any task path, the upper level controller calculates,
in advance and in real time at each t = k Tp for k = 1 . . . n p where n p is the number
of points provided by CAD/CAM, all interpolated points between joint set-points
that will then serve as set-points to the six lower level servo controllers driving the

Path Planning Kinematics Simulation of CNC Machine Tools … 159

Fig. 4 Example of signal
and time digitization of
nominal actuator function

li(t)

t (ms)

1 2 3 7 8 t (kTp)

t (nTs)5 10 20 30 40

li(k)

li(n)

t (ms)

li

axis

path

axis

Nominal

Set−points

interp 1

interp 2

actuators. It is interpolating these reference values using a polynomial interpolation
function or blended polynomial function sets (Fig. 5). Since the majority of control
algorithms calculate the instructions in the joint space and there are no sensors for
performing a return position on the end-effector where the milling tool is located in
task space, then the controller must perform the forward kinematics problems (FKP)
calculations to return the tool Cartesian position and orientation.

Fig. 5 Details of actuator
signal digitization

interpollation 1

interpollation 2

asservissement

Set−points

li
Nominal curve

t (ms)

160 L. Rolland

3 CNC Handling of the Machining Process

3.1 Introduction on Milling

Tournassoud emphasizes that the robotic task is defined in terms of constraint veri-
fication for a set of measurements applied on the system [71]. All the performance
of a robotic task is then reduced to trajectory tracking and is expressed as follows:

Let q0 be an initial configuration and q f a final configuration, both achievable,
that is to say, within the robot workspace and non-singular, then one trajectory H(λ)

with λ ∈ [0, 1] is calculated in the free space, such that H(0) = q0 and H(1) = q f .
Nilsson and Udupa proposed initial work on robotic tasks for specific robots

[48, 73]. In [34], a first general approach included the first trajectory planning al-
gorithm. In [6, 31], numerous work summary indicates mostly obstacles avoidance.
Coiffet extends the application of constraints to the end-effector member maintained
in a constant orientation, singularity avoidance and sampling rates [15]. Specifically,
the milling goal is to produce a workpiece by material removal [45]. The end result
is an object whose surfaces are characterized by a certain quality of surface finish.
This quality is normally defined by a permissible error denoted by a tolerance in
terms of the part’s drawing and an index describing the surface quality. The part
is thus represented like a geometric object drawn using one typical CAD software.
The CAM functionality translates the virtual object shape into a certain number of
paths spanning and scanning the part. These task paths are the CNC set-points in one
machining file.

The machining path is defined as the functional path that determines the contact
position between the tool tip and the workpiece [11].

3.2 Description

Several parameters are required to proceed with tool operation description: tool
tip position, tool tip orientation, tool feedrate, nominal trajectory to follow during
machining and tool rotational speed. These parameters, except the last one, have
been integrated into the simulation tool since they are all specifically related to the
robot operation. Machining consists of a set of task trajectories, Fig. 6.

Simulation proceeds with surfacing tasks which are easy to visualize and simple
to represent. However, from the point-of-view of the robot control, they are not
necessarily easier with a parallel manipulator featuring non-linear kinematics.

Definition 3 Let H be a machining task, cut into a set of m paths, H = h1, h2, . . . ,

hm . Let τtot be called the total time to perform all machining and let τi be path i
duration.

The trajectory Pd departure point and the Pf arrival point or final point are re-
spectively corresponding to time t = 0 and t = τtot [35, 69]. We know that the

Path Planning Kinematics Simulation of CNC Machine Tools … 161

Fig. 6 Example of a typical
milling task

Tooltip

Workpiece

end-effector is at rest at the point of departure and arrival, where the velocity and
acceleration are then set to zero at these points. For each task path hi , the start point
and the end point are made to respectively correspond to times ti = ∑i

k=1 τk−1 and
t = ∑i

k=1 τk .
The realization of the task is essentially reduced to the location of the tool tip

in task space. According to Chedmail and Mery [11, 45] the majority of machining
tasks consists of two types of paths, Fig. 6: Continuous machining path and transition
paths between them when there is no contact between the tool and the part. The
transitions can be described as robotics classical point-to-point motion which should
last a minimum amount of time [45]. This is actually where parallel robots can also
be of advantage compared to massive serial Cartesian machines.

Definition 4 The functional paths are defined as continuous paths corresponding to
the machining process of the workpiece [11].

These paths are usually made at a constant feedrate to ensure the quality of the
finished surface. Each functional path is defined by two nominal functions: one func-
tion describing the tool Cartesian position, a second function describing orientations.
For example, in Fig. 6, we observe that the straight line segments are the machining
paths. A task is defined by a succession of displacements when the tool is actually
in operation [45]:

Xnom
i |R f = (xi (t), yi (t), zi (t), θ1i (t), θ2i (t), θ3i (t))

t (15)

Typically, milling tasks generally consist of sets of arcs, straight lines, spirals
and eventually splines. The robot moves the end-effector at constant feedrate. This

translates by the following Cartesian constraint: ||−−→
Vc(t)|| = Fr where Fr is a constant.

Thus, the speed being the velocity magnitude is always constant. These tasks are
usually defined on planes parallel to the XY plane of R f , the robot reference frame,
meaning that we must ensure that: Pd [z] = Pf [z] = Pi [z].

162 L. Rolland

3.3 Trajectory Position Nominal Function

A task is defined by a parametered nominal function set where each function is

defined as
−→
P

nom
(λ) with λ ∈ [0, 1] to exactly describe the task trajectory to follow.

It covers the vast majority of machining work in the industry [45]. For each segment,
we assign λ = 0 to the start point Pd to and end point Pf with λ = 1. The task will
seek to move the robot tool along a function whose general implicit form is defined
as follows: −→

P
nom

(λ) = f (Pd , Pf , λ) (16)

In the case of a constant feedrate, τ represents the time to complete a path, one can
express the parameter λ versus time t according to the following relationship: λ = t

τ
.

The implicit function becomes:

−→
P nom(t) = f (Pd , Pf , t, τ). (17)

Knowing that the traveled distance δS is the actual distance along the path between
Pd the start point and Pf the final point and is calculated by δS = Fr τ where Fr is
the constant tool feedrate. Then, the implicit function is expressed by:

−→
P nom(t) = f (Pd , Pf , t, Fr). (18)

This form will be retained for the simulation since, in the machine-tool domain,
it is customary to specify the machining tasks in terms of initial points, endpoints,
path type and feedrate [45].

3.3.1 Trajectory in a General Plane

For reasons of simplicity, the machining majority is arranged on planes parallel to
the XY plane.

3.3.2 Straight Line Segment Formulation

The straight line segment starts by calculating the trajectory time:

τ = ||Pd − Pf ||
Fr

(19)

Then, the segment equation is determined by:

−→
P nom = Pd + (Pf − Pd)

τ
t (20)

Path Planning Kinematics Simulation of CNC Machine Tools … 163

3.3.3 Arc Formulation

It is therefore proposed several methods to evaluate an arc depending on the data
entered:

• First case—start point: Pd , end point: Pf , feedrate: Fr , centre of rotation: CC and
radius: r ;

• Second case—start point: Pd or end point: Pf , displacement angle: δφ, feedrate:
Fr , centre of rotation: CC and radius: r ;

• Third case: start angle: φ, end angle: Φ, feedrate:: Fr , centre of rotation: CC and
radius: r .

Two additional inputs are necessary. To calculate the path as such, Pf is not
directly used and it will only used calculate the total time τ .

Firstly, the angular velocity is calculated and then, the circular function is in-
stantiated. Particular attention must be brought to the φ angle calculation which
corresponds to either the starting point or end point:

• to match the start time which is not always zero,
• to proceed with quadrant verification related to trigonometric function inversion.

The first case is selected being considered sufficient for simulation purposes and
the following algorithm is implemented:

Arc(Input) ω = Fr
r

if Pd [2] − CC[2] ≥ 0 then
φ = arccos(Pd [1]−CC[1]

||Pd −CC ||)

else
φ = π − arccos(Pd [1]−CC[1]

||Pd −CC ||)

if Pf [2] − CC[2] ≥ 0 then

Φ = arccos(
Pf [1]−CC[1]
||Pf −CC ||)

else
Φ = π − arccos(

Pf [1]−CC[1]
||Pf −CC ||)

−→
P nom = [CC[1] + rcos(ωt + φ), CC[2] + rsin(ωt + φ), Pd [3]]
tau = Φ−φ

ω

return(
−→
P nom , τ)

3.4 Trajectory Orientation Nominal Function

The end-effector motion can be modeled to obtain decoupled translation and ro-
tation displacements [15, 26]. Many methods exist for modeling orientations and
their displacements: navigation angles (roll, pitch, yaw), two types of Euler angles,
quaternions, Rordrigues parameters, the normal vector to the mobile platform, the
pointing vector of the tool axis, etc. The constant orientation was selected for the
proposed simulation.

164 L. Rolland

The first set of encountered trajectories are the so-called 3 DOFs milling tasks or
surfacing tasks. These are performed at constant orientation where the tool axis is
kept perpendicular to the workpiece. To simplify calculations, the parallel robot is
positioned to keep the tool axis parallel to the base reference frame z axis. Then, the
rotation matrix is equal to the identity matrix. This means that the end-effector axis is
set to Nc = [0, 0, 1]which is selected for orientation formulation, since many rotation
formulations lead to singularities when R = I (Euler angles , Bryant angles, etc.)
as shown in [15, 26]. Path planning can be simplified with the calculations avoiding
rotation matrix transformations. This axis can be called pointing axis or normal axis
since it is usually selected the mobile platform normal axis coinciding with the tool
axis.

It is possible to apply the same formulation for any other constant pointing axis
displacement. The normal vector becomes Nc = [nx , ny, nz]. However, in this case,
the normal rotation parameters are the converted into a rotation matrix. This is used
to calculate the IKP in trajectory analysis.

3.5 Milling Task Preparation

One mechanical workpiece is drawn on a CAD program as a virtual solid. The
CAM machining module defines cutting planes on the workpiece. It proceeds by
intersecting the cutting planes with the virtual solid to determine several parallel
surfaces. It fills the surface with cutting paths resulting into a set of nominal Cartesian
trajectory functions that are saved in a nominal Cartesian trajectory file. The CAM
program further transforms the nominal Cartesian trajectory functions into sets of
points that are saved in a theoretical Cartesian trajectory set-point file which can be
uploaded to the CNC controller.

3.6 Initial Digitization of Milling Trajectories

As input, a task definition file comprises a series of nominal functions; each function is
of the form

−→
X nom(t)|rF

. The points of departure and arrival PD and Pf are known for
each function. Theoretical positions are thus calculated from these nominal symbolic
functions:

−→
X th(c)|rF

= −→
X nom|rF

(t) at each Tc sampling cycle. Time Tc is assumed to
remain constant throughout the process. The total time is therefore set to t = c Tc

for c = 1, . . . , s. Firstly, a first time digitization occurs at the sampling rate, Fig. 7,
which has the effect of transforming the paths in point series.

Finally, the CAM program considers that all theoretical points are connected by
line segments in some kind of linear approximation, Fig. 7. Further point sampling
is then performed by separating the points selected by a calculated distance in accor-
dance with a chord error Ec, Fig. 8. Thus, as an arc is bent by a straight line rope, each

Path Planning Kinematics Simulation of CNC Machine Tools … 165

Fig. 7 Digitization of task
Cartesian theoretical path

1P

2P

3P

n−1P

nP

Fig. 8 Digitization of task
theoretical section

E c

pair of set points sees a line segment connecting them. This cord is at a maximum
distance of Ec from the nominal trajectory. Let the arc be of radius R and length
L, then Ec = R − Rcos(L

2R). In order to obtain a predetermined Ec cord error, the

arc point distance is calculated by: L = arccos(1 − Ec
R). Then, the cord distance is

calculated by: D = 2
√

E2
c − 2R Ec. Knowing the constant feedrate and the cord

distance, the sampling time Tp is then calculated. Each new point will then add to
the original theoretical path file. The resulting file is called the complete theoretical
Cartesian path. The CAM program linearization is typically already introducing an
error, so that the accuracy of the robot can never be better than this Eccord error
value.

Then, the IKP is calculated on each theoretical Cartesian path. For each pose point
comprising the position and orientation, the actuator positions are calculated. The
result will be written in an actuator theoretical set-point file which is then uploaded
to the CNC controller.

3.7 Second Digitization of Milling Trajectories

Running at a smaller cycle time, the six servo feedback loops traditionally implement
a PID feedback loop on each linear axis position. During each Tp cycle time, the path
following level interpolates a certain number points inside the interval determined
by each point pair in the actuator theoretical set-point file. The number of points
is determined by: N = floor(

Tp
Ts

) where Ts is the servo feedback loop cycle time
determined by the time to calculate the PID algorithm. Actuator point sampling is
then performed by utilizing a polynomial interpolation function.

166 L. Rolland

Typically, in many CNC controllers, it is observed that the servo sampling rate
(second level) can be ten times the cycle time of the first level.

4 Verification Criteria for Machining

4.1 Machining Accuracy

The most important performance criterion is the machining surface finish. Since
machining requires a trajectory following with high precision, we must ensure that
the path is simulated within a given precision [45].

In classic robotics, the majority of path planning applications are classified as
point-to-point and a marginal number are concerned by continuous paths such as in
machining. However, even when implementing continuous, the robot control algo-
rithms handles points. The main difference with point-to-point control is that the task
is defined by several hundreds of points instead of a few points. Liege and Coiffet
define four types of precision: static accuracy, dynamic accuracy, repeatability and
resolution [15, 32]. Repeatability stands for the reproduction accuracy of the same
movement and does not really apply for continuous trajectory tasks. The resolution
is the smallest amount of change in the positions and orientations. It is determined
by robot component choices.

Definition 5 Static accuracy is defined as the ability of the robot to position and
orient the end-mechanism in accordance with the programmed instructions.

This notion is applicable to a specific point and then cannot be extrapolated to
one entire continuous trajectory.

Definition 6 Dynamic accuracy is the ability of the robot to follow a path by the
end-effector mechanism in accordance with the programmed path.

In principle, the error is calculated at all points along its theoretical path X (kT)th

where k = 1, . . . , kmax where is the kmax number of discretized points. The error
vector between the nominal path and the simulated path is then:

−→ε (kT) = −−−−→
X (kT)th − −−−−→

X (kT)nom (21)

The distance or error vector magnitude is also calculated:

ε(kT) = ||−−−−→
X (kT)th − −−−−→

X (kT)nom || (22)

After calculating the error vector or value of distance for a path, we determine the
overall path accuracy for each error vector component and the error vector distance
by choosing the largest value.

Path Planning Kinematics Simulation of CNC Machine Tools … 167

4.2 Error over the Cartesian Position

4.2.1 Calculation of the Absolute Error and the Error Vector Between
the Points

In practice, the end-effector precision calculation is divided into two task space parts:
Cartesian position and Cartesian orientation. For the error in the Cartesian position,
we obtain the equation is calculated for each theoretical Fig. 8:

ε(kT) = ||−−−−→
X (kT)sim − −−−−→

X (kT)th || (23)

We also study the nature of the error vector.

−−−→
ε(kT) = −−−−→

X (kT)sim − −−−−→
X (kT)th (24)

This calculation is also applicable on theoretical points of the CAD produced files.
Since the error along the trajectory is not as significant as the transversal path

error, we calculate the tangential error and transversal error, Fig. 9. The transverse
error can also be called cross-sectional, normal or perpendicular error.

The tangential error allows us to evaluate if the simulated path is ahead or behind
the nominal planned route. A tangential error indicating that the real path is followed
ahead of time is of course advantageous because it means that the trajectory can be
continued in a shorter time than expected. In fact, Liegeois states that a robot can be
late in the path set without the finished surface being affected [32]. A tangential error
indicating that the real path is plagued by a slowdown may not necessarily affect the
surface finish as such and therefore is not so considered important.

On the other hand, the transversal error will directly affect the surface finish. It
corresponds to the difference between the simulated path and the nominal path at
time t = kT where k = 1, . . . , m with m the number of points. Then, we try to
determine if the simulated path is located within a given path tube with a predefined
radius. The tube radius is determined by machining tolerances.

Fig. 9 Error vector,
tangentielle error and
transverse error

P(kT)
th

sim
P(kT)

nom
P(t)

_

tang

E(kT)
trans

E(kT)

E(kT)

V

_

c

168 L. Rolland

To calculate the vector tangential error, we must determine the unit vector
tangential to the nominal curve through the velocity vector:

−−→
u(t) =

−−→
Vc(t)

||−−→
Vc(t)||

(25)

The value of the tangential error is obtained by:

ε(kT)tang = −−→
u(t) · −−−−→

δP(kT) (26)

Applying the Pythagorean theorem, we finally find the value of the transversal
error:

ε(kT)trans = [(ε(kT))2 − (ε(kT)tang)2]1/2 (27)

The calculation of transversal error with respect to the nominal trajectory is not
exact but an approximate value of the deviation sought because it is obtained from the
digitized values and is not necessarily the perpendicular error defined as the minimal
distance between the nominal and theoretical trajectories. It is necessary to nuance
this comment. The perpendicular error may not be a direct measurement of surface
finish. For example, during 3D milling, the robot is positioned so as to obtain the
Z-axis of the terminal member perpendicular to the surface to be machined. Then,
we seek to mill a planar surface that is positioned parallel to the XY plane and the
finished surface will be evaluated by calculating ε(kT)z . Upon reaching the portion
of the part where a wall is reached, the wall perpendicular error will be determined.

4.3 Calculate the Actual Deviation from a Nominal Curve

To be meaningful, dynamic precision must be defined relative to the nominal path

[32]. On the Fig. 9, we note that
−−−→
ε(kT)trans is not the actual deviation from the

nominal curve. To achieve this, we must calculate the point P̃ being the closest to−−−→
P(kT)sim on the nominal curve. To do this , we determine the time tdevi which
corresponds to the point P̃ on the nominal curve, Fig. 9, and two methods can be
derived.

The first method consists in determining the normal to the nominal curve which
is performed by solving the following system:

(
−−−→
P(kT)sim − −−→

P(t)nom) · −−→
Vc(t) = 0 (28)

The second method consists in searching the minimum distance between
−−−−−−→
P(kT)sim

and
−−→
P(t)nom by calculating the minimum of the function:

Path Planning Kinematics Simulation of CNC Machine Tools … 169

G(t) = ||−−−→
P(kT)sim − −−→

P(t)nom || (29)

which corresponds to determining the time at which the derivative of the function is
zero, that is to say when G

′
(t) = 0.

Introducing tdevi time in the function, we obtain P̃ and then the deviation is
calculated:

ε(kT) = ||−−−→
P(kT)sim − P̃|| (30)

Deviation value is determined by calculating the maximum deviation of an entire
trajectory. The second approach for calculating the deviation tdevi has the advantage
of being less complex in terms of calculations and therefore will be preferred.

4.4 Calculation of Deflection from a Straight Line Segment

When the nominal paths are straight lines, it is not necessary to perform the calcula-
tion of the deviation to approach presented in the previous section. Determining the

deviation
−−−→
P(kT) directly by calculating the distance between the simulated

−−−→
P(kT)

and the line defined by the starting point
−→
P1 and the arrival point

−→
P2 of the section:

ε(kT) = (||−−−−−−→
P1 P(kT)||2 − ||−−−−−−→

P1 P(kT) ∗
−−→
P1 P2

||−−→
P1 P2||

||2)1/2 (31)

4.5 Calculation of the Deviation from a Theoretical Curve

There are many cases where the nominal functions are not available and the curves
are not necessarily straight lines. For example, as we have already explained, many
CAD program produce files with an Ec cord error between selected points. Not
knowing the curve profile between these points, the CAM module interpolates using
a linear function, that is to say, we assume that the points are connected by line
segments, being different from the exact shape having then an unknown curvature.
The curvature was lost in the digitization process. The deviation calculation takes
then Eq. (31). The question to be carefully addressed is the choice of the points P1

and P2. We wish to determine the theoretical interval being closer to
−−→
Psim

k , the point
simulated, Fig. 10. The comparison is limited to adjacent intervals: the i −1 segment

before and the segment i after the point
−→
Pth

k .
There are two possible methods for interval selection. The first method is selecting

the interval by the scalar products respectively for the interval i − 1 and i:

170 L. Rolland

P(kT)
th

sim
P(kT)

_
E(kT)

P

devi
E(kT)

devi
E(kT)

P

sim
P(kT)

_
E(kT)

P(kT)
th

Fig. 10 Deviation vector from the theoretical points

vk−1 = (
−−→
Pk−1

th − −→
Pk

th) · −−−−→
εP(kT) (32)

vk = (
−−→
Pk+1

th − −→
Pk

th) · −−−−→
εP(kT) (33)

The closest interval will be identified by selecting the positive result between vi−1
and vi .

The second method involves the calculation of the time corresponding to the point
on each straight line segment:

tk−1 = Tp
Px

sim + Py
sim + Pz

sim

||−−→Pk+1
th − −→

Pk
th ||2

where P
sim = −→

Pk
sim − Pth

k−1 (34)

tk = Tp
Px

sim + Py
sim + Pz

sim

||−−→Pk+1
th − −→

Pk
th ||2

where P
sim = −→

Pk
sim − Pth

k (35)

The two times are then compared with the cycle time Tp and the closest interval from
the point is the one confirming 0 ≤ t ≤ Tp.

The second approach is less complex to implement and has been chosen.
The distance is determined by replacing P1 and P2 by the extrema of the chosen

interval in Eq. (31). This distance is not equal to the actual deviation since each inter-
polation corresponds to the straight line segment between two points. It is necessary
to take the deviation vector and add the vector related to the Ec error being perpen-
dicular to the straight line segment and included in the plane defined by the velocity
vector at point i and the vector aligned with straight line segment.

Note that if the theoretical path is a straight line, then we can calculate the deviation
directly with Eq. (31).

Path Planning Kinematics Simulation of CNC Machine Tools … 171

4.6 Calculate the Actual Deviation from a Theoretical Curve
with a Small Radius of Curvature

In the case where the radius of curvature is high, this method is not guaranteed to
calculate the minimum distance, since the theoretical

−→
Pk

th is not necessarily the
closest to the simulated

−→
Pk

sim point. For example, such a situation is encountered
when machining rectangles with corners with radii of curvature tending towards 0.

To remedy this problem, an added algorithm determines
−→
Pn

th , the closest the-
oretical simulated point, by seeking the value of n such that (||−→Pn

th − −→
Pk

sim ||) is
minimized by varying n from n − 20 to n + 20. Indeed, it is not necessary to test all
trajectory points. Then, the deviation is calculated with the aforementioned method.

4.7 Orientation Errors

There would as many methods to calculate errors over the orientations as there exists
representation models. We chose to determine the orientation error by calculating
the variations on the normal vector because it is more ergonomic to visualize the
movement of a vector that characterizes the parallel robot mobile platform.

−−−−−→
δNc(kT) = −−−−→

Nc(kT) − −−−−→
N (kT)th

c (36)

In addition, CAD programs represent orientations by expressing the pointing vec-
tor collinear with the tool axis which, in the case of parallel robots, is commonly
corresponding to the mobile platform normal vector.

4.8 Actuator Joint Errors

The simulator also compares the theoretical and simulated actuator joint trajectories,
thereby obtaining the actuator error for the six actuators. For i = 1, . . . , 6, we
calculate ζ sim

i = Lsim
i − Lth

i .

4.9 Error Models

In order to simulate a realistic trajectory pursuit, error models are introduced at
different levels of the simulator. The majority of errors are introduced by adding
a parameter to a function determined by randomly selecting a value in a specific
interval [−max,+max].

172 L. Rolland

We have chosen to the modeling of all the following errors:

• CAD file precision,
• sensor accuracy, δ li ,
• configuration precision, δO Ai and δC Bi ,
• precision on the calculation of the FKP,
• resolution of time measurement Δt and temporal digitization,
• the resolution of signal digitization,
• the asynchronous nature of joint signal updates.

We can thus simulate a trajectory introducing all errors, any combination of these
or even only one. The simulation can be tailored to the actual study and it is possi-
ble to isolate errors and investigate their impact on surface finish. We propose two
alternative calculation errors:

• the relative error between two steps,
• the absolute error giving the end-effector accuracy.

5 Results of Path Simulation

In this section, as part of the path planning related to milling and by extension to
all high accuracy applications, kinematics simulation results calculates end-effector
surface finish impact integrating configuration inaccuracies and position based CNC
control strategies. The results are compiled, presented, analyzed and compared.

5.1 Parallel Robot Configuration

We try one difficult FKP example on a typical 6-6 hexapod with 40 complex solutions
out of which 16 real solutions can be extracted. Let us take a typical 6-6 configuration
example written in a configuration text file which includes the manipulator essential
parameters: the coordinates of the joint center positions O Ai and the coordinates
of the joint center positions C Bi . The unit is the millimeter. These values were
determined by a calibration procedure from a real robot and are shown on Table 1.

5.2 Typical Trajectory and Realistic Milling Configuration

We have implemented various control strategies in position by interpolating points
by polynomial functions of the first degree and third degree. In the first case, one has
to calculate the acceleration as a function of the end conditions.

Path Planning Kinematics Simulation of CNC Machine Tools … 173

Table 1 Parallel manipulator configuration table

Joint coordinates Respective values

O A1(x) O A1(y) O A1(z) 464.141 389.512 −178.804

O A2(x) O A2(y) O A2(z) 569.471 207.131 −178.791

O A3(x) O A3(y) O A3(z) 529.050 −597.151 −178.741

C B1(x) C B1(y) C B1(z) 68.410 393.588 236.459

C B2(x) C B2(y) C B2(z) 375.094 −137.623 236.456

C B3(x) C B3(y) C B3(z) 306.664 −256.012 236.461

Fig. 11 Selected nominal paths

We chose two nominal paths located on planes parallel to the XY plane. These
path nominal functions are respectively determined by the following configurations,
Fig. 11:

• a line segment starting at point [500, 20, 1,200] and ending at point [1,500, 20, 1,

200] traveled at three constant feed forward speeds: 30, 45 and 60 m/min.
• an arc of radius 500 mm from the point [100, 600, 700] to reach point [−400, 100,

700] using the same three feed rates. The center of the arc is point [100, 100, 700].
Note that the selected tasks are simulated trying to reproduce realistic milling

conditions. We will study the trajectories at different feed rates which are set to 30,
45 and 60 m/min. The feedrates of 30 and 60 m/min speeds correspond to the speeds
of high speed milling HSM and ultra high speed milling UHSM respectively. A study
is also conducted on the impact of path following cycle times which will be set at 5,
10 and 20 ms.

The simulator computes and sketches the two resulting Cartesian tool paths uti-
lizing a controller with a cycle time of 10 ms and a feed rate of 30 m/min, Fig. 12
where the one dimension is exaggerated to visualize the path errors. There is a com-
plex high-frequency noise on every simulated patterns which highlight sudden and
unpredictable changes in the continued trajectory.

174 L. Rolland

Fig. 12 Simulated path pursuits: straight line segment and arc

Fig. 13 Simulated path deviation for a straight line segment: cycle times of 5, 10 and 20 ms, linear
joint interpolation

5.3 Control with Linear Interpolation

5.3.1 Straight Line Segment with Linear Interpolation

The first tests with the simulator implements the first level control proceeding with
actuator joint set-point interpolation utilizing a linear interpolation. In the first analy-
sis, we calculate the deviation of a typical path segment simulated over a nominal
path. We therefore study the straight line segment path by first varying the cycle time
of the order and the results are shown in Fig. 13.

Path Planning Kinematics Simulation of CNC Machine Tools … 175

At 5 ms, the deviation is a high frequency signal oscillating around a straight line
function f (t) = t/4+1 in microns. The amplitude increases and has peaks reaching
3.6µ. At 10 ms, the signal oscillates around a constant straight line at 1.8µ and
oscillations then to increase very slowly. At 20 ms, the average rose to 4.75µ and
the extrema of the oscillations are 1 and 8.5µ with peaks at 9.5µ.

In the second analysis, we study the same trajectory by now varying the feed-rates
and the results are shown in Fig. 14.

At feedrates of 30 m/min, the average is near 2µ and the high frequency oscilla-
tions feature peaks from 0 to 3.5µ. At 45 m/min, a similar signal is obtained where
the average rises to 3.5µ and peaks reach 6µ. A 60 m/min, the oscillation average
reaches 5µ with 10µ peaks.

We continue the analysis by showing graphs of vertical errors that are perpendic-
ular to the machined surface errors since they provide with an excellent account of
surface finish. The first graph shows the results at the selected feedrates, Fig. 15.

At feedrates of 30 m/min, the signal shows a high frequency oscillation with an
average of approximately 1.25µ with peaks as low as −1µ and as high as 3µ. At
45 m/min, there is an oscillation between −1 and 5µ with an average of just over
2.5µ. A 60 m/min, it is observed that the oscillation evolves mainly around 4.7µ
between −1 and 8.5µ with some peaks at 10 and −1.5µ (Fig. 16).

Fig. 14 Simulated path deviation for a straight line segment: feedrates of 30, 45 et 60 m/min, linear
joint interpolation

176 L. Rolland

Fig. 15 Simulated vertical error for a straight line segment: feedrates of 30, 45 et 60 m/min, linear
joint interpolation

We close this simulation cycle with vertical errors at the selected cycle times,
Fig. 16.

At 5 ms, the signal is oscillating at a high frequency of around 0.3µ. The amplitude
of oscillation increases significantly. Peaks reached 2.4 and −1.6µ causing surface
finish error to become 4µ. At 10 ms, the signal oscillates around 1.6µ with an
amplitude increasing less rapidly where extremas of 3.75 and −1.6µ are extracted
giving surface finish variations of 5.35µ. At 20 ms, the oscillation is constant between
8.5 and −0.5 with an average of 4.2µ. Peaks reach −1.4 and 9.5µ leading to vertical
variations of almost 11µ.

Simulation results are collected in Table 2. On the table, the order of interpolation
functions, the Tp cycle time in ms, the Fr feed rate in m/min, then the minimum and
maximum extremas for the ε vector error magnitude in microns, the εZ vertical error
in microns and ||δ|| deviation in microns.

As might be suspected by intuition, we get better results by reducing the path
controller (first level) cycle time and also the feedforward velocity. At very high
speeds or with long cycle times, we met and exceeded the threshold of 10µ. At
feedrates below or equal to 30 m/min and cycle times equal or less than 10 ms, the
kinematics surface finish or the best feasible surface finish would reach 5µ.

Path Planning Kinematics Simulation of CNC Machine Tools … 177

Fig. 16 Simulated vertical error for a straight line segment: cycle times of 5, 10 et 20 ms, linear
joint interpolation

Table 2 Simulated errors and deviations for a straight line segment: position control with linear
joint interpolation

Order Tp Fr εmax εmin εmax
Z εmin

Z ||δ||max ||δ||min

ms m/min µ µ µ µ µ µ

1 10 30 4.900 0.142 3.716 −1.738 3.796 0.047

1 10 45 7.198 0.219 5.918 −1.403 6.055 0.047

1 10 60 11.872 0.026 10.067 −1.403 10.106 0.096

1 5 30 3.783 0.142 2.470 −1.738 3.726 0.021

1 10 30 4.900 0.142 3.716 −1.738 3.796 0.047

1 20 30 11.487 0.258 9.734 −1.403 9.747 0.096

5.3.2 Arc with Linear Joint Interpolation

In the second analysis, the same simulation process is repeated for a typical arc path
y first varying the cycle time of the order and the results are shown in Fig. 17.

On Fig. 17, the signals are high frequency oscillations around a constant value.
At 5 ms, the signal oscillates around an average of 1.5µ with peaks evolving from
0 to 3µ. At 10 ms, the signal oscillates around the value of 4µ between extremas of

178 L. Rolland

Fig. 17 Simulated path deviation for an arc: cycle times of 5, 10 et 20 ms, linear joint interpolation

0.5 and 7.5µ with peaks near 0 and 8µ. Increasing to 20 ms, the average increases to
14µ. The signal resembles a very regular high frequency sinusoidal curve ranging
from near 0 to 27µ.

In the second analysis, we then continue the arc path analysis by plotting vertical
errors at the usual different feed-rates and the results are shown in Fig. 18.

The feedrate change from 30 m/min speed to 45 m/min doubles the signal av-
erage and its oscillation amplitude (from [0, 8] to [0, 16]). Similarly, The feedrate
change from 30 m/min speed to 60 m/min triples the signal average and its oscillation
amplitude (from [0, 8] to [0, 27]). In the later, the signal average is 15µ (Fig. 19).

The feedrate change from 30 m/min speed to 45 m/min doubles the signal average
and its oscillation amplitude (from [−0.5, 3] to [−0.5, 6]). Similarly, The feedrate
change from 30 m/min speed to 60 m/min triples the signal average and its oscillation
amplitude (from [−0.5, 3] to [−0.5, 10.5]). In the later, the signal average nears 5.5µ.

To end this simulation cycle, vertical errors are computed at the selected cycle
times, Fig. 20.

The oscillating signals are similar to the high frequency previous ones. At 5 ms,
the oscillation ranges from −0.25 and 1.25µ with an average at around 0.5µ. At
10 ms, the oscillation extremes reach −0.2 and 2.8µ with an average at 1.5µ. At
20 ms, the signal is a high frequency composite oscillation with extremas at 0 and
10.5µ and peaks at −1 and 11µ.

Path Planning Kinematics Simulation of CNC Machine Tools … 179

Fig. 18 Simulated path deviation for an arc: feed-rates of 30, 45 et 60 m/min, linear joint interpo-
lation

Fig. 19 Simulated vertical error for an arc: feed-rates of 30, 45 et 60 m/min, linear joint interpolation

180 L. Rolland

Fig. 20 Simulated vertical error for an arc: cycle times of 5, 10 et 20 ms, linear joint interpolation

Table 3 compiles the results of kinematics simulations for the arc path tests.
The results confirm the former results obtained with straight line segments. The

simulator can provide surface finish of 10µ, only in the case of high speed milling
(<30 m/min).

5.3.3 Discussion on the Linear Joint Interpolation

From the kinematics analysis simulation, providing the lowest performance bounds,
the CNC robot controller with linearly approximated trajectories can reach the surface

Table 3 Simulated errors and deviations for an arc: position control with linear joint interpolation

Order Tp Fr εmax εmin εmax
Z εmin

Z ||δ||max ||δ||min

ms m/min µ µ µ µ µ µ

1 10 30 8.164 3e−5 3.2325 −0.806 8.157 0.016

1 10 45 16.128 0.023 6.533 −0.481 6.533 −0.481

1 10 60 27.178 0.129 10.803 −0.806 27.093 0.043

1 5 30 3.602 0.023 1.378 −0.806 3.598 0.023

1 10 30 8.164 3e−5 3.2325 −0.806 8.157 0.016

1 20 30 27.178 0.129 10.803 −0.806 27.093 0.037

Path Planning Kinematics Simulation of CNC Machine Tools … 181

finish if the feed-rate and path following cycle time are set properly. The controller can
provide surface finish of 10µ, only in cases up to high speed milling (<30 m/min).
The surface finish is not met at faster feedrates. Linear interpolators should keep
control cycle times relatively short (<10 ms) in order to reach the required surface
finish. The surface finish is not met at longer cycle times.

To achieve an accuracy of less than 10µ, one should set the response time at
10 msec or less and maintain the feed-rates below 45 m/min. This also means that
UHSM is not feasible.

Those linear displacements are performed by a robotic system which is not linear.
The interpolators try to transform curved path segments into linear path segments
leading to interrupted segments. The linear interpolation is only matching the po-
sitions at the ends of the intervals, Fig. 7. As an advantage, the linear interpolation
algorithm implementation is easy and does not require difficult computations lead-
ing to smaller cycle times. As disadvantage, with the application of parallel robots,
the control system will not be able to reach 10µ surface finish without very fast
controllers featuring small cycle times. Moreover, rapid feedrates are not practical.

Let us add that the Cartesian velocity vector undergoes abrupt changes when
passing from one linear segment to another which will result in dynamics overshoot.
In fact, the continuation of this type of movement by an effective robot is impossible
without stopping at each interval change which would mean slowing down the milling
process.

This type of interpolation is only recommended for roughing milling.

5.4 Control with Third Order Interpolation

5.4.1 Straight Line Segment with Third Order Interpolation

The second simulation test series implement the first level control proceeding with
actuator joint set-point interpolation utilizing a third order polynomial interpolation.
In order to ensure the continuity of movement, it is then found to match the positions
and joint velocities at the ends of intervals. As it was done for linear interpolation,
tests begin with an analysis of deviation with the different selected feed-rates, Fig. 21.

The three signals are featuring growing high frequency oscillations until the tra-
jectory ends. At 30 m/min, the signal oscillates around a straight line described by
equation f (t) = 0.375 t + 0.75 and it peaks at 3.75µ. At 45 m/min, the curve devi-
ation appears more advantageous since it oscillates about the same straight line axis
as with 30 m/min and the signal peaks do reach just under 3µ. At 60 m/min, the same
conclusions can be deduced and the peaks exceed 3µ slightly.

The test are repeated by varying the cycle time of the CNC controller. The results
are shown in Fig. 22.

182 L. Rolland

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0 0.2 0.4 0.6 0.8 1 1.2 1.4

D
ec

al
la

ge
 (

m
m

)

Temps de trajet

Deviation de position
’deviation_ligne_enpos_ordre3_10ms_45mmin.mup.gnup’

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
ec

al
la

ge
 (

m
m

)

Temps de trajet

Deviation de position
’deviation_ligne_enpos_ordre3_10ms_60mmin.mup.gnup’

deviation_ligne_enpos_ordre3_10ms_30mmin.mup.gnup’

‘

Fig. 21 Simulated path deviation for a straight line segment: feedrates of 30, 45 et 60 m/min, cubic
joint interpolation

The three signals are actually very similar and are featuring growing high fre-
quency oscillations until the trajectory ends. The signals oscillate around a line
described by equation f (t) = 0.375 + 0.75t . The peaks reach 3.75µ. Note that the
feed-rate does not seem to impact deviation significantly. The difference between the
error vector ||ε|| and deviation ||δ|| is less than one micron. This result means that
the third order interpolation allows accurate theoretical trajectory following. This
also means that the path following will take place without undue delay or advance
(Fig. 23).

The three signals are actually very similar and are featuring growing high fre-
quency oscillations until the trajectory ends. The graphs show signals which are
centered on 0.2µ with increasing oscillation with peaks getting close to 2 and −2µ.

The vertical error is simulated at various feed-rates, Fig. 24.
The three signals are actually very similar and are featuring growing high fre-

quency oscillations until the trajectory ends. The signals are around the constant
value 0.1µ with peaks from −1.8 to 2µ. At 45 m/min, the peaks are ±1.4µ.

Table 4 shows a compilation of results.
All error and deviation values remain below or equal to 4µ.

Path Planning Kinematics Simulation of CNC Machine Tools … 183

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

D
ec

al
la

ge
 (

m
m

)

Temps de trajet

Deviation de position
’deviation_ligne_enpos_ordre3_5ms_30mmin.mup.gnup’

’deviation_ligne_enpos_ordre3_10ms_30mmin.mup.gnup’

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

D
ec

al
la

ge
 (

m
m

)

Temps de trajet

Deviation de position

’deviation_ligne_enpos_ordre3_20ms_30mmin.mup.gnup’

Fig. 22 Simulated path deviation for a straight line segment: cycle times of 5, 10 et 20 ms, cubic
joint interpolation

5.4.2 Arc with Third Order Interpolation

The same simulation process is repeated for a typical arc path by first varying the
feed-rate and the results are shown on Fig. 25.

The three signals are actually very similar and are featuring irregular oscillation
signals with averages at approximately 0.5µ with peaks at 0,02 and 1.85µ. As the
feedrate increases, the deviation signal becomes less dense indicating a reduction of
oscillation frequencies.

The simulation is repeated by varying the cycle time of the CNC controller and
the results are shown in Fig. 26.

The three signals are actually very similar and are featuring irregular oscillation
signals with averages at approximately 0.5µ. Moreover, the deviation remains below
2µ regardless of the case (Fig. 27).

In Fig. 24, the simulation results are shown for the selected feedrates.
The three signals are actually very similar and are featuring irregular oscillation

signals with averages at approximately 0,1µ with extremas at −0.4 and 0.6µ and
peaks at ±0.8µ.

We then study the vertical error where the controller cycle times are varied, Fig. 28.

184 L. Rolland

-0.002

-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

0.002

0.0025

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

E
rr

eu
r

(m
m

)

Temps de trajet

Erreur verticale (perpendiculaire la surface)
’erreur_Z_ligne_enpos_ordre3_5ms_30mmin.mup.gnup’

-0.002

-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

0.002

0.0025

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

E
rr

eu
r

(m
m

)

Temps de trajet

Erreur verticale (perpendiculaire la surface)
’erreur_Z_ligne_enpos_ordre3_10ms_30mmin.mup.gnup’

-0.002

-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

0.002

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
rr

eu
r

(m
m

)

Temps de trajet

Erreur verticale (perpendiculaire la surface)
’erreur_Z_ligne_enpos_ordre3_20ms_30mmin.mup.gnup’

Fig. 23 Simulated vertical error for a straight line segment: cycle times of 5, 10 et 20 ms, cubic
joint interpolation

As it was observed for the former tests, the vertical error signals are very similar
and their density is inversely proportional to the controller cycle time.

Tests ends by collecting the results onto the following Table 5.
The results barely exceed the value of 2µ whatever the speed and response time.

5.4.3 Discussion of the Third Order Joint Interpolation

A trajectory tracking using third order interpolators gives very satisfactory results.
In all instances, deviation of less than 2µ are obtained.

It is notable that the arc path results are better than for straight line segment. The
difference between the error vector and deviation is at most 0.2µ. As a consequence,
the simulated path is not significantly delayed or ahead of the nominal path. It is
observed that the curve is simulated even closer to the theoretical curve for the case
of the line segment.

The results of surface finish indicate milling quality within 5 and 2µ respec-
tively for the line segments and circular arcs. Indeed, the results of the third order
interpolation show that hexapod performance should be sufficient for UHSM (fee-
drate of 60 m/min or higher). Position control with cubic interpolators are highly
recommended.

Path Planning Kinematics Simulation of CNC Machine Tools … 185

-0.002

-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

0.002

0.0025

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

E
rr

eu
r

(m
m

)

Temps de trajet

Erreur verticale (perpendiculaire la surface)
’erreur_Z_ligne_enpos_ordre3_10ms_30mmin.mup.gnup’

-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

0 0.2 0.4 0.6 0.8 1 1.2 1.4

E
rr

eu
r

(m
m

)

Temps de trajet

Erreur verticale (perpendiculaire la surface)
’erreur_Z_ligne_enpos_ordre3_10ms_45mmin.mup.gnup’

-0.002

-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

0.002

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
rr

eu
r

(m
m

)

Temps de trajet

Erreur verticale (perpendiculaire la surface)
’erreur_Z_ligne_enpos_ordre3_10ms_60mmin.mup.gnup’

Fig. 24 Simulated vertical error for a straight line segment: feedrates of 30, 45 et 60 m/min, cubic
joint interpolation

Table 4 Simulated errors and deviations for a straight line segment: position control with cubic
joint interpolation

Order Trajet Fr εmax εmin εmax
Z εmin

Z ||δ||max ||δ||min

ms m/min µ µ µ µ µ µ

3 10 30 3.787 0.069 2.124 −1.936 3.786 0.021

3 10 45 4.053 0.069 2.351 −2.059 3.285 0.032

3 10 60 3.692 0.069 1.978 −1.738 3.146 0.035

3 5 30 3.787 0.069 2.124 −1.936 3.786 0.021

3 10 30 3.787 0.069 2.124 −1.936 3.786 0.021

3 20 30 3.692 0.069 1.978 −1.738 3.146 0.035

Furthermore, algorithms can be implemented in a conventional CNC adjusted
with relatively slow response time.

Among other advantages, the following can be observed:

• The relative ease for calculating joint speeds at the beginning and the end of a
trajectory interval.

• The continuity of movement is ensured.

186 L. Rolland

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

D
ec

al
la

ge
 (

m
m

)

Temps de trajet

Deviation de position
’deviation_arc_enpos_ordre3_10ms_30mmin.mup.gnup’

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

0 0.2 0.4 0.6 0.8 1 1.2

D
ec

al
la

ge
 (

m
m

)

Temps de trajet

Deviation de position
’deviation_arc_enpos_ordre3_10ms_45mmin.mup.gnup’

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

D
ec

al
la

ge
 (

m
m

)

Temps de trajet

Deviation de position
’deviation_arc_enpos_ordre3_10ms_60mmin.mup.gnup’

Fig. 25 Simulated path deviation for an arc: feedrates of 30, 45 et 60 m/min, cubic joint interpolation

0
0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

D
ec

al
la

ge
 (

m
m

)

Temps de trajet

Deviation de position
’deviation_arc_enpos_ordre3_5ms_30mmin.mup.gnup’

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

D
ec

al
la

ge
 (

m
m

)

Temps de trajet

Deviation de position
’deviation_arc_enpos_ordre3_10ms_30mmin.mup.gnup’

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

D
ec

al
la

ge
 (

m
m

)

Temps de trajet

Deviation de position

’deviation_arc_enpos_ordre3_20ms_30mmin.mup.gnup’

Fig. 26 Simulated path deviation for an arc: cycle times of 5, 10 et 20 ms, cubic joint interpolation

Path Planning Kinematics Simulation of CNC Machine Tools … 187

-0.001

-0.0008

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

0.0008

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

E
rr

eu
r

(m
m

)

Temps de trajet

Erreur verticale (perpendiculaire a la surface)
’erreur_Z_arc_enpos_ordre3_10ms_30mmin.mup.gnup’

-0.001

-0.0008

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

0.0008

0 0.2 0.4 0.6 0.8 1 1.2

E
rr

eu
r

(m
m

)

Temps de trajet

Erreur verticale (perpendiculaire a la surface)
’erreur_Z_arc_enpos_ordre3_10ms_45mmin.mup.gnup’

-0.001

-0.0008

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

0.0008

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

E
rr

eu
r

(m
m

)

Temps de trajet

Erreur verticale (perpendiculaire a la surface)
’erreur_Z_arc_enpos_ordre3_10ms_60mmin.mup.gnup’

Fig. 27 Simulated vertical error for an arc: feedrates of 30, 45 et 60 m/min, cubic joint interpolation

-0.001

-0.0008

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

0.0008

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

E
rr

eu
r

(m
m

)

Temps de trajet

Erreur verticale (perpendiculaire a la surface)

’erreur_Z_arc_enpos_ordre3_5ms_30mmin.mup.gnup’

-0.001

-0.0008

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

0.0008

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

E
rr

eu
r

(m
m

)

Temps de trajet

Erreur verticale (perpendiculaire a la surface)

’erreur_Z_arc_enpos_ordre3_10ms_30mmin.mup.gnup’

-0.001

-0.0008

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

0.0008

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

E
rr

eu
r

(m
m

)

Temps de trajet

Erreur verticale (perpendiculaire a la surface)
’erreur_Z_arc_enpos_ordre3_20ms_30mmin.mup.gnup’

Fig. 28 Simulated vertical error for an arc: cycle times of 5, 10 et 20 ms, cubic joint interpolation

188 L. Rolland

Table 5 Simulated errors and deviations for an arc: position control with cubic joint interpolation

Order Tp Fr εmax εmin εmax
Z εmin

Z ||δ||max ||δ||min

ms m/min µ µ µ µ µ µ

3 10 30 2.034 0.042 0.695 −0.806 1.939 0.012

3 10 45 1.991 0.023 0.704 −0.812 1.816 0.037

3 10 60 1.823 0.058 0.695 −0.806 1.802 0.040

3 5 30 2.196 0.023 0.704 −0.812 1.939 0.012

3 10 30 2.034 0.042 0.695 −0.806 1.939 0.012

3 20 30 1.823 0.058 0.695 −0.806 1.802 0.033

The only drawback is that the acceleration continuity will not be ensured. Indeed,
nothing prevents large acceleration variations to be applied on the motors.

5.5 Discussion on the Results of Position Control

Linear orders are not recommended despite their simplicity because you can not
perform high-speed machining. The third order gives the best results because the
accuracy is always ensured to remain under 4 and 2µ respectively for straight line
segments and arcs. Order 5 provides slightly less favorable results and it is more
complex to implement.

The implementation of high order interpolators becomes difficult because you
have to compute interval transition conditions that are not easy to calculate.

All interpolators allow to follow trajectories with feed-rates up to 30 m/min cor-
responding to HSM at rapid cycle times of 5 ms or less. Note that trying to verify
UHSM with feedrates up to 60 m/min, the results indicate the application of order
three or five. Any case is feasible with third order interpolations.

6 Conclusion

The existence of an exact method for solving the FKP of the general 6-6 hexapod
allows the design of a complete kinematics simulator to study milling processes. A
certified calculation method of the robot end-effector position has been implemented
in the analysis of milling tasks. It consists of a trajectory following algorithm required
for task planning applications, simulation and control. Several modeling modules can
simulate various essential elements: parallel manipulator configuration, kinematics
modeler and solver, CNC control algorithms, set-point interpolators and performance
calculations. For performance evaluation, new metrics were proposed to evaluate
surface finish more accurately.

Path Planning Kinematics Simulation of CNC Machine Tools … 189

This simulation package provides a kinematics result in the form of the trajectory
deviation and vertical error as a lower bound on the estimation of the surface finish
of any milling task.

We studied the performance of the classic CNC position control scheme applied to
the general 6-6 parallel robots and compared it with an existing hexapod. Modeling
of various interpolation strategies at various feedrates and cycle times allowed us to
determine that milling quality surface finish can be obtained for HSM if third-order
interpolations are implemented. We can also implement functions interpolations of
the fifth order, but we must implement control cycle time less than or equal to 10 ms
but they remain more mathematically involved to prepare. Linear interpolations will
not allow for HSM and will only be limited to roughing at feedrates slower then
20 m/min.

With position control, UHSM becomes only feasible if third order interpolations
are established. Results are slightly better for arcs then for straight line segments.

This work has allowed the design and programming of a complete robotic simula-
tion package served as the backbone for the complete high speed milling simulation
program prepared as a collaboration of the INRIA in Nancy and Paris VI Universityto
fine-tune general Gough platforms and their position-based CNCs.

Acknowledgments This research work was produced by the author during his PhD and with special
funding from the Lorraine Region, the INRIA and CMW-Marioni. It has helped French hexapod
manufacturers to fine-tune their milling machines.

References

1. Abdellatif H, Heimann B (2005) Adapted time-optimal trajectory planning for parallel ma-
nipulators with full dynamic modelling. In: IEEE international conference on robotics and
automation. Barcelona, 19–22 April 2005, pp 413–418

2. Bayaziz OB, Xie D, Anamato NM (2005) Iterative relaxation of constraints: a framework
for improving automated motion planning. In: IEEE international conference on robotics and
automation. Barcelona, 19–22 April 2005 pp 3433–3440

3. Bhattacharya S, Hatwal H, Ghosh A (1998) Comparison of an exact and an approximate
method of singularity avoidance in platform type parallel manipulators. Mech Mach Theory
33(7):965–974

4. Bohigas O et al (2012) A singularity-free path planner for closed-chain manipulators. In: IEEE
international conference on robotics and automation, Saint Paul, 14–18 May 2012 pp 2128–
2134

5. Bohigas O, Manubens M, Ros L (2012) Planning singularity-free force-feasible paths on the
stewart platform. In: ARK. Innsbruck, 25–28 June 2012 pp 245–253

6. Brady M et al (1982) Robot motion: planning and control. MIT Press, Cambridge
7. Briot S, Arakelian V (2008) Optimal force generation in parallel manipulators for passing

through the singular positions. Int J Robot Res 27(2):967–983
8. Carbone G, Gmez-Bravo F, Selvi O (2012) An experimental validation of collision-free trajec-

tories for parallel manipulators. Mech Based Des Struct Mach 40(4):414–433
9. Carbone G et al (1997) An optimum path planning for Cassino parallel manipulator by using

inverse dynamics. Robotica 26(02):229–239

190 L. Rolland

10. Chablat D, Wenger P (1998) Moveability and collision analysis for fully-parallel manipulators.
In: 12th RoManSy, Paris, 6–9 July 1998 pp 61–68

11. Chedmail P, Hascoet JY, Guerin F (1994) Collision detection analysis for milling. Adv Manuf
Syst 1:247–252

12. Chen C-T, Chi H-W (2008) Singularity-free trajectory planning of platform-type parallel ma-
nipulators for minimum actuating efforts and reactions. Robotica 26(3):371–384

13. Chen C-T, Liao TT (2008) Optimal path programming of the Stewart platform manipulator us-
ing the Boltzmann-Hamel-d’Alembert dynamics formulation model. Adv Robot 22(6–7):705–
730

14. Chen Y, McInroy JE, Yi Y (2003) Optimal, fault-tolerant mappings to achieve secondary goals
without compromising primary performance. IEEE trans robot autom, vol 19(4). University
Park, pp 681–691

15. Coiffet P (1986) Les robots, tome 1, modelisation et commande. Hermes, Paris
16. Corts J (2003) Motion planning algorithms for general closed-chain mechanisms. Ph.D. Thesis,

Institut National Polytechnique de Toulouse, Toulouse, 16 December 2003
17. Corts J, Simon T, Laumond J-P (2002) A random loop generator for planning the motions of

closed kinematic chains using PRM methods. In: IEEE international conference on robotics
and automation. Washington, 11–15 May 2002 pp 2141–2146

18. Corts J, Simon T (2003) Probabilistic motion planning for parallel mechanisms. In: IEEE
international conference on robotics and automation Taipei, 14–19 September 2003 pp 4354–
4359

19. Dallefrate D et al (2002) A feed rate optimization technique for high-speed CNC machining
with parallel manipulators. In: 3rd Chemnitzer Parallelkinematik Seminar, Chemnitz, 23–25
April 2002 pp 371–388

20. Daney D (2000) Etalonnage geometric des robots paralleles. Ph.D. thesis, Universite de Nice-
Sophia Antipolis

21. Dasgupta B, Mruthyunjaya TS (1998) Singularity-free path planning for the Stewart platform
manipulator. Mech Mach Theory 33(6):711–725

22. Dash AK et al (2002) Workspace analysis and singularity-free path planning of parallel ma-
nipulators. In: International conference on mechatronics technology (ICMT), Fukuoka, 29
September–3 October 2002 pp 457–462

23. Dash AK et al (2003) Singularity-free path planning of parallel manipulators using clustering
algorithm and line geometrie. In: IEEE international conference on robotics and automation,
Taipei, 14–19 September 2003 pp 761–766

24. Dash AK et al (2005) Workspace generation and planning singularity-free path for parallel
manipulators. Mech Mach Theory 40(7):778–805

25. Depince P, Hascoet JY, Furet B (1997) Compensation de trajectoire d’usinage: simulation et
experimentation. In: Proceedings of 13e Congrs franais de mcanique, vol 3. pp 293–296

26. Dombre E, Khalil W (1999) Modelisation, identification et commande des robots, seconde
dition. Robotique. Hermes, traite des nouvelles technologies edition

27. Huang T et al (2007) Time minimum trajectory planning of a 2-DoF translation parallel robot
for pick-and-place operations. Ann CIRP 56/1/2007:365–368

28. Jui CKK, Sun Q (2003) Path trackability and verification for parallel manipulators. In: IEEE
international conference on robotics and automation. Taipei, 14–19 September 2003 pp 4336–
4341

29. Khoukhi A, Baron L, Balazinski M (2009) Constrained multi-objective trajectory planning of
parallel kinematic machines. Robot Comput-Integr Manuf 25(4–5):756–769

30. Lahouar S, Zeghloul S, Romdhane L (2008) Singularity free path planning for parallel robots.
Analysis and design: advances in robot kinematics, pp 235–242

31. Latombe JC (1991) Robot motion planning. Kluwer Academic Publisher, Boston
32. Liegeois A (1984) Les robots, tome 7, analyse des performances et CAO. Hermes, Paris
33. Liu G, Trinkle JC, Shvalb N (2006) Motion planning for a class of planar closed-chain manip-

ulators. In: IEEE international conference on robotics and automation, Orlando, 16–18 May
2006 pp 133–138

Path Planning Kinematics Simulation of CNC Machine Tools … 191

34. Lozano-Prez T, Wesley M (1979) An algorithm for planning collision-free paths among poly-
hedral obstacles. In: Communications of ACM, vol 22, pp 560–570

35. Luh JYS, Lin CS (1981) Optimum path planning for mechanical manipulators. Trans ASME
142–151

36. Magnin R, et Urso JP (1991) Commande numerique, programmation. Memotech
37. Marty C, Cassagnes C, La Martin P (1993) pratique de la commande numerique des machines-

outils. Technique et documentation. Lavoisier, Paris
38. Masory O, Xiu D (1998) Contour errors in a new class of CNC machine tools. In: Proceedings

of WAC98, vol 1, pp 791–798
39. Merlet JP (1993) Manipulateurs paralleles, septieme partie: Verification et planification de

trajectoire dans l’espace de travail. Technical Report 1940, INRIA, Sophia-Antipolis, June
1993

40. Merlet J-P (2000) An efficient trajectory verifier for motion planning of parallel machine. In:
Parallel kinematic machines international conference, Ann Arbor, 14–15 September 2000

41. Merlet J-P (2001) A generic trajectory verifier for the motion planning of parallel robots. J
Mech Des 123(4):510–515

42. Merlet J-P (2007) A local motion planner for closed-loop robots. In: IEEE international con-
ference on intelligent robots and systems (IROS), San Diego, 22–26 September 2007 pp 3088–
3093

43. Merlet J-P, Mouly N (1994) Espace de travail et planification de trajectoire des robots parallles
plans. Technical Report 2291, INRIA, Sophia-Antipolis, February 1994

44. Merlet JP, Perng MW, Daney D (2000) Optimal trajectory planning of 5-axis machine-tool
based on a 6-axis parallel manipulator. Adv Robot Kinemat 1(1):315–322

45. Mery B (1997) Machines a commande numerique. Hermes, Paris
46. Nenchev DN, Uchiyama M (1996) Singularity-consistent path planning and control of parallel

robot motion through instantaneous-self-motion type. In: IEEE international conference on
robotics and automation. Minneapolis, 24–26 April 1996 pp 1864–1870

47. Nguyen CC et al (1992) Trajectory planning and control of a Stewart platform-based end-
effector with passive compliance for part assembly. J Intell Robot Syst 6(2–3):263–281

48. Nilsson N (1969) A mobile automaton: an application of artificial intelligence. In: Proceedings
of the international joint conference on artificial intelligence, pp 509–520

49. Oen K-T, Wang L-CT (2007) Optimal dynamic trajectory planning for linearly actuated plat-
form type parallel manipulators having task space redundant degree of freedom. Mech Mach
Theory 42(7):727–750

50. Patel A, Ehmann K (1997) Volumetric error analysis of a Stewart platform based machine tool.
In: Annals of the CIRP, vol 46, pp 287–290

51. Pouyan A et al (2010) Eliminating redundancy and singularity in robot path planning based on
masking. Expert Syst Appl 37(9):6213–6217

52. Pugazhenthi S, Nagarajan T, Singaperumal M (2002) Optimal trajectory planning for a hexapod
machine tool during contour machining. Proceed Inst Mech Eng Part C, J Mech Eng Sci A
216(12):1247–1257

53. Merlet JP (1997) Les Robots Parallel, 2nd edn. Herms, Paris
54. Dieudonne JE, Parrish RV, Bardusch RE (1972) An actuator extension transformation for a

motion simulator and an inverse transformation applying Newton-Raphson’s method, Technical
Report D-7067. NASA, Washington

55. Lazard D (1993) On the representation of rigid-body motions and its application to generalized
platform manipulators. J Comput Kinemat 1:175–182

56. Raghavan M (1993) The Stewart platform of general geometry has 40 configurations. ASME
J Mech Des 115:277–282

57. Raghavan M, Roth B (1995) Solving polynomial systems for the kinematic analysis and syn-
thesis of mechanisms and robot manipulators. Trans ASME 117:71–79

58. Rolland L (2001) Introduction to algebraic methods for solving the forward kinematics prob-
lem of parallel robots applied to high throughput and high accuracy. In: 3rd European-Asian
congress on mechatronics, Besancon, 9–11 October 2001

192 L. Rolland

59. Rolland L (2005) Certified solving of the forward kinematics problem with an exact algebraic
method for the general parallel manipulator. Adv Robot 19(9):995–1025

60. Rolland L (2008) Synthesis on modeling and certified solving of the kinematics problems
of Gough-type parallel manipulator with an exact algebraic method. In: Wu H (ed) Parallel
manipulators, towards new applications. I-Tech Education and Publishing, Vienna, pp 175–206

61. Salerni G (1995) The linear delta. Technical report, University of Pisa
62. Shulz et al (1999) Dynamic stiffness and contouring accuracy of a HSC linear motor machine.

In: Proceedings of the 2nd international conference on high speed machining, vol 1. Darmstadt,
pp 75–83

63. Shulz H, Gao H, Stanik B (1999) Analysis and optimization of the dynamic contouring accuracy
using the example of a linear motor machine tool. In: Proceedings of the 2nd international
conference on high speed machining, vol 1. Darmstadt, pp 107–115

64. Sen S, Dasgupta B, Mallik AK (2003) Variational approach for singularity-path planning of
parallel manipulators. Mech Mach Theory 38(11):1165–1183

65. Shaw D, Chen Y-S (2001) Cutting path generation of the Stewart platform-based milling
machine using an end-mill. Int J Prod Res 39(7):1367–1383

66. Soni AH, Tanasi GC, Varanasi S (1995) Closed-loop multi-degree freedom mechanisms for
surface generation and patching in machining 3d surfaces. In: 9th IFToMM world congress on
the theory of machines and mechanisms. Milan, 30 August-2 September pp 2668–2674

67. Su H-J, Dietmaier P, McCarthy JM (2003) Trajectory planning for constrained parallel manip-
ulators. ASME J Mech Des 125(4):709–716

68. Takeda Y (2005) Kinematic analysis of parallel mechanisms at singular points at which a
connecting chain has local mobility. In: Computational kinematics, Cassino, 4–6 May 2005

69. Taylor R (1979) Planning and execution of straight line manipulator. IBM J Res Dev 23(4):424–
436

70. Tchon K et al (2012) Motion planning for parallel robots with non-holonomic joints. In: ARK,
Innsbruck, 25–28 June 2012 pp 115–122

71. Tournassoud P (1992) Planification et controle en robotique, application aux robots mobiles et
manipulateurs. Robotique. Hermes, Paris, Traité des nouvelles technologies edition

72. Trinkle JC, Milgram RJ (2002) Complete path planning for closed kinematic chains with
spherical joints. Int J Robot Res 21(9):773–789

73. Udupa SM (1977) Collision detection and avoidance in computer controlled manipulators. In:
Proceedings of the international joint conference on artificial intelligence, pp 737–748

74. Ur-Rehman R, Caro S, Chablat D, Wenger P (2010) Multi-objective path placement of parallel
kinematics machines based on energy consumption, shaking forces and maximum actuator
torques: application to the Orthoglide. Mech Mach Theory 45(8):1125–1141

75. Vaca R, Aranda J, Thomas F (2012) Simplified Voronoi diagrams for motion planning of
quadratically-solvable Gough-Stewart platforms. In: ARK, Innsbruck, 25–28 June 2012 pp
157–164

76. Vaishnav RN, Magrab EB (1987) A general procedure to evaluate robot positioning error. Int
J Robot Res 6(1):59–74

77. Yakey JH et al (2001) Randomized path planning for linkages with closed kinematic chains.
IEEE Trans Robot Autom 17(6):951–958

Planning Automatic Surgical Tasks
for a Robot Assistant

Enrique Bauzano Nuñez, Belen Estebanez Campos,
Isabel Garcia Morales and Victor F. Muñoz Martinez

Abstract One of themain goals of surgical robotics has always relied on developing
a robotized platform to allow the surgeon make an intervention alone, which is also
known as the co-worker concept. These robotic systems have evolved over the last
years depending on their tasks and interfaces with the surgeon. This evolution led
to the teleoperated systems, which have the main drawbacks of a high complexity
and economic costs. Many researchers have focused their efforts in minimizing these
problems by automating certain actuations on the surgical environment. In this way,
this chapter focuses on the design and implementation of a robotic surgical motion
controller, which has been designed for performing autonomous tasks to assist the
surgeon with an additional instrument. For this purpose, a hierarchical architecture
has been implemented which includes an auto-guide velocity planner connected to
a force controller. The first one, a trajectory planner based on a behavior approach,
is devoted to find a collision-free trajectory of the surgical instrument tip held by
the robot, with the final aim of reaching a target location inside of the abdominal
cavity. However, the surgical tasks may also require pressing the tissue or stretching
the thread for needle suturing. In this way, the force controller grants the exertion of
these required forces. The performance of both, the trajectory planner and the force
controller, have been tested by means of in vitro trials.

Keywords Laparoscopic surgery · Real-time automatic movements · Force
feedback control · Surgical robot assistant

1 Introduction

Over the last years, robotic systems have been introduced in several surgical tech-
niques as an additional and very valuable tool for surgeons. Some of their benefits
include a higher precision, improved security and freedom on the movement of the

E. Bauzano Nuñez (B) · B. Estebanez Campos · I. Garcia Morales · V.F. Muñoz Martinez
University of Malaga, Severo Ochoa 4, 29590 Malaga, Spain
e-mail: ebauzano@uma.es; vfmm@uma.es

© Springer International Publishing Switzerland 2015
G. Carbone and F. Gomez-Bravo (eds.), Motion and Operation Planning
of Robotic Systems, Mechanisms and Machine Science 29,
DOI 10.1007/978-3-319-14705-5_7

193

194 E. Bauzano Nuñez et al.

surgical instruments. Almost all commercial surgical robots have been designed for
two main surgical procedures: orthopedics or neurosurgery interventions, and mini-
mally invasive surgery (MIS) techniques.

The orthopedics procedures are covered by the computer-aided design and man-
ufacturing methodologies (CAD/CAM), which lead to the concept of Computer
Integrated Systems (CIS) [1, 2]. The CAD/CAM systems are mainly focused on
orthopedic surgery because the work on the bones is very similar to the mechanized
on a piece of raw material. Systems based on CAD/CAM aid the surgeon during
the standard procedure followed on any intervention as described on the scheme of
Fig. 1 [3]. After the medical diagnostic, firstly all the relevant information about the
patient is gathered with non-invasive CAD techniques on the preoperative phase.
This information of the anatomical model is used for planning the intervention with
the use of surgical navigator systems [4, 5]. Once the planning is generated, secondly
the intervention is performed during the intraoperative phase with a CAM integrated
on the robot and a register procedure [6]. The virtual coordinates obtained from the
model of the patient are updated in this phase with the real ones in order to establish
a correspondence to guide the surgeon correctly [7]. Finally, the patient recovery is
followed on the postoperative phase.

Fig. 1 Architecture of a surgical CAD/CAM system, where the preoperative phase is CAD and the
intra-operative phase is CAM

Planning Automatic Surgical Tasks for a Robot Assistant 195

Fig. 2 Robodoc on the left and SpineAssist on the right

Some of the first commercial CAD/CAM robot systems are the Robodoc by Inte-
grated Surgical Systems [8] or Caspar by Ortho Maquet [9], which are both devoted
to the hip and knee orthopedic surgery. One of the latest releases, the SpineAssist
[10], consists of a specialized robot for prosthetic interventions on the spinal column
(see Fig. 2).

The second kind of procedures (MIS) covers the surgical robots specialized in
abdominal interventions. MIS has become one of the most important surgical tech-
niques over the last years due to its capability of reducing the postoperative conva-
lescence and diminishing any other complications. As a consequence, MIS offers
several social and economic consequences like minimizing the stay of patients at
the hospital. As opposite to the orthopedic systems, MIS robots assist the surgeon
during the surgical procedure and are not programmed on a previous phase of the
intervention.

In general terms, MIS robots are designed to handle instrumentation on laparo-
scopic procedures with automated movements generated by direct orders of the sur-
geon or by teleoperation with a master-slave system. Commercial systems for the
first group are mainly focused on positioning the laparoscopic camera, for example
the AESOP by Computer Motion shown on the left side of Fig. 3 [11], the EndoAs-
sist by Armstrong Healtcare [12] or the Lapman by Medsys [13]. On the other hand,
most relevant teloperated systems includes several robotic arms like ZEUS by Com-
puter Motion [14] and Da Vinci by Intuitive Surgical (see right image of Fig. 3) [15].
Both systems have three slave manipulators so one of them handles the laparoscopic

196 E. Bauzano Nuñez et al.

Fig. 3 The AESOP robot laparoscopic assistant on the left and the Da Vinci system on the right

camera whereas the others manage the surgical instruments. More specifically, the
Da Vinci system has been used on an intercontinental tele-interventions from San
Francisco to Boston and from Manhattan to Strasbourg.

There are several automation techniques for MIS robots that have been already
covered on the literature [16]. One of them is the visual servoing, which consists
of automatically guiding the laparoscopic camera. This technique has been used
for the safe movements of the endoscope on cardiac surgery [17] or the prediction
of the end effector location [18, 19]. Other works are based on the automation
of surgical maneuvers without the direct intervention of the surgeon on in vitro
experiments, so they are not designed for a collaborative assistance. For example, the
recognition of surgical tasks that initially focused on the evaluation of the surgeon’s
skills [20], has been adapted in some developments to transfer those skills to a robot
assistant. Moreover, some of the main surgical tasks have been fully automated like
the automatic stitching [21] and knot tying [22] on suture procedures, as well as the
grasping and lifting on tissue retraction [23].

In this way, the contents of this chapter focuses on the control movements of the
surgical assistants, as well as the most relevant planning methodologies to displace
the surgical tools handled by the robot. For this purpose, firstly the main kinematic
structures to spherically navigate the laparoscopic instruments are presented in Sect. 2
with their particular problems and the general control schemes for each of them.
Secondly, the chapter makes a classification of surgical robots in groups depending
on their degree of autonomy in Sect. 3. Each of these groups have a general planning
method to generate the appropriate trajectories for the robot instrumentation. One of

Planning Automatic Surgical Tasks for a Robot Assistant 197

these methods, and a current trends of surgical robotics, consists of the collaborative
planning with the surgeon’s tasks. Thus, the following Sect. 4 is focused on this kind
of robots with the auto-guide planner a special system capable of find trajectories
related to a desired location or force exerted by the robot instrument. Finally, the
chapter will present the platform on Sect. 5, where this collaborative system has
been implemented and an experimental result to show the behavior of the proposed
auto-guide planner.

2 Laparoscopic Navigation

All robot assistants require the development of kinematic structures for the robotic
arms that handle the surgical instruments. Moreover, these mechanisms must be
controlled by specific algorithms for tool movements that compute the trajectories
with precision. In this way, Fig. 4 shows a scheme of the laparoscopic navigation,
which consists of a controlled movement of the laparoscopic tool in order to locate
it at certain coordinates inside the abdominal cavity. It can be seen that the Robot
Arm holds the laparoscopic tool and describes spherical trajectories around the place
where it is inserted into the Abdomen of the patient (Fulcrum Point). Thus, actual
localization of the instrument can be established through the spherical coordinates
α (orientation), β (altitude) and ρ (external distance from the robot Wrist to the
fulcrum). These parameters are related to the fulcrum frame of reference {I} located
at the fulcrum point, which is also referred to the base Robot Frame of Reference
{B} for planning the movements of the laparoscopic tool.

The main problem of the laparoscopic navigation relies on the uncertainty of the
fulcrum point from the robot frame of reference {B} point of view.More specifically,

Fig. 4 Navigation of the
surgical tool

198 E. Bauzano Nuñez et al.

it is quite difficult to locate the patient over the operating table and perform the
incision on its abdominal wall, in such a way that the location of {I} related to {B}
is known with accuracy. This uncertainty leads to an imprecise positioning of the
instrument at the specified spherical location. From a kinematics point of view, this
problem can be solved with the exact knowledge of the three spherical coordinates
α, β and ρ where the instrument is currently located respect to frame {I}. However,
while coordinates α and β can be obtained from the kinematics model of the robot
arm and the measure of its inner sensors, it is not possible to obtain the distance ρ

without the use of external 3D trackers.
Following subsections state the current commercial solutions which are able

to solve this problem of the spherical laparoscopic navigation through different
approaches: the actuated and passive wrists.

2.1 Remote Center of Rotation

This kind of wrists has its degrees of freedom directly actuated by motors, and
thus the position and orientation of the laparoscopic tool can be established with
the corresponding joint vector. These wrists avoid the inconvenience of the location
accuracy regard to specialmechanical structures. These devices are designed to rotate
the tool around a remote center of rotation that must be calibrated accordingly. With
this system, the precision of the spherical movements is guaranteed as long as the
fulcrum point remains at the same location. Figure5 shows on the up side the four-
link scheme used on the Da Vinci robotic assistant, whereas the down side presents
the implantation of this wrist as it is described on the corresponding patent [24]. The
displacement of the four-link system labeled as 20 orientates the tool at 22a that turns
around point 22 where the fulcrum shall be located. The main problem of these kind
of wrists relies on the precise localization of the fulcrum at the remote center of the
wrist, because otherwise undesired forces can be exerted over the abdominal wall of
the patient.

There are other schemes for remote center of rotation systems based on four-link
mechanisms, for example the Black Falcon [25], the Blue Dragon [26] or the robotic
extender configuration [27]. Other works use semicircular elements for this purpose
as the Endobot system, shown in Fig. 6, which is composed by two robotic arms [28].

This wrist configuration is commonly used on master-slave systems due to the
precision on the tools movements. Thus, control schemes that manage these mecha-
nisms are based on the control of the Cartesian velocity of the laparoscopic tool as it
is expressed on Fig. 7. It can be seen that the movement order obtained from a master
device is computed by a planner which sends the control inputs for the robot and the
remote center of rotation wrist. The feedback signal is the inverse Jacobian of the
corresponding wrist used to control the velocities of the elements of its structure.

Planning Automatic Surgical Tasks for a Robot Assistant 199

Fig. 5 Remote center of
rotation scheme used on Da
Vinci robotic assistant

Fig. 6 Two-arm Endobot
system with remote center of
rotation wrists

2.2 Passive Wrists

A robotic assistant based on a passive wrist has one or more non-actuated degrees
of freedom. Although it is possible to establish the Cartesian position of the tool,
its orientation depends on the relative position between the wrist center of rotation
and the fulcrum point. This configuration guarantees that no forces are exerted over
the fulcrum point, since its mechanical structures allows the accommodation of the
surgical instrument. However, any uncertainty on the relative position between the
assistant and the fulcrum point reduces the precision on the robot tool tip positioning.
The problem is that the insertion cannot be computed with the inner sensors of the
robot arm, andmust be estimatedwith the use of geometrical techniques [29]. Passive
wrist can be found on systems like AESOP [11] or ZEUS [14].

200 E. Bauzano Nuñez et al.

Fig. 7 Control basic scheme for remote center of rotation wrists

Fig. 8 Endobot robot assistant with a passive wrist

Figure8 shows the scheme of AESOP system as it is described on its patent [30].
The arm joints labeled as 24, 38 and 34 are actuated. However, the two degrees of
freedom of the wrist (30 and 32) are not actuated.

Robotic assistants with passive wrists are mainly used for the management of the
laparoscopic tool, which requires less precision on its localization than a standard
instrument used for interacting with the patient’s organs. Thus, a lack of precision on
the location of the laparoscopic tool just leads to an error when targeting the region
of interest, which is a non-critical task. The control loop was closed by the own
surgeon during the first versions of AESOP. In this way, the surgeon commanded the
robot to make an increment of the rotation or altitude angle for the camera until the
image reached the anatomical region of interest. However, to achieve a more precise
positioning, it is necessary to estimate the coordinate ρ during the movement with
geometrical techniques.

Figure9 proposes the control scheme for robot assistants with passive wrists. The
planner transforms the movement order of the surgeon to a Cartesian position of the

Planning Automatic Surgical Tasks for a Robot Assistant 201

Fig. 9 Control scheme for passive wrists

rotation center of the wrist, whereas the orientations α and β are computed with the
inner sensors of the robot. For each measure of these angles, the geometric estimator
computes the axis of the laparoscopic tool. In this way, the estimated axes obtained
each two consecutive positions of the tool intersect in one point that can be used
for the estimation of the distance ρ. With the use of this scheme, the estimation of
distance ρ can be improved over the movement, but it does not include any method
to solve a positioning error in case the system does not achieve a realist estimation
of the ρ parameter.

2.3 Actuated Wrists

The third category of wrists does not use any kind of additional mechanical structure,
but it assembles the surgical instrument right to the end effector of the manipulator.
However, these wrists require a force feedback controller like shown in Fig. 10 for
computing the insertion of the instrument and positioning it into the abdominal cavity
with accuracy [31, 32]. The geometric estimator of the passive wrists is replaced by
a Force Estimator that obtains the external distance estimation from the force and
torque measurements.

Fig. 10 Control scheme for direct actuated wrists

202 E. Bauzano Nuñez et al.

This methodology presents two main problems. On one hand, the forces exerted
over the tool tip must be separated from those applied by the abdominal wall. On the
other hand, laparoscopic tools are used to be flexible, so their deformation affects
the positioning accuracy. These problems are usually solved by integrating a force
sensor on the trocar, as well as by using special rigid instruments.

3 Planning Methods on Laparoscopic Surgery

All the kinematic structures commented onprevious section require a planner element
to navigate the laparoscopic tool. The trajectory generated by this planner mainly
depends on the degree of automation for the robot to complete its tasks. In this way,
Fig. 11 establishes a classification of the robot assistants attending to their degree of
automation.

The right side presents the commanded robots, usually cameramen assistants
specialized on controlling the laparoscopic camera movements. Such movements
can be directly managed by the surgeon through a communication interface, as well
as automatically performed for the tracking of the surgeon’s tools or a point of
interest.

Fig. 11 Classification of surgical robots depending on their autonomy degree

Planning Automatic Surgical Tasks for a Robot Assistant 203

The upper-left side of the graph shows the teleoperated robots, which directly
replicate the surgeon’s movements on the surgical tools managed by the robot arms.
These systems may also improve surgeon’s skills, for example by suppressing the
constraints on the movements imposed by the laparoscopic surgery (fulcrum point,
additional degrees of freedom on the tool tip…).

The down side of the diagram represents the group of robot assistants that can
workwithout any intervention on the surgeon’s hand.Autonomous robots are systems
capable of make biopsies or the automatic guidance of a surgical tool on the region
of interest. Meanwhile, the surgeon focuses on the main tasks of the intervention
while verifying that the overall procedure is followed as expected.

The intersection of these groups of robot assistants represent the semi-autonomous
robots. This subgroup consists of those systems that have certain degree of autonomy,
in such a way that they always collaborate with the surgeon’s tasks. These robots
are very versatile, since they combine different capabilities as the tracking of the
laparoscopic camera in combination with the management of a surgical instrument
for assisting the surgeon in a collaborative way.

Firstly, the following Sects. 3.1–3.3 describe different planning strategies for each
of the groups of robot assistants explained with Fig. 11: commanded, teleoperation
and autonomous planning. After this explanation, Sect. 4 introduces a planning strat-
egy proposed by the authors for a more advanced semi-autonomous robot assistant.

3.1 Commanded Planning

One of the challenges of surgical robot focuses on the substitution of the human
cameraman on theMISprocedures as represented onFig. 12. This surgical techniques
require that the assistant centers the camera on the region of interestwhere the surgeon

Fig. 12 Surgical robot
working in commanded
mode with the surgeon

204 E. Bauzano Nuñez et al.

makes the intervention. Fatigue or stress of this assistantmay affect the image quality,
in such a way that the endoscope may touch tissue, center a wrong area or the image
is unstable due to the trembling of his hand.

The use of arm manipulators for managing the endoscope avoids the problems
stated above, and provide more accurate movements and a steady hand along all
the intervention. These robots need a communication interface with the surgeon to
perform the correspondingorders accordingly.Most elemental systemsuse a joystick,
others use a gyroscope attached to the surgeon’s head in order to drive the image with
head’s movements [33], or recognize voice commands [34]. There are also works
where the robot movements are guided by interpreting the head’s movements with
vision algorithms [35], and others with a remote controller attached to the surgeon’s
hand [13].

The first laparoscopic camera positioners were the ones based on the classic
works of R.H. Taylor and J. Funda with their LARS [36] and HISAR [37] systems,
respectively. Other commercial robot assistants followed these ones like the already
mentioned AESOP [11], ENDOASSIST [12] or LAPMAN [13]. These systems are
considered the first step on the co-worker concept, where the surgeon may perform
a full intervention without any human assistance. In this way, the University of
Malaga developed the ERM system, a laparoscopic camera positioner commanded
by the surgeon’s voice or directly with a joystick, as shown on Fig. 13 [38]. This robot
uses a passive wrist for navigating the laparoscopic tool, and as additional features it
is able to work without wires and has wheels to place it wherever the surgeon wants.

3.2 Tele-Operation Planning

On many surgical procedures the assistant does not only locate the endoscope, but
also handles other instruments. In this way, robot assistants would require a more
sophisticated systems that manage specific tools in addition to the laparoscopic cam-
era. This feature can be considered as another step towards the co-worker concept.

One of the most addressed focuses on the scientific literature for achieving this
co-worker system consists of the use of teleoperation and telepresence techniques.
Figure14 shows the fundamentals of a teleoperation station, where the surgeon
remotely controls the surgical instruments attached to the arm manipulators.

Thus, several works appeared on the middle nineties which defined the limita-
tions of the movement controller systems to teleoperate surgical instruments into
a restricted environment as the abdominal cavity [39]. Moreover, some developers
started the design of special mechanical structures to handle the instruments which
also allowed the planning of accurate trajectories [27]. Some telepresence features
were added, for example the force feedback through haptic devices that provided
some kind of tactile sensing to the surgeon [25, 29, 40], and even to distinguish
among different tissue textures [41]. There are also teleoperated systems that improve
the surgeon’s skills in order to perform sub-millimeter tasks [42, 43].

Planning Automatic Surgical Tasks for a Robot Assistant 205

Fig. 13 ERM system for holding the laparoscopic camera (left) and its user interface based on the
surgeon’s voice or joystick device (right)

Fig. 14 Surgical robot remotely teleoperated by the surgeon

There are more complex teleoperated systems with two arm manipulators to han-
dle surgical instruments and an additional one to manage a stereo vision system [36].
The most relevant commercial system of this class is the Da Vinci platform [15],

206 E. Bauzano Nuñez et al.

Fig. 15 The MiroSurge by DLR on the left and RAVEN-II by the University of Washington on the
right

which has been already commented in the introduction and shown on Fig. 3 and has
been successfully tested with different MIS techniques of several hospitals around
the world.

Although Da Vinci is the most known and used teleoperated system, there are
other robots of this kind currently in development. Two examples of these works on
this field are MiroSurge from the DLR [44] and the Raven-II from the University of
Washington [45], which can be shown in Fig. 15.

3.3 Autonomous Planning

The enormous complexity and costs of the teleoperated systems limit their clinic
impact. A simpler system designed to make more specific tasks, without special
installations and no additional training can be more reliable for improving certain
laparoscopic procedures. In thisway, there are several lines of researchwhich propose
systems with two robotic arms, one to handle the endoscope and the other for an
extra instrument [46]. As an illustrative scenario, Fig. 16 shows how the surgeon
firstly programs the procedure on the computer. This information is used during the
intervention for the robot to run the corresponding sequence of tasks that completes
the planned procedure.

Despite these efforts and their proven accuracy, some authors still defend that
the use of robots in surgery may lengthen the intervention time [47]. Thus, other
alternatives must be proposed in order to increase the reliability of robotic assistants.
One solution consists of the automation of certain surgical tasks. In this way, there
are works that automate the movement of the camera [48] depending on the current
state of the intervention. Others are based on dividing complex tasks like the suture
in more elemental actions feasible by the robot assistant [28].

One of the most commons techniques for performing automatic tasks is the visual
servoing, which consists of dynamically following with the endoscope a surgeon’s
tool or a target marked on the tissue [49]. The control movement of the surgical

Planning Automatic Surgical Tasks for a Robot Assistant 207

Fig. 16 Surgeon plans the intervention on the left, and then the robot performs the autonomous
tasks on the right

instruments implies the computation of their linear and angular velocity references
at each time period. These references are obtained regard to the analysis of the images
received by a calibrated stereo vision system [50], or also with the image acquisition
through a traditional laparoscopic camera [51]. This last situation requires the use of a
modified instrument that emits a laser in order to measure the distance to the closest
organ. This technique allows a safe movement of the laparoscopic tool towards a
target location by following the surface of an organ at a certain distance. A variant of
this work uses the robotic arms for cardiac surgery. More specifically, with a visual
guidance the instruments movements can be synchronized with the heart beats [52],
in such a way that the organ remains static from the surgeon’s point of view and
can make teleoperated cardiac procedures that otherwise would be very difficult.
Other works introduce the use of ecographs as feedback [53]. Therefore, despite the
increase of automation on robot assistants, they may complement the capabilities of
the teleoperated systems.

4 Collaborative Planning: Auto-Guided Movements

The environment where the robot interacts with the patient as well as the surgeon
consists of a closed space, the abdominal cavity, as it is shown in Fig. 17. Both
tools handled by the surgeon, the Camera and the instrument of the Robot Tool,
are inserted through their respective fulcrum points over the abdomen. Moreover
this environment also includes the surgeon’s tools used for surgery procedures. The
Surgeon’s Primary Tool is considered the target for the robot, whereas the Surgeon’s
Secondary Tool is the obstacle. The surgeon is able to displace his tools during any
robot movement.

208 E. Bauzano Nuñez et al.

Fig. 17 The camera focuses over the surgical workspace, whereas the robot tool goes where the
surgeon’s target tool is located

The abdominal cavity where the robot instrument may move is defined by a cone-
shaped view field, which contains the scene seen in the screen by the surgeon. This
work considers the displacement of the robot tool to the surgeon’s primary tool
location as the proposed auto-guided movement. The secondary tool, as well as the
tissue and organs inside the abdominal cavity focused by the camera, are defined as
obstacles to be avoided during an automatic task. The trajectory has to be computed
on-line, because the surgeon’s tools are continuously being displaced during the
intervention.

There are two main collaborative actions that the robot should develop in order
to interact with the surgeon:

Pressure over the tissue (top of Fig. 18). The goal of this actuation consists of
exerting a force F by means of a movement along the direction defined by the vector
rf .

Navigation to a target location (bottom of Fig. 18). The purpose of this actuation
relies on reaching the target location O with the Robot Tool tip while it avoids the
contact with the Surgeon’s Tool and the Tissue on the inner abdominal cavity.

The motion planner has been designed as shown in Fig. 19 to manage these actu-
ations. The required location rc for the Robot is computed by means of a hybrid
force-position controller, where rp and rf are the respective contributions from the
position and force control.

The position and force controllers receive as inputs a desired location rd and force
exertedFd. The position and force vectors rp and rf are expressed in a reference frame
attached to the endoscope tip. The hybrid position-force controller of Fig. 19 includes

Planning Automatic Surgical Tasks for a Robot Assistant 209

Fig. 18 Possible robot
actions for a collaborative
planning: pressure over
tissue (top) and navigation to
target location (bottom)

a force-accommodative controller which feedbacks the robot-tissue interaction force
F and outputs the vector force Fr, which is substracted to Fd afterwards and trans-
formed to rf by means of a gain K, which models the robot-environment relative
stiffness (1) with:

rf = K −1 (Fd − Fr) (1)

where the stiffness K is adjusted by in vitro experiments with similar materials to the
abdominal cavity tissues.

Secondly, the position control consists of an Auto-Guide Planner which focuses
on finding a free-obstacle trajectory towards rd inside the abdominal cavity. For this
purpose, this element has been designed as shown in Fig. 20 to combine the behavior
of three modules: the Local Planner, which computes the trajectory towards the
target location by using the Artificial Potential Fields (APF) algorithm; the Velocity
Correction, which adapts the robot tool velocity depending on the trajectory of the

210 E. Bauzano Nuñez et al.

Fig. 19 Motion planner system for robot autonomous actuations

Fig. 20 The proposed auto-guide planner system for finding free-obstacle paths

surgeon’s tool; and the Tool Follower, which considers an intentional contact of the
surgeon’s tool to modify the robot tool location.

The outputs of these behaviors v1, v2, v3 are weighted by their respective gains
c1, c2, c3, which are computed by the Behavior Manager. This element receives both
vectors of the tools velocities: the robot vr and the surgeon vs. The weights c1, c2 and
c3 are processed by a fuzzy logic algorithm. Thus, the contribution of the Position
Control rp already described in Fig. 18 is obtained by integrating the planned velocity
vp (2):

Planning Automatic Surgical Tasks for a Robot Assistant 211

Table 1 Fuzzy rules of the behavior manager

Robot velocity Surgeon’s velocity

1 2 3 4 5 6 7 8

1 A MA FA MA MN MA FA MA

2 MA A MA FA MA MN MA FA

3 MN MC A MA MN MC MN MA

4 MC MN MA A MC MN MA MN

5 MN MA FA MA A MA FA MA

6 MA MN MA FA MA A MA FA

7 MN MC MN MA MN MC A MA

8 MC MN MA MN MC MN MA A

FA moving far away, MA moving away, A advancing, MN moving nearby, MC moving closer

rp =
∫ kT

(k−1)T
vpdt =

∫ kT

(k−1)T
(c1v1 + C2v2 + C3v3)dt (2)

The fuzzy-logic algorithm for theBehavior Manager uses aMandani fuzzification
and a center of gravity defuzzification. The velocities vr and vs are the antecedent
data, which are classified by dividing the space into eight quadrants around the
reference frame of the camera. Firstly, Table1 computes the quadrant location of
velocities vr and vs to establish the relative direction of the movement between both
tools.

On the other hand, Table2 represents the membership functions of each weight
c1, c2, c3. For example, if the surgical tools areMoving Away, then the Local Planner
behavior has a veryhigh relevance (c1), there is almost noneedof a velocity correction
(c2) and a null effect for the tool follower (c3).

Once the behavior manager processes the weights c1, c2, c3, expression (2)
requires the velocity vectors v1, v2, v3 of each behavior module shown on Fig. 19.
First behavior is the Local Planner, which is devoted to find free-obstacle trajec-
tories and has been designed with an APF algorithm. The APF associates a virtual
repulsion field to each obstacle and a virtual attraction field to the target location. The
obstacles considered in this work consist of the surgeon’s tool and the organs/tissues
inside the abdominal cavity. The surface of the inner tissue is represented by a grid
of M −1 vertices generated through a monocular SLAM technique with reallocation

Table 2 Output weights of
the behavior manager

c1 c2 c3

Far away Very high Very low Null

Away Very high Very low Null

Advancing High Low Very low

Nearby Medium Very high Very low

Closer Very low Medium Very high

212 E. Bauzano Nuñez et al.

for laparoscopic sequences [54]. This work has considered the virtual forces vectors
of attraction Fatt and repulsion Frep suggested by [55], because the extra unitary
vector n on Frep prevents the trajectory to find local minima position (3):

Fatt = 2K att�r

Frep
m =

{
K rep

(
1

ρm
− 1

ρ0
m

) (
�rkρm

ρ2
m

+ nm
2

)
ρm ≤ ρ0

m

0 ρm > ρ0
m

(3)

The gains Katt , Krep on (3) represent the relevance of that virtual force relative to
the others. Parameter ρm defines theminimal distance between the robot tool and that
mth obstacle, ρm is the unitary vector with that direction and ρ0

m is the maximum
distance where the virtual field may affect the robot trajectory (see Fig. 18). The
distance between the robot’s tool tip and the target location is denoted by �r, and
modifies the contribution of the repulse force nearby the target location. The velocity
v1 computed by the Local Planner on (4) is the integration of the total virtual force,
where virtual mass has been considered to be one.

v1 =
∫

Fatt +
M∑

m=1

Frep
m dt (4)

Second behavior is the Velocity Correction. This module adjusts the current
velocity of the robot tool vr depending on the relative minimal distance ρm and the
expected time of collision with the surgeon’s tool. Those parameters are used as
input variables of a fuzzy-logic algorithm similar to the one proposed in [56]. The
consequent parameter denoted as K2 is limited a value between [0, 1] to guarantee
the reduction of the robot tool velocity, thus the velocity v2 computed by the velocity
correction is (5):

v2 = K2vr (5)

The third and last behavior is the Tool Follower. This module considers those
situations where the surgeon wants to displace the robot tool by using his own tool
(for example, if the robot tool is in front of the camera or blocks the surgeon’s tool to
performa surgical task). To solve these problems, the tool followermodulemodels the
virtual collision between the surgeon and robot tools with a spring bumper.Whenever
both tools are very close (that decision is made by the Behavior Manager, as it has
been previously explained), this spring bumper exerts a virtual force of repulsion to
the robot tool which can be integrated and leads to the velocity computed by the tool
follower (6):

v3 =
∫

B3vs + K3(ρ − ρe)dt (6)

Planning Automatic Surgical Tasks for a Robot Assistant 213

where B3 and K3 are the constants for the spring bumper modeled, and ρe is the
minimal distance of equilibrium between the surgeon and the robot tools.

5 Case of Study: CISOBOT Platform

This section is devoted to describe the experiments and the results for the auto-guided
system evaluation. For this purpose, it has been used the CISOBOT system, designed
and developed in the University of Malaga (see Fig. 21). This system consists of a
two-arm robotic system for holding both, an endoscope and a surgical instrument.
On the left side of this picture, it is showed the Endoscope Arm equipped with a
non-actuated two degrees of freedom wrist for endoscope movements [38]. On the
other hand, the Tool Arm (on the right side of the endoscope arm) has an actuated
wrist with a force sensor in order to feedback information about the forces exerted in
the abdominal wall [32]. In this way, the Endoscope Arm is commanded by the sur-
geon’s voice for performing left, right, up, down, inside and outside basic endoscope
movements, and the Robot Tool held by the Tool Arm is controlled by means of the
auto-guided planning proposed on Sect. 4. Therefore, the Tool Arm will accomplish
the experiments described in the following subsections.

Fig. 21 Experimental setup for the auto-guided system method proposed with CISOBOT platform

214 E. Bauzano Nuñez et al.

In order to complete the experimental set-up, an Optical 3D Tracker (right side on
the picture) gives information on the location thanks to the passive marks attached
over the Surgeon’s Tool. On the auto-guiding experiment, the surgeon will hold an
additional Guide Tool in order to mark the target location where the robot should
move the needle. This sensor tracks data of the surgeon’s position and orientation
for both tools simultaneously. Finally, a standard Patient Simulator is used in order
to emulate the abdominal cavity.

Firstly, this section explains the robot architecture that controls CISOBOT plat-
form previously described. Next, an experiment illustrates the functioning of the
auto-guide planner system already explained in Sect. 4.

5.1 Robot Architecture

The architecture scheme of Fig. 22 resumes the features of CISOBOT system.On one
hand, the Camera Arm box includes a passive wrist controller which is similar to the
one explained on Sect. 2.2. As an input, the scheme receives the Camera Command
given by the surgeon and is processed by an Incremental Planner that generates the
corresponding trajectory for the camera. The feedback of the position and orientation
of the endoscope is processed by the Geometric Estimator to give an approach of the
real external distance required for the spherical navigation.

Fig. 22 Architecture scheme for CISOBOT robot assistant

Planning Automatic Surgical Tasks for a Robot Assistant 215

On the other hand, the Tool Arm box is devoted to the control of the actuated wrist
of the armmanipulator with the laparoscopic instrument. In this case, the controller is
based on the actuated wrist controller explained in Sect. 2.3, so the external distance
is computed by means of a Force Estimator which receives the forces and torques
measured by a force sensor attached to the end effector of the robot. As input, the
Motion Planner receives the following data: the target location; forces and torques
exerted by the tool; the robot location; and the Tracked Location measured by a
3D Tracker that scans the location of the surgeon’s tools in real time. This Motion
Planner works in the same manner as the collaborative planning explained in Sect. 4
and shown on Fig. 19.

5.2 Experimental Results

This experiment proposes to take a needle to a target location for a suture procedure.
Therefore, the goal is to compute a free obstacle trajectory for the robot tool in real
time from the initial tool location to the target by avoiding the surgeon’s tool as well
as the patient inner tissue. The robot tool is already located inside the abdominal
cavity with the needle on its tool tip and the target location is defined by a second
surgical tool whose location is read by optical 3D tracker. The robot will stop once
the target location is achieved.

Figure23 shows some snapshots of the resulting trajectory of an auto-guided
movement with the robot tool, where the surgeon’s tool has freedom of movement.
This figure also shows one graph which plots the distance between both tools (dotted
line) and the distance towards the target (solid line), whereas another graph represent
the velocities of the robot and the surgeon tools. In order to demonstrate the behavior
of the auto-guided planningmethodology, this figure is divided into three time frames
identified by the top labeled picture and separated by a verticals thick dotted line.

This experiment is focused on showing the actuation of all behaviors: the Local
Planner with its APF algorithm, the Velocity Correction and the Surgeon’s Tool
Follower. For this purpose, the movement of the surgeon’s tool consists of two
oscillations and each one corresponds to two peaks in the Robot-Surgeon distance
graph (dotted line), one caused by a surgeon forward movement and the other one
caused by a backward displacement. In this way, the surgeon tool interferes the robot
trajectory in the time frames labeled 1 and 2 in Fig. 23.

The first oscillation happens on the zone labeled as 1, where the surgeon’s tool
sweeps the robot tool. As a result, the auto-guide planner changes the robot velocity
to reach the surgeon’s tool velocity, as it has been described on the Surgeon’s Tool
Follower behavior. When the surgeon’s tool moves backward the robot may increase
its velocity up to the APF planned one.

The second oscillation can be seen on the time frame 2 of the velocity graph of
Fig. 23. This time, the surgeon’s tool blocks the robot trajectory, so the robot velocity
must shrink its speed to avoid the collision with the surgeon’s tool. Similarly to the

216 E. Bauzano Nuñez et al.

Fig. 23 Auto-Guided trajectory with the surgeon’s tool as a dynamic obstacle

first oscillation, when the surgeon’s tool moves away then the robot tool may follow
the APF planned trajectory for reaching the target location.

6 Discussion

This chapter has resumed the current state of the development on themain controllers
for navigating the laparoscopic tools for the robot assistants, as well as the differ-
ent planning systems classification depending on their degree of autonomy. More
specifically, the authors have presented their contribution of an auto-guided plan-
ning for collaborative surgical robots. This motion planner can generate trajectories

Planning Automatic Surgical Tasks for a Robot Assistant 217

either with a target force or location while it avoids possible obstacles on the robot
tool trajectory. These two issues together are not implemented in the most relevant
commercial robotic assistants.

The global control architecture of CISOBOT uses an actuated wrist instead of a
remote center of rotation one for handling the tool. Although the second solution is
the most frequent mechanism for surgical instrument movements, it only provides
an initial robot calibration and it is not able to react for unexpected changes in the
fulcrum point position. This question has a strong influence on the patient’s safety,
since unwanted forces can be exerted in his abdominal wall. On the other hand, the
actuated wrist controller estimates the fulcrum location online so it can adapt the
tool navigation and minimize a potential damage on the abdomen.

Furthermore, a valid strategy focused in the robot co-worker concept has been
developed. This is based on real time free-obstacle trajectory computation in order to
assist the surgeon in tasks like needle delivery. Collisions with both, inner tissue and
surgeon tool are avoided bymeans of 3D tracker surgical tool position estimation and
a 3Dmapgenerator of the inner organs and tissue of the patient. In order to validate the
methodology, a two arm robotic system has been used for implementation purposes.
An experiment where the robot takes needle to the surgeon’s tool has been developed
with success.

Related to the future of auto-guiding tasks, the authors believe that a deeper inter-
action between the cameramovements and the robot toolwould improve auto-guiding
tasks. Auto-guiding tasks are also very useful not only for searching trajectories, but
also for other more complex autonomous maneuvers like knot tying, suture or hold
tissue where the robot interacts with the surgeon and the patient.

The final goal of this work consists of developing an autonomous platform, which
aids the surgeon during the surgical procedure without direct orders for the robot to
perform a certain task. In this way, the robot would develop the expected tasks at
each step of the surgical procedure (if it can be divided as a protocol), but if the
surgeon wants to change its behavior he or she always could do it by sending easy
commands through gesture or voice.

References

1. Fichtinger G, Stoianovici D, Taylor RH (2001) The surgical CAD/CAM paradigm and an
implementation for robotically-assisted percutaneous local therapy. Paper presented at the 30th
applied imagery pattern recognition workshop, 10–12 October 2001, pp 3–8

2. Taylor RH, Stoianovici D (2003) Medical robotics in computer-integrated surgery. IEEE Trans
Robot Autom 19(5):765–781

3. Kazanzides P, Fichtinger G, Hager GD, Okamura AM, Whitcomb LL, Taylor RH (2008) Sur-
gical and interventional robotics—core concepts, technology, and design. IEEE Robot Autom
Mag 15(2):122–130

4. Chapuis J, Schramm A, Pappas I, Hallermann W, Schwenzer-Zimmerer K, Langlotz F, Caver-
saccio M (2007) A new system for computer-aided preoperative planning and intraoperative
navigation during corrective jaw surgery. IEEE Trans Inf Technol Biomed 11(3):274–287

218 E. Bauzano Nuñez et al.

5. Fichtinger G, Kazanzides P, Okamura A, Hager G, Whitcomb L, Taylor R (2008) Surgical and
interventional robotics: part II. IEEE Robot Autom Mag 15(3):94–102

6. Bootsma GJ, Siewerdsen JH, Daly MJ, Jaffray DA (2008) Initial investigation of an automatic
registration algorithm for surgical navigation. Paper presented at 30th annual international
conference of the IEEE engineering in medicine and biology society, 20–25 August 2008, pp
3638–3642

7. Hager G, Okamura A, Kazanzides P, Whitcomb L, Fichtinger G, Taylor R (2008) Surgical and
interventional robotics: part III. IEEE Robot Autom Mag 15(4):84–93

8. Sungchoon L, Medi NT, Jeonghoon L, Kyunghwan K (2010) Control performance of a motion
controller for robot-assisted surgery. Paper presented at IEEE workshop on advanced robotics
and its social impacts (ARSO), 26–28 October 2010

9. Meister D, Pokrandt P, Both A (1998) Milling accuracy in robot assisted orthopaedic surgery.
Paper presented at proceedings of the 24th annual conference of the IEEE industrial electronics
society, vol 4, 31 August–4 September 1998, pp 2502–2505

10. Pechlivanis I, Kiriyanthan G, Engelhardt M, Scholz M, Lucke S, Harders A, Schmieder K
(2009) Percutaneous placement of pedicle screws in the lumbar spine using a bone mounted
miniature robotic system, first experiences and accuracy of screwplacement. Spine J 34(4):392–
398

11. Wang Y, Laby K (1998) Automated endoscope system for optimal positioning. USA patent
US5815640

12. Dowler N, Holland S (1996) The evolutionary design of an endoscopic telemanipulator. IEEE
Robot Autom Mag 3(4):38–45

13. Polet R, Donnez J (2008) Using a laparoscope manipulator (LAPMAN) in laparoscopic gyne-
cological surgery. Surg Technol Int 17:187–191

14. Marescaux J, Rubino F (2003) The ZEUS robotic system: experimental and clinical applica-
tions. Surg Clin N Am 83:1305–1315

15. Guthart GS, Salisbury JK (2000) The intuitive telesurgery system: overview and application.
Paper presented at proceedings of the IEEE international conference on robotics and automa-
tion. San Francisco, 24–28 April 2000, pp 618–621

16. KranzfelderM, Staub C, FiolkaA, Schneider A, Gillen S,WilhelmD, Friess H, Knoll A, Feuss-
ner H (2012) Toward increased autonomy in the surgical OR: needs, requests, and expectations,
Surg Endosc. doi:10.1007/s00464-012-2656-y

17. Elhawary H, Popovic A (2011) Robust feature tracking in the beating heart for a robotic-guided
endoscope. Int J Med Robot Comput Assist Surg 7:459–468

18. Weede O, Mönnich H, Müller B, Wörn H (2010) An intelligent and autonomous endoscopic
guidance system for minimally invasive surgery. Paper presented at IEEE international confer-
ence on robotics and automation. Shangai, 9–13 April 2010, pp 5762–5768

19. Staub C, Osa T, Knoll A, Bauernschmitt R (2010) Automation of tissue piercing using circular
needles and vision guidance for computer aided laparoscopic surgery. Paper presented at IEEE
international conference on robotics and automation. Alaska, 3–8 May 2010, pp 4585–4590

20. Reiley CE, Hager GD (2009) Task versus subtask surgical skill evaluation of robotic mini-
mally invasive surgery. Paper presented at medical image computing and computer assisted
intervention, pp 435–442

21. Nageotte F, Zanne P,DoignonC,MathelinM (2009) Stitching planning in laparoscopic surgery:
towards robot-assisted suturing. Int J Robot Res 28(10):1303–1321

22. Fuhan H, Payandeh S (2007) Real-time knotting and unknotting. Paper presented at IEEE
international conference on robotics and automation. Roma, 10–14 April 2007, pp 2570–2575

23. Patil S, Alterovitz R (2010) Toward automated tissue retraction in robot-assisted surgery. Paper
presented at IEEE international conference on robotics and automation. Alaska, 3–8May 2010,
pp 2088–2094

24. Cooper T, Blumenkranz SJ, Guthart GS, Rosa D (2006) Modular manipulator support for
robotic surgery. Intuitive Surgical Inc, Patent no WO 2006/079108 A1

http://dx.doi.org/10.1007/s00464-012-2656-y

Planning Automatic Surgical Tasks for a Robot Assistant 219

25. Madhani A, Niemeyer G, Salisbury K (1998) The black falcon: a teleoperated surgical instru-
ment for minimally invasive surgery. Paper presented at proceedings of the IEEE/RSJ inter-
national conference on intelligent robots and systems. Victoria BC, Canada, 13–17 October
1998, pp 936–944

26. Rosen J, Brown JD, Chang L, Barreca M, Sinanan M, Hannaford B (2002) The
blueDRAGON—a system for measuring the kinematics and the dynamics of minimally inva-
sive surgical tools in-vivo. Paper presented at proceedings of the IEEE international conference
on robotics and automation. Washington DC, May 2002, pp 1876–1881

27. Faraz A, Payandeh S (1999) On inverse kinematic and trajectory planning for tele-laparoscopic
manipulator. Paper presented at proceedings of IEEE international conference on robotics and
automation. Detroit, Michigan, May 1999, pp 1734–1739

28. Kang H, Wen JT (2001) EndoBot: a robotic assistant in minimally invasive surgeries. Paper
presented at proceedings of the IEEE international conference on robotics and automation.
Seoul, Korea, 21–26 May 2001, pp 2031–2036

29. Ortmaier T, Hirzinger G (2000) Cartesian control issues for minimally invasive robot surgery.
Paper presented at proceedings of IEEE/RSJ international conference on intelligent robots and
systems, 31 October–5 November 2000, pp 565–571

30. Wang Y, Laby KP (1998) Automated endoscope system for optimal positioning. Computer
Motion. Patent no US5815640

31. Zemiti N, Ortmaier T, Morel G (2004) A new robot for force control in minimally invasive
surgery. Paper presented at proceedings IEEE international conference on intelligent robots
and systems. Sendai, Japan, 28 September–2 October 2004, pp 3643–3648

32. Bauzano E, Muñoz VF, Garcia-Morales I, Estebanez B (2009) Three-layer control for active
wrists in robotized laparoscopic surgery. Paper presented at IEEE international conference on
intelligent robots and systems. St. Louis, 11–15 October 2009, pp 2653–2658

33. Stolzenburg JU, Franz T, Kallidonis P, Minh D, Dietel A, Hicks J, Nicolaus M, Al-Aown A,
Liatsikos E (2010) Comparison of the FreeHand robotic camera holder with human assistants
during endoscopic extraperitoneal radical prostatectomy. BJU Int 107(6):970–974. doi:10.
1111/j.1464-410X.2010.09656.x

34. Sackier J, Wooters C, Jacob L, Halverson A, Uecker D, Wang Y (1997) Voice activation of a
surgical robotic assistant. George Washington University, Washington

35. Nishikawa A (2003) Face mouse: a novel human machine interface for controlling the position
of a laparoscope. IEEE Trans Robot Autom 19(5):825–841

36. Taylor R (1995) A telerobotic assistant for laparoscopic surgery. IEEE Eng Med Biol Mag
14(3):279–288

37. Funda J, Gruben K, Eldridge B, Gomory S, Taylor R (1995) Control and evaluation of a 7-axis
surgical robot for laparoscopy. Paper presented at proceedings of IEEE international conference
on robotics and automation, pp 1477–1484

38. Muñoz VF, Garcia-Morales I, Perez-DelPulgar C, Gomez-DeGabriel JM, Fernandez-Lozano
J, Garcia-Cerezo A, Vara-Thorbeck C, Toscano R (2006) Control movement scheme based on
manipulability concept for a surgical robotic assistant. Paper presented at IEEE international
conference on robotics and automation. Florida, May 2006, pp 245–250

39. Funda J, Taylor R, Eldridge S, Gruben K (1996) Constrained Cartesian motion control for
teleoperated surgical robots. IEEE Trans Robot Autom 12(3):453–465

40. Tavakoli M, Patel R, Moallem M (2003) A force reflective master-slave system for minimally
invasive surgery. Paper presented at proceedings of the IEEE/RSJ international conference on
intelligent robots and systems. Las Vegas, Nevada, pp 3077–3082

41. Rosen J, Hannaford B, MacFarlane M, Sinanan M (1999) Force controlled and teleoperated
endoscopic grasper forminimally invasive surgery: experimental performance evaluation. IEEE
Trans Biomed Eng 46(10):1876–1881

42. Dario P, Hannaford B, Menciassi A (2003) Smart surgical tools and augmenting devices. IEEE
Trans Robot Autom 19(5):782–792

43. WolfA, ShohamM(2009)Medical automation and robotics. Springer handbook of automation.
Springer, Berlin, pp 1397–1407

http://dx.doi.org/10.1111/j.1464-410X.2010.09656.x
http://dx.doi.org/10.1111/j.1464-410X.2010.09656.x

220 E. Bauzano Nuñez et al.

44. Konietschke R et al (2009) The DLRmirosurge—a robotic system for surgery. Paper presented
at IEEE international conference on robotics and automation. Kobe, pp 1589–1590

45. Hannaford B et al (2013) Raven-II: an open platform for surgical robotics research. IEEE Trans
Biomed Eng 60(4):954–959

46. SchurrM,ArezzoA,BuessG (1999)Robotics and systems technology for advanced endoscopic
procedures: experiences in general surgery. Eur J Cardio-Thorac Surg 16(2)

47. Mayer H, Nagy I, Knoll A, Schirmbeck E, Bauemschmitt R (2004) The endo[pa]r system for
minimally invasive robotic surgery. Paper presented at proceedings of IEEE/RSJ international
conference on intelligent robots and systems. Sendai, Japan, 28 September–2 October 2004,
pp 3637–3642

48. Ko S, KimK, Kwon D, LeeW (2005) Intelligent interaction between surgeon and laparoscopic
assistant robot system. Paper presented at proceedings of IEEE international workshop on
robots and human interactive communication, pp 60–65

49. Casals A, Amat J, Prats D, Laporte E (1995) Vision guided robotic system for laparoscopic
surgery. Paper presented at IFAC international congress on advanced robotics. Barcelona, Spain

50. Hynes P, Dodds GI, Wilkinson AJ (2005) Uncalibrated visual-servoing of a dual arm robot for
surgical tasks. Paper presented at proceedings of IEEE international symposium on computa-
tional intelligence in robotics and automation, 27–30 June 2005, pp 151–156

51. Krupa A et al (2003) Autonomous 3-D positioning of surgical instruments in robotized laparo-
scopic surgery using visual servoing. IEEE Trans on Robot Autom 19(5):842–853

52. Gangloff J, Ginhoux R, Mathelin M, Soler L, Marescaux J (2006) Model predictive control
for compensation of cyclic organ motions in teleoperated laparoscopic surgery. IEEE Trans
Control Syst Technol 14(2):235–246

53. Vitrani MA, Morel G, Bonnet N, Karouia M (2006) A robust ultrasound-based visual servoing
approach for automatic guidance of a surgical instrument with in vivo experiments. Paper
presented at the 1st IEEE/RAS-EMBS international conference on biomedical robotics and
biomechatronics, 20–22 February 2006, pp 35–40

54. Grasa OG, Civera J, Montiel JMM (2011) EKF monocular SLAM with relocalization for
laparoscopic sequences. Paper presented at IEEE international conference on robotics and
automation. Shanghai, 9–13 May 2011, pp 4816–4821

55. Enxiu S, Tao C, Changlin H, Enxiu S, Junjie G (2007) Study of the new method for improving
artificial potential field in mobile robot obstacle avoidance. Paper presented at IEEE interna-
tional conference on automation and logistics. Jinan, 18–21 August 2007, pp 282–286

56. Fernandez R, Mandow A, Muñoz VF, Garcia-Cerezo A (1998) Real-time motion control for
safe navigation. Paper presented at IFAC symposium on intelligent autonomous vehicles

Part III
Motion and Operation Planning

for Wheeled Robots

Motion Planning Using Fast Marching
Squared Method

S. Garrido, L. Moreno and Javier V. Gómez

Abstract Robotic motion planning have been, and still is, a very intense research
field. Many problems have been already solved and even real-time, optimal motion
planning algorithms have been proposed and successfully tested in real-world sce-
narios. However, other problems are not satisfactory solved yet and also new motion
planning subproblems are appearing. In this chapter we detail our proposed solution
for two of these problems with the same underlying method: non-holonomic plan-
ning and outdoor motion planning. The first is characterized by the fact that many
vehicles cannot move in any direction at any time (car-like robots). Therefore, kine-
matic constrains need to be taken into account when planning a new path. Outoor
motion planning focuses on the problem that has to be faced when a robot is going to
work in scenarios with non-flat ground, with different floor types (grass, sand, etc.).
In this case the path computed should take into account the capabilities of the robot
to properly model the environment. In order to solve these problems we are using
the Fast Marching Square method, which has proved to be robust and efficient in the
recent past when applied to other robot motion planning subproblems.

Keywords Fast marching · Fast marching square · Outdoor path planning ·
Non-holonomic path planning

1 Introduction

In nature, there are many fields that can be used as attractive fields. For example, the
electromagnetic fields. We can guide us following the gradient of the field produced
by an antenna and reach its position. In nature, there are also many fields that can be

S. Garrido (B) · L. Moreno · J.V. Gómez
Carlos III University of Madrid, Madrid, Spain
e-mail: sgarrido@ing.uc3m.es

L. Moreno
e-mail: moreno@ing.uc3m.es

J.V. Gómez
e-mail: jvgomez@ing.uc3m.es

© Springer International Publishing Switzerland 2015
G. Carbone and F. Gomez-Bravo (eds.), Motion and Operation Planning
of Robotic Systems, Mechanisms and Machine Science 29,
DOI 10.1007/978-3-319-14705-5_8

223

224 S. Garrido et al.

used as repulsive fields, for example the field produced by a system of particles with
the same electrical charge of the charge placed in the position of interest.

The problem with the potential fields is how to joint the two fields. Historically,
different researchers have tried with different mathematical operations, but in this
way, the total field has local minima that make the field unusable to find a path from
the initial point to the goal.

Instead of usingmathematical operations to joint the two fields, the FastMarching
Squared (FM2) method propose to joint the fields as Nature does. The bees and other
insects that use the light to guide themselves can go out from a semidarkness room to
the sunny exterior guiding themselves to the lighter zones as in Fig. 1a. In the same
way, if we consider the light ray trough a system of lenses, it goes by the path that
consumes a minimum time.

These considerations lead us to think that the solution is to use the repulsive field
as the refraction index of space in which a light wave is propagated. In this way, the
intuition about the propagation of the light in a non homogeneous media can guide
us. In the typical road mirage, as you drive down the roadway, there appears to be a
puddle of water on the road several metres in front of the car. The light rays coming
from the sun are twisted in the vicinity of the hot road, due to the different refractive
indices of the different layers of air parallels to the road, and make the beam reaches
the driver’s eyes as in Fig. 1b.

Mathematically, the propagation of the light is given by the Eikonal equation that
is equivalent to the Fermat’s principle: Light traveling through some substance has a
speed which is determined by the substance. The actual path taken by light between
any two points, in any combination of substances, is always the path of least time
that can be traveled at the required speeds.

The Fermat’s principle is especially interesting in our application, because if we
have only a source of light waves, each point is connected with the source with a light
path that it is parameterised by the time. The set of all the points of the domain with
the time as last coordinate in the case of two spatial coordinates, gives us a Lyapunov
surface inwhich the level curves are isochronals and the Fermats paths are orthogonal
to them. It is impossible for the method to have local minima, because if there exists
a local minimum x, and the time between other point y and x is minimum, as the time

Fig. 1 a In a semidarkness room a bee goes to the lighter zones to go outside. b In the pavement
mirage the sun rays bend near the hot road and go to the driver’s eyes

Motion Planning Using Fast Marching Squared Method 225

between x and the origin is minimum then the minimum time trajectory between y
and the origin passes trough x, i.e. the point x is not a local minimum.

In summary, the proposed method consists in the construction of a repulsive field
by propagating a wave from the obstacles and walls. This gives us a refraction index
or a slowness potential proportional to the inverse of the propagation velocity of
the wave in the medium. Using this first potential as refraction index, a wave is
propagated from the goal point. This results in the Lyapunov surface of the second
potential. Applying gradient descent, maximum slope paths are obtained. Therefore
these are the minimum time trajectories. The level sets of this second potential are,
by definition isochronals, i.e. its points are at the same time from the origin.

In Fig. 2 are shown the funnel potential of the light wave propagation with a
constant refraction index and a path obtained in that way.

In Fig. 3a is shown the repulsive potential built by propagating the wave from
obstacles and walls (first potential). It is similar to the distance transform, but in this
case is continuous, not discrete. In Fig. 3b is shown the fronts of the propagation of
the second wave, and the corresponding path.

As the first potential can be interpreted as a difficulty map, and each point of
the previous trajectory has associated a value of grey or difficulty, we can use it as

Fig. 2 Lyapunov surface when the propagation wave starts in a point and the refraction index is
constant (a) and Fast Marching Path when the refraction index is constant (b)

Fig. 3 a Repulsive field by propagating a wave from the obstacles and walls (first potential) and b
the corresponding wave fronts and its fast marching path when the refraction index is given by a

226 S. Garrido et al.

1000 2000 3000 4000 5000 6000 7000 8000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Points

ve
lo

ci
ty

(a) (b)

Fig. 4 aRelative velocity profile of the path obtained in the previous figure,where 1 is themaximum
velocity and b its Lyapunov surface

velocity profile with a maximum velocity given by the white color and zero velocity
given by the black color, as shown in Fig. 3a. In Fig. 4b is shown the second potential
(or funnel potential) of Fig. 3, in which the third axis represents time.

In Fig. 5 is shown an example of all the process: map of the environment, first
potential and three moments of the wave expansion Fig. 5c–e. In the last is shown
the corresponding path.

It is possible to stop the calculation of the first potential at different distances,
or different levels of saturation. In this way, it is possible to have different kinds
of shapes of the path: more or less close to the walls and obstacles. In Fig. 6 are

Fig. 5 Example of environment a, first potential b and tree moments of the wave exponsion c–e.
In the last is shown the corresponding path

Fig. 6 First potential and the paths that correspond to different levels of saturation. a Saturation:
0.75. b Saturation: 0.5. c Saturation: 0.25. d Saturation: 0

Motion Planning Using Fast Marching Squared Method 227

Time of arrival potential, T(x)lnitial binary map Dilated map

1.8

1.6

1.4

1.2

1

0.2

0

0.4

0.8

0.6

Start PointGoal PointPath

Fig. 7 Laser data of our Lab (original map), First potential, second potential and the path corre-
sponding to a high level of saturation

0 100 200 300
0

100

200

300

400

500

Time of arrival potential, T(x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Velocities map

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Start Point Goal Point Path

Fig. 8 First potential, second potential and the path corresponding to a medium level of saturation

shown the paths that correspond to different levels of saturation. In Figs. 7, 8 and 9
are shown the first potential, second potential and the path corresponding to a three
different levels of saturation for an environment data taken by the robots laser.

Fortunately, there exist a good method to solve the light propagation (Eikonal)
equation numerically. This method is the FastMarching (FM)method andwas devel-
oped by Sethian [1]. It is an efficient computational numerical algorithm for tracking
and modelling the motion of a physical wave interface (front) without reflexions.
This method has been applied to different research fields, including computer graph-
ics, medical imaging, computational fluid dynamics, image processing, computation
of trajectories, etc. [2–4].

228 S. Garrido et al.

Velocities map

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300
0

100

200

300

400

500

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Start Point Goal Point Path

Time of arrival potential, T(x)

Fig. 9 First potential, second potential and the path corresponding to a low level of saturation

The computational efficiency of the method allows the planner to operate at high
rate sensor frequencies [5, 6]. For small and medium scale environments, the pro-
posed method avoids the need for a collision avoidance algorithms plus a global
motion planner. This enables simplification of the mobile robot or mobile manipu-
lator architectures, while maintaining good time response, smooth and safe planned
trajectories with continuous curvature. The trajectory generated by the planner is the
fastest possible to achieve the goal position, by implication the best path according to
the maximum acceptable velocity at each point in the trajectory (path plus velocity).

2 The Eikonal Equation and the Fast Marching Planning
Method

One way to characterise the position of a front in expansion is to compute the time of
arrival T, in which the front reaches each point of the underlying mathematical space
of the interface. It is evident that for one dimension we can obtain the equation for
the arrival function T in an easy way, simply considering the fact that the distance θ

is the product of the speed F and the time T .

θ = F · T (1)

The spatial derivative of the solution function becomes the gradient

1 = F
dT

dθ
(2)

Motion Planning Using Fast Marching Squared Method 229

and therefore the magnitude of the gradient of the arrival function T (θ) is inversely
proportional to the speed.

1

F
= |∇T | (3)

For multiple dimensions, the same concept is valid because the gradient is orthog-
onal to the level sets of the arrival function T (θ). In this way, we can characterise
the movement of the front as the solution of a boundary conditions problem. If speed
F depends only on the position, then the Eq. (3) can be reformulated as the eikonal
equation:

|∇T | F = 1. (4)

The Fast Marching Method is a numerical algorithm for solving the Eikonal
equation, originally, on a rectangular orthogonal mesh introduced by Sethian in 1996
[1]. The Fast Marching Method is an O(n) algorithm as has been demonstrated by
[7], where n is the total number of grid points. The scheme relies on an upwind finite
difference approximation to the gradient and a resulting causality relationship that
lends itself to a Dijkstra-like programming approach.

Fast Marching Methods are designed for problems in which the speed function
never changes sign, so that the front is alwaysmoving forward or backward (there are
no reflections, interferences or diffractions). This allows us to convert the problem
to a stationary formulation, because the front crosses each grid point only once. This
conversion to a stationary formulation, in addition to a whole set of numerical tricks,
gives it its tremendous speed.

Since its introduction, the Fast Marching Method approach has been successfully
applied to a wide array of problems that arise in geometry, mechanics, computer
vision, and manufacturing processes, see [5] for details. Numerous advances have
beenmade to the original technique, including the adaptive narrowbandmethodology
[8] and the Fast Marching Method for solving the static eikonal equation [5]. For
further details and summaries of level set and fast marching techniques for numerical
purposes, see [5].

2.1 Properties

The proposed FM2 algorithm [6, 9–12] has the following key properties:

• Fast response. The planner needs to be fast enough to be used reactively in case
unexpected obstacles make it necessary to plan a new trajectory. To obtain this
fast response, a fast planning algorithm and fast and simple treatment of the sensor
information is necessary. This requires a low complexity order algorithm for a real
time response to unexpected situations.

• Smooth trajectories. The planner must be able to provide a smooth motion plan
which can be executed by the robot motion controller. In other words, the plan does
not need to be refined, avoiding the need for a local refinement of the trajectory.

230 S. Garrido et al.

The solution of the eikonal equation used in the proposed method is given by the
solution of the wave equation:

φ = φ0eik0(ηx−c0t)

As this solution is an exponential, if the potential η(x) is C∞ then the potential φ
is also C∞ and therefore the trajectories calculated by the gradient method over
this potential would be of the same class. At least from a theoretical point of view,
because the equation is solved numerically and the result is an approximation of
that trajectory.

This smoothness property can be observed in Fig. 3, where trajectory is clearly
good, safe and smooth. One advantage of the method is that it not only generates
the optimum path, but also the velocity of the robot at each point of the path. The
velocity reaches its highest values in the light areas and minimum values in the
greyer zones. The FM2 Method simultaneously provides the path and maximum
allowable velocity for a mobile robot between the current location and the goal.

• Reliable trajectories. The proposed planner provides a safe (reasonably far from
a priori and detected obstacles) and reliable trajectory (free from local traps). This
avoids the coordination problem between the local collision avoidance controllers
and the global planners, when local traps or blocked trajectories exist in the envi-
ronment. This is due to the refraction index, which causes higher velocities far
from obstacles.

• Completeness. As the method consists of the propagation of a wave, if there is a
path from the initial position to the objective, the method is capable of finding it.

2.2 Algorithm Implementation on an Orthogonal Mesh

The Fast Marching Method applies to phenomena that can be described as a wave
front propagating normal to itself with a speed function F = F(i, j). The main idea
is to methodically construct the solution using only upwind values (the so called
entropy condition). Let T(i, j) be the solution surface T (i, j) at which the curve
crosses the point (i, j), then it satisfies |∇T |F = 1, the Eikonal equation.

In order to understand how fast marchingworks, imagine an imprudent visitor that
leaves unextinguished fire at some location in a natural reserve. The flame quickly
becomes a forest fire,which expands outwards. Fire consumes the reached trees so the
fire always propagates forward.Wecan record thefire front position at different points
in time. It appears that the fire traverses the route having the smallest propagation
time (and hence, the shortest length if the velocity is constant). In optics and acoustics
this fact is known as Fermats principle or, in a more general form, the least action
principle. In plain language, Fermats principle states that light traveling between two
points always chooses the quickest path. Snells lawof refraction follows directly from
this principle.

Motion Planning Using Fast Marching Squared Method 231

It is necessary to know that the propagation happens from smaller to bigger values
of T. The algorithm classifies the points of the mesh into three sets: black, red and
green, because our interface propagates like of a forest fire. Black points are points
where the arrival time has been computed and is not going to change in the future.
Greenpoints are points that haven’t beenprocessedyet, forwhich the arrival timehave
not been computed up to now (corresponding with live trees). Red points are those
belonging to the propagating wave front, which can be considered as an interface
between the black and the green regions of the triangular mesh. In our forest fire
example, red points correspond with trees that are currently in flames. Initially, only
the source x0 is marked as black and all points adjacent to it, are marked as red. The
remaining points are marked as green. At each iteration, the red with the smallest
value of T(x) is put into the black set. This T(x) value is calculated using the black
points in triangles sharing it. The updated adjacent points are tagged as red. The
process continues until all points become black or the goal is reached.

This equation is applied on grid points. Grid points are classified in three different
types: alive, trial and far.

• Alive Points (black points) are points where values of T are known.
• Trial Points (red points) are points around the curve (alive points), where the
propagation must be computed. The set of trial points is called narrow band. To
compute propagation, points in the narrow band are updated to alive points, while
the narrow band advances.

• Far Away Points (green points) are points where the propagationwas not computed
yet. During the propagation far away points are converted to trial points.

Figure10a explain this idea: in the first subfigure the black point (alive) represents
the initial curve; in 2nd subfigure the value of T is computed in the neighbourhood
of black point; this neighbourhood is converted from far away (green) to trial points
(red); in 3rd subfigure the trial point with smallest value of T is chosen (point A); in
4th subfigure the values of T are computed in the neighbours of point A, converting
them from far away to trial. In fifth subfigure the trial point with smallest value of T
is chosen (for example, “D”); in the last subfigure the neighbours of D are converted
from far away to trial. And so on.

Fig. 10 Scheme of fast marching propagation with an initial point. Different colores (blue to red)
represent different arrival times in increasing order. a Iteration of FM with one wave in 2D. b Time
of arrival potential D(x) (third axis)

232 S. Garrido et al.

Fig. 11 Scheme of fast marching propagation with two initial points. Different colores (blue to
red) represent different arrival times in increasing order. a Iteration of FM with two propagating
wave (in 2D). b Time of arrival potential D(x) (third axis)

Figure11 represents the scheme of Fast Marching propagation with two initial
points.

2.3 Algorithm Implementation on an Triangular Mesh

The numerical basis of the fast marching method and its foremost difference with
Dijkstra’s algorithm resides in the update procedure. While in Dijkstra’s algorithm
the path is restricted to the graph edges, and a graph vertex was updated each time
from an adjacent vertex, in fast marching, because the path can pass through the
triangular faces of the mesh, a vertex has to be updated from a triangle, requiring
two supporting vertices. We assume that the update step is applied to a triangle
(x1, x2, x3), where x1 is the red point with the smallest arrival time T1 = T (x1), x2
is a point for which some arrival time approximation T2 = T (x2) is available, and
x3 is the red or green point, whose arrival time approximation T3 = T (x3) is that
the triangle lies in the plane with x3 = 0. In essence, given that the front reaches x1
at time T1 and x2 at time T2, the update step has to estimate the time when the front
arrives to x3, as shown in Fig. 12.

2.4 Results of FM2 Method

To illustrate the potential of the proposed method, four working conditions are evalu-
ated (sensor-based operation, map-based operation, combined operations, behaviour
in cluttered environment and the computational cost is shown.

Motion Planning Using Fast Marching Squared Method 233

Fig. 12 Scheme of fast marching update step

Fig. 13 Laser scan data
corresponding to a corner of
a corridor of our university

2.4.1 Sensor-Based Planning

In the first test, the method proposed is applied directly to the data obtained from
a laser scan around the robot, where the method obtains a good trade off between
trajectory distance, distances to obstacles and smooth overall trajectory as shown in
Figs. 13 and 14. These images correspond to a corner of a corridor of our University.

234 S. Garrido et al.

Fig. 14 Repulsive potential of the scanned data and trajectory obtained with the FM2 method

Fig. 15 Slowness potential of FM2 1st step for the UC3M Robotics Lab floor

Fig. 16 Motion trajectory obtained with the FM2 method for the UC3M Robotics Lab floor

2.4.2 Map-Based Planning

In the second test, in order to show global plan capabilities, the method is applied
to the whole plant of the building where the Robotics laboratory is located. The
laboratory floor is around 2,000m2 (medium size). The results are shown in Figs. 15
and 16.

2.4.3 Combined Planning

The third test shows the combination of the global and local properties of themethod.
In this case a simple trajectory motion is determined from an initial position to the
goal position. During the motion, the robot observes the environment with its laser
scan, places it on the map and plans a new trajectory. Local observations (obstacles
located in the middle of the corridor) result in slightly modified trajectories to avoid

Motion Planning Using Fast Marching Squared Method 235

Fig. 17 Dynamical evolution of the path when the robot reads information about the new obstacles
(marked with green ellipsoids) absent in the previous map and the robot cannot pass through the
corridor

the obstacles detected (Fig. 17). In the last image in Fig. 17 the detected obstacles
blocked the corridor and the sensor based global planner finds a completely different
trajectory. It is worth noting that in this case, the fact that the global planning capa-
bility takes action, allows automatic replanning of the trajectory. This replanning is
not possible with some other methods due to the separation of the two planners.

This technique shows the advantage of a method which is not only local, but also
global, that combines sensor based local planning capabilities with global planning
capabilities to react quickly to the obstacles while maintaining reliability in the
planned trajectory. The method always finds the solution, if one exists.

3 Application of the FM2 to Car-Like Robots

An important kind of robots are the nonholonomic robots, that can’t move freely in
any desired direction, but they have to accomplish a set of constraints. A typical case
are the car-like robots.

236 S. Garrido et al.

In this section, we are going to describe how to apply the FM2 method to car-
like robots. An interesting feature that has not been sufficiently highlighted in the
previous sections is that by using the gradient over the second potential, it is possible
to calculate a vector field whose field lines are the paths that go from each point to
the target, away from obstacles and walls.

In order to apply the proposed method, it is considered a 3D C-Space of the envi-
ronment, with the two dimensions of the robot’s position and the vehicle’s orientation
as the third dimension. Computing a trajectory along the C-Space built taking into
account the vehicle’s dimensions, it is possible to guarantee the absence of collisions.
This means we operate over the configuration space instead of the bi-dimensional
environment map (see Fig. 19, in which the third dimension is the orientation of the
robot, with 21 possible values. These orientations are repeated above and under the
principal interval in order to permit manoeuvres). The C-space has been built itera-
tively placing the vehicle in every position and with every possible angle. This is a
slow task, but it can be done offline and once per map.

After that, the slowness potential (distance transform) is calculated using the Fast
Marching method for this resultant space. The wave is propagated from the walls of
the previously calculated C-space.

Based on this slowness map, the Fast Marching Method creates the second poten-
tial T (x) that represents arrival time of the wavefront, and in this way the method
gives the arrival time as the fourth axis. The origin of the wave is the goal point,
which continues propagating until it reaches the current position of the robot.

Using this Funnel shaped second Potential the associated O XY vector field is
calculated. This vector field has as field lines the different line paths from the different
points of the C-space and all of them finish in the goal point. This lines, also, go
away from the obstacles. This vector field is going to be used to move the car-like
robot (Fig. 18).

Fig. 18 A car-like robot

Motion Planning Using Fast Marching Squared Method 237

Fig. 19 Three dimensional C-space of the car-like robot, where the third dimension is the orien-
tation. These orientations are repeated above and under the principal interval in order to permit
manoeuvres

Fig. 20 Parking maneuver using FM2-NH

Car-like robots have a limited steering angle causing them to move along paths
of bounded curvature. This can be expressed as a constraint on the curvature radius.
This constraint can be directly included in the algorithm using the vector field, in
form of limits during the path calculation. Figure20 shows the result to apply the
algorithm to a parking manoeuvre.

Finally, starting from the initial position and orientation, the path is constructed
step by step, according to the following order:

• The front wheels are aligned with the vector field in the midpoint of the front axis.
• The perpendicular lines to the front and rear wheels are considered and their
intersection is taken as center of the step movement.

• With the previously calculated center, the vehicle is moved a circumference arc of
length proportional to the vector modulus correspondent to that point.

The previous process is repeated from the new point until the destination point is
reached. Thefinal point and orientation is always reached because the funnel potential
end at this point and orientation.

Consider the car-like robot shown in Fig. 18. In this figure (x, y) is the position of
the center of the rear axis, θ is the car orientation respect the O X axis. It is necessary
to take into account the non-holonomic constraint

ẏ cos θ − ẋ sin θ = 0

238 S. Garrido et al.

and the car-like movement can be modelled, assuming the distance between the front
and rear axes as 1, as

⎛
⎜⎜⎜⎜⎝

ẋ
ẏ
θ̇

v̇
φ̇

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

v cosφ cos θ

v cosφ sin θ

v sin φ

0
0

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

0
0
0
1
0

⎞
⎟⎟⎟⎟⎠ v1 +

⎛
⎜⎜⎜⎜⎝

0
0
0
0
1

⎞
⎟⎟⎟⎟⎠ v2 (5)

where φ is the front wheels orientation, v is the car velocity and v1, v2 are the two
control inputs: acceleration of the car and angular velocity of the front wheels.

An interesting remark is that in this equation everything is done by the vector field
except the control inputs v1, v2: the acceleration of the car and the angular velocity
of the front wheels. These control inputs can be deduced and in this way the method
not only give the trajectory but also the control inputs to follow that trajectory.

The result of an example of the nonholonomic version of the FM2 method can be
observed in Fig. 21, where a corridor of the university is shown. The corresponding
C-space is represented in Fig. 19. The top and the bottom are connected because the
angle wraps around 2π . The trajectory obtained is smooth and safe.

To illustrate the capability of the proposed method, different situations are shown
(see Figs. 23 and 24). In the case of the Fig. 23, a simple trajectory is determined
from an initial position and orientation to the goal position and orientation. Local
observations (obstacles located in the scene) originate slightly modified trajectories
to avoid the detected obstacles. We can conclude that the four situations have good
trajectories (safe and smooth) between the initial and the final point. In the enlarged
image we can see the velocity field (see the Fig. 22) calculated for the movement of
the car-like robot, where the vectors have been normalised for a better visualisation.
This technique shows the advantage of a method which is not only local, but also

Fig. 21 FM2-NH applied to
the car-like robot in the
university corridor

Motion Planning Using Fast Marching Squared Method 239

110 115 120 125 130 135 140 145 150 155

165

170

175

180

185

190

195

200

Fig. 22 Movement of the vehicle on the vector field

Fig. 23 Different motion trajectories obtained with the proposed method (non holonomic)

global, which combines sensor based local planning capabilities with global planning
capabilities to react to the obstacles very quickly while maintaining reliability in the
planned trajectory. The proposed method is highly efficient from a computational
point of view because the Fast Marching can be implemented with complexity O(n),
where n is the number of cells in the environment map.

240 S. Garrido et al.

Fig. 24 Example trajectory
obtained with FM2-NH

3.1 Comparison with Existing Methods

The common limitation of all the reactive navigationmethods is that they cannot guar-
antee global convergence to the goal location because they use only a fraction of the
information available (the local sensory information). Some researchers haveworked
on introducing global information into the reactive collision avoidance methods to
avoid local trap situations. This approach has been adopted by Ulrich and Boren-
stein [13]which uses a look-ahead verification to analyse the consequences of a given
motion a few steps in advance to avoid trap situations. Other authors exploit the infor-
mation about global environment connectivity to avoid trap situations (Minguez and
Montano [14]). Those solutions still maintain the classical two level approach, and
require additional complexity at obstacle avoidance level to improve the reliability
at this level.

The proposed method is consistent at local and global scale because it guarantees
a motion path (if it exists), and does not require global replanning supervision to
restart a planning when a local trap is detected or a path is blocked. Furthermore, the
path calculated has good safety and smoothness characteristics.

Most of the other methods give paths that are not smooth, even though they only
provide a few loose points linked by segments of straight lines. The only methods
that give comparable results are based on harmonic functions (the solutions of the
equation of Laplace) but they have the problem of slowness.

4 How to Deal with Difficulty and Uncertainty in an Outdoor
Environment to Plan Trajectories Using the Fast Marching
Method. Algorithm Implementation on a Triangular Mesh

This section applies the FM2 to the problem of finding trajectories for an outdoor
robot. The objective is to apply FastMarching to a 3D triangular mesh that represents
the surface terrain tofind a trajectory between twopoints. The proposedmethoduses a
triangularmesh because this kind of grid adapts better to 3D surfaces. The advantages

Motion Planning Using Fast Marching Squared Method 241

of this approach are that, in the first step of the method, the algorithm calculates a
weight matrix W that can represents difficulty, refraction index (inverse of speed) or
uncertainty based on the information extracted from the 3D surface characteristics
and the sensor data of the robot. In the experiments carried out in this work these
features are the spherical variance, the gradient of the surface, the height, and also
the incertitude in the map because some portions of the map can’t be measured
directly by the robot. This difficulty matrix is used to define the speed of propagation
of the Fast Marching wave in order to find the best path depending on the task
requirements, e.g., the trajectory with the fastest path, the least energy consumption,
the most plain terrain, the safest path or the known terrain. The method also gives
the robot’s maximum admissible speed in each point. This depends on difficulty
matrix. The results presented in this chapter show that it is possible to model the path
characteristics as desired, by varying this difficulty matrix W.

4.1 Matrix W: The Difficulty Map

The proposed method is based on the FMmethod, changing the speed of propagation
of the wave using a potential generated from the 3D environment characteristics and
the robot limitations. This way, the method changes the time when the front reaches
each point and when the generated trajectory is calculated. This trajectory is not
going to be the simple geodesic, but it is going to be modified according to the robot
and task needs. To be able tomodify this speed, the proposedmethod creates a weight
matrixW,which is currently built based on themain characteristics of the 3D surface:
the spherical variance, the saturated gradient, the height and the uncertainty. Some
other characteristics can be added to the method and it will build a different potential
surface.

4.1.1 Spherical Variance

The spherical variance is a measure the roughness of a surface. It can determine if a
zone is crossable or not. In [15], it is presented a method to calculate the roughness
degree. This method is based on the normal vector dispersion in each point of the
surface:

• In a uniform terrain (low roughness), the normal vectors in a surface will be
approximately parallel and, for this reason, they will present a low dispersion.

• On the other hand, in an uneven terrain (high roughness) the normal vectors will
present great dispersion due great to changes in their orientation.
The method to calculate the spherical variance is:

1. Given a set of n normal vectors to a surface, defined by their three components
{(xi , yi , zi)}, the module of the sum vector R is calculated by:

242 S. Garrido et al.

R =
√√√√

(
n∑

i=0

xi

)2

+
(

n∑
i=0

yi

)2

+
(

n∑
i=0

zi

)2

(6)

2. Next, themean value is normalised by dividing themodule R between the number
of data n, so the value of the result is within [0, 1]. In this way, we have

R

n
∈ [0, 1] (7)

3. Finally, the spherical variance Sv is defined as the complementary of the previous
result.

Sv = 1 − R

n
(8)

when Sv = 1, there exists a maximum dispersion that can be considered as the
maximum roughness degree, and when Sv = 0, a full alignment exists and the
terrain will be completely flat.

4.1.2 Saturated Gradient

The gradient of a surface is a vectorial field. In each point, the gradient point in the
direction of the greatest rate of increase of the scalar field in that point, and whose
module is the greatest rate of change in that point.

The gradient of f (x, y) is defined to be the vector field whose components are
the partial derivatives of f . That is:

∇ f = (
∂ f

∂x1
, . . . ,

∂ f

∂xn
) (9)

In order avoid having path slopes greater than the robot can perform the gradient
is saturated with that limit. That means that, if the gradient value exceeds that limit,
the point will not be included in the list of accessible points determined by the robot
limitations.

4.1.3 Construction of Matrix W

By using this matrix W the algorithm modifies the path that the robot is going to
follow across the 3D surface. The way the matrix modifies the path is by giving a
viscosity value for each point on the surface. It means that the propagation speed of
the front end of the FM wave is modified. Hence, the time when the wave reaches
each point will depend on that difficulty. It is possible to add as many characteristics
as we need to get different paths. These characteristics will modify the viscosity at
each point.

Motion Planning Using Fast Marching Squared Method 243

The saturated gradient, the spherical variance, and the height are three matrices
G, Sv, and H with the same size as the vertex matrix (the 3D mesh). The value of
each vertex of the 3D grid will be determined by the calculated gradient, spherical
variance, and the height of each point.

ThematrixW is aweighted average of each surface characteristicwe are interested
in, and in each case it gives more importance to themore important factors depending
on the task requirements.

The values of the component matrices vary from 0 to 1, so the values of matrix
W are also within this range. The components of matrix W with a value of 0 (less
difficult) will be points in the vertex matrix with maximum speed. Hence, these are
points which the robot can cross without any problem and at its maximum speed.
The elements of W with a value of 1 will be points with a minimum speed, and in
that case, the robot will not be able to pass across them.

W = a1 · G + a2 · Sv + a3 · H (10)

where: ∑
i

ai = 1 (11)

After the difficulty matrix W is generated, the method runs the FM algorithm
over the modified mesh (3D mesh + matrix W) to calculate the best trajectory. With
the FM method the path found will be the less time path in the W metrics. If W
is constant, this path will be the shortest because all the points in the surface will
have the same ‘speed’ for the front propagation, i.e. the path is the geodesic. With a
non constant matrix W , the proposed method changes that ‘speed’, since this matrix
gives information about the difficulty to pass through each point of the surface. The
trajectory will be modified depending on the surface conditions and characteristics
and according to the robot limitations. Since the method modifies the ‘speed’ of the
Fast Marching wave, and in each point W gives the difficulty that can be interpreted
as maximum speed, it gives not only the best trajectory, but also the speed to control
the robot.

4.1.4 Test on Data Taken in Advance

As previously stated, in the proposed method we need terrain data that can be an
elevation map, global or local laser data or a mixture of all. In relation to the outdoor
environment reconstruction, a triangle-based 3D surface is chosen.

The method works in 3D, in order to create a triangular mesh, the algorithm reads
the data from the bitmap file to create the three matrices X , Y , and Z and then, it
builds a 3D mesh based on X , Y and Z coordinates. The fist step of the algorithm is
to generate a Delaunay triangulation in 3D.

After the mesh is created, the algorithm extracts the vertices and the faces of the
triangles. Using these values, the algorithm is able tomodel the 3D triangular surface.

244 S. Garrido et al.

Fig. 25 Path calculated when a W = A and when b W = G in a mars map

Several paths over the surface already presented will be obtained between the
same initial and final points. Those paths are obtained by varying the values of the
weight factors ai of matrix W .

In the case that W = A, this implies that the difficulty of the path will be deter-
mined by the height of every point of the mesh. In Fig. 25a, the path obtained when
the height is penalised, without considering the roughness of the surface or its incli-
nation, is presented. As can be observed, the calculated path will try to reach the final
point passing trough the deepest part of the map.

On the other hand, if we decide to calculate the path penalising just the inclination
of the surface, then the difficulty matrix is defined as W = G. In this case, as shown
in Fig. 25b, the path will follow the parts with smallest slope.

The general idea proposed in this section is the possibility of combining the
different matrices in order to obtain a path that considers the height A, the roughness
Sv, and the inclination G of the surface, among others. In the previous figures, it can
be observed that, for the selected initial and final points, the height matrix favour that
the path goes all the way trying to avoid the highest parts of it. On the other hand,
the gradient matrix G favours the path with smallest slope. Therefore, we can select
the values of each weight factor ai in order to consider the limitations or features of
the robot used.

The final step is to propagate the wave using as refraction index the difficulty
matrix W from the goal point until it gets the present position of the robot and in this
funnel shaped potential, the trajectory is calculated by using the gradient method.

Figure26a shows a view of the path obtained when W = Sv. As can be observed
the result is an intermediate path. Figure26b shows a view of the path obtained when
W = 0.20 ∗ A + 0.40 ∗ Sv + 0.40 ∗ G.

Moreover, the values of theweight factors ai can be changed if the robot to be used
is different or modified. It is also important to note that the trajectories calculated
are a tentative path for the robot. The path can be modified online by modelling the
environment with the robot sensors and recalculating the trajectory in a local area.

Motion Planning Using Fast Marching Squared Method 245

Fig. 26 Path calculated using a W = Sv and when b W = 0.20 ∗ A + 0.40 ∗ Sv + 0.40 ∗ G in a
mars map

4.1.5 Introduction of the Uncertainty in the Slowness Matrix W

When there is a certain uncertainty the robot has to modify the trajectory or the
velocity. For example, in the case of robot in Mars, if the robot doesn’t have enough
information of part of the trajectory, because it hasn’t visual data of that part, could
be better to change the trajectory to zones the robot can visualise.

Howcanwe introduce that uncertainty in themap in order to change the trajectory?
Fortunately, the viscosity matrix W can also be understood as an uncertainty matrix,
the grey degree can be understood as a measurement of the uncertainty.

For example, suppose that the robot has no data of the points lower than its
altitude, in that case the shadow points are represented in the matrix W with values
next to zero (velocity of the media). In Fig. 27 is shown the difference between the
robot trajectories without and with uncertain data of the points lower than the robot’s
altitude. As can be seen in the figure on the right, the trajectory is modified to not to

Fig. 27 Difference between the robot trajectories a without and b with uncertain data of the points
lower than its altitude

246 S. Garrido et al.

go through the lower areas. In Fig. 28 is shown the difference between the difficulty-
uncertainty W matrices when the robot has and hasn’t data of the points lower than
its altitude. As can be seen in the right figure the lower parts have a bluish colour due
to a bigger uncertainty and lower values in the W matrix that correspond to lower
media velocity. In Fig. 29 is shown the difference between the wave expansion D
matrices when the robot has and hasn’t data of the points lower than its altitude. As
can be seen, in the figure on the right, the expansion of the wave is more directed to
the zone with less incertitude.

Fig. 28 Difference between the difficulty-uncertaintyWmatrices when the robot a has and b hasn’t
data of the points lower than its altitude

Fig. 29 Difference between the wave expansion D matrices when the robot has and hasn’t data of
the points lower than its altitude

Motion Planning Using Fast Marching Squared Method 247

Fig. 30 Difference between the difference in the paths when the gradient a is not saturated and b
when it is

Fig. 31 a Spheric variance and b the saturated gradient corresponding to the previous figures

In Fig. 30 is shown the difference in the paths when the gradient is not saturated
and when it is.

In Fig. 31 are shown the saturated gradient and the spheric variance corresponding
to the previous figures.

5 Conclusions and Future Work

As shown along the chapter, the FM and FM2 methods are very powerful when
applied to robot motion planning. Many different problems can be faced with the
same underlying method in addition to minor modifications.

248 S. Garrido et al.

When applied to 2D or 3D environments, the FM2 method is able to provide
efficient solutions in a very short period of time, reaching even real-time applications.
However, as it is based on grid maps, it suffers from the curse of dimensionality. The
number of cells in an environment representation increases polinomically with the
dimensions.

Therefore, future work focuses on applying different heuristics, and include pre-
vious experience in the planner in order to boost the plannification process.

References

1. Sethian JA (1996) A fast marching level set method for monotonically advancing fronts. Proc
Natl Acad Sci 93:1591–1595

2. Jbabdi S, Bellec P, Toro R, Daunizeau J, Plgrini-IssacM, Benali H (2008) Accurate anisotropic
fast marching for diffusion-based geodesic tractography. Int J Biomed Imaging 2008:12

3. Li H, Xue Z, Cui K, Wong STC (2011) Diffusion tensor-based fast marching for modeling
human brain connectivity network. Comput Med Imag Graph 35(3):167–178

4. Yang K, Li M, Liu Y, Jiang C (2010) Multi-points fast marching: a novel method for road
extraction. In: Proceedings of the 18th international conference geoinformatics: GIScience in
change, geoinformatics, June 2010, pp 1–5

5. Sethian JA (1996) Level set methods. Cambridge University Press, Cambridge
6. Garrido S,Moreno L,AbderrahimM,BlancoD (2009) FM2: a real-time sensor-based feedback

controller for mobile robots. Int J Robot Autom 24(1):3169–3192
7. Yatziv L, Bartesaghi A, Sapiro G (2005) A fast O(n) implementation of the fast marching

algorithm. J Comput Phys 212:393–399
8. AdalsteinssonD, Sethian JA (1995)A fast level setmethod for propagating interfaces. J Comput

Phys 118(2):269–277
9. Garrido S, Moreno L, Blanco D (2007) Sensor-based global planning for mobile robot navi-

gation. Robotica 25:189–199
10. Garrido S, Moreno L, Blanco D (2008) Exploration of 2D and 3D environments using Voronoi

transform and fast marching method. J Intell Robot Syst 55(1):55–80
11. Valero-Gomez A, Gomez J, Garrido S, Moreno L (2013) The path to efficiency: fast marching

method for safer, more efficient mobile robot trajectories. Robot AutomMag, IEEE 20(4):111–
120

12. Gomez JV, Vale A, Valente F, Ferreira J, Garrido S, Moreno L (2013) Fast marching in motion
planning for Rhombic like vehicles operating in ITER. In: IEEE international conference on
robotics and automation, pp 5533–5538

13. Ulrich I, Borenstein J (2000) Vfh*: local obstacle avoidance with lookahead verification. In:
Proceedings of the IEEE international conference on robotics and automation, pp 2505–2511

14. Minguez J, Montano L (2001) Global nearness diagram navigation. In: Proceedings of the
IEEE international conference on robotics and automation, Seoul, Korea, pp 33–39

15. Castejon C, Boada B, Blanco D, Moreno L (2005) Traversable region modeling for outdoor
navigation. J Intell Robot Syst 43(2–4):175–216

16. Alton KR, Mitchel IM (2008) Fast marching methods for stationary Hamilton-Jacob equations
with axis-aligned anisotropy. SIAM J Numer Anal 47(1):363–385

17. Petres C, Pailhas Y, Evans J, Petillot Y, Lane D (2005) Underwater path planing using fast
marching algorithms. IEEE Oceans 2005 Eur Conf 2:814–819

Motion Planning of Large Scale Vehicles
for Remote Material Transportation

Alberto Vale and Isabel Ribeiro

Abstract The International Thermonuclear Experimental Reactor (ITER) project is
aworldwide research experiment that aims to explore nuclear fusion as a viable source
of energy for the coming years. Mobile robotics plays an important role in the remote
handling systems that perform the maintenance operations in ITER. The Cask and
Plug Remote Handling System (CPRHS) is one of the remote handling systems that
transports heavy and highly activated in-vessel components between the Tokamak
Building and the Hot Cell Building, the two main buildings of the ITER facility.
The CPRHS has dimensions similar to an autobus, maximum weight of 100 tons,
kinematics of a rhombic like vehicle (two drivable and steerable wheels) and has to
move in cluttered environments. The main challenges described in this chapter are
the definition of motion planning strategies that cope with the building maps and
the cluttered environments. The algorithms were developed and implemented in a
standalone application that receives CAD models of the buildings and returns the
best trajectories, including reports of the most risky points of collision, and the swept
volume of the vehicle along the missions. More than 700 trajectories were computed
for different CPRHS types applied in the models of the real scenarios, crucial to
proceed with the construction of the Tokamak Building.

Keywords Line guidance · Free roaming · Remote handling · ITER and Nuclear
fusion facilities

A. Vale (B)

Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa,
Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
e-mail: alberto.vale@tecnico.ulisboa.pt

I. Ribeiro
Laboratório de Robótica e Sistemas em Engenharia e Ciência, Instituto Superior Técnico,
Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
e-mail: isabel.ribeiro@tecnico.ulisboa.pt

© Springer International Publishing Switzerland 2015
G. Carbone and F. Gomez-Bravo (eds.), Motion and Operation Planning
of Robotic Systems, Mechanisms and Machine Science 29,
DOI 10.1007/978-3-319-14705-5_9

249

250 A. Vale and I. Ribeiro

1 Introduction

There is a practical need for developing and exploring nuclear fusion as a source
of energy for the humankind benefit. The shortage predictions on fossil fuels,
especially with the inevitable oil extraction decline, requires an urgent development
and exploration of new sources of energy.

The current energy supply policy is mostly based on fossil fuels (oil, coal and
natural gas) representing almost 80% of the total energy consumption [1]. To worsen
this scenario, the world population is expected to grow from 6 to 9 billion people
until 2050 [2], resulting on an expressive raise of energy demand.

According to [3], no single technology is likely to provide all of the world’s future
energy needs and replace the actual oil-based energy infrastructure. It is necessary to
achieve a more sustainable mix of fossil fuels and, more importantly, to develop an
energy consumption-frame based on new technologies and alternative energies such
as solar, geothermal and nuclear, fission and fusion power.

The International Thermonuclear Experimental Reactor (ITER) project is aworld-
wide research experiment that aims to explore nuclear fusion as a viable source of
energy for the coming years. The project is funded by seven member entities: the
European Union (EU), India, Japan, China, Russia, South Korea and the United
States. The largest experimental tokamak nuclear fusion reactor will be located at
the Cadarache facility, in the south of France, as depicted in Fig. 1.

Besides the major scientific objective of exploring the nuclear fusion as a source
of energy, the fusion power plants must be safely and effectively maintained through
Remote Handling (RH) techniques, due to restrictions on human being in activated
areas.

During ITER lifetime, the internal components of the vacuumvessel of the reactor,
such as the blanket and divertor modules, will become activated due to exposure to
highly energetic neutrons released during the fusion reaction. Additionally, these
in-vessel materials might get contaminated with small amounts of radioactive dust.

Fig. 1 The ITER Tokamak (left image) and the scientific buildings and facilities that will house
the ITER experiments (right image) in Cadarache, south of France

Motion Planning of Large Scale Vehicles for Remote Material Transportation 251

Hence, the components that provide the base functions for the ITER machinery will
need to be periodically inspected and upgraded. To manage such operations and
provided that human presence will be not authorized in activated areas, the ITER
maintenance system will mostly rely on RH devices [4].

1.1 The Scenario

Among the various RH systems that are expected to operate in ITER, this work focus
on a large and complex transporter unit that was chosen for the transfer of heavy and
contaminated loads between the two main buildings of ITER, the Tokamak Building
(TB), lodging the tokamak reactor and with access by vacuum vessel port cells (from
this point forward simply identified as “ports”) and the Hot Cell Building (HCB),
that will work mainly as a support area. A lift establishes the only interface between
the different levels of TB and between the TB and the HCB. Figure2 represents the
interface between the TB and the HCB. It also depicts a mission between one port
in one level of TB and a refurbishment docking place in HCB.

The foreseen RH equipment will have a large impact on the design and assembly
of the remaining ITER components, namely on building structural aspects and inter-
faces. Therefore, motion planning studies for the Cask and Plug Remote Handling
System (CPRHS) in all of its missions are required for the sake of the feasibility of
the ITER buildings design and for the space reservation for the RH missions, carried
out by the CPRHS, as described in [5].

In ITER, the environment in all levels of TB and HCB is mostly composed by
static and well structured scenarios, as displayed in Figs. 3 and 4 and each level of the
buildings can be modeled using a 2Dmap representation that will be used for motion

Fig. 2 A 3D snapshot of the CAD models from the two main buildings in ITER, emphasizing the
reactor, the vehicle and a particular mission between the buildings

252 A. Vale and I. Ribeiro

Fig. 3 The three levels of Tokamak Building in a split view (second image), in particular the 2D
maps of the level B1 (first image) and the level L1 (third image)

Fig. 4 The five levels of Hot Cell Building in a split view (second image), in particular the 2D
maps of the level B2 (first image) and the level L1 (third image)

planning evaluation. The adopted representation for a map is a set of 2D points in
the global Cartesian referential defined in the ITER buildings design and a set of
line segments. Each line segment connects two different points and it is assumed
that there is no crossing between lines. In case of intersection, a 2D point resulted
from the intersection is created and each crossed line segment is split in two new line
segments, one starting and the other ending in the splitting point, respectively.

In TB, the vehicles can operate in three levels (from bottom to up): B1, L1 and L2,
as illustrated in Fig. 3. In HCB, the vehicles may operate in five levels (from bottom
to up): B2, B1, L1, L2 and L3, as in Fig. 4.

The entire work developed in this project is applied to the scenario of ITER
buildings. However, the same research and development in terms of mobile robots
navigation can be applicable to any other type of scenario as warehouses or office
type environments.

Motion Planning of Large Scale Vehicles for Remote Material Transportation 253

1.2 The Vehicle

The CPRHS is a critical element of the ITER remote maintenance system devoted to
transportation of components between the TB and HCB. Due to the necessary con-
finement of contaminated components the CPRHS is defined as Safety Importance
Class 1 (SIC-1) plus the mobile nature of the CPRHS brings with it a significant
number of complex interfaces with other ITER sub-systems [6]. The geometry of
the CPRHS and its payload vary according to the components to be transported
and hence, different CPRHS typologies will operate in ITER. As a reference, the
largest CPRHS dimensions are 8.5m × 2.62m × 3.62m (length × width × height),
as depicted in Fig. 5, and the total weight with the maximum load can reach up to
100 tons.

A CPRHS is composed by three sub-systems: the cask envelope (container that
enclosures the in-vessel components and the RH tools to be transported), the Cask
Transfer System (CTS),which acts as amobile robot and the pallet (interface between
the cask and the CTS equippedwith an handling platform to support the cask load and
to help on docking procedures). When underneath the pallet, the CTS transports the
entire CPRHS, but it can alsomove independently of the pallet and cask. TheCTS has
a rhombic like configuration provided by twodrivable and steerablewheels, identified
as “F”ront and “R”ear wheels, as illustrated in Fig. 6. Given this configuration, the
CTS has a higher maneuverability in confined spaces than the traditional cars with
Ackerman or tricycle configurations [7].

The CTS when operating individually or the CPRHS when carried out by the
CTS are, hence, rhombic like vehicles. For simplicity and from this point forward
the CPRHS and the CTS when moving alone are identified as the “vehicle”.

As illustrated in Fig. 6, consider the state vector q = [xc yc θ] as a representation
of the vehicle pose in the frame {I}, with (xc, yc) the coordinates of the center of
the vehicle and θ the orientation of the vehicle. Consider v as the longitudinal speed
and β the controllable sideslip angle of the vehicle, both defined in {I}. The angles
and the velocities of the front and rear wheels represented Fig. 6, i.e., θF , θR , vF and

Fig. 5 The CADmodel of the vehicle (left image) and three different loads during a disassembling
operation (right image)

254 A. Vale and I. Ribeiro

Fig. 6 The rhombic like
configuration

vR , are the inputs to control the motion of the vehicle, which is not addressed in this
work. A kinematic model for a rhombic like vehicle in {I}, that allows the simulation
of the vehicle motion directly through the desired longitudinal speed v, instead of
imposing an individual linear speed for each wheel, was introduced in [8] as:

⎡
⎣

ẋc

ẏc

θ̇

⎤
⎦ =

⎡
⎢⎢⎣

cos(θ + β)

sin(θ + β)

cosβ · [tan θF − tan θR]
M

⎤
⎥⎥⎦ · v, (1)

where

β = arctan

(
vF · sin θF + vR · sin θR

2 · vR · cos θR

)
(2)

and

v = vF · cos θF + vR · cos θR

2 · cosβ
. (3)

This model entails that the wheels of the vehicle roll without slipping, a constraint
inherent to the nonholonomy of rhombic like vehicles, and it also considers a rigid
body constraint, common to this type of vehicles, as follows:

vF cos θF = vR cos θR . (4)

The drivable and steerable wheels of a rhombic like vehicle are able to follow the
same path, in a methodology identified in this work as the line guidance approach, or
to follow different paths, herein identified as the free roaming approach, as illustrated
in Fig. 7. These two approaches will be addressed later in Sect. 2.

Motion Planning of Large Scale Vehicles for Remote Material Transportation 255

Fig. 7 The drivable and steerable wheels of a rhombic like vehicle following the same path, feature
identified as line guidance (left image) and following different paths, identified as free roaming
(right image). The dotted lines represent the path described by the center of the vehicle

1.3 Problem Statement

The maintenance operations of transportation in ITER require the vehicle motion
throughout the cluttered environments of the TB and the HCB. There are 46 ports
in the three levels of TB and one lift that interfaces the different levels of TB and
the different levels of HCB. In addition, there are several docking ports and parking
places inside the different levels of HCB. Themaintenance operations require a mesh
of paths between the target points inside the buildings. For instance, the transportation
mission of a load for refurbishment requires a path between a port and the lift in TB
and then between the lift and a docking port in HCB. During a mission the vehicle
sweeps a given volume when follow its path. This volume is important given the
scarce free space available in the scenario, or with other vehicles in operation or
parked, as illustrated in Fig. 8. The speed along the path is also relevant not only for
the mission execution time, but in particularly because the dynamics of the vehicle,
since it can reach up to 100 tons. From all these reasons, each mission requires an
optimized trajectory.

The trajectory optimization problem stated for the vehicle consists on evaluating a
trajectory, i.e., a geometric path combinedwith a speed profile, which guarantees that
the vehicle, departing froman initial configurationqS , achieves the specified goal,qF ,

Fig. 8 Two missions of remote handling in ITER: from the lift to port 16 in level B1 of TB (left
image) and the sequences for moving a parked CPRHS in level B2 of HCB (right image)

256 A. Vale and I. Ribeiro

without colliding with obstacles and ensuring a safety margin with its surroundings.
Specific optimization criteria such as smoothness, path length and obstacle clearance
are also considered during the planning phase as well as the vehicle characteristics
(dimensions, kinematic and dynamic constraints) and surrounding scenario.

To solve the trajectory optimization problem for each mission, specific informa-
tion is required, which defines the inputs to the developed algorithms:

1. Environment model: the model of the scenario where the vehicles have to move
that constitute relevant information for the definition of a collision free optimal
planned solution. From the original CAD models in 3D, it is only used their 2D
projection at floor level, as described in Sect. 1.1.

2. Vehicle model: the planning solutions depend directly on the vehicle
configuration (geometric, kinematic and dynamic), as described in Sect. 1.2.

3. Initial and goal conditions: the initial and final poses of the vehicle defines the
first and the last points of the path, i.e., Pi and Pf .

4. Global trajectory(ies): most of the trajectories in TB share a large common path
around the Tokamak, which is identified as a “ring” in each level. First, the path
of the ring is evaluated and then, each path for a different port is maximized with
the path of the ring. The maximization of different paths is addressed later in
Sect. 2.1.5.

Together, these informations define a motion query for the specified mission in
the ITER scenarios and are fed as inputs into a trajectory planner. This planner gen-
erates a path to be carried out by the vehicles, i.e., a set of Cartesian coordinates (for
specific vehicle reference points) and corresponding orientations that geometrically
describe the vehicle motion. In addition to the geometric feasibility of the solution,
which shall guarantee that the vehicle reaches the goal configuration without collid-
ing with obstacles, it is desirable that the planned solution follows specific criteria
requirements:

• Path length: whenever possible, find the shortest possible path, so as to minimize
the energy consumption of the on-board batteries.

• Path clearance: increase the minimum distance of the vehicle to the surrounding
obstacles of the scenario.

• Path smoothness: the planned solution shall be smooth, minimizing steering
maneuvers and jerky motions.

• Maximization of common paths: the vehicle journeys may share common paths
through the buildings, wherever possible.

The planner outputs a trajectory to guide the vehicle from an initial configura-
tion, qS , to a final configuration, qF , using the 2D map representation, M , and the
vehicle model. The geometric solution (a path) is combined with a speed profile,
which defines how to move the vehicle along the path at various speeds while sat-
isfying the kinematic and dynamic constraints (maximum/minimum velocities and
accelerations).

Motion Planning of Large Scale Vehicles for Remote Material Transportation 257

2 Motion Planning

Two main approaches are presented for solving the trajectory optimization problem
of rhombic like vehicles: the line guidance and the free roaming (see Fig. 7). The line
guidance approach, where both drivable and steerable wheels follow the same path, is
used in most of the trajectories. This approach, detailed in Sect. 2.1, outputs an opti-
mized trajectory without maneuvers of alternatively moving forward and backward.
In some situations, the resulted trajectory using line guidance is not feasible in the
entrances to some ports or to the lift, but may become feasible if including maneu-
vers. Therefore, an improvement of the line guidance approach using maneuvers is
described in Sect. 2.1.4. When the trajectory is not feasible even if using maneuvers,
the free roaming approach, detailed in Sect. 2.2, is the last solution adopted. The
Sect. 2.3 describes the speed evaluator considered for both approaches, which con-
verts the optimized paths into optimized trajectories. In addition, and in particular for
the ITER scenario, specially in the TB, most of the trajectories share a long common
part from the single lift in TB to the vicinity of each port of the Tokamak. Therefore,
an additional feature was developed for maximizing the common part of different
trajectories, which is detailed in Sect. 2.1.5.

The two main approaches, the line guidance and the free roaming, share three
stages:

1. Geometric path evaluation: given the environment model and the initial and goal
objectives, an initial geometric path is found. At this point the aim is to find a
path connecting the initial and goal objectives that can act as an initial condition
for the next path optimization stage.

2. Path optimization: this module receives the preceding geometric solution as input
and returns an optimized path. The optimization process first applies a spline
interpolation to satisfyweaker differential constraints such as smoothness require-
ments. Afterwards, a clearance based optimization is carried out to guarantee a
collision free path that meets the safety requirements. In this study, a minimum
safety distance between the vehicle and the obstacles must be guaranteed.

3. Trajectory evaluation: in this final module (described in Sect. 2.3), a velocity
function is defined along the optimized path transforming it into a trajectory,
which is the output of the proposed planning approach.

The two first stages correspond to the path planning and optimization, while
the third stage consists on the trajectory evaluation, including a velocity profile to the
path. The two first stages are detailed in the sequel for the line guidance and for the
free roaming.

2.1 Line Guidance

From previous work of RH in ITER [9], and for safety purposes, buried wired sys-
temswere proposed to implement the paths resulted from line guidance. The vehicles

258 A. Vale and I. Ribeiro

would follow the path, with both wheels following the same path. Given this ITER
project requirement, the proposed planning methodology returns directly the path to
be followed by the center of the wheels and not the one corresponding to the center
of the vehicle. A nominal operation of the vehicle for a specified environment deter-
mines a motion between two configurations (2D points with specific orientations).
The first step of this planning methodology is to find an initial geometric path, i.e.,
a set of 2D points, connecting the initial and final configurations.

The environment in all levels of TB is composed by static and well structured
scenarios. Therefore, the environments can be modeled using a planar map represen-
tation, ensuring good geometric properties, like low dimensionality. This encouraged
the use of a combinatorial planning approach, instead of other approaches that require
more computational effort, as [10, 11]. To handle this first planning objective, the use
of a cell decomposition approach is considered, but other combinatorial approaches
[12, 13], could also be used. From the cell decomposition approaches, a triangle
cell arrangement was adopted, using the Constrained Delaunay Triangulation (CDT)
[14], as illustrated in Fig. 9—left.

The adopted representation for a map, E , is a set of 2D points, pi in a global
Cartesian referential of ITER and a set of line segments, l jk , where each line segment
connects two different points, pk and pl, i.e.,

E = {pi, l jk |i, j, k = 1, . . . , E p} (5)

where EP is the number of points, pi = (x, y) and l jk = {pj + t · pk|t ∈ [0, 1]}.
The CDT, detailed in Sect. 2.1.1, provides the support to generate an initial path,

which has a sharp layout and possibly is not feasible. Then, an optimization algorithm

Fig. 9 Example of the line guidance approach applied in the trajectory evaluation to port 16 in
level B1 of TB: the initial map, the Constrained Delaunay Triangulation and the best sequence of
triangles painted in a different color (first image), the poses of the vehicle along the geometrical
path extracted from the sequence of triangles (second image), the evaluation of the optimization
procedure with the smoothing of the path (third image) and the poses of the vehicle along the
optimized path (last image)

Motion Planning of Large Scale Vehicles for Remote Material Transportation 259

based on elastic bands concept is used to smooth the initial path and to turn it
feasible, as detailed in Sect. 2.1.3. In most of the situations, the CDT requires more
computational power than the elastic bands, i.e., the initial part of the algorithm
is very demanding when compared to the optimization part. Hence, the alternative
initialization approach based on Fast MarchingMethod (FMM), faster than the CDT,
is proposed in Sect. 2.1.2. The Sects. 2.1.4 and 2.1.5 details the improvement of
line guidance approach with maneuvers and the maximization of common parts of
different paths.

2.1.1 Constrained Delaunay Triangulation for Initialization

The overall procedure to determine an initial geometric path can using CDT is
described:

1. For a specified scenario, the CDT is applied to the corresponding 2D map, E ,
yielding a triangle cell decomposition. Let C denote the set of N triangle cells
so obtained, C = {Cn|n = 1, . . . , N }. Since each triangle has three edges, only
some of them may correspond to a wall of the scenario and, therefore, identified
as a real edge l jk . The other edges, possible all of them, are identified as virtual
edges since they exist only for computational purposes;

2. To handle a specific motion query, i.e., to connect an initial vehicle configuration,
qS , to a final configuration, qF , the next algorithm’s step determines which cells,
herein denoted by CI and CF , contain these two configurations;

3. Using the cell adjacency property, all the possible triangle sequences connecting
CI to CF and composed by consecutive cells that do not share a real edge are
evaluated. The desired cells in the sequences are connected by virtual edges, since
feasible solutions cannot cross walls represented by real edges. Let S = {Si |i =
1, . . . , K } be the set of all cell sequences so obtained. If no one of such sequence
exists, the algorithm states that there is no solution for the proposed query;

4. The final step converts each cell sequence Si into an ordered sequence of points
connected by line segments that can be interpreted as a graph. First, qS is con-
nected to the middle edge point of the two first cell in each sequence. Then, the
middle edge points of two consecutive cells of the sequence are taken as path
sample points and are linked by a straight line. Finally, the middle edge point of
the last cell in each sequence is connected to qF .

The geometric path evaluation module just presented outputs all the possible
geometric paths connecting qS to qF and composed by a set of line segments. To
determine the best solution, the shortest path is chosen. To increase the efficiency
of the CDT algorithm, the A∗ algorithm [15], is used in alternative to an exhaustive
search. Simulations experiments shown how this algorithm can dramatically fasten
the search for the shortest triangle cell sequence in complex scenarios such as the
TB, that are composed by numerous triangle cells.

Figure9—first image illustrates the level B1 of TB, the respective CDT of the
map and the best sequence of triangles painted in a different color. Figure9—second

260 A. Vale and I. Ribeiro

image presents the poses of the vehicle along the geometrical path extracted from the
sequence of triangles. This geometrical path is the initial path with a sharp layout and
not feasible (clashes with some pillars). The iterative process of the path optimization
starting on the initial path is presented in the Fig. 9—third image. A part of the path
is zoomed for a better understanding about the modifications along the iterations.
The last image in the Fig. 9 presents the poses of the vehicle along the final smooth
and feasible path.

2.1.2 Fast Marching for Initialization

The initialization path obtained with CDTmethodology presents limitations in terms
of path smoothness. In complex scenarios, the geometric representation results in a
huge number of triangles with rough initial paths still far from the optimal one, as
shown in Fig. 9, yielding a large computational effort to optimize the path. These
limitations can be overcome by using the Fast Marching Square (FM2) method [16],
providing a better initialization. The FM2 is an alternative approach for the initial-
ization, in terms of computational improvement. At the end of the entire process, the
optimal final paths are very similar when using the CDT or FM2 initializations, as
shown later in this chapter.

The FMM is a computational algorithm to solve the arrival time of expanding
waves in every point of the space. Conceptually, it can be considered as a contin-
uous version of the Dijkstra’s algorithm [17]. It is based on the assumption that
the information only flows outwards from the seeding area (wave source). The
FMM was proposed by Sethian [18] to approximate the solution of the Eikonal
equation, a non-linear partial differential equation encountered in problems of wave
propagation [18].

Let assume a 2D map, where x = (x, y) is a point on the map with coordinates
defined in a Cartesian referential, the front wave arrival time function for every point
of the map, T (x), and the velocity of the wave propagation F(x) in each point x.
Let also assume that a wave starts propagating at x0 = (x0, y0) at time T (x0) = 0
with velocity F(x) ≥ 0. The Eikonal equation (6) defines the time of arrival of the
propagating frontwave T (x) at each point x of the map, in which the propagation
speed depends on F(x), according to:

|∇T (x)|F(x) = 1 (6)

With the discretization of the gradient ∇T (x) as in [19], it is possible to solve the
Eikonal equation at each point x. Using the notation in (7), Eq. (6) can be rewritten
as (8):

T1 = min(T (i − 1, j), T (i + 1, j))
T2 = min(T (i, j − 1), T (i, j + 1))

(7)

(
T (i, j) − T1

Δx

)2

+
(

T(i, j) − T2
Δy

)2

= 1

F(i, j)2
(8)

Motion Planning of Large Scale Vehicles for Remote Material Transportation 261

The FMM consists on solving the Eq. (8) in which all the parameters are known,
except T (i, j). The process is iterative, starting at the source point of the wave (or
waves)where T (i0, j0) = 0. Each iteration obtains the value T (i, j) for the neighbors
of the points evaluated in the previous iteration. Using as an input a binary grid map,
in which the velocity F(i, j) = 0 (black) means obstacle and F(i, j) = 1 (white)
means free space, the output of the algorithm is a map of distances. These distances
are concretely the time of arrival of the expanding wave at every point of the map.

FMM can be directly used as a path planner algorithm. By applying gradient
descent from any point of the distance map, a path will be obtained with the source
of the wave as a goal point. The paths provided by the FMM are optimal in terms of
length, but they do not accomplish the smoothness and safety constraints that most
of robotic applications require, because they run too close to obstacles and walls
and have sharp curves. However, the FM2 method includes smoothness and solves
partially the safety constraints.

The FM2 method arises from the application of the FMM twice over the same
map. The first time is used to create a map of velocities for the environment, as
illustrated in the first image of Fig. 10 and the second time it computes the time of
arrival of the wave for every point when the wave is moving at the velocity computed
in the previous step. The FM2 method is based on automatically creating maps of
velocities, F(x), depending on the environment map in which the velocity of the
expanding wave varies depending on the distance to the closest obstacle. The FMM
is applied in a first stage to obtain these maps of velocities. In this case, all the
obstacles and walls are labeled as wave sources that expand with constant speed.
The result is a map of distances in which those cells in the grid that are farther from
the obstacles have a higher value, as depicted in Fig. 10—center.

Once this map of distances is computed, it is normalized in order to have values
between 0 and 1 and interpreted as relative wave expansion speeds (meaning full
stopped or full speed of the wave expansion, respectively). The FMM is applied

Fig. 10 Map of velocities obtained using all the black points of the grid map as a wave source in the
FMM (first image), map of distances obtained after applying FMM to the map of velocities (second
image) and the resulted path obtained by applying gradient descent over the map of distances (third
image)

262 A. Vale and I. Ribeiro

Fig. 11 Initial path computed by the CDT (first image), initial path computed by the FM2 (second
image) and the resulted optimized path (third image), which is the same if using any of the previous
initializations, but achieved with less iterations if using the second initialization

once again with the goal point as the wave source. During the expansion, the wave
will propagate with the velocities indicated in the map previously generated. The
propagation ends once the initial point of the path is reached. The resulting map of
distances is similar to the one obtained with the standard FMM, but slight differences
which make the paths smooth when gradient descent is applied, as shown in Fig. 11.
In summary, FM2 applies FMM twice without any mathematical modification: the
first step creates the map of velocities, F(x), and the second step computes the time
of arrival function, T (x), in which gradient descent is applied to find the path. In
FMM the map of velocities F(x) is directly the input binary map.

Similar to the CDT, the FM2 does not include the rhombic kinematic constrains
and, hence, the resulted initial path could be non feasible. Therefore, the optimiza-
tion process of elastic bands described in Sect. 2.1.3 is required after using any of
the initializations methods, CDT or FM2. However, the path obtained with FM2 is
smoother and closer to the final optimal solution when compared to the initial geo-
metric paths obtained with CDT, as illustrated in Fig. 11 (a mission from the lift to
the port 12, extracted from the several experiments presented in [20]).

The FM2 avoids local minimum, completeness (finds a path if it exists and notifies
in case of no feasible path) and requires less computation power (themap of velocities
is independent of the robot shape and pose). In addition, the FM2 performs a better
initialization when compared to the initialization obtained with CDT, as explained
in the Sect. 2.1.3. However, FM2 requires a discretization of the environment and
the map of distances has to be computed to each mission, since the final poses are
different. In both approaches, CDT or FM2, the result is only an initialization path,
which is long, with a sharp layout and probably non feasible.

2.1.3 Elastic Bands for Smoothing

The initial path retrieved by the CDT or by the FM2 is not optimized in terms of
length, smoothness and most of the times is also non feasible, i.e., results in clashes

Motion Planning of Large Scale Vehicles for Remote Material Transportation 263

with some element in the scenario. An optimization is necessary to smooth the path
and to turn it feasible starting from the output of the CDT or the FM2 initializations.
An optimization methodology was implemented, based on the elastic bands method
[21]. The original concept associated with this approach appeared in the computer
vision field, with the presentation of the so called “snakes” algorithm [22]. A snake is
a deformable curve guided by artificial forces that pull it towards image features such
as lines and edges. The solution herein proposed with the elastic bands methodology
is similar to the snakes approach. Instead of retracting a curve to image features,
in the path planning problem, it repels the path out from obstacles. Following this
approach, the path is modeled as an elastic band which can be compared to a series
of connected springs subjected to two types of forces:

• Internal forces: the internal contraction force simulates the Hooke’s elasticity con-
cept [23, 24], i.e., the magnitude force is proportional to the amplitude of displace-
ment. This modeling approach allows the simulation of the behavior of a stretched
band. This is the reason why the paths become retracted and shorter. From this
point on, the term “elastic force”, Fe, is adopted to refer to this force component;

• External forces: the obstacle clearance is achieved using repulsive forces, to keep
the path, and consequently the vehicle, away from obstacles.

When submitted to these artificial forces, the elastic band is deformed over time
becoming a shorter and smoother path, increasing clearance from obstacles. Hooke’s
law evaluates the elastic force Fe applied to path point Pi as

Fe(Pi) = ke · [
(Pi−1 − Pi) − (Pi − Pi+1)

]
(9)

where ke is the elastic gain and Pi−1 and Pi+1 are the path points adjacent to Pi .
The elastic band behavior can be controlled through ke. The band stretches with high
values of ke while low values increase the band flexibility.

Using a collision detector algorithm, the nearest obstacle point (OP) to each
vehicle pose might be considered. The use of a single OP as a reference to determine
the repulsive forces may not be satisfactory to maintain clearance from obstacles
due to vehicle dimensions, and therefore, a larger set of obstacle points, such as
the k-nearest (k-OPs), must be considered, as illustrated in Fig. 12. This will lead
to a more balanced repulsive contribution ensuring effectiveness on most situations.
Henceforth, on this formulation, it is considered the set of references formed by the
nearest OP to each of the four vehicle’s faces.

In the collision detector algorithm four situations may occur with the nearest
points between the vehicle and the scenario: between a corner of the vehicle and a
corner of the scenario, between a corner of the vehicle and a wall, between a corner
of the scenario and a face of the vehicle and between a face of the vehicle and a wall
(the vehicle is in parallel to a wall). In the three first situations, the result is always
a point of the vehicle and point in the scenario, defining, as described later, in a
distance and a direction for the repulsive force. In the last situation, when the vehicle
is in parallel to a wall, an infinite number of points would be expected. However,

264 A. Vale and I. Ribeiro

Fig. 12 Elastic band concept: elastic forces to smooth the path (left image) and repulsive forces
generated by the closest obstacles (right image)

any wall or any face of vehicle are line segments. Therefore, when this situation is
verified, it is considered the closest points in the boundaries of the line segments.

The overall procedure to evaluate the repulsive force for each path point Pi is the
following:

1. The initial poses (position and orientation) are determined based on the constraint
of both wheels placed over the path. These poses were computed considering a
forward direction and a backward direction. In the forward direction the rearwheel
is fixed on each Pi . Then, the path point Pj closest to the front wheel position
along the path is determined, such that

∥∥Pi − Pj
∥∥ = M , where M is the distance

between front and rear wheels. The points Pi and Pj define theCPRHS/CTS pose.
In the backward direction, the same procedure is repeated, but fixing the front
wheel for each Pi , as if the vehicle was executing the path moving backwards.
Let k = {1, . . . , K } denote the index of the kth OP considered on each Pi related
pose and l = {F, B} referring to the forward or backward direction. The tl,k is
the vector defined by the k obstacle point (Ol,k) and each wheel point (WF = rear
wheel and WB = front wheel),

tl,k = Wl − Ol,k (10)

This vector defines the repulsive force direction taking into account the position
of the wheels. To maintain clearance from obstacles, the force magnitude must
vary inversely with the distance of the poses to the obstacles. To carry out this
geometric consideration let ul,k denote the vector taken from the Ol,k to the
vehicle nearest point Vl,k ,

ul,k = Vl,k − Ol,k (11)

2. Each pair of points (Ol,k ,Vl,k) determines a repulsive contribution defined on Pi

given by,

Motion Planning of Large Scale Vehicles for Remote Material Transportation 265

rl,k(Pi) =

⎧⎪⎨
⎪⎩

tl,k‖tl,k‖ f (
∥∥ul,k

∥∥) if
∥∥ul,k

∥∥ > dth

tl,k‖tl,k‖ fth if 0 ≤ ∥∥ul,k
∥∥ ≤ dth

(12)

with f denoting a monotonically decreasing function, with a maximum reference
value, fth , to avoid outsized magnitude values when a threshold distance, dth , is
exceeded.

3. The repulsive force for each Pi is determined as a combination of different repul-
sive contributions, given by (12),

Fr (Pi) = kr ·
∑

l={F,B}

K∑
k=1

rl,k(Pi) (13)

with kr denoting the repulsive gain.
Once the elastic (9) and the repulsive (13) forces are computed, an update equation
procedure that defines the path evolution along each iteration is applied as

Pi,new = Pi,old + k · Ftotal(Pi,old) (14)

where k is a normalization factor adding up the total force contribution applied
to all points Pi,old and the total force contribution is given by

Ftotal(Pi,old) = Fe(Pi,old) + Fr (Pi,old) (15)

The stopping criteria is defined by detecting that the magnitude changes on Ftotal

are smaller than a given threshold and by setting amaximum number of iterations.

The path optimization is thus carried out by a path deformation approach where
the computed paths are treated as flexible and deformable bands. Elastic interactions
smooth the path by removing any existing slack, whereas repulsive forces improve
clearance from obstacles. The algorithm is fully described in [25] where the results
of line guidance applied in all levels of TB are presented. In case of not enough
space, a feasible path may not be possible and the algorithm returns, with warning,
a path with clashes or with the minimum distance below a safety margin in certain
places.

The computational efforts to obtain the initial path using CDT or FM2 are similar.
However, since the path resulted fromFM2 is closer to the final solution, it is expected
that the computational time required by the elastic bands to obtain the final solution
is less when using the initial path resulted from FM2. The number of iterations to
obtain the final path to the port 12 is illustrated in Fig. 13. In this figure, each line
represents the variation of each point of the path, i.e., how much the point “moves”
in the Cartesian referential when the elastic band is applied. In the first iterations,
the points have larger variation, since there are more differences between the elastic
forces and repulsive forces. In the last iterations, there is more equilibrium and

266 A. Vale and I. Ribeiro

Fig. 13 Convergence of the elastic bands algorithm when using the CDT initialization (top image)
and when using the FM2 initialization (bottom image), which requires less iterations

the variation are minimum corresponding to small oscillations. The algorithm stops
when the variation is below a threshold value. The elastic bands algorithm takes less
iterations to converge using the FM2 initialization, and thus, less computational time
as expected.

2.1.4 Integration of Maneuvers

Due to the confined environment, there are particular situations where the described
methodology of line guidance fails to generate feasible solutions, i.e., paths with-
out collisions and above a safety margin. The integration of maneuvers can greatly
improve the path planning, by providing a feasible solution where none could be
found with the previously methodology and with the advantage of improving the
distance to obstacles, as represented in Fig. 14.

Fig. 14 The line guidance algorithm was not able to generate a path to port 17 in level B1 of TB
without clashes (left image), but the problem becomes solved with a maneuver (right image)

Motion Planning of Large Scale Vehicles for Remote Material Transportation 267

A maneuver exists when the vehicle stops and changes its motion direction
(from/to forward to/from backwards). In this paper, a maneuver splits the path in
two sub-paths with the constraint that the final pose of the first sub-path is the ini-
tial pose of the next sub-path. In both sub-paths the line guidance methodology is
considered.

By taking advantage of the vehicle kinematic configuration, the line guidance
algorithm was improved to incorporate one or multiple maneuvers. In case n maneu-
vers are required, the path is divided in n + 1 sub-paths and the path optimization is
applied to each sub-path. An additional constraint has to be taken into account when
considering maneuvers. The path should be common to both wheels. However, when
following a path, both wheels cannot follow the entire path. For instance, when fol-
lowing in forward direction, it is expected that the front wheel reaches the end of the
path before the rear wheel. Similarly, in backwards direction, the rear wheel reaches
the beginning of the path before the front wheel. This gap corresponds to the wheel-
base, M . Consequently, this constraint should also be taken into consideration when
evaluating maneuvers. Between two consecutive sub-paths of a maneuver, there is a
coincident segment of both sub-paths with a length greater or equal to the distance
between the wheels.

The decision of including maneuvers is taken when a path without maneuver is
not feasible, as illustrated in Fig. 14, where there is a collision, or does not fulfill
the minimum safety distance to obstacles. The point(s) of maneuver are introduced
manually. It is possible to choose if they are fixed or flexible. In this later case the
algorithm can adjust its position during the optimization to obtain the final trajectory.
The integration of maneuvers is currently available in [26].

2.1.5 Maximization of Common Parts of Different Paths

The geometry of the scenarios in TB andHCB is such that paths for differentmissions
of the CPRHS can, in certain situations, share common parts. In particular, this is
noticeable in the galleries around the tokamak where all CPRHS have to travel
from/to the lift to/from each of the port cells. The maximization of common parts
in different paths minimizes the overall volume required for CPRHS operation, this
being a key issue in ITER design and safety. To achieve this goal the line guidance
approach described in Sect. 2.1 was improved with a feature to fulfill this objective.

Around the galleries in TB an optimal path to be followed using line guidance
navigation is firstly generated, with the initial pose inside the lift and the final pose
in the corridor, near the lift, as illustrated in Fig. 15—left. This path is to be used, as
much as possible, in all missions from/to the lift to/from each port that are accessible
from the gallery. For each of these paths, two issues arise at this stage considering a
mission from the lift to a port: (i) where to deviate from this common part of the path
to reach a particular port, and (ii) which is the optimal path from this deviation point,
to the final goal in the port cell. The last path, i.e., from the deviation point to the
final goal, can be optimized using line guidance or free roaming, since the entrance
to the port cell is usually critical, given the risk of clashes with the pillars.

268 A. Vale and I. Ribeiro

Fig. 15 The common trajectory around the tokamak (left image) and the maximization process
with the trajectory to port 14 in equatorial level of TB (right images)

The overall procedure to evaluate an optimized path that considers the maximiza-
tion of common paths is the following:

1. Assume as input the path starting at the lift and describing a ring around the
galleries. This path can be evaluated using the algorithm described in Sect. 2.1.

2. Obtain a second optimized path from the lift to a specific port, using the algorithm
of Sect. 2.1.

3. Starting from the end point of the second path (obtained in point 2), the most
closest point between the two paths is searched and defined as the Closest Point
(CP), as illustrated in Fig. 15. From the CP and crawling backwards the length
of the vehicle along the first path a Splitting Point (SP) is defined. The common
path is defined between the initial point of both paths and the SP.

4. The path starting in the SP, where the pose of vehicle is frozen, and finishing in the
target goal is optimized following the same procedure of line guidance described
in Sect. 2.1 or, if it is not possible, using the free roaming described in Sect. 2.2.
This means that the path in point 2 is disregarded at this stage.

The resulted path is finally inputted to the speed evaluator, leading to an optimized
trajectory.

2.2 Free Roaming

The line guidance methodology entails that both vehicle wheels should follow the
same physical path and therefore the inherent rhombic flexibility is only partially
explored. Figure16 illustrates part of the scenario in TB of ITER where a CPRHS,
acting as a rescue vehicle, has to dock in a Vacuum Vessel Port Cell (VVPC) where
another CPRHS is already parked. There is a possible trajectory for the first cask
using line guidance, as illustrated in Fig. 16 (top). However, if considering the same

Motion Planning of Large Scale Vehicles for Remote Material Transportation 269

Fig. 16 Trajectories for port 14 in any level of TB: (top image) the nominal operation is possible
with line guidance, (bottom left image) in rescue operation, where a CPRHS is already docked,
resulting in collision using the line guidance and (bottom right image) using free roaming results
in a feasible trajectory

constraint, the rescue vehicle clashes with the wall, as illustrated in Fig. 16 (bottom
left). In several situations as the previous one, no possible trajectory is found for
the second cask using the line guidance approach. In case of using independent
references for the wheels, i.e., free roaming navigation methodology, a possible path
is found, as illustrated in Fig. 16 (bottom right). This solution requires the use of
dedicated motion planning techniques, in particular, an efficient path optimization
method capable of exploring the high maneuvering ability of the rhombic vehicle.

The proposed free roaming methodology is based on rough paths provided by
global planners like the Rapidly-Exploring Random Tree (RRT) [27, 28], or the
Probabilistic Roadmap Method (PRM) [10]. The resulted path is optimized using
the elastic bands method, but this time, it is redefined, formulating paths as particle
systems [21]. Inspired on the rigid body dynamics, consecutive poses along the
rough path previously referred are treated as rigid bodies that are repulsion from
obstacles through external forces, improving path clearance. Figure17 illustrates
the free roaming process. This formulation allow to explicitly consider the vehicle
geometry during the optimization and fully profit from the high maneuverability of
rhombic vehicles.

In this approach, the use of rigid body dynamics is restricted to the case of general
plane motion, i.e., the particles composing the rigid body move in parallel planes
and their motion is neither characterized by pure rotational nor pure translational
movements. Therefore, angular variables, such as moments and angular velocities,
are scalar quantities.

Consider that a rigid body with a Center of Mass (CoM) denoted by C is acted by
N external forces, Fn , with {n = 1, . . . , N }. Following the Newton’s Second Law
and taking the rigid body as a system of particles, the dynamics of C , with respect

270 A. Vale and I. Ribeiro

Fig. 17 The initial path returned by the Rapidly exploring random tree (first image), the poses of
the vehicle along the path (second image), the evaluation of the free roaming (third image) and the
resulted path (last image)

to the inertial frame O XY , is given by

Ftotal =
N∑

n=1

Fn = m · a, (16)

where m is the mass of the vehicle (up to 100 tons) and a is the linear acceleration
of C . The dynamics of the rigid body motion relative to the its body frame, C X ′Y ′,
is given by

τtotal =
N∑

n=1

Fn × en = ICα, (17)

which entails that the resultant torque about C , τtotal , is a vector with the direction
of the angular acceleration, α, and magnitude ICα. In (17), IC is the moment of
inertia around the perpendicular axis passing through C , whereas en corresponds
to the position vector of Fn relative to the reference frame C X ′Y ′. For the case of
uniformly accelerated motion, which will be adopted in this formulation, a and α

assume constant values over time. From the kinetics viewpoint, the general plane
motion of the rigid body can be decomposed as the combination of a translation with
linear acceleration, a, and a rotation about C with angular acceleration, α, given by
(16) and (17), respectively.

The path optimization, based on a deformation process, refines and improves the
quality of a rough solution path provided by a planner. This rough path, which defines
the input for the optimization process, is consider to be a set of collision-free motions
connecting the queried initial pose, qS , and the final pose, qF . From this time forward
the rough path will be referred to as query path, as described in Sect. 2.1.3.

In the path optimization process, each of the consecutive vehicle poses that
form the query path is treated as a rigid body that is connected with its adjacent
poses like a convoy through internal interactions and subjected to external-repulsive
forces produced by obstacles in its vicinity. Hence, the path optimization becomes

Motion Planning of Large Scale Vehicles for Remote Material Transportation 271

a path deformation problem, which relies on the principles of rigid body dynamics
to iteratively simulate the evolution of each pose on the optimization process. In
particular, it is proposed to subject each vehicle pose in the query path to two types
of efforts:

• Internal efforts: consecutive poses are kept connected through virtual elastic and
torsional springs, which simulate the Hooke’s elasticity concept and originate
elastic forces and torsional torques. These efforts guarantee smoothness on defor-
mation and help shorten the path, and

• External efforts: repulsive forces repel the rigid poses from obstacles, acting as
a collision avoidance feature. Moreover, force eccentricity originates repulsive
rotating torques, which re-adapt poses orientation maximizing clearance over the
obstacles.

Loosely following the elastic bands concept proposed by Quinlan and Khatib in
[21], this method, by considering each vehicle pose as a rigid body, enables the path
deformation to explicitly consider the vehicle geometry and exploits the rhombic
vehicle nature, issues considered here as unattended on similar studies.

The implemented path optimization process based on elastic bands concept is
described as follows. Let j = {1, . . . , J } be the index of the consecutive vehicle
poses composing the query path, each defined by a configuration vector

q j =
[

s j

θ j

]
, (18)

where s j and θ j denote the position and the orientation of the pose q j relative to a
fixed reference frame, respectively. It is stated that q1 = qS and qJ = qF .

The elastic force, FE , and the torsional torque, τT , evaluated for the vehicle pose
at q j are:

FE (q j) = KE · [(s j+1 − s j) + (s j−1 − s j)] (19)

τT (q j) = KT · [(θ j+1 − θ j) + (θ j−1 − θ j)], (20)

where KE , the elasticity gain and, KT , the torsional gain, control the elastic and the
torsional avoidance behavior on the path deformation, respectively.

The evaluation of the external efforts due to obstacle proximity relies on a
heuristic-based collision detector module, which is capable of determining the set
of i-nearest Obstacle Point (OP) to each sampled pose q j . The overall procedure to
handle the evaluation of the repulsive forces and torques are described as follows:

1. Let i = {1, . . . , I } denote the index of the ith OP relative to a specific pose q j .
Let u j,i be the vector

u j,i = Vj,i − O j,i , (21)

taken from each OP, O j,i , and the corresponding vehicle nearest point, Vj,i .
2. To improve clearance during path deformation, distance-dependent repulsive

forces are defined, where each pair of points (O j,i , Vj,i) determines a repulsive

272 A. Vale and I. Ribeiro

contribution. For a specificvehicle pose,q j , the repulsive contributions are defined
as

r j,i = u j,i

‖u j,i‖ · f (‖u j,i‖) (22)

where,

f (‖u j,i‖) = max

(
0, Fmax − Fmax

dmax
· ‖u j,i‖

)
. (23)

In (23), a maximum allowable magnitude, Fmax , is assigned to avoid outsized
values in the close vicinity of the obstacles, and dmax denotes the distance up to
which the repulsive force is applied.

3. For each pose q j , the total repulsive force is defined as

FR(q j) =
I∑

i=1

r j,i . (24)

Using (17), the net repulsive torque around the j th pose CoM is defined as

τR(q j) =
I∑

i=1

r j,i × e j,i . (25)

The repulsive and elastic forces are combined on a total force contribution as,

Ftotal(q j) = FR(q j) + FE (q j). (26)

Similar approach is valid for the torsional and repulsive torques acting on each pose
q j . This leads to the definition of a net torque expressed as,

τtotal(q j) = τT (q j) + τR(q j). (27)

Once determined the efforts acting on each pose, the ensued motion is evaluated
through the principles of rigid body dynamics. Equations (16) and (17), are rewritten
as

a j = Ftotal(q j)

m
− K D · v j (28)

α j = τtotal(q j)

IC
− K Dω j , (29)

which provide the linear and angular accelerations for a specific poseq j . The last term
in the right hand side of (28) and (29) represent damping effects introduced to reduce
the oscillatory motion during path deformation. They are controlled through K D ,
herein set equally for both the translational and the rotational motion components.

Motion Planning of Large Scale Vehicles for Remote Material Transportation 273

Notice that both m and IC in (28) and (29), do not refer to real vehicle parameters
but rather to simple scalars determining the resistance of each pose to change its
configuration. The used values in the parameters are presented in Table1 of Sect. 3.1.

From a starting configuration in the query path, q j , this pose is updated iteratively
assuming the resulted acceleration and torque, where the referred initial conditions
are the previous iterated pose in this process. The stopping criteria is defined by
setting a maximum number of iterations. The numerical solution is detailed in [29]
and presented with results in all levels of TB and HCB in [30].

2.3 From Path to Trajectory

The output of the path optimization module of the planning methodology, using line
guidance or free roaming, is a collision free path suitable for execution. To achieve
a realistic plan, it is necessary to determine how the vehicle should move along the
path satisfying dynamic constraints, i.e., the optimized paths should be parameter-
ized in terms of velocities, converting the paths into trajectories. The definition of
the vehicle’s velocity along the path assumes a particular importance in this study.
The designed trajectories must guarantee that the vehicle performs its motion in
the shortest time period satisfying energy minimization. On the other hand, safety
requirements are mandatory and the risk of collision shall be reduced. Given the clut-
tered environment where the CPRHS/CTS moves, an initial approach might define
the vehicle speed profile as a function of the distance to the obstacles. The velocity
assumes low values when the vehicle is closer to obstacles. Otherwise, the veloc-
ity could be higher, under safety levels. To generate this initial speed profile, the
minimum distance of each path point in the optimized path to the closest obstacles
is identified, as shown in Fig. 18—left. Each value of minimum distance refers to
a specific path point, Pi , and is measured considering the positioning of the vehi-
cle when in this point (front or rear wheel), as if following the optimized path (see
Fig. 18—right).

From the evolution of the minimum distance to obstacles, also referred as clear-
ance profile, it is possible to determine an initialization for the vehicle’s speed, which

Fig. 18 Evolution of the minimum distances to obstacles along an optimized path (left image) and
the respective path in the scenario, part of level B2 of HCB (right image)

274 A. Vale and I. Ribeiro

determines the speed at each reference point Pi , denoted as si , defined as a linear
function of the minimum distance, di , included in the clearance profile as follows.

si =
⎧⎨
⎩

smin if di < dsafe

α(di) if dsafe ≤ di < dth

smax if di ≥ dth

(30)

A maximum and minimum allowable speed, smax and smin , are set to this pro-
file, in order to integrate kinematic constraints. The safety margin is denoted as
dsafe and dth identifies the threshold distance above which smax is considered. The
speed profile thus obtained is saturated when di is above dth or below dsafe and is
referred as C-based speed profile [25], as illustrated in Fig. 19—top left. However,
the C-based speed profile is unable to handle vehicle dynamics constraints, meaning
that the constraints on the admissible accelerations of the vehicle are ignored. To
sidestep this issue, a specific routine was developed, which tests each C-based speed
profile transitions, checking whether the accelerations are feasible or not. Whenever
a dynamic unfeasible transition is found (e.g., the calculated acceleration is higher
than the admissible maximum value, amax , or lower than the admissible minimum
value, amin), the routine corrects the speed accordingly. In Fig. 19—top right, the
difference between the C-based profile (yellow) and the re-evaluated speed profile
based on vehicle dynamics (green) is depicted.

The transition from a clearance based profile to a dynamic feasible profile may
lead to a violation of the initial safety restrictions as it is pointed out in Fig. 19—
bottom.Thismeans that, in certain situations, the evaluated speed profilemay result in
values of speed higher than the desired given the obstacle proximity and themaximum
level of acceleration/deceleration. When these transgressions are detected, the final

Fig. 19 Flow diagram for the evaluation of a speed profile that is both compliant with safety (from
the proximity with obstacles) and dynamic (from the vehicle) constraints

Motion Planning of Large Scale Vehicles for Remote Material Transportation 275

Fig. 20 CPRHS speed map for a journey to port cell 2 in level L1 of TB. Each pose is painted in
a different color corresponding to a speed value according to the gradient, where the values are in
meters per second

profile is generated by considering both safety requirements and vehicle dynamics
constraints as illustrated in the bottom right of Fig. 19. The obtained speed profile can
be significantly different from the initial C-based speed profile and when combined
with the optimized path, the final optimized trajectory is obtained.

A typical optimized trajectory obtained is shown in Fig. 20 along with the speed
variation along the path (amax = 0.01m/s2, dsafe = 0.3m, dth = 1m).

2.4 Feasibility Analysis

A vehicle spans an occupancy area when it moves along a path evaluated either using
the line guidance or the free roamingmethodologies,with orwithoutmaneuvers,with
orwithoutmaximization of commonparts amongdifferent paths. The occupancy area
is evaluated after the path optimization process as follows. The poses are distributed
along the path. Then, a polygon is build to fit all the poses. That polygon results from
an iterative sum of polygons of each pose, using the polygon clip algorithm described
in [31]. The resulted polygon of a path computed by the line guidance is illustrated
in the second image of Fig. 21, and computed by the free roaming is illustrated in
Fig. 22.

The boundary of the occupancy area means that at least one corner of the vehicle
can pass over there. To enlarge the occupancy area with a safety margin, according to
the requirements of ITER, a new polygon is computed, containing the initial polygon.
The minimum distance between the boundary of the new polygon and the boundary
of the initial polygon is always constant and defined by a value identified as the safety
margin of 30cm. The resulted polygons with a safety margin are illustrated in the
third images of Figs. 21 and 22.

276 A. Vale and I. Ribeiro

Fig. 21 A generic path computed by the line guidance algorithm (first image), the corresponding
occupied area (second image) with a safety margin (third image)

Fig. 22 A generic path computed by the free roaming algorithm (first image), the corresponding
occupied area (second image) with a safety margin (third image)

In terms of 3D, a polygon with the occupancy area is extruded to a swept volume
according to the height of the vehicle. This swept volume in the real world results on
an additional constrain to the scenario. No other physical elements can be placed in
this volume, which must be a free area, as illustrated in Fig. 23. Besides the trajectory
optimization, the swept volume is another important output required by the ITER
Organization for the buildings design. By integrating the swept volume of a specific
mission with new building CAD models it is possible to, immediately, identify if
clashes exist and hence, if that mission is feasible.

Fig. 23 Examples of the swept volume of the casks in level B2 of HCB, where no other elements
can be placed

Motion Planning of Large Scale Vehicles for Remote Material Transportation 277

Fig. 24 The most closest points between the scenarios and the paths evaluated by the line guidance
(left image) and by the free roaming (right image)

In addition, combining the occupancy area with the building model, it is possible
to identify the closest points between the scenario and the vehicle when it follows a
path. The feasibility analysis becomes a geometrical problem tofind the closest points
between the polygon of the occupancy area and the segment lines of the scenario. As
a result, the most critical points of the scenario, i.e., the points with the highest risk
of collision are identified, as illustrated in Fig. 24. If there is an intersection with the
polygon, a clash exists.

3 Results

The algorithms were implemented in the specially designed software tool Trajec-
tory Evaluator and Simulator (TES), developed under the grants F4E-GRT-016 and
F4E-GRT-276-01 of the European Joint Undertaking for ITER and the Development
of Fusion Energy. The TES was developed to generate trajectories using line guid-
ance and free roaming approaches, for the evaluation of common parts of different
trajectories and for the evaluation of the 3D volume swept by the vehicle in CATIA
V5R19 format. TheTES receives themodels of the buildings and of different vehicles
typologies and exports the optimized trajectories and the corresponding 3D swept
volume directly to CATIA V5R19.1 The TES provides also a GUI to preview the tra-
jectory optimization, to manipulate the scenarios (for instance to test modifications
in the port doors aperture configuration if necessary), to easily choose the vehicle
typology to be used in the simulation and to generate results. Snapshots of TES are
presented in Fig. 25, illustrating some features, including the exportation to CATIA
V5R19. The output of TES is a set of optimized trajectories, which, under the scope of
the previously mentioned grants, were validated by an independent software devel-
oped by ASTRIUM SAS [32]. Additionally, TES provides trajectory information

1CATIA V5R19 is the required Software tool by the Fusion For Energy (the ITER European
Domestic Agency) to work with ITER CAD models.

278 A. Vale and I. Ribeiro

Fig. 25 Snapshots of the Trajectory Evaluator and Simulator (TES) software application

that supports the comparison of the different trajectory scenarios, i.e., both wheels
following the same path or following different paths, the ability to evaluate the risk
of a clash and the time duration of the journey of a mission.

3.1 Trajectories Simulated Results

The results were generated using themaps of the three levels of TB and the four levels
of HCB for trajectory optimization (including trajectories for nominal operation of
transportation, rescue and parking in HCB). Most of the trajectories are between the
lift and a port in TB, and a docking port or a parking place in the HCB.Wherever pos-
sible, the line guidance approach is selected to find an optimized trajectory. Figure26
illustrates an optimized trajectory using line guidance between the lift and the port
2 of level B1 in TB. Figure26—left illustrates the common path of both wheels, the
paths described by the wheels and by the center of the vehicle and a sample of poses
along the path. Figure26—center represents the most critical points of the scenario
associated to the path, i.e., the closest obstacles to the vehicle when it crosses each
point of the path. The risk level is coded by a gradient color, where red corresponds
to the most risky situations. It is noticed that the critical points are most of the times
the environment’s corners, in particular the entrances to the lift and to the ports. The
third image on the right represents the area swept by the vehicle when following the
optimized path, i.e., the reserved area where no other elements are allowed aiming at
avoiding collisions. Around the swept area it is also presented an extrusion of 30cm
that represents a safety margin; if an element is placed there, no collision is verified,

Motion Planning of Large Scale Vehicles for Remote Material Transportation 279

Fig. 26 Trajectory to port 2 in level B1 of TB using line guidance (from left to right): path and
sampling poses, the most closest obstacles and the area spanned by the vehicle along the path, with
a safety margin

Fig. 27 The minimum distance to the closest obstacles (left image) and the speed profile (right
image) along the trajectory to port 2 in level B1 of TB using line guidance

but the risk of clash is high. In Fig. 27 it is quantified the minimum distances to
obstacles along the path and the speed profile for the trajectory presented in Fig. 26.

In some situations, the free space constrains the usage of line guidance as illus-
trated in Fig. 28—left: the optimized path may not result in collision but the safety
margin in the entrance to the lift is not fulfilled. Therefore, a maneuver is adopted, as
illustrated in the right side of Fig. 28. The minimum distances to obstacles are larger
in a trajectory with a maneuver, as illustrated in Fig. 29, mainly between the points
6 and 12 of the path. Each path is a set of points and the horizontal axis in Fig. 29
represents the indexes of those points.

Figure30 illustrates the example of port 14, where line guidance can not provide
a feasible trajectory, even if including maneuvers. The solution is to adopt the free
roaming approach. Given the requirement of maximizing the common parts of dif-
ferent trajectories, the free roaming is only adopted in the vicinity of the entrance to
the port, while the other part of the trajectory is accomplished using line guidance.

280 A. Vale and I. Ribeiro

Fig. 28 Optimized trajectory in the vicinity of the lift using line guidance without maneuver (left
image) and with a maneuver (right image)

Fig. 29 The minimum distance to the closest obstacles with and without the maneuver in the
vicinity of the entrance to the lift

The line guidance is always adopted as the first choice for the trajectory opti-
mization. However, all the feasible trajectories evaluated using the line guidance
approach can also be evaluated or improved using the free roaming approach. The
line guidance approach can be seen as a particular case of the free roaming, i.e., when
the paths of both wheels are coincident free roaming becomes the solution.

In terms of ITER requirements, if a trajectory evaluated using line guidance is
feasible for a particular mission, the free roaming is not studied. Even though and
for the purpose of this paper. Figure31 shows the comparison between the two

Motion Planning of Large Scale Vehicles for Remote Material Transportation 281

Fig. 30 Comparison of non feasible trajectory using line guidance (left image) and the feasible
trajectory using free roaming (right image) to port 14 in level B1 of TB

Fig. 31 Trajectory to port 1 in level B1 of TB (from left to right): line guidance and the corre-
sponding spanned area, free roaming and the corresponding spanned area

approaches for port 1 in level B1 of TB, where both approaches are feasible. The
trajectories are similar, but in the vicinity of the entrances to the lift and to the port, the
differences between the paths of each wheel are more relevant. In addition, the space
swept by the cask when moving along a path evaluated by the free roaming approach
is larger when compared with the line guidance approach. In the example illustrated
in Fig. 31, the total swept area using line guidance is 173.3m2, while using the free
roaming is 182.2m2, i.e., 5% less. However, the major difference in both approaches
is the distances to the closest obstacles when the vehicle is moving along the paths.
As illustrated in Fig. 32, the free roaming provides a better safety distance when the

282 A. Vale and I. Ribeiro

Fig. 32 Comparison of minimum distance to the closest obstacles between line guidance and free
roaming trajectories to pot 1 in level B1 of TB

vehicle is closer to the obstacles. In particular, in the entrance to the port (around
the trajectory point 40), the minimum distance to the closest obstacle along the path
evaluated by the line guidance approach is closer to the safety margin, while the free
roaming approach results in a trajectory with additional 15cm of safety margin. It is
a substantial value when the minimum safety margins allowed in ITER are between
10 and 30cm.

The maximization of common parts from different trajectories is more noticeable
for long trajectories, as in the examples illustrated in Figs. 33 and 34: trajectories
for ports 12 and 13 in level B1 of TB. Figure33 illustrates the trajectories evaluated
separately. The trajectories are quite similar, with the exception in the vicinity of the
ports or closer to the pillars. Figure34 illustrates both trajectories to the same ports,
but maximized with the common path around the tokamak. The main difference
is visible outside the lift, since the common path around the tokamak took into
consideration the other trajectories that are counter clockwise and requiresmaneuvers
(see the example of Fig. 14) and also the trajectory for port 2 (see Fig. 26). The
resulted trajectory of maximization the common part seems to have less waypoints
when compared with the trajectories that were evaluated individually. The number
of points are equal, with the difference that the points are exactly the same for both
trajectories maximized with the common part until the splitting point of the first
trajectory (to the port 13). The minimum distances along the trajectories to port 12
and 13 obtained with and without the maximization of the common part are plotted

Motion Planning of Large Scale Vehicles for Remote Material Transportation 283

Fig. 33 Trajectories to ports 12 and 13 in level B1 of TB using line guidance without maximization
of common parts: sampling poses (left image) and the waypoints (right image)

Fig. 34 Trajectories to ports 12 and 13 in level B1 of TB using line guidance with maximization
of common parts: sampling poses (left image) and the waypoints (right image)

in Figs. 35 and 36. The trajectories resulted from the maximization of common parts
provide better results since they decrease the effect of the smoothness and increase
the clearance. However, the minimum values, which corresponds to the entrance to
the ports, remain approximately the same.

A total of 536 trajectories were optimized: 304 for the 4 levels in HCB and 233
for the 3 levels in TB, for different cask typologies and using the values presented

284 A. Vale and I. Ribeiro

Fig. 35 Comparison of the minimum distances to the closest obstacles using line guidance trajec-
tories to port 12, with and without maximization of common part

Fig. 36 Comparison of the minimum distances to the closest obstacles using line guidance trajec-
tories to port 13, with and without maximization of common part

in Table1. The 3D CAD models of the occupied volumes were generated for all
trajectories. Figure37 illustrates all the trajectories for the nominal operations and the
respective occupied volume in level B1 of TB. The common path is similar to a ring
around the tokamak. Figure38 illustrates all the trajectories for the rescue operations

Motion Planning of Large Scale Vehicles for Remote Material Transportation 285

Table 1 Values used in the experimental results, where m and Ic were assumed as 0.5 and 3.29,
respectively

Casks Line guidance Free roaming

Ke Kr Fmax dmax Kc Ke Kd Kt Fmax dmax

CPRHS 0.3–0.4 0.05–0.1 1 1 0 1 2 300 1 1

CTS 0.3–0.5 0.05–0.1 1–1.5 0.5–2 0 1 2 300 1 1

Rescue 0.3–0.5 0.05–0.1 1–1.5 0.5–2 2 5 1 500 1 1

Parking 0.3–0.5 0.05–0.1 1–1.5 0.5–2 0 1 2 300 1 1

Fig. 37 The optimized trajectories for all ports in level B1 of TB (first image), the respective
spanned area (second image) and the paths described by the wheels (third image)

Fig. 38 The optimized trajectories for rescue mission for all ports in level B1 of TB (first image),
the respective spanned area (second image) and the paths described by the wheels (third image)

and the respective occupied volumes in level B1 of TB (in rescue operations it is
assumed a docked cask inside the port). Figure39 illustrates all the trajectories for
the nominal operations in levels B2 and L1 of HCB.

286 A. Vale and I. Ribeiro

Fig. 39 The optimized trajectories for all ports in level L1 (left image) and in level B2 (right image)
of HCB

3.2 Feasibility Analysis Results

The main goal of the entire work is the motion planning inside the ITER buildings.
However, throughout the project, a new challenge was proposed. Despite of walls,
pillars and doors, the model of the scenario includes a proposed volume where the
vehicle is allowed to move. Therefore, the new challenge is to study the feasibility
of the proposed volume, i.e., if it is possible to evaluate a path inside the proposed
volume.

For the sake of the work related with the analysis of volume feasibility, a proposed
volume is considered feasible if there is at least one feasible trajectory that fits the
volume. It is applicable to line guidance or free roaming. To find a feasible path, it is
considered a virtual map that results from the 2D projection of the proposed volume,
as illustrated in Fig. 40 for the particular case of the mission from lift to the port cell
2 in level B1 of TB. The first image is a snapshot of the 2D view of the proposed

Fig. 40 The CADmodel with the allowed space for the cask navigation (first image), the respective
geometric representation (second image) and the optimized path in the allowed space (third image)
to the port cell 3 in level B1 of TB

Motion Planning of Large Scale Vehicles for Remote Material Transportation 287

Fig. 41 The line guidance optimized path to port 12 of level B1 in TB (first image), the respective
swept area (second image) and the distance to the closest obstacles along the path (third image)

volume in CATIA software, the second image the 2D projection plotted in TES, the
last image is an optimized path inside the proposed volume and hence feasible.

When no volume is proposed, there are more free space available in the scenario
to find a path, as depicted in Fig. 41. In that case, the path is optimized in terms of
smoothness and clearance. The distances along the paths are evaluated against the
closest obstacles of the scenario and defines the safety of the mission following that
path. When a volume is initially proposed, the space is highly constrained and the
goal is only to find a feasible path, as illustrated in Fig. 42. In this case, the distances
along the path are evaluated to the proposed volume, leading to lower values.

Another important feasibility analysis is the entire trajectory around the Tokamak,
called the “ring”, which corresponds to the common part of all trajectories. As exam-
ple, the Fig. 43 illustrates the proposed volume for level B1 of TB, where a possible
path totally inside the proposed volume was identified. The path is represented by
the lines described by each wheel and by the center of the vehicle. Figure44 presents
the minimum distances between the vehicle along the path used for the feasibility
analysis and the proposed volume that corresponds to the ring. The ring is feasible,
since a path was found. However, there are two critical poses where the minimum
distance is below 100mm, which only occurs in the vicinity of the entrance to the
lift and slightly above the 100mm closer to the port 11.

Fig. 42 The feasibility analysis to port 12 of level B1 in TB (first image), the comparison between
the proposed area and the swept area (second image) and the distance between them (third image)

288 A. Vale and I. Ribeiro

Fig. 43 The best path inside the allowed space for the ring in level L1 of TB and the two critical
situations where the minimum distance between cask and the boundary is below a threshold value
(left and right images)

Fig. 44 The minimum distances between the cask poses and the boundaries of the allowed volume
along the path for the ring in level L1 of TB

Different volumes were proposed for each port in all levels of TB, given the
different typologies of the cask expected for operation. As result, a total of 233
trajectories were calculated in TB (3 trajectories for the rings, 46 trajectories for the
feasibility analysis of volumes associated to the cask.

4 Open Issues and Future Work

This paper presented the trajectory optimization strategies developed for Remote
Handling systems that will operate in ITER, for transporting heavy and highly
activated in-vessel components between the Tokamak Building and the Hot Cell
Building. Two main approaches were developed for trajectory optimization, provid-
ing smooth paths that maximize the clearance to obstacles, taking into account the

Motion Planning of Large Scale Vehicles for Remote Material Transportation 289

features of rhombic like vehicles: line guidance (both wheels following the same
path) and free roaming (different paths for each wheel). Whenever possible, the line
guidance approach with or without maneuvers is adopted as the final solution. If not
possible, the free roaming is selected. The trajectories were evaluated maximizing
the common paths in the same level of each building. The maximized path is line
guidance, since both wheels follows the same path. The branches to each port could
also be line guidance or free roaming.

The two main approaches were implemented in a standalone application that
receives the 3D CAD models of each level of the buildings, converts them into 2D
models and, using the specifications of the missions and the models of the vehicles,
returns the best trajectories, including a report of themost risky points of collision and
the swept volume of he vehicle along the missions to CATIA V5R19 software. More
than 500 hundred trajectorieswere evaluated,most of themusing line guidance, some
of them with 1 and few with 2 maneuvers. The most critical points are in the vicinity
of the pillars and in the entrance to the lift of ports, where sometimes the free roaming
is the only feasible solution. The main conclusions of trajectory optimization were
provided to the ITER Organization by the Fusion For Energy and they were crucial
to proceed with the construction of the Tokamak Building. For instance the doors
aperture profiles (angle and orientation) were adjusted to reduce the risk of clashes.

The required trajectories were computed offline. However, the actual implemen-
tation can be reverted into a version to run in real time. The decision of selecting
line guidance and free roaming is manually, as similar to the decision to include a
maneuver and the respective point of maneuver. In the future, the decision of select-
ing line guidance or free roaming can be done based on the minimum distances to
the obstacles, as the decision of including or not maneuvers. The decision of where
to put a point of maneuver remains as an open issue. The line guidance approach is
a deterministic process, while free roaming may converge to similar solutions, since
the initialization is random given the Rapidly-Exploring Random Tree component.

The velocity profile in the trajectory will be improved taking into account
approaches with dynamics and the risk of huge vehicle in cluttered environments,
which is the next instance of development and improvement of TES.

The next challenge of RH in ITER scenarios after trajectory optimization is the
path following. The first simulated results have already achieved in the path following
using modified versions of cutting edge approaches, such as Alonzo Kelly controller,
Stanley controller, arc path following controller and also a non linear based controller
embodied in the Lyapunov function, all resumed in [33]. The first work done only
considers the kinematics model, while the inclusion of dynamics is on progress.

The localization of the vehicle, i.e., its position and orientation are also variables
to estimate. Given the rad-hard condition in ITER scenarios, different approaches of
implementation have been studied. In particular, a set of laser range finders strate-
gically spread over the ITER rooms with Extended Kalman Filtering estimator, as
detailed in [34].

The studies of path following and localization has been addressed on simulation
environment and also in a experimental setup with a 1:25 scaled mock-up of half of
a floor of the TB, as illustrated in Fig. 45. It includes four laser range finder sensors,

290 A. Vale and I. Ribeiro

Fig. 45 Experimental setup with a 1:25 scaled mock-up of half of a floor of the TB with four laser
range finder sensors, one video camera and a rhombic like vehicle remotely controlled

one video camera and a rhombic like vehicle remotely controlled by a computer. The
first results were already achieved an published.

An emerging issue in ITER scenarios is the logistics given the number of casks
and the reduced space available to park and move them. The first studies to optimize
the layout and the sequence of operations to move each cask, including optimized
trajectories, have already done and reported in [35].

The TES has been upgraded with new features to endorse the new challenges,
namely the path following, the localization, logistics and also multiple vehicles oper-
ating simultaneously.

Acknowledgments Theworkwas supported by the grants F4E-2008-GRT-016 (MS-RH) and F4E-
GRT-276-01 (MS-RH) funded by the European Joint Undertaking for ITER and the Development of
Fusion for Energy (F4E) and by FCT in the frame of the Contract of Associate Laboratories of Insti-
tuto de Plasmas e Fusão Nuclear/IST (PEst-OE/SADG/LA0010/2011) and Laboratório de Robótica
e Sistemas em Engenharia e Ciências/IST (PEst-OE/EEI/LA0009/2011). The views expressed in
this publication are the sole responsibility of the authors. F4E is not liable for the use which might
be made of the information in this publication.

References

1. Schiffe H-W (2008)World energy congress—energy policy scenarios to 2050, 36(7), pp 2464–
2470

2. United Nations Population Fund—State of World Population (2011) People and possibilities
in a world of 7 Billion. ISBN 9780897149907:2011

Motion Planning of Large Scale Vehicles for Remote Material Transportation 291

3. Schultz KR (2006) Why fusion? A discussion of energy alternatives. IEEE Control Syst Mag
26(2):32–34

4. Ribeiro I, Damiani C, Tesini A, Kakudate S, Siuko M, Neri C (2011) The remote handling
systems for ITER. Fusion Eng Des 86:471–477

5. Gutiérrez C, Damiani C, Irving M, Friconneau JP, Tesini A, Ribeiro MI, Vale A (2009) ITER
transfer cask system: status of design, issues and future developments. In: Proceedings of the
9th international symposium on fusion nuclear energy

6. Locke D, Gutiérrez CG, Damiani C, Gracia V, Friconneau JP, Martins J-P, Blight J (2011)
Transfer cask system design activities: status and plan. Fusion Eng Des 86:2101–2104

7. Dudek G, Jenkin M (2010) Computational principles of mobile robotics, 2nd edn. Cambridge
University Press, New York

8. Wang D (2001) Trajectory planning for a four-wheel-steering vehicle. Electronic engineering,
pp 3320–3325

9. Ribeiro MI, Lima P, Aparício R, Ferreira R (1997) Conceptual study on flexible guidance and
navigation for ITER remote handling transport casks. In: Proceedings of the 17th IEEE/NPSS
symposium on fusion engineering, San Diego, pp 969–972

10. Kavraki LE, Svestka P, Latombe J-C, Overmars MH (1996) Probabilistic roadmaps for path
planning in high-dimensional configuration spaces. IEEE Trans Robotics Autom 12:566–580

11. LaValle SM, Rapidly-exploring random trees: a new tool for path planning, Computer Science
Department, Iowa State University, TR: 98-11

12. Lozano-Pérez T, Wesley MA (1979) An algorithm for planning collision-free paths among
polyhedral obstacles. In: Communications of the ACM, vol 22, New York, USA, pp 560–570

13. Canny JF (1985) A Voronoi method for the piano-movers problem. In: Proceedings of IEEE
international conference on robotics and automation, pp 530–535

14. Chew LP (1987) Constrained delaunay triangulations. In: Proceedings of the third annual
symposium on computational geometry, Waterloo, Ontario, Canada, pp 215–222

15. Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic determination of
minimum cost paths. IEEE Trans Syst Sci Cybern 4:100–107

16. Garrido S,Moreno L,AbderrahimM,BlancoD (2009) FM2: a real-time sensor-based feedback
controller for mobile robots. Int J Robot Autom 24(1):3169–3192

17. DijkstraEW(1959)Anote on twoproblems in connexionwith graphs.NumerischeMathematik
1(1):269–271

18. Sethian JA (1996) A fast marching level set method for monotonically advancing fronts. Proc
Nat Acad Sci 93(4):1591–1595

19. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms
based on Hamilton-Jacobi formulations. J Comput Phys 79(1):12–49

20. Gómez JV, Vale A, Valente F, Ferreira J, Garrido S, Moreno L (2013) Fast marching in motion
planning for Rhombic like vehicles operating in ITER. In: Proceedings of the 2013 IEEE
international conference on robotics and automation, Karlsruhe, Germany, pp 5513–5518

21. Quinlan S, Khatib O (1993) Elastic bands: connecting path planning and control. In: Proceed-
ings IEEE conference robotics and automation, vol 2, Atlanta, pp 802–807

22. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis
1(4):321–331

23. Kang F, Zhong-Ci S (1995) Mathematical theory of elastic structures. Science Press, Beijing
24. Beer FP, Johnston ER, DeWolf JT (2002) Mechanics of materials. McGraw Hill, New York
25. Valente F, Vale A, Fonte D, Ribeiro I (2011) Optimized trajectories of the transfer cask system

in ITER. Fusion Eng Des 86:1967–1970
26. Fonte D, Valente F, Vale A, Ribeiro I (2010) Amotion planning methodology for Rhombic-like

vehicles for Iter remote handling operations. In: Proceedings of the 7th IFAC symposium on
intelligent autonomous vehicles, Lecce, Italy, pp 106–111

27. Kuffner JJ Jr, Lavalle SM (2000) RRT-connect: an efficient approach to single-query path
planning. In: IEEE international conference on robotics and automation

28. LaValle SM, Kuffner JJ (2001) Rapidly-exploring random trees: progress and prospects. In:
Donald BR, Lynch KM, Rus D (eds) Algorithmic and computational robotics: new directions,
A K Peters, Wellesley, pp 293–308

292 A. Vale and I. Ribeiro

29. Fonte D, Valente F, Vale A, Ribeiro I (2011) Path optimization of Rhombic-like vehicles:
an approach based on rigid body dynamic. In: Proceedings of the 15th IEEE international
conference on advanced robotics, Tallinn, Estonia, pp 106–111

30. Vale A, Fonte D, Valente F, Ferreira J, Ribeiro I, González C (2013) Flexible path optimization
for the cask and plug remote handling system in ITER. Fusion Eng Des 88:1900–1903

31. Vatti BR (1992) A generic solution to polygon clipping. Commun ACM 35(7):56–63
32. Ruibanys P, Reig C, Gazeau E, Marmie J, Etchegoin N (2010) Definition, development and

operation of a comprehensive virtual model of the ITER buildings, ATS and TCS. In: 26th
symposium on fusion technology, Porto

33. Silva N, Baglivo L, Vale A, Cecco M (2013) Four new path following controllers for Rhom-
bic like vehicles. In: Proceedings of the 2013 IEEE international conference on robotics and
automation, Karlsruhe, Germany, pp 3189–3196

34. Ferreira J, Vale A, Ventura R (2013) Vehicle localization system using off-board range sensor
network. In: Proceedings of the 8th IFAC intelligent autonomous vehicles symposium, vol 8,
part 1, Gold Coast, Australia, pp 102–107

35. Ventura R, Ferreira J, Filip I, Vale A (2013) Logistics management for storing multiple cask
plug and remote handling systems in ITER. Fusion Eng Des 88:2062–2066

Car-Like Robot Manoeuvre Generation

F. Gomez-Bravo

Abstract This chapter describes a methodology for planning feasible car-like robot
manoeuvres. The kinematics constraints and the model of the vehicle are taken
into account, so that a canonical set of manoeuvres are designed. From these basic
trajectories, three strategies of motion are defined in order to combine them and
achieve different and flexible ways of motion. The basic of the manoeuvre design is
addressed in detail by considering mathematical elements of differential geometrics.
The problem of collision-free motion planning is solved by means of an algorithm
that is capable of turning a collision-free route into a feasible sequence of collision-
free manoeuvres.

Keywords Nonholonomic constraints · Manoeuvre generation · Car-like robots

1 Introduction

Motion planning of wheeled vehicles has attracted the interest of the scientific com-
munity along the last two decades [6, 7, 14, 18, 22, 37, 40, 41, 45]. Wheeled loco-
motion imposes nonintegrable kinematics constraints on the vehicle motion, known
as nonholonomic. As a consequent, the generalized velocity vector of the system has
to verify a set of non-singular equations along any admissible path [24, 36, 39, 44].

There are different approaches to solve motion planning problems of wheeled
robots [4, 19, 26]. Due to the nonholonomic nature of these systems, traditional
path planning techniques have been adapted in order to obtain paths accomplish-
ing kinematics constraints [23, 38, 45]. These techniques provide derivable and
continuous curvature trajectories based on different searching techniques. However,
when cluttered scenarios are involved, complex trajectories may be needed and tra-
ditional methods could not provide suitable solutions. Vehicle motion in constrained

F. Gomez-Bravo (B)

Department of Electronic Engineering, Computer System and Automation,
University of Huelva, Huelva, Spain
e-mail: fernando.gomez@diesia.uhu.es

© Springer International Publishing Switzerland 2015
G. Carbone and F. Gomez-Bravo (eds.), Motion and Operation Planning
of Robotic Systems, Mechanisms and Machine Science 29,
DOI 10.1007/978-3-319-14705-5_10

293

294 F. Gomez-Bravo

scenarios (narrowcorridors, very close and enveloping obstacles, etc.) imposes severe
restrictions on the generation of admissible paths. In these cases, it is difficult to
obtain a solution accomplishing continuity in the sign of the speed, i.e., the vehicle
has to stop and change forward to backward motion or vice versa, and the path has
to present cusps. In order to manage these situations, obtaining solutions based on
the concept of manoeuvre can be an effective option.

The systems most frequently using this concept of manoeuvre are wheeled
vehicles. This chapter focuses on the description of a methodology for wheeled
robot manoeuvre generation, and pay special attention to those vehicles with Ack-
erman configuration, i.e. car-like robots [14, 18, 41]. The application of this type
of vehicles for autonomous navigation has increased enormously in recent years
[29, 31, 40, 45, 46].

Planning admissible manoeuvres for car-like vehicles represents a theoretical
challenge due to the constraint in the curvature imposed by the Ackerman steering
system.One of the first significant contributions in this areawas conducted byDubins
(1957) [8]. This approach consider the generation of curves of minimal length with
constrained curvature when the vehicle can not reverse. Melzak (1961) [33] studied
the motion on a plane of a mobile object with curvature limitations. Later, Reeds
and Shepp (1990) extended Dubins results by solving the problem when the vehicle
can shift into reverse and the path is allowed to have cusps [43]. In [19], Latombe
(1991) proved the full controllability of a car-like robot by using a set of canonical
manoeuvres. Latombe stated that a feasible path between any two configurations,
can be obtained by a suitable combination of these manoeuvres. In [39] Murray
and Sastry (1993) presented a motion and manoeuvre planning approach based on
nonlinear control theory. Further works have been developed from these early results
[9, 10, 22, 38, 41, 45, 47]. The use of different spline curves has also been proposed
in order to perfom parking manoeuvres [13, 27].

However, solutions based on nonlinear control theory, Reeds and Shepp curves
or Latombe manoeuvres, sometimes differ from manoeuvres performed by humans
drivers. They consider only optimal length solutions, that may not perfectly fit to the
robot’s environment in accordance with other criteria (distance to obstacles, reverse
distance, smoothness in the steering angle changes and others).

The manoeuvre generation methodology proposed in this chapter represents an
alternative to Latombe or Reeds and Shepp approaches. It is based also on a set of
canonical manoeuvres, which differs from that presented by Latombe in the way
the manoeuvres are defined (heuristic considerations), and in appearance, that more
closely resembles the manoeuvres performed by human drivers. From this approach
not only solutions similar to Reeds and Shepp trajectories can be obtained but also
a wide family of different solutions can be computed. These solutions could opti-
mize certain criteria better than the shorter trajectories provided by traditional meth-
ods [32].

This chapter is devoted to explain in detail the basis of the manoeuvres design,
presenting the fundamentals of some differential geometrics concepts and its appli-
cation to a car-like vehicle. It also illustrates a new version of an algorithm that
applies this motion strategy for collision-free motion planning [14, 15, 30]

Car-Like Robot Manoeuvre Generation 295

The approach presented in this work is based on two basic elements: restricted
manoeuvres and connecting paths. From this two concepts, a solution containing
admissible trajectories (complex or simple, depending onwhat is needed) can be pro-
vided. These two elements can be incorporated for planning collision-free manoeu-
vres into different traditional planning methods: Road Map Method, Potential Field
Methods, Randomize Algorithm (see Chaps. 1, 2, 8 and 9 of this book).

A restricted manoeuvre is a path or a sequence of paths for changing only one of
the vehicle state variables [12, 14]. Thus, restricted manoeuvres represent a set of
canonical paths.

Connecting paths are trajectories defined by a sequence of restricted manoeuvres,
so that different types of paths can be build: from the simplest solutions (such as
straight lines) to complex manoeuvres including multiple cusps.

The restricted manoeuvres proposed in this chapter are referred to a local coordi-
nate frame, the one attached to the vehicle in the initial configuration. For the case of
a vehicle moving in a plane, three types of restrictedmanoeuvres are defined:Φx that
provide a change in the x coordinate; Φθ that provides a change in the orientation of
the vehicle, leaving it in the same Cartesian configuration;Φ y that provides a change
in the y coordinate. Due to the way in which these manoeuvres are defined, the tra-
jectory can be determined, by means of simple algebraic equations, as a function
of the initial and the goal configuration, without integrating the vehicle kinematics
model.

The general planning algorithm presented in this chapter solves the path planning
problem in two steps. Firstly a solution is obtained from the application of any of the
traditional planning methodologies without considering the kinematics constraint.
Secondly a simplifying process is applied so that the route provided by this method
is turned into a feasible path by means of the connecting paths.

The proposed approach presents several advantages. First of all, it provides, in
a short period of time, with feasible solutions in complex environments in which
difficult manoeuvres have to be planned. Secondly, it can be applied to different type
of searching algorithm. Finally the solutions provided by thismethod are very similar
to those a human driver would perform in real scenarios.

This chapter is organized as follow. The theoretical framework applied for motion
planning purposes is introduced in Sect. 2. Also in this section, the kinematics char-
acteristics of car-like vehicles are introduced. Section3 presents a methodology for
generating car-like vehicle manoeuvres, based on the concepts of restricted manoeu-
vre and connecting path. Section4 is devoted to illustrate a procedure for incorporate
this methodology into traditional planning algorithm. Finally, in the Sect. 5, a set of
experiments involving car-like vehicles manoeuvres generation in different scenar-
ios are presented. The chapter closes with the conclusions and two Appendix where
some theoretical concept are detailed.

http://dx.doi.org/10.1007/978-3-319-14705-5_1
http://dx.doi.org/10.1007/978-3-319-14705-5_2
http://dx.doi.org/10.1007/978-3-319-14705-5_8
http://dx.doi.org/10.1007/978-3-319-14705-5_9

296 F. Gomez-Bravo

2 Motion Planning in System with Kinematics Constraints

Motion Planning of wheeled vehicles requires especial attention. Particularly, nav-
igating in cluttered scenarios requires the capability of generating trajectories that
present discontinuities in the sign of the velocity. In situations where the geometry
of the environment prevents navigating without stopping the vehicle, it is possible
to obtain suitable solutions based on the concept of manoeuvre.

Generally speaking, a manoeuvre is an operation on a vehicle for changing its
course. However, the concept of manoeuvre requires a further definition in order
to be applied as a planning tool. In [19], the concept of manoeuvre is defined for a
car-like robot. To this end, the idea of reversal is introduced. In a trajectory, a reversal
is a point where the linear speed of the robot changes the sign. Thus, a manoeuvre is
defined as a concatenation of paths separated by reversals, see Fig. 1.

Nevertheless, not all vehicles can manoeuvre in the same way. Special attention
has to be paid to those with non integrable kinematics constraints, known as non-
holonomic systems.Wheeled vehicles fall into this category. These vehicles can only
perform admissible trajectories by accomplishing the nonholonomic constraints. As
consequence, planning trajectories for nonholonomic systems has to pay special
attention on generating admissible motions. There are different techniques to tackle
this challenge [21].

On the one hand, some authors have proposed the application of nonlinear control
strategies for motion planning purposes. An admissible control law is applied to the
system’s mathematical model in order to drive it to a desired configuration. Then,
by running a simulation, a feasible trajectory is obtained. In this sense, Murray and
Sastry (1993) developed in [39] a strategy for steering wheeled vehicles by using
sinusoids as control inputs. Tilbury (1995), in [47, 48], extended this approach to
drive wheeled vehicles with trailers. In [41] Paromtchik et al. (1998) proposed a
discontinuous control law that allows to perform parallel-parking manoeuvres. More
recent applications of this control strategies can be found in Qu et al. (2006) [42],
and Michalek and Kozowski (2010) [34].

-1.5 -1 -0.5 0 0.5 1 1.5 2

-0.5

0

0.5

1

1.5

2

Initial
Configuration

Final
Configuration

X (m)

Y
 (

m
)

-1.5 -1 -0.5 0 0.5 1 1.5 2

-0.5

0

0.5

1

1.5

2

Initial
Configuration

Final
Configuration

Reversals

X (m)

Y
 (

m
)

(a) (b)

Fig. 1 Manoeuvre: a car-like vehicle manoeuvring; b trajectories separated by reversals

Car-Like Robot Manoeuvre Generation 297

The design of admissible control strategies for nonholonomic systems is deeply
determined by the Brockett’s necessary condition for asymptotic stability [2]. More-
over, obtaining the trajectory requires performing the numeric integration of the
vehicle’s kinematics model. Then non previous knowledge about the shape of the
resulting path or the control signal evolution exists. Thus complex or unusual solu-
tions are sometimes achieved.

On the other hand, traditional geometrics approaches, like the one presented
in Dubins’s (1957), [8], or in Reeds and Shepp (1990), [43], are based on build-
ing a piecewise trajectory by using a systematic combination of basics admissi-
ble paths: circular trajectories, C , and straight segments, S (C− denotes a clock-
wise/anticlockwise circular segment followed in reverse, C+ indicates a clock-
wise/anticlockwise circular segment followed in forward direction, and S−/+ denotes
a straight segment followed in reverse or in forward direction). Not all possible com-
binations are optimal solutions. These works establish the way of achieving the
shorter path a car can travel between two configurations. In [22], Laumont et al.
(1994) described a general path planning algorithm inspired in Reeds and Shepp
approach. More recent contributions based in these methodologies can be found in
Fraichrd et al. (2004), [9], Giordano et al. (2009), [10], and Chitsaz et al. (2009) [3].

These strategies aim to obtain the shortest path or a time optimal trajectory for
a wheeled robot with unitary speed and constrained curvature. However, there is a
huge amount of trajectories that are not time optimal solution and could optimize
others different criteria. In fact, the manoeuvres presented in this chapter are out
of the group considered as optimal in [43], because they are built by considering
the sequences: C+C+S−; C−C−S+; S+C−S+ and S−C+S−. However, as will be
shown before, by means of a combinational procedure and a simplification process,
from this methodology shortest trajectories as well as other solutions, different from
manoeuvres presented in [43], can be achieved.

The procedure and formalism applied for designing thesemanoeuvres differs from
the technique presented in [43]. However, the basis is similar to the one presented in
[19] and the formalism is inspired in the approach presented in [22]. In this chapter,
admissible paths are generated by a sequence of vector field belonging to the tangent
space of the system. A set of vectors field is selected, so that any configuration is
reachable. Later, a set of canonical manoeuvres are defined by using this vectors.

The next subsection introduces the basis for manoeuvre generation in vehi-
cles with nonholonomic constraints. Further, these concepts will be applied to
vehicles with Ackermann steering configuration, i.e. car-like vehicles, so that a tech-
nique for planning admissible manoeuvres for this type of systems can be developed
[12, 14, 17].

2.1 Motion Generation in Nonholonomic Systems

Given a system, with a configuration space Ω of dimension n, and m nonholonomic
constraints, it is possible to find in the tangent space a distributionΔ, with dimension

298 F. Gomez-Bravo

(n − m), spanned by a set of m linearly independent vectors field Vi, such that the
vector speed of the system accomplishes: Vsys ∈ Δ, [5, 19, 22]. That is:

∃Δ = span{V1, . . . , Vm}/Vsys =
∑

i

αi Vi ∈ Δ αi ∈ R (1)

Let be L(τ) a parametrized trajectory (expressed as a functions of the parameter
τ ∈ R) representing the evolution of the system in the configuration space. It is said
that L(τ) follows vector Vi from a to b if:

d

dτ
L(τ)|τ∈[a,b] = Vi|L(τ) (2)

That is, the system followsVi if the tangent vector along the trajectory L(τ) (when
τ ∈ [a, b]), is equal to Vi. For a more intuitive understanding the parameter τ could
be interpreted as time. However, as will be shown below, τ could also be associated
with other meanings such as the path length.

Controllability of nonholonomic systems has been detailed by Latombe in [19].
This property is related with the system capability of following the flow of certain
class of vector field (see Appendix 1 for details). Latombe demonstrated that a con-
trollable system with a n dimensional configuration space Ω and m nonholonomic
equality constraints, can move between any two configurations of an open connected
subset of Ω by following the flow of a finite sequence of vectors of a distribu-
tion Δ. This distribution has to accomplish a necessary and sufficient condition: the
dimension of CLA(Δ) must to be equal to n (being CLA(Δ) the Control Lie Algebra
associated with Δ, that is, the distribution generated by the set of vectors that spans
Δ and all their Lie brackets operations recursively computed, see Appendix 1 and
[5, 19] for details).

The methodology presented in this chapter is inspired in this idea. Thus, if a set
of vectors field are defined and the distribution spanned by them accomplishes the
controllability condition, feasible trajectories can be generated by following the flow
of these vectors. In order to formalize this procedure, the following concepts are
introduced.

Let be p0 ∈ Ω , p0 L is defined as the set of parametrized trajectories L j (τ)

accomplishing:
L j (0) = p0 (3)

IfVj is a vector field defined around p0, there exists only one parametric trajectory
L j (τ) starting at p0 and following Vj, that is:

L j (τ) ∈ p0 L and
d

dτ
L j (τ) = Vj|L j (τ) (4)

The relation between L j (τ) and Vj can be expressed by using an exponential
formalism (see [22] for details):

Car-Like Robot Manoeuvre Generation 299

p(τ) = L j (τ) = p0 ◦ eτVj (5)

This expression defines an operation over Ω with the following meaning: “p(τ)

is reached if starting from p0 the vector Vi is followed along a change on the path
parameter equal to τ”. This meaning is equally valid whether p(τ) is considered a
temporary variable, or it is interpreted as the path length.

Thus, if a trajectory starts at p0, and follows the vector V1 during a value τ = t1,
the point p1 will be reached. If, from p1, the system follows the vector V2 during a
value τ = t2, a new point p2 will be reached. This operation can be expressed as:

p2(t1, t2, p0) = p1 ◦ et2V2 = p0 ◦ et1V1 ◦ et2V2 (6)

This formalism has been previously applied for car-like robot manoeuvre gener-
ation in [12, 22] as will be introduced in the next section.

It is remarkable (see [22] for details) that in general if Vi �= Vj:

p0 ◦ et1Vi ◦ et2Vj �= p0 ◦ et1Vi+t2Vj (7)

However, it is straightforward to show that:

p0 ◦ et1Vj ◦ et2Vj = p0 ◦ e(t1+t2)Vj (8)

Definition 1 A Generic Path is a motion generated from an arbitrary initial config-
uration following a sequence of vectors field.

Thus, for instance, let Φ be a Generic Path, defined by any starting configuration
p ∈ Ω and following the sequence [V1, . . . , Vm]. Then Φ can by defined by the
expression:

Φ(τ1, . . . , τm, p) ≡ p ◦ eτ1V1 ◦ . . . ◦ eτm Vm (9)

Given a Generic Path defined by a sequence of m vectors Vi, a particular path can be
obtained by specifying an initial configuration p0 and a m-tuple [t1, . . . , tm]. This
path can be generated by chaining the n trajectories defined in the following way:

L1(τ1, p0) ≡ p0 ◦ eτ1V1 with τ1 ∈ [0, t1] and p1 = p0 ◦ et1V1 ;

L2(τ2, p1) ≡ p1 ◦ eτ2V2 = (p0 ◦ et1V1) ◦ eτ2V2 with τ2 ∈ [0, t2] and p2 = p0 ◦ et1V1 ◦ et2V2 ;
.
.
.

Lm (τm , pm−1) ≡ pm−1 ◦ eτm Vm = p0 ◦ et1V1 ◦ . . . ◦ eτm Vn with τm ∈ [0, tm]
(10)

Definition 2 Let Φ1 and Φ1 be two Generic Path:

Φ1(τ1, p) ≡ p ◦ eτ1V1 and Φ2(τ2, p) ≡ p ◦ eτ2V2 (11)

300 F. Gomez-Bravo

the composition of this two Generic Paths is a new Generic Path defined as:

Υ (τ1, τ2, p) = Φ1 ⊗ Φ2 ≡ p ◦ eτ1V1 ◦ eτ2V2 (12)

It is easy to extend this definition to the case of two Generic Paths that follow a
m and a k sequence of vectors respectively.

Definition 3 LetΦ1 be aGeneric Path, following the vector sequence [V1, . . . , Vm],
and Φ2 be a Generic Path, following the vector sequence [V′

1, . . . , V′
k]. The Generic

Path defined as Υ (τ1, . . . , τm+k, p) = Φ1 ⊗ Φ2 is the one following the sequence
of vectors [V1, . . . , Vm, V′

1, . . . , V′
k].

Generally speaking, this formalism can be applied for motion planning purpose
to different types of nonholonomic systems. In particular, in this chapter, it will
be applied to a car-like vehicle in order to develop a methodology for planning
manoeuvres. To this end, a set of vectors, accomplishing the controllability condition,
will be defined, and a set of feasible manoeuvres will be generated from them.
Manoeuvres presented below are based on the principles described above, especially
in the expressions (9) and (10), and Definitions (2) and (3).

2.2 Car-Like Vehicle Kinematics

Nowadays there are numerous applications of conventional vehicles for autonomous
navigation. In this sense, car-like vehicles are the most popular human transportation
system, and real applications of car-like robots have increased along the last decade
[1, 29, 31, 40, 41, 46]. Figure2 shows an approximate representation of this type of
vehicle. Traditionally, the motion of this system is determined by the steering angle
of the forward wheels and the velocity of the rear wheels, see Fig. 2b.

Fig. 2 Car-like vehicle
model: a rear reference point
and central steering angle; b
forward steering wheels and
rear velocities

vd

i

w

d

vi

(b)(a)

Car-Like Robot Manoeuvre Generation 301

Note that, the car-like model presented in Chap. 8, corresponds to a front wheel
drive vehicle, that is, the action of the velocity control is applied to the front wheels
rather than to the rear wheels. The results presented in the present chapter can be
extended to this type of vehicles by considering geometrics relations between the
rear and front velocities.

Due to the noholonomic constraints the vehicle has only two degree of freedom,
and the steering angles and rear velocities are usually expressed as a function of
a virtual central steering angle φ and the velocity of the central rear point v (see
Fig. 2a), in the following way:

φi = l · tan φ

l − w
2 · tan φ

; φd = l · tan φ

l + w
2 · tan φ

(13)

and

vi =
(

l − w
2 · tan φ

l

)
· v; vd =

(
l + w

2 · tan φ

l

)
· v (14)

where l is the distance between the front and the rear wheels, and w is the distance
between to wheels on the same axis.

Traditionally, an Ackerman mechanism has been applied in order to implement
the steering system [35]. This mechanism bounds the steering angle and, as a con-
sequence, it also bounds the curvature of any admissible path.

Although there are some complex mathematical models that further describe the
dynamic behaviour, the methodology addressed in this chapter will consider the
kinematic model in order to develop a technique for manoeuvres planning.

The vehicle is geometrically modelled as a rectangle that moves in W = R2. The
configuration space is R2 ∗ S1. Then, each configuration is represented with a tuple
(x , y, θ), where (x , y) are the coordinates of the midpoint between the rear wheels,
and θ is the angle between the longitudinal axis of the rectangle and the axis X of
the global reference frame [14, 19, 22]. Kinematics of this vehicle can be modelled
with de following state equation:

⎡
⎣ ẋ

ẏ
θ̇

⎤
⎦ =

⎡
⎣ cos(θ) 0
sin(θ) 0
0 1

⎤
⎦ ·

[
v(t)

v(t) · ρ(t)

]
(15)

where v(t) and ρ(t) are the control parameters. As was mentioned before, v(t) is
the lineal velocity of the rear reference point, and ρ(t) is the curvature of the path
described by the same point. The relation between the curvature and the radius of
curvature r is:

r(t) = 1

ρ(t)
(16)

Both magnitudes can be used for defining the control of the vehicle, and are
determined by the steering angle φ according to the expression:

http://dx.doi.org/10.1007/978-3-319-14705-5_8

302 F. Gomez-Bravo

r(t) = 1

ρ(t)
= l

tan [φ(t)] (17)

Under the assumption that the wheels do not slip, the following nonholonomic
constraints can be written [19]:

ẋ · sin θ − ẏ · cos θ = 0 (18)

An additional constraint has to be taken into account. Due to the Ackermanmech-
anism, the values of the steering angle are usually bounded i.e., φ ∈ [−φmax , φmax]
with φmax > 0. This relation can be also expressed as:

|φ| ≤ φmax (19)

This feature deeply constraints the possible values of the state velocity and also
the values of the control parameter ρ(t). According to Eqs. (17) and (19), |ρ(t)| is
upper bounded:

|ρ(t)| ≤ ρmax = tan φmax

l
(20)

Then, from (15) and (20) the following kinematics constraint is established:

|θ̇ | ≤ |v(t)| · ρmax (21)

Given that

|v(t)| = |ẋ · cos θ + ẏ sin θ | (22)

the inequality constraint (21) can be written as follow:

|ẋ · cos θ + ẏ sin θ | − |θ̇ |
ρmax

≥ 0 (23)

Thus, a vector defining a Generic Path must accomplish both constraints (18)
and (23). As it is illustrated in [22] the row vectors of the matrix of the model (15)
accomplish (18) and are lineally independent. Therefore, they span the distribution
associated to this constraint. These vectors are:

Ψ1 = [cos θ, sin θ, 0]T ; Ψ2 = [0, 0, 1]T (24)

It can be shown that vector Ψ1 represents a situation in which the vehicle move
straight ahead with constant heading θ and constant linear velocity equal to 1. Vector
Ψ2 represents a situation in which the vehicle rotates around the rear reference point.
Obviously, this last vector does not accomplishes (23). As a consequence, this vector
can not be used for defining a feasible generic path. However, it is possible to define
two vectors, from a linear combination of Ψ1 and Ψ2 that accomplish both (18),
and (23):

Car-Like Robot Manoeuvre Generation 303

Ψ3 = Ψ1 + c1 · Ψ2 = [cos θ, sin θ, c1]T

Ψ4 = Ψ1 + c2 · Ψ2 = [cos θ, sin θ, c2]T
(25)

where c1 ≥ |ρmax | and c2 ≤ −|ρmax |. In this chapter the values c1 = |ρmax | and
c2 = −|ρmax | have been chosen.

These vectors are associated to the following situations. Ψ3 represents the vehicle
moving along a circular arc with positive constant steering angle and linear velocity
equal to 1. Likewise, Ψ4 represents a similar situation but with negative constant
steering angle. Due to this interpretation on themeaning of the vectors, in trajectories
defined by expressions such as:

p(τ) = p0 ◦ eτΨi wi th Ψi ∈ {Ψ1, Ψ3, Ψ4} (26)

the parameter τ can be interpreted as the length of the path described by the rear
point of the vehicle, and also:

[dx, dy, dθ]T = Ψi · dτ with Ψi ∈ {Ψ1, Ψ3, Ψ4} (27)

Moreover, it can be demonstrated that the vectors set Ψc = {Ψ1, Ψ3, Ψ4} accom-
plishes the controllability condition (see Appendix 1 for details). Therefore, any con-
figuration can be reached using a generic path following the flow of these vectors.
This property will be used in the following section in order to define a methodology
for manoeuvres generation.

3 Car-Like Vehicle Manoeuvres Generation

In [19, 20] a set of two basic manoeuvres for a car-like vehicle are show. On the
one hand, the first manoeuvre allows the robot to perform sidewise motion, on the
other hand, the second type, allows the robot to rotate around the rear reference
point without violating the kinematics constraint. These motions are characterized
by the use of straight segments and arcs of circumference, and were developed to
demonstrate that any two configurations can be connected by a finite sequence of
manoeuvres. In Fact, in [19] it is formally demonstrated, based on the controllability
property of car-like systems, that if there exist a collision-free path between any two
configurations then there also exits a feasible collision-free path connecting both
configurations. Even more, it is demonstrated that this path can be built from a finite
sequence of this manoeuvres set.

The approach presented in this section is inspired in these ideas but improve in
different aspects the results presented in the aforementioned works. Manoeuvres
introduced below, and the procedure to combine them, represent a more flexible way
of motion, providing a wide collection of solutions that avoid repetitive patterns of
motion and best suit the environment’s features. Thus, more efficient trajectories are
achieved, in more resemblance to the manoeuvres performed by human drivers.

304 F. Gomez-Bravo

The main characteristic of the basic manoeuvres presented below consists on the
capability of changing the value of one configuration variable, maintaining, at the end
of the manoeuvre, unchanged the value of the others. This characteristic is common
to other planning techniques used in non-holonomics system (as is the case of free-
floating manipulators [16, 36]. This feature will be exploited to define a generic type
of manoeuvre (restricted manoeuvre) and a more general concept, very powerful for
manoeuvre generation: connecting paths.

3.1 Restricted Manoeuvres

The following definition can be introduced in order to establish the concept of
restricted manoeuvre.

Definition 4 A restricted manoeuvre is a generic path that generates a change in the
value of one of the state variables, maintaining unchanged the value of the others.

Thus, it can be defined a collection of restricted manoeuvres representing a set of
canonical paths, that is, any two point of the configuration space can be connected
through a suitable combination of manoeuvres belonging to this set, by considering
the change of each configuration variable individually.

From a formal point of view, this definition avoids the necessity of including
reversals in a generic path in order to be considered as a manoeuvre. As will be
shown before, this idea allows obtaining a large diversity of solution and avoids
motion pattern repetition.

Practical examples of restricted manoeuvres for car-like vehicles have been previ-
ously reported and applied in [6, 11, 12, 14, 29, 32]. All of them represent generics
paths accomplishing Definition 4 in a reference frame ΣL where the initial vehicle’s
heading is equal to zero and the origin is located at the manoeuvre starting point.
Three basic group of manoeuvres have been defined in [6, 11, 12]:

• Φx , allows changing the value of the variable x .
• Φ y , allows changing the value of the variable y.
• Φθ , allows changing the value of the variable θ .

These manoeuvres have been developed by using the set of vector defined in Sect.
(2.2): Ψc = {Ψ1, Ψ3, Ψ4}. As the motions are built by following the flow of these
vectors, the parameters defining the trajectory will represent the lengths of the paths
described by the rear point of the vehicle. Therefore, the total length of the trajectory
will be the sum of the value of all the parameters.

3.1.1 Manoeuvre Φx

This is the simplest example of a restricted manoeuvre. It is a straight displacement,
that generates only an increment in x , referred to the reference frame ΣL , see Fig. 3.

Car-Like Robot Manoeuvre Generation 305

Fig. 3 Restricted
manoeuvre Φx

0 0.5 1 1.5 2 2.5 3

-1

-0.5

0

0.5

1

Initial
Configuration

Final
Configuration

x

X (m)

Y
 (

m
)

This manoeuvre is defined by the expression.

Φx (s1) ≡ p0 ◦ es1Ψ1 (28)

The value of s1 is related with �x in the following way:

�x = s1 (29)

A positive value of s1 will provide a forward motion and a positive value of
�x . In contrast, a negative value of s1 will produce a backward movement and a
negative value of �x . Note that the definition of p0 is omitted, due to the fact that
these restricted manoeuvres are always defined in the in the origin of the reference
frame ΣL .

3.1.2 Manoeuvre Φ y

In this case the initial and final value of the variables θ and x are the same, while the
value of the variable y is changed. Therefore, in the reference frame ΣL , this motion
allows moving the vehicle from the configuration (0, 0, 0) to (0, �y, 0).

Depending on the sign of �y two types of motion can be established. Thus, if
�y > 0 a manoeuvre is defined in the following way:

Φ+y ≡ p0 ◦ es3Ψ3 ◦ es2Ψ4 ◦ es1Ψ1 (30)

306 F. Gomez-Bravo

-1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

Initial
Configuration

Final
Configuration

Final
Configuration

1
y–

1
y–

X (m)

Y
 (

m
)

-1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

Initial
Configuration

Final
Configuration

2
y–

Final
Configuration

2
y–

X (m)

Y
 (

m
)

(a) (b)

Fig. 4 Restricted manoeuvres: a Φ
y
1 (+y and −y); b Φ

y
2 (+y and −y)

As is demonstrated in [12], the relation between �y and s1, s2, s3 are:

θΦ = arccos(1 − |�y|
r1−r2

)

s3 = r1 · θΦ

s2 = −s3·r2
r1

s1 = (r2 − r1) sin θΦ

(31)

where:

r1 = 1

c1
and r2 = 1

c2

being c1 and c2 the values associated to the vectors Ψ3 and Ψ4, defined in (25). Note
that�y has to accomplish:�y ≤ 2 · (r1 − r2). If largest increments on y are needed
it will be required to perform various manoeuvres.

Note also that, from Eq. (31), two possible values of θΦ can be obtained. Thus
depending on this selection, two different manoeuvres can be generated:Φ+y

1 (θΦ >

0), see Fig. 4a, and Φ
+y
2 (θΦ < 0), see Fig. 4b.

In a similar way, two new manoeuvres can be defined for a negative increment on
y by using the same vector fields but in an inverse sequence, that is,

Φ−y ≡ p0 ◦ es1Ψ1 ◦ es2Ψ4 ◦ es3Ψ3 (32)

where s1, s2 and s3 are defined by (31). If θΦ > 0, Φ
−y
1 is generated see Fig. 4a.

Likewise, the election of θΦ < 0 provides Φ
−y
2 , see Fig. 4b.

Finally, using a different sequence of vector, four additional manoeuvres can be
defined in order to produce an increment on y (see Fig. 5):

Car-Like Robot Manoeuvre Generation 307

-1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

Initial
Configuration

Final
Configuration

Final
Configuration

3
y–

3
y–

X (m)

Y
 (

m
)

-1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

Initial
Configuration

Final
Configuration

Final
Configuration

4
y–

4
y–

X (m)

Y
 (

m
)

(a) (b)

Fig. 5 Restricted manoeuvres: a Φ
y
3 (+y and −y); b Φ

y
4 (+y and −y)

Φ
+y
3 ≡ p0 ◦ es1Ψ1 ◦ es3Ψ3 ◦ es2Ψ4 θΦ > 0

Φ
−y
3 ≡ p0 ◦ es2Ψ4 ◦ es3Ψ3 ◦ es1Ψ1 θΦ > 0

Φ
+y
4 ≡ p0 ◦ es1Ψ1 ◦ es3Ψ3 ◦ es2Ψ4 θΦ < 0

Φ
−y
4 ≡ p0 ◦ es2Ψ4 ◦ es3Ψ3 ◦ es1Ψ1 θΦ < 0

(33)

where s1, s2, s3 and θΦ are again defined by (31).

3.1.3 Manoeuvre Φθ

The design of this manoeuvre involves changing the vehicle’s orientation while the
Cartesian position of the reference point remains unchanged at the end of themanoeu-
vre. Thus, in the reference frame ΣL , the vehicle will move from configuration (0,
0, 0) to (0, 0, �θ), see Fig. 6.

Following the same ideas presented in [12] it can be shown that a change on the
variable θ can be obtained from a restrictedmanoeuvre defined in the form (see Fig. 6
a and b):

Φθ
1 ≡ p0 ◦ es1Ψ1 ◦ es2Ψ3 ◦ es3Ψ1 (34)

The relation between �θ and s1, s2, s3 are

s1 = r1(cos�θ − 1)

sin�θ

s2 = r1 · �θ (35)

s3 = s1

where: r1 = 1
c1
, being c1 the value associated toΨ3 in (25) and�θ ∈]−π, 0[∪]0, π [.

308 F. Gomez-Bravo

-1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

Initial
Configuration

Final
Configuration

1

X (m)

Y
 (

m
)

-1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5 Initial
Configuration

Final
Configuration

1

X (m)

Y
 (

m
)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-1.5

-1

-0.5

0

0.5

1

1.5

Initial
Configuration

Final
Configuration

2

X (m)

Y
 (

m
)

-1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5 Initial
Configuration

Final
Configuration

2

X (m)

Y
 (

m
)

(a) (b)

(c) (d)

Fig. 6 a Φθ
1 (�θ > 0); b Φθ

1 (�θ < 0); c Φθ
2 (�θ > 0); d Φθ

2 (�θ < 0)

Additionally, a newmanoeuvre can be defined by using vectorΨ4 instead of vector
Ψ3, see Fig. 6c–d:

Φθ
2 ≡ p0 ◦ es1Ψ1 ◦ es2Ψ4 ◦ es3Ψ1 (36)

where s1, s2 and s3 are determined by the same expressions presented in (35), chang-
ing r1 and c1 by r2 and c2.

A relevant feature of this method for manoeuvres design consists on the definition
of themanoeuvre parameter: they are obtained fromexplicit algebraic functions of the
increments of the dependent variables. Therefore, given adesired change in avariable,
the correspondent manoeuvre can be determined by applying the equations presented
before, without using any numerical integration method or any other computational
methodology with convergence problems.

3.2 Manoeuvres Generation: Connecting Paths

From an arbitrary distribution of obstacles in the work space, the collision free space
Ωfree is defines as the subset ofΩ in which no collision exists. In [19] (pp. 428–429),

Car-Like Robot Manoeuvre Generation 309

it is demonstrated that given any two configurations located in a connected subset
of Ωfree, there exists a feasible collision-free path between them. Moreover, it is
also shown that this path can be generated by combining a sequence of canonical
manoeuvres. Thus, in order to take advantage of this property in a flexible way, the
concept of connecting path has been introduced [14].

Definition 5 A Connecting path is a sequence of restricted manoeuvres that allows
the vehicle to move between two arbitrary configurations.

Thus, based on this concept, there are many possibilities for obtaining feasible
paths. In this chapter, connecting paths have been built using the operation introduced
in (2), that defines the generic paths composition. Using this formalism three groups
of connecting have been considered:

• Connecting path Γ : defined as: Γ ≡ Φ y ⊗ Φx ⊗ Φθ .
• Connecting path Λ: defined as: Λ ≡ Φθ ⊗ Φx ⊗ Φθ .
• Connecting path Ξ : defined as: Ξ ≡ Φx ⊗ Φθ ⊗ Φx .

3.2.1 Connecting Path Γ

Let (x0,y0,θ0) and (x f ,y f ,θ f) be two arbitrary configuration expressed in the global
reference frame. Then, in the reference frame ΣL , a connecting path will move
the vehicle from (0,0,0) to (�x , �y, �θ) with: �x = x f − x0; �y = y f − y0,
�θ = θ f − θ0. Connecting path Γ is defined as the combination of three restricted
manoeuvres (see Fig. 7):

• Manoeuvre Φ y for achieving the increment �y.
• Manoeuvre Φx for achieving the increment �x .
• Manoeuvre Φθ for achieving the increment �θ .

Fig. 7 Connecting Path Γ

definition

-1 -0.5 0 0.5 1 1.5 2 2.5
-0.5

0

0.5

1

1.5

2

y
x

Final
Configuration

Initial
Configuration

X (m)

Y
 (

m
)

310 F. Gomez-Bravo

In Sect. 3.1 different manoeuvres Φ y and Φθ have been presented. Then,
connecting path Γ represents a group of generic paths that can be defined by con-
sidering all possible combination of these restricted manoeuvres. For this purpose,
the following convention is introduced. Manoeuvre Φ

y
1 will represent: Φ+y

1 if a pos-
itive increment on y is needed, or Φ

−y
1 if a negative increment is considered. The

same convention is applied for the definition of Φ
y
2 , Φ

y
3 , Φ

y
4 , Φ

θ
1 and Φθ

2 arranging
in six groups all the manoeuvres presented in Sects. 3.1.2 and 3.1.3. Therefore, by
combining these manoeuvres, eight different connecting path Γ can be defined:

Γ1 ≡ Φ
y
1 ⊗ Φx ⊗ Φθ

1 Γ2 ≡ Φ
y
1 ⊗ Φx ⊗ Φθ

2

Γ3 ≡ Φ
y
2 ⊗ Φx ⊗ Φθ

1 Γ4 ≡ Φ
y
2 ⊗ Φx ⊗ Φθ

2

Γ5 ≡ Φ
y
3 ⊗ Φx ⊗ Φθ

1 Γ6 ≡ Φ
y
3 ⊗ Φx ⊗ Φθ

2

Γ7 ≡ Φ
y
4 ⊗ Φx ⊗ Φθ

1 Γ8 ≡ Φ
y
4 ⊗ Φx ⊗ Φθ

2

(37)

As a consequence of these definitions, each connecting path is a generic path
defined by five parameters. As a example, let consider the case of Γ1. By taking into
account (28), (30), (34) and (37) it can be written:

Γ1 ≡ Φ
y
1 (s1, s2, s3) ⊗ Φx (sm) ⊗ Φθ

1 (s1
′, s2

′, s3
′)

= p0 ◦ es3Ψ3 ◦ es2Ψ4 ◦ es1Ψ1 ◦ esmΨ1 ◦ es1 ′Ψ1 ◦ es2 ′Ψ3 ◦ es3 ′Ψ1 (38)

This expression can be simplified as:

Γ1 ≡ p0 ◦ es3Ψ3 ◦ es2Ψ4 ◦ esdΨ1 ◦ es2 ′Ψ3 ◦ es3 ′Ψ1 (39)

where s2, s3, sd = s1 + sm + s1′, s2′ and s3′ are determined by �x , �y and �θ ,
considering the expressions (29), (31) and (35). In Appendix 2, the calculus of these
values is detailed. The total length of the connecting path is

St = s2 + s3 + sd + s2
′ + s3

′ (40)

By using thismethodology, any two configurationswill define a family of connect-
ing paths (Γ) that represent a group of feasible trajectories linking them. Based on the
simplification applied inEq. (39), thismethodology presents an outstanding property:
the capability of including reversals only when necessary, adapting the shape of the
trajectory to the specific values of the initial and final configuration. Figure8 shown
several examples of connecting paths Γ defined by various configurations. Note that
trajectories look different, as the relative position of the configuration changes.

Similar to de definition of Γ there could be defined five more possible connecting
paths just by permuting the sequence in the increments of the state variables. The
procedure for obtaining the value of the parameters is similar to the one detailed in

Car-Like Robot Manoeuvre Generation 311

0 0.5 1 1.5 2 2.5 3 3.5
-0.5

0

0.5

1

1.5

2

Initial
Configuration

Final
Configuration

X (m)

Y
 (

m
)

-2 -1.5 -1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Initial
Configuration

Final
Configuration

X (m)

Y
 (

m
)

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
-1

-0.5

0

0.5

1

1.5

2

2.5

3

Initial
Configuration

Final
Configuration

X (m)

Y
 (

m
)

-1 -0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

1
Initial

Configuration

Final
Configuration

X (m)

Y
 (

m
)

-1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

Initial
Configuration

Final
Configuration

X (m)

Y
 (

m
)

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5

-1.5

-1

-0.5

0

0.5

1
Initial
Configuration

Final
Configuration

X (m)

Y
 (

m
)

(a) (b)

(c) (d)

(e) (f)

Fig. 8 a–f Different connecting paths Γ

this section. However, according to the author experience, resulting manoeuvres of
these combinations are very similar to de set of solutions achieved with Γ and the
connecting paths defined in subsequent sections.

3.2.2 Connecting Path Λ

The design of Λ is inspired in the following idea: the vehicle must initially change
orientation a value equal to �θa in order to go along a straight line until it arrives

312 F. Gomez-Bravo

Fig. 9 Connecting path Λ

definition

-0.5 0 0.5 1 1.5 2 2.5
-0.5

0

0.5

1

1.5

2

2.5

Initial
Configuration

Final
Configuration

d

a

b

X (m)

Y
 (

m
)

to (x f , y f), Fig. 9. The length of this straight motion, d, is equal to the Euclidean
distance between the initial and the final configurations. Once located there, it must
execute a reorientation manoeuvre for changing the vehicle’s orientation a value
equal to �θb, which makes the vehicle reaches the final correct heading, see Fig. 9.
Then, Λ is composed of three basic manoeuvres:

• Manoeuvre Φθ for achieving the increment �θa .
• Manoeuvre Φx for achieving the displacement d.
• Manoeuvre Φθ for achieving the increment �θb.

Similarly as was done forΓ definition, and considering two possible reorientation
manoeuvres Φθ

1 and Φθ
2 , a group of four connecting paths can be established:

Λ1 ≡ Φθ
1 ⊗ Φx ⊗ Φθ

1 Λ2 ≡ Φθ
1 ⊗ Φx ⊗ Φθ

2

Λ3 ≡ Φθ
2 ⊗ Φx ⊗ Φθ

1 Λ4 ≡ Φθ
2 ⊗ Φx ⊗ Φθ

2

(41)

Again, each connecting path is defined by five parameters, determined by �x ,
�y and �θ , which can be computed from (29) and (35). As an example let consider
the definition of Λ1:

Λ1 ≡ Φθ
1 (s1, s2, s3) ⊗ Φx (sm) ⊗ Φθ

1 (s1
′, s2

′, s3
′)

= p0 ◦ es1Ψ1 ◦ es2Ψ3 ◦ es3Ψ1 ◦ esmΨ1 ◦ es1 ′Ψ1 ◦ es2 ′Ψ3 ◦ es3 ′Ψ1 (42)

This expression can be simplified as:

Λ1 ≡ p0 ◦ es1Ψ1 ◦ es2Ψ3 ◦ esdΨ1 ◦ es2 ′Ψ3 ◦ es3 ′Ψ1 (43)

Car-Like Robot Manoeuvre Generation 313

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Initial
Configuration

Final
Configuration

X (m)

Y
 (

m
)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Initial
Configuration

Final
Configuration

X (m)

Y
 (

m
)

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Initial
Configuration

Final
Configuration

X (m)

Y
 (

m
)

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

-2.5

-2

-1.5

-1

-0.5

0

0.5

1 Initial
Configuration

Final
Configuration

X (m)

Y
 (

m
)

(a) (b)

(c) (d)

Fig. 10 a–d Different connecting paths Λ

The calculus of s1, s2, sd = s3 + sm + s1′, s2′ and s3′ is detailed in Appendix 2.
The total length of the connecting path is

St = s1 + s2 + sd + s2
′ + s3

′ (44)

Figure10 illustrates several examples of connecting paths Λ defined by various
configurations. Again, the paths presents reversal when necessary and the shape of
the trajectory depends on the relative position of the initial and goal configuration.

3.2.3 Connecting Path Ξ

This connecting path is designed to allow the vehicle to arrive to the target config-
uration following a straight line, see Fig. 11. Therefore, Ξ makes the vehicle move
along a straight line a distance equal to d1, there the vehicle performs a reorienta-
tion manoeuvre for achieving an increment �θ , and finally it moves along a straight
line a distance equal to d2. Thus, the connecting path is composed of three basic
manoeuvres:

314 F. Gomez-Bravo

Fig. 11 Connecting path Ξ

definition

-2 -1.5 -1 -0.5 0 0.5 1

-0.5

0

0.5

1

1.5

d 2

d1 Initial
Configuration

Final
Configuration

X (m)

Y
 (

m
)

• Manoeuvre Φx for achieving the displacement d1.
• Manoeuvre Φθ for achieving the increment �θ .
• Manoeuvre Φx for achieving the displacement d2.

In accordance with the conventions previously introduced in Sect. 3.2.1, this con-
necting path can be designed in two different ways: by using manoeuvre Φθ

1 or
by considering manoeuvre Φθ

2 . Consequently, a set of two connecting paths can be
defined:

Ξ1 ≡ Φx ⊗ Φθ
1 ⊗ Φx Ξ2 ≡ Φx ⊗ Φθ

2 ⊗ Φx (45)

Differently from Γ and Λ, each of the connecting paths Ξ is defined by fewer
parameters (three), determined by �x , �y and �θ , which can be computed from
(29) and (35). As a example let consider the definition of Ξ1:

Ξ1 ≡ Φx (s1) ⊗ Φθ
1 (s2, s3, s4) ⊗ Φx (s5) (46)

= p0 ◦ es1Ψ1 ◦ es2Ψ1 ◦ es3Ψ3 ◦ es4Ψ1 ◦ es5Ψ1

This expression can be simplified as:

Ξ1 ≡ p0 ◦ esaΨ1 ◦ esbΨ3 ◦ escΨ1 (47)

The calculus of sa = s1 + s2, sb = s3 and sc = s4 + s5 is detailed in Appendix 2.
The total length of the connecting path is

St = sa + sb + sc (48)

Car-Like Robot Manoeuvre Generation 315

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

1.5

2

Final
Configuration

Initial
Configuration

X (m)

Y
 (

m
)

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

-1

-0.5

0

0.5

1

1.5

2

Final
Configuration

Initial

Configuration

Y
 (

m
)

X (m)

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5

-0.5

0

0.5

1

1.5

2

2.5

Final
Configuration

Initial
Configuration

Y
 (

m
)

X (m)
-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-2

-1.5

-1

-0.5

0

0.5

1 Final
Configuration

Initial
Configuration

Y
 (

m
)

X (m)

-1 -0.5 0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3 Final
Configuration

Initial
Configuration

Y
 (

m
)

X (m)
-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5

-1

-0.5

0

0.5

1

1.5

2

Final

Configuration

Initial
Configuration

Y
 (

m
)

X (m)

(a) (b)

(c) (d)

(e) (f)

Fig. 12 a–f Different connecting paths Ξ

Figure12 illustrates several examples of connecting paths Ξ . It shows that,
depending on the relative position of the configurations to be linked, this con-
necting path can provides a large variety of paths with very different shapes: from
paths including two inverter (Fig. 12a–d) to very simple trajectories without cusps
(Fig. 12e–f).

As has been shown, all the parameters defining a connecting path depend only
on the initial and the final configuration. Thus, given two configurations, each of the
motion strategies presented before will provide a feasible solution with an associate
cost St .

316 F. Gomez-Bravo

4 Planning Collision Free Manoeuvres from a Collision
Free Route

Given an scenario, with a distribution of obstacles, and given an initial and a final
configuration, it is highly unlikely to obtain a collision-free path by using a simple
connecting path. Thus, different procedures can be designed in order to solve amotion
planning problem by applying the methodology presented before.

The approach proposed in this chapter consists on applying, in a first step, a search
algorithm in order to obtain a collision-free route, i.e., a set of intermediate collision-
free configurations (known as nodes) that yield a connection between the initial and
the goal configuration. In the second step, a sequence of collision-free connecting
paths can be generated, so that an effective obstacle avoidance is obtained.

To this end, at the first stage different searching method can be applied: visibility
graph, potential field, Voronoi diagrams, randomly-based algorithm, or any other of
the algorithms presented in Chaps. 1, 2, 8 or 9 of this book. In the second step, the
collision-free route is turned into a collision-free sequence of feasible manoeuvres
by means of a filtering algorithm.

An example of the combination of this methodology with the algorithm Rapidly
exploring Random Tree (RRT), [23–25], can be found in [14, 30]; in [32] it is com-
bined with a manoeuvre selection process based on a multicriteria decision-making
technique; an example of the combination of this methodology with a Voronoy dia-
gram Algorithm can be found in [29]; combination of this methodology with a
visibility graph can be found in [28].

The solution addressed in this chapter is a different version of the proposed in
these previous works, since the optimization procedure is implemented within the
filtering algorithm rather than over the set of solutions provided by the algorithm.

This section is devoted to present the filtering algorithm. Then, it is supposed that
a Map representing the environment is available, and a route connecting the initial
and the goal configuration has been established. The route will define a sequence of
very close nodes, assuming that direct motion between them could not satisfy the
kinematics constraints.

According to the method presented in Sect. 3.2 it is possible to establish an admis-
sible connection between two arbitrary configurations of the route by using any of
the proposed connecting paths. The parameters defining the connecting path will
be obtained from the configurations associated to both nodes. Moreover, from this
definition it is easy to check if, along the path, the vehicle intersects any obstacle.
Thus, given two nodes of the route, if a collision-free manoeuvre allows the vehicle
motion between both configurations, all intermediate nodes could be replaced by this
new path.

The proposed methodology is based on the algorithm Path Generation, see
Algorithm1, that gradually replaces sections of the route by collision-free connecting
paths. By applying this method, the original searching algorithm, that provides the
collision free route,willmaintain its computational natural speed, being appliedwith-
out considering the nonholonomic constraints of the vehicle. Moreover, the filtering

http://dx.doi.org/10.1007/978-3-319-14705-5_1
http://dx.doi.org/10.1007/978-3-319-14705-5_2
http://dx.doi.org/10.1007/978-3-319-14705-5_8
http://dx.doi.org/10.1007/978-3-319-14705-5_9

Car-Like Robot Manoeuvre Generation 317

algorithm is the responsible of transforming the route in a sequence of feasible paths
accomplishing the kinematics constraints.

Thus, this technique is based on checking the possible connections between pair
of nodes by using the connecting paths defined in Sect. 3.2. In this way, the original
route is segmented in a sequence ofmotions accomplishing the kinematics constraints
and the non-collision condition.

For this purpose, the Algorithm1 starts by testing the connection between the
initial and the final configuration. Each of the connecting paths is tested. If a set of
feasible solutions exist, the algorithm selects the one with lower trajectory cost L and
the solution is provided. Nevertheless, if none of the connecting paths is a feasible
solution, the algorithmwill check the connectionbetween the initial configuration and
other node of the route. The process is performed until a collision-free connection is
achieved between two nodes. Then, the section of the route defined by both nodeswill
be replaced by the selected collision-freemanoeuvre.At this stage the algorithm starts
checking new connections between nodes in order to transform the remaining section
of the route into a sequence of connecting paths. Various version of this algorithm
have been presented in [14, 28–30]where different criteria for the route segmentation
are applied; namelyby changing the definitionof the nodes that determines the section
to check. The algorithm presented below, is a variation of these original versions.
On the one hand the nodes of the route are tested one by one starting from the goal
configuration; on the other hand, the selection of the connecting path is implemented
by taking into account the manoeuvre cost L .

Algorithm 1 Path Generation
Require: Original Route
Ensure: FinalSolution.
1: f inal = 0
2: j = 1
3: while (Not f inal) do
4: collision = 1
5: i = NodesNumber
6: while (collision) do
7: if (FeasibleConection(j , i , Original Route)) then
8: FeasibleSection ← FeasibleConection(j , i , Original Route)
9: AddSection(FinalSolution, FeasibleSection)
10: j = i
11: collision = 0
12: else
13: i = i-1
14: end if
15: if (i-j=1) then
16: FeasibleSection ←BasicManoeuvreComposition(j , i , Original Route)
17: AddSection(FinalSolution, FeasibleSection)
18: collision = 0
19: end if
20: end while
21: end while

318 F. Gomez-Bravo

The function FeasibleConection() (see Algorithm2) is the responsible
for defining the path and checking the vehicle collisions. It provides, if it exists, the
collision-free connecting path with the lower cost L between configurations j and i .

Within this algorithm, the function ConectingPathGeneration imple-
ments the trajectory generation, linking configurations j and i . The index m is used
for addressing the type of connecting path, being m = 1 associated with Ξ1, m = 2
with Ξ2, . . . until m = 13 is associated with Γ8.

The collision test is performed in the function TestColision. It can be imple-
mented following different methods. On the one hand, the test can be performed by
checking directly the intersection of the obstacles with the vehicle’s contour along
the path. On the other hand, it can be implemented by using the configuration space.
An occupancy grid map can be previously defined over the configuration space, so
that each configuration is associated to a grid that contains the information about the
collision state. Then, a connecting path can be tested by sampling the trajectory in
the configuration space and checking the grids associated with the samples. Other
alternatives have been explored in the literature, thus, it is possible to obtain a tem-
plate of the space where the vehicle moves along the manoeuvre [14, 28, 30]. By
this way, the existence of collisions can be tested without computing the trajectory,
just using this template. In any case, collision detection can be easily done, whether
using geometric algorithm or by applying occupancy grid maps.

The calculus of the trajectory cost L can be implemented according to dif-
ferent criteria: length of the trajectory (St), distance to obstacles, reverse dis-
tance, smoothness in the steering angle changes, see [32] for details. The function
FeasibleConection applied the value of L for selecting the connecting path
that minimizes the trajectory cost.

Within the Path Generation algorithm, The function AddSection()
links the collision-free feasible connections so that, at the end, FinalSolution will
contain a sequence of feasible paths connecting the initial and the goal configuration.

If a collision-free motion between j and i is not possible, index i is decreased
and the connection between j and i − 1 is tested. Oddly, all the connections fail,
including the connection between two consecutive nodes. In this case, two possi-
bilities can be considered. The first consists on discarding the search for a solution.
However, if the algorithm applied for the route generation assures the existence of
non constrained collision-free motions between consecutive nodes, a strategy similar
to the one presented in [19] can be applied, connecting both nodes by a repetitive
sequence of sidewise and reorientation manoeuvres. These two alternatives can be
implemented in the function BasicManoeuvreComposition().

As an example of the efficiency of this methodology, a feasible path achieved
by this procedure is shown in Fig. 13. Due to the curvature constraint this scenario
prevents the vehicle to move between the initial and final configuration without stop-
ping and changing the sign of the velocity. This figure represents, with continuous
line, the path described by the vehicle’s rear point and some intermediate configura-
tions drawn in dashed line. This solution has been obtained by applying the filtering
algorithm to a route generated by a RRT algorithm.

Car-Like Robot Manoeuvre Generation 319

Algorithm 2 Feasible Connection
Require: j , i , Original Route
Ensure: T rajector y if a feasible connection exits, Null otherwise.
1: Lmin = 0
2: for m=1 to 13 do
3: collision = 1
4: (Path, Tt) ← ConectingPathGeneration(m, Original Route[j], Original Route[i])
5: collision = TestColision(Path)
6: L ← (Tt , other criteria...)
7: if (Collision=0) and (Lmin = 0) then
8: Lmin = L // this is the first feasible connection
9: end if
10: if (Collision=0) and (L ≤ Lmin) then
11: T rajector y ← Path
12: Lmin = L
13: end if
14: end for
15: if collision = 1 then
16: return Null
17: else
18: return T rajector y
19: end if

Fig. 13 Manoeuvering in a
constrained scenario Final

Configuration

Initial
Configuration

X (m)

2

20

4

6

8

10

12

14

16

18

5 10 15 20 25

Y
 (

m
)

In Fig. 14 four different moments of this planning methodology are presented. In
Fig. 14a the trees provided by RRT are shown. In Fig. 14b the route derived from the
trees is drawn in continuous line, also the associated configurations are represented
using dashed lines. The algorithm builds the solution of Fig. 13 by chaining three
connecting paths: Γ1, Ξ2 and Ξ2. Figure14c illustrates the way in which the route is
sectioned in order to be turned into a feasible sequence of manoeuvres. It presents,
in dashed line, the final path and in continuous line, the original route. Both lines
have been split by placing square markers at the limit of each sections, showing the

320 F. Gomez-Bravo

X (m)

2

20

4

6
8

10

12

14

16

18

5 10 15 20 25

Y
 (

m
)

X (m)

2

20

4

6
8
10

12

14

16

18

5 10 15 20 25

Y
 (

m
)

X (m)

2

20

4

6
8

10

12

14

16

18

5 10 15 20 25

Y
 (

m
)

X (m)

2

20

4

6
8
10

12

14

16

18

5 10 15 20 25

Y
 (

m
)

(a) (b)

(c) (d)

Fig. 14 Planning process sequence: a RRT´s trees; b the route derived from the trees; c sections
of the route and sequence of feasible manoeuvres; d shadow of the car along the manoeuvre

piece of path associated to each connecting path. Finally, in Fig. 14d the shadow of
the vehicle along the trajectory is shown, in order to demonstrate that the generated
trajectory is a collision-free solution.

Regarding the smoothness in the curvature changes, it represents a question
beyond the scope of this chapter. However, it is worth mentioning several contri-
butions that address solutions to continuous curvature trajectories generation, based
on path defined from circular and straight segments: [9, 13, 38]. They can be com-
bined with the approach presented in this chapter.

5 Experimental Results

This section is devoted to present some results achieved with the proposed approach.
Different scenarios have been considered in order to illustrate the applicability and
efficiency of this methodology.

Car-Like Robot Manoeuvre Generation 321

X (m)

2

20

4

6
8

10

12

14

16

18

5 10 15 20 25

Y
 (

m
)

Initial
Configuration

Final
Configuration

X (m)

2

20

4

6
8

10

12

14

16

18

5 10 15 20 25

Y
 (

m
)

Initial
Configuration

Final
Configuration

X (m)

2

20

4

6
8

10

12

14

16

18

5 10 15 20 25

Y
 (

m
)

Initial
Configuration

Final
Configuration

X (m)

2

20

4

6
8

10

12

14

16

18

5 10 15 20 25

Y
 (

m
)

Initial
Configuration

Final
Configuration

(a) (b)

(c) (d)

Fig. 15 a–d A set of solutions to the planning problem introduced in Sect. 4

As was mentioned before, the algorithm presented in the previous section can be
applied to routes generated by several search algorithm.Namely, the results presented
below have been obtained by using RRT. A study with comparisons of the combina-
tion of this filtering algorithm whit other searching techniques is shown in [28].

Regarding the dimension of the vehicle, the length is 4.72 m, the vehicle’s width
is 2.36 m, l is equal to 4.32m and the minimum radius of curvature is 4.32 m, thus
the maximum steering angle is π

2 rad.
Due to the random nature of RRT, different experiments in the same scenario,

and with the same initial and final conditions, provide different routes. Therefore,
successive applications of RRT and the filtering algorithm also generates different
final solutions. In figure Fig. 15 four different trajectories, solving a situation similar
to the one presented in Fig. 13, are shown. This solution set approximately illustrates
the admissible way of motions of the vehicle in this scenario. The combination of
RRT’s with the filtering algorithm, is characterized by this feature: it provides a wide
collection of different solutions for a particular situation. This property has been
exploited in [32], where decision making techniques were applied in order to select
the manoeuvre that best fits a specific scenario.

This approach work efficiently when daily life circumstances are involved. As an
example, in Fig. 16 a set of six trajectories are shown. Each one represents a motion

322 F. Gomez-Bravo

X (m)

10

20

30

40

4 14 24 34 44

Y
 (

m
)

Initial
Config

X (m)

10

20

30

40

4 14 24 34 44

Y
 (

m
)

Initial
Config

X (m)

10

20

30

40

4 14 24 34 44

Y
 (

m
)

Initial
Config

X (m)

10

20

30

40

4 14 24 34 44

Y
 (

m
)

Initial
Config

X (m)

10

20

30

40

4 14 24 34 44

Y
 (

m
)

Initial
Config

X (m)

10

20

30

40

4 14 24 34 44

Y
 (

m
)

Initial
Config

(a) (b)

(c) (d)

(e) (f)

Fig. 16 Different experiments for car-like vehicle manoeuvring: a–f manoeuvring for changing
the parking place; e–f garage exit manoeuvres

of the vehicle in a garage where it has to move from one to another parking place,

Car-Like Robot Manoeuvre Generation 323

X (m)

10

20

40

60

20 40 60 100 120

Y
 (

m
)

Initial
Config

80

Final
Config

30

50

70

X (m)

10

20

40

60

20 40 60 100 120

Y
 (

m
)

Initial
Config

80

Final
Config

30

50

70

(a) (b)

Fig. 17 a–b Two experiments in a large scenario

see Fig. 16a–d. Moreover, manoeuvres to leave the garage have been also obtained.
Particularly, two exit paths that begin at twodifferent parkingplaces are represented in
Fig. 16e–f. In these experiments, initial and final configuration have been selected so
that simple motions between them are not feasible. Thus, the proposed methodology
proves that suitable and feasible solutions can be obtained from the concepts of
restricted manoeuvre and connecting path when, constrained scenarios are involved.

Finally, there have been also performed experiments in large scale scenarios,
where short manoeuvres has to be combined with large trajectories without cusps.
In Fig. 17 two experiments are presented, in a scenario 80 m. wide and 130 m. long.
Each experiment has been defined so that initial and final configuration requires short
motion among closed obstacles. However, motion between then can be obtained
by a continuous trajectories without stopping the vehicle for changing the velocity
sign. It is remarkable that the algorithm provides trajectories with and without cusp,
incorporating manoeuvres only when direct motion is not possible.

Computing time depends drastically on two main aspects: the methodology for
manoeuvre evaluation (defined in function FeasibleConection()) and the sce-
nario complexity.

In the experiments presented in this section, collision test has been implemented
by checking a grid map of the Cartesian space with a discrete representation of the
vehicle’s contour. The cost of a manoeuvre is the sum of the path length plus factor
that weight the proximity to the obstacles along the path. This factor increases in
value every time a configuration lays too close to an obstacle.

The average time of the experiments in Fig. 16 is 1.5 s. with a dispersion of 0.3 s.
Experiments in Fig. 17 took an average of 1.8 s. All of them were programmed using
Matlab V-7.11 on a PC with an Intel Core i3 1.4 GHz processor.

324 F. Gomez-Bravo

6 Conclusions

This chapter is devoted to present an approach for car-like robot manoeuvre gen-
eration. The proposed technique is described in a context of differential geometry
concepts related with the vehicles kinematics constraints. The procedure is based on
the definition of a set of basic manoeuvres (restricted manoeuvres) that allow chang-
ing the value of only one of the configuration variables. Thus, these manoeuvres
represent a set of canonical paths, that is, any two point of the configuration space
can be connected by a suitable combination of them. In order to achieve a suitable
manoeuvre combination a heuristic procedure has been established by introducing
the concept of connecting paths. Three basic connecting paths have been defined: Γ ,
Λ and Ξ . These connecting paths represent a flexible way of motion, providing effi-
cient and feasible trajectories with different patterns of movement in resemblance to
the manoeuvres performed by human drivers. The final step of the approach consist
on applying a filter algorithm to a collision-free route (provided by one of the tradi-
tional searching algorithm) so that the original route is transformed into a sequence
of feasible collision-free connecting paths, implementing an effective obstacle avoid-
ance. The efficiency of the approach is illustrated by a set of experimental results
involving daily live scenarios.

Appendix 1: Controllability Condition

This Appendix introduces some concepts and mathematical formulation that allow
to understand the car-like vehicles controllability. Further explanation regarding the
application of differential geometry can be found in [4, 19, 26]

Definition 6 LetΨi (q) andΨ j (q) be two vector field, the Lie bracket [Ψi (q) Ψ j (q)]
is a third vector field defined by:

[Ψi (q), Ψ j (q)] = ∂Ψ j (q)

∂q
Ψi (q) − Ψi (q)

∂q
Ψ j (q) (49)

Theorem 1 Let be a system, whit a configuration space Ω of dimension n, with m
nonholonomic constraints, and a distribution Δ, with dimension (n − m), spanned
by a set of vectors field Ψi (q) accomplishing the m constraints. This system is fully
controllable if the dimension of the distribution generated by the set of vectors and
the recursive computation of all their Lie brackets, usually known as CLA(Δ), is
equal to n.

This theorem is a summary of all fundamental theorems about the controllability
of nonholonomic systems presented and demonstrated in [19, 22].

Let consider de vectors Ψ1, Ψ3 and Ψ4, defined in (24) and (25). It is straight-
forward to demonstrate that the dimension of Δc = span{Ψ1, Ψ3, Ψ4} is 2, i.e.
rank [Ψ1, Ψ3, Ψ4] = 2.

Car-Like Robot Manoeuvre Generation 325

The recursive Lie brackets of this vector set can be computed as:

Ψ5 = [Ψ1, Ψ3] = [c1 sin θ,−c1 cos θ, 0]

Ψ6 = [Ψ1, Ψ4] = [c2 sin θ,−c2 cos θ, 0]

Ψ7 = [Ψ3, Ψ4] = [(c2 − c1) sin θ, (c1 − c2) cos θ, 0]

(50)

Thus, it is easy to show that:

rank [Ψ1, Ψ3, Ψ4, Ψ5, Ψ6, Ψ7] = 3 (51)

Therefore, the dimension of CLA(Δc) = 3, and the system is fully controllable, that
is, any configuration can be reached by using a finite sequence of paths that follow
vectors Ψ1, Ψ3 and Ψ4.

Appendix 2: Parameters Calculation

Γ1 Parameters Calculation

According to the Sect. (3.2.1) the expression defining this connecting path is:

Γ1 ≡ Φ
y
1 ⊗ Φx ⊗ Φθ

1

= p0 ◦ es3Ψ3 ◦ es2Ψ4 ◦ esdΨ1 ◦ es2 ′Ψ3 ◦ es3 ′Ψ1 (52)

The objective is to determine the values of the parameters as a function of the
initial and the final configurations. Let (x0,y0,θ0) and (x f ,y f ,θ f) be respectively
the initial and final configuration expressed in the global frame ΣG , and let pG

0 =
[x0, y0, θ0, 1]T and pG

f = [x f , y f , θ f , 1]T be the extended vector containing these
configurations.

First of all, both configurations has to be expressed in the frame ΣL in order to
obtain the desired increment of the state variables in this frame.

Given that the origin of ΣL is located at the manoeuvre starting point, i.e. in
[x0,y0], where the initial vehicle’s heading is equal to zero, it is easy to demonstrate
that the relation between pG , the extended vector of a configuration in ΣG , and
pL , the extended vector of this configuration in ΣL , is determined by the following
expressions:

pG = T G
L · pL with T G

L =

⎛
⎜⎜⎝
cos θ0 − sin θ0 0 x0
sin θ0 cos θ0 0 y0
0 0 1 θ0
0 0 0 1

⎞
⎟⎟⎠ (53)

326 F. Gomez-Bravo

Thus, initial and final vectors can be written in ΣL in accordance with:

pL
0 = T L

G · pG
0 pL

f = T L
G · pG

f with T L
G = (T G

L)
−1

(54)

Obviously, pL
0 = [0, 0, 0, 1]T and the desired increments in ΣL are:

⎛
⎜⎜⎝

Δx
Δy
Δθ

1

⎞
⎟⎟⎠ = pL

f = T L
G · pG

f (55)

Then, s1, s2 and s3, can be calculated fromΔy by applying Eq. (31); sm = Δx ; and
s1′, s2′and s3′ can be obtained from Δθ by applying Eq. (35). Finally and following
the reasoning about the simplification process expressed in Sect. (3.2.1) sd = s1 +
sm + s1′. That way, the five parameters s2, s3, sd , s2′ and s3′ of Eq. (52) have been
determined as a function of two arbitrary configurations to be connected. The calculus
of the rest of the Γ connecting paths is similar to the one presented in this section.

Λ1 Parameters Calculation

According to the Sect. (3.2.2) the expression defining this connecting path is:

Λ1 ≡ Φθ
1 ⊗ Φx ⊗ Φθ

1

= p0 ◦ es1Ψ1 ◦ es2Ψ3 ◦ esdΨ1 ◦ es2 ′Ψ3 ◦ es3 ′Ψ1 (56)

The procedure for determining the parameters is based on the calculus of the
vector [Δx , Δy,Δθ , 1]T from the initial and the final configurations, as was done in
the previous section. From this vector the following values are calculated:

d =
√

(Δx2 + Δy2); Δθa = arctan

(
Δy

Δx

)
; Δθb = Δθ −Δθa (57)

Then, s1, s2 and s3, can be calculated from Δθa by applying Eq. (35); sm = d; and
s1′, s2′and s3′ can be obtained from Δθb by applying again Eq. (35).

Finally and following the reasoning about the simplification process sd = s3 +
sm + s1′. Therefore, the five parameters s1, s2, sd , s2′ and s3′ of Eq. (56) have been
determined as a function of two arbitrary configurations to be connected. The calculus
of the rest of the Λ connecting paths is similar to the one presented in this section.

Car-Like Robot Manoeuvre Generation 327

Ξ1 Parameters Calculation

According to the Sect. (3.2.3) the expression defining this connecting path is:

Ξ1 ≡ Φx ⊗ Φθ
1 ⊗ Φx

= p0 ◦ esaΨ1 ◦ esbΨ3 ◦ escΨ1 (58)

The procedure for determining the parameters is based on the calculus of the
vector [Δx , Δy,Δθ , 1]T from the initial and the final configurations, as was done in
the previous section. From this vector the following values are calculated:

b = Δy−Δx ·tanΔθ; d1 = −b

tanΔθ
; θm = atan2(Δy,Δx−d1) (59)

s =
{
1 if Δθ = θm

−1 otherwise
; d2 = s ·

√
Δy2 + (Δx − d1)2; (60)

Then, s1 = d1; s2, s3 and s4, can be calculated from Δθ by applying Eq. (35); and
s5 = d2. Again, following the reasoning about the simplification process sa = s1+s2,
sb = s3, and sc = s4 + s5. Thus, the parameters of Eq. (58) have been determined
as a function of two arbitrary configurations to be connected. The calculus of Ξ2 is
similar to the one presented in this section.

References

1. Brandao AS, Sasaki AS, Castelano C, Cruz RR, Carelli R (2012) Autonomous navigation with
obstacle avoidance for a car-like robot. In: Robotics symposium and Latin American robotics
symposium (SBR-LARS). IEEE, Brazilian, pp 156–161

2. Brockett RW (1983) Asymptotic stability and feedback stabilization. In: Brockett RW,Millman
RS, Sussmann HJ (eds) Differential geometric control theory, pp 181–191

3. Chitsaz H, LaValle SM, Balkcom DJ, Mason MT (2009) Minimum wheel-rotation paths for
differential-drive mobile robots. Int J Robot Res 28(1):66–80

4. Choset H, Lynch KM, Hutchinson S, Kantor GA, Burgard W, Kavraki LE, Thrun S (2005)
Principles of robot motion: theory, algorithms, and implementations. MIT Press, Cambridge

5. Coelho P, Nunes U (2003) Lie algebra application to mobile robot control: a tutorial. Robotica
21(5):483–493

6. Cuesta F, Gomez-Bravo F, Ollero A (2004) Parking manoeuvres of industrial-like electrical
vehicles with and without trailer. IEEE Trans Ind Electr 51(2):257–269

7. Demirli K, Khoshnejad M (2009) Autonomous parallel parking of a car-like mobile robot by
a neuro-fuzzy sensor-based controller. Fuzzy Sets Syst 160(19):2876–2891

8. Dubins LE (1957) On curves of minimal length with a constraint on average curvature, and
with prescribed initial and terminal positions and tangents. Am J Math 79:497–516

9. Fraichard T, Scheuer A (2004) From reeds and Shepp’s to continuous-curvature paths. IEEE
Trans Robot 20(6):1025–1035

10. Giordano PR, Vendittelli M (2009) Shortest paths to obstacles for a polygonal Dubins car.
IEEE Trans Robot 25(5):1184–1191

328 F. Gomez-Bravo

11. Gomez-Bravo F (2001) Planificación de maniobras en sistemas robóticos no holónomos. apli-
caciones en robots móviles. Ph.D. Thesis, University of Seville

12. Gomez-Bravo F, Cuesta F, Ollero A (2001) Parallel and diagonal parking in nonholonomic
autonomous vehicles. Eng Appl Artif Intell 14(1):419–434

13. Gomez-Bravo F, Cuesta F, Ollero A, Viguria A (2008) Continuous curvature path generation
based on β-spline curves for parking manoeuvres. Robot Auton Syst 56(4):360–372

14. Gomez-Bravo F, Ollero A, Cuesta F, Lopez DA (2008) A new approach for car-like robots
manoeuvring based on RRT. Robotica, Intrumentaao e control 15(71):10–14

15. Gomez-Bravo F, Lopez DA, Cuesta F, Ollero A (2007) RRT-D: a motion planning approach
for autonomus vehicles based on wireless sensor network information. In: Proceedings of the
6th IFAC symposium on intelligent autonomous vehicles

16. Gomez-Bravo F, Ollero A (1995) Dynamic path planning of free floating manipulator. In:
Proceedings of the 1995 ICAR conference, vol 1. pp 447–457

17. Gomez-Bravo F, Ollero A, Cuesta F, López DA (2007) A new approach for car-like robots
manoeuvring based on RRT. In: Proceedings of the 7th conference on mobile robots and
competitions

18. Lamiraux F, Lammond JP (2001) Smooth motion planning for car-like vehicles. IEEE Trans
Robot Autom 17(4):498–501

19. Latombe JC (1991) Robot motion planning. Kluwer Academic Publisher
20. Laumond JP (1986) Feasible trajectories for mobile robots with kinematic and environment

constraints. In: Intelligent autonomous systems, An international conference. North-Holland
Publishing Co, pp 346–354

21. Laumond JP, Sekhavat S, Lamiraux F (1998) Guidelines in nonholonomics motion planning
for mobile robots. In: Robot motion planning and control, pp 1–53

22. Laumont J, Jacobs P, Taix M, Murray M (1994) A motion planner for nonholonomic mobile
robots. IEEE Trans Robot Autom 10(5):577–593

23. LaValle SM, Kuffner JJ (1999) Randomized kinodynamic planning. In: Proceedings IEEE
international conference on robotics and automation, pp 473–479

24. LaValle SM, Kuffner JJ (2001) Rapidly-exploring random trees: progress and prospects. In:
Algorithmic and computational robotics. New Directions

25. LaValle SM (1998) Rapidly-exploring random trees: a new tool for path planning. Computer
Science Department, Lowa State University (TR 98-11)

26. LaValle SM (2006) Planning algorithms. Cambridge University Press
27. Lini G, Piazzi A, Consolini L (2011)Multi-optimization of η 3-splines for autonomous parking.

In: 50th IEEE conference on decision and control and European control conference (CDC-
ECC). IEEE, pp 6367–6372

28. Lopez Garcia DA (2011) Nuevas aportaciones en algoritmos de planificación para la ejecución
de maniobras en robots autónomos no holónomos. Ph.D. Thesis, University of Huelva

29. López García DA, Gomez-Bravo F (2012) VODEC: a fast Voronoi algorithm for car-like robot
path planning in dynamic scenarios. Robotica 30(07):1189–1201

30. Lopez D, Gomez-Bravo F, Cuesta F, Ollero A (2006) Planificación de trayectorias con el
algoritmo RRT. aplicación a robots no holónomos. RIAII 3(3):56–67

31. Markoff J (2010) Google cars drive themselves, in traffic. The New York Times 10:A1
32. Martín Ramos J, LópezGarcíaD,Gómez-Bravo F, BlancoMorónA (2010)Application ofmul-

ticriteria decision-making techniques to manoeuvre planning in nonholonomic robots. Expert
Syst Appl 37(5):3962–3976

33. Melzak Z (1961) Plane motion with curvature limitations. J Soc Ind Appl Math 9(3):422–432
34. Michalek M, Kozowski K (2010) Vector-field-orientation feedback control method for a dif-

ferentially driven vehicle. IEEE Trans Control Syst Tech 18(1):45–65
35. Miller G, Reed R, Wheeler F (1991) Optimum Ackerman for improved steering axle tire wear

on trucks. Technical Report 912693, SAE Technical Paper
36. Mukherjee R, Anderson A (1994) A surface integral approach to the motion planning of

nonholonomic systems. J Dyn Syst, Meas, Control 116(3):315–325

Car-Like Robot Manoeuvre Generation 329

37. Munoz VF, Ollero A (1995) Smooth trajectory planning method for mobile robots. In: Pro-
ceedings of the congress on computational engineering in system applications. Lille, Francia,
pp 700–705

38. Munoz VF, Cerezo AG, Cruz A (1999) A mobile robots trajectory planning approach under
motion restrictions. J Integr Comput-Aided Eng 6(4):331–347

39. Murray RM, Sastry S (1993) Nonholonomics motion planning: steering using sinusoids. IEEE
Trans Autom Control 38(5):700–716

40. Ollero A, Arrue BC, Ferruz J, Heredia G, Cuesta F, Lopez-Pichaco F, Nogales C (1999) Control
and perception components for autonomous vehicle guidance. Application to the ROMEO
vehicles. Control Eng Pract 7(10):1291–1299

41. Paromtchik I, Laugier C, Gusev S, Sekhavat S (1998) Motion control for autonomous car
maneuvering. In: Proceedings of the international conference on control, automation, robotics
and vision, pp 136–140

42. Qu Z, Wang J, Plaisted CE, Hull RA (2006) Global-stabilizing near-optimal control design for
nonholonomic chained systems. IEEE Trans Autom Control 51(9):1440–1456

43. Reeds J, Shepp L (1990) Optimal paths for a car that goes both forwards and backwards. Pac
J Math 145(2):367–393

44. Rumyantsev VV (2000) Forms of Hamiltons principle for nonholonomic systems. Facta Univ
Ser Mech, Autom Control Robot 2(19):1035–1048

45. Scheuer A, Fraichard T (1997) Continuous-curvature path planning for car-like vehicles. Proc
IROS 97:997–1002

46. Thrun S (2006) Winning the DARPA Grand challenge. In: PKDD 2006. LNCS (LNAI), vol
4213. Springer, Heidelberg, pp 4–4

47. Tilbury D,Murray RM, Shankar Sastry S (1995) Trajectory generation for the n-trailer problem
using Goursat normal form. IEEE Trans Autom Control 40(5):802–819

48. Tilbury D, Laumond JP, Murray R, Sastry S, Walsh G (1992) Steering car-like systems with
trailers using sinusoids. In: Proceedings IEEE international conference on robotics and automa-
tion. IEEE, pp 1993–1998

Vehicle Autonomy Using Cooperative
Perception for Mobility-on-Demand Systems

Seong-Woo Kim, Tirthankar Bandyopadhyay, Baoxing Qin, Zhuang Jie
Chong, Wei Liu, Xiaotong Shen, Scott Pendleton, James Guo Ming Fu,
Marcelo H. Ang Jr., Emilio Frazzoli and Daniela Rus

Abstract A holy grail of research in urban transportation systems is to increase
throughput of people while minimizing the requirement of building additional road
and rail networks. The promising new paradigm of Mobility-on-Demand (MoD),
where shared personal transportation vehicles provide necessary service, is fast
becoming a viable and preferred alternative to the traditional framework of hav-
ing either public fixed route service or privately owned vehicles. This chapter looks
at innovative approaches that enable an MoD system to be economical in devel-
opment, robust in operation, efficient and sustainable in deployment. We develop
algorithms to efficiently use the combination of prior information with minimalistic
sensing with only a single 2-D LIDAR, utilizing vehicle odometry and prior road
information which may not have accurate metric information but is topologically
consistent. Additionally, we use the rich capability of cooperative perception, which
can far extend perception range without expensive long-range sensors, by exchang-
ing local perception information with other vehicles or infrastructure via wireless
communications. The augmented perception capability enables a vehicle to see the
oncoming traffic situation ahead even beyond human line-of-sight and field-of-view,
which thereby contributes to traffic flow efficiency and safety improvement through
long-term perspective driving, e.g., early obstacle detection and avoidance, and early
lane changing. This chapter develops these ideas, presents results in demonstration
and provides insights of the motion and operation planning for a case study of a fully
autonomous vehicle deployment to the general public.

S.-W. Kim
Seoul National University, Seoul, Korea

T. Bandyopadhyay (B) · J.G.M. Fu
Singapore MIT Alliance for Research and Technology, Singapore, Singapore
e-mail: tirtha.bandy@gmail.com

B. Qin · Z.J. Chong · W. Liu · X. Shen · S. Pendleton · M.H. Ang Jr.
National University of Singapore, Singapore, Singapore

E. Frazzoli · D. Rus
Massachusetts Institute of Technology, Boston, USA

© Springer International Publishing Switzerland 2015
G. Carbone and F. Gomez-Bravo (eds.), Motion and Operation Planning
of Robotic Systems, Mechanisms and Machine Science 29,
DOI 10.1007/978-3-319-14705-5_11

331

332 S.-W. Kim et al.

Keywords Capítulo 11.-Mobility-on-demand systems · Cooperative perception ·
Autonomous vehicles · Driver assistance

1 Introduction

A holy grail of research in urban transportation systems is to increase throughput of
people while minimizing the requirement of building additional road and rail net-
works. The promising new paradigm of Mobility-on-Demand (MoD), where shared
personal transportation vehicles provide necessary service, is fast becoming a viable
and preferred alternative [1] to the traditional framework of having either public fixed
route service or privately owned vehicles. Many such MoD systems are already avail-
able commercially where the shared transportation modules are either cars [2, 3],
bikes [4] or shared vans [3, 5]. These systems aim to reduce ownership of private
vehicles and increase effective resource utilization.

Our research group at Singapore-MIT Alliance for Research and Technology
looks at technologies that use vehicle automation as a component of MoD systems. In
order for the systems to be viable, they have to be economical in development, robust
in operation, efficient and sustainable in deployment. To achieve these challenging
goals, we develop algorithms to efficiently use the combination of prior information
with minimalistic sensing. In accordance with minimalistic sensing, our vehicles are
localized reliably in the campus using only one single 2D LIDAR (Light Detection
And Ranging), odometry and prior road information.

In the same context, we use the rich capability of cooperative perception, which
can far extend perception range without expensive long-range sensors, by exchang-
ing local perception information with other vehicles or infrastructure via wireless
communications. The augmented perception capability enables a vehicle to see the
oncoming traffic situation ahead even beyond human line-of-sight and field-of-view,
which thereby contributes to traffic flow efficiency and safety improvement through
long-term perspective driving, e.g., early obstacle detection and avoidance, and early
lane changing [6].

As a first step of system development and deployment, we focus on the crowded
campus environment of National University of Singapore, where demands on trans-
portation and the mobility challenges due to pedestrians and other vehicles are signif-
icant. Figure 1 shows our personal transporters in operation. We have demonstrated
this system successfully with accumulated autonomous run mileage of over 100 km
in the campus environment.

While there has been significant progress in autonomous driving in terms of
technological capability, a major challenge that remains is development of public
policy that stems from a positive public perception towards adopting such a system.
To get an insight into such questions and the feedback from public, we had various
demonstrations to visiting dignitaries and researchers from around the world. We
also had a field deployment of the system on public grounds in the Science Center
where we gained valuable feedback and insights with the interaction with members
of the public, some of which we present in this paper.

Vehicle Autonomy Using Cooperative Perception for Mobility-on-Demand Systems 333

Fig. 1 Our autonomous personal transporters in operation, providing Mobility-on-Demand service
in a campus environment of National University of Singapore

The contribution of this chapter can be summarized as the following:

• We introduce our autonomous vehicles for Mobility-on-Demand systems.
• We propose cooperative perception for vehicle automation and planning.
• We present the case for autonomous vehicle deployment to the general public.

This chapter is outlined as follows. Section 2 provides the overview of our sys-
tems. Section 3 presents how our autonomous vehicles perceive urban road environ-
ment using local range sensors. Section 4 addresses how our systems use remote
information from other vehicles or infrastructure via wireless communications in
the context of cooperative perception. Section 5 presents driving assistance capa-
bility using cooperative perception via MoD systems, which enables a see-through
collision warning, overtaking and lane changing assistance. In Sect. 6, we discuss
the impact and next steps for autonomous vehicles in MoD systems as highlighted
through the experiments and case studies of public demonstrations. We conclude this
chapter in Sect. 7.

2 System Overview

We have operated a number of autonomous vehicles for MoD service at NUS campus,
which are implemented on mass-produced automotive vehicles as shown in Fig. 1.
The overall architecture of vehicles is presented in Fig. 2.

The vehicles start to move toward the next destination by self-driving upon the
requests of users or operators. For this purpose, an autonomous driving system is nec-
essary, which consists of several subsystems such as a perception, planning and con-
trol system. For the perception, the vehicles are equipped with range sensors like 2D
LIDARs, a vision camera, and wireless interface IEEE 802.11g, IEEE 802.11n, 3G
HSDPA (High-Speed Downlink Packet Access), and 4G LTE (Long Term Evolution).

334 S.-W. Kim et al.

Vision sensor

Information
fusion

Odometry

Range sensor

Vision

Range sensor

Wireless comm.

Ego vehicle

Preceding vehicle/
Infrastructure

PlannerLocalization

ControllerIMU

Vehicle
state

Path

Steering, acceleration, braking input

Vehicle

Spatial map

Following vehicle/
Infrastructure

Operator

Fig. 2 Overall system architecture

The software architecture of this system was established on Robot Operating System
(ROS) suite [7] using only open source libraries. Detail specifications are available
in [8].

In Fig. 2, an odometry system is used for motion estimation such as moving
direction and speed. The range sensors are used for vehicle detection and tracking.
The vision sensors are used for identification and classification of pedestrians and
vehicles, and provide driver-friendly visual traffic information.

The vehicles exchange their local perception results with other vehicles or
infrastructure via wireless communications where the information is delivered in
a form of network messages. Since there exists a trade-off between information
quantity and communication performance, the message profile, e.g., transmission
period and message size, should be carefully chosen according to driver preferences
and application requirements. The detailed message profiles and communication
performance investigation will be provided in Sect. 4.

All local and remote sensing information is properly fused at the box of infor-
mation fusion in Fig. 2. Compared to data fusion of on-board sensing information,
data fusion of remote sensing information on the road includes a number of practi-
cal challenges [9], among which this chapter focuses on map merging problem and
sensor multi-modality.

After the information fusion procedure, the fused information can be delivered to
the local planner for self-driving, or vehicles following behind or nearby infrastruc-
ture for the purpose of cooperative perception.

Vehicle Autonomy Using Cooperative Perception for Mobility-on-Demand Systems 335

From the perspective of local planner, the vehicles can provide autonomous
collision avoidance and lane changing through our several intelligent algorithms
based on local perception and cooperative perception, which include vehicle detec-
tion, pedestrian detection, intention aware planning [10], localization [11], on-road
recognition [12] and path planning [13] and cooperative perception [6].

From the perspective of cooperative perception, it can be definitely beneficial
to both human drivers and autonomous vehicles for safe and comfortable driving,
because the fused information includes oncoming traffic situation ahead. In this
context, we provide a method to let a driver know the moment when the driver should
be careful, such as hidden obstacle detection or sudden braking of preceding vehicles
beyond line-of-sight. The notification is performed by visual and sound alarms for a
human driver, which enables a driver to focus on driving until any dangerous situation
is detected by our system. Moreover, the subsystem notifies a driver when there are
any vehicles coming from behind or at blind spots, which can contribute to safe
lane changing or overtaking. This notification can trigger path re-planning earlier for
safe and comfort autonomous driving including smooth deceleration/acceleration
and early lane changing.

From the next section, we first investigate local perception and localization using
local range sensors. Then, we move our focus to cooperative perception, cooperative
driving assistance, and cooperative autonomous driving.

3 Synthetic 2D LIDAR for Vehicle Localization in 3D
Urban Environment

Vehicle localization is a fundamental requirement for autonomous vehicle, which is
the problem of determining the pose of a robot relative to a given map of the envi-
ronment [14]. This section presents our precise localization algorithm for vehicles
in 3D urban environment using one 2D LIDAR and odometry information. A novel
idea of synthetic 2D LIDAR is proposed to solve the localization problem on a vir-
tual 2D plane. A Monte Carlo Localization scheme is adopted for vehicle position
estimation, based on synthetic LIDAR measurements and odometry information.

3.1 Localization on a Virtual Plane

Vehicle localization on a planar surface has been studied for decades and many
algorithms have been proposed. The 2D scan-matching algorithm may be the most
popular choice due to its accuracy and robustness [15]. However, it cannot be directly
applied for vehicles moving in the 3D world. Since outdoor road has many up-and-
downs, laser points from a planar LIDAR may cast on the road surface, rather than
the desired vertical objects, as discussed in [16]. Our previous research in [11] uses

336 S.-W. Kim et al.

a tilted-down LIDAR to extract road boundary features on urban road, and then uses
these features for vehicle localization. Actually, there are many other salient features
in urban environment that can benefit localization. What features to extract, how to
extract them, and how to feed them into the localization scheme are questions to be
further addressed.

3D range data is usually desired to extract features for robot navigating in the 3D
world [17]. In this paper, we use a tilted-down LIDAR to generate 3D point cloud of
the environment in a push-broom configuration.1

Rather than directly apply 3D scan-matching with the raw data [16], we try to
extract features from the 3D point cloud, and use the vertical features for localization.
The assumption of our method is that urban environment is rich in vertical surfaces,
such as curbs, wall of buildings, and even vertical tree trunks.

The vertical world assumption is actually a popular assumption used in many
works in the literature. Harrison and Newman in [18] proposed a method to generate
high quality 3D laser range data while the robot is moving. By exploiting the assump-
tion of vertical world, useful information (e.g., roll and pitch angles) can be inferred.
Kohlbrecher et al. in [19] achieved 2D SLAM and 6-DOF pose estimation using one
single 2D LIDAR and an IMU (Inertial Measurement Unit). Although not explicitly
explained, the underlying assumption in the work is that the environment contains
many vertical surfaces. Weingarten et al. in [20] used this assumption to realize fast
structured environment reconstruction. Rezaei et al. proposed a navigation method
in a 3D scenario with 2D LIDAR data in [21].

In this work, since outdoor environments may have more arbitrary-shape objects
other than structural environments, a classification step has to be taken before using
the vertical assumption. In the classification procedure, laser points cast on the verti-
cal surfaces are extracted based on surface normal estimation. When the tilted-down
LIDAR sweeps the environment, some vertical surfaces will be swept from bottom
to up in consecutive laser scans. If we take a bird’s eye view for this scanning process
and project the vertical features on to a virtual horizontal plane, it is exactly the same
as a robot with a horizontal LIDAR moving on a 2D surface. From a mathemati-
cal point of view, the vertical surface constrains how laser points at different height
should match with each other. With the above intuition, the idea of synthetic LIDAR
is proposed. A synthetic LIDAR is a planar 2D LIDAR on the projected virtual plane,
where the end points of its laser beams are the projected points from vertical surface
in the 3D environment. Figure 3 shows an example of the synthetic LIDAR.

Before looking at the technical details, let us understand the key idea of the syn-
thetic LIDAR first. In the upper left of Fig. 3, 2D LIDAR readings are accumulated
over 3D space. The accumulated 3D points are processed to extract interest points.
Finally, the post-processed points are mapped into an occupancy grid map for local-
ization and planning.

The idea of synthetic LIDAR helps to solve the 3D localization problem on a
2D plane. Although a vehicle is moving in the 3D world with 6-DOF, generally

1The push-broom configuration is exactly “tilted-down LIDAR” configuration. The LIDAR is the
broom. As the vehicle moves, the LIDAR works in a push-broom way.

Vehicle Autonomy Using Cooperative Perception for Mobility-on-Demand Systems 337

Point classification Interest points

LIDAR accumulation with 3D rolling window Synthetic LIDAR Construction

Surface normal calculation

Fig. 3 Construction of synthetic LIDAR

speaking, ground based vehicle is mostly interested in its 2D pose vector (x, y, yaw).
By projecting the 3D vertical features onto a virtual plane, 2D occupancy grid map
can be used by marking those vertical features. This way, an a-priori map can be
obtained using SLAM with the idea of synthetic LIDAR. It should be clarified that
our algorithm only applies to an environment with only one vertical traversable level.
For cases with more traversable levels, some other 2.5D or full 3D algorithms may
be used, for example [22].

The localization system mainly consists of two parts, 3D perception to extract key
feature points, and 2D localization to solve the localization on the horizontal plane.
The synthetic LIDAR serves as a bridge to connect the 3D world and the 2D virtual
plane, as shown in Fig. 4a. In this work, we use the map-aided localization method
where the origin of the coordinate is set to the left-bottom corner of the map.

The system uses an IMU and a wheel encoder to provide 6-DOF odometry infor-
mation, a 2D tilted-down LIDAR to provide laser scans, and an occupancy grid map
serving as a prior for localization. A simple dead reckoning is used to obtain the
odometry information. Assuming the distance measured by a wheel encoder at n-th
time step is rn , and the rotation is given by a pitch θ and a yaw Ψ , the change in
position of the vehicle is given by:

⎛
⎝Δxn

Δyn

Δzn

⎞
⎠ =

⎛
⎝ cos(θn) cos(Ψn)

cos(θn) sin(Ψn)

− sin(θn)

⎞
⎠ · (

rn − rn−1
)
. (1)

The 3D perception assumes that odometry system is accurate enough in a short
time period, and accumulates the laser scans for 3D range data. A classification proce-
dure is then applied to extract interest points from the accumulated data. The extracted
laser points are then projected onto a virtual horizontal plane (by ignoring their z

338 S.-W. Kim et al.

Odometry

Tilted-down
LIDAR

2D Synthetic
LIDAR

Rolling window
updating

Points
classification

2D scan

IMU+Encoder

Monte Carlo
localizationPrior map

Projected (x, y, yaw)

2D localization

3D perception

Scan accumulation

Rolling ahead

obsolete

Window size

β

ω

(a)

(b)

Fig. 4 Localization system overview. a Localization flow chart. b 3D rolling window

values), and a synthetic 2D LIDAR is constructed. The 2D localization fuses odom-
etry information from odometry and measurements from the synthetic 2D LIDAR in
a Monte Carlo Localization scheme. With a prior map of vertical features generated
beforehand, localization on the 2D horizontal plane is achieved.

3.2 3D Perception

One of the requirements of the synthetic LIDAR is excellent adaptability that fits
with different types of environment in urban scenario. We achieve this by prop-
erly extracting interest points from a reconstructed environment model, before the
synthetic LIDAR is built.

To be able to recognize features that are perpendicular to the ground, an accurate
model of the world is necessary. There are numerous ways that allow building an
accurate environmental model, which includes nodding LIDAR and Velodyne [23].
As introduced in Sect. 3.1, a fixed, tilted down single planar LIDAR enables the
reconstruction of the environment accurately by sweeping across the ground surface.
This is an attractive solution since it is low cost and only requires rigid mounting of
the sensor. It also allows optimization to be done that allows real-time computation
of feature extraction that is unique to this configuration.

3.2.1 3D Rolling Window

The reconstruction uses rolling window sampling to maintain high probability of
reflecting more recent samples by the ranging sensor. As such, a 3D rolling window
is used to accumulate different scans recorded in a short distance. The size of the

Vehicle Autonomy Using Cooperative Perception for Mobility-on-Demand Systems 339

window is flexible and the rolling window forms a local map of the 3D environment,
i.e., it rolls together with the vehicle, where new incoming scans will be added into
the window, and the old samples get discarded.

More specifically, given the window size w, the points p in n-th scan, Pn is
accumulated according to

Pn =
⋃

k=n−w

{pk, . . . , pn} n > w. (2)

As shown in Fig. 4b, w is used to control the number of accumulated scans such
that the size of the window would not grow unbounded. Also, a new scan is only
inserted when a sufficient distance, β is achieved. This has two effects, a small β will
have denser points but the overall window size will become shorter and vice versa. In
our case, it was set to β = 0.02 m and w = 100 achieve the right compromise. The
rolling window works in the odometry frame of the system, where each scan from a
physical LIDAR is projected based on the odometry information derived from IMU
and wheel encoder.

3.2.2 Point Classification

To extract features that are perpendicular to the ground, surface normal needs to be
estimated. While many method exists [24], we used normal estimation proposed by
[25]. It is based on first order 3D plane fitting, where the normal of each point in
the space is approximated by performing least-square plane fitting to a points local
neighborhood P K [26]. The plane is represented by a point x , its normal vector n
and distance di from a point pi ∈ P K , where di is defined as

di = (pi − x) · n. (3)

By taking x = p = 1
k

∑k
i=1 pi as the centroid of pk , the values of n can be

computed in a least-square sense such that di = 0. The solution for n is given
by computing the eigenvalue and eigenvector of the following covariance matrix
C ∈ R

3x3 of P K [27]:

C = 1

k

k∑
i=1

·(pi − p) · (pi − p)T , C · v j = λ j · v j , j ∈ {0, 1, 2}, (4)

where k is the number of points in the local neighborhood, p as the centroid of the
neighbors, λ j is the j th eigenvalue with v j as the j th eigenvector.

The principal components of P K corresponds to the eigenvectors v j . Hence, the
approximation of n can be found from the smallest eigenvalue λ0. Once the normal
vector n is found, the vertical points can then be obtained by simply taking the
threshold of n along the z axis, e.g. 0.5. This can vary depending on how noisy the
sensor data is.

340 S.-W. Kim et al.

To find the local neighborhood points efficiently, KD-tree [28] is built from all
the points obtained from the rolling window and perform a fixed radius search at
each point. Although the surface normal can be calculated as a whole, perform-
ing normal calculation at each point in the rolling window can be very expensive.
To further reduce the computation complexity, two successive rolling windows are
maintained, where

Pφ
n+1 = Pφ

n

⋃
Φ(Pn+1 \ Pn), (5)

where Φ can be any points classification function, Pφ consists of the processed
points and P contains the raw points. This way, surface normal calculation is only
required for the much smaller rolling window Pn+1\Pn . In other words, this ensures
that classification will only perform on the newly accumulated point cloud and the
processed points from the previous instance can be reused.

3.2.3 Synthetic LIDAR Construction

The result from the classified points consists of a collection of interest points in 3D.
For the construction of synthetic LIDAR, the interest points in 3D is projected into
virtual horizontal plane (z = 0). It can be seen that this synthetic LIDAR has a very
special feature: the ability to see-through the obstacles. This is possible due to the way
that its laser scans are synthesized. During the 3D data accumulation, the collection
of laser points is not performed at a single time stamp at the horizontal plane, but in
a short time interval while the tilted-down LIDAR sweep the local environment. The
objects at a distance (but within the sensor range) will not be blocked by the objects
that is nearby but lower than the mounting height of the tilted LIDAR. Laser points
cast on the faraway vertical surfaces will be also kept in the synthesis of the laser
scan, contributing to the “see-through” characteristics.

This synthetic LIDAR is comprehensive in the sense that it is as if having multiple
short ranged LIDARs arranged at different height at a forward facing configuration,
with the height adapted to wherever there exist a vertical surface in the environment.
The construction of synthetic LIDAR is completed by placing the virtual sensor
at the base of the vehicle and performs transformation of all the interest points
from odometry to the vehicle’s base. In many applications where a standard LIDAR
is desired (equally spaced angle increment), the synthetic LIDAR can be further
reconstructed to fulfill this constraint. This would involve performing ray tracing at
each fixed angle increment to obtain minimum range value from the possible end
points. The overall 3D perception can be summarized in Fig. 3. The 3D perception
is done with the Point Cloud library [29] which provides many of the operations
described in this section.

Vehicle Autonomy Using Cooperative Perception for Mobility-on-Demand Systems 341

3.3 Online Localization

3.3.1 MCL Localization

This paper adopts the Monte Carlo Localization (MCL) scheme in [30] to estimate the
vehicle pose. MCL is a probabilistic localization method based on Bayes’ Theorem
and Monte Carlo idea [14]. The core of MCL is a particle filter, where the belief of
vehicle position is maintained by a set of particles. MCL mainly consists of three
steps, prediction, correction, and resampling. For the motion model which is required
for the prediction step, Pseudo-3D odometry motion model from our previous work
[11] is used. The choice of measurement model is discussed in the following.

3.3.2 Virtual LIDAR Measurement Model

To incorporate the measurement into localization, a measurement model is needed
for the synthetic LIDAR. The likelihood model is adopted for the synthetic LIDAR.
Since the end points of virtual beams are the projection of interest points from vertical
surfaces, it is possible that different points from different vertical surfaces may have
the same angle. In other works, there exist two laser beams with the same angle
while having two different range values. For this reason, synthetic 2D LIDAR is a
peculiar LIDAR that only detects vertical surfaces, and can also see-through these
surfaces. In light of this, the likelihood model which only requires the end points of
laser beams is well suited for the synthetic LIDAR.

3.4 Experimental Results

In this experiment, SICK LMS-151 LIDAR is mounted in the upper-front and tilted-
down for localization. A 4-layer LIDAR, SICK LD-MRS400001 is mounted at the
waist level for obstacle detection. Both rear wheels of the golf cart are mounted with
encoders that provide an estimate of the distance traveled. An IMU MicroStrain 3DM-
GX3-25 is mounted at the center of the real axle to provide orientation information
of the vehicle. The localization algorithm is tested in the Engineering Campus of
National University of Singapore, where the road is up-and-down and many high
buildings exist off the road.

A prior map is first generated with graph SLAM techniques by using the synthetic
LIDAR as the input. To perform pose optimization, [31] is used as front end to
detect loop closure. Then, the fully optimized pose is recovered using optimization
library from [32]. To evaluate the quality of the recovered map built from synthetic
LIDAR, the map is projected onto a satellite map, as shown in Fig. 5. The map
shows consistency with good correlation with the satellite map, with an area of about
550 m × 487 m. Although there are discrepancies towards the left side of the map due
to uniform longitudinal features along the road, the overall topology is maintained.
This shows that the map can be used for accurate localization.

342 S.-W. Kim et al.

Fig. 5 Mapping of the NUS engineering area

The synthetic LIDAR using SICK LMS-151 is able to perform at a rate of 50 Hz
output on a laptop with Core i7 processor, showing that the synthetic LIDAR can be
used to perform a real-time localization. The localization results are shown in Fig. 6.
Judging from the prior map, the localization result from our algorithm always aligns
with our driving path where a parallel line with the road boundary is clearly shown
in the long stretch of road. Since our algorithm does not rely on GPS, our estimation
still performs well near areas crowded by tall buildings. Note that in the experiment,
a rough initial position is given and hence localization is mostly concerned with
pose tracking. However, the system is able to cope with small kidnapping problems,
e.g. brief data error from the LIDAR since the odometry system is still able to provide
information. Should a large kidnapping occur, e.g. the vehicle was moved in between
placed without turning on the localization module, a rough initial position may be
provided to speed up the convergence rate.

Vehicle Autonomy Using Cooperative Perception for Mobility-on-Demand Systems 343

Fig. 6 Localization result of AMCL within NUS Engineering Campus

Figure 7 shows “localization variance” versus “driving distance”. The angle esti-
mation variance is generally less than 1◦, as shown in Fig. 7a. Figure 7b shows “posi-
tion estimation variance” versus “driving distance” in longitudinal and lateral direc-
tion relative to the vehicle. It is shown that during the whole test, variance in both
directions remain small. The worse variance occurs longitudinally, at a value about
0.2 m. This suggests the localization algorithm has high confidence about its pose
estimates. At the same time, it is seen that the lateral variance is generally smaller than
the longitudinal one. This is in-line with the fact that in an urban road environments,
features in the lateral direction are much richer than those from the longitudinal one,
as discussed in our previous work [11].

344 S.-W. Kim et al.

Fig. 7 Localization variance results in terms of angle and position. a Angle variance. b Position
variance

4 Cooperative Perception for Situational Awareness
and Vehicle Control

In MoD systems, multiple autonomous vehicles are operating at the same time and
equipped with radio devices to handle remote requests from users or operators. In the
scenario where multiple vehicles can communicate with other vehicles or infrastruc-
ture, perception range can be far extended up to the boundary of connected vehicles
by exchanging local perception information. The extended perception range can
reach even beyond line-of-sight or field-of-view according to the network connec-
tivity. This augmented perception capability can contribute to safety improvement
and traffic flow efficiency [6, 33].

4.1 Cooperative Perception

Cooperative perception is defined as sharing local sensing information with others via
wireless communications. The preceding vehicles highly affect the driving decision
of the ego driver. In this sense, a leader is defined as a preceding vehicle (1) connected
via cooperative perception and (2) observable by the ego vehicle2 through its local

2Ego vehicle is a reference point of sensor fusion and a target of planning and control.

Vehicle Autonomy Using Cooperative Perception for Mobility-on-Demand Systems 345

i i+1 i+2i-1

Fig. 8 Concept of leader string where i is an ego vehicle. i + 1 and i + 2 are the first and second
leader of i , respectively. i − 1 is a following vehicle behind ego vehicle i

sensors or remote information via cooperative perception. Let Vi = {i + 1, . . .} be
a leader string of a vehicle i , where, j, j + 1 ∈ Vi , j and j + 1 are connected via
cooperative perception and j + 1 is observable by local sensors of j . The concept of
leader string is depicted in Fig. 8.

In a broad sense, following vehicles of ego vehicle i can be included in the leader
stringVi , although a vehicle i −1 is not a leader literally. The information of a vehicle
i − 1 can be beneficial for blind spot detection or lane changing assistance, because
the following vehicle i − 1 can watch the ego vehicle in the third-person view from
behind the ego vehicle.

In vehicle driving scenarios, sensing information is typically dealt with as a map.
Let M = {. . . , m, . . .} be a map for navigation of vehicles, which consists of the
set of points obtained and filtered from sensors, where m ∈ R

n, n = 2, or 3. Given
a position p ∈ M in a map, M[p] → R can be defined in several ways such as the
height of obstacle in case of p ∈ R

2, or the belief that the position p is obstacle-free.
Mi denotes a map of a vehicle i .

Now, we can formulate cooperative perception as follows:

Mi = Mi

⋃
j∈Vi

M j , (6)

where the operation
⋃

is called map merging. The map merging operation is merely a
set union operation, ifMi andM j∈Vi are mapped into a global coordinate frame such
as GPS coordinates. However, the observation from sensors is typically mapped into
a local coordinate frame. Also, there is no guarantee that the initial poses of vehicles
are known. In this case, the relative pose between vehicles is necessary to merge
different spatial information. The relative pose can be defined as q = (τ, θ), where τ

and θ correspond to translation and rotation, respectively. We define a transformation
operator as p ⊗ q = R(θ)p + τ , where R(θ) is a rotation matrix. Finally, (6) can be
rewritten in a more general form as follows:

Mi = Mi

⋃
j∈Vi

M j ⊗ qi, j , (7)

where qi, j is a relative pose between a vehicle i and j . One of the key challenges to
solve (7) is to obtain an accurate qi, j .

346 S.-W. Kim et al.

4.2 Map Merging Problem

The primary problem of map merging can be formulated as follows:

q∗
i, j = arg max

qi, j
S(Mi ,M j , qi, j), (8)

where the similarity measure S is defined as

∑
p

L
(
Mi [p], (M j ⊗ qi, j)[p]), (9)

where L(ai , a j) is a point-to-point similarity measure, which is positive if ai = a j ;
0, otherwise. Equations (8) and (9) attempt to find the relative pose that maximizes
the overlapping area between two maps.

Equations (8) and (9) can be extended to more than two vehicles. Let Qi =
{qi,i+1, . . . , qi,i+N } be the set of relative poses w.r.t the ego vehicle, where N is the
number of leader vehicles. The problem can be rewritten as follows:

Q∗
i = arg max

Qi
S(Mi , . . . ,Mi+N , Qi), (10)

where the similarity measure S is defined as

∑
p

L
(
Mi [p], . . . , (M j ⊗ qi, j)[p], . . .), (11)

where L(ai , . . . , ai+N) is positive if ai = · · · = ai+N ; 0, otherwise. There are
various ways to implement the similarity measure. In this work, we use Iterative
Closet Point (ICP) [34, 35] and Correlative Scan Matching (CSM) [36] to quantify
and implement the measure.

Algorithm 1 is an essential algorithm to solve Eqs. (8)–(11). The first step
LeaderVehicleDetection responds for vehicle detection and estimating the
leader vehicle’s pose using on-board LIDAR and return the initial relative pose q0

i, j .
The detail leader vehicle detection method is described as follows.

Algorithm 1: On-Road Map Merging Algorithm
input : Mi , M j
output: Merged map

begin
q0

i, j ← LeaderVehicleDetection(Mi)

q∗
i, j ← ScanMatching(Mi , M j , q0

i, j)

return Mi
⋃

(M j ⊗ q∗
i, j)

end

Vehicle Autonomy Using Cooperative Perception for Mobility-on-Demand Systems 347

One of the distinct characteristics of scan data on the road is that features are not
obvious to match due to bushes, trees, or pedestrians. Nonetheless, scan data of a
leader has relatively clear features such as the backside or side of vehicles. The initial
pose of a leader can be guessed from the features. More specifically, the proposed
system keeps checking whether there are consecutive points lying in the desired path
ahead. For this task, let Di be the set of positions that a vehicle i will/can move to,
typically the set of the center positions of the current lane. To find the leader position,
the proposed system keeps watching straight or slightly-curved lines in the following
point set:

{p|rth > ‖p − pl‖, pl ∈ Di }, (12)

where r th is the maximum boundary that a vehicle can go away from the desired
path, typically half of the lane width. Equation (12) can significantly reduce the search
space and false positives of leader vehicle detection.

If (1) the detected points compose a straight or slightly curved line, and (2) the
line is almost orthogonal to the desired path, the center position of the line and the
orthogonal angle to the line are used as t0 and θ0, respectively, which is used as the
initial transformation q0

i, j = (t0, θ0).

Based on the estimated relative pose q0
i, j , ICP and CSM are employed for

ScanMatching to match the scans within the overlap area to maximize S(Mi , M j ,

qi, j) and refined the relative pose accordingly. Finally, the map is merged according
to (7). More detail information is available in [6].

4.3 Sensor Multi-Modality

Given the relative poses between different vehicles, it is easy to perform map merging
for sensory information such as a laser scanner whose readings are a set of physical
quantities recorded with their spatial coordinates. However, for the sensory modality
of vision whose reading is an image, map merging is not a straightforward task,
because the vision image is the result of perspective projection unlike laser scan data.

To deal with the problem, we use the Inverse Perspective Mapping (IPM) [37]
method that can map these projected pixels to their spatial coordinates on the road
surface. For a fixed-mount on-board vision camera, its pose in the vehicle coordinate
and the pose relative to the road surface are usually known. Together with its intrinsic
parameters from a calibration process, the perspective transformation matrix from
road surface to vision camera image can be calculated. The inverse operation of
this perspective matrix will restore the original road surface from the camera image.
Each pixel of the image generates one color point on the ground. By applying IPM
operation, camera sensing information is transformed from the projected image pixels
into the spatial coordinate, with which map merging can be performed.

348 S.-W. Kim et al.

In the merged map of ego vehicle, three types of information represented: (1)
vehicle poses, including poses of ego vehicle and other vehicles; (2) laser scan
points; and (3) color points of road surface from vision. By supporting multiple
sensory modalities, the cooperation perception system helps ego vehicle to perceive
not only occluded vehicles and obstacles, but also road surface that may be out of its
sensing ability.

Figure 10a shows an example of the map merging result fused with information
from range sensor and vision sensor on the road.

4.4 Experimental Results

In the experiments, we used four vehicles consisting of one Mitsubishi iMiEV and
three Yamaha golf cars, in which one vehicle participated as a moving obstacle.
Among four vehicles, three vehicle were equipped with the proposed cooperative
perception system. The setup of three vehicles is represented in Fig. 8, where i , i + 1
and i + 2 are corresponding to the ego vehicle, the first leader and the second leader,
respectively. In Fig. 8, the second leader transmits its sensing information to the
first leader via wireless communications, while moving forward. With the support
of our system, the first leader merges the remote information with its local sensing
information, and then transmits the combined information to the ego vehicle via
wireless communications, while moving forward as well. We conducted experiments
using the vehicles on a campus road at NUS on sunny or cloudy days between 12
and 5 PM The rule of the road is to drive on the left and the speed limit is 40 km/h.

Table 1 shows the performance of map merging algorithm according to the scan
matching methods and leader detection method. The LDR is obtained from LIDAR-
based LeaderVehicleDection. It is used as the initial condition for both the
ICP and CSM scan matching algorithm. In this work, the ICP algorithm from [38] is
used. The comparison is done using a ground truth generated by particle-filter-based
localization using LIDAR. In the ICP, dth = 2.5 m is used. For CSM, two levels
of 0.5 and 0.1 m search grids are used. It is also set to search within a window of
10 m×10 m×60◦, and all computations are done with a desktop computer equipped
with Core i7 CPU and a Nvidia GTX770 graphics card. Note that among the obtained

Table 1 Performance of map merging in terms of translation and rotation error

Average LDR ICP CSM

Translation
error (m)

First leader 0.73 0.54 0.44

Second leader 1.81 1.76 1.11

Orientation
error (degree)

First leader 14.44 12.14 2.77

Second leader 17.65 13.15 3.51

Computation time (ms) 6 6 108

Vehicle Autonomy Using Cooperative Perception for Mobility-on-Demand Systems 349

q = (τ, θ), the translation τ can be measured more accurately by range sensors. This
accuracy asymmetry between position and orientation results in lever-arm effects.
In Table 1, it was found that there is significant improvement of the merged map
from the second leader. While CSM performed slower than ICP, it is able to robustly
estimate the relative pose since CSM is robust to initialization error. We conclude
that the results using the both scan matching approaches perform sufficient for our
requirements.

Figures 9 and 10 show the snapshots of cooperative perception visualization. In
Fig. 9a–c show the camera views of the ego vehicle, the first leader and the second
leader, respectively. (e) and (f) shows see-through views of the first and second leader,
respectively. (d) shows the third person view of the ego vehicle, where driver’s seat
is lifted at 30 m from the ground. Figure 9 shows the satellite view of the ego vehicle
at the same moment of Fig. 9. Note that the ego vehicle cannot see oncoming traffic

Fig. 9 Map merging results fused with information from range sensor and vision sensor, where
the cuboids represent a simplified vehicle model. a Second leader’s camera view. b First leader’s
camera view. c Ego vehicle’s camera view. d Ego vehicle’s lifted seat view (30 m). e First leader’s
see-through view. f Ego vehicle’s see-through view

350 S.-W. Kim et al.

Ego vehicleFollowing
vehicle

Overtaking
vehicle

First leader

(a)

(b) (c) (d)

Fig. 10 All-around view supported by cooperative perception. a Ego vehicle’s satellite view. b Ego
vehicle’s see-through view. c Following vehicle’s camera view. d Ego vehicle’s third person view

situation ahead due to the first leader and the limitation of line-of-sight. However,
the ego vehicle equipped with the cooperative perception system can see the second
leader and the preceding vehicle of the second leader, and traffic sign on road surface,
e.g., “AHEAD”.

Figure 10a–d show how all-around view is supported by a following vehicle con-
nected via cooperative perception. Figure 10a is the satellite view of the ego vehicle,
where the grey arrow indicates the ego vehicle. Note that there is another vehicle
behind the ego vehicle. The ego vehicle is moving between the first leader and the
following. In Fig. 10a, the ego vehicle can detect a vehicle approaching behind, i.e.,
the overtaking vehicle, because the following vehicle connected via cooperative per-
ception can tell the ego vehicle about what is going on at blind spot of the ego vehicle,
which can greatly improve situational awareness.

Figure 10b is a see-through view of the ego vehicle. Figure 10c is a view of the
following vehicle i − 1, which can be seen by the ego vehicle. (d) is the third
person view of the ego vehicle, where driver’s seat is lifted at 30 m from the ground.
All-around view characteristics of Fig. 10 can be applied to the lane changing and
overtaking assistance. In addition, a normal vision camera can sense the adjacent left
and right lane, as we can see Fig. 10a and d. A fisheye lens can be considered for
multiple lane detection. In this work, we used a processed image and laser scan as a
message profile, whose average size is 6.5 K. The average delay is less than 100 ms
on IEEE 802.11g, IEE 802.11n, 4G LTE.

Vehicle Autonomy Using Cooperative Perception for Mobility-on-Demand Systems 351

5 Automated Early Collision Avoidance Using Cooperative
Perception

If the system can let a driver know the moment when the driver has to drive carefully
or watch the display through proper visual, audio, or tactile feedback, a driver can
focus on driving itself without having to keep watching a driving assistance display.
The forward collision warning can trigger path-replanning earlier for early hidden
obstacle avoidance. In this context, one of the most desired functions is forward
collision warning.

5.1 See-Through Forward Collision Warning

Many forward collision warning algorithms have been proposed along with risk
assessment method, which includes time-based, and distance-based approaches.
Firstly, the time-based methods usually use Time-To-Collision (TTC), which can
be formulated as

TTCi, j = gi, j

vi − v j
, j ∈ Vi , (13)

where TTCi, j is corresponding to TTC, gi, j is the distance between a vehicle i
and j , and vi is the speed of a vehicle i . A forward collision warning is activated
if TTCi, j is less than a certain threshold time, typically 2–3 s according to safety
requirements [39].

In distance-based methods, a forward collision warning is activated if, given two
vehicles i and j , the recommended safety gap ri, j is larger than the distance between
two vehicles gi, j , which can be restated as follows: A forward collision warning is
activated if

gi, j < ri, j , j ∈ Vi , (14)

where ri, j is a minimum distance to avoid collision to a preceding vehicle j , which
can be formulated as follows [40]:

ri, j = (vi − v j)/2γ 2 + (vi − v j) ∗ Trs, j ∈ Vi , (15)

where γ is the deceleration of the ego vehicle, e.g., −0.2 g (≈−2 m/s). Trs is the
response time of a driver, e.g., 0.5–1.5 s.

Note that one of the great advantages of our system is that j is not limited to only
i + 1. In our system, thanks to the capability of a see-through view, j can be beyond
the first leader according to the connectivity via cooperative perception, as shown in
Fig. 11. This see-through characteristic enables the driver to avoid hidden obstacles
earlier than without cooperative perception.

352 S.-W. Kim et al.

i i+1 i+2

gi,i+1vi vi+1

vi+2gi,i+2

w/o CP

w CP

Fig. 11 Comparison of collision warning with and without cooperative perception

5.2 All-Around View Using Cooperative Perception

Not surprisingly, cooperative perception enables all-around view without having to
install sensors covering all sides of a vehicle. In particular, a following vehicle can see
the ego vehicle in a third-person view, including its blind spots. Figure 10a shows
one snapshot of the all-around view of the ego vehicle on the road. Furthermore,
our system can detect a vehicle approaching toward the ego vehicle using a spatio-
temporal moving obstacle detection and tracking method. From the following, we
investigate the benefit of all-around view in terms of overtaking assistance and lane
changing assistance.

5.3 Overtaking and Lane Changing Assistance

When a driver should drive slowly or stop due to a slow-moving truck or obstacle
ahead, the human or autonomous driver should decide whether to wait longer in
the current lane or change lanes, which is an important issue for overtaking on a
single-lane road.

Many overtaking assistance methods have been proposed according to the require-
ments, sensing capability and sensor configurations. In principle, the overtaking deci-
sion should be determined with the consideration of (1) the number of lanes, (2) the
speed of a preceding vehicle, (3) cut-in space availability, (4) distance from an on-
coming vehicle, and (5) the existence of another overtaking vehicle from behind as in
Fig. 10d. Our system can inform (3), (4), (5) that are difficult to be provided without
cooperative perception. Equations (14) and (15) can be applied to read-end collision
warning at lane changing, which are corresponding to TTC j,i and r j,i , respectively,
where the vehicle j is approaching toward the ego vehicle behind in an adjacent lane,
and j < i .

5.4 Feedback to a Driver

Once a forward collision is expected, or overtaking is not possible, or lane chang-
ing is not possible, it should be notified to a driver through visual, audio, or tactile
feedback. In Fig. 12, some examples of visual warnings are illustrated for a forward

Vehicle Autonomy Using Cooperative Perception for Mobility-on-Demand Systems 353

(a) (b)

Fig. 12 See through forward collision warning is provided both as a visual warning (seen in a) as
well as audio warning on speakers (seen in b)

collision warning, overtaking possibility, and lane-changing possibility, respectively.
In the next subsection, we evaluate how our system can contribute to the see-through
forward collision warning, overtaking assistance, and lane changing assistance are,
through real experiments on the road using vehicles equipped with our system. Fur-
thermore, we will address in the next experimental results how the feedback can be
used for autonomous driver from the perspective of planning and control.

5.5 Experimental Results

We performed (1) see-through forward collision warning tests with real human drivers
using real vehicles equipped with the driving assistance system, and (2) automated
early lane change experiments using our autonomous vehicles.

5.5.1 See-Through Forward Collision Warning

The test scenario is as follows. Three vehicles move forward on single-lane road like
Fig. 1, where a test driver drives the ego vehicle. Then, the second leader suddenly
stops at a certain position. To avoid collision, the first leader and the ego vehicle
stop accordingly. Real tests were conducted with three human drivers on the road
eight times.

In this experiment, the second leader was moving forward at 2–5 m/s before sud-
den braking. Accordingly, TTC was set to 15 s. These are somewhat conservative
parameters primarily for safety concerns. Note that the brake lights of the second
leader were turned off. It makes the first leader difficult to notice whether the second

354 S.-W. Kim et al.

leader decelerates or not. The warning sound includes two loud beeps that last for
2 s per one warning activation.

We used IEEE 802.11n as a radio interface of vehicle-to-vehicle communications.
Laser scan and compressed vision image were used as a message profile. The aver-
age communication delay between the first leader and the ego vehicle is 16 ms by
measurement. IEEE 802.11n performed well at more than 30 m distance on the road.

Figure 12a shows one camera shots captured at the front passenger seat. The left-
bottom screen of Fig. 12a shows the satellite view, where the three left-most arrows
indicate the ego vehicle, the first leader, and the second leader as like Fig. 9a. The red
circle indicated by vertical red arrow represents a high collision probability, because
the vehicle the first leader is suddenly stopped in front of the first leader.

In principle, the test driver cannot see the second leader due to the limitation of line-
of-sight. However, the test driver can see the second leader through the cooperative
perception system. The right bottom screen of Fig. 12a is the see-through view. The
color of the red dot becomes green when no collision is expected. The collision
warning sign turned red along with a loud sound alarm using a speaker in Fig. 12b.
The first leader also stopped to avoid collision.

Average forward collision warning activating time is 2.1 s according to the preset
TTC and the distance from the second leader. The test drivers pushed the brake pedal
averagely 0.82 s later after a forward collision warning sound is activating, which is
a time from processing the sound signal via making a decision in a brain to actuating
foot muscles. The delay is widely ranged from 0.7 s to 1 s according to the drivers.
In this experiment, the test drivers detected the sudden braking of the second leader
earlier than the first leader and accordingly stopped earlier as much as 0.33 s. With
the support of cooperative perception, the test driver has more time to cope with the
traffic situation.

5.5.2 Early Automated Lane Changing

The see-through collision warning can be used for triggering path-replanning for
collision avoidance. Figure 13 shows simulations of the scenario. These simulations
utilized a RRT* path planner [41].

Once a collision warning is triggered, the motion planner is called to search a feasi-
ble trajectory for obstacle avoidance. Thanks to cooperative perception, the planning
space can be extended to as far as the neighboring vehicles connected via wireless
communications can perceive; this allows motion planning to be conducted in a long-
term perspective. To alleviate the time-constraint issue of long-term planning, the
anytime RRT* [42] is used, where a feasible trajectory can be quickly found and the
solution path will then be asymptotically optimized.

Additionally, while cooperative perception could provide an enlarged planning
space, the inherent sensing uncertainty and transmission delay need to be carefully
considered. A cost map based approach is proposed in our previous work in [13]
to handle this issue. Specifically, the sensing uncertainty and transmission delay
are factored into a cooperative-perception-based cost map, then an anytime RRT*
algorithm is employed to search for an optimal trajectory subject to this cost map.

Vehicle Autonomy Using Cooperative Perception for Mobility-on-Demand Systems 355

Fig. 13 Early lane changing with the support of a see-through collision warning using cooperative
perception. The leader is represented by an orange rectangle, and the ego vehicle is represented by
a red rectangle. Both vehicles are traveling with a lane from left to right, with the lane blocked by an
obstruction shown as a vertical line. Feasible vehicle trajectories are shown by multicolored curved
lines. a shows the point of sudden obstacle appearance, b shows path plan of ego vehicle without
cooperative perception, and c shows planning with the see-through forward collision warning

In this manner, the solution trajectory will be located in the regions with lowest
collision risk.

In Fig. 13a shows a situation without cooperative perception, during which a
sudden obstacle appears in front of the leader; only the leader detects the obstacle
whereas the following ego vehicle has a limited line-of-sight range only up to the rear
of the leader. In Fig. 13b, the both of the leader and the ego vehicle suddenly stop, then
the ego vehicle performs re-path planning to overtake the stopped leader. However, it
is hard to find the feasible path to overtake the leader in the case of Fig. 13b, because
the ego vehicle and the leader are too close after the sudden stop. In Fig. 13c, early
lane changing is triggered with the support of the see-through collision warning.
Since sufficient space is occupied to overtake the leader, the path planner can find
the overtaking path promptly.

356 S.-W. Kim et al.

6 Results and Impact

Since the end of 2011, our main testing grounds have been within the campus grounds
of the National University of Singapore. There are two main testing sites: One on a
road involving vehicular and pedestrian movement, and another on a non-road area
involving heavy pedestrian movement.

Our work in 2013 mainly focused on the second site involving heavy pedestrian
movement. Pedestrian interaction is usually with students who are busy rushing off
to their next lectures. Students’ movements are tied to their lecture schedules. It is
common to see groups of students appear around the same time, rushing off to the bus-
stop to catch the approaching bus for their next lecture. This presents a nice testing
grounds for our vehicle to not only prove the reliability of the vehicle’s implemented
dynamic safety zone but as well as to further improve the vehicle’s mobility within
a densely crowded pedestrian environment.

6.1 An Invitation to a Live Showcase

The Singapore Science Centre held its first ever Street Fair from 8–11 November
2013. This was in conjunction with the celebrations of its 35th Anniversary in the
ongoing endeavor to promote science and technology to the public. The SMART
Autonomous Vehicles Group was invited to exhibit the driverless buggy at this
Street Fair. We were also given the opportunity to showcase the vehicle in oper-
ation amongst the pedestrian crowd. And the most fun part of this was giving out
free rides. Figure. 14, captures one such ride.

This was an exciting milestone to our research work. This was the first time
the vehicle was operating outside of university campus. This was a very important
validation to our work as public interaction with our vehicle was involved—not just
with the vehicle motion but as passengers as well.

While roboticists in the community of autonomous vehicles are more comfortable
with how such driverless vehicles work, the same cannot be said with the general
public. One of the purposes for this live showcase was to raise public awareness of
the maturity of driverless technology and that driverless vehicles can be very safe.
This was achieved by allowing the public to freely interact with the vehicle. This
provided a good opportunity for everyone to get comfortable with a moving vehicle
without any human driver. People would learn from first-hand experience that the
vehicle will slow down when someone comes near to the vehicle and that the vehicle
would reliably come to a halt when anything comes too near it. Free rides were
given as well. This allowed the public to have a first-hand experience in sitting in a
self-driving vehicle that would bring them to their destination reliably, safely and in
a comfortable manner.

Vehicle Autonomy Using Cooperative Perception for Mobility-on-Demand Systems 357

Fig. 14 Live showcase at the Singapore Science Center Street Fair

6.2 Humans Are Unpredictable

Most path planners make a basic assumption, i.e., pedestrian movement will largely
remain unchanged if there is no sudden perturbation to the overall state of the envi-
ronment. This is a very safe assumption as people generally tend to have a certain
destination they want to walk to and this destination largely remains unchanged.
This predicated behavior, however, was not entirely observed at the Science Centre.
People behaved differently with the vehicle upon learning that it was driving all by
itself. On the one hand, there were those who were unsure if the vehicle would knock
them down as there was no human controller. And on the other hand, there were
those who were jumping directly in front of the vehicle, from all possible angles,
trying to find a scenario where the autonomous vehicle would fail. Thankfully, the
implemented dynamic safety zone in the vehicle worked as intended.

It was an interesting phenomenon that people behaved very differently upon know-
ing that the vehicle is self-driven. Most path planners would assume that pedestrians
would take a more conservative approach in their movement in the presence of a
vehicle. However, what we observed was a number of pedestrians acting in a more
“aggressive” manner—their motion would abruptly change and intersect with the
vehicle’s path. It was also observed that this unpredictability in human behavior
usually happened to people who have never seen a driverless vehicle before.

6.3 Safety Proven

Allowing the public to interact with the vehicle both as a passenger and as a pedestrian
helped to reinforce the reliability of the system. Using laser sensors with a range of

358 S.-W. Kim et al.

50 m, the vehicle is able to have an early detection of obstacles. In a dynamic safety
zone, the speed of the vehicle is monitored in relation to the presence of near-by
pedestrians. This allows the vehicle to stop in a gradual manner in the presence
of an approaching obstacle. The dynamic safety zone also allows the vehicle to
automatically adapt to the speed of the moving crowd, allowing the vehicle to still
move as opposed to being completely stationary. The dynamic safety zone also
allows passengers in the vehicle to not experience “vehicle jerkiness” in a crowded
environment.

6.4 The Next Step

The main thrust of this research work is to use driverless vehicles for Mobility on
Demand. One of the key elements to make this a reality is to bridge the gap of
between public acceptance of driverless vehicles and the state-of-the-art enabling
technologies for driverless vehicles. The experience at the Singapore Science Centre
definitely aided to not only raise public awareness of driverless vehicles, but also
public acceptance of it through experiential interaction with the driverless buggy.
It is important to continually engage the public with regards to the development of
autonomous vehicles. After all, the public will eventually be the end-users of such
a system.

Ongoing research work aims at enabling the driverless vehicle with greater mobil-
ity within a dense pedestrian environment while maintaining an overall satisfactory
user experience.

7 Conclusion

In this chapter, we introduced vehicle autonomy using cooperative perception to
enable Mobility-on-Demand system. Our MoD system currently operates in a
restricted section of the National University of Singapore campus, where autonomous
personal transporters have been autonomously servicing numerous requests from
visitors and dignitaries during the course of multiple demonstrations. The rich sens-
ing and actuating capabilities of autonomous vehicles can improve traffic flow and
safety of MoD services. We proposed and demonstrated driving assistance system
and autonomous driving system using cooperative perception, which include a see-
through/lifted-seat/satellite view, a see-through forward collision warning, and over-
taking/lane changing assistance. All these functions and systems are in operation
with a number of autonomous vehicles in the NUS campus road. We have extended
the test road to the outside of the campus.

Vehicle Autonomy Using Cooperative Perception for Mobility-on-Demand Systems 359

References

1. Mitchell WJ, Borroni-Bird CE, Burns LD (2010) Reinventing the automobile: personal urban
mobility for the 21st century. MIT Press, Cambridge

2. Car2Go. [Online]. Available: http://www.car2go.com/
3. SMOVE. [Online]. Available: http://smove.sg/
4. Shaheen SA, Guzman S, Zhang H (2010) Bikesharing in Europe, the Americas, and Asia.

Transp Res Res J Transp Res Board 2143(1):159–167
5. Bouraoui L, Boussard C, Charlot F, Holguin C, Nashashibi F, Parent M, Resende P (2011) An

on-demand personal automated transport system: the citymobil demonstration in La Rochelle.
In: IEEE Intelligent vehicles symposium (IV), pp 1086–1091

6. Kim S-W, Qin B, Chong ZJ, Shen X, Liu W, Ang MH Jr, Frazzoli E, Rus D (2014) Multivehicle
cooperative driving using cooperative perception: design and experimental validation. In: IEEE
Transaction on Intelligent Transportation Systems

7. Quigley M, Conley K, Gerkey B, Faust J, Foote T, Leibs J, Wheeler R, Ng AY (2009) Ros: an
open-source robot operating system. In: ICRA workshop on open source software, vol 3. no 2

8. Chong ZJ, Qin B, Bandyopadhyay T, Wongpiromsarn T, Rebsamen B, Dai P, Kim S-W, Ang
MH Jr, Hsu D, Rus D, Frazzoli E (2012) Autonomy for mobility on demand. In: IEEE/RSJ
international conference Intelligent Robots and systems, Oct 2012

9. Kim S-W, Chong ZJ, Qin B, Shen X, Cheng Z, Liu W, Ang MH Jr (2013) Cooperative perception
for autonomous vehicle control on the road: motivation and experimental results. In: IEEE/RSJ
international conference intelligent Robots and systems, Nov 2013

10. Bandyopadhyay T, Jie CZ, Hsu D, Ang MH Jr, Rus D, Frazzoli E (2012) Intention-aware
pedestrian avoidance. In: International symposium on experimental robotics, June 2012

11. Qin B, Chong Z, Bandyopadhyay T, Ang MH, Frazzoli E, Rus D (2012) Curb-intersection
feature based Monte Carlo localization on urban roads. In: Robotics and automation (ICRA),
2012 IEEE international conference on, pp 2640–2646

12. Qin B, Lie W, Shen X, Chong ZJ, Bandyopadhyay T, Ang MH Jr, Frazzoli E, Rus D (2013)
A general framework for road marking detection and analysis. In: 16th international IEEE
conference on intelligent transportation systems (ITSC)

13. Liu W, Kim S-W, Chong ZJ, Shen X, Ang MH Jr (2013) Motion planning using cooperative
perception on urban road. In: IEEE international conferences on Cybernetics and intelligent
systems, and robotics, automation and mechantronics

14. Thrun S, Burgard W, Fox D (2005) Probabilistic robotics. MIT Press, Cambridge
15. Thrun S (2000) A real-time algorithm for mobile robot mapping with applications to multi-

robot and 3d mapping. In: Proceedings of the robotics and automation, 2000, ICRA’00, IEEE
international conference on, vol 1. pp 321–328

16. Baldwin I, Newman P (2012) Road vehicle localization with 2d push-broom lidar and 3d priors.
In: Robotics and automation (ICRA), 2012 IEEE international conference on, pp 2611–2617

17. Nüchter A, Lingemann K, Hertzberg J, Surmann H (2007) 6D SLAM—3D mapping outdoor
environments. J Field Robot 24(8–9):699–722

18. Harrison A, Newman P (2008) High quality 3d laser ranging under general vehicle motion. In:
Robotics and automation, (2008) ICRA 2008, IEEE international conference on, pp 7–12

19. Kohlbrecher S, von Stryk O, Meyer J, Klingauf U (2011) A flexible and scalable slam system
with full 3d motion estimation. In: IEEE international symposium of safety, security, and rescue
robotics (SSRR), (2011) on, pp 155–160

20. Weingarten J, Gruener G, Siegwart R (2003) A fast and robust 3d feature extraction algorithm
for structured environment reconstruction. In: International conference on advanced robotics

21. Rezaei S, Guivant J, Nieto J, Nebot EM (2004) Simultaneous information and global motion
analysis (SIGMA) for car-like robots. In: Proceedings of IEEE international conference of the
robotics and automation, 2004, ICRA’04. 2004, vol 2. pp 1939–1944

22. Kümmerle R, Triebel R, Pfaff P, Burgard W (2008) Monte Carlo localization in outdoor terrains
using multilevel surface maps. J Field Robot 25(6–7):346–359

http://www.car2go.com/
http://smove.sg/

360 S.-W. Kim et al.

23. Velodyne Lidar. [Online]. Available: http://velodynelidar.com/
24. Klasing K, Althoff D, Wollherr D, Buss M (2009) Comparison of surface normal estimation

methods for range sensing applications. In: IEEE international conference on Robotics and
automation, (2009) ICRA’09, pp 3206–3211

25. Berkmann J, Caelli T (1994) Computation of surface geometry and segmentation using covari-
ance techniques. Pattern Anal Mach Intell IEEE Trans 16(11):1114–1116

26. Shakarji CM et al (1998) Least-squares fitting algorithms of the nist algorithm testing system.
J Res-Natl Inst Stand Technol 103:633–641

27. Rusu RB (2010) Semantic 3d object maps for everyday manipulation in human living environ-
ments. KI-Künstliche Intell 24(4):345–348

28. Muja M, Lowe DG (2009) Fast approximate nearest neighbors with automatic algorithm con-
figuration. In: VISAPP (1), pp 331–340

29. Rusu RB, Cousins S (2011) 3d is here: point cloud library (pcl). In: IEEE international confer-
ence on Robotics and automation (ICRA), 2011, pp 1–4

30. ROS AMCL. [Online]. Available: http://www.ros.org/wiki/amcl
31. Tipaldi GD, Arras KO (2010) Flirt-interest regions for 2d range data. In: IEEE international

conference on Robotics and automation (ICRA), 2010, pp 3616–3622
32. Kaess M, Ranganathan A, Dellaert F (2008) Isam: incremental smoothing and mapping. Robot

IEEE Trans 24(6):1365–1378
33. Kim S-W, Gwon G-P, Choi S-T, Kang S-N, Shin M-O, Yoo I-S, Lee E-D, Seo S-W (2012) Mul-

tiple vehicle driving control for traffic flow efficiency. In: IEEE intelligent vehicles symposium,
pp 462–468, June 2012

34. Besl PJ, McKay ND (1992) Method for registration of 3-d shapes. In: Robotics-DL tentative,
international society for optics and photonics, pp 586–606

35. Yang C, Medioni G (1992) Object modelling by registration of multiple range images. Image
vis comput 10(3):145–155

36. Olson EB (2009) Real-time correlative scan matching. In: IEEE international conference on
Robotics and automation, ICRA’09, pp 4387–4393

37. Mallot HA, Blthoff HH, Little J, Bohrer S (1991) Inverse perspective mapping simplifies optical
flow computation and obstacle detection. Biol cybern 64(3):177–185

38. Claraco JLB (2008) Development of scientific applications with the mobile robot programming
toolkit., Machine Perception and Intelligent Robotics Laboratory, University of Málaga. MRPT
reference book, Málaga

39. Dagan E, Mano O, Stein GP, Shashua A (2004) Forward collision warning with a single camera.
In: Intelligent vehicles symposium, 2004 IEEE, pp 37–42

40. Parasuraman R, Hancock P, Olofinboba O (1997) Alarm effectiveness in driver-centred
collision-warning systems. Ergonomics 40(3):390–399

41. Karaman S, Walter MR, Perez A, Frazzoli E, Teller S (2011) Anytime motion planning using
the RRT*. In: IEEE international conference on Robotics and automation, May 2011

42. Karaman S (2011) Anytime motion planning using the RRT*. In: IEEE international conference
on Robotics and automation (ICRA), pp 1478–1483

http://velodynelidar.com/
http://www.ros.org/wiki/amcl

Motion Planning of a Spherical
Mobile Robot

Qiang Zhan

Abstract As a new member of mobile robot family, spherical mobile robot (shortly
spherical robot) is well-known for its compact structure and agile motion, but its spe-
cial motion principle and nonholonomic characteristic complicate its motion plan-
ning. This chapter first overviews the previous research work of the motion planning
of spherical robot, and then introduces the structure and motion principle of spheri-
cal robot BHQ-1, and last presents one kinematic motion planning method and one
dynamic motion planning method for BHQ-1 respectively. Compared with other
motion planning methods of spherical robot, those two methods realize the motion
planning of a spherical robot in 3D space and focus more on practical applications.

Keywords Spherical mobile robot · Nonholonomic constraints · Kinematic
planning · Dynamic planning

1 Introduction

Spherical mobile robot (shortly spherical robot) is a new type of mobile robot boomed
in recent decades [1–8, 18], which usually has a ball-shaped outer shell to include all
its mechanism, control system and batteries inside. Different from those traditional
mobile robots, such as wheeled robot, legged robot and tracked robot, spherical robot
has no apparent locomotion mechanism and its outer shell works as that. Although
many different kinds of spherical robots have been developed, there are mainly two
principles to realize its motion: center of gravity displacement and angular momen-
tum conservation. Spherical robot is characterized as compact structure and agile
motion, which make it very suitable to be applied in those unmanned environments.
For example, like a tumbler a spherical robot can never overturn, even if suffered with

Q. Zhan (B)

Laboratory of Complex Mechanism and Intelligent Control (CMIC), Robotics Institute,
Beijing University of Aeronautics and Astronautics, No. 37, Xueyuan Road,
Beijing, Haidian District, China
e-mail: qzhan@buaa.edu.cn

© Springer International Publishing Switzerland 2015
G. Carbone and F. Gomez-Bravo (eds.), Motion and Operation Planning
of Robotic Systems, Mechanisms and Machine Science 29,
DOI 10.1007/978-3-319-14705-5_12

361

362 Q. Zhan

collision or falling down it can resume stability quickly. The research on spherical
robot mainly focuses on the mechanism design and motion control.

From the control point of view, spherical robot is a nonholonomic system that
can control more configuration variables than the number of its degrees of freedom
or control inputs but accompanied with much more complexity. Aarne Halme et al.
established the kinematic motion model and dynamic motion equation of a spherical
robot in one dimensional space by regarding it as a rolling disk, and analyzed its such
motion capabilities as uphill motion and overrunning an obstacle as well as some
basic motion features [1, 13]. Antonio Bicchi et al. deduced a planar quasi-static
kinematic model of a spherical robot by linking a unicycle and a plate-ball system
together through some constraints, and planned its motion through solving a set of
nonlinear equations [2, 14, 15]. Bhattacharya and Agrawal deduced a first-order
mathematical motion model of a spherical robot under the constraints of non-slip
and angular momentum conservation, and presented three types of motion plan-
ners by considering feasibility, minimum energy and minimum time separately [3].
Mukherjee et al. presented two geometric motion planning strategies to realize the
partial and complete reconfiguration of a spherical robot respectively, and the partial
reconfiguration strategy uses spherical triangles to bring the sphere to a desired posi-
tion and a specific orientation and the complete reconfiguration strategy generates a
four-steps motion to move the sphere along a trajectory composed of straight lines
and curves [4, 16]. Javadi et al. established a dynamic model of a spherical robot with
Newton formulation and presented a trajectory planning method by directly calcu-
lating the best solution of each step-motor’s movement [5]. Cameron et al. discussed
the kinematic and dynamic modeling of nonholonomic system and deduced a sim-
plified Boltzmann-Hamel equation for both holonomic and nonholonomic systems
[9]. Zhan et al. established a dynamic model of a spherical robot with the simplified
Boltzmann-Hamel equation, based on which the motion of a spherical robot is divided
into linear motion and circular motion so as to realize complex trajectory planning
by dividing it into line segments and curve segments [10]. Chen et al. presented a
time and energy optimal trajectory planning method based on quasi-velocity motion
model and Hamiltonian function, and discussed the influence of three key factors
on the shape and direction of the planned trajectory [11]. Jaimez et al. established
the dynamic model of a spherical robot Omnibola with Newton-Euler equations and
compared its actual motions with the simulated ones through experiments [18].

In the following of this chapter, a brief introduction of spherical robot BHQ-1
will be given first, and then one motion planning method based on kinematics and
one motion planning method based on dynamics will be introduced separately.

2 Brief Introduction of Spherical Robot BHQ-1

BHQ-1 is the first kind of spherical robot designed by our lab and the first prototype
was implemented in 2001 [8], which is designed for the exploration of unmanned
environments. As shown in Fig. 1, BHQ-1 is mainly composed of two motors, one

Motion Planning of a Spherical Mobile Robot 363

Fig. 1 Structure of spherical
robot BHQ-1 (1: motor 1, 2:
motor 2, 3: mass, 4: shell, 5:
camera, 6: bearing, 7:
controller & battery, 8:
hollow axle)

X

YZ

Xb

Zb

Yb6

3

1

2

4

5

7

8

hollow axle, one mass, one camera, one controller and battery combination, and one
ball-shaped shell. In Fig. 1 frame {XbYbZb} is a body frame attached to the hollow
axle and its origin is coincident with the geometric center of the sphere. The hollow
axle connects with the shell through two ball bearings at the two ends and serves as a
chassis or frame to install other components, so the outer shell can rotate around the
axis of the hollow axle freely and the camera installed on the hollow axle can keep a
relatively steady posture no matter BHQ-1 is moving or static. Motor 1 is installed on
the hollow axle but its output axle is fixed to the shell, so its rotation can result in the
displacement of the mass along Yb direction. Motor 2 is also installed on the hollow
axle and its output axle is fixed to a link so as to drive the mass along Xb direction.
Installed on the hollow axle the camera is used to take pictures of environments which
can be transmitted to a remote control center through a wireless image transmission
system. According to the received pictures an operator can not only observe the
environment but also control the motion of the spherical robot through a joy stick.

The motion principle of the spherical robot is that the rotations of motor 1 and
motor 2 make the mass rotate about axes Xb and Yb respectively and result in the
displacement of the center of gravity of the whole system, which produces a dis-
placement moment to counteract the friction moment and makes the robot move. As
shown in Fig. 1, when motor 1 rotates and motor 2 keeps still, the mass, the hollow
axle, the controller and battery combination, and motor 2 will rotate about the axis
of the hollow axle. If the angle displacement θ ≥ θ0 (θ0 is the angle displacement
of the mass to balance the moment caused by static friction), the robot will move
forward or backward. Because the moment caused by dynamic friction is less than
that caused by static friction, the mass will stay at a position where the angle dis-
placement of the mass is less than θ0. So the system is balanced and the robot can
go forward or backward continuously. If motor 1 and motor 2 both rotate the mass
will rotate around both axes Xb and Yb, and the compound motion of the mass will
produce a displacement gravity moment to cause the robot to turn to the side where
the mass stays. For example, if the mass moves to the +Xb direction the robot will

364 Q. Zhan

turn to +Xb direction and if the mass moves to the –Yb direction the robot will turn
to the –Yb direction. So any required motion of spherical robot BHQ-1 can be easily
achieved by the separate control or compound control of two motors.

3 Kinematics Based Motion Planning of BHQ-1

3.1 Nonholonomic Constraint Equations of BHQ-1

In order to describe the configuration of spherical robot BHQ-1, such following
frames are established as shown in Fig. 2. Frame {OXYZ} is the reference frame,
frame {ObX′Y′Z′} is a body reference frame with its origin locating at the geometric
center of the sphere and its orientation the same as that of reference frame {OXYZ},
frame {ObXbYbZb} is the body frame fixed to the hollow axle of BHQ-1 and its origin
is the geometric center of the sphere. It’s obvious that BHQ-1 cannot move along Z
axis, so it requires five variables to describe its configuration: x, y, ψ, θ, ϕ, among
which x, y are the position coordinates of the geometric center of BHQ-1 expressed
in the reference frame {OXYZ}, ψ, θ, ϕ are the ZXZ Euler angle to describe the
orientation of BHQ-1.

When spherical robot BHQ-1 moves on the ground, it will come under a velocity
constraint due to rolling without slipping: the velocity of the contact point of BHQ-1
and the ground must be the same. Then the following velocity constraint equations
can be deduced. {

ẋ + r(ϕ̇ cos ψ sin θ − θ̇ sin ψ) = 0
ẏ + r(ϕ̇ sin ψ sin θ + θ̇ cos ψ) = 0

(1)

where, r is the radius of BHQ-1.

O

X

Z

Y

Ob

X’

Z’

Y’

Zb

Yb

Xb

Pc

Fig. 2 Frames describing the configuration of BHQ-1

Motion Planning of a Spherical Mobile Robot 365

For nonholonomic systems quasi-coordinates are widely used due to its several
advantages when compared with generalized coordinates. For example, the non-
holonomic constraints could be expressed more easily with quasi-coordinates and
the projections of kinetic energy can be expressed more simply with quasi-velocities.
Normally, the left part of the nonholonomic constraint equations of some systems
can be chosen as quasi-velocities and the choice of other quasi-velocities should
facilitate the calculation [12].

Here, five quasi-velocities ω1, ω2, ω3, ω4, ω5 of spherical robot BHQ-1 are chosen
as ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ω1 = ϕ̇ sin ψ sin θ + θ̇ cos ψ

ω2 = −ϕ̇ cos ψ sin θ + θ̇ sin ψ

ω3 = ψ̇ + ϕ̇ cos θ

ω4 = ẋ − rω2
ω5 = ẏ + rω1

(2)

where ω1, ω2, ω3 are the projections of the angle velocities of BHQ-1 on the three
axes of frame {ObX′Y′Z′}, ω4, ω5 are defined according to the rolling without slip-
ping constraint equations (1). It is easy to get ω4 = 0, ω5 = 0.

3.2 Optimized Motion Planning Based on Hamiltonian
Function

Spherical robot includes all the energy sources inside its shell, so the available energy
sources are limited to its size and structure. In order to make a spherical robot move
further with the limited energy sources, time and energy based optimized motion
planning is greatly preferred.

When spherical robot BHQ-1 moves on the ground, its hollow axle will always
keep horizontal except it turns aside. Furthermore, for the ZXZ Euler angles the first
two rotations angles ψ and θ cannot result in the rotation of the hollow axle around
Yb axis, that means only ϕ can do that, so we can suppose ϕ = 0 in order to simplify
the motion planning problem, and then the configuration of BHQ-1 is simplified as
P = [x, y, ψ, θ]T . So Eq. (2) can be simplified as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ω1 = θ̇ cos ψ

ω2 = θ̇ sin ψ

ω3 = ψ̇

ω4 = ẋ − rω2 = 0
ω5 = ẏ + rω1 = 0

(3)

From Eq. (3) we can get the kinematics model of BHQ-1 as

366 Q. Zhan

⎧⎪⎪⎨
⎪⎪⎩

ẋ = rω2
ẏ = −rω1

ψ̇ = ω3

θ̇ = ω1 sec ψ

(4)

Rewrite Eq. (4) in the matrix form as
⎡
⎢⎢⎣

ẋ
ẏ
ψ̇

θ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 r 0
−r 0 0
0 0 1
sec ψ 0 0

⎤
⎥⎥⎦ ·

⎡
⎣ω1

ω2
ω3

⎤
⎦ = f (P, u), u = [ω1 ω2 ω3]T (5)

In order to plan an optimized trajectory from the initial configuration Pi =
[xi , yi , ψi , θi]T to the goal configuration Pg = [xg, yg, ψg, θg]T , following cost
function is introduced.

J =
∫ tg

0

[
k + 1

2
(1 − k)(b1ω2

1 + b2ω2
2 + b3ω2

3)

]
dt, (b1 ≥ 0, b2 ≥ 0, b3 ≥ 0, 0 ≤ k ≤ 1)

(6)
where, k describes the tendency of the function to the least time or the least energy, if
k is much smaller the function trends to approach the least energy more, if k is much
bigger the function trends to approach the least time more; b1, b2, b3 describes the
weight values of three angle velocities ω1, ω2, ω3.

A Hamiltonian function is constructed as follows.

H = L + λT f (P, u)

=
[
k + 1

2
(1 − k)(b1ω2

1 + b2ω2
2 + b3ω2

3)

]
+ λ1rω2 − λ2rω1 + λ3ω3 + λ4ω1 sec ψ

(7)

where, λ = [λ1, λ2, λ3, λ4]T is the Lagrange multiplier vector. In order to optimize

the trajectory of BHQ-1, λ̇ = −(∂ H
∂ P)T must be satisfied, namely

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ̇1 = − ∂ H
∂x = 0

λ̇2 = − ∂ H
∂y = 0

λ̇3 = − ∂ H
∂ψ

= −λ4ω1 sin ψ sec2 ψ

λ̇4 = − ∂ H
∂θ

= 0

(8)

From Eq. (8) we can find that λ1, λ2, λ4 are all constants, but λ3 is a variable on
the entire trajectory. In order to optimize the quasi-velocities ω1, ω2, ω3, the entire
trajectory should satisfy ∂ H

∂u = 0, namely

Motion Planning of a Spherical Mobile Robot 367

⎧⎪⎪⎨
⎪⎪⎩

∂ H
∂ω1

= 0 ⇒ (1 − k)b1ω1 − λ2r + λ4 sec ψ = 0
∂ H
∂ω2

= 0 ⇒ (1 − k)b2ω2 + λ1r = 0
∂ H
∂ω3

= 0 ⇒ (1 − k)b3ω3 + λ3 = 0

(9)

From Eq. (9) the optimized quasi-velocities can be got as following.

⎧⎪⎪⎨
⎪⎪⎩

ω1 = λ2r−λ4 sec ψ
b1(1−k)

ω2 = − λ1r
b2(1−k)

ω3 = − λ3
b3(1−k)

(10)

Because on the entire optimized trajectory Hamiltonian function must be 0 [9],
namely

H = L + λT f (x, u) = k + 1

2
(1 − k)(b1ω

2
1 + b2ω

2
2 + b3ω

2
3) + λ1rω2 − λ2rω1

+ λ3ω3 + λ4ω1 sec ψ = 0 (11)

Substitute the three optimized angle velocities in Eq. (10) for those in Eq. (11) we
can get

λ3 = ±
√

−b3
2b1b2(k2 − k) + r2(b1λ

2
1 + b2λ

2
2) − 2rb2λ2λ4 sec ψ + b2λ

2
4 sec2 ψ

b1b2
(12)

From the above equation we can find λ3 = λ3(ψ). The symbol of λ3 can be got
from experiments, and for spherical robot BHQ-1 we choose it as a negative one
according to experience. Then the trajectory equation of spherical robot BHQ-1 can
be deduced from Eq. (4) as follows.

ẋ = rω2

ψ̇ = ω3

}
⇒ dx

dψ
= rω2

ω3
= λ1r2b3

λ3b2
= h1(ψ)

ẏ = −rω1

ψ̇ = ω3

}
⇒ dy

dψ
= − rω1

ω3
= (λ2r−λ4 sec ψ)rb3

λ3b1
= h2(ψ)

(13)

From Eq. (13) we can find that dx
dψ

,
dy
dψ

are all functions of ψ , which means the

calculation of x, y can be greatly simplified because it can be got by integrating the
above equation from initial ψ = 0 to final ψ = ψg , namely

{
x = ∫ ψg

0 h1(ψ)dψ

y = ∫ ψg

0 h2(ψ)dψ
(14)

368 Q. Zhan

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

X
Planned trajectory Change of Change ofψ

m

y(
m

)

0 1 2 3 4 5 6 7 8
-0.2

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

0 1 2 3 4 5 6 7 8
-0.25
-0.2

-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

0.25

Time (s)

(r
ad

)

Time (s)

(r
ad

)

(a) (b) (c)

θ

Fig. 3 Trajectory planning simulations a Planned trajectory. b Change of ψ . c Change of θ

It’s clear that Eq. (14) has no variables of time t, so there is no need to find the
final time tg when computing x and y. However, ψ cannot be a monotone function,
so it should be divided into several segments and the piecewise points are those that
make ψ̇ = 0. Thus in each segment ψ will increase or decrease monotonously. From
Eq. (4) we can find that ω3 = 0 must be satisfied in order to make ψ̇ = 0, and then
from Eqs. (8) and (10) we can get λ3 = λ3(ψ) = 0, so those piecewise points can
be decided according to the equation. So the optimized trajectory of spherical robot
BHQ-1 can be deduced.

In real applications a group of suitable or optimized coefficients λ1, λ2, λ4 should
be decided first for the given goal position and orientation (xg, yg, ψg, θg), and which
are usually got according to experiences.

For spherical robot BHQ-1, suppose the initial configuration is Pi = [0, 0, π
2 , 0]

and the final configuration is pg = [1.25, 1.25, π
2 , 0], then the optimized motion can

be planned as follows. First, choose a group of coefficients λ1, λ2, λ4, here according
experience we choose λ1 = 0.5, λ2 = 0.5, λ4 = 0.3. Then we choose k = 0.5,
b1 = b2 = b3 = 1. The optimized trajectory and the changes of two orientation
variables of spherical robot BHQ-1 are shown in Fig. 3. From the simulations we can
find that the planned trajectory and the curves of two orientations are all smooth.

3.3 The Influence of λ1, λ2, λ4 on Planned Trajectory

In order to facilitate the choice of coefficients λ1, λ2, λ4, of which the influence on
the trajectory shape and the moving direction of robot BHQ-1 are discussed by a
group of simulations. Here, suppose ψg = 2π

5 .
First, let λ2 and λ4 be constants and let λ1 change from −1.5 to 1.5, different

planned trajectories are shown in Fig. 4. From the simulation results we can find that
the change of λ1 can affect the trajectory shape greatly and the symbol of λ1 can
affect the moving direction of BHQ-1 along Y direction.

Then let λ1 and λ4 be constants and let λ2 change from −0.9 to 0.9, those different
planned trajectories are shown in Fig. 5. From the simulation results we can find that

Motion Planning of a Spherical Mobile Robot 369

Fig. 4 Trajectory planning results when λ1 changes

Fig. 5 Trajectory planning results when λ2 changes

the change of λ2 affects the trajectory shape little and the symbol of λ2 cannot change
the moving direction of spherical robot BHQ-1.

At last, let λ1 and λ2 be constants and let λ4 change from −0.3 to 0.3, those
different planned trajectories are shown in Fig. 6. From the simulation results we can
find that the change of λ4 can greatly affect the trajectory shape and the final position
(x, y), and the symbol of λ4 can change the moving direction of BHQ-1 along X
direction.

The above simulations reveal the influence of λ1, λ2, λ4 on the planned trajectory
of spherical robot BHQ-1 respectively, which can help to decide a group of suitable
λ1, λ2, λ4 for a real application by experience.

370 Q. Zhan

Fig. 6 Trajectory planning results when λ4 changes

Fig. 7 Optimal trajectory
from (0, 0) to (1.5, 3) by
shooting method

One way to directly get a group of optimized λ1, λ2, λ4 has been proposed in [17],
which is called “shooting” method. Using the “shooting” method, we can plan an
optimal trajectory of spherical robot BHQ-1 from start position (0, 0) to final position
(1.5, 3), as shown in Fig. 7. Here, k = 0.5, b1 = b2 = b3 = 1, λ1 = 0.08, λ2 =
0.78, λ4 = 0.56. Although the “shooting” method can get the optimized variables,
it’s not always effective for some cases.

3.4 Motion Planning Experiments

In order to validate the proposed trajectory planning method motion experiments of
spherical robot BHQ-1 avoiding an obstacle were done. BHQ-1 is planned to move

Motion Planning of a Spherical Mobile Robot 371

Fig. 8 Motion planning experiments of BHQ-1

straight first, but there is an obstacle in its path, when it detects the obstacle it will
avoid it. An infrared sensor was used by BHQ-1 to detect obstacles, and the motion
commands were sent to BHQ-1 from a PC through a wireless system. The radius of
the experimental spherical robot BHQ-1 is 200 mm, and its total mass is about 2.5 kg.

Figure 8 shows some pictures of one experiment during which spherical robot
BHQ-1 avoided an obstacle successfully. To be honest, there were also several cases
that BHQ-1 could not avoid the obstacle successfully due to some practical reasons,
such as the motion errors, the delay on re-planning.

4 Dynamics Based Motion Planning of BHQ-1

4.1 Dynamic Model of BHQ-1

Compared with kinematics based motion planning, dynamics based motion planning
can achieve more steady motion and better performance when meeting unpredicted
external disturbances. But not all the dynamic modeling methods can be used for
nonholonomic systems except Gibbs-Appell equation, improved Lagrange equation,
Kane equation and Boltzmann-Hamel equation, etc. However, it is always difficult
to use those methods to establish a simplified dynamic model of a spherical robot
that can be used in real applications due to the complex deduction procedures and
time-consuming computations.

From D’Alembert-Lagrange principle:
∑n

k=1
(

d

dt

∂T

∂ q̇k
− ∂T

∂qk
− Qk)δqk = 0,

Cameron et al. deduced a simplified Boltzmann-Hamel equation that can be applied
to both holonomic system and nonholonomic system [9], shown in the following.

d

dt

∂ Ē

∂ωI
+

n∑
j=1

n∑
i=1

ηi I γi j
∂ Ē

∂ω j
−

n∑
j=1

η j I
∂ Ē

∂q j
= MI (15)

where, ω is the vector of quasi-velocities, E is the kinetic energy, M is the generalized
driving force, η and γ are coefficients, I denotes the independent quasi-coordinates,
n is the number of the generalized coordinate q j , t is the time.

Different from the traditional Boltzmann-Hamel equation, the new one is
expressed explicitly in terms of generalized coordinate q j and coefficient γ can

372 Q. Zhan

be easily calculated. So the dynamic model has a more compact expression and can
be used more easily.

A configuration vector P = [x, y, ψ, θ, ϕ]T is used to describe the position and
orientation of spherical robot BHQ-1, and the definition of those variables are the
same as that in Sect. 3.

Rewrite Eq. (2) in matrix form as

⎡
⎢⎢⎢⎢⎣

ω1
ω2
ω3
ω4
ω5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0 0 0 cos ψ sin θ sin ψ

0 0 0 sin ψ − sin θ cos ψ

0 0 1 0 cos θ

1 0 0 −r sin ψ r sin θ cos ψ

0 1 0 r cos ψ r sin θ sin ψ

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

ẋ
ẏ
ψ̇

θ̇

ϕ̇

⎤
⎥⎥⎥⎥⎦ = α

⎡
⎢⎢⎢⎢⎣

ẋ
ẏ
ψ̇

θ̇

ϕ̇

⎤
⎥⎥⎥⎥⎦ (16)

where α is a 5 × 5 transformation matrix. From Eq. (16) we can deduce

⎡
⎢⎢⎢⎢⎣

ẋ
ẏ
ψ̇

θ̇

ϕ̇

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0 r 0 1 0
−r 0 0 0 1
− sin ψ cot θ cos ψ cot θ 1 0 0
cos ψ sin ψ 0 0 0
sin ψ csc θ − cos ψ csc θ 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

ω1
ω2
ω3
ω4
ω5

⎤
⎥⎥⎥⎥⎦ = β

⎡
⎢⎢⎢⎢⎣

ω1
ω2
ω3
ω4
ω5

⎤
⎥⎥⎥⎥⎦ (17)

where β is also a 5 × 5 transformation matrix.
Coefficient γi j in Eq. (15) can be calculated by α and β according to the following

equation.

γi j =
5∑

k=1

5∑
s=1

ωsβks

(
∂αi j

∂qk
− ∂αk j

∂qi

)
(18)

Kinetic energy Ē of spherical robot BHQ-1 is

Ē = 1

2
m(ẋ2 + ẏ2) + 1

2
× 2

5
mr2 · (ψ̇2 + θ̇2 + ϕ̇2 + 2ψ̇ϕ̇ cos θ) (19)

where m is the total mass of BHQ-1. Equation (19) can be expressed by quasi-
velocities as

Ē = 1

2
m

[
5

7
r2(ω2

1 + ω2
2) + 2

5
r2ω2

3 + 2rω2ω4 − 2rω1ω5 + ω2
4 + ω2

5

]
(20)

From Eq. (20) we can get

Motion Planning of a Spherical Mobile Robot 373

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ Ē
∂ω1

= 7
5 mr2ω1 − mrω5

∂ Ē
∂ω2

= 7
5 mr2ω2 + mrω4

∂ Ē
∂ω3

= 2
5 mr2ω3

(21)

Because ω4 = ω5 = 0, we can get the simplified form of Eq. (21) as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ Ē
∂ω1

= 7
5 mr2ω1

∂ Ē
∂ω2

= 7
5 mr2ω2

∂ Ē
∂ω3

= 2
5 mr2ω3

(22)

From Eq. (19) we can get ∂ Ē
∂x = ∂ Ē

∂y = ∂ Ē
∂ψ

= ∂ Ē
∂ϕ

= 0.

Substituting those calculated η, γ and Eq. (21) for those in Eq. (15) the dynamic
model of spherical robot BHQ-1 can be deduced as

⎧⎪⎨
⎪⎩

7
5 mr2ω̇1 = m0

1 − r f 0
2

7
5 mr2ω̇2 = m0

2 + r f 0
1

2
5 mr2ω̇3 = m0

3

(23)

where, m0
1, m0

2, m0
3 are the projections of the principal moment m0 on the three axes

of the body reference frame {Ob X ′Y ′Z ′}, f 0
1 , f 0

2 are the projections of the principal
force f 0 on axes X ′, Y ′ of frame {Ob X ′Y ′Z ′}, f 0 and m0 are the principal force
and principal moment imposed on the geometric center of spherical robot BHQ-1
respectively.

4.2 Motion Planning Based on Dynamic Model of BHQ-1

4.2.1 Linear Trajectory Planning

In Fig. 9, frame {o′ijk} is located on the geometric center of BHQ-1 and its orientation
is the same as that of frame {oxyz}. When spherical robot BHQ-1 moves along a
linear trajectory its hollow axle and those installed components will rotate around
axis i to reach a high position supposed as the one shown in Fig. 9.

Because there is no rotation about axes j and k, ψ = 0 and ϕ = 0 are obtained,
substituting them for the variables in Eq. (16), we can get those quasi-velocities as

ω1 = θ̇ , ω2 = 0, ω3 = 0, ω4 = 0, ω5 = 0 (24)

374 Q. Zhan

Fig. 9 Straight motion

In Fig. 9, the gravity direction is along the −k direction (downward vertically),
so the projection of gravity on plane io′ j is zero, that it to say f 0

1 = 0, f 0
2 = 0,

substituting them for the variables in the dynamic model (23), the following simplified
dynamic model of BHQ-1 can be got.

⎧⎪⎨
⎪⎩

m0
1 = 7

5 mr2θ̈

m0
2 = 0

m0
3 = 0

(25)

So the gravity moment exists only around axis i and the mass sways only in the
plane o′k j . From Eq. (25) and

m0
1 = mg�l j + �f r (26)

we can get the driving moment of motor 1 is

M1 (t) = mg�l j + mL2β̈ = −7

5
mr ÿ(t) − �f · r + mL2β̈(t) (27)

where, L is the distance between the center of the mass and the rotation axis of the

hollow axle,
⇀

l j is the projection vector of L on axis j, β is the angle that the mass
deviates from axis k, f is the friction vector imposed on the spherical robot by the
ground, g is the gravity acceleration. The driving moment of motor 2 is

M2 (t) = 0. (28)

If spherical robot BHQ-1 moves along a straight trajectory with a constant velocity
it is obvious that ÿ = 0. So we get ω̇1 = 0 from Eq. (16), θ̈ = 0 from Eq. (24) and
m0

1 = 0 from Eq. (25), substituting them for the variables in Eq. (26) we can get

Motion Planning of a Spherical Mobile Robot 375

�l j = − �f · r

mg
(29)

β (t) = arcsin
�l j

L
= arcsin

(
− �f · r

mgL

)
(30)

Thus when spherical robot BHQ-1 moves along a straight trajectory with a con-
stant velocity the driving moments of two motors are

{
M1 = mg�l j = − �f r
M2 = 0

(31)

The simulation results of BHQ-1 moving straight are shown in Fig. 10, where the
dashed line is the planned trajectory in theory or the target trajectory and the solid
line is the planned trajectory by adding 1 % noise disturbance. From the simulation
we can conclude that BHQ-1 can realize motion along a linear trajectory with the
deduced dynamic model.

4.2.2 Circular Trajectory Planning

Assume spherical robot BHQ-1 moves along a circular trajectory from the initial
configuration to the final configuration, as shown in Figs. 11 and 12. In Fig. 11,
a frame {oi xi yi } is established on the geometric center of BHQ-1 with its axis xi

pointing to the center of the circular trajectory and its axis yi pointing to the tangential
direction of the circular trajectory.

Fig. 10 Simulation results
of BHQ-1 moving straight

376 Q. Zhan

y

x

a

O00

xi
y

i

oi

v

Fig. 11 Theoretic trajectory of circular motion of BHQ-1

o'

k

j

i

G

β y

L

o

z

y

x o

z y

x

o'

k j

i

βx

Fig. 12 Two views of the mass during circular motion

With similar derivation to that of linear trajectory planning, we can deduce f 0
1 =

0, f 0
2 = 0, m0

3. Let p = 7mr2

5 and substitute the above variables for those Eq. (23),
we can get ⎧⎪⎨

⎪⎩
m0

1 = pω̇1

m0
2 = pω̇2

ω̇3 = 0

(32)

Because m0
1, m0

2 are projections of the principal moment on axes i and j, it’s easy
to get ⎧⎨

⎩
m0

1 (t) = mg
⇀

l y + ⇀

jy · r

m0
2 (t) = mg

⇀

lx + ⇀

fx · r
(33)

Motion Planning of a Spherical Mobile Robot 377

where,
⇀

lx ,
⇀

l y are the projections of length L on axes x and y respectively,
⇀

fx ,
⇀

fy are
the projections of the friction force f on axes x and y respectively.

From Eqs. (16), (32) and (33), we can get

⎧⎪⎪⎨
⎪⎪⎩

⇀

lx = 1
mg

(
p
r ẍ − ⇀

fx · r

)

⇀

lx = 1
mg

(
− p

r ÿ − ⇀

fx · r

) (34)

Through coordinates transformation we can get

⎡
⎣ lxi

lyi

0

⎤
⎦ = R(z,−α) ·

⎡
⎣ lx

ly

0

⎤
⎦ =

⎡
⎣ cos(−α) − sin(−α) 0

sin(−α) cos(−α) 0
0 0 1

⎤
⎦ ·

⎡
⎣ lx

ly

0

⎤
⎦ (35)

where, α is the angle that spherical robot BHQ-1 has moved along the circular trajec-

tory from origin o (as shown in Fig. 11), lx , ly are the norms of
⇀

lx ,
⇀

l y respectively,
⇀

lxi ,
⇀

l yi are the projections of length L on axes xi and yi respectively (shown in

Fig. 11), lxi , lyi are the norms of
⇀

lxi ,
⇀

l yi respectively.
From Eqs. (34) and (35) we can obtain

{
lxi = p

mgr (ẍ cos α − ÿ sin α)

lyi = − p
mgr (ẍ sin α + ÿ cos α) + f ·r

mg

(36)

Because α = ωt , the driving moment of motor 1 can be got as

M1 = mg
⇀

l j + mβ̈y L2 = − p

r
(ẍ sin α + ÿ cos α) + mβ̈y L2 (37)

where,
⇀

l j is the projection vector of L on axis j, βy is the angle that the mass deviates
from axis k measured on plane o′k j (as shown in Fig. 12).

The driving moment of motor 2 is

M2 = mg
⇀

li + mβ̈x L2 = p

r
(ẍ cos α − ÿ sin α) + mβ̈x L2 (38)

where,
⇀

li is the projection vector of L on axis i, βx is the angle that the mass deviates
from axis k measured on planes o′ki (as shown in Fig. 12).

If spherical robot BHQ-1 moves along a circular trajectory with a fixed velocity
its acceleration A = v2

R should point to the center of the circular trajectory and the
tangential velocity of circular trajectory v = ωR should be a constant. Where, R is
the radius of the circular trajectory, is the angle velocity of BHQ-1. The projections

378 Q. Zhan

of the acceleration A on axes x and y are

{
Ax = −A cos(π − α) = −A cos(π − ωt)
Ay = −A sin(π − α) = −A sin(π − ωt)

(39)

From,

{
ẍ = Ax

ÿ = Ay
, Eqs. (16), (32), (39) we can get

{
m0

1(t) = p A
r sin(ωt)

m0
2(t) = p A

r cos(ωt)
(40)

From Eqs. (2), (17), (36) and (40) and the values of p and A, we can get

⎧⎨
⎩

lxi = 7rv2

5gR

lyi = f ·r
mg

(41)

From Eq. (41) we can get

⎧⎪⎪⎨
⎪⎪⎩

βx1 = arcsin

(
⇀
li
L

)
= arcsin

(
7rv2

5gRL

)

βy1 = arcsin

(⇀
l j
L

)
= arcsin

(
f r

mgL

) (42)

If spherical robot BHQ-1 moves along a circular trajectory with a fixed velocity
the driving moments of two motors are

{
M1 = mg · l j = fr

M2 = mg · li = 7mrv2

5R

(43)

A simulation result of spherical robot BHQ-1 moving along a circular trajectory
is shown in Fig. 13, where the dashed circle is the planned trajectory in theory or the
target trajectory and the solid circle is the planned trajectory by adding 1 % noise
disturbance. From the simulation we can conclude that BHQ-1 can realize circular
motion with the deduced dynamic model.

4.2.3 Complex Trajectory Planning

Theoretically any complex trajectory can be approximately divided into line seg-
ments and curve segments, so the deduced linear trajectory motion planning model
and circular trajectory motion planning model can also be used to plan the motion
of complex trajectories. In order to validate that, a motion planning simulation of
spherical robot BHQ-1 moving along a complex trajectory was presented in Fig. 14.

Motion Planning of a Spherical Mobile Robot 379

Fig. 13 Simulation of circular motion of BHQ-1

The given trajectory is composed of three straight line segments and two curves,
which are described by functions as

y =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 0 ≤ x < 1
6 − √

36 − (x − 1)2 1 ≤ x < 4√
3

3 x + 6 − 13
3

√
3 4 ≤ x < 7

6 − 3
√

3 − √
4 − (x − 8)2 7 ≤ x < 9

−
√

3
3 x + 6 + √

3 9 ≤ x ≤ 10

(44)

In Fig. 14, the given trajectory is shown in dashed line and the planned trajectory
is shown in solid line. 1 % disturbance noise was introduced to the dynamic trajectory
planning method in order to test the robustness of the method. From the simulation we

Fig. 14 Motion simulation of a complex trajectory planning of BHQ-1

380 Q. Zhan

can find that the dynamic motion planning method can plan an accurate trajectory for
spherical robot BHQ-1, and the small error comes from the noise added intentionally.
If there is no disturbance noise the planned trajectory will superpose the target one.

5 Conclusion

Spherical mobile robot has compact structure and flexible motion, but because of its
special nonholonomic characteristic, traditional motion planning methods proposed
for wheeled mobile robots cannot be applied to it. This chapter introduces two motion
planning methods for spherical robot BHQ-1, one is a kinematics based motion
planning method and another is a dynamics based motion planning method. The
kinematic motion planning method uses Hamiltonian function to realize the time and
energy based optimal motion planning, and the characteristics of three coefficients
λ1, λ2, λ4 are revealed through simulations. The dynamic motion planning method
uses a simplified Boltzmann-Hamel equation to get the dynamic model of spherical
robot BHQ-1, and the moments of two motors to realize the linear motion and circular
motion are deduced respectively. Simulations and experiments are provided in order
to validate those motion planning methods. It should be noted that although the two
methods are proposed for spherical robot BHQ-1, which can be also used by other
spherical robots with similar structure or similar motion principle.

Thanks very much for the help and research work of my students JIA Chuan, LIU
Zengbo, CHI Xing and SHANG Zhimeng.

References

1. Halme A, Schonberg T, Wang Y (1996) Motion control of a spherical mobile robot. In: 4th
IEEE international workshop on advanced motion control AMC’96. Mie University, Japan,
pp 100–106

2. Bicchi A, Balluchi A, Prattichizzo D, Gorelli A (1997) Introducing the “SPHERICAL”: an
experimental testbed for research and teaching in nonholonomy. In: Proceedings of the 1997
IEEE international conference on robotics and automation, Albuquerque, New Mexico, April
1997, pp 2620–2625

3. Bhattacharya S, Agrawal SK (2000) Design, experiments and motion planning of a spheri-
cal rolling robot. In: Proceedings of the 2000 IEEE international conference on robotics and
automation, San Francisco, CA, pp 1207–1212

4. Mukherjee R, Minor MA, Pukrushpan JT (1999) Simple motion planning strategies for spher-
obot: a spherical mobile robot. In: Proceedings of IEEE international conference on decision
and control, Phoenix, Arizona, pp 2132–2137

5. Amir Homayoun Javadi A, Mojabi P (2002) Introducing august: a novel strategy for an omnidi-
rectional spherical rolling robot. In: Proceedings of IEEE international conference on robotics
and automation, pp 3527–3533

6. Michaud F, Caron S (2002) Roball: the rolling robot. Auton Robots 12(2):211–222
7. Zhan Q (2001) Kinematic structure of a new type of moving mechanism of lunar vehicles. In:

Proceedings of the second symposium on moon exploring technology, Beijing, pp 328–330

Motion Planning of a Spherical Mobile Robot 381

8. Qiang Z, Yao C, Caixia Y (2011) Design, analysis and experiments of an omnidirectional
spherical robot. In: 2011 IEEE international conference on robotics and automation, Shanghai,
9–13 May, pp 4921–4926

9. Cameron M, Book Wayne J (1997) Modeling mechanisms with nonholonomic joints using the
Botzmann-Hamel equations. Int J Robot Res 16(1):47–59

10. Zhan Q, Zhou T, Chen M, Cai S (2006) Dynamic trajectory planning of a spherical mobile
robot. In: IEEE conference on robotics, automation and mechatronics (RAM), pp 714–719

11. Ming C, Qiang Z, Zengbo L, Yao C (2008) Optimized trajectory planning based on Hamiltonian
function of a spherical robot. High Technol Lett 14(31):71–75

12. Fengxiang Mei (1985) Basal dynamics for nonholonomic system. Beijing Industrial College
Press, Beijing

13. Halme A, Suomela J, Schonberg T, Wang YA (1996) Spherical mobile micro-robot for scientific
applications. In: Proceedings of ASTRA 96, ESTEC, Noordwijk, The Netherlands, November
1996

14. Camicia C, Conticell F, Bicchi A (2000) Nonholonomic kinematics and dynamics of the spher-
ical. In: Proceedings of the 2000 IEEE/RSJ international conference on intelligent robots and
systems, pp 806–810

15. Bicchi A, Marigo AA (2002) local-local planning algorithm for rolling objects. In: Proceedings
of the 2002 IEEE international conference on robotics and automation, May 2002, pp 1759–
1764

16. Mukherjee R, Das T (2002) Feedback stabilization of a spherical mobile robot. In: Proceedings
of IEEE international conference on intelligent robots and systems, vol. 3. pp 2154–2162

17. Press William H, Flannery Brian P, Teukolsky Saul A, Vetterling William T (1988) Numerical
recipes in C: the art of scientific computing. Cambridge University Press, Cambridge

18. Jaimez M, Castillo JJ, García F, Cabrera JA (2012) Designing and modelling of Omnibola, a
spherical mobile robot. Mech Based Des Struct Mach: Int J 40(4):383–399

Part IV
Motion Planning for Legged Robots

A Minimum Jerk-Impedance Controller
for Planning Stable and Safe Walking
Patterns of Biped Robots

Amira Aloulou and Olfa Boubaker

Abstract Minimum Jerk based control is part of optimal control laws. Its main
contribution resides in the generation of smooth trajectories allowing the avoidance
of sudden and abrupt motion. This chapter proposes the elaboration of appropriate
control laws, with controller parameters computed offline, able to produce stable
smooth and safe walking cycles for bipedal robots evolving in the three dimen-
sional space. To alternate footsteps, Minimum Jerk and Impedance control principles
are used to switch successively between single support, impact and double support
phases. A new methodology of Minimum Jerk control is proposed to produce human
like trajectories. Its originality mostly relies on the generation of Cartesian three-
dimensional reference trajectories that do combine benefits of trigonometric and
polynomial functions. When considering the impact and double support phases, an
appropriate impedance control law is proposed to ensure the robot stability and safe
balance during the contact with the ground. Simulation results performed on a 15
link/26 degrees of freedom Humanoid robot with a weight of 70 kg and a height of
1.73 m walking at a velocity of 0.6 m s−1, show that the dynamics of the robot during
the swing phase are very attractive since smooth trajectories without dynamic vibra-
tions are observed and a stable and safe elastic contact takes place while achieving
the constrained phases even in presence of sensory noise and uncertainties on the
environment stiffness.

Keywords Biped robots ·Minimum Jerk control · Impedance control ·Safe walking
patterns

A. Aloulou · O. Boubaker (B)

National Institute of Applied Sciences and Technology, INSAT,
Centre Urbain Nord, BP 676, 1080 Tunis, Tunisia
e-mail: olfa.boubaker@insat.rnu.tn

© Springer International Publishing Switzerland 2015
G. Carbone and F. Gomez-Bravo (eds.), Motion and Operation Planning
of Robotic Systems, Mechanisms and Machine Science 29,
DOI 10.1007/978-3-319-14705-5_13

385

386 A. Aloulou and O. Boubaker

1 Introduction

Despite the numerous technology advances in the field of Humanoid Robotics,
mobility and ability to move like a human being remains an essential required fea-
ture. In that context, gait pattern generation seems to be the key problem to research
dedicated to walking robots [1]. Actually, there are two major walking patterns to
be found in bipedal robotics: static walking and dynamic walking [2, 3] and sev-
eral stability criteria may be used depending on the walking pattern selected. The
recourse to a given stability criterion ensures the bipedal robot’s balance at every
moment in order to avoid falls and collapses. Besides, whether considering the static
or dynamic walking pattern, each gait pattern involves the same various phases that
are the single support phase, the impacts with the ground and the double support
phase. A satisfying control strategy for a gait pattern has to provide good dynamic
performances in these different modes in terms of similarity with human gait by
guaranteeing at the same time stability, smoothness and safety.

Thus, in this work, to control bipedal robots during the single support stage, we
have chosen to focus on Minimum Jerk based control strategy. The main benefit of
such approach resides in the generation of smooth trajectories in order to avoid any
abrupt motion and consequently limit the robot vibrations [4]. The concept of Jerk
Minimization has been developed by Hogan, the pioneer in using the Minimum Jerk
principle for robotic systems to reproduce realistic human arm movements [5, 6]
and antagonistic muscles [7]. Minimum Jerk Theory comes from the finding that the
degree of smoothing of a curve can be quantified by a function counting the number
of shocks performed [8]. Hogan named this function Jerk and associated it mathe-
matically to the third time derivative of a given trajectory. Among researchers having
recourse to the Minimum Jerk criterion, there are divided opinions between those
using trigonometric curves and others using polynomial curves to describe the robot
trajectory. Actually, very few research papers consider trigonometric functions to
describe the Jerk function [9–11]. They note that all joints involved in the movement
are less oscillatory. It seems that most works dealing with the Minimum Jerk criterion
are based on polynomial trajectories. As proved by Amirabdollahian et al. [12], the
use of polynomial trajectories has some advantages. The control of the movement is
easily achievable since the first and second derivatives of the polynomial are known.
Also, some studies [13] show that Minimum Jerk control laws based on polynomials
of high degrees are more effective because the dynamics of the robot are smoother
and the trajectory references are easily followed by the actuators involved. Finally,
for applications using real-time control, the trajectories can be corrected or adjusted
at any time by simply redefining the polynomials describing the trajectory or by
the superposition of a new path to the previous one [14]. Another issue that has also
divided opinions among researchers is the space on which reference trajectories must
be planed: the Cartesian or the joint space. Actually, Kyriakopoulos and Saridis in [8]
are the first to raise the issue of choice of planned trajectories in the Cartesian space
or in the joint one. They show that if the minimization problem and its solutions are
formulated in the joint space, only physical limitations of the joints actuators will

A Minimum Jerk-Impedance Controller for Planning Stable and Safe Walking … 387

be included in the constraints statement. However, in a realistic environment,
obstacles exist and are causing changes in the trajectory direction. Therefore, gen-
erating reference trajectories based on the Minimum Jerk criterion may be done
whether in the joint or Cartesian space. The space’s choice should only be deter-
mined according to the constraints and the shape of the desired trajectory. Finally,
it can be noted that very few works using Minimum Jerk criterion were devoted to
optimize humanoid motion through gait pattern generation [15–17].

On the other side, to control bipedal robots during the IP and DSP, we have chosen
in this work to focus on impedance control strategy. Such control approach was orig-
inally proposed by Hogan in [18]. Its goal is to establish a dynamic relation between
the end-effector position and the contact force [19]. There are two methodologies
stemming from the impedance control law: the classical impedance [6] and dynamic
impedance based control laws [20]. The first approach does not take into consider-
ation the dynamic of the robotic system and includes the active stiffness control. In
opposition, the dynamic impedance control is based on two assumptions: the con-
sideration of the constraint dynamic model when an external force is applied and the
environment characterization by three parameters: inertia, damping and active stiff-
ness. Thus, the dynamic impedance control law represents an efficient control law
to overcome difficulties raised in the impact phase. Moreover, it guaranties a stable
and safe elastic contact with the ground as it takes into consideration environmental
parameters related to the nature of the ground and the contact type. As a result, many
research works have recourse to this control law to generate bipedal robots walking
gaits as [20–24].

To produce stable, smooth and safe walking cycles for bipedal robots evolving in
the 3D space, this chapter proposes the elaboration of appropriate control strategies
to be implemented to biped robots. Indeed, during the swing phase, a Minimum Jerk
based control law is produced in order to generate a semi-ellipsoidal trajectory for
the swing foot while an appropriate impedance control law is proposed to ensure
the robot stability and safe balance at foot landings on the ground. Minimum Jerk
control is inspired by the human brain cognitive such that trajectories are planned in
the Cartesian space system whereas controllers are expressed in the joint space. For
the IP and DSP, the impedance control law is designed such that it ensures stable
and safe impacts with the ground. Also, it allows the environment characterization
through inertia, damping and active stiffness parameters inspired from the recent
work [25] where sufficient conditions of stability and discussions about safety during
the impacts are given.

This chapter is then organized as follows: in the next section, the novel approach
of Jerk optimal control and the impedance control laws are designed. The stability
conditions for the two control approaches are rigorously given. Section 3 is dedicated
to the application of the proposed approach to a bipedal robot prototype. Indeed,
the anthropomorphic model of the Humanoid robot is presented and kinematic and
dynamic models of the lower body are developed. Simulations performed on the
Humanoid robot do validate both designed control laws and show the generation
of a satisfactory walking gait pattern even in presence of measurement noise and
uncertainties on the environment stiffness.

388 A. Aloulou and O. Boubaker

2 Stable and Safe Gait Pattern

2.1 The Gait Cycle

A walking gait cycle involves various phases such as single support phase, impacts
with the ground and the double support phase [26]. According to Kajita and his
colleagues [2, 3], whether considering human or artificial gait, the walking function
is based on an alternate displacement of the two legs with a support point permanently
in contact with the ground. The leg that is totally in contact with the ground is called
the supporting leg whereas the leg starting the foot step is the swinging leg also called
free leg. For each lower limb, a human walking cycle is always composed of two
phases (see Fig. 1) [27]:

• A support phase where the foot remains in contact with the ground. This stage
starts at the first foot/ground contact and ends when the foot toe is completely off
the ground. This phase represents 60 % of the whole walking cycle.

• A swinging phase where the foot is free, without any ground contact. This stage
starts at the completion of the supporting phase and it ends when the second foot
begins its own swinging phase. This phase generally corresponds to the 40 % left
of the whole walking cycle.

For a usual walking gait, the lower limb playing the role of supporting leg ensures
the three main functions of support, damping and propulsion while the swinging leg
is being moved from rear to front [28]. Two distinct phases of double support are
often considered:

• The double support of reception that takes places at the initial foot/ground contact
of the previously free leg and is proceeding with the whole weight transfer of the
other limb to the current leg.

Fig. 1 Phases of a walking cycle

A Minimum Jerk-Impedance Controller for Planning Stable and Safe Walking … 389

• The double support of propulsion occurs at the level of the previously supporting
leg at the instant the foot is landing off the ground. This phase also corresponds to
the weight transfer from this limb to the other one that becomes the new supporting
leg.

Artificial walking aims at reproducing all phases composing a natural walking gait.
However, walking bipedal robots are not able to provide a sustained rhythm of walk.
Thus, a supplementary phase has to be added and considered. Indeed, a typical
walking cycle includes three main stages [26, 29–31]: The single support phase
(SSP), the impact phase (IP) and the double support phase (DSP).
The SSP occurs when one limb is pivoted to the ground while the other is swinging
from the rear to the front. At the beginning of this stage, the heel of the forward foot
is lifted with the toe used as a pivot. When a sufficient rotational motion is done,
the foot is to be completely off the ground and swings in the air. The free dynamic
model corresponding to the SSP is described by:

M(θ)θ̈ + H(θ, θ̇) + G(θ) = D.U (1)

where θ , θ̇ , θ̈ ∈ Rn are the joint position vector, the joint velocity vector and the joint
acceleration vector of the bipedal robot, respectively. M(θ) ∈ Rn×n is the inertia
matrix, H(θ, θ̇) ∈ Rn is the vector of the Coriolis and centripetal forces G(θ) ∈ Rn

and is the gravity vector. The matrix D ∈ Rn×n is a nonsingular input map matrix
whereas U ∈ Rn is the control input vector.

The IP occurs when the toe of the forward foot starts touching the ground. The
impact between the toe of the swing leg and the ground takes place during an infini-
tesimal length of time [32]. The DSP occurs when both limbs remain in contact with
the ground. This phase begins with the heel of the forward foot touching the ground.
Then the foot rotational motion continues until the entire sole of the foot becomes in
contact with the ground. This stage finally ends with the toe of the rear foot taking
off the ground. The length of this phase depends on the walking cycle’s rhythm. The
constrained dynamic model during the IP and DSP of the bipedal robot is generally
described by [33]:

M(θ)θ̈ + H(θ, θ̇) + G(θ) = DU + ∂c(θ)T

∂θ
F (2)

where C(θ) ∈ R3 is the contact point and F ∈ R3 is the contact force with the
ground. During the gait cycle, the supporting foot does not change its position and
orientation, and the whole part of its sole is in contact with the ground. As soon as
the third phase of the swing foot ends, the foot of the supporting leg goes into its
own first stage of the swing motion.

390 A. Aloulou and O. Boubaker

2.2 Minimum Jerk Based Control for the Swing Phase

2.2.1 Minimum Jerk Control: Theoretical Foundations

According to [5], the Jerk is defined as the third time derivative of a given trajectory
β(t) such that:

···
β(t) = d3β(t)

dt3 (3)

The main benefit of Minimum Jerk based control resides in the generation of smooth
trajectories in order to avoid any abrupt motion and consequently limit the robot
vibrations [4]. To find among all possible trajectories, the one that allows the achieve-
ment of the smoothest motion, a Jerk cost must be assigned. Thus, for a trajectory
β(t) describing a particular path starting at and ending at t f , the Minimum Jerk cost
criterion is generally defined by [34]:

CJerk = min
1

2

∫ t f

t=t0

···
β(t)2dt (4)

Even if not essential, some additional terms could be included in the criterion function
to minimize a weighted sum of multiple criteria. In [35], for example, the objective
function to be minimized is the integral of a weighted sum of squared jerk and the
execution time. Among all possible solutions, the following fifth order polynomial
trajectories seems to be the most recommended one in the literature [36]:

β(t) = at5 + bt4 + ct3 + dt2 + et + f (5)

where a, b, c, d, e, f are constants to be determined for each trajectory β(t). The
corresponding velocity and acceleration functions are easily deduced as:

β̇(t) = 5at4 + 4bt3 + 3ct2 + 2dt + e (6)

β̈(t) = 20at3 + 12bt2 + 6ct + 2d (7)

To compute the parameters a, b, c, d, c, e and f two main methods are used in the
literature: The Point-to-point method and the Via-point method. The Point-to-point
method requires the expression of the function to be minimized and the values of
positions, velocities and accelerations of only two points corresponding to the initial
and final time of the movement. The control algorithm corresponding to the Point-
to-point method only needs to run once. For each a trajectory β(t) the following
relation is used to compute the parameters a, b, c, d, e and f [37]:

A Minimum Jerk-Impedance Controller for Planning Stable and Safe Walking … 391

⎛
⎜⎜⎜⎜⎜⎜⎝

a
b
c
d
e
f

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

t5
0 t4

0 t3
0 t2

0 t0 1

t5
f t4

f t3
f t2

f t f 1

5t4
0 4t3

0 3t2
0 2t0 1 0

5t4
f 4t3

f 3t2
f 2t f 1 0

20t3
0 12t2

0 6. t0 2 0 0

20t3
f 12t2

f 6t f 2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1 ⎛
⎜⎜⎜⎜⎜⎜⎝

β0
β f

β̇0

β̇ f

β̈0

β̈ f

⎞
⎟⎟⎟⎟⎟⎟⎠

(8)

where:
β0, β̇0 and β̈0 are respectively the position, velocity and acceleration of the trajectory
β(t) at t0.
β f , β̇ f and β̈ f are respectively the position, velocity and acceleration of the trajectory
β(t) at t f .
For the Via-point method, such approach is recommended when obstacles occur in
the operating space where the robotic system evolves. In such cases, not only the
initial and final positions must be specified but also a number of desired intermediate
positions characterized by the time at which these positions must be reached. There-
fore, the number of intermediate points determines the accuracy of the reference
trajectory. This method implies that the algorithm is executed several times. If only
one desired intermediate position is specified, the parameters a, b, c, d, e and f are
computed as follows [38]:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

5t4
0 4t3

0 3t2
0 2t0 1 0

5t4
d 4t3

d 3t2
d 2td 1 0

5t4
f 4t3

f 3t2
f 2t f 1 0

20t3
0 12t2

0 6t0 2 0 0

20t3
d 12t2

d 6td 2 0 0

20t3
f 12t2

f 6t f 2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

a
b
c
d
e
f

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β0
βd

β f

β̇0

β̇d

β̇ f

β̈0

β̈d

β̈ f

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9)

where:

• td is an intermediate instant satisfying t0 < td < t f .
• βd , β̇d and β̈d are respectively the position, velocity and acceleration of the variable

βi (t) at td.

2.2.2 A Novel Approach of a Jerk Optimal Control

To optimize the Jerk for gait pattern generation in the three dimensional space during
the swing phase, we propose in this section a new optimal jerk approach different
from the Point-to-Point and Via-Point methods. Indeed, the Point-to-Point method
implies constraints on positions, velocities and accelerations on boundary conditions

392 A. Aloulou and O. Boubaker

whereas the Via-Point method imposes the same boundary constraints in addition
to other constraints related to some intermediate desired positions at the instants at
which these specific positions have to be reached.

Actually, the proposed approach is based on the generation of reference trajec-
tories specifying at each time iteration not only constraints at boundary conditions
or intermediate points but also constraints on the current positions, velocities and
accelerations. Furthermore, the proposed method induces three-dimensional refer-
ence trajectories involving both trigonometric and polynomial functions. This par-
ticular choice provides at the same time benefits of trigonometric functions requiring
fewer resources for real time implementation and benefits of polynomial functions
giving smoother dynamics and fewer vibrations. Finally, in order to realize an effi-
cient control law, easy to implement, trajectories will be planned in the Cartesian
space while the control law is depending on angular variables. Such control design
is very close to the human brain cognitive [39].

Considering the swing foot of the bipedal robot, the differential kinematic model
of the bipedal robot is given by:

Ẋ f (t) = J (θ)θ̇(t) (10)

where Ẋ f ∈ R3 is the Cartesian velocity vector for the swing foot and J (θ) ∈ R3×n

is the Jacobian matrix defined by:

J (θ) = ∂ X f (θ)

∂θ

∣∣∣
θd

(11)

where θd ∈ Rn is the desired joint position vector. The inverse kinematic model is
then given by:

θ(t) = J (θ)+
(
X f (t) − X f,d(t)

) + θd(t) (12)

where J (θ)+ is the pseudo-inverse of the Jacobian matrix. X f,d ∈ R3 is the desired
Cartesian position vector for the swing foot. The joint velocity vector θ̇ (t) is obtained
using the following equation:

θ̇ (t) = J (θ)+ Ẋ f (t) (13)

where Ẋ f is the Cartesian velocity. To get the joint acceleration vector θ̈ (t), one just
has to determine the first time derivative of the previous equation so that:

θ̈ (t) = J (θ)+
(
Ẍ f (t) − J̇ (θ)θ̇(t)

)
(14)

where J̇ (θ) is the first time derivative of the Jacobian matrix J (θ). Ẍ f is the Cartesian
acceleration. In order to produce a walking gait closed to a human one, the toe of
the biped robot has to follow a path similar to the one generated by the human
foot when performing a walking step. To reach this goal, we impose to the toe

A Minimum Jerk-Impedance Controller for Planning Stable and Safe Walking … 393

end effector a semi-elliptical trajectory in the sagittal plane such that the three-
dimensional Cartesian desired trajectory is described by:

X f,d = [g + v cos (α β(t) + π) w h + y sin (α β(t) + π)]T (15)

where, in this case, β(t) ∈ R designs the ankle joint trajectory in the sagittal plane
defined by the five order polynomial (5) and where its corresponding velocity and
acceleration functions are defined by (6) and (7), respectively. Furthermore, the
different constant coefficients of the polynomial function (5) are computed using
the relation (8) related to the Point-to-point approach. The pair (g, h) represents
the initial coordinates of the center of the ellipse in the sagittal plane. Parameter v
represents a half step length whereas w defines the distance between the two legs
and y represents the maximum height of the step. Parameter α is a multiplier used
in order to increase the variation range of the variable β(t). The first and second
derivatives of (15) with respect to time are respectively given by the two following
expressions:

Ẋ f,d = [−vα β̇(t) sin (α β(t) + π) 0 yαβ̇(t)cos (α β(t) + π)]T (16)

Ẍ f,d = [ẍ f,d ÿ f,d z̈ f,d]T (17)

where:

⎧⎪⎨
⎪⎩

ẍ f,d = −v
(
αβ̇(t)

)2
cos (αβ(t) + π) − vαβ̈(t)sin (αβ(t) + π)

ÿ f,d = 0

Z̈ f,d = −y
(
αβ̇(t)

)2
sin (αβ(t) + π) + yαβ̈(t)cos (αβ(t) + π)

During the SSP, the Minimum Jerk criterion is applied to reduce abrupt displacements
of the bipedal robot which is controlled via a linearizing control law. Actually, we
impose to the bipedal robotic model (1) to follow the following second order linear
input-output behavior [40]:

(
θ̈ (t) − θ̈d(t)

) + Kv,1
(
θ̇ (t) − θ̇d(t)

) + K p,1 (θ(t) − θd(t)) = 0

where Kv,1 and Kv,1 ∈ Rn×n are two positive definite diagonal matrices computed
offline to ensure global stability, decoupling properties and desired performances
[41]. If λ is the desired bandwidth, then to obtain a critically damped closed-loop
performance, we must select [16]:

Kv,1 = diag [2 λ] (18)

K p,1 = diag [λ2]

394 A. Aloulou and O. Boubaker

Using (1) and (18), the control law of the bipedal robot when achieving the swing
phase is deduced as:

U (t) = D−1
(

M(θ)
[
θ̈d(t) − Kv,1

(
θ̇ (t) − θ̇d(t)

) − K p,1 (θ(t) − θd(t))
]

+ H(θ, θ̇) + G(θ)
)

(19)

Figure 2 explains all required steps for the achievement of the novel Jerk optimal
control approach.

The calculus of a control law based on the proposed approach of the Jerk optimal
control includes the following steps:

i. Computing the initial joint position vector θi and the final joint position vector
θ f using the inverse kinematic model (12).

ii. Generation of β(t), β̇, β̈(t) trajectories based on the Point-to-Point method
according to Eqs. (5)–(7) applied to the initial and final joint constraints and
taking also account of time data t0 and t f .

iii. Generation of semi-ellipsoidal reference trajectories in the Cartesian space by
computing at each time iteration the reference Cartesian positions, velocities and
accelerations X f,d(t), Ẋ f,d(t) and Ẍ f,d(t) according to Eqs. (15)–(17), respec-
tively.

Fig. 2 The novel approach of Minimum Jerk based control during the swing phase

A Minimum Jerk-Impedance Controller for Planning Stable and Safe Walking … 395

iv. Generation of the desired joint trajectories θd(t), θ̇d(t) and θ̈d(t) using (12)–(14).
v. Computing the Jerk optimal control law U (t) using (19).

vi. Implementation of the control law U (t) to the free robotic system (1) in order
to generate joint position and velocity vectors θ(t) and θ̇ (t) using (13) and (14).
θ(t) and θ̇ (t) are supposed to be measured via online sensors.

vii. Generation of Cartesian trajectories X f (t) and Ẋ f (t) by applying the direct
kinematic model (10).

2.3 Impedance Based Control for the Constrained Phases

To control the bipedal robot during the impact and double support stages, we have
chosen to implement the impedance based control proposed in [25]. Indeed, the
impedance control represents an efficient control law to overcome difficulties raised
in the impact phase. Moreover, it guaranties a stable and safe elastic contact with the
ground as it takes into consideration environmental parameters related to the nature
of the ground and the contact type. Regarding the control law implementation to
the bipedal robot, it is simple since the same control expression is used in IP and
DSP. During the ground contact, the free end of the biped, at the completion of the
step, comes into contact with the ground. This phase is assumed to take place in an
infinitesimal time interval [32]. For the constrained model (2), the ground reaction
force is given by [25]:

F = Fd − Kd(X f,d − X f) − Bd
(
Ẋ f,d − Ẋ f

) − Md
(
Ẍ f,d − Ẍ f

)
(20)

where Fd ∈ R3 is a desired reaction force and Kd , Bd , Md ∈ R3×3 are the stiffness,
the damping and the inertia matrices, respectively. These three parameters character-
ize the contact type and the environment nature where the contact takes place, under
the following control law:

U = D−1 J (θc)
+[K p,2(X f,d − X f) − Kv,2

(
Ẋ f,d − Ẋ f

) + K f (Fd − F) + Fd]
+ D−1G(θ) (21)

where J (θc)
+ is the pseudo-inverse of the Jacobian matrix of the bipedal robotic

system at the contact point c and where K p,2, Kv,2 and K f ∈ R3×3 are diagonal
matrices representing respectively the position, velocity and force gains related to the
impedance control law. Using a Lyapunov approach, the asymptotic stability of the
robotic system (2) is guaranteed if the following stability conditions are satisfied [25]:

K p,2 > 0

Kv,2 > 0 (22)

k f = −I

where I ∈ R3×3 is the identity matrix.

396 A. Aloulou and O. Boubaker

Fig. 3 The impedance based control implemented during the constrained phases

Figure 3 shows all involved parameters in the impedance control implementation.
Parameters Kp,2, Kv,2 and Kf are computed offline to satisfy the Lyapunov asymptotic
conditions (22). However and even if a trajectory inside a sagittal plane is imposed,
some step parameters like the reference Cartesian positions, velocities and accelera-
tions X f,d(t), Ẋ f,d(t) and Ẍ f,d(t) and the desired joint trajectories θd(t), θ̇d(t) and
θ̈d(t) are calculated online at each time iteration. Online sensors are used to measure
real joint trajectories θ(t), θ̇ (t) and θ̈ (t) and the contact forces with the ground F .

3 Application to a Humanoid Robot Prototype

In this section the control laws proposed in the last section will be applied to a
Humanoid robot prototype which a particular morphology very close to a human
one [41].

3.1 The Anthropomorphic Model of the Humanoid Robot

The Humanoid robot prototype [41] considered in this paper is composed of fif-
teen links associated to twenty-six degrees of freedom (DOF). The morphological
constitution of the humanoid robot corresponds to a human being’s whole anatomy
with a weight of 70 kg and a height of 1.73 m. Furthermore, we take account on the
following assumptions:

A Minimum Jerk-Impedance Controller for Planning Stable and Safe Walking … 397

Assumption 1: The connection between upper and lower bodies is made by a pas-
sive joint. Indeed, trunk and pelvis rigid bodies are assumed not to
be subject to rotations however their mere presence allows the rigid
bodies to move in a correct way. Hence, the upper body’s mass is
considered and taken into account during the gait calculation and
simulations of the lower body.

Assumption 2: The vectors of joint position θ , joint velocity θ̇ , joint acceleration
θ̈ and contact forces with the ground F are measured via online
sensors.

Assumption 3: During the gait cycle, the humanoid robot is supposed to evolve
in a well known environment where no obstacles are encountered.
Therefore, no adaptive controls are required.

Assumption 4: The ground contact surface is assumed to be smooth and regular.

Figure 4 and Table 1 show the involved rotations for each link. The whole
humanoid robot is composed of two independent robotic systems: the upper body
and the lower body.

Fig. 4 The Humanoid robot
prototype

398 A. Aloulou and O. Boubaker

Table 1 Rigid bodies and articulations

Link Link description Joint Joint description Degrees of freedom

C1 Right foot J1 Right ankle ξ1 = [0 θ1 θ2]

C2 Right leg J2 Right knee ξ2 = [0 θ1 θ3]

C3 Right thigh J3 Right hip ξ3 = [θ4 θ5 θ6]

C4 Pelvis J7 Passive joint ξ4 = [0 0 0]

C5 Left thigh J4 Left hip ξ5 = [θ7 θ8 θ9]

C6 Left leg J5 Left knee ξ6 = [0 θ10 θ11]

C7 Left foot J6 Left ankle ξ7 = [0 θ10 θ12]

C8 Trunk J7 Passive joint ξ8 = [0 0 0]

C9 Head and neck J8 Neck ξ9 = [0 θ13 θ14]

C10 Right arm J9 Right shoulder ξ10 = [θ15 θ16 θ17]

C11 Right forearm J10 Right elbow ξ11 = [0 θ18 0]

C12 Right hand J11 Right wrist ξ12 = [0 θ19 θ20]

C13 Left arm J12 Left shoulder ξ13 = [θ21 θ22 θ23]

C14 Left forearm J13 Left elbow ξ14 = [0 θ24 0]

C15 Left hand J14 Left wrist ξ15 = [0 θ25 θ26]

Winter statistical model [42] was used to determine all physical parameters corre-
sponding to each link Ci. Each rigid body Ci of the humanoid robot is characterized
by the following physical parameters (see Fig. 5):

• ki ∈ �: Proximal distance defined as the distance from the center of gravity to the
connect joint of the previous link Ci−1.

• li ∈ �: Distal distance defined as the distance from the center of gravity to the
connect joint of the next link Ci+1.

Since the kinematic model is elaborated in the three dimensional space, we define
Ki ∈ �3×1 and Li ∈ �3×1 as respectively the proximal and distal distance vectors
of the link Ci given by:

Ki = [0 0 Ki]T and Li = [0 0 li]T

Each rigid body Ci of the bipedal robot is characterized by the previous physical
parameters plus the following physical parameters:

• mi ∈ �: Mass of the link Ci
• ii ∈ �: Inertia about the center of mass of the link Ci

Since the dynamic model is elaborated in the three dimensional space, the fol-
lowing three dimensional parameters are considered:

A Minimum Jerk-Impedance Controller for Planning Stable and Safe Walking … 399

Fig. 5 Segmental
proportions of rigid bodies

– Mi ∈ �3×3: mass matrix of the link Ci given by:

Mi =
⎛
⎝ mi 0 0

0 mi 0
0 0 mi

⎞
⎠

– Ii ∈ �3×3: Inertia matrix about the center of mass of link Ci described by:

Ii =
⎛
⎝ ii x 0 0

0 iiy 0
0 0 ii z

⎞
⎠

Table 2 gives all segmental physical parameters.

400 A. Aloulou and O. Boubaker

Table 2 Physical parameters obtained via winter model

Link ki (m) li (m) mi (kg) Inertia about center of mass (kg m−2)

ii x ii x ii x

Right foot 0.034 0.034 1.015 0.001 0.001 0.001

Right leg 0.184 0.241 3.255 0.051 0.051 0.051

Right thigh 0.184 0.240 7.000 0.113 0.113 0.113

Pelvis 0.021 0.178 9.940 0.112 0.112 0.112

Left thigh 0.240 0.184 7.000 0.113 0.113 0.113

Left leg 0.241 0.184 3.255 0.051 0.051 0.051

Left foot 0.034 0.034 1.015 0.001 0.001 0.001

3.2 Kinematic and Dynamic Modelling of the Bipedal Robot

All along this chapter, we focus only on the bipedal part of the humanoid robot
presented in the last section. The direct and inverse kinematics of the humanoid robot
are obtained using Euler’s transformation principle [43]. Let X = [X1, . . . , X7]T

be the vector of Cartesian positions for links center of gravity and let Ai be the
transformation matrix of link Ci from the body coordinate system to the inertial
coordinate one. The robot implicit kinematic model is then described by:

Xi = Ai (Li − Ki) + Xi−1, i = 1, . . . , 15 (23)

where Xi is the vector of Cartesian positions of the link Ci. An explicit expression
of the bipedal robot kinematic model is given here under:

X7 = A7(L7 − K7) + A6(L6 − K6) + A5(L5 − K5) + A4(L4 − K4)

+ A3(L3 − K3) + A2(L2 − K2) + A1(L1 − K1)

We consider at this level a number of standard scenarios [44–46] to validate the
lower body kinematic model. Figure 6 shows validation of standard scenarios for
the Humanoid robot lower body. The different postures are represented in both the
sagittal and frontal planes.

The three dimensional dynamic modeling of the seven linked bipedal robot has
been accurately developed using the Newton-Euler formalism [47] for the SSP, the
IP and DSP.

In order to reach the dynamic model we use Hemami’s works [29, 43] and we
suggest a generalized motion equation for the translation as in (24) and the rotation
as in (25) of each link Ci:

Mi Ẍi = Mig + Γi − Γi+1. (24)

Ii ẇi = fi + Fi + Fi+1 + Gi + Gi+1 + τi + τi+1 (25)

A Minimum Jerk-Impedance Controller for Planning Stable and Safe Walking … 401

Fig. 6 Standard scenarios for the Humanoid robot lower body

402 A. Aloulou and O. Boubaker

where:
Wi , Ẇi : Angular position and acceleration of the link Ci.
Xi , Ẍi : Linear position and acceleration of the link Ci
Fi , Ḟi+1: Torques due to the holonom force applied respectively to the proximal and
distal articulation of the link Ci expressed in the body coordinate system
Gi , Gi+1: Non-holonom torques applied respectively to the proximal and distal artic-
ulation of the link Ci expressed in the body coordinate system
τi , τi+1: Muscular torques applied respectively to the proximal and distal articulation
of the link Ci expressed in the body coordinate system
Γi , Γi+1: Holonom forces applied respectively to the proximal and distal articulation
of the link Ci expressed in the inertial coordinate system
fi : Intrinsic torque of the link Ci expressed in the body coordinates system (xi, yi, zi)

and relating angular velocity to the link inertia.
Human body’s balance of forces and torques reveals that humanoid limbs are

subject to three kinds of forces: holonom, non holonom and mechanic forces [43].
Figure 7 shows the applied forces and torques to the humanoid lower body.

A clear and sequential methodology to follow in order to establish a reduced and
expendable dynamic model is rigorously explained in [47]. Using this method, the
dynamic model of the Humanoid robot lower body has been reduced such moving
from 42 initial DOFs to only 12 state variables.

Fig. 7 Applied forces and
torques to the Humanoid
robot lower body

A Minimum Jerk-Impedance Controller for Planning Stable and Safe Walking … 403

3.3 Jerk Optimal Control

Obviously initial conditions have a great influence on the bipedal robot’s trajectory
and equilibrium as the robotic system has an inherent nonlinear and very complex
dynamical model due to the high number of degrees of freedom involved. To the
best of our knowledge, there is no specific methodology that could be used to obtain
optimal initial conditions. Therefore, based on previous standard validation scenarios,
initial angular conditions are inspired on the one hand by the usual and common
posture of a Human being when starting a walking step with a swinging left foot
and on the other hand by very intensive simulations. The combination of angular
corresponding positions is validated with Fig. 8 and is given by:

θi =
[

− π

11
0 0 0 − π

9
0 0

π

9
0

π

11
− 0.0089 0

]T

Indeed, Fig. 8 shows the bipedal robot initial posture in the 3D space.
Using direct kinematic modelling given, initial Cartesian conditions are given by:

X f,i = [0 0.53 0]T

A semi-elliptical trajectory for a walking step of 0.5 s duration is generated using
the parameters given in Table 3. It corresponds to a velocity of 0.6 m s−1 which is an
acceptable Cartesian velocity when compared to current state of the art gait velocities
rates for walking Humanoid robots [48, 49].

The fifth order angular trajectory is given then by:

β(t) = −3.18t5 + 6.36t4 − 3.39t3 − 0.0089

Position and velocity gains related to the Minimum Jerk control law are chosen
so that global stability conditions (18) are satisfied for a desired bandwidth λ = 12
such that:

Fig. 8 Initial posture for the
bipedal robot

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.4

-0.2
0

0.2
0.4

0.6
0.8

0

0.2

0.4

0.6

0.8

1

1.2

 Y

X

Z

404 A. Aloulou and O. Boubaker

Table 3 Parameters of the Cartesian desired trajectory

v (m) w (m) y (m) α (m) (g, h) (m)

0.15 0.53 0.1 16.5 (0.15, 0)

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

Time (s)

 X
d (

m
)

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

Time (s)

 X
 (

m
)

0 0.1 0.2 0.3 0.4 0.5
-1

0

1

2

Time (s)

 Y
d
 (

m
)

0 0.1 0.2 0.3 0.4 0.5
0.52

0.525

0.53

0.535

0.54

Time (s)

 Y
 (

m
)

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

Time (s)

 Z
d (

m
)

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

Time (s)

 Z
 (

m
)

Fig. 9 Desired and real Cartesian positions of the swing foot for a walking step

K p,1 = diag [24 24 24]
Kv,1 = diag [144 144 144]

Figure 9 shows the evolution of the desired and real positions of the swing foot in
the 3D Cartesian space while Fig. 10 represents the real Cartesian trajectory of the
swing foot during the realization of a walking step.

Fig. 10 Real Cartesian
trajectory of the swing foot
during a walking step

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.02

0.04

0.06

0.08

0.1

0.12

X (m)

 Z
 (

m
)

A Minimum Jerk-Impedance Controller for Planning Stable and Safe Walking … 405

0 0.1 0.2 0.3 0.4 0.5
-0.1

0

0.1

Time (s)

 x
7

(r
ad

)

0 0.1 0.2 0.3 0.4 0.5
-0.5

0

0.5

Time (s)

 x
7

V
el

oc
ity

 (

ra
d

/ s
)

0 0.1 0.2 0.3 0.4 0.5
-5

0

5

Time (s)

 x
7

A
cc

el
er

at
io

n

 (
ra

d
/ s

2)

0 0.1 0.2 0.3 0.4 0.5
0.2

0.4

0.6

Time (s)

 x
8

(r
ad

)

0 0.1 0.2 0.3 0.4 0.5
-2

0

2

Time (s)
 x

8
V

el
oc

ity

 (
ra

d
/ s

)
0 0.1 0.2 0.3 0.4 0.5

-40

-20

0

20

Time (s)

 x
8

A
cc

el
er

at
io

n

(r
ad

 /
s2

)

0 0.1 0.2 0.3 0.4 0.5
-0.2

0

0.2

Time (s)

 x
9

(r
ad

)

0 0.1 0.2 0.3 0.4 0.5
-2

-1

0

1

Time (s)

 x
9

V
el

oc
ity

(r
ad

 /
s)

0 0.1 0.2 0.3 0.4 0.5
-10

0

10

Time (s)

 x
9

A
cc

el
er

at
io

n

 (
ra

d
/ s

2)
0 0.1 0.2 0.3 0.4 0.5

0.2

0.3

0.4

0.5

Time (s)

 x
10

 (
ra

d)

0 0.1 0.2 0.3 0.4 0.5
-1

0

1

2

Time (s)

 x
10

 V
el

oc
ity

(r
ad

 /
s)

0 0.1 0.2 0.3 0.4 0.5
-20

-10

0

10

Time (s)

 x
10

 A
cc

el
er

at
io

n

 (
ra

d
/ s

2)

0 0.1 0.2 0.3 0.4 0.5
-0.2

-0.1

0

Time (s)

 x
11

 (
ra

d)

0 0.1 0.2 0.3 0.4 0.5
-2

-1

0

1

Time (s)

 x
11

 V
el

oc
ity

 (

ra
d

/ s
)

0 0.1 0.2 0.3 0.4 0.5
-10

0

10

20

Time (s)

 x
11

 A
cc

el
er

at
io

n

(r
ad

 /
s2

)

0 0.1 0.2 0.3 0.4 0.5
-1

0

1
x 10

-5

Time (s)

 x
12

 (
ra

d)

0 0.1 0.2 0.3 0.4 0.5
-4

-2

0

2
x 10

-6

Time (s)

 x
12

 V
el

oc
ity

 (

ra
d

/ s
)

0 0.1 0.2 0.3 0.4 0.5
-2

0

2
x 10

-6

Time (s)

 x
12

 A
cc

el
er

at
io

n

 (
ra

d
/ s

2)

Fig. 11 Evolution of the joint positions, velocities and accelerations of the swing foot during the
swing phase

Figure 11 shows the evolution in time of the position, velocity and acceleration of
the swing foot joints. All angular position reach after the step duration their desired
values, this is emphasized by the very low values of velocities and accelerations at
the step completion.

Figure 12 emphasizes the control laws involved in the swing foot motion for a
walking step of 0.5 s duration.

Simulation results show the efficiency of the Minimum jerk control. Minimum
Jerk observed benefits are the smoothness of the foot trajectory and the absence of
sudden movements.

406 A. Aloulou and O. Boubaker

0 0.1 0.2 0.3 0.4 0.5
-500

0

500

Time (s)

 U
7

(N
m

 /
s)

0 0.1 0.2 0.3 0.4 0.5
-200

-100

0

100

200

Time (s)

 U
8

(N
m

 /
s)

0 0.1 0.2 0.3 0.4 0.5
-100

-50

0

50

100

Time (s)

 U
9

(N
m

 /
s)

0 0.1 0.2 0.3 0.4 0.5
-500

0

500

Time (s)
 U

10
 (

N
m

 /
s)

0 0.1 0.2 0.3 0.4 0.5
-200

-100

0

100

200

Time (s)

 U
11

 (
N

m
 /

s)

0 0.1 0.2 0.3 0.4 0.5
-100

-50

0

50

Time (s)

 U
12

 (
N

m
 /

s)

Fig. 12 Evolution of the control laws of the swing foot during the swing phase

3.4 Impedance Based Control

Simulation of the bipedal robot during the IP and DSP is established using the
constrained model (2) for the control law (21) and the ground reaction force (20).
Environmental parameters used to describe the contact environment are inspired by
the Park’s research work [50] as:

Kd = diag [104 104 104]
Bd = diag [630 630 630]
Md = diag [10−2 10−2 10−2]

Regarding the reference ground reaction force, its role is to allow the free leg located
at a height of 0.01 m from the ground to land on the contact area and at the same
time to enable a low foot sliding along the x-axis. The resulting ground reaction
force is composed of a vertical component and a normal one. According to [21],
the vertical component of the reference external force has to emphasize the weight
transfer of the bipedal robot from the right supporting foot to the left free foot.

A Minimum Jerk-Impedance Controller for Planning Stable and Safe Walking … 407

The normal component of the reference ground reaction force is usually a low value
but high enough to enable a short translation of the left foot along the x-axis. Thus,
Fd is chosen as follows:

Fd = [30 0 300]T

Position, velocity and force gains related to the impedance control law are computed
offline so that the Lyapunov asymptotic stability conditions (22) are satisfied:

K p,2 = diag [104 104 104]
Kv,2 = diag [600 600 600]
K f = − diag [1 1 1]

Actually, the final position reached by the swinging foot while applying a Minimum
Jerk control law during the SSP represents the initial position of the robotic system
when starting the IP. The duration of the free phase is 0.5 s and the constrained phases’
duration is 0.2 s. Consequently, the swinging foot initial Cartesian position for the
impact and double support phases is given by:

X f,i = [0.3 0.53 0.01]T

The final desired Cartesian position of the active foot at the step completion is:

X f, f = [0.35 0.53 0]T

To explore the relevance of the proposed approach, we consider two case studies for
simulation.

3.4.1 Case Study 1: Smooth and Regular Ground Surface and No
Sensory Noise

This case study validates the proposed methodology of Minimum Jerk control for gait
pattern generation under the stated assumptions. The Humanoid robot is supposed
then to evolve in a smooth and regular ground contact surface. Furthermore, no
sensory noise occurs here. Simulation results show the evolution of the active leg
variables when the robot end-effector achieves a complete walking step. The ground
reaction force is shown in Fig. 13. The active foot Cartesian components along x and
z axis are represented in Fig. 14 while the real Cartesian trajectory of the humanoid
robot free foot is shown in Fig. 15.

During the SSP, the ground reaction force is null. Then at the impact, it takes the
shape of a delta impulse such reaching a maximal value of 750 N. Finally after the
impact, the ground reaction force gradually decreases and gets stabilized at the value
of 300 N.

408 A. Aloulou and O. Boubaker

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

100

200

300
400

500

600

700
800

 F
 (

N
)

Time (s)

Fig. 13 Evolution of the ground reaction force during a walking step

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

Time (s)

 X
 (

m
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-0.05

0

0.05

0.1

0.15

Time (s)

 Z
 (

m
)

Fig. 14 Real Cartesian components of the active foot during a walking step

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-0.01

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

X (m)

Z
 (

m
)

Fig. 15 Real Cartesian trajectory of the active foot during a walking

A Minimum Jerk-Impedance Controller for Planning Stable and Safe Walking … 409

Figure 14 emphasizes the real Cartesian positions evolution for the swinging foot
during the achievement of a whole walking step. At the moment of impact, it clearly
appears that Cartesian positions along x and z axis observe a decrease of their velocity
convergence in order to avoid that the foot gets pushed across the floor. Desired
Cartesian positions of the free foot are reached tf = 0.7 s which is the specified time
for step completion. The Cartesian trajectory of the moving leg is represented in
Fig. 15. During the free stage, the swinging leg follows a semi-ellipsoidal trajectory.
This shape is quite close to a human leg motion while achieving a walking step. At
the contact point, the trajectory taken by the bipedal robot is similar to a line segment
with a negative slope and at the end of the double support phase, the Humanoid robot
leg slides along the contact area.

3.4.2 Case Study 2: Uncertain Stiffness of the Ground Surface and
Sensory Noise

In this case, the objective is to analyze the robustness of the proposed approach
to the environment uncertainties and sensory noise. Actually, the Humanoid robot
evolves in an unknown environment as we consider an uncertainty on stiffness in the
environment model. Furthermore, sensory noise is introduced. Indeed we consider
a Gaussian noise of 0.01◦ mean and 0.01◦ standard deviation for the joint position
measurements and 0.05◦ s−1 mean and 0.05◦ s−1 standard deviation for the joint
velocity measurements. Damping and inertia environmental parameters previously
given are used while the stiffness parameter is subject to uncertainties such that:

Kd = [1 + 2000 ∗ sin(t)] ∗ diag [104 104 104]

Simulation results show the effect of sensory noise and stiffness uncertainties on the
contact force and torques during the impact and double support phases. Hence, the
ground reaction force is represented in Fig. 16 while Fig. 17 shows the control laws
involved in the swing foot motion.

The active foot Cartesian components along x and z axis are represented in Fig. 18.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

100
200
300
400
500
600
700
800

Time (s)

 F
 (

N
)

Fig. 16 Evolution of the ground reaction force during a walking step

410 A. Aloulou and O. Boubaker

0 0.2 0.4 0.6 0.8
-500

0

500
 U

7
(N

m
 /s

)

0 0.2 0.4 0.6 0.8
-200

0

200

 U
8

(N
m

 /s
)

0 0.2 0.4 0.6 0.8
-100

0

100

Time (s)

Time (s)

Time (s)

Time (s)Time (s)

Time (s)

 U
9

(N
m

 /s
)

0 0.2 0.4 0.6 0.8
-500

0

500

 U
10

 (
N

m
 /s

)

0 0.2 0.4 0.6 0.8
-200

0

200

 U
11

 (
N

m
 /s

)

0 0.2 0.4 0.6 0.8
-100

0

100

 U
12

 (
N

m
 /s

)

Fig. 17 Evolution of the control laws of the swing foot during the swing phase

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

Time (s)

 X
 (

m
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-0.05

0

0.05

0.1

0.15

Time (s)

 Z
 (

m
)

Fig. 18 Real Cartesian components of the active foot during a walking step

Even if the noise and environment uncertainties are not modeled in the design of
the controller, simulation results emphasize the efficiency of the control law and the
robustness of the proposed method as perturbations have no effect on the bipedal
robot trajectory. We must however note that the effects of vibration are observed in
control laws.

A Minimum Jerk-Impedance Controller for Planning Stable and Safe Walking … 411

-0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

X (m)

 Z
 (

m
)

Fig. 19 The 3D gait pattern generation during a walking cycle

3.5 Walking Cycle Generation

To show the walking gait pattern generation during a whole walking cycle, the differ-
ent rigid bodies composing the bipedal robot are represented in the Cartesian three
dimensional space in Fig. 19. Figure 20 gives the evolution in time of the z coordi-
nate of the two feet and the ground reaction force during the achievement of three
alternate walking steps.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.1

-0.05

0

0.05

0.1

Time (s)

Time (s)

Time (s)

Z
 o

f
le

ft
 f

oo
t (

m
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.1

-0.05

0

0.05

0.1

Z
 o

f
ri
gh

t f
oo

t (
m

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

200
400
600
800

 F
 (

N
)

Fig. 20 The two feet z coordinate and the contact force during a walking cycle

412 A. Aloulou and O. Boubaker

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0
0.2

0.4
0.6

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

X (m)

 Y (m)

 Z
 (

m
)

Fig. 21 Intermediate positions of the whole Humanoid robot during a walking cycle

In Fig. 19, the several postures taken by the bipedal robot emphasize its motion
along the time and shows well the achievement of three alternate footsteps starting
with a step initiated by the left foot (in blue). Two steps initiated by the left foot are
alternate with one step by the right foot. Thus, the alternation of the Minimum Jerk
and impedance based control laws represents an efficient control combination for the
achievement of a stable walking cycle. Actually, it combines benefits of both control
laws a smooth motion during the swing phase and a stable and safe elastic contact
with the ground in the constrained phases.

In order to realize the whole Humanoid motion, we adopt two separate controls
for the upper and lower bodies where position, velocity and time objectives allow the
synchronization of movements between upper and lower limbs during gait. Thus,
using the same strategy of linearizing control law (19), we impose to the arms a
movement from the inside to the outside according to the walking cycle phase con-
sidered. Figure 21 represents in the Cartesian 3D space the several postures taken by
the robot during the achievement of two alternate footsteps. We notice that only the
two arms, forearms and hands are moving from the inside to the outside in a motion
that is alike a human being’s one.

4 Future Works

Even if stability conditions are guaranteed, tuning control parameters remains a dif-
ficult issue considering the complexity of models (1) and (2). The optimization of
the controller parameters using multi-objective criteria and biological-inspired opti-
mization techniques known for their global convergence and good performances and

A Minimum Jerk-Impedance Controller for Planning Stable and Safe Walking … 413

also using results of [51] will be addressed in future works. On the other hand, safety
is mostly ensured through control software level during the SSP and DSP. Actually,
the current control system is designed in order to authorize corrective forces and
torques to the ground characteristics through suitable choice of stiffness, damping
and inertia parameters for the impedance control approach. In future works, a quan-
titative index must be established to evaluate the safety criterion [52]. Furthermore,
robust safe motion under unknown environment and in presence of obstacles will be
addressed based on [53, 54].

5 Conclusion

In this chapter, satisfying control laws have been proposed to provide good dynamic
performances in terms of stability, smoothness and safety for bipedal robots during a
gait cycle resembling as much as possible to a Human being one. Indeed, during the
swing phase a novel Minimum Jerk control strategy is produced to generate a stable
semi-ellipsoidal motion trajectory without dynamic vibrations and control shakings
while an appropriate impedance control law is proposed to ensure stable and safe
elastic contact balance at foot landings on the ground even in presence of sensory
noise and uncertainties on the environment stiffness. Simulation results performed
on a 15 link/26 DOF Humanoid robot with a weight of 70 kg and a height of 1.73 m
walking at a velocity of 0.6 m s−1 show the effectiveness of the proposed strategy
and better performances compared to related approaches. Future works will focus
on optimizing tuning controller parameters to ensure faster speed for the SSP and
better safety performances and robustness for the IP and DSP.

References

1. Carbone G, Ceccarelli M (2005) Legged robotic systems. Cutting edge robotics ARS scientific
book. Wien, pp 553–576

2. Harada K, Yoshida E, Yokoi K (2010) Motion planning for humanoid robots. Springer, New
York

3. Harada K, Yoshida E, Yokoi K (2004) Motion planning for humanoid robots. Springer, New
York

4. Piazzi A, Visioli A (2000) Global minimum-jerk trajectory planning of robot manipulators.
IEEE Trans Ind Electron 47(1):140–149

5. Hogan N (1984) An organizing principle for a class of voluntary movements. J Neurosci
4:2745–2754

6. Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed
mathematical model. J Neurosci 5:1688–1703

7. Hogan N (1984) Adaptive control of mechanical impedance by co-activation of antagonist
muscles. IEEE Trans Autom Control AC-29:681–690

8. Kyriakopoulos KJ, Saridis GN (1988) Minimum jerk path generation. In: Proceedings of the
IEEE international conference on robotics and automation, pp 364–369

9. Simon D, Isik C (1991) Optimal trigonometric robot joint trajectories. Robotica 9(4):379–386

414 A. Aloulou and O. Boubaker

10. Simon D (1993) The application of neural networks to optimal robot trajectory planning. Robot
Auton Syst 11(1):23–34

11. Doang Nguyen K, Ng TC, Chen IM (2008) On algorithms for planning S-curve motion profiles.
Int J Adv Robot Syst 5:99–106

12. Amirabdollahian F, Loureiro R, Harwin W (2002) Minimum jerk trajectory control for reha-
bilitation and haptic applications. In: Proceedings of the IEEE international conference on
robotics and automation, pp 3380–3385

13. Alfredo R, Riosa O, Romero-Troncoso RJ, Herrera-Ruiza G, Castaneda-Miranda R (2009)
FPGA implementation of higher degree polynomial acceleration profiles for peak jerk reduction
in servomotors. Robot Comput-Integr Manuf 25:379–392

14. Flash T, Henis E (1991) Arm trajectory modification during reaching toward visual targets. J
Cogn Neurosci 3(3):220–230 (1991)

15. Boonpratatong A, Malisuwan S, Degenaar P, Veeraklaew T (2008) A minimum-jerk design of
active artificial foot. Mechatron Embed Syst Appl 10:443–448

16. Aloulou A, Boubaker O (2011) Minimum jerk-based control for a three dimensional bipedal
robot. In: Jeschke S, Liuet H, Schilberg D (eds) Intelligent robotics and applications, Lecture
notes in computer science. vol 7120. Springer, Heidelberg, pp 251–262

17. Sung C, Kagawa T, Uno Y (2013) Whole-body motion planning for humanoid robots by
specifying via-points. Int J Adv Robot Syst 10:1

18. Hogan N (1984) Impedance control: an approach to manipulation. American Control Confer-
ence, pp 304–313

19. Yoshikawa T (2000) Force control of robot manipulators. IEEE Int Conf Robot Autom 1:
220–226

20. Arevalo JC, Garcia E (2012) Impedance control for legged robots: an insight into the concepts
involved. IEEE Trans Syst, Man, Cybern, Part C: Appl Rev 42(6):1400–1411

21. Park JH, Chung H (1999) Hybrid control for biped robots using impedance control and
computed-torque control. IEEE Int Conf Robot Autom 2:1365–1370

22. Lim HO, Setiawan SA, Takanishi A (2004) Position-based impedance control of a biped
humanoid robot. Adv Robot 18(4):415–435

23. Carbone G, Lim HK, Takanishi A, Ceccarelli M (2006) Stiffness analysis of biped humanoid
robot WABIAN-RIV. Mech Mach Theory 41(1):17–40

24. Kwon O, Park JH (2009) Asymmetric trajectory generation and impedance control for running
of biped robots. Auton Robot 26(1):47–78

25. Mehdi H, Boubaker O (2011) Stiffness and impedance control using Lyapunov theory for
robot-aided rehabilitation. Int J Soc Robot 4:107–119

26. Katić DM, Rodić AD, Vukobratović MK (2008) Hybrid dynamic control algorithm for
humanoid robots based on reinforcement learning. J Intell Robot Syst 51(1):3–30

27. Darmana R (2004) Le Cycle de la Marche Normale. La lettre de l’Observatoire du mouvement,
11:2

28. Viton JM, Bensoussan L, de Bovis Milhe V, Collado H, Delarque A (2006) Marche Normale
et Marche Pathologique, Faculté de Médecine, Université de la Méditerranée, Fédération de
Médecine Physique et de Réadaptation, CHU Timone, Marseille

29. Hemami H, Zheng YF (1984) Dynamics and control of motion on the ground and in the air
with application to biped robots. J Robot Syst 1(1):101–116

30. Chemori A, Alamir M (2004) Multi-step limit cycle generation for rabbit’s walking based on
a nonlinear low dimensional predictive control scheme. Mechatronics 16(5):259–277

31. Cho BK, Park IW, Oh JH (2009) Running pattern generation of humanoid biped with a fixed
point and its realization. Int J Humanoid Robot 6(4):631–656

32. Westervelt ER, Grizzle JW, Koditschek DE (2003) Hybrid zero dynamics of planar biped
walkers. IEEE Trans Autom Control 48(1):42–56

33. Hemami H, Utkin VI (2002) On the dynamics and Lyapunov stability of constrained and
embedded rigid bodies. Int J Control 75(6):408–420

34. Shadmehr R, Wise SP (2005) The computational neurobiology of reaching and pointing: a
foundation for motor learning. MIT Press, Cambridge

A Minimum Jerk-Impedance Controller for Planning Stable and Safe Walking … 415

35. Gasparetto A, Zanotto V (2010) Optimal trajectory planning for industrial robots. J Adv Eng
Softw 41(4):548–556

36. Morimoto J, Atkeson CG (2007) Learning biped locomotion: application of Poincaré-map-
based reinforcement learning. IEEE Robot Autom Mag 14(2):41–51

37. Miyamoto H, Morimoto J, Doya K, Kawato M (2004) Reinforcement learning with via-point
representation. Neural Netw 17:299–305

38. Piazzi A, Visioli A (1997) An interval algorithm for minimum-jerk trajectory planning of robot
manipulators. Conference on Decision and Control, vol 2, pp 1924–1927

39. Saimpont A, Malouin F, Tousignant B, Jackson PL (2012) The influence of body configuration
on motor imagery of walking in younger and older adults. Neuroscience 222(11):49–57

40. Arous Y, Boubaker O (2012) Gait trajectory generation for a five link bipedal robot based on
a reduced dynamical model. 16th IEEE mediterranean electro-technical conference, Yasmine
Hammamet

41. Aloulou A, Boubaker O (2010) Control of a step walking combined to arms swinging for a
three dimensional humanoid prototype. J Comput Sci 6(8):886–895

42. Winter DA (2009) Biomechanics and motor control of human movement, 4th edn. Wiley, New
York

43. Hemami H (1982) Some aspects of Euler-Newton equations of motion. Arch Appl Mech 52
(3–4):167–176

44. Shoushtari AL, Abedi P (2012) Realistic dynamic posture prediction of humanoid robot: manual
lifting task simulation. Lect Notes Comput Sci 7506:565–578

45. Atkeson CG, Hale JG, Riley M, Kotosaka S, Schaul S, Shibata T, Tevatia G, Ude A, Vijayakumar
S, Kawato E, Kawato M (2000) Using humanoid robots to study human behavior. J Intell Syst
Appl 15(4):46–56

46. Aloulou A, Boubaker O (2013) Model validation of a humanoid robot via standard scenarios.
14th international conference on sciences and techniques of automatic control and computer
engineering, Sousse, Tunisia

47. Aloulou A, Boubaker O (2012) A relevant reduction method for dynamic modeling of a seven-
linked humanoid robot in the three-dimensional space. Procedia Eng 41:1277–1284

48. Castley D, Oh P (2011) Development and application of a gel actuator for the design of a
humanoid robotic finger. IEEE conference on technologies for practical robot applications,
pp 105–108

49. http://world.honda.com/ASIMO/technology/2011/specification
50. Park JH (2001) Impedance control for biped robot locomotion. IEEE Trans Robot Autom

17(6):870–882
51. Mehdi H, Boubaker O (2011) Impedance controller tuned by particle swarm optimization for

robotic arms. Int J Adv Robot Syst 8:93–103
52. Echávarri J, Ceccarelli M, Carbone G, Alén C, Muñoz JL, Díaz A, Munoz-Guijosa JM (2013)

Towards a safety index for assessing head injury potential in service robotics. Adv Robot
61:1–14

53. Khan SG, Herrmann G, Pipe T, Melhuish C, Spiers A (2010) Safe adaptive compliance control
of a humanoid robotic arm with anti-windup compensation and posture control. Int J Soc Robot
2:305–319

54. Mehdi H, Boubaker O (2012) New robust tracking control for safe constrained robots under
unknown impedance environment. Lect Notes Comput Sci 7429:313–323

http://world.honda.com/ASIMO/technology/2011/specification

Online Walking Pattern Generation Using
FFT for Humanoid Robots

Kenji Hashimoto, Hideki Kondo, Hun-Ok Lim and Atsuo Takanishi

Abstract An online walking pattern generation is important for a biped humanoid
robot to move in dynamic environments. This chapter describes a novel online walk-
ing pattern generation using Fast Fourier Transform (FFT). Most previous studies
about online walking pattern generation use an inverted pendulum model, which
requires other methods to compensate for errors between the model and a real robot.
Because our method uses a multi-body robot model, a biped robot can dynamically
change its motions online by utilizing only the proposed method. If a robot has
external sensors such as a stereo vision system to recognize dynamic environments,
the robot can follow a moving target. Verification of the proposed method is con-
ducted through experiments with the human-sized humanoid robots WABIAN-2R
and KOBIAN.

Keywords Biped humanoid robot · Fast Fourier transform · Walking pattern

1 Introduction

We have developed a biped humanoid robot named WABIAN-2R (WAseda BIpedal
humANoid-No. 2 Refined) as a human motion simulator to mimic human’s motions
and mechanisms [4, 5, 16] (see Fig. 1a). It is 1,480mm tall, weighs 63.8kg, and has

K. Hashimoto (B)

Research Institute for Science and Engineering, Waseda University, #41-304,
17 Kikui-cho, Shinjuku-ku, Tokyo 162-0044, Japan
e-mail: k-hashimoto@takanishi.mech.waseda.ac.jp

H. Kondo · A. Takanishi
Department of Modern Mechanical Engineering, Waseda University,
2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan

H.-O. Lim
Faculty of Engineering, Kanagawa University, 3-27-1 Kanagawa-ku,
Yokohama 221-8686, Rokkakubashi, Japan

H.-O. Lim · A. Takanishi
Humanoid Robotics Institute (HRI), Waseda University, 2-2 Wakamatsu-cho,
Shinjuku-ku, Tokyo 162-8480, Japan

© Springer International Publishing Switzerland 2015
G. Carbone and F. Gomez-Bravo (eds.), Motion and Operation Planning
of Robotic Systems, Mechanisms and Machine Science 29,
DOI 10.1007/978-3-319-14705-5_14

417

418 K. Hashimoto et al.

Fig. 1 Human-sized humanoid robots used in this research. a WABIAN-2R. b KOBIAN

41 degrees of freedom (DoF) (two 6-DoF legs, a 2-DoF waist, a 2-DoF trunk, two
7-DoF arms, two 3-DoF hands, a 3-DoF neck and two 1-DoF feet having passive toe
joint). We have also developed a whole body emotion expression humanoid robot
named KOBIAN [2] (see Fig. 1b), which is based on WABIAN-2R and an emo-
tion expression humanoid robot WE-4RII [10]. KOBIAN is 1,470mm tall, weighs
62.0kg, and has 48-DoF. Two CMOS cameras are mounted on each eyeball.

Humanoid robots are expected as partners with us and to accomplish tasks. In
order to work in a human living environment, what is important for biped robots
is to realize stable walking in the real environment. Until now, many studies about
walking pattern generation have been researched based on the Zero Moment Point
(ZMP) criteria [6, 11, 13]. ZMP is defined as a point where the total forces and
moments acting on a robot are zero [19, 22–24]. If the ZMP exists inside the support
polygon formed by the support points between the feet and the ground, a biped robot
can walk stably without falling down.

The authors have proposed walking pattern generation based on the ZMP criteria
by using FFT [8]. In this method, we can obtain a waist compensatory trajectory
as periodic solution in the frequency domain. However, it’s necessary to regard the
compensated moment from the start to the end of walking as a periodic function and

Online Walking Pattern Generation Using FFT for Humanoid Robots 419

to compute the whole walking pattern at once. Therefore, it’s difficult to generate a
part of walking pattern and change walking pattern during walking.

However, in order to work in a human living environment, humanoids need to
recognize changing environment by using external sensors such as laser range finder,
stereo camera, etc. and move in dynamic and crowded environments such as office
spaces, homes, shopping malls, and so on. To realize autonomous locomotion in
dynamic environments, many researchers have worked on an online walking pattern
generation [1, 3, 7, 9, 12, 14, 15, 17, 18, 20, 21, 26].Mostmethods use an analytical
derivation for ZMP equations based on an inverted pendulummodel and compensate
for errors between the model and a real robot with a dynamic filter [25].

Meanwhile, we have researched on an online walking pattern generation which is
based on a multi-body robot model. This method has the advantage that it does not
require a dynamic filter because errors between the model and a real robot are small
thanks to using the multi-body robot model. This chapter describes a novel online
walking pattern generation using Fast Fourier Transform (FFT).

This chapter is organized as follows. Sections2 and3describes aFFT-based offline
and online walking pattern generation, respectively, and Sect. 4 describes simulation
results. In Sect. 5, experimental results are shown. Section6 provides conclusions
and future work.

2 FFT-Based Offline Walking Pattern Generation

Zero moment Point (ZMP) is defined as a point where the total forces and moments
acting on a robot are zero [23] (see Fig. 2). If the ZMP exists inside the support
polygon formed by the support points between the feet and the ground, a biped robot
can walk stably without falling down. One complete walking cycle is divided into
two phases: single support phase and double support phase. During the single support
phase, one foot is on the ground and the other foot is in the air. The biped robot is
in the double support phase as soon as the swing foot reaches the ground. The ZMP
should be changed smoothly according to two support phases for dynamic stability.

Fig. 2 Support polygon and
composed force

420 K. Hashimoto et al.

In this study, the ZMP trajectory is set arbitrarily and smoothly within the support
polygon before the robot begins biped walking.

A basic complete motion pattern is generated offline based on ZMP criteria. Our
offline pattern generator generates a continuous walking pattern as follows:

1. Feet, waist, andZMP trajectories are determined aswalking parameters. TheZMP
trajectory should be planned within the support polygon composed of contact
points of the feet.

2. The compensated moments generated by the movements of the robot are com-
puted, which should be compensated for by a horizontal waist motion.

3. We solve ZMP equations to calculate the compensatory waist motion in the fre-
quency domain by FFT on the linearized biped robot model.

4. We transform the waist motion from the frequency domain into the time domain
by IFFT. Thewalking pattern of the robot based on the compensatorywaistmotion
is computed by solving inverse kinematics.

5. We calculate themoment errors (Merror), by substituting the compensatorymotion
into the strict robot model. This calculation is repeated until the moment errors
decrease to an acceptable moment (Mtolerance).

2.1 Coordinate Frames

A biped model is shown in Fig. 3. To define mathematical quantities, a world coor-
dinate frame

∑
O is fixed on the floor where the biped robot can walk. A moving

coordinate frame
∑

m is attached on the center of the waist to consider the relative
motion of each particle. The moving coordinate frame

∑
m is parallel to the world

coordinate frame
∑

O . The following five assumptions are defined tomodel the biped
robot.

(i) The biped robot consists of a set of particles.
(ii) The foothold is rigid and not moved by any force and moment.
(iii) The contact region between the foot and the ground surface is a set of contact

points.
(iv) The coefficients of friction for rotation around the X, Y and Z-axes are nearly

zero at the contact point between the feet and the ground surface.
(v) The feet of the biped robot do not slide on the contact surface.

2.2 Approximate Waist and Trunk Motion

Under the modelling assumptions, the moment balance around the ZMPwith respect
to the world coordinate frame is described as follows:

Online Walking Pattern Generation Using FFT for Humanoid Robots 421

Fig. 3 Multi-body model
and definition of coordinate
systems and vectors

All Particles∑
i

mi
(
xi − xzmp

) × (ẍi + G) −
All Points∑

k

(
xFk − xzmp

) × Fk −
All Points∑

j

M j + T0 = 0

(1)

where mi is the mass of the particle i . xi = [xi , yi , zi]T is the position vector of
the particle i . xzmp = [

xzmp, yzmp, zzmp
]T is the position vector of reference ZMP.

G = [
0, 0, gz

]T is the gravitational acceleration vector. xFk = [xFk, yFk, zFk]T is

the position vector where external force k is applied. Fk = [
Fkx , Fky, Fkz

]T is the

external force k. M j = [
Mjx, Mjy, Mjz

]T is the external moment j . T0 = [
0, 0, Tz

]T

is the total moment acts on a reference ZMP.
To consider the relative motion of each part, Eq. (1) can be modified as follows:

All Particles∑
i

mi
(mxi − mxzmp

) × (m ẍi + ẍq + mG + mω̇ × mxi

+ 2mω × m ẋi + mω × (mω × mxi
))

−
All Points∑

k

(mxFk − mxzmp
)×mFk −

All Points∑
j

mM j + mT0 = 0 (2)

422 K. Hashimoto et al.

Fig. 4 Upper body model as a four-particle model. a Strict model. b Four-particle model

where xq = [
xq , yq , zq

]T is the position vector of the origin of the frame
∑

m from
the origin of the frame

∑
O . mω and mω̇ are the angular velocity and acceleration

vectors, respectively.
This equation is non-linear because the three-axis motion of the trunk is inter-

ferential each other. Therefore, it is difficult to derive analytically the compensatory
motion of the trunk and the waist from Eq. (2). To obtain the approximate solution
analytically, we assume the followings:

(a) The external forces are not considered in the approximate model.
(b) The upper body is modelled as a four-particle model (see Fig. 4).
(c) The moving coordinate frame

∑
m does not rotate.

(d) The trunk and the waist do not move vertically.

The moment generated by the motion of the lower-limb particles, M =[
Mx , My, Mz

]T , can be obtained as follows:

mu
mxu × (m ẍu + mω̇ × mxu + 2mω × m ẋu + mω × (mω × mxu

))
+ mt

(mxt − mxzmp
) × (m ẍt + ẍq + mG + mω̇ × mxt

+2mω × m ẋt + mω × (mω × mxt
))

+ mw
(mxw − mxzmp

) × (m ẍw + ẍq + mG + mω̇ × mxw

+2mω × m ẋw + mω × (mω × mxw
)) = −M

(3)

where mu is the mass of both shoulders including the mass of arms. mt is the mass of
the torso including the head, shoulders and arms. mw is the mass of the waist. mxu is
the position vector of the shoulder with respect to the neck frame. mxt and mxw are
the position vectors of the neck and the waist with respect to the moving coordinate
frame

∑
m , respectively.

Online Walking Pattern Generation Using FFT for Humanoid Robots 423

Fig. 5 Linearization of the robot model. a Strict motel. b Linearized model

In case the moments are not generated by the fictitious forces, the moment M can
be divided as three moment components such as pitch, roll and yaw moments. We
assume that both the waist and the trunk particles do not move vertically (m z̈w = 0,
m z̈q = 0), and the trunk arm rotates on only the horizontal plane as shown in Fig. 5.
We put the terms relating to the motion of the upper-body particles on the left-hand
side as unknown variables, and the terms relating to the moments generated by the
lower-limb particles on the right-hand side as known parameters. The decoupled and
linearized ZMP equations can be obtained as follows:

M̂yt + M̂yw = M̂y(t)
M̂xt + M̂xw = M̂x (t)

mtl2θ̈t = M̂z(t)

⎫⎬
⎭ (4)

where

M̂yt = mt
(

m zt − m zzmp
)

m ẍt − mt gz
m xt

M̂yw = mw
(

m zw − m zzmp
)

m ẍw − mwgz
m xw

M̂y(t) = −My − (
mt

(
m zt − m zzmp

)
ẍq + mt gz

m xzmp

+mw
(

m zw − m zzmp
)

ẍq + mwgz
m xzmp

)
M̂xt = −mt

(
m zt − m zzmp

)
m ÿt + mt gz

m yt

M̂xw = −mw
(

m zw − m zzmp
)

m ÿw + mwgz
m yw

M̂x (t) = −Mx − (−mt
(

m zt − m zzmp
)

ÿq − mt gz
m yzmp

−mw
(

m zw − m zzmp
)

ÿq − mwgz
m yzmp

)
M̂z(t) = −Mz

−
(

mt
(

m xt − m xzmp
) (

m ÿt + ÿq
) − mt

(
m yt − m yzmp

) (
m ẍt + ẍq

)
+mw

(
m xw − m xzmp

) (
m ÿw + ÿq

) − mw
(

m yw − m yzmp
) (

m ẍw + ẍq
)
)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5)

424 K. Hashimoto et al.

where l is the length between the neck and the shoulder. θt is the vertical angle of the
trunk. M̂xt and M̂yt are the roll and the pitch trunk components of the moments,
respectively. M̂xw and M̂yw are the roll and the pitch waist components of the
moments, respectively.

The compensatory motion of the trunk and the waist can be easily computed by
Fourier transforms. M̂xt , M̂yt , M̂xw and M̂yw become the known functions because
they are calculated by the motion of the lower limbs and the time trajectory of ZMP.
In steady walking, they are periodic functions because each particle of the biped
robot and ZMPmove periodically with respect to the moving coordinate frame

∑
m .

Comparing the Fourier transform coefficients of both sides of each equation, the
approximate periodic solutions of the pitch and roll of the trunk and waist, m xt , m yt ,
m xw, m yw and θt , can be obtained.

2.3 Expansion into Complete Walking

This method is applicable to a complete walking. By regarding the whole complete
walking as one periodic walking motion, the approximate solutions for the complete
walking can be derived. However, the biped robotmust have a long period of standing
time before starting and after stopping. Here, we simply discuss the waist motion.
The transfer function in the frequency domain of (4) can be expressed as follows:

m xw(ω) = 2a

ω2 + a2 b (6)

a =
√

m gz
m zw − m zzmp

, b = − 1

2
√

m gz
(

m zw − m zzmp
)

Equation (6) is generally known as Lorenz function. The original function in time
domain of (6) is as follows:

m xw(t) = be−a|t | (7)

From (7), we can imagine that the causal lawmay not be applied. If the walking speed
of the biped robot increases more, it goes without saying that m xw affects stability
more badly. Therefore, the waist should be in motion earlier than the shift of ZMP on
the ground to cancel the effect of the produced moments. The relationship between
the waist motion and the applied force has been simulated. When the biped robot is
not in motion, an impulse moment is applied to the waist. Figure6 shows the waist
motion in case of m zw = 600mm which is the waist height of WABIAN-2R. In this
simulation, we can see that the compensatory motion of the waist should be begun
with a view of balancing before and after the impulse moment is applied to the biped
robot.

Online Walking Pattern Generation Using FFT for Humanoid Robots 425

Fig. 6 Compensatory waist trajectory for an impulse moment along the front-back direction

Fig. 7 Compensatory motion of the waist when changing the waist height

Fig. 8 Compensatory motion of the waist when changing the acceleration of gravity

Figure7 shows the compensatory motion of the waist when changing the waist
height of the biped robot.We can see that the higher the waist height is, the earlier the
compensatory motion of the waist must be begun. Figure8 shows the compensatory
motion of the waist when changing the acceleration of gravity. The smaller the
acceleration of gravity is, the earlier the compensatory motion of the waist must be
begun.

426 K. Hashimoto et al.

2.4 Recursive Calculation

A recursive method is used to obtain the strict solutions of the trunk and the waist
motions. First, the approximate periodic solutions of the linearized equation (5)
are calculated. Second, the approximate periodic solutions are substituted into the
moment equation (2) of the strict biped model, and the errors of moments generated
by the trunk and waist motions are calculated according to the planned ZMP. These
errors are accumulated in the right-hand side ofEq. (4). The approximate solutions are
computed again. Finally, these computations are repeated until the errors fall below
a certain tolerance level. As a result, the strict periodic solutions of the nonlinear
equations are obtained by a convergent regularity. The limit value of an accumulated
moment error on each axis, En , is estimated as follows:

En = 2En−1 + en−1

2
(n = 3, 4, 5, . . .) (8)

where en is the calculated moment error after n times of iterations. E1 is zero, and
E2 is equal to e1.

Using this method, we have realized about a 90% decrease in the number of
iteration times. Figure9 shows how to obtain the compensatory motion for stability.

3 FFT-Based Online Walking Pattern Generation

Our online walking pattern generation is based on the FFT-based offline pattern
generation. Hereinafter, we will explain about a FFT-based online walking pattern
generation.

According to Fig. 6, the compensatory waist trajectory occurs for a few seconds
before and after the impulse moment is applied, and there are almost no effects
on the other periods. Therefore, if a moment to be compensated is regarded as a
collection of impulse moments, the compensatory waist trajectory is represented as
a superposition of compensatory waist trajectories for the impulse moments. Thus,
the compensatory waist trajectory at a given time can be computed if the moment to
be compensated is known for a few seconds before and after the given time.

We focused on the compensatory waist trajectory for the moment to be compen-
sated which is cut out with a window of predetermined duration as shown in (9). The
moment to be compensated is regarded as zero outside the window.

M ′
y =

{
M∗

y (within thewindow)

0 (otherwise)
(9)

The compensatory waist trajectory is shown as Fig. 10. Compared with the compen-
satory waist trajectory generated by the conventional offline pattern generation for

Online Walking Pattern Generation Using FFT for Humanoid Robots 427

Fig. 9 Flowchart of the offline pattern generation method based on Fourier transform

the whole moment to be compensated, the compensatory trajectories around both
ends diverge and are not proper. On the other hand, the compensatory trajectory
during the other period is proper.

428 K. Hashimoto et al.

Fig. 10 Compensatory waist trajectory and compensated moment which is cut out with a window
of predetermined duration

As mentioned above, it is necessary that the moment to be compensated is known
during a few seconds in the past and future on the given time to compute the proper
trajectory around both ends. However, it’s impossible to compute the proper tra-
jectories around both ends in this case due to no consideration of the compensated
moment outside the window.

As a solution, we divide the window into three phases as following (see Fig. 10):

• pre-phase (duration: tpre s)
• target phase (duration: ttar s)
• post-phase (duration: tpst s)

The durations of each part of both tpre and tpst were predetermined as 1.8 seconds
according to the result of experimental trials and errors. As shown in Fig. 7, appro-
priate values of both tpre and tpst depend on dynamics of robots such as its weight,
its waist height and so on. The duration ttar is regarded as the time span of the com-
pensatory trajectory which is generated within a window and the shorter ttar is, the
better the pattern generation is, because it’s possible to modify walking pattern in
short periods. ttar is determined based on the length of calculation time.

If both tpre and tpst are long enough (more than 1.8 s), the compensatory trajectories
during the target phase are computed properly. Then, the trajectory is available for
making a robot’s motion stable. A biped robot can change walking patterns online
by shifting the window to next target phase to generate a compensatory trajectory.
Figure11 shows flowchart of the sequential pattern generation.

Online Walking Pattern Generation Using FFT for Humanoid Robots 429

Compute walking pattern
using compensatory waist motion

Compute moments ()
generated by the motion

Compute moment errors ()
between calculated ZMP and planned ZMP

Yes

No

Walking pattern

Initial parameters:
Foot trajectory
Waist & trunk trajectories
ZMP trajectory

Moment errors

Compute the compensatory
waist motion ()

based on linearized model
by using FFT&IFFT

,m m
w wx y

Merror

Merror

Merror < Mtolerance

Mx,My

Output walking pattern
and shift the window

Fig. 11 Flowchart of the FFT-based online walking pattern generation

If the sequential pattern generation is realized while a robot is walking, we can
generate a walking pattern online. In that event, the walking parameters such as
the feet trajectories and ZMP trajectory are modifiable outside the predetermined
window.

4 Walking Simulations

First, we evaluated the calculation time for generating walking patterns online by
using the computer mounted on the robot (Pentium(R) M 1.8GHz, QNX(R) Neu-
trino(R) RTOS 6.3 as an operating system). Figure12 shows the number of the
iterative calculations until error moments become negligibly small at each window.

430 K. Hashimoto et al.

Fig. 12 Number of the
iterative calculation at each
window

In this simulation, a walking cycle was 0.96 s/step, a step length was 200mm/step,
both tpre and tpst were 1.80 s, and ttar was 0.06 s. According to Fig. 12, it’s confirmed
that the average number of iterative calculations is about 1.2 times, and 7 times itera-
tive calculations are needed at worst. Because a calculation time per each calculation
is 6.8ms, we can update walking patterns sequentially and fast enough.

Second, we compared the compensatory trajectory generated by the proposed
online walking pattern generation with that generated by the conventional offline
pattern generation. Figure13 shows the comparison of two conditions. In this sim-
ulation, a walking cycle was 0.96 s/step, a step length was 200mm/step, both tpre

and tpst were 1.80 s, and ttar was 1.92 s. From Fig. 13 we can see that the trajectory
generated by the proposed method is almost the same as the conventional one. How-
ever, in this method, the continuity of the position and velocity of the trajectory is not
guaranteed at the connecting points between windows because the trajectory consists
of the series of trajectories which come from each window. If the accelerations at
the connecting points are very large, there is a possibility that the biped robot falls
down during walking. Figures14 and 15 show the acceleration of the trajectory and
the difference value of the acceleration compared with the conventional one, respec-
tively. As the result, the acceleration at the connecting points is comparable with

Fig. 13 Comparison of the
compensatory trajectories
between offline and online
walking pattern generation

Online Walking Pattern Generation Using FFT for Humanoid Robots 431

Fig. 14 Acceleration of the
trajectory

Fig. 15 Difference value of
the acceleration

acceleration during walking and a stable walking was realized through the walking
experiment as described below.

Finally, we developed a simulation program to confirm the basic function of the
proposed online walking pattern generation. In the simulation, both tpre and tpst were
set to 1.80 s, and ttar was set to 0.96 s. The moving direction of a robot is controlled
with a joystick. We made the robot move forward from 5 to 11s, diagonally forward-
right from 11 to 15s, rightward 15 to 20s, forward 20 to 25s, diagonally forward-left
from 25 to 31s, leftward 31 to 36s, forward 36 to 41s, and backward 41 to 46s.
Figures16 and 17 depict planned ZMP trajectories and waist compensatory motion.
Through the simulations we confirmed that the robot can generate walking patterns
online according to the input from the joystick.

5 Experimental Tests and Considerations

The effectiveness of the proposedmethodwas confirmed through simulations. There-
fore, next, we implemented the proposed online walking pattern generation on
WABIAN-2R and carried out walking experiments. Because WABIAN-2R doesn’t
have external sensors to recognize its surroundings, we use a joystick to move the

432 K. Hashimoto et al.

Fig. 16 Planned ZMP trajectory and waist compensatory motion controlled with a joystick

Fig. 17 Planned ZMP trajectory and waist compensatory motion on the horizontal plane

robot. The joystick is connected to a laptop PC which communicates with robot’s
control computer through LAN. In this experiment, a waling cycle is 0.96 s/step, both
tpre and tpst are 1.80 s, and ttar is 0.96 s. As a result of this experiment, WABIAN-
2R could continue walking according to inputs from the joystick. Figure18 shows
snapshots of the walking experiment.

Second, we conducted experiments so that a robot changes CoM height and its
upper body posture dynamically. Our proposed online walking pattern generation
can deal with such dynamic motions because our proposed method uses not an
inverted pendulum model but a multi-body robot model. In this experiment, the

Online Walking Pattern Generation Using FFT for Humanoid Robots 433

Fig. 18 Walking experiment using joystick inputs

robot gradually decreases CoM height by 100mm, bends the trunk forward by 10
degrees, and returns both the CoM height and the trunk angle to the original position
during walking. A waling cycle is 0.96 s/step, both tpre and tpst are 1.80 s, and ttar is

434 K. Hashimoto et al.

Fig. 19 Walking experiment changing CoM height and its upper body posture

0.96 s. As a result, WABIAN-2R realized a stable walk even if the robot significantly
changed its posture while walking as shown in Fig. 19.

Finally, we implemented the proposed online walking pattern generation on
KOBIAN. Because KOBIAN has two CMOS cameras on each eye, KOBIAN should

Online Walking Pattern Generation Using FFT for Humanoid Robots 435

Fig. 20 Walking experiment while following a stationary target

be able to follow a visual target. First, the target was put 1,000mm ahead and 750mm
left of the robot, and the height is the same as that of robot’s eyes. In this experiment,
the robot approaches 800mm ahead of the target. Figure20 shows the snapshots of
object tracking locomotion. Figure21 shows the distance between the robot and the
target, and Fig. 22 shows feet trajectories. From these figures, we can find that the
robot succeeded in coming close about 800mm ahead of the target with 16 steps.

In addition, we conducted an experiment of object tracking locomotion when a
human moves a target freely (see Fig. 23). The robot could follow a moving target
by coordinating eye, head and leg movements. We confirmed the effectiveness of

Fig. 21 Distance between
the robot and the target

0
0 5 10 15 20 25

D
is

ta
nc

e
m

Time s

0.4

0.8

1.2

1.6

436 K. Hashimoto et al.

-0.2

0

0.2

0.4

0.6

0 0.5 1 1.5

x m

y
m

Left foot

Right foot

Fig. 22 Feet trajectories while following a stationary target

Fig. 23 Walking experiment while following a moving target

the proposed online walking pattern generation through experiments. Although the
robot followed an object in this experiment, we can apply this method to move in
dynamic environments with obstacles avoidance.

6 Conclusions and Future Work

We described a FFT-based online walking pattern generation for biped robots. Our
proposed online pattern generation can deal with dynamic motions such as changing
the CoM height, bending its upper body and so on because our method uses not an
inverted pendulummodel but a multi-body robot model. Verification of the proposed
methodwas conducted through experiments with a biped humanoid robotWABIAN-
2R and KOBIAN. Using WABIAN-2R which doesn’t have external sensors, we

Online Walking Pattern Generation Using FFT for Humanoid Robots 437

confirmed fundamental effectiveness of the proposed method. WABIAN-2R could
change its moving direction online according to joystick inputs and also realized a
stable walk even if the robot significantly changed its posture while walking. With
KOBIAN which has two CMOS cameras on each eye, we confirmed that the robot
could track and follow a moving target by using stereo vision.

Our next goal is to develop a new algorithm to change walking parameters
based on changes of dynamic environments and realize adaptive walking in the real
environment.

Acknowledgments This study was conducted as part of the Research Institute for Science and
Engineering, Waseda University, and as part of the humanoid project at the Humanoid Robotics
Institute,Waseda University. It was also supported in part byMEXT/JSPS KAKENHI (Grant Num-
ber: 24360099 and 25220005), Grants for Excellent Graduate Schools, MEXT, Japan, SolidWorks
JapanK.K., DYDENCorporation, andCybernet SystemsCo., Ltdwhomwe thank for their financial
and technical support.

References

1. Chestnutt J, Kuffner J (2004) A tiered planning strategy for biped navigation. In: Proceedings
of the 2004 IEEE-RAS/RSJ international conference on humanoid robots, pp 422–436

2. Endo N, Momoki S, Zecca M, Saito M, Mizoguchi Y, Itoh K, Takanishi A (2008) Develop-
ment of whole-body emotion expression humanoid robot. In: Proceedings of the 2008 IEEE
international conference on robotics and automation, pp 2140–2145

3. Harada K, Kajita S, Kaneko K, Hirukawa H (2006) An analytical method on real-time gait
planning for humanoid robots. Int J Humanoid Robot 3(1):1–19

4. Hashimoto K, Takezaki Y, Hattori K, Kondo H, Takashima T, Lim HO, Takanishi A (2010) A
studyof functionof the human’s foot arch structure usingbipedhumanoid robot. In: Proceedings
of the 2010 IEEE/RSJ international conference on intelligent robots and systems, pp 2206–2211

5. Hashimoto K, Takezaki Y, Lim HO, Takanishi A (2013) Walking stabilization based on gait
analysis for biped humanoid robot. Adv Robot 27(7):541–551

6. Huang Q, Yokoi K, Kajita S, Kaneko K, Arai H, Koyachi N, Tanie K (2001) Planning walking
patterns for a biped robot. IEEE Trans Robot Autom 17(3):280–289

7. Kajita S, Kanehiro F, Kaneko K, Fujiwara K, Harada K, Yokoi K, Hirukawa H (2003) Biped
walking pattern generation by using preview control of zero-moment point. In: Proceedings of
the 2003 international conference on robotics and automation, pp 1620–1626

8. LimHO, Takanishi A (2005) Compensatorymotion control for a bipedwalking robot. Robotica
23(1):1–11

9. Löffler K, GiengerM, Pfeiffer F (2003) Sensor and control design of a dynamically stable biped
robot. In: Proceedings of the 2003 IEEE international conference on robotics and automation,
pp 484–490

10. Miwa H, Itoh K, Matsumoto M, Zecca M, Takanobu H, Roccella S, Carrozza MC, Dario P,
Takanishi A (2004) Effective emotional expressions with emotion expression humanoid robot
WE-4RII. In: Proceedings of the 2004 IEEE/RSJ international conference on intelligent robots
and systems, pp 2203–2208

11. Nagasaka K, Inoue H, Inaba M (1999) Dynamic walking pattern generation for a humanoid
robot based on optimal gradient method. In: Proceedings of the 1999 IEEE international con-
ference on systems, man, and cybernetics, pp 908–913

12. Nishiwaki K, Kagami S (2006) High frequency walking pattern generation based on preview
control of ZMP. In: Proceedings of the 2006 IEEE international conference on robotics and
automation, pp 2667–2672

438 K. Hashimoto et al.

13. Nishiwaki K, Nagasaka K, Inaba M, Inoue H (1999) Generation of reactive stepping motion
for a humanoid by dynamically stable mixture of pre-designed motions. In: Proceedings of the
1999 IEEE international conference on systems, man, and cybernetics, pp 902–907

14. Nishiwaki K, Sugihara T, Kagami S, Inaba M, Inoue H (2001) Online mixture and connection
of basic motions for humanoid walking control by footprint specification. In: Proceedings of
the 2001 IEEE international conference on robotics and automation, pp 4110–4115

15. Nishiwaki K, Kagami S, Kuniyoshi Y, InabaM, Inoue H (2002) Online generation of humanoid
walking motion based on a fast generation method of motion pattern that follows desired
ZMP. In: Proceedings of the 2002 IEEE/RSJ international conference on intelligent robots and
systems, pp 2684–2689

16. Ogura Y, Aikawa H, Shimomura K, Kondo H, Morishima A, Lim HO, Takanishi A (2006)
Development of a humanoid robotWABIAN-2. In: Proceedings of the 2006 IEEE international
conference on robotics and automation, pp 76–81

17. Park IW, Kim JY, Lee J, Oh JH (2006) Online free walking trajectory generation for biped
humanoid robot KHR-3 (HUBO). In: Proceedings of the 2006 IEEE international conference
on robotics and automation, pp 2667–2672

18. Sakagami Y, Watanabe R, Aoyama C, Matsunaga S, Higaki N, Fujimura K (2002) The intel-
ligent ASIMO: system overview and integration. In: Proceedings of the 2002 IEEE/RSJ inter-
national conference on intelligent robots and systems, pp 2478–2483

19. Sardain P, Bessonnet G (2004) Forces acting on a biped robot. Center of pressure-zero moment
point. IEEE Trans Syst, Man, Cybern—Part A Syst Hum 34(5):630–637

20. Sugihara T, Nakamura Y (2005) A fast online gait planning with boundary condition relaxation
for humanoid robots. In: Proceedings of the 2005 IEEE international conference on robotics
and automation, pp 306–311

21. Sugihara T, Nakamura Y (2009) Boundary condition relaxation method for stepwise pedipu-
lation planning of biped robots. IEEE Trans Robot 25(3):658–669

22. Vukobratovic M, Stepanenko J (1972) On the stability of anthropomorphic systems. Math
Biosci 15:1–37

23. Vukobratovic M, Frank AA, Juricic D (1970) On the stability of biped locomotion. IEEE Trans
Biomed Eng 17(1):25–36

24. Vukobratovic M, Borovac B, Surla D, Stokic D (1990) Biped locomotion: dynamics, stability,
control and application. Scientific fundamentals of robotics 7. Springer, New York

25. YamaneK,NakamuraY (2003)Dynamics filter—concept and implementation of onlinemotion
generator for human figures. IEEE Trans Robot Autom 19(3):421–432

26. Yokoi K, Kanehiro F, Kaneko K, Fujiwara K, Kajita S, Hirukawa H (2001) A Honda humanoid
robot controlled by AIST software. In: Proceedings of the IEEE-RAS international conference
on humanoid robots, pp 259–264

Hexapod Walking Robot Locomotion

Franco Tedeschi and Giuseppe Carbone

Abstract Path planning, gait planning and trajectory planning are assuming an
increasing significance for Hexapod Walking robots and more generally, in legged
robotics. Indeed, the trend for walking robots is to improve the speed, the stability, the
navigation autonomy and the energy efficiency. In this Chapter it will be addressed
the problem of Hexapod Walking Robots (HWR) locomotion. An overview of the
State of the Art is carried out with references to the numerous contributions to this
field. It will be provided a background on the topics of path planning, gait and trajec-
tory planning for HWR locomotion. Special attention will be given to the hexapod
gaits, starting from their classification together with a detailed description of most
common ones. A case of study is described as referring to previous experiences
at LARM in Cassino. Examples of a path planning, gait and trajectory planning are
provided through kinematic and dynamic features of Cassino Hexapod leg operation.

1 Introduction

Hexapod Walking robots (HWR) are programmable mobile platforms on which six
legs mechanisms are attached to the robot body [1]. HWR are controlled with a
degree of autonomy that allows a robot to move within its environment, to perform
intended tasks [2]. According to this definition, a degree of autonomy is required
for HWR ranging from partial autonomy, including human robot interaction, to full
autonomy without active human intervention [3].

HWR can include important features such as omnidirectional locomotion, vari-
able geometry, good stability, lower impact on the terrain, great mobility in natural
surroundings, fault tolerant locomotion [4]. HWR can overcome obstacles that are
comparable with the size of the robot leg [5]. Operation features of HWR, such
as example the locomotion with discrete contact points are especially important in

F. Tedeschi · G. Carbone (B)
DICEM—Department of Civil and Mechanical Engineering,
University of Cassino and South Lazio, Via Di Biasio, 46-03043 Cassino, FR, Italy
e-mail: carbone@unicas.it

© Springer International Publishing Switzerland 2015
G. Carbone and F. Gomez-Bravo (eds.), Motion and Operation Planning
of Robotic Systems, Mechanisms and Machine Science 29,
DOI 10.1007/978-3-319-14705-5_15

439

440 F. Tedeschi and G. Carbone

dangerous environments like mine fields [6], or scenarios where it is essential to keep
the terrain undisturbed for scientific reasons as proposed for example in [7]. HWR
have been used in exploration of remote locations and hostile environments such as
seabed [8], in space environments or on planets exploration [9] in nuclear power sta-
tions [10], in search and rescue operations [11]. HWR have been also used in a wide
variety of tasks such as forests harvesting [12], transport of cargo [13], welding [14]
and climbing on vertical surface [15]. Despite the above referenced advantages and
applications many challenges remain in the field of hexapodal locomotion. In fact
HWR are still complex and slow machines, consisting of many actuators, sensors,
transmissions and supporting hardware [16]. They are also often expensive and very
difficult to operate by non-expert users [17].

This chapter gives an overview of the state of the art on hexapodal locomotion
in order to identify the most significant features for a proper operation of a hexapod
robot. Then, it provides insight on the topics of path planning, gait and trajectory
planning for HWR locomotion. Special attention will be given to the hexapod gaits
starting from their classification, and then providing a description of most commons
ones. A case of study is described as referring to previous experiences at LARM
in Cassino. Examples of a path planning, gait and trajectory planning are provided
through kinematic and dynamic features of Cassino Hexapod leg operation.

2 State of Art Overview

As early 1899, Mybridge used successive photographs to study the locomotion of
animals [18]. His work is regarded as classical in the study of walking gaits. The first
hexapods walking robots can be identified as robots based on a rigidly predetermined
motion so that an adaptation to the groundwas not possible. Early researches in fifties
were focused to assign the locomotion control completely by a human operator
manually [19]. In [20] the theory of finite states was applied to legged systems
and mathematical methods were used to analyse legged locomotion. In [21] it was
developed the concept of a gait formula to describe symmetric gaits. It was also
introduced the gait diagram to describe the gait of horses. In [22] it was defined the
basic terminology for legged locomotion including the definitions of the duty factor,
phase and stride length.

Oscillating systems generating the so called fixed gait have been used on a num-
ber of early hexapod robots. The tripod gait has been the first, and sometimes the
only implemented gait. One of the first successful hexapod robot in which early
gait planning approach was applied, was constructed at University of Rome in 1972
as a computer-controlled walking machine with electric drives [23]. This walking
machine was able to do the straight-line movement only. In [24] it was numerically
demonstrated that a regular and symmetric hexapod gait maximizes the longitudi-
nal stability margin of all periodic gaits of a hexapod when using specific phase
relationships.

Hexapod Walking Robot Locomotion 441

In [25] it was developed a computer program to calculate the longitudinal stability
margin of six-legged regular symmetric gaits. In 1976 Masha hexapod was designed
at Moscow State University. Masha had a tubular axial chassis and articulated legs
with three DoFs [26] and was able to negotiate obstacles using contact on the feet
and a proximity sensor. Ohio State University in 1977 developed a six-legged insect-
like robot system called OSU Hexapod [27]. The OSU hexapod was kept tethered
and was made to walk short distances. A non periodic gait, called free gait was
introduced in [28]. The free gait was suitable for locomotion over terrains which
included regions not suitable for weight bearing. These regions must be avoided by
the control system in deciding when and where to successively place the feet [29]. In
1983 Carnegie-Mellon University developed the first man-carrying hexapod capable
of navigating rough terrain using different types of gaits [30]. This hexapod used a
combination of hydraulic feedback, computer control and human control. In 1984,
Odetic Inc., California, developed Odex I, a six-legged radially symmetric hexapod
robot, which used an on board computer to play back pre-programmed motions [31].
Using remote human control or the pre-recorded motions, the hexapod could climb
obstacles such as stairs or a pickup truck.

The Adaptive Suspension Vehicle (ASV) developed at the Ohio State Univer-
sity, USA, used wave and free gaits for omnidirectional walking and navigating
over rough terrain [32]. This six legged robot, used hydraulic actuation powered
by an internal combustion engine. A human was able to operate it through a joy-
stick while the individual control of each leg was assured by a central computer.
A gait named “follow the leader” was implemented and tested into the ASV Hexa-
pod. In a “follow the leader” mode, the front legs steps on a selected foothold, the
middle leg steps in the footprints of the front leg. The rear leg steps in the footprint of
the middle leg. The selection of a foothold for the front leg was made by the human
operator using a laser beam. By using this gait, the load on the human operator to
specify foot placement when moving over difficult terrain was drastically reduced.
A hexapod walking robot named Aquarobots was constructed in 1989 and used for
underwater measurements of ground profiles for the construction of harbours. A spe-
cific gait planning was developed for seabed environments [33]. A small hexapod
robot named Genghis was the first distributed control system with semiautonomous
legs for a hexapod robot [34]. The behaviour and the locomotion of Genghis was
not explicitly controlled, but was built by adding layers of control on top of existing
simpler layer. This approach was different to the more traditional method of task
decomposition [34]. A bio inspired approach of hexapod locomotion was developed
in 1991 by TUMWalkingMachine. The robot was similar to stick insect morphology
[35]. The control system was realized as a neural structure. The system achieved a
stable tripod gait for forward walking after a few cycles and was robust in the face
of disturbances.

A novel type of free gait was studied for AMBLER (AutonomousMoBiLe Explo-
ration Robot). This hexapod robot was developed by the Jet Propulsion Laboratory
during the middle 1990s for operating under the particular constraints of planetary
terrain. AMBLER had a circular body architecture in which the rear legs rotated
through the body to become the front legs for the next step. Ambler’s legs remain

442 F. Tedeschi and G. Carbone

vertical, while they swing horizontally, adopting a telescope like displacement to
touch the ground. A novel locomotion approach, most computationally intensive,
was to search amongst possible future movement combinations for the one that will
achieve optimal performance. This approach requires terrain information given by a
laser scanner system [9].

The two last decades have been characterized by a rapid development of control
systems technology. Hexapod robots were equipped with various sensing systems.
Artificial Intelligence systems were widely applied to the analysis of environment
and motion of robots on a complex surface. A series of bio inspired robots was
developed at Case Western Reserve University (USA) at the end the 90s, such as for
example Robot III that had a total of 24DoFs. Robot III architecture was based on the
structure of cockroach trying to imitate their behaviour and gait [36]. Several hexapod
and interesting gait algorithms have been developed at University of Bruxelles. As
example, MAX was a small hexapod robot with rectangular body, built for gait
studies [38]. The Mechanical Engineering Laboratory in Osaka, Japan constructed
MELMANTIS-2 [37] a hexapod robot adopting fixed gait with the ability to use
their feet as hands. In [39] was addressed the foot-step planning problem by using
a fault-tolerant gait with the capability to avoid forbidden regions, or regions where
the robot cannot step safely. In 2001 it was developed a robot named RHex [40].
The RHex design consists of a rigid body with six compliant legs, each with one
DoF. Thus, RHex had only six motors that rotate the legs such as a wheel. This
solution is also known as whegs since this leg behaviour is very similar to a wheel. In
[41] it was developed the hexapod robot named BILL-Ant-p. The robot was based on
insect’s behaviour. In [42] it was showed that some networks of six generic non-linear
oscillators could exhibit the common walking gaits of insects, if each oscillator was
connected to a leg. Somemodels namedCPGs (Central pattern generators) have been
implemented using the paradigmof neural networks or systems of coupled oscillators
for controlling the locomotion of articulated hexapod robots. For example in [43] the
hexapod Gregor I reproduce the cockroach’s agility and the locomotion control was
based on the theory of the Central Pattern Generator.

Hamlet was a hexapod robot constructed at the University of Canterbury, New
Zealand [44] in order to study hexapod gait planning, force and position control on
uneven terrain. A series of hexapod named LEMUR (Limbed Excursion Mechanical
Utility Robots robot) was developed by Jet Propulsion Laboratory with the goals
of using robots for repair and maintenance in near-zero gravity on the surface of
spacecraft [45]. In 2004 a six-legged robot called ATHLETE was developed by the
Jet Propulsion Laboratory [13]. The robot had the ability to roll rapidly on rotating
wheels over flat smooth terrain and walk on fixed wheels over irregular and steep
terrain. An interesting study of ATHLETE gait optimization can be found in [4].
The hexapod robot called RiSE was able to climb on a variety of vertical surfaces
[46]. COMET hexapods are a series of robots designed to operate on extremely
unstructured terrain [47]. Lauron V hexapod robot was the result of about ten years
of progressive improvement on the previous configurations. LAURON hexapod was
biologically-inspired by the stick insect [48]. The control architecture was based on
neural networks and it allows the robot to climb stairs and ditches.

Hexapod Walking Robot Locomotion 443

3 Basic Locomotion Issues

The above overview shows the significance of HWR and their locomotion features
in the literature. A proper design and operation of the locomotion is getting even an
increasing significance in legged robotics, since the trend for walking robots is to
improve the speed, the stability, the navigation autonomy and the energy efficiency
[49]. A proper design and operation of the locomotion requires to address several
key aspects such as:

• path planning
• gait planning
• leg motion planning.

In order to introduce basic locomotion issues, Fig. 1 shows the control hierarchy
that has been implemented in a wide number of HWR, such as outlined in [50]. As
first step a proper environment model has to be built. One may range from a fully
structured to a fully unstructured model with limited or significant need or sensory
feedback. Then a path planning layer generates a geometric path, from an initial point
A to a final point B, passing through pre-defined via-points, or respecting certain
constraints [51]. The path planning layer supervises the lower gait planning level
by providing information such as the desired direction, speed, posture. The degree
of autonomy of path planning layer is ranging from partial autonomy, including
human robot interaction, to full autonomy without active human robot intervention
bymeans of artificial intelligence. Several sensors such as example laser range finder,
sonar or cameras can be used in order to allow the environment analysis. Then, it is
necessary to define a proper gait sequence in order to achieve the desired path and
properly reach its final point B. The gait planning is a sequence of leg motions that
is coordinated with a sequence of body motions for the purpose of transporting the
body of the legged system from one place to another [32]. The gait planning layer
providesmovement commands for each leg to position them in a coordinatedmanner.
Sensors such as example inertial measurements units, and force sensors can be used
in order to allow the posture and stability calculation. The gait planning may be able
to feedback to the task controller in case it cannot achieve the intended movement,
for example due to an obstacle. In this case, task planner should attempt a different
movement.

Leg motion planning has the responsibility of achieving the desired motion of
each foot in terms of positions, velocities, and accelerations. Of course, a proper
coordination is required among the legs to fulfil the intended gait. Thus, trajectory
planning algorithms take a given geometric path and endow it with the time informa-
tion. Trajectory planning algorithms influence not only the kinematic properties of
the motion, but also the dynamic properties. Namely, the inertial forces and torques,
to which the robot is subjected, depend on the accelerations along the trajectory.

444 F. Tedeschi and G. Carbone

Fig. 1 Main sequence for
achieving hexapod
locomotion

Hexapod Walking Robot Locomotion 445

3.1 Path Planning

The goal of the path planning problem is to find a collision-free motion between
an initial (start) and a final configuration (goal) within a specified environment.
The literature on robot path planning is very wide see for example [51–53]. Path
planning is a general robotic problem. Thus, one can refer to well established robotic
path planning approaches also in dealing with HWR. In the HWR locomotion, the
problem of path planning can became very complex since robots are characterized
by a large degree of autonomy and often must operate in hostile environments, such
at example space, underwater, nuclear, demining, search and rescue. The complexity
of HWR locomotion comes from the high DoFs that need to be controlled using
limited knowledge of the environmental interaction during the robots gait [54].

A general approach to path planning can be based on the definition of precision
points and via points for the HWR centre of mass (COM), as reported in the scheme
of Fig. 2, see for example [51]. The path between via points in Cartesian space can
be further decomposed, for example, by using polynomials equations. In order to
determine joint trajectories, it can be convenient to use interpolation functions such
as with B-splines. One can use the given initial and final points in the Cartesian coor-
dinates. B-splines are often used as interpolating functions to represent a trajectory
of mechanical systems. An important characteristic is that they allow to control the
degree of continuity between two adjacent segments. This fact is important because
smooth transition is required for path planning. Another important characteristic of
B-splines is that they satisfy the convex hull property, which allows the refinement
of a trajectory.

Thus, each trajectory function αk (t) can be modelled by a uniform B-Spline in
the form

αk(t) =
m∑
i=0

pki B
k
i,d(t) (M ≥ 3, k = 1, 2, n) (1)

where pki (with i = 0, …, m) are the m + 1 control parameters of the knot points
corresponding to the trajectory function αk(t); Bk

i,d(t) are the functions that can

Fig. 2 Basic path planning
terms for HWR

446 F. Tedeschi and G. Carbone

be defined by using the Cox de Boor recurrence formulas [55]. B-spline can be
conveniently formulated within optimization algorithms to achieve specific optimal
behaviours, as proposed for example in [56].

The path planning task for a hexapod leg with n DoFs can be described using m
knots in the trajectory of each kth joint of a manipulator. The prescribed task can be
given by the initial and final points A and B of the trajectory. The movement of the
leg can be obtained by the simultaneous motion of the n joints in order to perform the
prescribed task. Among the many available optimality criteria, one can assume for
HWR the energy consumptions as one of the most significant performance in order
to optimize the manipulator operation, since the energy formulation can consider
simultaneously dynamic and kinematic characteristics of the performing motion.

Another key issue to be carefully verified and optimized is the stability. This aspect
is critical for a proper HWR locomotion. (Due to the space limits this chapter just
mentions the main issues while readers should refer to the wide literature for further
insight, see for example [49]). HWR locomotion can be classified into dynamic
locomotion, such as running and hopping and statically stable locomotion aswalking.
Statically stable locomotion has the constraint that the moving body is stable at all
times. The vertical projection of the centre of gravity of the robot must be at all
times within the support pattern of the legs which have ground contact, see Fig. 3a.
Dynamic stability is needed when the CoM is outside or on the border of the support
pattern. When the Centre of Mass is outside the support pattern the robot will fall
over when no additional forces andmovement aremadewith the legs. There are some
important definitions that are related to stability. First definition is the stabilitymargin
Sm. For an arbitrary support pattern, the stability margin is the shortest distance from
the vertical projection of the centre of gravity to any point on the boundary of the
support pattern in the horizontal plane [29], see Fig. 3b.

Fig. 3 Stability in hexapod robot. a General view. b Stability margin and support pattern

Hexapod Walking Robot Locomotion 447

Sm = min(l1, l2, l3) (2)

The front stability margin and the rear stability margin describe distances from
the vertical projection of the centre of gravity to the forward and rearward boundaries
of the support pattern, respectively [29]. Finally, the longitudinal stability margin S1,
is defined as the shortest distance from the body’s centre of mass to the boundary of
the support pattern, measured in the direction of travel [29].

Several approaches have been proposed in order to define a suitable criterion for
dynamic tip-over stability evaluation, such as the Zero Moment Point [57], Energy-
Based measure [58], the force-angle margin [59], the Moment-Height Stability mea-
sure [60]. An interesting description of a number of stability criteria for HWR, can
be found in [61]. In trajectory-based control, one major criterion in the generation of
joint trajectories is the position of the Zero-Moment Point (ZMP). ZMP is defined as
the point on the ground where the net moment of the inertial forces and the gravity
forces has no component along the horizontal axes. For dynamic stable locomotion,
the necessary and sufficient condition is to have the ZMP in the support polygon at
all stages of the locomotion gait [62].

Usually HWR legs are having 3 DoFs each so that it is necessary to control 18
joints (3× 6). The state space, q̄ for the hexapod then lies in 18 dimensions. q̄ state
space consists of configurations which satisfy the joint limits, without considering
collisions of the vehicle with itself or the environment. Of course not all configura-
tions in the state space q̄ are valid for stable navigation.

Cell decomposition, potential field method and roadmap planning are some of the
most widely used methods for path planning [63]. The cell decomposition methods
[64], subdivides the free space of the robot into several regions, called cells, in such a
way that a path between any two configurations lying in the same cell is straightfor-
ward to generate. The so-called connectivity graph, represents the adjacency relations
between cells. Namely, the nodes of the graph represent the cells extracted from the
free space, and there is an arch between two nodes is connected if and only if the
corresponding cells are adjacent. The path planning problem is turned into a graph
searching problem, and can therefore be solved using graph-searching techniques.

The basic idea of artificial potential methodologies [65, 66] is to consider the
robot in the configuration space as a moving point subject to a potential field gen-
erated by the goal configuration and the obstacles in the q̄-space: namely, the target
configuration produces an attractive potential, while the obstacles generate a repul-
sive potential. The sum of these two contributions is the total potential, which can
be seen as an artificial force applied to the robot, aimed at approaching the goal
and avoiding the obstacles. Thus, given any configuration during the robot motion,
the next configuration can be determined by the direction of the artificial force to
which the robot is subjected. This normally represents the most promising direction
of motion in terms of free path.

The roadmap techniques are based upon the reduction of the N-dimensional con-
figuration space to a set of one-dimensional paths to search, possibly on a graph. The
graph can then be searched in order to get the optimal solution to the path planning
problem (in most cases, this is represented by the shortest path). Examples of path

448 F. Tedeschi and G. Carbone

planning algorithms may be found in [67, 68]. Another approach called probabilistic
roadmapmethod is often suggested and applicable with high degrees of freedom, but
is computationally expensive as the degrees of freedom increase [69]. Additionally,
many other strategies exist for motion and path planning that are based on sampling
within a configuration space. Path planning using a rapidly exploring random tree
(RRT) algorithms is an example. An implementation of a RRT algorithms in HWR
can be found for example in [70].

3.2 Gait Planning

ForHWR, developingwalking patterns is a challenging task, because there are a large
number of degrees of freedom and therefore the solution must be found in a large,
multidimensional search/state space [71]. Gait planning for hexapod waling robots
is a very complex activity in which kinematic, dynamic and control architecture are
playing an important role together with the HWR body architecture characteristics.
HWR may have two basic body shapes: rectangular and hexagonal as in Fig. 4. The
first one has six legs distributed symmetrically along two sides, each side having
three legs. The second has legs distributed axi-symmetrically around the body, in
a hexagonal or circular shape. Bilateral symmetry may be better suited than radial
symmetry to move along a straight line. Rectangular architectures require a special
gait for a turning action. Generally, they need four steps in order to achieve a turning
action [72]. True radial symmetry implies that all legs are equal and the body has no
‘front’ or ‘rear’ thus there is no preferential direction for the motion [73].

There are many types of gaits for hexapod robot, since the possible combinations
to move a single leg or pair of legs are large.

In [22] it was calculated that for a machine with k legs, the number of distinct
permutations corresponding to different combinations of placement of the legs on
the ground and the possible sequences of lifting the legs is equal to

N(k) = (2k − 1)! (3)

Fig. 4 Shape of hexapod walking robots. a Rectangular. b Hexagonal

Hexapod Walking Robot Locomotion 449

Therefore for a hexapod, N(6) = 39.916.800. Most of these permutations or
sequences of theoretical events are not really feasible to implement walks or gaits.
This is because they require a number of legs not sufficient to ensure adequate stability
or because involving sequences that have not significant differences or advantages
compared to the regular and symmetrical gaits. In practice, over of approximately 40
million possible gaits for a hexapod, only about thirty of them are valid gaits [74].

The gait selection is a very complex problem that depends on several factors
such as example, terrain type, stability requirements, speed requirements, mobility
requirements, andpower requirements. Figure5 reports a schemeof gait classification
such as proposed for example in [29, 49]. Gaits are classified in two main types:
periodic and non-periodic. A gait is periodic if the legs always have the same mode
at the same point in their cycle and all the leg cycles have the same length. Periodic
gaits repeat the same sequence of steps every cycle [22]. A periodic gait is one in
which every limb operates with the same cycle time. Otherwise, the gait is non-
periodic.

In regular gaits, all the legs spend the same amount of time per cycle on the ground
(they have the same duty cycle β). A gait is considered regular if all legs have the
same duty factor, as when

βi = βj = β where i, j = 1, 2. . . n is the leg number (4)

Fig. 5 Main types of HWR gaits

450 F. Tedeschi and G. Carbone

A gait is symmetric if the motion of the legs of any right-left pair is exactly half
a cycle out of phase.

Typical gaits observed in stick insects are based on five concepts [75]:

• a wave of protractions runs from posterior to anterior;
• contralateral legs of the same segment alternate in phase;
• protraction time is constant;
• retraction time decreases as walking frequency increases;
• the intervals between steps of ipsilateral adjacent legs are constant, while the
interval between the foreleg and hind leg steps varies inversely with frequency.

Gaits of this family are called wave-gaits and show a periodic behaviour with a
β ≥ 0.5 equal for all the legs. The most important characteristic of these patterns is
their capability to ensure a statically balancedmotion on awide speed range. Another
important feature is the possibility to adapt the gait to speed variations continuously.
The general form of wave gait for a 2n-legged robot was described for example, in
[29]:

�2m+1 = F(m β), m = 1, 2, . . . , n − 1,
3

2n
≤ β < 1 (5)

where F(X) is the fractional part of the real number X, and m denotes successive
legs on the left side numbered form the back. In [25] it was discovered that the gait
stability margin of a 2n legged regular symmetric gait is maximize by a wave gait. An
interesting application of equal phase gait was developed in the ASV project in order
to distribute power consumption as evenly as possible over a cycle. The stepping
sequences and the general form of backward gait and dexterous periodic gait were
defined for example in [29].

Over uneven ground the time of footfall becomes unpredictable breaking the
rigorously defined leg phasing and compromising stability (Fielding 2002). In non-
periodic gaits, so-called free gaits, there is no predetermined stepping sequence.
Algorithms or rules determine themost appropriate stepping sequence as the situation
requires for maximizing stability and/or motion. Free gaits are more suitable than
periodic gaits when the movement command changes often, when walking over
rough ground, and when the application demands precision stepping.

Figures6, 7 and 8 show the gait diagrams for the most common HWR wave gaits
[76]: metachronal, ripple and tripod. In the figures the white colour indicates that the
foot is in ground contact and the black colour otherwise.

Themetachronal gait, illustrated in Fig. 6 is adopted by the hexapodwhen itmoves
slowly. This gait can be described as a back to front propagating wave, first moving
the limbs on the right side and then the limbs on the left side. In the metachronal
gait, all legs on one side are moved forward in succession, starting with the rear-most
leg. This is then repeated on the other side. Since only 1 leg is ever lifted at a time,
with the other 5 being down, the robot is always in a highly-stable posture. The
methacronal gait will be most stable gait, since it keeps the most legs on the ground
at all phases of the stride. It will also be the easiest to adjust during movement over
uneven terrain.

Hexapod Walking Robot Locomotion 451

Fig. 6 Metachronal gait

Fig. 7 Ripple gait

Fig. 8 Tripod gait

452 F. Tedeschi and G. Carbone

The ripple gait is used by the hexapod to move with a medium speed where each
foot is on the ground according to the gait diagram shown in Fig. 7. During this gait
L1 and R3 start together the movement, then after one quarter of a period moves R2,
more a quarter of a cycle begin their movement R1 and L3 and finally after more
quarter of a period moves L2. The ripple gait is next most-stable. At most, only 2
legs are ever off the ground at the same time.

The Tripod Gait (Fig. 8) is the best-known hexapod gait. A tripod consists of the
front-back legs on one side and the middle leg on the opposite side. For each tripod,
the legs are lifted, lowered, and moved forwards and backwards synchronously.
During walking, a hexapod uses its 2 tripods like a biped stepping from one foot to
the other: the weight is simply shifted alternately from one tripod to the other. Since 3
legs are on the ground at all times, this gait is both statically and dynamically stable.
Tripod gait is suitable for high speed walking over relatively flat ground. Of course
periodic gaits such as the tripod gait, require synchronization between the expected
and actual times that legs make contact with the ground.

3.2.1 Leg Motion Planning

The leg motion planning requires the definition of a proper kinematic model for the
whole hexapod (Fig. 9). Accordingly, some basic definitions are needed to introduce
the leg motion planning.

In particular it is necessary to define:

• leg cycle;
• stride;
• leg stroke;
• gait parameters;
• relative phase.

The leg cycle is the sequence of lifting and placing the legs. A gait is cyclic when
the sequence of lifting and placing the legs is repeated within a given amount of time
that is called time cycle (T). A leg cycle can be divided into two phases: the stance
phase (also called support phase or retraction) in which the leg is on the ground;

Fig. 9 A kinematic model
for leg motion planning

Hexapod Walking Robot Locomotion 453

Fig. 10 Leg cycle basic definitions (The arrows on the trajectory show the direction of foot move-
ment through the leg cycle)

the swing phase (also called transfer phase or protraction) in which the leg is in the
air [2]. The stance and swing phase have independent durations and their sum gives
the time cycle T. Basically, the stance phase corresponds to the time interval in which
the limb is in ground contact and the body is propelled. During the transfer phase,
the leg is moved from one foothold to the next. Figure10 shows a foot kinematic
scheme while a dotted line shows the foot trajectory during a basic leg cycle. The
transition between the phases happens at the anterior extreme position (AEP) and
posterior extreme position (PEP) [77].

The leg stride is a complete cycle of legmovements fromaparticular legmovement
to the next occurrence of the same leg movement; the stride length is the distance
the centre of gravity of the body travels during one stride [78].

The leg stroke is the distance the foot travels, relative to the body, during the
support phase [29].

A gait can be characterized by the concepts of cycle time (T), duty factor (β) and
relative phase θ ji. The cycle time T is the time required for a complete cycle of leg
locomotion of a periodic gait. The duty factor β, is the fraction of the cycle time in
which the leg i is in the support phase [29]. In other word the duty factor β is defined
as the fraction of the duration of the step cycle for which a foot is on the ground.

β = time of support phase of leg i

cycle time of leg i
= tst

Ti
(6)

The duration of the stance phase Tst is defined as

Tst = β T (7)

454 F. Tedeschi and G. Carbone

In swing phase the leg is moved to the starting point of the next standing phase.
The duration of the swing phase Tsw can be calculated as

Tsw = (1 − β)T (8)

The relationship between the stance swing phase duration and the cycle time T is

T = Tst + Tsw (9)

accordingly, can be calculated as the duty factor β ∈ [0, 1],

β = Tst

Tst + Tsw
(10)

In order to define the relative phase, we follow usual limb conventions [76], the
limbs of the left (L) and right (R) sides of the hexapod are numbered from front to
back. The sub index stands for the limb number: 1 is the front leg, 2 is the middle
leg and 3 is the rear leg (Fig. 11).

It is considered that the first event, and the start of the stride, is chosen as the
reference event when an arbitrary chosen reference limb is set down. The convention
used here is that the reference limb is the right rear leg (R3). The relative phase of
leg θ i is defined as the time elapsed from the setting down of a chosen reference
foot until the foot of leg i is set down, given as the fraction of the cycle time. Thus,
consider as reference the right rear limb (R3), the relative phase for all the limbs is
given by

θi = �ti
T

(11)

where θ i ∈ [0,1], because �ti ≤ T is the time delay between the placing events of
the right rear leg and leg i.

Following the above definitions one should develop proper kinematic and dynamic
models of a full hexapod robot and specifically of a single leg. Further discussion
on forward and inverse kinematics, for several configuration of HWR such as mam-
malian, reptile or arachnid can be found, for example, in [1].

Figure12 shows a flow-chart in order to choose a proper dynamic model of
HWR. At first step input data such as sizes, masses, inertias, payload, initial con-
figuration and gait data will be defined. The solution of the dynamic model can be

Fig. 11 Leg convention

Hexapod Walking Robot Locomotion 455

Fig. 12 Flow-chart for HWR modelling

achieved either analytically or numerically. The choice ofmodel dependof the needed
model accuracy. The analytical solution can be obtained both by means of Lagrange
or Newton-Euler methods. The Lagrange Methods require the computation of the
Lagrangian L as proposed for example in [51]. These methods cannot be used for
the calculation of reaction forces and usually neglects friction. The dynamic behav-
iour of HWR trough analytical approach can be modelled as proposed for example
in [80].

Numerical methods are usually approximate approaches. They allow calculation
of reaction forces with reduced computational costs. Numerical methods can be also
implemented through commercial software that can be very useful at design stage.
SolidWorks and MSC ADAMS environments can be used due to their convenient
features for 3DCADdrawing, structure analysis and operation analysis ofmulti-body
systems in order to check the feasibility of a prototype in a virtual environment. In
particular, a model in MSC ADAMS can take into account several aspects such as,
external forces, gravity, contacts constraints, friction, and inertia properties.

4 A Case of Study

In a recent past, research activities have been undergoing at LARM, Laboratory of
Robotics andMechatronics ofCassino and SouthernLazioUniversity, for developing
six-legged robots within the so called “Cassino Hexapod” series. The main features

456 F. Tedeschi and G. Carbone

Fig. 13 The Cassino
Hexapod II

of the proposed design solutions have been the use of low-cost mechanism archi-
tectures and user friendly operation features. Cassino Hexapod is a mobile hybrid
leg-wheel robot, whose intended main application task is the inspection and analysis
of historical sites (Fig. 13). In particular, the robot should be able to move inside
archaeological and/or architectural sites by carrying surveying devices and by avoid-
ing damage to the delicate surfaces or historical items of the site. Additionally, the
robot should be able to operate also in environments that cannot be reached or that
are unsafe for human operators. The Cassino Hexapod is equipped with a wireless
inertial measurement unit sensors LPMS-BOEM [81] in order to control the stability.
This unit can measure orientation about all three global axes by using three different
sensing units: a 3-axis gyroscope, a 3-axis accelerometer and a 3-axis magnetome-
ter. The LPMS-B unit combines the orientation information from the three sensing
units using a complementary filter in conjunction with an extended Kalman filter. A
commercial Wi-Fi camera with a resolution of 640× 480 and weight of 0.1kg has
been assembled under the robot main body in order to acquire image and videos of
the operating scenarios. Further details of sensors, actuators and control architecture
con be found in [82–84].

Path and gait planning of Cassino Hexapod includes human robot interaction by
means of a Wi-Fi network. Figure14 shows a scheme of user interface that pro-
vides the path planning, gait planning and feedback information of the robot. In
particular the path planning layer of Cassino Hexapod robot finds a collision-free
motion between an initial and a final configuration within a specified environment.
Figure15 shown an example of linear path-planning between the initial (A) and final
position (B). The camera allows to collect environments data in order to identify if
there are obstacles for a proper path planning. The gait planning layer allows to select
a walking strategy by selecting, for example, a tripod gait or moving by using wheels
in order to improve the speed on a flat terrain. In the walkingmode, the tripod gait bas
been adopted since it is suitable for high speed walking over relatively flat ground.
The gait controller selects which legs to lift and at what time to lift them; plans trajec-
tories for all the legs; maintains an appropriate body orientation and clearance with
respect to the ground. Figure16 report three frames by referring to the first tripod in

Hexapod Walking Robot Locomotion 457

Fig. 14 User interface of Cassino Hexapod

Fig. 15 Path planning of
Cassino Hexapod

a regular periodic tripod gait of Cassino Hexapod II. The anterior and posterior legs
on one side lift synchronously with the contralateral middle leg, forming alternating
tripods. Figure17 shows the next three frames by referring to the second tripod.

In order to describe the legmotion planning of Cassino Hexapod nowwe show the
physical modelling of robotics legs. We identify path planning forces which cause a
prescribed motion of the effector. The task is to investigate the necessary movement
in kinematic pairs which would ensure the relocation of the end point p of two links
from position t = 0 to position t = tf (Fig. 18). At the beginning and at the end of the
movement the velocity and acceleration of point p should be zero [85]. We find the
time diagram of angular rotations and in the form of 5th degree polynomials, such
as outlined in [86]:

θ1(t) = a1t5 + a2t4 + a3t3 + a4t2 + a5t + a6 (12)

θ2(t) = b1t5 + b2t4 + b3t3 + b4t2 + b5t + b6 (13)

The constants in the polynomials are determined by the initial and end conditions
of the endpoint p for l1 = 70 [mm], l2 = 70 [mm], m1 = 0.05 [kg]; m2 = 0.05 [kg]

458 F. Tedeschi and G. Carbone

Fig. 16 Waking strategy in a tripod gait on Cassino Hexapod: frames by the first tripod

Fig. 17 Waking strategy in a tripod gait on Cassino Hexapod: frames by the second tripod.

where li is the length of ith link and mi is the mass of the ith actuator. The degree of
these polynomials is chosen so that they are able to express the desired conditions on
the initial and final acceleration [87]. After substituting the initial and final conditions
we obtain the following values of their respective constants in the form

θ1(t = 0) = 0 → a6 = 0 (14)

θ2(t = 0) = 0 → b6 = 0 (15)

Hexapod Walking Robot Locomotion 459

Fig. 18 Scheme of a leg
motion

θ̇1(t = 0) = 0 → a5 = 0 (16)

θ̇2(t = 0) = 0 → b5 = 0 (17)

θ̈1(t = 0) = 0 → a4 = 0 (18)

θ̈2(t = 0) = 0 → a4 = 0 (19)

By referring to Fig. 18 we are considering for example, the displacement from the
initial straight leg configuration at time (t= 0) to final configuration at time (t f = 1s)
having leg joints coordinates θ1 = 30◦ and θ2 = −30◦. Accordingly, we obtain the
constants a6, a5, a4 for θ1 and b6, b5, b4 for θ2 motion such as

θ1(t f) − θ1(t = 0) = θ1(t f) = a1t5f + a2t4f + a3t3f = 30 · π

180
(20)

θ̇1(t f) = 5a1t4f + 4a2t3f + 3a3t2f = 0 (21)

θ̈1(t f) = 20a1t3f + 12a2t2f + 6a3t f = 0 (22)

Then, in the matrix form one can write

⎡
⎣ t5f t4f t3f
5t4f 4t3f 3t2f
20t3f 12t2f 6tf

⎤
⎦

⎡
⎣a1

a2
a3

⎤
⎦

⎡
⎣

30π
180
0
0

⎤
⎦ (23)

In a similar way, one can write

θ2(t f) − θ2(t = 0) = θ2(t f) = b1t5f + b2t4f + b3t3f = −30 · π

180
(24)

460 F. Tedeschi and G. Carbone

Fig. 19 Time diagram of angular rotation. a θ1(t). b θ2(t)

θ̇2(t f) = 5b1t4f + 4b2t3f + 3b3t2f = 0 (25)

θ̈2(t f) = 20b1t3f + 12b2t2f + 6b3t f = 0 (26)

Then, in matrix form
⎡
⎢⎣

t5f t4f t3f
5t4f 4t3f 3t2f
20t3f 12t2f 6t f

⎤
⎥⎦

⎡
⎣b1

b2
b3

⎤
⎦

⎡
⎣

30π
180
0
0

⎤
⎦ (27)

Solving the systems provide the values of a1, a2, a3, b1, b2, b3

a1 = 3.12 b1 = −3.12
a2 = −7.8 b2 = 7.8
a3 = 5.2 b3 = −5.2
a4 = 0 b4 = 0
a5 = 0 b5 = 0
a6 = 0 b6 = 0

(28)

Figure19 shows a time diagrams of angular rotation θ1(t) and θ2(t). Figure20
reports the time diagram of velocities θ̇1(t) and θ̇2(t). Figure21 shows the time dia-
gram of accelerations θ̈1(t) and θ̈2(t). In Fig. 22 is the leg trajectory on the xy plane.

After the definition of the desired path we identify the forces which cause a
prescribedmotion of the foot. For this purposewe define amodel of double pendulum
as proposed in Fig. 23, with themain objective to develop a dynamicmodel of a single
robotic leg. The method used is based on the formulation of the Euler-Lagrange [51]:

Hexapod Walking Robot Locomotion 461

Fig. 20 Time diagram of velocity. a θ̇1(t). b θ̇2 (t)

Fig. 21 Time diagram of acceleration. a θ̈1(t). b θ̈2(t)

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= τi i = 1, 2, . . . , n (29)

in which
L = Lagrangian = T–U
T = total kinetic energy of the system
U = potential energy ot the system
qi = generalized coordinates
q̇i = time derivatives of the generalized coordinates
τi = generalized force (or moment) applied by the system to joint i in order to

move the link i.

462 F. Tedeschi and G. Carbone

Fig. 22 Leg trajectory

Fig. 23 A leg with mass
distribution in a swing phase

A significant advantage of the Lagrangian approach to developing equations of
motion for complex systems comes as we leave the cartesian xi coordinate system
and move into a general coordinate system. However, the Lagrange approach cannot
be used for the calculation of reaction forces and usually neglects friction.

The general formulation in Eq. (29) can be used to determine the torques that are
needed to achieve a the prescribed movement of the leg. Inputs are the prescribed
movements of its individual members that moved from initial position to desired
position along the trajectory that has been determined in the path planning. The
solution of Eq. (29) can be obtained by defining the kinematic joint coordinates as
function of the generalized coordinates such as in Eqs. (30) and (31).

We consider the double pendulum shown in Fig. 23 consisting of two links of
length l1 and l2 with mass points of motors m1 and m2. It is to note that the proposed
model refers to the swing phase. This system has two degrees of freedom: θ1 and θ2
defined by the generalized coordinates.

In order to evaluate the Lagrangian, we must obtain the kinetic and potential
energies in terms of the generalized coordinates {θ1, θ2} and their corresponding

Hexapod Walking Robot Locomotion 463

velocities{θ̇1, θ̇2}. We therefore express the Cartesian coordinates {x1, y1, x2, y2} in
terms of the generalized coordinates {θ1, θ2}:

x1 = l1senθ1 y1 = −l1senθ1 (30)

x2 = l1senθ1 + l2senθ2 y2 = −l2senθ1 − l2senθ2 (31)

Similarly, the components of velocity can be calculated by computing the time
derivatives of Eqs. (30) and (31).

The potential energy is

U = m1gy1 + m2gy2 = m1gl1cosθ1 − m1g(l1cosθ1 + l2cosθ2) (32)

For the kinetic energy T we know that:

T = 1

2
mv2 = 1

2
m(ẋ2 + ẏ2) = 1

2
m1(ẋ21 + ẏ21) + 1

2
m2(ẋ22 + ẏ22) (33)

Then one can substitute Eqs. (30) and (31) into Eq. (33) to obtain

T = 1

2
m1l21 θ̇

2
1 + 1

2
m2l21 θ̇

2
1 + 1

2
m2l22 θ̇

2
2 + 1

2
m2(2θ̇1l1θ̇2l2 cos(θ1 − θ2)) (34)

The Lagrangian will be computed by using Eqs. (32) and (34) in the form

L = T − U = 1
2 (m1 + m2)l21 θ̇

2
1 + 1

2m2l22 θ̇
2
2 + m2l1l2θ̇1θ̇2cos(θ1 − θ2)

+ (m1 + m2)gl1cosθ1 + m2l2cosθ2 (35)

Then the Lagrangian in Eq. (35) can be substituted in Eq. (29) in order to compute
the torques τi in the form

τi = d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
(36)

Finally one can compute the required torques for the model in Fig. 23 such as

τ1 = (m1 + m2)l
2
1 θ̈1 + m2l1l2θ̈ cos (θ1 − θ2)

+ m2l1l2θ̇
2
2 sen (θ1 − θ2) + gll(m1 + m2) senθ1 (37)

τ2 = m2l22 θ̈1 + m2l1l2θ̈1cos(θ1 − θ2) − m2l1l2θ̇
2
1 sen(θ1 − θ2) + l2m2g senθ2 (38)

464 F. Tedeschi and G. Carbone

Fig. 24 Time diagram of the computed torque τ1

Equations (37) and (38) can be computed for the desired configurations of the
leg so that the required torques can be computed as function of time as shown for
example, in Fig. 24 that reports the time diagram of the computed torque τ1, by
referring to the most loaded actuator in a swing phase. The computed torques can be
used at design stage for a proper choice of the required actuators. For example Fig. 24
shows a maximum torque of 0.038 Nm by referring to a leg trajectory as defined in
Fig. 22. Additionally one can use the computed torques for control purposes in order
to fulfil the desired path as initially planned.

5 Conclusions

This chapter gives a detailed overview of the literature on HexapodWalking Robots.
Then, the basic hexapod locomotion issues are systematically described. A general
procedure is proposed for properly performing hexapod locomotion as starting from
environments data. Key aspects are described in details by referring to the steps of
path planning, gait planning and leg locomotion planning. Each specific step has
been described also by referring to the wide literature on the topic. A case of study
is described by referring to a built prototype of Cassino Hexapod II at LARM in
Cassino in order to show the engineering details and the practical feasibility of the
proposed procedure.

References

1. Genta G (2012) Introduction to the mechanics of space robots. Springer, New York
2. Nonami K, Barai RK, Irawan A, Daud MR (2014) Hydraulically actuated hexapod robots.

Springer, Japan

Hexapod Walking Robot Locomotion 465

3. IFR home page (2014) http://www.ifr.org/. Accessed 18 Oct 2014
4. Chàvez-Clemente D (2011) Gait optimization for multi-legged walking robots, with applica-

tion to a lunar hexapod. Ph.D. Thesis, Stanford University, Stanford
5. Carbone G, Ceccarelli M (2005) Legged robotic systems. In: Kordic V, Lazinica A, Merdan

M (eds) Cutting edge robotics. InTech, Vienna, pp 553–576
6. Gonzalez de Santos P, Garcia E, Estremera J (2006) Quadrupedal locomotion: an introduction

to the control of four-legged robots. Springer, London
7. Cigola M, Pelliccio A, Salotto O, Carbone G, Ottaviano E, Ceccarelli M (2005) Application

of robots for inspection and restoration of historical sites. In: Proceeding of international
symposium on automation and robotics in construction (paper 37), Ferrara

8. JunBH, ShimH,KimB, Park JY,BaekH,YooS, Lee PM(2013)Development of seabedwalk-
ing robot CR200. In: Proceedings of the OCEANS’13 MTS/IEEE Conference, San Diego,
CA, USA, 23–26 September 2013, pp 1–5

9. Bares J, Hebert M, Kande T, Krotkov E, Mitchell T, Simmons R,WhittakerW (1989) Ambler
an autonomous rover for planetary exploration. IEEE Comput 22(6):18–26

10. Bartholet T, Crawson R (1985) Robot applications for nuclear power plant maintenance; EPRI
Report-NP-3941, Research report center, Palo Alto 1985

11. Oku M, Yang H, Paio G, Harada Y, Adachi K, Barai R, Nonami K (2007) Development of
hydraulically actuated hexapod robot COMET-IV-The 1st report: system design and configu-
ration. In: Proceedings of the 2007 JSME conference on robotics and mechatronics 2A2-G01

12. SilvaMF, TenreiroMachado JA (2007)A historical perspective of legged robots. J VibControl
13:1447–1486

13. Hauser T, Bretl K, Latombe JC, HaradaW (2008)Motion planning for legged robots on varied
terrain. Int J Robot Res 27:1325

14. Armada M, Gonzalez de Santos P (1997) Climbing, walking and intervention robots. Ind
Robot 24(2):158–163

15. Autumn K, Buehler M, CutkoskyM, Fearing R, Full RJ, Goldman D, Groff R, Provancher W,
Rizzi AA, Saranli U, Saunders A, KoditschekDE (2005) Robotics in scansorial environments.
In: Gerhart GR, Shoemaker CM, Gage DW (eds) 5804(1):291–302. SPIE, 2005

16. Gregorio P, Ahmadi M, Buehler M (1997) Design, control, and energetics of an electrically
actuated legged robot. IEEE Trans Syst Man Cybern B 27:626–634

17. Carbone G, Shrot A, Ceccarelli M (2007) Operation strategy for a low-cost easy-operation
Cassino hexapod. Appl Bionics Biomech 4:149–156

18. Muybridge E (1887) Animal locomotion. University of Pennsylvania
19. Schneider A, Schmucker U (2006) Force Sensing for multi-legged walking robots: theory and

experiments part 1: overview and force sensing. In: Buchli J (ed) Mobile robotics, moving
intelligence

20. Tomovic R, Karplus WJ (1961) Land locomotion simulation and control. In: Proceedings of
third international analogue computation, Opatija, Yugoslavia, pp 385–390

21. Hildebrand M (1967) Symmetrical gaits of horse. Science 150:701–708
22. McGhee R (1968) Some finite state aspects of legged locomotion. Math Biosci 2:67–84
23. Peternella M, Salinari S (1973) Simulation by digital computer of walking machine control

system. In: Proceeding of 5th IFAC symposium on automatic control in space, Genova
24. Bessonov A, Umnov N (1973) The analysis of gaits in six-legged vehicles according to their

static stability. In: Proceedings of the 1st CISM-IFToMM conference, Udine, pp 1–9
25. Sun SS (1974) A theoretical study of gaits for legged locomotion systems. Ph.D. Thesis, The

Ohio State University, Columbus
26. Gurfinkel V, Gurfinkel E, Devjanin E, Efremov E, Zhicharev D, Lensky A, Schneider A,

Shtilman L (1982) Investigation of robotics. In: Six-legged walking model of vehicle with
supervisory control. Nauka Press, Moscow

27. McGhee R (1977) Control of legged locomotion systems. In: Proceeding of 18th automatic
control conference, San Francisco, pp 205–215

28. McGhee RB, Iswandhi GI (1979) Adaptive locomotion of a multi legged robot over rouch
terrain. IEEE Trans Syst Man Cybern, SMC-9(4):176–182

http://www.ifr.org/

466 F. Tedeschi and G. Carbone

29. Song SM,Waldron K (1989)Machines that walk: the adaptive suspension vehicle. MIT Press,
Cambridge

30. Raibert M (1986) Legged robots that balance. MIT Press, Cambridge
31. Byrd J, De Vries K (1990) A six-legged telerobot for nuclear applications development. Int J

Robot Res 9(2):43–52
32. Song SM, Waldron KJ (1987) An analytical approach for gait study and its applications on

wave gaits. Int J Robot Res 6:60–71
33. Akizono J, Iwasaki M, Asakura O (1989) Development on a walking robot for underwater

inspection. In: Proceedings of ICAR’89. Columbus, pp 652–663
34. Brooks RA (1989) A robot that walks; emergent behaviors from a carefully evolved network.

Neural Comput 1:253–262
35. Pfeiffer F, Eltze J, Weidermann H (1995) Six-legged technical walking considering biological

principles. Robot Autom 22–23
36. Nelson GM, Quinn RD, Bachmann RJ, Flannigan WC, Ritzmann RE, Watson JT (1997)

Design and simulation of a cockroach-like hexapod robot. In: Proceedings of the 1997 IEEE
international conference on robotics and automation, pp 1106–1111

37. Koyachi N, Adachi H, Izumi M, Hirose T, Senjo N, Murata R, Arai T (2002) Multimodal
control of hexapod mobile manipulator MELMANTIS-1. In: Proceedings of 5th International
Conference on Climbing Walking Robots, pp 471–478

38. Alexandre P, Preumont A (1995) On the gait control of a six-legged walking machine. In:
Proceedings of 2nd IFAC workshop on intelligent autonomous vehicles, Espoo

39. Yang J, Kim J (2000) A fault tolerant gait for a hexapod robot over uneven terrain. IEEE Trans
Syst, Man, Cybern, Part B 30(1):172–180

40. Saranli U, Buehler M, Koditschek DE (2001) RHex-A simple and highly mobile hexapod
robot. Int J Robot Res 20(7):616–631

41. Lewinger WA, Branicky MS, Quinn RD (2005) Insect-inspired, actively compliant hexa-
pod capable of object manipulation. In: Proceedings of the 8th international conference on
climbing and walking robots (CLAWAR’2005), London, UK, 13–15, September 2005, pp
65–72

42. Collins JJ, Stewart I (2004) Hexapodal gaits and coupled nonlinear oscillator models. Biol
Cybern

43. Arena P, Fortuna L, Frasca M, Patanè L, Pavone M (2006) Realization of a CNN driven
cockroach-inspired robot. In: Proceedings of IEEE international symposium on circuits and
systems. Kos. doi:10.1109/ISCAS.2006.1693168

44. Fielding MR, Dunlop GR (2004) Omnidirectional hexapod walking and efficient gaits using
restrictedness. Int J Robot Res 23(10):1105–1110

45. Kennedy B, Koon A, Aghazarian H, Garrett M, Huntsberger T, Magnone L, Robinson M,
Townsend J (2005) The Lemur II-class robots for inspection and maintenance of orbital struc-
tures: a system description. In: Proceedings of CLAWAR’2005-8th international conference
on climbing and walking robots, pp 1069–1076

46. Asbeck AT, Kim S, McClung A, Parness A, Cutkosky MR (2006) Climbing walls with
microspines. In: Proceedings of IEEE international conference robotics and automation,
Orlando, pp 4315–4317

47. Nonami K (2001) Humanitarian mine detection six-legged walking robot Comet-II with two
manipulators. In: CLAWAR2001—climbing andwalking robots and the support technologies
for mobile machines

48. RoennauA,HeppnerG,PfozterL,DillmanR (2013)LauronV: optimized leg configuration for
the design of a bio-inspiredwalking robot. In: Proceedings of the 16th international conference
on climbing and walking robots and the support technologies for mobile machines, Sydney,
pp 563–571

49. Siciliano B, Khatib O (2008) Springer handbook of robotics. Springer, New York
50. Fielding MR, Dunlop R, Damaren, Hamlet CJ (2001) Force/position controlled hexapod

walker—design and systems. In: Proceeding of IEEE conference on control applications,
Mexico City, pp 984–989

http://dx.doi.org/10.1109/ISCAS.2006.1693168

Hexapod Walking Robot Locomotion 467

51. CeccarelliM (2010) Fundamentals ofmechanics of roboticmanipulation. Springer, Dordrecht
52. Kazemi M, Gupta K, Mehrandezh M (2010) Path-planning for visual servoing: a review and

issues. Visual servoing via advanced numerical methods. Springer, London, pp 189–207
53. Latombe JC (1991) Robot motion planning. Kluwer, Boston
54. Hoerger M, Kottege N, Bandyopadhyay T, Elfes A, Moghadam P (2014) Real-time stabili-

sation for hexapod robots. In: Proceedings of the international symposium on experimental
robotics (ISER 2014), 15–18 June 2014. Marrakech and Essaouira, Morocco

55. Foley JD, Van Dam A, Feiner SK, Hughes JF (1990) Computer graphics: principles and
practice, 2nd edn. Addison-Wesley, Reading

56. Carbone G, Ceccarelli M, Oliveira PJ, Saramago SF, Carvalho JCM (2008) An optimum path
planning forCassino parallelmanipulator by using inverse dynamics. Robotica 26(2):229–239

57. Vukobratovic M, Borovac B (2004) Zero moment point: thirty five years of its life. Int J Hum
Robot 1(1):157–173

58. Ghasempoor A, Sepehri N (1998) A measure of stability for mobile manipulators with appli-
cation to heavy-duty hydraulic machines. ASME J Dyn Syst, Meas Control 120:360–370

59. Abo-Shanab RF, Sepehri N (2005) Tip-over stability of manipulator-like mobile hydraulic
machines. ASME J Dyn Syst, Meas, Control 127:295–301

60. Papadopoulos E, Rey DA (2000) The force-angle measure of tip-over stability margin for
mobile manipulators. J Veh Syst Dyn 33:29–48

61. Hirose S, Tsukagoshi H, Yoneda K (2001) Normalized energy stability margin and its con-
tour of walking vehicles on rough terrain. In: Proceedings IEEE international conference on
robotics and automation, Seoul, pp 181–186

62. Moosavian SAA, Dabiri A (2010) Dynamics and planning for stable motion of a hexapod
robot. In: Proccedings of IEEE/ASME International Conference on Advanced Intelligent
Mechatronics, Montreal 6–9 July 2010, pp 818–823

63. Lingelbach F (2004) Path planning using Probabilistic cell decomposition. In: Proceedings
of IEEE international conference on robotics and automation ICRA’04

64. Chazelle B (1987) Advances in robotics. In: Schwartz JT, Yap CK (eds) Approximation and
decomposition of shapes. Erlbaum Hillsdale, Hillsdale, pp 145–185

65. Khatib O (1985) Real-time obstacle avoidance for manipulators and mobile robots. In: Pro-
ceedings of the 1985 IEEE international conference on robotics and automation, pp 500–505

66. Volpe RA (1990) Real and artificial forces in the control of manipulators: theory and experi-
ments. Carnegie Mellon University, Pittsburgh, The Robotics Institute

67. Takahashi O, Schilling RJ (1989) Motion planning in a plane using generalized Voronoi
diagrams. IEEE Trans Robot Autom 5(2):143–150

68. Garrido S, Moreno L, Lima PU (2011) Robot formation motion planning using fast marching.
Robot Auton Syst 59(9):675–683

69. Ahmad A, Nirjhar D (2008) Probabilistic roadmap method and real time gait changing tech-
nique implementation for travel time optimization on a designed six-legged robot . In: Pro-
ceedings of the 39nd ISR(International Symposium on Robotics), 15–17 October 2008

70. Gómez-Bravo F, Carbone G, Fortes JC (2012) Collision free trajectory planning for hybrid
manipulators. Mechatronics 22:836–851. ISSN: 0957–4158, doi:10.1016/j.mechatronics.
2012.05.001

71. Belter D, Skrzypczynski P (2011) Integrated motion planning for a hexapod robot walking
on rough terrain. In: Proceedings of 18th IFAC World Congress Milano (Italy) August 28–
September 2, 2011

72. Ding X, Wang Z, Rovetta A, Zhu JM (2010) Locomotion analysis of hexapod robot. In:
Miripour B (ed) Climbing and walking robots

73. Preumont A, Alexadre P, Ghuys D (1991) Gait analysis and implementation of a six leg
walking machine. In: Proceedings of the fifth international conference on advanced robotics.
Robots in unstructured environments (ICAR’91), vol 2. pp 941–945. Pisa, 19–22 June 1991

74. Ozguner F, Tsai SJ,McGhee RB (1984) An approach to the use of terrain-preview information
in rough terrain locomotion by a hexapod walking machine. Int J Robot Res 3(2):134–146

75. Wilson DM (1966) Insect walking. Annu Rev Entomol 11:103–122

http://dx.doi.org/10.1016/j.mechatronics.2012.05.001
http://dx.doi.org/10.1016/j.mechatronics.2012.05.001

468 F. Tedeschi and G. Carbone

76. Collins JJ, Stewart I (1993) Hexapodal gaits and coupled nonlinear oscillator models. Biol
Cybern 68: 287–298

77. Berns K, Dillman R (2001) From biology to industrial applications. In: 4th CLAWAR inter-
national conference of climbing and walking robots, Karlsruhe, pp 80–82

78. Todd DJ (1985) Walking machines-an introduction to legged robots. Anchor Press, Essex
79. Carbone G, Ceccarelli M (2004) A mechanical design of a low-cost easy-operation anthro-

pomorphic wheeled leg for walking machines. Int J Robot Manag 9(2):3–8
80. SilvaMF, TenreiroMachado JA, LopesAM (2003) Comparison of fractional and integer order

control of an hexapod robot. In: Proceedings of DETC 03 ASME 2003 design engineering
technical conference and computers information in engineering conference, Chicago, USA,
2–6 September 2003

81. Life Performance Research home page (2014)http://www.lp-research.com/. Accessed 18 Oct
2014

82. Carbone G, Tedeschi F (2013) A low cost control architecture for Cassino Hexapod II. Int J
Mech Control 14(01):19–24

83. Tedeschi F, Cafolla D, Carbone G (2014) Design and operation of Cassino hexapod. Int J
Mech Control 15(01):19–25

84. Tedeschi F, Carbone G (2014) Design issues for hexapod walking robots. Robotics 3(2):181–
206

85. Julis K, Brepta R (1987) Mechanics II. Dynamics, SNTL, Praha
86. Frankovsky P, Hroncova D, Delyova I, Hudak P (2012) Inverse and forward dynamic analysis

of two link manipulator. Procedia Eng 48:158–163
87. Ogatha K (1978) System dynamics. Prentice Hall Inc, Englewood Cliffs

http://www.lp-research.com/

Part V
Robot Cooperation and Interaction

Distributed Cooperation of Multiple UAVs
for Area Monitoring Missions

José J. Acevedo, Begoña C. Arrue, Iván Maza and Anibal Ollero

Abstract Monitoring and surveillance is a very relevant issue in recent years where
the use of multiple Unmanned Aerial Vehicles (UAVs) offers interesting advantages.
In this kind of mission, assuming that there is no “a priori” information about the
location or time of the events or intruders to detect, a frequency-based criterion
seems to be an interesting approach to solve the problem. This chapter describes a
frequency-based approach applied to a cooperative area monitoring problem using
a team of UAVs. Three different cooperative patrolling strategies (cyclic, path par-
titioning and area partitioning) are analyzed and compared with respect to refresh
and latency times criteria. Finally, assuming communication constraints, a distributed
implementation is required and convergence to the centralized cooperative patrolling
strategy should be ensured. Two different distributed techniques are described: one-
to-one coordination and a method based on coordination variables. Both techniques
are compared from a convergence complexity criterion.

Keywords Multi-UAV · Distributed coordination · Cooperative patrolling ·
Surveillance and monitoring

J.J. Acevedo (B) · B.C. Arrue · I. Maza · A. Ollero
Grupo de Robótica, Visión y Control, Escuela Superior de Ingenieros,
Universidad de Sevilla. Camino de Los Descubrimientos s/n, 41092 Sevilla, Spain
e-mail: jacevedo@us.es

B.C. Arrue
e-mail: barrue@us.es

I. Maza
e-mail: imaza@us.es

A. Ollero
e-mail: aollero@us.es

© Springer International Publishing Switzerland 2015
G. Carbone and F. Gomez-Bravo (eds.), Motion and Operation Planning
of Robotic Systems, Mechanisms and Machine Science 29,
DOI 10.1007/978-3-319-14705-5_16

471

472 J.J. Acevedo et al.

1 Introduction

Monitoring is a relevant feature in different contexts: automated inspection, search
and rescue missions, planetary explorations, etc., as can be found in [12, 21]. The use
of the multiple cooperating UAVs offers very interesting advantages to accomplish
this kind of mission: robustness against failures, higher spatial coverage and an
efficient deployment [8, 18].

From a frequency-based approach, minimizing the time to detect an object of
interest in the area is the same as minimizing the elapsed time between two consec-
utive visits to any position or refresh time. This approach has been used by many
authors, obtaining solutions to guarantee an uniform frequency of visits as in [13], or
the maximal minimum frequency as in [7]. The obtained solution is a deterministic
motion plan for each vehicle. Some authors, as in [6], address the patrolling problem
in adversarial settings applying a probabilistic approach because with a deterministic
solution, intelligent intruders could learn the strategy. A frequency-based approach is
also followed in [10], which defines and compares different partitioning and cyclic
patrolling strategies. Authors of [20] analyze the refresh time and latency in area
coverage problems with multiple robots using different approaches.

In [2], an area partitioning strategy is proposed to monitor a rectangular area
with a team of homogeneous UAVs. The area is divided into non overlapped sub-
areas and each UAV covers a different sub-area using an efficient path, minimizing
the total path length. On other hand, in [5], the problem with irregular areas and
heterogeneous UAVs is solved using a path partitioning strategy. A single coverage
path is created to monitor the whole area and the path is divided in segments that
are allocated to the different UAVs. Other authors, as [19], propose cyclic strategies
where all the robots patrol the same closed coverage path in the same direction and
equally spaced through it. This strategy offers theoretically optimal results from a
frequency-based approach with homogeneous robots. However, in scenarios with
constrained communications, the robots could not share the required information.

On the other hand, a coverage path planning algorithm is required for monitoring
missions. Reference [14] proposes an on-line algorithm, assuming that area to cover
is initially unknown, that solves the problem for multi-robot systems using Voronoi
spatial partitioning. An off-line algorithm, where the area to cover is known a priori,
is proposed in [15]. The authors create a spanning tree and generate a coverage path
around it. The most well known off-line coverage path planning is called Boustro-
phedon Cellular Decomposition and was presented in [11]. It proposes to divide the
whole area into smaller sub-areas which can be covered with a simple back and
forth method. A variation of this method has been used in this chapter to obtain a
pseudo-symmetrical path [1].

Assuming communications constraints, a decentralized algorithm has to be pro-
posed to coordinate the motions of the UAVs in a distributed manner. In [17], the
authors propose behavioral control to perform perimeter patrolling mission with
multiple robots, even under communications constraints, but it does not optimize
the solution from a refresh time criterion. Authors of [4, 16] use the technique of

Distributed Cooperation of Multiple UAVs for Area Monitoring Missions 473

coordination variables to ensure cooperation between a team of UAVs to accomplish
a perimeter surveillance mission using a path partitioning strategy. Coordination
variables are the minimum global information required by each robot to solve the
problem in a coherent manner. The selection of those variables can be difficult for
complex problems. In [2], the technique called one-to-one coordination is presented
to implement an area partitioning strategy from a distributed manner with a team of
homogeneous UAVs. This technique implies that each pair of UAVs solves a coor-
dination problem including only their own information. A one-to-one coordination
technique allows the system to obtain the whole coordination from local decision
and information. The resulting system is scalable, because each UAV only requires
information from nearby neighbors. In [9], the authors use a similar technique to
coordinate a team of video-cameras in surveillance missions.

A large set of validation tests assuming different scenarios has be performed using
different coordination techniques and patrolling strategies. Results will be focused
on analyzing the convergence complexity and the performance of the different algo-
rithms and strategies in the different scenarios from a frequency-based approach and
according to the refresh time and latency criteria.

The rest of the chapter is structured as follows. Section 2 describes the frequency-
based approach related to the monitoring missions. The area monitoring mission with
a team of UAVs is stated in Sect. 3. In Sect. 4, three different cooperative patrolling
strategies are proposed to solve the proposed problem. This section analyzes the
strategies from a refresh time and a latency time criterion. Section 5 describes and
analyzes from a convergence complexity criterion two different distributed coordi-
nation techniques. Section 6 closes the chapter with the conclusions.

2 Frequency-Based Criterion for Monitoring Missions

Monitoring and surveillance missions with mobile robots implies to patrol the area
of interest according to a defined criterion. When there is no information about the
events or intruders to detect, it can be assumed that the events can appear in any
position with the same probability.

Then, the goal is to optimize the frequency of visits of any position into the area.
Different optimization criteria can be defined from a frequency-based approach:

• Uniformity criterion. The objective is to obtain the same frequency of visits for
all locations in the area.

• Average frequency. The objective is to maximize the minimum average frequency
of visits for all positions in the area.

• Maximal minimum frequency. The objective is to maximize the minimum fre-
quency of visits for any location into the area.

474 J.J. Acevedo et al.

2.1 Refresh Time

Maximizing the frequency of visits of a position r in the area S is equivalent to
minimizing the elapsed time between two consecutive visits to that position, which
is also known as the refresh time RT. The refresh time at a position r increases while
that position is not monitored. Given an updating time dT, the refresh time can be
periodically recalculated as

RT(r, t) =
{

0, if r is being monitored at time t

RT(r, t − dT) + dT, in other case
, (1)

where RT(r, 0) = 0,∀r ∈ S.
Therefore, the previous optimization criteria can be redefined as follows:

• Uniformity criterion. The objective is to obtain the same refresh time for all loca-
tions in the area.

• Average refresh time. The objective is to minimize the average refresh time for all
the positions in the area.

• Minimal maximum refresh time. The objective is to minimize the maximum refresh
time for any location in the area. In this case, the objective function J to minimize
can be formally defined as

J = max
r,t

RT(r, t) , (2)

and this problem is addressed in [10] (min idleness problem).

If there is additional information about the distribution of the objects of interest
in the area, the scenario can be divided in different zones with different probabilities.
Then, the frequency of visits can be normalized by using priorities and defining the
urgency along the whole area, such as in [3].

3 Multi-UAV Systems for Area Monitoring Missions

Let us consider an irregular area S that has to be cooperatively monitored by a team
of N UAVs M := {M1, M2, . . . , MN } controlled in position and velocity, see Fig. 1.

Let us define pi (t) ∈ R
3 as the position of Mi at time t in the space and ri (t) ∈ R

2

as its projection on the ground. A maximum motion speed can be defined for each
UAV Mi , such that the velocity vi (t) of each UAV on the ground at any time t is
limited by vmax

i as

vi (t) = |dri (t)

dt
| ≤ vmax

i . (3)

It is assumed that each UAV can use its velocity vi (t) as input to control its motion.

Distributed Cooperation of Multiple UAVs for Area Monitoring Missions 475

Fig. 1 A set of five UAVs
monitoring an area S

On other hand, assuming a constant altitude and a circular coverage pattern, the
covering capabilities of each UAV Mi can be computed from the coverage range ci ,
which defines how large is the area Ci (t) that the UAV can instantaneously monitor as

Ci (t) := {r ∈ R
2 : |r − ri (t)| < ci } . (4)

The UAVs are considered heterogeneous since they can have different motion
speeds and coverage ranges. But, what is better? A larger coverage range or a greater
motion speed? Assuming that both UAVs have a maximum motion speeds greater
than 0, both the motion speed and the coverage range can be normalized in a single
one: the coverage speed amax

i that can be defined as the maximum area covered per
second by each UAV.

It can be computed as follows. Considering a UAV moving in straight line at
constant speed vmax

i during an interval of Δt s and assuming a circular coverage
pattern with a radio ci , it would have covered a size of A m2

A = πc2
i + 2ci v

max
i Δt . (5)

and deriving it, the coverage speed is as follows

amax
i = d A

dt
= 2ci v

max
i . (6)

In Fig. 2, a UAV Mi takes 4d
vi

seconds to cover an area of 8dci m2.
The goal is to define cooperatively the UAVs motions to minimize the cost function

defined in (2), which means minimizing the maximum refresh time along the whole
area S.

On the other hand, communication constraints can be modeled considering a
limited communication range R for the UAVs

476 J.J. Acevedo et al.

Fig. 2 Area covered by a
UAV Mi with a coverage
range ci moving around a
square of side d

||pi − p j || ≤ R , (7)

so that only close enough UAVs can communicate and interchange information.
Dealing with communication constraints implies to achieve the above mentioned
goal in a distributed manner (considering a non continuously opened communications
channel between all the UAVs).

Finally, in distributed systems and assuming communication constraints, for mon-
itoring and surveillance missions it is interesting to estimate how long does the infor-
mation detected by a single UAV take to reach a central control station, such that it
can decide the following actions with respect to this detected information. This time
is upper bounded by the latency time LT or time to share any information between
all the UAVs. Therefore, another relevant objective for this type of missions is to
minimize the theoretical maximum latency time LT.

4 Cooperative Patrolling Strategies

Solving the monitoring mission in a cooperative manner from a frequency-based
approach implies to define a cooperative patrolling strategy for the multiple UAVs.
The challenge is to coordinate the UAVs motions such that the refresh time and the
latency time can be minimized along the whole area.

Distributed Cooperation of Multiple UAVs for Area Monitoring Missions 477

4.1 Cyclic Strategy

A single closed coverage path P of length L for all the UAVs is usually assumed
in this type of strategies. The path P can be defined by a curve λ(x) : R → R

2,
where x is the distance from the location λ(x) to the initial path position λ(0) along
the path P . In [19], the authors describe this strategy. All the vehicles move along
the path P in the same direction with the same velocity vmax and equally spaced, as
it is shown in Fig. 3. Therefore, at any time t , the position λ(xi (t)) of a UAV Mi is
related to the locations of its neighbors (λ(xi−1(t))) by

xi (t) = xi−1(t) + L

N
, (8)

where N is the total number of UAVs.
Assuming that all the UAVs have the same capabilities (maximum speed and cov-

erage range), this strategy obtains theoretically the best performance from a refresh
time criterion. Figure 4 plots the refresh time for the setup shown in Fig. 3. The
theoretical maximum refresh time using the cyclic strategy can be computed as

RT max = L

Nvmax , (9)

Fig. 3 A team of three
UAVs running a cyclic
strategy along a path P to
monitor a rectangular area S

Fig. 4 Refresh time
computed along a path of
length L while the three
UAVs shown in Fig. 3 run a
cyclic strategy

0 L/6 2L/6 3L/6 4L/6 5L/6 L
0

5

10

15

20

x (m)

R
T

 (
s)

478 J.J. Acevedo et al.

and the theoretical average refresh time is a constant value

RT ave = L

2Nvmax . (10)

Within the cyclic strategy, additional aspects are considered in the following.

4.1.1 Open Paths

Assuming an open coverage path (λ(0) �= λ(L)), the UAVs can not be continuously
patrolling while keeping the same motion direction. Then, in order to implement
a cyclic strategy, the UAVs should use a larger closed path P ′ which includes the
coverage open path P and a segment between the final λ(L) and the initial λ(0) path
positions. Defining the distance between λ(0) and λ(L) as d > 0, the length of P ′
is L + d (see Fig. 5) and the previous values for the maximum and average refresh
times are degraded to

RT max = L + d

Nvmax (11)

and

RT ave = L + d

2Nvmax . (12)

Fig. 5 When the path P is
not closed, the UAVs should
go from the initial to the final
position of P to implement a
cyclic strategy

Distributed Cooperation of Multiple UAVs for Area Monitoring Missions 479

4.1.2 Latency Under Communication Constraints

Considering a limited communication range R for the UAVs, two neighbor UAVs
can not communicate if

R > ||λ(xi) − λ(xi−1)|| , (13)

for any i ∈ [1, 2, . . . , N].
Even assuming that the UAVs can continue the mission without communication

executing the plan previously computed, they can not share the information about the
detected objects of interest with the rest of the team and the latency LT minimization
can not be addressed. A possible solution could be to consider a fixed station in a
position into the coverage path, such that it can retrieve the information from the
UAVs. Theoretically, this solution could keep the best performance from a refresh
time criterion while allowing information propagation among the UAVs. The question
is: how long the information about an event detected by a single UAV takes to be
propagated to the rest of the team? In the worst case scenario, the UAV Mi takes
a time L

vmax to visit the fixed station after it has detected an object of interest (see
Fig. 6), and each period L

Nvmax , a new UAV passes close to the fixed station to receive

Fig. 6 a UAV M1 detected an object of interest whose information has to be shared with M2 and
M3. As they are running a cyclic strategy, M1 uses a fixed station as relay to share the information

480 J.J. Acevedo et al.

information about the detected object. Then, after a period (N−1)L
Nvmax , the information

received at the fixed station from Mi has been shared among the other other N − 1
UAVs and the latency can be upper-bounded as

LT ≤ L

vmax + (N − 1)L

Nvmax . (14)

And for N → ∞, the upper bounds of the latency can be approximated

LT ≈ 2L

vmax . (15)

4.1.3 Heterogeneous UAVs

Assuming heterogeneous UAVs, the cyclic strategy can not exploit their different
capabilities and can not obtain the best performance from a frequency-based criterion.

First, if any UAV has a coverage range different to the rest, its optimal coverage
path would be different. However, according to the cyclic strategy, all the UAV
must patrol the same path. If they follow the path computed according to the largest
coverage range, the UAVs with lower coverage ranges will not be able to monitor
the whole area and the maximum refresh time will depend only on the UAV with
the greater coverage range. If they follow the path computed according to the lowest
coverage range, the maximum refresh time will be also increased with respect to the
theoretically best one but it will depend on all the UAVs.

Also, assuming that all the UAVs have the same coverage range but some of
them have a different maximum speed, there are different possibilities. The first one
implies that the slowest UAVs do not participate in the mission; then, a cyclic strategy
with N ′ < N UAVs will obtain a refresh time greater than the best one. The second
one assumes that the faster UAVs limit their speed, such as a cyclic strategy with a
N UAVs moving at the lowest speed is implemented obtaining a refresh time greater
than the best one. Finally, a mixed option, choosing a velocity such that some UAVs
can not participate in the mission and others have to limit their speeds, would obtain
better results than the previous ones but it will be also worse than the theoretical best
solution.

Assuming vmax
1 ≥ vmax

2 ≥ · · · ≥ vmax
N , the theoretical maximum refresh time can

be computed as follows, depending on how many UAVs participate in the mission.

RTmax = L

nvmax
n

. (16)

Therefore, the challenge would be to choose the value n which minimizes the
expression (16).

Distributed Cooperation of Multiple UAVs for Area Monitoring Missions 481

Fig. 7 A team of three
UAVs running a path
partitioning strategy to patrol
a path P . An area S is
monitored by dividing the
path in three segments P1,
P2 and P3

4.2 Path Partitioning Strategy

Another usual approach to solve monitoring missions in a cooperative manner is
to divide the whole task among the available UAVs. The path partitioning strategy
assumes that there is a coverage path P of length L for the whole area S that is
divided in N non-overlapping segments Pi of length Li (see Fig. 7) according to the
UAVs maximum speeds vmax

i such that

P1 ∪ P2 ∪ · · · ∪ PN = P

P1 ∩ P2 ∩ · · · ∩ PN = ∅ (17)

and

Li = vmax
i

L∑N
j=1 vmax

j

∀i = 1, . . . , N . (18)

Each UAV patrols its own segment by using a back and forth motion so that all
the UAVs take the same time

T ′ = Li

vmax
i

= L∑N
j=1 vmax

j
(19)

to cover their own segments. Figure 8 shows the refresh time for three UAVs running
a path partitioning strategy. The maximum refresh time can be computed when a UAV
almost reaches one of the endpoints of its segments as

RTmax = 2
L∑N

j=1 vmax
j

, (20)

whereas the maximum average refresh time, in the worst case scenario when all the
UAVs are in the middle of their own segments, can be computed as

482 J.J. Acevedo et al.

Fig. 8 Refresh time
computed along a path of
length L while three UAVs
run a path partitioning
strategy

0 L/6 2L/6 3L/6 4L/6 5L/6 L
0

5

10

15

20

x (m)
R

T
 (

s)

RTave ≤ 3

4

L∑N
j=1 vmax

j

. (21)

According to these results, the path partitioning strategy is worse than the cyclic
strategy from a frequency-based criterion if all the UAVs are homogeneous and the
path is closed. However, this strategy is useful with open and closed paths because
robots move using a back and forth motion and can exploit the different maximum
speeds of the UAVs. And assuming different coverage ranges, the path partitioning
strategy has the same disadvantages as the cyclic one.

4.2.1 Latency Analysis

On the other hand, as all the UAVs take the same time to cover their own segments,
it is possible to coordinate their motion such that each pair of neighbors can meet
periodically in the common end of their segments. This strategy can ensure that any
detected information is shared between all the UAVs even under communication
constraints.

The latency time can be computed following the idea in Fig. 9. In an steady state
and in the worst case scenario, a UAV with only a single neighbor detects an object
of interest just after meeting its neighbor. In a period 2T ′ the UAV meets its neighbor
again and share the detected information. Now, every T ′ another UAV receives that
information and after a period (N − 2)T ′ the last UAV receives it. Therefore, the
latency is upper-bounded by

LT ≤ 2T ′ + (N − 2)T ′ = N T ′ . (22)

The path partitioning strategy obtains a good performance from a frequency-based
criterion because it can exploit the different speed capabilities and it can be applied
with open paths. It also ensures information propagation even under communication
constraints.

Distributed Cooperation of Multiple UAVs for Area Monitoring Missions 483

Fig. 9 An UAV at the
endpoint of a segment
detects an object of interest
and has to share this
information with the rest of
the team. Neighbor UAVs
meet periodically and share
the information

4.3 Area Partitioning Strategy

The path partitioning strategy ensures periodical communication and exploits the
different speeds. However, it can not obtain the best performance from a frequency-
based criterion mainly because the UAVs have to move with a back and forth motion
along their segments. In the area partitioning strategy, the UAVs implement a cyclic
motion to patrol their segments in order to improve the previous solution.

In this strategy the whole area S to monitor is divided in N non-overlapping sub-
areas Si of sizes Ai which depend on the UAVs capabilities (ai = 2ci vmax

i) such
that

S1 ∪ S2 ∪ · · · ∪ SN = S

S1 ∩ S2 ∩ · · · ∩ SN = ∅ (23)

and

Ai = amax
i

A∑N
j=1 amax

j

∀i = 1, . . . , N , (24)

as it is shown in Fig. 10. Each UAV Mi can generate its own closed coverage path
Pi to patrol its own sub-area Si . It is assumed that it is possible to generate a closed
coverage path Pi for any area such that its length Li depends directly on the coverage
range ci of each UAV. Each UAV patrols continuously its own coverage path in a
cyclic manner Fig. 11

As the sub-area sizes match the UAVs capabilities, all the UAVs take the same
time to patrol its own sub-area and the maximum refresh time is theoretically the best
one from a frequency-based criterion

484 J.J. Acevedo et al.

Fig. 10 A team of three UAVs an area partitioning strategy to monitor an area S by dividing it into
three sub-areas S1, S2 and S3 and generating three different paths P1, P2 and P3. Figure 11 shows
the refresh time computed along the different paths generated

0 L1
0
5

10
15
20

x (m)

R
T

 (
s)

S1

0 L2
0
5

10
15
20

x (m)

R
T

 (
s)

S2

0 L3
0
5

10
15
20

x (m)

R
T

 (
s)

S3

Fig. 11 Refresh time computed along the three paths while three UAVs run an area partitioning
strategy

RT max = T ′ = Ai

amax
i

= A∑N
j=1 amax

j

, (25)

as well as the average refresh time

RT ave = A

2
∑N

j=1 amax
j

. (26)

Then, this strategy can obtain theoretically the best performance from a frequency-
based approach exploiting the UAVs different capabilities (maximum speed, cover-
age range, etc.).

Distributed Cooperation of Multiple UAVs for Area Monitoring Missions 485

4.3.1 Latency Analysis

As all the UAVs take the same time to cover their sub-areas and assuming that each
UAV has at least one neighbors, it is possible to coordinate their motions such that
each pair of neighbors can meet periodically. A particular configuration is stated to
organize the different UAVs in an area partitioning strategy.

Assuming that the coverage path of adjacent sub-areas have at least a pair of points
close enough to allow communication, it should be possible to ensure information
propagation among all the UAVs. These pair of points are defined as link positions.
Then, each UAV has so many neighbors as link positions are in its coverage path.

Defining the coverage paths such that the distances between each pair of consec-
utive link positions are always the same and that the length of the paths are related to
the UAVs motion speeds, it is possible to synchronize the UAVs’ motions to upper-
bound the latency time [1]. This latency time is related to the total number of link
positions in the system (as the number of link positions increases, the upper-bound
of the latency time decreases). Let us consider two configurations as examples:

• Vector configuration: This is the configuration with the minimum number of link
positions as it can be inferred from Fig. 12. Each UAV has a maximum of two
neighbors and a minimum (in the sub-areas of the extremities) of one neighbor.
Then, the total number of link positions is N − 1. In this case, the worst case
scenario happens when a UAV in one of the sub-areas of the limits detects an
object of interest just after meeting its neighbor. T ′ seconds later, it meets its
neighbor again and shares the detected information. Now, each period T ′/2, a
UAV which received the information from one neighbor meets another one. At the
end, in a period of (N − 2)T ′/2 the other N − 2 UAVs will receive the detected
information and

LT ≤ 2
T ′

2
+ (N − 2)

T ′

2
= N

T ′

2
. (27)

• Grid-shape configuration: in this case with N = m × n UAVs, each one has at
most four link positions as can be seen in Fig. 13 and the maximum latency time
is reduced. The total number of link positions is m · (n − 1) + n · (m − 1) and
the maximum latency time is defined by the distance in number of link positions
between the two farthest coverage paths: (n − 1) + (m − 1) link positions. Then,
in the worst case scenario and assuming a single direction of motion for all the
UAVs, the latency is upper-bounded by

LT ≤ T ′ + (n − 2)T ′/2 + T ′/4 + (m − 2)T ′/2 = (2n + 2m + 1)T ′/4 . (28)

It can be seen that the latency time depends on the configuration, but in general
the area partitioning strategy usually offers better results than the path partitioning
strategy from a latency criterion.

486 J.J. Acevedo et al.

Fig. 12 Maximum time since an object of interest is detected until this information reaches the
farthest sub-area in a setup with nine UAVs running an area partitioning strategy using a vector-shape
area division

Fig. 13 Maximum time since an object of interest is detected until this information reaches the
farthest sub-area in a setup with nine UAVs running an area partitioning strategy using a 3 × 3
grid-shape area division

4.4 Comparison Between Patrolling Strategies

The three proposed strategies has been implemented, simulated and compared for the
same missions: a team of UAVs has to detect objects of interest in a given scenario
and has to report the collected information to a central control station. A large set of

Distributed Cooperation of Multiple UAVs for Area Monitoring Missions 487

cyclic path part.area part.
0

0.2

0.4

0.6

0.8

1

1.2

1.4
tim

e/
T
’

time to detect

cyclic path part.area part.
0

2

4

6

8

10

12

14
time to report

cyclic path part.area part.
0

2

4

6

8

10

12

14
time to detect and report

Fig. 14 Relation between average detection and information propagation times computed during
the simulations for the three cooperative patrolling strategies with respect to the optimal maximum
refresh time

more than 80 objects of interest are launched in random positions across the area.
Two different scenarios have been considered: an urban scenario with buildings and
16 UAVs and a natural opened scenario with 20 UAVs. All the UAVs are defined
homogeneous, such that the three strategies can be compared assuming their best case.
In order to normalize the results from the different scenarios, the optimal maximum
refresh time is defined. Assuming that there are N UAVs, that all the UAVs have a
maximum coverage speed amax and that the area has a size A, this parameter can be
defined as

T ′ = A

Namax . (29)

Figure 14 shows the average times (± their standard deviations) computed during
the simulations divided by the optimal maximum refresh time.

Results confirm that cyclic and area partitioning strategies obtains the lowest
detection times (related to the refresh times). On the other hand, the area partitioning
strategy propagates the information faster than the others (related to the latency
times).

5 Distributed Coordination Techniques

Assuming a limited communications range, the UAVs can not keep always direct
communication in order to coordinate their motions in a centralized manner. In
dynamic scenarios where the problem conditions can change during the mission,

488 J.J. Acevedo et al.

the relevance of this issue is more critical. The objective is that the UAVs motions
converge to implement a cooperative patrolling strategy in a distributed manner. Each
UAV should decide its actions by using local information and limited communication
with others. There is not any UAV who rules the rest and all the UAVs are in the same
hierarchical level. The distributed algorithm should be based on the communication
exchanges between UAVs that allow to update their local information. The system
has to be totally decentralized and should be able to adapt to UAV faults and changes
in the initial conditions. Two different approaches are described in the following.

5.1 One-to-one Coordination

The one-to-one coordination technique assumes that, solving the coordination prob-
lem between each pair of UAVs within communication, allows to solve the whole
coordination problem between the N UAVs. For instance, an area partitioning strat-
egy implies that each UAV has to cover a sub-area with a surface related to its own
capabilities. Using one-to-one coordination, when two UAVs communicate, they
apply the area partitioning strategy only for them (not for the N UAVs) considering
the sub-areas they are currently covering as

Ai = ai
A(Si ∪ S j)

ai + a j
. (30)

As it can be seen in Fig. 15, they join their currently patrolled areas and divide
the resulting area between both according to their capabilities.

Assuming the area partitioning strategy, the UAVs communicate periodically with
all their neighbors. Then, each UAV merges sequentially the areas of its neighbors
obtaining an any time solution which converges to the centralized area division for
the N UAVs in a finite amount of iterations (number of communication exchanges).

In [9], authors use a similar technique to coordinate a set of N cameras to converge
to a partitioning strategy. Authors probe that the convergence time complexity is
increasing quadratically with the number of agents in the problem and also depends
inversely on a parameter ε > 0 which defines how precise have to be the actual
division according to the optimal one.

5.2 Coordination Variables

These methods assume that all the UAVs can obtain the same solution to the whole
problem if they have the same minimum information encoded in the so-called coor-
dination variables. In this case, when two UAVs meet they interchange information
about the whole problem, update their own coordination variables and try to solve,
not a reduced version of the problem, but the whole coordination problem. As both

Distributed Cooperation of Multiple UAVs for Area Monitoring Missions 489

Fig. 15 Two neighbor UAVs
Mi and M j are covering the
sub-areas Si and S j . When
they meet, they join both and
divide the resulting area
between them, obtaining
their new sub-areas

UAVs have the same information, they have the same coordination variables, address
the same problem and obtain the same solution. Then, each UAV uses its current infor-
mation to compute its current solution of the problem: for example, expressions (18)
for the path partitioning strategy or (24) for the area partitioning strategy. In the lat-
ter case, when two UAVs communicate, they exchange information about the whole
problem: number and capabilities of the UAVS into the area and size and shape of
the area. Both UAVs share the same information about the problem and each one
can address the area division problem to compute the size and shape of the sub-area
to cover (not in a reduced version of the problem with two UAVs, but in the whole
problem with the whole area and the N UAVs). See Fig. 16.

In [4] a similar technique is used to divide a perimeter between N mobile robots
in a distributed manner, converging to a path partitioning strategy. The authors show
that the convergence time complexity increases linearly with the number of robots.

5.3 Comparison Between Distributed Coordination Techniques

A large set of more than 200 simulations has been executed to compare these two
different distributed coordination techniques: one-to-one coordination and coordina-
tion variables. Heterogeneous UAVs, different number of UAVs and different lengths
of the paths have been considered and the goal was to evaluate the convergence to

490 J.J. Acevedo et al.

Fig. 16 Two neighbor UAVs
Mi and M j are covering the
sub-areas Si and S j . They
have also information about
the total area and UAVs on
their left or right sides. When
they communicate, they
share the information not
only about their current
patrolled areas, but also
about the number of UAVs
and areas on their right and
left sides. Then, both UAVs
have information about the
whole problem (the N UAVs
and area S to monitor) and
can solve it

a centralized path partitioning strategy. More details about these simulations can be
found in [4]. Each scenario was simulated with both distributed coordination tech-
niques and the convergence times were computed. It was considered that the system
had converged when the difference between the current segment and the segment
that theoretically should cover (according to expression (18)) was less than 5 %. In
order to normalize the results, the relation between the convergence times computed
for both techniques was calculated for each scenario. Figure 17 shows the average
value for this parameter depending on the number of UAVs.

These results show that as the number of UAVs increases the technique based on
the coordination variables obtains a quicker convergence than the technique based
on one-to-one coordination.

Fig. 17 Relation between
the convergence times using
the algorithms based on
one-to-one coordination and
the coordination variables

1 2 3 4 5 6 7
0

1

2

3

4

number of UAVs

Distributed Cooperation of Multiple UAVs for Area Monitoring Missions 491

Fig. 18 Snapshot from the experiment where 4 quad-rotors implement an area partitioning strategy
from a distributed manner using an algorithm based on the one-to-one coordination. The white solid
lines defines the area to monitor

5.4 Experimental Test: Area Monitoring Missions Using
the One-to-one Coordination

Physical experiments have been performed to validate the one-to-one coordination
applied to area monitoring missions. They have been carried out in the indoor testbed
of the Spanish Center for Advanced Aerospace Technologies (CATEC) in Seville.
It offers localization information about the objects with centimeter accuracy in real
time based on 20 VICON cameras.

The aerial robots used were 4 Hummingbird quad-rotors by Ascending Technolo-
gies with 200 g payload and up to 20 min of flight autonomy. Their maximum flight
altitude was fixed by software to 2.5 m. The area to cover is a rectangular area of
9 × 9 m2 in the center of the testbed (see Fig. 18). The aerial robots were considered
homogeneous since they all move at a maximum motion speed of 1 m/s. Commu-
nications are constrained via software to 2 m and the coverage path are assumed
rectangular in any case.

The 4 quad-rotors implement an algorithm based on the one-to-one coordination
to converge in a distributed manner to the area partitioning strategy. As all the robots
are considered homogeneous, all of them should cover the same area. Quad-rotors do
not know initially nothing about the rest of the team, so, they try to patrol the whole
area. When two quad-rotors meet they share the area that they have presently assigned
and divide the union between both. Figure 19 shows the actual xy-position in the area
of the quad-rotors during the experiment. It shows as the robots can converge to the
area partitioning strategy from a distributed manner using a one-to-one coordination
technique.

492 J.J. Acevedo et al.

−4 −3 −2 −1 0 1 2 3 4

−4
−2

0
2

4
0

100

200

300

400

500

x (m)
y (m)

tim
e

(s
)

Fig. 19 This graph shows the positions (x, y) of the quad-rotors during the experiments. Each
color represents a different quad-rotor. A video from the experiment can be viewed in over the
time (vertical axis) when they use a dividing area strategy. https://www.youtube.com/watch?v=
K8L4vzx7toc

6 Conclusions

A patrolling strategy is required for monitoring mission with multiple UAVs opti-
mizing a refresh time criterion and ensuring the information propagation among the
UAVs even under communications constraints.

The cyclic strategy can theoretically obtains the best performance from a refresh
time criterion, but it is not useful when the team of UAVs is heterogeneous. Also, it
can not ensure that an information is propagated among the UAVs in a finite time. The
path partitioning strategy can not obtains the minimum refresh time, but it obtains
an acceptable performance both from a latency and a refresh time criterion.

The area partitioning strategy can obtain theoretically the minimum maximum
refresh time, even with heterogeneous UAVs. It can also ensure periodical com-
munication between neighbor UAVs, upper-bounding the maximum latency time.
This latency time can be minimized depending on the area partition configuration
or division. Results show a better performance of this strategy compared to the
previous ones.

Finally, two different distributed coordination techniques have been analyzed to
evaluate if they allow to achieve convergence to the centralized patrolling strategy.
Techniques based on the coordination variables converge quicker than the techniques
based on the one-to-one coordination algorithm.

Acknowledgments This work has been carried out in the framework of the CLEAR (DPI2011-
28937-C02-01) Spanish National Research project and the MUAC-IREN (FP7-PEOPLE-295300)
and EC-SAFEMOBIL (FP7-ICT-288082) EU-funded projects. We would also like to thank Miguel
Angel Trujillo and Felix Robles for their support with the experiments.

https://www.youtube.com/watch?v=K8L4vzx7toc
https://www.youtube.com/watch?v=K8L4vzx7toc

Distributed Cooperation of Multiple UAVs for Area Monitoring Missions 493

References

1. Acevedo JJ, Arrue BC, Diaz-Baez JM, Ventura I, Maza I, Ollero A (2013) One-to-one coordi-
nation algorithm for decentralized area partition in surveillance missions with a team of aerial
robots. J Intell Robot Syst 1–17

2. Acevedo JJ, Arrue BC, Maza I, Ollero A (2013) Cooperative large area surveillance with a
team of aerial mobile robots for long endurance missions. J Intell Robot Syst 70:329–345

3. Acevedo JJ, Arrue BC, Maza I, Ollero A (2013) Cooperative perimeter surveillance using aerial
robots and fixed ground stations. In: 2nd RED-UAS 2013 workshop on research, education
and development of unmanned aerial systems, Nov 2013

4. Acevedo JJ, Arrue BC, Maza I, Ollero A (2013) Cooperative perimeter surveillance with a team
of mobile robots under communication constraints. In: International conference on intelligent
robots and systems, Nov 2013

5. Acevedo JJ, Arrue BC, Maza I, Ollero A (2013) Distributed approach for coverage and
patrolling missions with a team of heterogeneous aerial robots under communication con-
straints. Int J Adv Rob Syst 10(28):1–13

6. Agmon N, Kaminka GA, Kraus S (2011) Multi-robot adversarial patrolling: facing a full-
knowledge opponent. J Artif Int Res 42(1):887–916

7. Baseggio M, Cenedese A, Merlo P, Pozzi M, Schenato L (2010) Distributed perimeter patrolling
and tracking for camera networks. In: 49th IEEE conference on decision and control (CDC),
Dec 2010, pp 2093–2098

8. Beard RW, McLain TW, Nelson DB, Kingston D, Johanson D (2006) Decentralized cooperative
aerial surveillance using fixed-wing miniature UAVs. Proc IEEE 94(7): 1306–1324

9. Carli R, Cenedese A, Schenato L (2011) Distributed partitioning strategies for perimeter
patrolling. Am Control Conf (ACC) 2011:4026–4031

10. Chevaleyre Y (2004) Theoretical analysis of the multi-agent patrolling problem. In intelligent
agent technology. (IAT 2004). Proceedings of the IEEE/WIC/ACM international conference
on, Sept 2004, pp 302–308

11. Choset H, Pignon P (1997) Coverage path planning: the boustrophedon decomposition. In:
Zelinsky A (ed) Field and service robotics. Springer, London, pp 203–209

12. Daniel K, Rohde S, Goddemeier N, Wietfeld C (2011) Cognitive agent mobility for aerial
sensor networks. Sens J IEEE 11(11):2671–2682 Nov 2011

13. Elmaliach Y, Shiloni A, Kaminka GA (2008) A realistic model of frequency-based multi-robot
polyline patrolling. In: Proceedings of the 7th international joint conference on autonomous
agents and multiagent systems–volume 1, AAMAS’08, Richland, SC, 2008. international foun-
dation for autonomous agents and multiagent systems, pp 63–70

14. Guruprasad KR, Wilson Z, Dasgupta P (2012) Complete coverage of an initially unknown
environment by multiple robots using voronoi partition. In: Proc of 2nd international conference
on advances in control and optimization in dynamical systems, Bengaluru, India, 16–18 Feb
2012

15. Hazon N, Kaminka GA (2008) On redundancy, efficiency, and robustness in coverage for
multiple robots. Robot Auton Syst 56(12):1102–1114

16. Kingston D, Beard RW, Holt RS (2008) Decentralized perimeter surveillance using a team of
UAVs. Robot IEEE Trans 24(6):1394–1404 Dec 2008

17. Marino A, Parker L, Antonelli G, Caccavale F (2009) Behavioral control for multi-robot perime-
ter patrol: a finite state automata approach. In: Robotics and automation, 2009. ICRA ’09. IEEE
international conference on May 2009, pp 831–836

18. Merino L, Caballero F, Martinez de Dios JR, Maza I, Ollero A (2012) An unmanned air-
craft system for automatic forest fire monitoring and measurement. J Intell Robot Syst 65(1):
533–548

19. Pasqualetti F, Durham JW, Bullo F (2012) Cooperative patrolling via weighted tours: per-
formance analysis and distributed algorithms. Robot IEEE Trans 28(5):1181–1188 October
2012

494 J.J. Acevedo et al.

20. Pasqualetti F, Franchi A, Bullo F (2012) On cooperative patrolling: optimal trajectories,
complexity analysis, and approximation algorithms. Robot IEEE Trans 28(3):592–606

21. Wong CY, Seet G, Sim SK, Pang WC (2010) A framework for area coverage and the visual
search for victims in usar with a mobile robot. In: Sustainable utilization and development in
engineering and technology (STUDENT), 2010 IEEE conference on Nov 2010. pp 112–118

Robotic Manipulation Within
the Underwater Mission Planning Context

A Use Case for Benchmarking

Javier Pérez, Jorge Sales, Antonio Peñalver, J. Javier Fernández,
Pedro J. Sanz, Juan C. García, Jose V. Martí, Raul Marín
and David Fornas

Abstract Nowadays, there is an increasing demand for underwater intervention
systems around theworld in several application domains. The commercially available
systems are far from what is demanded in many aspects, justifying the need of more
autonomous, cheap and easy-to-use solutions for underwater intervention missions.
The chapter begins making a review of the most important research projects that
have been able to demonstrate some results in sea conditions. Then, the expertise
and know-how developed in the context of our research group in the last years is
presented. Maybe, one of the main achieved results, from the methodological point
of view, is a three-layer general system architecture based on the Robot Operating
System (ROS), which allows an underwater vehicle to perform intervention missions
with a high degree of autonomy, independently of the targeted scenario. Moreover,
the use of an underwater simulator as a 3D simulation tool for benchmarking and
Human Robot Interaction (HRI) is also discussed. In summary, a methodology has
been developed for experimental validation, independently of the specific underwater
intervention problem to solve. It consists on the use of the simulator, as a prior step
before moving to any of the testbeds used for experimental validation. The reliability
and feasibility of this methodology has been demonstrated for intervention missions
in sea trial conditions.

Keywords Underwater robot ·ROS ·Missionplanning ·Grasping andmanipulation
planning

J. Pérez · J. Sales · A. Peñalver · J.J. Fernández · P.J. Sanz (B) · J.C. García ·
J.V. Martí · R. Marín · D. Fornas
IRS Lab, Jaume I University, Castellon, Spain
e-mail: pedrojose.sanz@icc.uji.es

J. Pérez
e-mail: japerez@uji.es

© Springer International Publishing Switzerland 2015
G. Carbone and F. Gomez-Bravo (eds.), Motion and Operation Planning
of Robotic Systems, Mechanisms and Machine Science 29,
DOI 10.1007/978-3-319-14705-5_17

495

496 J. Pérez et al.

1 Introduction

The need for intervention in underwater environments is significantly increasing in
the last years. A large number of applications in marine environments need inter-
vention capabilities. Potential areas include maintenance interventions in permanent
observatories and offshore scenarios, and search and recovery for collecting objects
of interest for different application domains like biology, geology, fishery, or marine
rescue just to name a few.

Nowadays, these kind of tasks are usually solved with “work class” ROVs (i.e.
Remote Operated Vehicles) that are launched from support vessels, and remotely
operated by expert pilots through an umbilical communications cable and complex
control interfaces. These solutions present several drawbacks. Firstly, ROVs are nor-
mally large and heavy vehicles that need significant logistics for its transportation and
handling. Secondly, the complex user interfaces and control methods require skilled
pilots for their use. These two facts significantly increase the cost of the applications.
Moreover, the need of an umbilical cable introduces additional problems of control,
or range limitation. Finally, the fatigue and high stress that users of remotely operated
systems normally suffer supposes another serious drawback.

All the pointed questions justify the need of more autonomous, cheap and easy-
to-use solutions for underwater intervention missions. With this aim, looking for
higher autonomy levels in underwater intervention missions, a new concept, named
“Autonomous Underwater Vehicles for Intervention” (I-AUV hereinafter), was born
during the 90s. It isworthmentioning that this is a verynew technology and, according
to Gilmour et al. [18]: “Long-term AUV vision the technology for light intervention
systems is still immature, but very promising. I-AUVs are currently in level 3 out
of 9 (9 meaning routinely used) of the development cycle necessary to adopt this
technology in the oil and gas industry, being expected to achieve up to level 7 by the
end of 2018”.

However the progress becomes slow for this new technology. In fact, only very
few I-AUV prototypes have been tested till date in real underwater scenarios. Among
the reasons would be: complexities on required mechatronics (e.g. the vehicle, hand-
arm, all kind of sensors, etc.); very hard communication problems; intelligent control
architectures needed; letting apart the hostile environment inherent to underwater
(e.g. poor visibility, currents, increasing pressure with depth, etc.).

After the pioneering works during the 90s (OTTER [51], ODIN [8] and UNION
[40]), significant advances in this direction arrived during the last decade, when the
first simple autonomous operations at sea were demonstrated. A dexterous subsea
robot hand incorporating force and slip contact sensing, using fluid-filled tentacles
for fingers, was developed in the mid 90s in the context of the AMADEUS project
(AdvancedMAnipulator forDEepUnderwater Sampling) [21]. Fixed basemanipula-
tion (opening/closing a valve) was demonstrated in ALIVE [14]. Free-floating object
manipulation was demonstrated in SAUVIM [25] and object search and recovery
was demonstrated in TRIDENT [47]. In summary, to the best of author’s knowl-
edge, only recent projects like SWIMMER [13], ALIVE, SAUVIM, RAUVI [45],

Robotic Manipulation Within the Underwater Mission Planning Context 497

and TRIDENT have been able to demonstrate its performance in sea trials. It is
noticeable that currently the only ongoing European project trying to demonstrate
sea trials performance is the PANDORA project [17]. A summary of the most rel-
evant international finished projects related to underwater intervention is given in
Table1.

Bearing in mind the aforementioned context, a three-year Spanish Coordinated
Project, named TRITON (Multisensory Based Underwater Intervention through
Cooperative Marine Robots) was launched in 2012. The TRITON marine robotics
research project is focused on the development of autonomous intervention tech-
nologies really close to the real needs of the final user and, as such, it can facilitate
the potential technological transfer of its results. This research project includes three
sub-projects:

• COMAROB: “Cooperative Robotics”, under responsibility of Universitat de
Girona (UdG)

• VISUAL2: “Multisensorial Perception”, under responsibility of Universitat de les
Illes Baleares (UIB)

• GRASPER: “Autonomous Manipulation”, under responsibility of Universitat
Jaume-I (UJI)

Theproject proposes two scenarios as a proof of concept to demonstrate the developed
capabilities: (1) the search and recovery of an object of interest (e.g. a “black-box
mockup” of a crashed airplane), and (2) the intervention on an underwater panel in
a permanent observatory. In the area of search and recovery, previous projects like
SAUVIM, RAUVI and more recently TRIDENT, have become milestone projects,
progressively decreasing the operational costs and increasing the degree of auton-
omy. With respect to the intervention on an underwater panel, the ALIVE project
demonstrated the capability of an underwater vehicle to dock autonomously with a
ROV-friendly panel by using hydraulic grabs. Nevertheless, unlike in TRITON, a
very simple automata-based manipulation strategy was used to open/close a valve.
Finally, it is worth mentioning that currently only PANDORA has some similarities
with TRITON, where a learning solution for autonomous robot valve turning, using
Extended Kalman Filtering and Fuzzy Logic to learn manipulation trajectories via
kinaesthetic teaching was recently proposed [1, 6].

The work presented in this chapter is mainly concerning GRASPER, focusing on
one of its recent achievements: endowing an I-AUV with the ability to manipulate
an underwater observatory panel in an autonomous way.

Moreover, the use of an underwater simulator as a 3D simulation tool for bench-
marking and Human Robot Interaction (HRI) is also presented. Several definitions
of the term benchmark have been proposed in the literature. In this chapter, the one
stated in [11] is taken, in the sense that a benchmark adds numerical evaluation
of results (performance metrics) as a key element. Moreover, the main aspects are
repeatability, independency, and unambiguity. This objective, numerical evaluation
(also known as performance metrics), will allow a fair comparison of algorithms
from different origins.

498 J. Pérez et al.

Table 1 Summary of the most relevant international finished projects related to underwater
intervention

Concept Result Description

T
R
ID

E
N
T

20
10

/1
3

TRIDENT was a EU funded project that
proposed a methodology for multipurpose
underwater intervention tasks using an I-
AUV endowed with a dexterous manipulator
and a 3-fingered hand. The intervention was
based on two phases: Survey and
Intervention. Final tests were demonstrated in

a harbour environment in an uncoupled way: 1) The capability of both vehicles working in
tandem during mapping and 2) the capability of the I-AUV to intervene over the target.E

U

SA
U
V
IM 19

97
-
20

09

SAUVIM is a project funded by the Office of
Naval Research and carried out at the
Autonomous System Laboratory of the
University of Hawaii. It is conceived as an
AUV with accurate navigation and station
keeping capabilities to allow for the recovery
of seafloor objects. In particular, SAUVIM is
supposed to use its passive arm to localize

itself with respect to the object of interest and use its 7 DOF electro-mechanical arm to carry out
an intervention. SAUVIM was initially designed to recover test missiles from the seabed for the
Pacific Missile test Centre in Hawaii.

O
N
R

A
L
IV

E 20
01

/4

The ALIVE vehicle is equipped with docking
and 7 DOF manipulation arms to complete
valve override and hot stab connections. It
can also be used for the deployment and
recovery of acoustic or seismic beacons at
sea-bottom. During the final demo of the

project, ALIVE proved its capability to autonomously navigate, dock and operate on an
underwater panel similar to those of the oil industry.

E
U

SW
IM

M
E
R

19
99

-2
00

1

A hybrid AUV/ROV intervention system
provides an efficient way to ensure permanent
Inspection, Maintenance, and Reparation
operations over deep-water oil production
facilities. A ROV umbilical is integrated
between the surface facility and the subsea
site. The SWIMMER AUV transports the

ROV to the subsea site and connects the ROV to the umbilical at the subsea location where it can
be normally operated from the surface.

E
U

A
M
A
D
E
U
S

19
93

/9
6/
99

AMADEUS phase I (left) represents the first
attempt in developing a dexterous gripper
suitable for underwater applications. The 3-
fingered gripper was hydraulically actuated
and coordinately controlled by mimicking,
within each finger, the motions of an artificial

elephant trunk. AMADEUS phase II (right) instead studied the coordinated control of two
underwater 7 DOF electro-mechanical arms. Each arm is equipped with an underwater JR3
force/torque wrist sensor.

E
U

U
N
IO

N 19
96

/9
9

The main goal of the Union Esprit Basic
Research Action was to develop methods for
increasing the autonomy and intelligence of
Underwater Remotely Operated Vehicles
(ROVs). The project focused mainly on the
development of coordinated control and
sensing strategies for combined manipulator

and vehicle systems. At the end, only experimental validation within simulation conditions was
provided.

E
U

Robotic Manipulation Within the Underwater Mission Planning Context 499

According to our methodology, we always test the algorithms first in simulation
an then in real conditions, with increasing degree of complexity: water tank, pool,
harbour, shallow water, etc. The obtained results are related to simulations and also
to water tank conditions, while we are currently working on the challenge of testing
the manipulation capabilities in the sea.

2 Underwater Intervention Mission Planning

For better understanding of the required mission planning issues, the specific context
of TRITON (2012–15) project will be used. The main goal of TRITON is the use of
autonomous vehicles for the execution of complex underwater intervention tasks. The
project is focused on the use of several vehicles (an ASC, Autonomous Surface Craft,
and an I-AUV) running in a coordinated manner during the execution of a mission,
and on the improvement of the manipulation capabilities required for intervention
(i.e. opening/closing a valve, plugging/unplugging a connector, etc.).

The mission scenario that we are currently working on (the panel intervention in
the context of underwater observatories), to be developed autonomously, is structured
in 5 phases (see Fig. 1):

Fig. 1 Underwater panel intervention scenario considered in TRITON project. The mission is
structured in 5 phases: Dive, Transit, Approach, Docking and Intervention

500 J. Pérez et al.

1. DIVE: Both vehicles are sequentially deployed from the support boat. Then,
the I-AUV dives a few meters until establishing an acoustic communication link
with the surface vehicle. Next, the I-AUV descends to the bottom, while the
ASC describes circles on the surface to better localize and geo-reference the
underwater robot. At the bottom, the I-AUV performs station keeping while being
geo-referenced by the ASC, which forwards an absolute position fix.

2. TRANSIT: The vehicle uses cooperative navigation with the surface AUV until
reaching the acoustic area of coverage of the panel-mounted transponder. Then,
the vehicle uses a transceiver to interrogate the transponder mounted on the per-
manent observatory. Using its dead reckoning navigation system combined with
range only navigation techniques, the vehicle estimates the position of the obser-
vatory and transits towards it.

3. APPROACH: When the vehicle reaches the surroundings of the observatory,
establishes visual contact, identifying the AUV-friendly intervention panel where
it should dock. To achieve the robust accurate navigation requirements needed
for docking, the vehicle switches to real-time vision based navigation relative to
the panel.

4. DOCKING: Real time vision based localization techniques will be used to visu-
ally guide the vehicle during the docking. Three non-actuated mechanical bars
will be used for docking to the panel using passive accommodation techniques.
When the I-AUV docks, it becomes rigidly attached to the panel.

5. INTERVENTION: Once the vehicle is rigidly attached to the panel, the manipu-
lation operation takes place. As proof of concept, two demonstrative applications
have been designedwith increasing complexity: (1) Opening/Closing a valve, and
(2) Plugging/Unplugging a connector.

2.1 The System Architecture

Concerning the implemented architecture required for the current intervention sys-
tem, the high level structure can be observed in Fig. 2. Obviously, general mission
planning considerations are out of the scope of this work and, in the following, only
“grasping and manipulation” aspects will be taken into account. In the figure, the
realmechatronics used in the TRITONproject are represented: theGirona500 I-AUV
[39], equipped with the Light-Weight ARM5E 4 DOF underwater robotic arm [15],
and the SPARUS AUV [24], used as surface vehicle in the mission.

The whole I-AUV control architecture is composed of two initially independent
architectures: the underwater vehicle and the manipulator architectures. Concern-
ing the manipulator architecture, the reactive actions are performed in the low-level
control layer that communicates with the real or simulated I-AUV via an abstraction
interface. The control layer also includes control strategies like station keeping or free
floating to help in the manipulation actions. The station keeping approach allows to
keep the position and orientation of the vehicle to facilitate the intervention. A com-
bination of vision and inertial measurement systems are used to achieve this purpose.

Robotic Manipulation Within the Underwater Mission Planning Context 501

Fig. 2 Generic mission planning architecture for the intervention system

With this approach, it is possible to use the arm degrees of freedom to perform the
desired manipulation [36]. The free floating approach uses all the available degrees
of freedom, both from the vehicle and the arm, to increase the total amount of space
configurations for a required task. In the TRIDENT project, a strategy based on the
prioritization of tasks of equality and inequality type, once combined with Dynamic
Programming techniques, was used for coordinately controlling the motion of the
I-AUV [7]. In [49], real intervention experiments in sea conditions are described,

502 J. Pérez et al.

in which task priorities and a dynamic programming based approach is used for
underwater floating manipulation.

At a higher level, the whole mission is supervised at a high level by a Mission
Control System (MCS), implemented using the Petri net formalism [36].

The Robot Operating System (ROS) [38], is used to integrate the heterogeneous
computing hardware and software of all the system components, to allow for easy
integration of additional mission-specific components, and to record all sensor input
in a suitable playback format for simulation purposes.

The mission control system is the part of the control architecture in charge of
defining the task execution flow to fulfill a mission. Each task can be executed by
means of some manipulator action. The mission programmer must define how these
actions/primitives are executed to fulfill each task and how the tasks are combined
to fulfill the whole mission. The MCS was developed as generic as possible and
it allows for an easily tailoring to different control architectures (refer to [36] for
further details).

2.2 Planning Grasping and Manipulation
for Intervention Missions

Planning a grasp is generally known to be a difficult problem due to the large search
space resulting from all possible hand configurations, grasp types and object prop-
erties that occur in regular environments. The dominant approach to this problem
has been the model-based paradigm, in which the object shape, contacts, and forces
are modelled according to physical laws. Then, the research has been focused on
grasp analysis (the study of the physical properties of a given grasp) and grasps
synthesis (the computation of grasps that meet certain desirable properties) [48].
Unfortunately, these approaches have failed to deliver practical implementations,
mainly because they rely on assumptions that are difficult to satisfy in complex and
uncertain environments.

The current trend is to incorporate sensor information for grasp planning and
synthesis, such as vision [9, 10, 19, 30, 46] or range sensors [41]. In this line, sev-
eral approaches have also adopted machine learning techniques to determine the
relevant features that indicate a successful grasp [10, 20, 29, 44]. Others make use
human demonstrations for learning grasp tasks [12]. Most of these approaches com-
monly consider grasps as a fixed number of contact locations with no regard to hand
geometry [4, 48]. Some recent work includes kinematics constraints of the hand in
order to prune the search space [5, 27, 28]. Alternatively, the so-called knowledge-
based approach tries to simplify the grasp planning problem by reasoning on a more
symbolic level. Objects are often described using shape primitives [22, 50], grasp
prototypes are defined in terms of purposeful hand preshapes [27, 28], and the plan-
ning and selection of grasps is made according to programmed decision rules [3].

Robotic Manipulation Within the Underwater Mission Planning Context 503

Recently, the knowledge-based approachhas been combinedwith vision-force-tactile
feedback and task-related features that improve the robot performance in real sce-
narios [35].

Regarding autonomous manipulation in underwater environments, very few
research has been carried out. So, the first fully autonomous intervention at sea,
was demonstrated by the ALIVE project, where a hovering capable AUV was able
to home to a subsea intervention panel using an imaging sonar, and then, docking
into it with hydraulic grasps using visual feedback. Once attached to the panel, a
very simple manipulation strategy (fixed base manipulation) was used to open/close
a valve. First object manipulation from a floating vehicle (I-AUV) was achieved
in 2009 within SAUVIM project. It was demonstrated the capability of searching
for an object whose position was roughly known a priori. The object was endowed
with artificial landmarks and the robot autonomously located it and hooked it with a
recovery device while hovering.

Recently, the first multipurpose object search and recovery strategy was demon-
strated in the TRIDENT project in 2012. First, the object was searched using a
down-looking camera and photo-mosaicing techniques. Next, it was demonstrated
how to autonomously “hook” the object in a water tank [36]. The experiment was
repeated in a harbour environment using a 4 DOF arm [33] and later with a 7 DOF
arm endowed with a 3 fingered hand [43, 47].

In summary, grasping and manipulation remain open research problems, and this
situation becomes drastically worst in underwater scenarios. In the shallow water
context, new complexities arise increasing the difficulty to control grasping and
manipulation actions with agility capabilities. Under these very hostile conditions,
only a few robot systems are endowed with semi-autonomous manipulation capabil-
ities, mainly focused in specialized operations requiring an environment reasonably
structured, like those devoted to the offshore industries.

For further bibliography related to the motion control of I-AUVs and its manip-
ulation systems, refer to [2], that addresses the main control aspects in underwater
manipulation tasks; and [26], which provides an extensive tract on sensory-based
autonomous manipulation for intervention tasks in unstructured environments.

3 UWSim: A 3D Simulation Tool for Benchmarking
and HRI

UWSim1 [34] is a software tool for visualization and simulationof underwater robotic
missions (see Fig. 3). The software is able to visualize underwater virtual scenarios
that can be configured using standard modeling software and can be connected to
external control programsbyusing theRobot Operating System (ROS) [38] interfaces.
UWSim is currently used in different ongoing projects funded by European Com-
mission (MORPH [16] and PANDORA [17]) in order to perform HIL (Hardware

1Available on-line: http://www.irs.uji.es/uwsim.

http://www.irs.uji.es/uwsim

504 J. Pérez et al.

Fig. 3 UWSim simulator, displaying the underwater panel intervention mission scenario proposed
in TRITON and executing a vision benchmark. The I-AUV is docked to the observatory underwater
panel structure and is ready to perform the intervention: open/close a valve

in the Loop) experiments and to reproduce real missions from the captured logs.
UWSim is not only useful for software validation, but also for defining benchmark-
ing mechanisms inside the simulator, so that control and vision algorithms can be
easily compared in common scenarios. UWSim is also used as a Graphical User
Interface (GUI) providing the necessary Human Robot Interaction (HRI) that is
required to specify a task.

3.1 The Benchmarking Module for UWSim

A benchmarkingmodule is available to be usedwith UWSim [37]. Like UWSim, this
module uses ROS to interface with external software with which it can interact. The
ROS interface allows the external program to be evaluated and can communicate both
with the simulator (it can send commands to carry out a task) and the benchmarking
module (it can send the results or data necessary to be evaluated).

Benchmarks are defined in XML (eXtensible Markup Language) files. Each file
will define which measures are going to be used and how they will be evaluated.
This allows the creation of standard benchmarks defined in a document to evaluate
different aspects of underwater robotic algorithms, being able to compare algorithms
from different origins. Each of these benchmarks will be associated with one or more
UWSim scene configuration files, being the results of the benchmark dependent on
the predefined scene. The whole process is depicted in Fig. 4. Detailed information
on how to setup and execute a benchmark in UWSim can be found in our previous
work [37].

Robotic Manipulation Within the Underwater Mission Planning Context 505

Fig. 4 Benchmarking module flow diagram: a benchmark configuration is loaded into the bench-
mark module, and a scene is loaded into the simulator. Then, the benchmark module produces some
results that can be logged for posterior analysis

3.2 A User Interface for UWSim to Provide HRI

Traditionally, Remotely Operated Vehicles (ROVs), which are commercially avail-
able to develop all kind of intervention missions, are teleoperated by an expert user
by means of a specific Graphical User Interface (GUI) (thus providing the necessary
Human Robot Interaction, HRI) thanks to the tethered cablewhich connects the robot
to the oceanographic vessel. The main drawback of this kind of systems, apart from
the necessary expertise degree of the pilots, concerns the cognitive fatigue inherent
to the master-slave control architectures. The evolution of this kind of robots (ROVs)
are the Intervention Autonomous Underwater Vehicles (I-AUVs). These robots can
perform some tasks autonomously, but the presence of the operator in the program-
ming phase, is still required. Most of the GUI used in these robots use their own
programming language, and the GUIs tend to be more complex, with lots of win-
dows displaying information. So, this kind of GUIs are very suitable for expert users,
but are very difficult to use for non-expert users.

From our previous work and the know-how developed in the context of the afore-
mentioned RAUVI and TRIDENT projects, a GUI is being developed by following a
twofold strategy: (1) to guarantee the “intelligence” of the system and a good system
performance, including the user in the control loop, and (2), not to require the user
intervention in a continuous way like in ROV’s, just when it is strictly necessary.
Despite the fact that we assume that the user has a minimum level of abilities related
to the mission to be carried out and the robot to be used, the GUI is oriented to
non-expert users. In order to include full 3D support at all the stages of the mission,
the GUI is being integrated with the UWSim simulator. This will allow us to perform

506 J. Pérez et al.

realistic simulations and take advantages of visual aspects like 3D representation,
Virtual andAugmented Reality (VR andAR), and general good system performance.
In order to integrate the GUI in the whole project architecture, ROS is being used as
a middleware.

The GUI will adapt the design and the information to show to the user, depending
on the intervention to perform.Thus,when the user selects a “panel intervention” type
of mission, the scenario configuration and the intervention panel CAD/VRML2 files
are loaded. Then, the userwill be able to navigate through the scenario, looking for the
target, and will get all the panel details and will select the predefined actions: plug-in
a cable or valve operation. Nevertheless, some modification over these predefined
actions could be done by using a specific menu.

Once the intervention is defined, it can be tested in the simulator or can be down-
loaded to the robot through the ROS communication module. In Fig. 5, the GUI
integrated with UWSim (named QtUWSim) shows the panel to configure the scene
environment.

Moreover, a 3D interface with a VR and AR layer is being developed, focusing
on the human hand interaction (using a hand tracker device) and the vision (using
a Head-mounted Display, HMD), allowing the user to interact with the scene with
the support of interactive markers. An “interactive marker” is a marker that can be
applied to an object in a 3D scene and allows the user to interact with it. Depending

Fig. 5 QtUWSim graphical user interface showing the panel to configure the scene environment

2Computer Aided Design/Virtual Reality Modelling Software.

Robotic Manipulation Within the Underwater Mission Planning Context 507

Fig. 6 Oculus Rift VR
provides a full immersion
into the scene while the
LeapMotion device
facilitates the robot control
with natural gestures

on the type of interactive marker, the user can perform either translations or rotations
over the object, in one of the spatial axes. So, when the user selects the “grasp
specification 3D” option, the end effector of the I-AUV defined in an URDF3 file is
loaded into the 3D scene. This end effector, which will be surrounded by 6 interactive
markers (3 translational and 3 rotational), can be defined by a hand, a hook or a jaw.
The user moves these interactive markers to indicate the end effector position and
orientation to reach the target. These movements are currently done by the user with
the mouse/trackpad, but a ROS package is being developed in order to allow the
use of a hand tracker device. This will allow the user to interact with the GUI more
fluently and in a more natural way (see Fig. 6).

The use of a Head-mounted Display (HMD) benefits the user, evolving him/her
in a more realistic environment. One of the current development is to adapt this kind
of device in order to get the most benefit to the VR and AR layer. Furthermore, if the
HMDis endowedwith sensors, these could be used tomove the camera point-of-view,
adding more realism to the scene.

4 The Roadmap for Experimental Validation

Following the know-how generated through our recent projects (i.e. RAUVI, TRI-
DENT, TRITON), a methodology has been developed for experimental validation,
independently of the specific underwater intervention problem to solve.

As can be seen in Fig. 7, the four generic steps designed for the experimental
validation roadmap are defined (see red blocks), highlighting its instantiation for
two different underwater intervention missions: (1) the search and recovery problem

3Unified Robot Description Format.

508 J. Pérez et al.

Fig. 7 Developedmethodology used to guarantee the success in the final sea trials of an intervention
system, independently of the available mechatronics and specific scenarios. On the top, the generic
approach is described, and two different instantiations are highlighted in the lower planes. Always
in increasing complexity, the starting point will be the simulation test (UWSim block); followed by
intervention trials, without the vehicle but with the real hand-arm mechatronics and sensors, under
water tank conditions (Water Tank block, UJI); after succeed here the complete system, including
now the vehicle, is tested in a pool (Pool block, UdG); finally, the sea trials will be carried out
(Harbour block)

(under RAUVI and TRIDENT projects) (see yellow blocks) and (2) manipulation on
a panel (under TRITON project) (see green blocks).

This methodology becomes very successful independently of the mechatronic
system and the testbed used for experimental validation. As can be observed in
Fig. 7 (red blocks), the idea is to start out with the performance test on the simulator
(UWSim block), where the mechatronics, sensors, and scenario have been modelled
in advance.

After succeeding in different current and visibility conditions, the next step will
be the intervention trial, without the vehicle but with the real hand-arm system and
sensors, and real devices to manipulate, on the water tank available in UJI (Water
Tank block). An iterative process will follow here, between simulation and real tests,
until complete succeed in the water tank conditions.

Later, the complete system integration, including now the vehicle, and real perfor-
mance will be carried out in the pool available at UdG (Pool block). This is the last
step before the sea trials (Harbour block). Obviously, the iterative process between
UWSim and real tests will be always running, looking for success.

5 Simulation Results

Byusing the aforementioned benchmarkingmodule for theUWSim simulator, we are
able to setup many configurable options. Algorithms can be tested to their limits, to
know under which conditions they can work, and which results can be obtained with

Robotic Manipulation Within the Underwater Mission Planning Context 509

them. This way, resources can be optimized to provide the best results in each situa-
tion. In the following sections, two different benchmarks for UWSim are explained,
followed by the experimental results. The first one is a visibility benchmark, where
a visual tracking algorithm is evaluated under different visibility conditions. The
second one, is a position error benchmark, where a pattern recognition algorithm
is evaluated to see if it can be used to estimate the end effector position of a robot
manipulator arm depending on the distance from the camera to the visual marker.

5.1 Benchmarking: Visibility Tracker

Below is an example of benchmarking done with UWSim. In this case, the goal is
to evaluate how the underwater fog affects a visual ESM tracking algorithm [23],
as done in our previous work with a black-box mockup [37]. Now, we will use the
TRITON scenario, that includes the underwater panel and the Girona500 I-AUV,
equipped with the Light-Weight ARM5E arm and a camera. We are considering now
that the vehicle has already done the docking to the panel, but despite this fact, we
are still interested in keeping track of it with the camera, as the intervention requires
to manipulate the valve and connector installed on the panel. Thus, with the aid
of this benchmark we will evaluate how the algorithm is able to keep track of the
intervention panel while visibility conditions change.

The configuration files for the scene and the benchmark are the same that were
used for the black-box recovery example mentioned before [37]. It includes measure
definitions needed to evaluate the performance of the tracking. Since the tracking
algorithm returns the position of a four-corner object, an “euclideanNorm” measure
is used, which measures the distance between the position returned by the tracking
software and the real position on the simulator.

This measure is divided in two parts to get more information. On one hand, the
distance between the actual corners with the ones that the tracking algorithm returns.
On the other hand, the real distance from the centroid of the simulated object to the
one calculated through vision.

For the final result, these two measurements are added, so that, the lower the
result, the smaller the object recognition error is. In addition to these measurements,
the scene updater “sceneFogUpdater” is configured varying the underwater scene
visibility through time.

Finally, some triggers have been set up to make the evaluation task easier. The
benchmark module will wait for a service call made by the tracking algorithm, and it
will end when there are no more “sceneFogUpdater” iterations. The measurements
will always be active, as it is taken as valid the last one received by the ROS “topic”
that the vision system sends is taken.

Once the simulator and the benchmark are configured, a service call must be
added in the tracking algorithm when it starts, and the estimated position of the box
must be sent to the benchmark module. As shown on Fig. 8, the tracking algorithm

510 J. Pérez et al.

Fig. 8 Tracking algorithm (represented as a green line) screenshots for decreasing visibility in the
benchmark

is able to find the manipulation panel while the fog is increasing in the benchmark,
until finally it is completely lost when the visibility is very poor.

Once the benchmark is complete, the module stores the results in a file. These
results are stored in a text file in table format. This file can be processed later with any
statistical or graphical tool. For this case study, the results can be seen on Fig. 9. It can
be observed how the tracking software error is very small throughout the experiment,
less than 5 error pixels. When the fog level increases the value above 1.7, the error
of the tracking algorithm increases drastically.

As we can see on the graph, the benchmarking module offers results for every
measure, allowing the user to analyze the performance of the algorithm. In this case
we can see how corners information is completely lost at 1.65 fog factor, centroid
is still near the objective. So we can conclude that with fog factor bigger than 1.6 is
not precise enough to do manipulation although it almost know where the target is.

According to the results provided, the vision system is reliable for fog levels
below 1.6. Figure10 shows a comparison between this levels of fog on UWSim

Fig. 9 Tracking position
error for corners and centroid
with increasing fog

 0

 100

 200

 300

 400

 500

 600

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

B
en

ch
m

ar
k

sc
or

e
(p

ix
el

s
er

ro
r)

Fog value

Benchmark for tracking with different fog values

global
centroid
corners

Robotic Manipulation Within the Underwater Mission Planning Context 511

Fig. 10 Comparison between fog levels 0 and 1.6 in the simulator’s camera

simulator screenshots. The fog level is a value ranging from 0 to infinity and defines
the visibility in the water depending on the distance. Visibility is a value between 0
and 1where 0 represents a perfect visibility of the object and 1 represents no visibility
at all. The visibility depends therefore on the water fog level and on the distance to
the object, as it is represented by the following formula:

visibility = 1 − e−(fog factor∗distance)2

In Fig. 11, different values have been used to plot the relationship between vis-
ibility and the distance to the object. As can be seen, visibility drastically worsens
with relatively small values of fog when the distance to the object increases. Under a
1.60 value of fog (represented in a cyan color line, which was the operating limit of
the tracking software in this experiment), there is virtually no visibility for a distance
greater than 1m.

Fig. 11 Visibility and
distance relation for different
fog levels

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

V
is

ib
ili

ty

Distance to obstacle (meters)

Visibility distance depending on fog factor

0.2
0.6
0.8
1.2
1.6
2.0

512 J. Pérez et al.

Fig. 12 Visibility and fog
factor relation for a fixed
distance of 0.9m

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2

vi
si

bi
lit

y

fog factor

Visibility fog factor at fixed distance 0.9

In Fig. 12, the distance to the object has been set to 0.9m, which is actually the
distance between the camera and the panel used in the benchmark, and it represents
the visibility with respect to the fog factor. The value of visibility for a fog factor of
1.6 is depicted with a horizontal line. Thus the tracking algorithm is able to find an
object when the degree of visibility is below 0.878, which is almost the same result
as the one obtained using the same tracker in a different environment in the previous
work [37].

5.2 Benchmarking: Position Error on End Effector Position

In this section, a position error benchmark, is defined to evaluate if a pattern recogni-
tion algorithm can be used to estimate the end effector position of a robotmanipulator
arm, compared to a kinematic solution, and thus, if the algorithm can be used for
manipulation purposes. The results of the experiment will allow choosing the best
way to estimate the end effector position when performing a manipulation.

The pattern recognition algorithm will estimate the position of a marker placed
on the gripper of the Light-Weight ARM5E robotic arm. Using this method, some
errors such as a bad initialization of the arm or miscalibration of the joints that affect
to the kinematics of the arm, can be avoided.

Themarker is detected using the ARToolkit library (a software library for building
Augmented Reality applications) that, among others, provides multiple methods for
detecting and localizing the position and orientation of a marker. In order to do this,
the arm moves in the camera field of view and the position error of the end effector
is measured by the two different proposed systems.

Robotic Manipulation Within the Underwater Mission Planning Context 513

The first approach, the direct kinematics, estimates the end effector position
numerically using the known joints transforms from the base of the arm to the end
effector. The advantage of this method is that it does not depend on the cameras, so
it’s immune to poor visibility. The main drawback is that some errors appear from
bad initialization of the joints position andmiscalibration of the joints, which depend
on self-positioning sensors. To simulate the errors of the real arm, small offsets were
applied to the joints, thus simulating this kind of errors in each joint.

The second method uses the pattern recognition algorithm that finds the marker
placed in the hand. Then, a transform from this position to the end effector is used.
In this case, a low visibility can be an important disadvantage, but on the other
hand, as most of the intervention missions require vision systems to find targets to
manipulate, using this approach makes target and manipulator be referenced from
the same origin, avoiding arm-camera calibration.

As can be seen on Fig. 13, marker error is significantly smaller than kinematic
error. This is caused by small errors on joints, mainly the joints that are far in the
kinematic chain from the end effector, the ones that produce big errors on kinematics.
The marker approach allow us to avoid this kinematic chain errors driving the error
to 0.003–0.01m, which is a good error in order to manipulate the panel.

Another interesting result is that kinematic errors decrease when the target is far
from the camera, while marker detection error increases and becomes unstable. The
increase in the marker position error is caused by the fact that even small errors in the
camera space produce appreciable precision errors. To avoid this, higher resolution
cameras could be used. Instability is probably caused by light effects such as shadows,
reflexes, etc.

To sum up, it seems that marker estimation is better than kinematics, although
kinematic errors depend on each arm sensors and may be smaller depending on the
arm used. In the particular context of the TRITON project, a hybrid solution was
adopted, allowing changing the method depending on markers visibility because
kinematic errors were too high to achieve a manipulation in a robust manner.

Fig. 13 End effector
position error evolution
comparison: (1) using
kinematics estimation (blue
line), and (2) marker pose
estimation (green line)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

E
rr

or
 d

is
ta

nc
e

(m
et

er
s)

Distance to marker (meters)

End effector error
Marker error

eeMarker error
eeKin error

514 J. Pérez et al.

6 Real Scenarios Results

Once the algorithms to perform the proposed intervention (open and close a valve
and plug and unplug a hot-stab connector) have been tested in simulated scenarios,
the action moves to the real ones, according to our roadmap.

6.1 Intervention on a Panel in Water Tank Conditions

The first real scenario in our roadmap is the Water Tank at UJI (see Fig. 14), where
an intervention panel mockup is installed inside the tank. In this scenario we test
the manipulation actions, with the real hand-arm mechatronics and sensors. In this
scenario, the complete AUV system is not used: at this point, it is only important the
real hand-arm mechatronics and sensors (i.e. the Light-Weight ARM5E equipped
with sensors).

The detailed steps for the proposed dual operation (open and close a valve and
plug and unplug a connector) are highlighted in a flow chart in Fig. 15. The first step is
the system initialization, in this case, the arm. After the system has been completely
initialized, the manipulation execution plan starts. In order to reach the positions
to manipulate the objects in a correct way, some waypoints respect to the position
of the object have been defined (see Fig. 16, where the frames are represented on a
virtual visualization of the scene). To reach each waypoint, the system calculates the
Cartesian distance between the end-effector and the waypoint, and using Cartesian
velocities, the end-effector tries to reach the position of thewaypoint.Now, depending
of the intervention to perform (valve or connector) a series of steps are followed
(refer to [32] for more details). Video sequences of the two interventions can be seen
on-line.4

Fig. 14 Intervention in
water tank conditions at UJI:
valve and connector
(hot-stab) manipulation

4Valve and connector autonomous intervention: (1) (side) http://youtu.be/6pYBL-6Tw4c, (2) (top)
http://youtu.be/_WkQYtcLsMU.

http://youtu.be/6pYBL-6Tw4c
http://youtu.be/_WkQYtcLsMU

Robotic Manipulation Within the Underwater Mission Planning Context 515

Fig. 15 Flow chart of the intervention (open and close a valve and plug and unplug a connector)

Fig. 16 Designed waypoints for the intervention on the panel (open and close a valve and plug and
unplug a connector)

Recently, and after two years of work (TRITON is a three year project), this
envisioned concept concerning intervention on a panel become in a real system
performing a successful intervention in pool conditions (see Fig. 17). The whole
real system, once the mechatronics integration is complete, includes the Girona500
AUV with the docking devices assembled; the hand-arm system (the Light-Weight
ARM5E), and different sensors; and the panel mockup (see Fig. 18). In this case,
the intervention mission begins after the vehicle is rigidly attached to the panel after
an autonomous docking [31]. In this case, the manipulation experiment takes place
in a similar environment to the one described above, but this time including a more
challenging scenario, taking into account the visibility issues. The details of this
intervention are out of the scope of this chapter.

516 J. Pérez et al.

Fig. 17 I-AUV used in TRITON, performing a panel intervention at UdG pool

Fig. 18 TRITON hardware system with its components attached to an underwater panel mockup

6.2 Ongoing Research on Autonomous Manipulation
with Visibility Constraints

In the subsea context, the quality of the images captured by the camera mounted on
the autonomous robots, can be strongly affected by the degree of the water turbidity.
In unfavorable circumstances, the distance at which this device is usable (i.e. the
range of visibility) is the required parameter in order to know how to make a proper
use of it. On the other hand, when the image captured by the camera does not contain
objects near the robot, it is not possible to determine whether this absence on the

Robotic Manipulation Within the Underwater Mission Planning Context 517

image is due to the fact that there are really no objects near the vehicle or, contrarily,
that water turbidity prevents their vision.

To have a metric to determine the maximum distance at which the camera is effec-
tive at each instant, a calibration experiment has been developed. Two high intensity
LEDs (one red and one white), placed at a fixed distance from the camera, have been
used. To reach this fixed distance the diodes can be placed in the submarine’s robotic
arm and then it can be moved properly until the LEDs reach the calibration location.
On the other hand, a calibration image that is positioned at a distance of 1m from
the camera and is lightened by the built-it autonomous robot focus has been made.

Tomuddy thewater, a special dye for decorative paintings has been used: a powder
containing particles of different sizes. Thus, the water in the container in which
the experiment has been developed, progressively blurred without having absolute
measurements of turbidity. For each concentration of dye, in the absence of ambient
light, the vehicle’s built-in lights have been activated to illuminate the test image,
and then, a screenshot of the captured image has been taken. After that, now with the
lights turned off, both the red and white LEDs have been independently activated,
taking screenshot of each of them.

Fig. 19 Underwater visibility experimental results on increasing water turbidity. The three LED
halos obtained for different turbidities have been binarized with different thresholds

518 J. Pérez et al.

The different images are the reference for the calibration of the degree of visi-
bility of the focus-camera set for this particular conditions of turbidity. After that,
LED halos are binarized for increasing water turbidity with different thresholds (see
Fig. 19). Thus, the aspect of each of the LEDs makes it possible to determine the
degree of visibility at 1m of distance, and this can be used as a starting point for an
estimation of the maximum distance that will have some degree of visibility.

7 Conclusions and Further Work

The field of underwater manipulation for intervention missions is an active research
topic that still hasmanychallenges to overcome.Themost important researchprojects
in this field, that have been able to demonstrate some results in sea conditions, are
still far from what would be desirable for a fully autonomous underwater vehicle for
intervention.

Nevertheless, the expertise and know-howdeveloped in the context of our research
group in the last years, in projects like RAUVI (09-11), TRIDENT (10-13), or TRI-
TON (currently active), has resulted in a general system architecture that allows
an underwater vehicle to perform intervention missions in different real scenarios
with a high degree of autonomy. The results obtained in TRITON, and in particular,
in the GRASPER subproject, in the field of autonomous underwater manipulation,
represent the cutting edge of research in this area.

The use of UWSim as a 3D simulation tool for benchmarking and Human Robot
Interaction (HRI) has also been presented. The simulator has demonstrated to be a
useful tool in our roadmap, a methodology developed for experimental validation,
where we first perform benchmarking and Hardware in the Loop (HIL) simulations
as a prior stage before moving to the real testbeds, independently of the specific
underwater intervention problem to solve. UWSim is also used as a Graphical User
Interface (GUI), providing the necessary Human Robot Interaction (HRI) that is
required to specify a task.

The benchmarking characteristics of UWSim allow the design of specific exper-
iments on autonomous underwater interventions. More specifically, the simulator
allows the integration, in a unique platform, of the data acquired from the sensors in
a real submarine intervention, and define a dataset, in order to allow further experi-
ments to work on the same scenario, permitting a better understanding of the results
provided by previous experiments.

The usefulness of UWSim has been recently proven, as it is currently used in
different ongoing projects funded by European Commission (MORPH and PAN-
DORA). Moreover, it is available to the scientific community as live open source
project,5 and is also included as a module6 within the ROS platform.

5Available on-line: http://www.irs.uji.es/uwsim.
6Available on-line: http://wiki.ros.org/uwsim.

http://www.irs.uji.es/uwsim
http://wiki.ros.org/uwsim

Robotic Manipulation Within the Underwater Mission Planning Context 519

Fig. 20 User Interface connected to UWSim simulator providing feedback during the “learning
by demonstration” stage in the “search and recovery” of a black-box mockup, the first scenario
proposed in TRITON project (refer to [42] for additional details)

The underwater operation results on a permanent observatory panel in water tank
conditions has also been presented, as a prior step to the next experiments that will
take place in real sea conditions. The experiment consisted on opening and closing
a valve and plugging and unplugging a connector. To perform the operation, the
proposed general system architecture, that allows an underwater vehicle to perform
intervention missions in different real scenarios, with a high degree of autonomy,
has been used.

As future lines, it is worth mentioning that cooperation research actions with
University of Coimbra (Portugal) are now open to explore other paradigms for
improvements in manipulation like those based on “learning by demonstration” [42].
Experimental validation is being carried on UWSim with the aid of complemen-
tary modules to allow the user interaction for the learning process (see Fig. 20). It
is expected that we incorporatethose learning capabilities to the proposed system
architecture, to be used in future interventions.

Acknowledgments This research was partly supported by SpanishMinistry of Research and Inno-
vation DPI2011-27977-C03 (TRITON Project) and by Foundation Caixa Castelló-Bancaixa and
Universitat Jaume I grant PI 1B2011-17.

520 J. Pérez et al.

References

1. Ahmadzadeh S, Kormushev P, Caldwell D (2013) Autonomous robotic valve turning: a hierar-
chical learning approach. In: 2013 IEEE international conference on robotics and automation
(ICRA), pp 4629–4634. doi:10.1109/ICRA.2013.6631235

2. Antonelli G (2014) Underwater robots. Springer tracts in advanced robotics, vol 96. Springer,
Heidelberg

3. Bekey G, Liu H, Tomovic R, Karplus W (1993) Knowledge-based control of grasping in robot
hands using heuristics from human motor skills. IEEE Trans Robot Autom 9(6):709–722.
doi:10.1109/70.265915

4. Bicchi A, Kumar V (2000) Robotic grasping and contact: a review. In: IEEE international
conference on robotics and automation, ICRA’00, vol 1, pp 348–353. doi:10.1109/ROBOT.
2000.844081

5. Borst C, Fischer M, Haidacher S, Liu H, Hirzinger G (2003) DLR hand II: experiments and
experience with an anthropomorphic hand. In: IEEE international conference on robotics and
automation, ICRA’03, vol 1, pp 702–707. doi:10.1109/ROBOT.2003.1241676

6. Carrera A, Ahmadzadeh SR, Ajoudani A, Kormushev P, Carreras M, Caldwell DG (2012)
Towards autonomous robotic valve turning. J Cybern Inf Technol (CIT) 12(3):17–26

7. Casalino G, Zereik E, Simetti E, Torelli S, Sperinde A, Turetta A (2012) Agility for underwater
floating manipulation: task & subsystem priority based control strategy. In: 2012 IEEE/RSJ
international conference on intelligent robots and systems (IROS), pp 1772–1779. doi:10.1109/
IROS.2012.6386127

8. Choi S, Takashige GY, Yuh J (1994) Experimental study on an underwater robotic vehicle:
ODIN. In: Proceedings of 1994 symposium on autonomous underwater vehicle technology,
AUV’94, pp 79–84. doi:10.1109/AUV.1994.518610

9. CipollaR,HollinghurstN (1997)Visually guided grasping in unstructured environments. Robot
Auton Syst 19(3–4):337–346. doi:10.1016/S0921-8890(96)00060-7

10. Coelho J, Piater J, Grupen R (2001) Developing haptic and visual perceptual categories
for reaching and grasping with a humanoid robot. Robot Auton Syst 37(2–3):195–218.
doi:10.1016/S0921-8890(01)00158-0

11. Dillmann R (2004) KA 1.10 Benchmarks for Robotics Research. Technical report
12. Ekvall S, Kragic D (2004) Interactive grasp learning based on human demonstration. In: 2004

IEEE international conference on robotics and automation, ICRA’04, vol 4, pp 3519–3524.
doi:10.1109/ROBOT.2004.1308798

13. Evans J, Keller K, Smith J, Marty P, Rigaud O (2001) Docking techniques and evaluation
trials of the SWIMMER AUV: an autonomous deployment. In: AUV for work-class ROVs.
OCEANS, 2001, pp 520–528

14. Evans J, Redmond P, Plakas C, Hamilton K, Lane D (2003) Autonomous docking for
Intervention-AUVs using sonar and video-based real-time 3D pose estimation. In: OCEANS,
vol 4, pp 2201–2210. doi:10.1109/OCEANS.2003.178243

15. Fernández J, PratsM, SanzP,García J,MarínR,RobinsonM,RibasD,RidaoP (2013)Grasping
for the seabed: developing a new underwater robot arm for shallow-water intervention. IEEE
Robot Autom Mag 4(20):121–130. doi:10.1109/MRA.2013.2248307

16. FP7-MORPH: Marine Robotic System of Self-Organizing, Logically Linked Physical Nodes
(MORPH). http://morph-project.eu/

17. FP7-PANDORA: Persistent Autonomy through learNing, aDaptation, Observation and Re-
plAnning (PANDORA). http://persistentautonomy.com/

18. Gilmour B, Niccum G, O’Donnell T (2012) Field resident AUV systems: Chevron’s long-term
goal for AUV development. In: 2012 IEEE/OES autonomous underwater vehicles (AUV), pp
1–5. doi:10.1109/AUV.2012.6380718

19. Hauck A, Ruttinger J, Sorg M, Farber G (1999) Visual determination of 3D grasping points on
unknown objects with a binocular camera system. In: Proceedings of 1999 IEEE/RSJ interna-
tional conference on intelligent robots and systems, IROS’99, vol 1, pp 272–278. doi:10.1109/
IROS.1999.813016

http://dx.doi.org/10.1109/ICRA.2013.6631235
http://dx.doi.org/10.1109/70.265915
http://dx.doi.org/10.1109/ROBOT.2000.844081
http://dx.doi.org/10.1109/ROBOT.2000.844081
http://dx.doi.org/10.1109/ROBOT.2003.1241676
http://dx.doi.org/10.1109/IROS.2012.6386127
http://dx.doi.org/10.1109/IROS.2012.6386127
http://dx.doi.org/10.1109/AUV.1994.518610
http://dx.doi.org/10.1016/S0921-8890(96)00060-7
http://dx.doi.org/10.1016/S0921-8890(01)00158-0
http://dx.doi.org/10.1109/ROBOT.2004.1308798
http://dx.doi.org/10.1109/OCEANS.2003.178243
http://dx.doi.org/10.1109/MRA.2013.2248307
http://morph-project.eu/
http://persistentautonomy.com/
http://dx.doi.org/10.1109/AUV.2012.6380718
http://dx.doi.org/10.1109/IROS.1999.813016
http://dx.doi.org/10.1109/IROS.1999.813016

Robotic Manipulation Within the Underwater Mission Planning Context 521

20. Kamon I, Flash T, Edelman S (1998) Learning visually guided grasping: a test case in senso-
rimotor learning. IEEE Trans Syst, Man Cybern Part A 28(3):266–276

21. Lane D, Davies J, Casalino G, Bartolini G, Cannata G, Veruggio G, Canals M, Smith C,
O’Brien D, Pickett M, Robinson G, Jones D, Scott E, Ferrara A, Angelleti D, Coccoli M,
Bono R, Virgili P, Pallas R, Gracia E (1997) AMADEUS: advanced manipulation for deep
underwater sampling. IEEE Robot Autom Mag 4(4):34–45. doi:10.1109/100.637804

22. Liu H, Iberall T, Bekey G (1989) The multi-dimensional quality of task requirements for
dextrous robot hand control. In: IEEE international conference on robotics and automation
(ICRA’89), pp 452–457

23. Malis E (2004) Improving vision-based control using efficient second-orderminimization tech-
niques. In: 2004 IEEE international conference on robotics and automation, ICRA’04, vol 2,
pp 1843–1848. doi:10.1109/ROBOT.2004.1308092

24. MalliosA,RidaoP,CarrerasM,HernandezE (2011)Navigating andmappingwith theSPARUS
AUV in a natural and unstructured underwater environment. In: OCEANS 2011, Waikoloa,
Kona, Hawai, Kona, pp 1–7

25. Marani G, Choi SK, Yuh J (2009) Underwater autonomous manipulation for intervention
missions AUVs. Ocean Eng 36(1):15–23. doi:10.1016/j.oceaneng.2008.08.007

26. Marani G, Yuh J (2014) Introduction to autonomous manipulation—case study with an under-
water robot, SAUVIM. Springer tracts in advanced robotics, vol 102. Springer, Berlin

27. Miller AT, Knoop S, Christensen HI, Allen PK (2003) Automatic grasp planning using shape
primitives. In: Proceedings of the IEEE international conference on robotics and automation
(ICRA’03), Taipei, Taiwan, pp 1824–1829

28. Morales A,Asfour T, Azad P, Knoop S, DillmannR (2006) Integrated grasp planning and visual
object localization for a humanoid robot with five-fingered hands. In: IEEE/RSJ international
conference on intelligent robots and systems, Beijing, China, pp 5663–5668

29. Morales A, Chinellato E, Fagg A, del Pobil A (2004) Experimental prediction of the perfor-
mance of grasps tasks from visual features. Int J Humanoid Robot 10(1):671–691

30. Morales A, Recatalá G, Sanz P, del Pobil A (2001) Heuristic vision-based computation of
planar antipodal grasps on unknown objects. In: IEEE international conference on robotics and
automation (ICRA), vol 1, pp 583–588. doi:10.1109/ROBOT.2001.932613

31. Palomeras N, Ribas D, Vallicrosa G, Ridao P, Carreras M (2014) Autonomous I-AUV docking
for fixed-basemanipulation. In: 19thworld congress of the international federation of automatic
control (IFAC), pp 12160–12165. doi:10.3182/20140824-6-ZA-1003.01878

32. Peñalver A, Pérez J, Fernández JJ, Sales J, Sanz PJ, García JC, Fornas D, Marín R (2014)
Autonomous intervention on an underwater panel mockup by using visually-guided manipu-
lation techniques. In: 19th world congress of the international federation of automatic control
(IFAC), pp 5151–5156. doi:10.3182/20140824-6-ZA-1003.02545

33. Prats M, Garcia J, Wirth S, Ribas D, Sanz P, Ridao P, Gracias N, Oliver G (2012) Multipur-
pose autonomous underwater intervention: a systems integration perspective. In: 2012 20th
mediterranean conference on control automation (MED), pp 1379–1384. doi:10.1109/MED.
2012.6265831

34. PratsM, Pérez J, Fernández J, Sanz P (2012)An open source tool for simulation and supervision
of underwater interventionmissions. In: 2012 IEEE/RSJ international conference on intelligent
robots and systems (IROS), pp 2577–2582. doi:10.1109/IROS.2012.6385788

35. Prats M, del Pobil AP, Sanz PJ (2013) Robot physical interaction through the combination of
vision, tactile and force feedback. Applications to assistive robotics, Springer tracts in advanced
robotics, vol 84. Springer, Berlin

36. Prats M, Ribas D, Palomeras N, García J, Nannen V, Wirth S, Fernández J, Beltrán J, Campos
R, Ridao P, Sanz P, Oliver G, Carreras M, Gracias N, Marín R, Ortiz A (2012) Reconfigurable
AUV for intervention missions: a case study on underwater object recovery. Intell Serv Robot
5(1):19–31. doi:10.1007/s11370-011-0101-z

37. Pérez J, Sales J, PratsM,Martí JV, FornasD,MarínR, Sanz PJ (2013) The underwater simulator
UWSim: benchmarking capabilities on autonomous grasping. In: 11th international conference
on informatics in control, automation and robotics (ICINCO)

http://dx.doi.org/10.1109/100.637804
http://dx.doi.org/10.1109/ROBOT.2004.1308092
http://dx.doi.org/10.1016/j.oceaneng.2008.08.007
http://dx.doi.org/10.1109/ROBOT.2001.932613
http://dx.doi.org/10.3182/20140824-6-ZA-1003.01878
http://dx.doi.org/10.3182/20140824-6-ZA-1003.02545
http://dx.doi.org/10.1109/MED.2012.6265831
http://dx.doi.org/10.1109/MED.2012.6265831
http://dx.doi.org/10.1109/IROS.2012.6385788
http://dx.doi.org/10.1007/s11370-011-0101-z

522 J. Pérez et al.

38. Quigley M, Conley K, Gerkey BP, Faust J, Foote T, Leibs J, Wheeler R, Ng AY (2009) ROS:
an open-source robot operating system. In: ICRA workshop on open source software

39. Ribas D, Palomeras N, Ridao P, Carreras M (2012) Girona 500 AUV, from survey to inter-
vention. IEEE/ASME Trans Mechatron (Focused Section on Marine Mechatronic Systems)
17(1):46–53

40. Rigaud V, Coste-Maniere E, Aldon M, Probert P, Perrier M, Rives P, Simon D, Lang D, Kiener
J, Casal A, Amar J, Dauchez P, Chantler M (1998) Union: underwater intelligent operation and
navigation. IEEE Robot Autom Mag 5(1):25–35. doi:10.1109/100.667323

41. Rusu R, Holzbach A, Diankov R, Bradski G, Beetz M (2009) Perception for mobile manipula-
tion and grasping using active stereo. In: 9th IEEE-RAS international conference on humanoid
robots, humanoids 2009, pp 632–638. doi:10.1109/ICHR.2009.5379597

42. Sales J, Santos L, Sanz PJ, Dias J, García JC (2013) Increasing the autonomy levels for under-
water intervention missions by using learning and probabilistic techniques. In: First Iberian
robotics conference (ROBOT 2013), Madrid, Spain

43. Sanz PJ, Marín R, Sales J, Oliver G, Ridao P (2012) Recent advances in underwater robotics
for intervention missions. Soller harbor experiments, Low-cost books

44. Sanz PJ, Marín R, Sánchez JS (2005) Including efficient object recognition capabilities in
online robots: from a statistical to a neural-network classifier. IEEE Trans Syst, Man, Cybern
Part C: Appl Rev 35(1):87–96. doi:10.1109/TSMCC.2004.840055

45. Sanz PJ, Prats M, Ridao P, Ribas D, Oliver G, Orti A (2010) Recent progress in the RAUVI
project a reconfigurable autonomous underwater vehicle for intervention. In: 52th international
symposium ELMAR-2010. Zadar, Croatia, pp 471–474

46. Sanz PJ, Requena A, Iñesta JM, del Pobil AP (2005) Grasping the not-so-obvious: vision-based
object handling for industrial applications. IEEERobot AutomMag 12(3):44–52. doi:10.1109/
MRA.2005.1511868

47. Sanz PJ, Ridao P, Oliver G, Casalino G, Petillot Y, Silvestre C, Melchiorri C, Turetta A (2013)
TRIDENT: an European project targeted to increase the autonomy levels for underwater inter-
vention missions. In: OCEANS’13 MTS/IEEE conference, San Diego

48. ShimogaKB (1996)Robot grasp synthesis algorithms: a survey. Int JRobotRes 15(3):230–266.
doi:10.1177/027836499601500302

49. Simetti E, Casalino G, Torelli S, Sperinde A, Turetta A (2013) Experimental results on task
priority and dynamic programming based approach to underwater floating manipulation. In:
OCEANS—Bergen, 2013 MTS/IEEE, pp 1–7. doi:10.1109/OCEANS-Bergen.6608016

50. Stansfield S (1991) Robotic grasping of unknown objects: a knowledge-based approach. Int J
Robot Res 10(4):314–326. doi:10.1177/027836499101000402

51. Wang H, Rock S, Lee M (1995) Experiments in automatic retrieval of underwater objects
with an AUV. In: OCEANS’95. Proceedings of conference on MTS/IEEE. Challenges of our
changing global environment, vol 1, pp 366–373. doi:10.1109/OCEANS.1995.526796

http://dx.doi.org/10.1109/100.667323
http://dx.doi.org/10.1109/ICHR.2009.5379597
http://dx.doi.org/10.1109/TSMCC.2004.840055
http://dx.doi.org/10.1109/MRA.2005.1511868
http://dx.doi.org/10.1109/MRA.2005.1511868
http://dx.doi.org/10.1177/027836499601500302
http://dx.doi.org/10.1109/OCEANS-Bergen.6608016
http://dx.doi.org/10.1177/027836499101000402
http://dx.doi.org/10.1109/OCEANS.1995.526796

Erratum to: Motion and Operation
Planning of Robotic Systems

Giuseppe Carbone and Fernando Gomez-Bravo

Erratum to:
G. Carbone and F. Gomez-Barvo (eds.),
Motion and Operation Planning of Robotic Systems,
Mechanisms and Machine Science 29,
DOI 10.1007/978-3-319-14705-5

The spelling of the editor name Fernando Gomez-Barvo was incorrect. The
correct name should read as follows Fernando Gomez-Bravo.

The online version of the original book can be found under
DOI 10.1007/978-3-319-14705-5

G. Carbone (&)
University of Cassino, Cassino, Frosinone, Italy
e-mail: carbone@unicas.it

F. Gomez-Bravo
Engineering School, University of Huelva, La Rábida, Huelva, Spain
e-mail: fernando.gomez@diesia.uhu.es

© Springer International Publishing Switzerland 2015
G. Carbone and F. Gomez-Bravo (eds.), Motion and Operation Planning
of Robotic Systems, Mechanisms and Machine Science 29,
DOI 10.1007/978-3-319-14705-5_18

E1

http://dx.doi.org/10.1007/978-3-319-14705-5
http://dx.doi.org/10.1007/978-3-319-14705-5

	Preface
	Contents
	Part I Theoretical Background
	Path Planning and Trajectory Planning Algorithms: A General Overview
	1 Introduction
	2 Path Planning
	2.1 Roadmap Techniques
	2.2 Cell Decomposition Methods
	2.3 Artificial Potential Methods
	2.4 Alternative Approaches to Path Planning

	3 Trajectory Planning
	3.1 Minimum Execution Time Algorithms
	3.2 Minimum Energy Algorithms
	3.3 Minimum Jerk Algorithms
	3.4 Hybrid Optimization Approaches

	4 Conclusions
	References

	Off-Line and On-Line Trajectory Planning
	1 Introduction
	1.1 Geometric Planners
	1.2 Trajectory Planning (Off-Line)
	1.3 Online Planning

	2 Problem Statement
	3 Off-Line Planner
	3.1 Summary of the Approach
	3.2 The Graph Search
	3.3 Branch and Bound Search
	3.4 Time Optimal Motions Along Specified Paths
	3.5 Local Optimization
	3.6 Summary of the Off-Line Planner
	3.7 Example 1

	4 Online Planner
	4.1 Optimal Avoidance of a Single Obstacle
	4.2 The Constrained Trajectory
	4.3 Multi-obstacle Avoidance
	4.4 The Current Obstacle
	4.5 The Avoidance Algorithm
	4.6 Convergence
	4.7 Optimality
	4.8 Numerical Examples and Experiments
	4.9 Computational Issues

	5 Summary
	References

	Open Architecture for Vision-Based Robot Motion Planning and Control
	1 Introduction
	2 The Trajectory Generation Problem in Robot Motion Control
	2.1 Joint-Space Trajectory Planning
	2.2 Operational-Space Trajectory Planning

	3 The Taxonomy of Visual Robot Servoing
	4 Guidance Vision for Robot Motion Planning
	4.1 Open, Vision-Based Robot Motion Planning for Fixed Scene Foreground
	4.2 Multitasking Robot Motion Planning for Object Tracking on Mobile Scenes

	5 Experimental Results and Conclusions
	References

	Grasping and Manipulation of Unknown Objects Based on Visual and Tactile Feedback
	1 Introduction
	2 Planning-Less Grasping in the Control Basis Framework
	2.1 Collision Avoidance
	2.2 Vision-Based Grasp Selection

	3 Tactile Servoing
	3.1 High Resolution Tactile Sensing
	3.2 Feature Extraction from Tactile Images
	3.3 Tactile Control Primitives

	4 Experimental Evaluation
	4.1 Tracking Contact Points
	4.2 Track Contact Point and Increase Contact Area by Rolling
	4.3 Tracking an Object Edge on the Sensor Surface
	4.4 Tracking of an Unknown Object Edge
	4.5 Exploring the Shape of an Unknown Object

	5 Conclusion
	References

	Part II Motion Planning of Robotic Manipulators
	Obstacle Avoidance with Industrial Robots
	1 Introduction
	2 Background
	3 Obstacle-Avoidance Strategy
	4 Obstacle Avoidance Using Kinematic Control
	4.1 Exact Solution
	4.2 Exact Solution with Reduced Operational Space
	4.3 Selection of Avoiding Velocity
	4.4 Approximate Solution
	4.5 Experimental Results

	5 Obstacle Avoidance as a Primary Task
	5.1 Smooth Transition Between Tasks
	5.2 Prioritized Damped Least-Squares Inverse
	5.3 Experimental Results

	6 Obstacle Avoidance Using Dynamical Systems
	6.1 Dynamic Movement Primitives
	6.2 Obstacle Avoidance
	6.3 Experimental Results

	7 Conclusion
	References

	Path Planning Kinematics Simulation of CNC Machine Tools Based on Parallel Manipulators
	1 Introduction
	2 General Issues with Parallel Kinematic Machines
	2.1 Problem Statement
	2.2 Kinematics of the General 6-6 Parallel Manipulator
	2.3 Vectorial Formulation of the Implicit Kinematics Model
	2.4 The Inverse Kinematics Problem
	2.5 The Forward Kinematics Problem
	2.6 Machine Tool Control
	2.7 Task Space Conversion to Joint Space

	3 CNC Handling of the Machining Process
	3.1 Introduction on Milling
	3.2 Description
	3.3 Trajectory Position Nominal Function
	3.4 Trajectory Orientation Nominal Function
	3.5 Milling Task Preparation
	3.6 Initial Digitization of Milling Trajectories
	3.7 Second Digitization of Milling Trajectories

	4 Verification Criteria for Machining
	4.1 Machining Accuracy
	4.2 Error over the Cartesian Position
	4.3 Calculate the Actual Deviation from a Nominal Curve
	4.4 Calculation of Deflection from a Straight Line Segment
	4.5 Calculation of the Deviation from a Theoretical Curve
	4.6 Calculate the Actual Deviation from a Theoretical Curve with a Small Radius of Curvature
	4.7 Orientation Errors
	4.8 Actuator Joint Errors
	4.9 Error Models

	5 Results of Path Simulation
	5.1 Parallel Robot Configuration
	5.2 Typical Trajectory and Realistic Milling Configuration
	5.3 Control with Linear Interpolation
	5.4 Control with Third Order Interpolation
	5.5 Discussion on the Results of Position Control

	6 Conclusion
	References

	Planning Automatic Surgical Tasks for a Robot Assistant
	1 Introduction
	2 Laparoscopic Navigation
	2.1 Remote Center of Rotation
	2.2 Passive Wrists
	2.3 Actuated Wrists

	3 Planning Methods on Laparoscopic Surgery
	3.1 Commanded Planning
	3.2 Tele-Operation Planning
	3.3 Autonomous Planning

	4 Collaborative Planning: Auto-Guided Movements
	5 Case of Study: CISOBOT Platform
	5.1 Robot Architecture
	5.2 Experimental Results

	6 Discussion
	References

	Part III Motion and Operation Planningfor Wheeled Robots
	Motion Planning Using Fast Marching Squared Method
	1 Introduction
	2 The Eikonal Equation and the Fast Marching Planning Method
	2.1 Properties
	2.2 Algorithm Implementation on an Orthogonal Mesh
	2.3 Algorithm Implementation on an Triangular Mesh
	2.4 Results of FM2 Method

	3 Application of the FM2 to Car-Like Robots
	3.1 Comparison with Existing Methods

	4 How to Deal with Difficulty and Uncertainty in an Outdoor Environment to Plan Trajectories Using the Fast Marching Method. Algorithm Implementation on a Triangular Mesh
	4.1 Matrix W: The Difficulty Map

	5 Conclusions and Future Work
	References

	Motion Planning of Large Scale Vehicles for Remote Material Transportation
	1 Introduction
	1.1 The Scenario
	1.2 The Vehicle
	1.3 Problem Statement

	2 Motion Planning
	2.1 Line Guidance
	2.2 Free Roaming
	2.3 From Path to Trajectory
	2.4 Feasibility Analysis

	3 Results
	3.1 Trajectories Simulated Results
	3.2 Feasibility Analysis Results

	4 Open Issues and Future Work
	References

	Car-Like Robot Manoeuvre Generation
	1 Introduction
	2 Motion Planning in System with Kinematics Constraints
	2.1 Motion Generation in Nonholonomic Systems
	2.2 Car-Like Vehicle Kinematics

	3 Car-Like Vehicle Manoeuvres Generation
	3.1 Restricted Manoeuvres
	3.2 Manoeuvres Generation: Connecting Paths

	4 Planning Collision Free Manoeuvres from a Collision Free Route
	5 Experimental Results
	6 Conclusions
	References

	Vehicle Autonomy Using Cooperative Perception for Mobility-on-Demand Systems
	1 Introduction
	2 System Overview
	3 Synthetic 2D LIDAR for Vehicle Localization in 3D Urban Environment
	3.1 Localization on a Virtual Plane
	3.2 3D Perception
	3.3 Online Localization
	3.4 Experimental Results

	4 Cooperative Perception for Situational Awareness and Vehicle Control
	4.1 Cooperative Perception
	4.2 Map Merging Problem
	4.3 Sensor Multi-Modality
	4.4 Experimental Results

	5 Automated Early Collision Avoidance Using Cooperative Perception
	5.1 See-Through Forward Collision Warning
	5.2 All-Around View Using Cooperative Perception
	5.3 Overtaking and Lane Changing Assistance
	5.4 Feedback to a Driver
	5.5 Experimental Results

	6 Results and Impact
	6.1 An Invitation to a Live Showcase
	6.2 Humans Are Unpredictable
	6.3 Safety Proven
	6.4 The Next Step

	7 Conclusion
	References

	Motion Planning of a Spherical Mobile Robot
	1 Introduction
	2 Brief Introduction of Spherical Robot BHQ-1
	3 Kinematics Based Motion Planning of BHQ-1
	3.1 Nonholonomic Constraint Equations of BHQ-1
	3.2 Optimized Motion Planning Based on Hamiltonian Function
	3.3 The Influence of λ1, λ2, λ4 on Planned Trajectory
	3.4 Motion Planning Experiments

	4 Dynamics Based Motion Planning of BHQ-1
	4.1 Dynamic Model of BHQ-1
	4.2 Motion Planning Based on Dynamic Model of BHQ-1

	5 Conclusion
	References

	Part IV Motion Planning for Legged Robots
	A Minimum Jerk-Impedance Controller for Planning Stable and Safe Walking Patterns of Biped Robots
	1 Introduction
	2 Stable and Safe Gait Pattern
	2.1 The Gait Cycle
	2.2 Minimum Jerk Based Control for the Swing Phase
	2.3 Impedance Based Control for the Constrained Phases

	3 Application to a Humanoid Robot Prototype
	3.1 The Anthropomorphic Model of the Humanoid Robot
	3.2 Kinematic and Dynamic Modelling of the Bipedal Robot
	3.3 Jerk Optimal Control
	3.4 Impedance Based Control
	3.5 Walking Cycle Generation

	4 Future Works
	5 Conclusion
	References

	Online Walking Pattern Generation Using FFT for Humanoid Robots
	1 Introduction
	2 FFT-Based Offline Walking Pattern Generation
	2.1 Coordinate Frames
	2.2 Approximate Waist and Trunk Motion
	2.3 Expansion into Complete Walking
	2.4 Recursive Calculation

	3 FFT-Based Online Walking Pattern Generation
	4 Walking Simulations
	5 Experimental Tests and Considerations
	6 Conclusions and Future Work
	References

	Hexapod Walking Robot Locomotion
	1 Introduction
	2 State of Art Overview
	3 Basic Locomotion Issues
	3.1 Path Planning
	3.2 Gait Planning

	4 A Case of Study
	5 Conclusions
	References

	Part V Robot Cooperation and Interaction
	Distributed Cooperation of Multiple UAVs for Area Monitoring Missions
	1 Introduction
	2 Frequency-Based Criterion for Monitoring Missions
	2.1 Refresh Time

	3 Multi-UAV Systems for Area Monitoring Missions
	4 Cooperative Patrolling Strategies
	4.1 Cyclic Strategy
	4.2 Path Partitioning Strategy
	4.3 Area Partitioning Strategy
	4.4 Comparison Between Patrolling Strategies

	5 Distributed Coordination Techniques
	5.1 One-to-one Coordination
	5.2 Coordination Variables
	5.3 Comparison Between Distributed Coordination Techniques
	5.4 Experimental Test: Area Monitoring Missions Using the One-to-one Coordination

	6 Conclusions
	References

	Robotic Manipulation Within the Underwater Mission Planning Context
	1 Introduction
	2 Underwater Intervention Mission Planning
	2.1 The System Architecture
	2.2 Planning Grasping and Manipulation for Intervention Missions

	3 UWSim: A 3D Simulation Tool for Benchmarking and HRI
	3.1 The Benchmarking Module for UWSim
	3.2 A User Interface for UWSim to Provide HRI

	4 The Roadmap for Experimental Validation
	5 Simulation Results
	5.1 Benchmarking: Visibility Tracker
	5.2 Benchmarking: Position Error on End Effector Position

	6 Real Scenarios Results
	6.1 Intervention on a Panel in Water Tank Conditions
	6.2 Ongoing Research on Autonomous Manipulation with Visibility Constraints

	7 Conclusions and Further Work
	References

	Erratum to: Motion and Operation Planning of Robotic Systems
	Erratum to: G. Carbone and F. Gomez-Barvo (eds.), Motion and Operation Planning of Robotic Systems, Mechanisms and Machine Science 29, DOI 10.1007/978-3-319-14705-5

