Mechanisms and Machine Science

Giuseppe Carbone
Fernando Gomez-Bravo Editors

Motion and
Operation Planning
of Robotic Systems

Background and Practical Approaches

@ Springer

Mechanisms and Machine Science

Volume 29

Series editor

Marco Ceccarelli, Cassino, Italy

More information about this series at http://www.springer.com/series/8779

http://www.springer.com/series/8779

Giuseppe Carbone - Fernando Gomez-Bravo
Editors

Motion and Operation
Planning of Robotic Systems

Background and Practical Approaches

@ Springer

Editors

Giuseppe Carbone Fernando Gomez-Bravo

University of Cassino Engineering School

Cassino, Frosinone University of Huelva

Italy La Rabida, Huelva
Spain

ISSN 2211-0984 ISSN 2211-0992 (electronic)

Mechanisms and Machine Science

ISBN 978-3-319-14704-8 ISBN 978-3-319-14705-5 (eBook)

DOI 10.1007/978-3-319-14705-5
Library of Congress Control Number: 2015932073

Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

Robot motion planning and its applications have attracted the attention of the
robotic community along the last decades. This book is an attempt to address this
wide topic with a multidisciplinary approach. While other publications focus on
describing the theoretical basis of robot motion, this work pays special attention to
explain the fundamentals through real applications. Thus, it represents a perfect
combination for studying this topic along with other theoretical books.

Each chapter has been authored by an expert or a team of experts in a specific
area spanning from the mechanics of machinery to control theory, informatics,
mechatronics. Chapters have been divided into five parts. The first one aims to give
a theoretical background. Then, Parts II-V discuss the main specific issues for a
proper path planning of different types of robots such as robotic manipulators,
wheeled robots, legged robots, cooperation and coordination of multiple aerial or
underwater robots.

This book project can be foreseen as a reference for young professionals/
researchers to overview the most significant aspects in the field of path planning.
Given the wideness of the topic, this book can be considered as a first edition and,
as Editors, we shall be pleased to consider additional contents/suggestions for a
future edition.

We wish to acknowledge all the authors and expert blind reviewers for their
significant contributions to this project. Also acknowledged is the professional
assistance by the staff of Springer Science+Business Media that have supported this
project with their help and advice in the preparation of the book.

Last but not least we are indebted to our families. Without their patience and
understanding it would not have been possible for us to work on this book.

January 2015 Giuseppe Carbone
Fernando Gomez-Bravo

Contents

Part I Theoretical Background

Path Planning and Trajectory Planning Algorithms:

A General Overview 3
Alessandro Gasparetto, Paolo Boscariol, Albano Lanzutti

and Renato Vidoni

Off-Line and On-Line Trajectory Planning. 29
Zvi Shiller

Open Architecture for Vision-Based Robot Motion Planning
and Control. 63
Theodor Borangiu, Florin Anton and Silvia Anton

Grasping and Manipulation of Unknown Objects Based
on Visual and Tactile Feedback 91
Robert Haschke

Part I Motion Planning of Robotic Manipulators

Obstacle Avoidance with Industrial Robots. 113
T. Petri¢, A. Gams, N. Likar and L. Zlajpah

Path Planning Kinematics Simulation of CNC Machine
Tools Based on Parallel Manipulators 147
Luc Rolland

Planning Automatic Surgical Tasks for a Robot Assistant 193

Enrique Bauzano Nuiiez, Belen Estebanez Campos,
Isabel Garcia Morales and Victor F. Mufioz Martinez

vii

http://dx.doi.org/10.1007/978-3-319-14705-5_1
http://dx.doi.org/10.1007/978-3-319-14705-5_1
http://dx.doi.org/10.1007/978-3-319-14705-5_2
http://dx.doi.org/10.1007/978-3-319-14705-5_3
http://dx.doi.org/10.1007/978-3-319-14705-5_3
http://dx.doi.org/10.1007/978-3-319-14705-5_4
http://dx.doi.org/10.1007/978-3-319-14705-5_4
http://dx.doi.org/10.1007/978-3-319-14705-5_5
http://dx.doi.org/10.1007/978-3-319-14705-5_6
http://dx.doi.org/10.1007/978-3-319-14705-5_6
http://dx.doi.org/10.1007/978-3-319-14705-5_7

viii

Part II Motion and Operation Planning for Wheeled Robots

Motion Planning Using Fast Marching Squared Method

S. Garrido, L. Moreno and Javier V. Gémez

Motion Planning of Large Scale Vehicles for Remote Material

Transportation

Alberto Vale and Isabel Ribeiro

Car-Like Robot Manoeuvre Generation

F. Gomez-Bravo

Vehicle Autonomy Using Cooperative Perception

for Mobility-on-Demand Systems

Seong-Woo Kim, Tirthankar Bandyopadhyay, Baoxing Qin,
Zhuang Jie Chong, Wei Liu, Xiaotong Shen, Scott Pendleton,
James Guo Ming Fu, Marcelo H. Ang Jr., Emilio Frazzoli
and Daniela Rus

Motion Planning of a Spherical Mobile Robot.

Qiang Zhan

Part IV Motion Planning for Legged Robots

A Minimum Jerk-Impedance Controller for Planning Stable

and Safe Walking Patterns of Biped Robots

Amira Aloulou and Olfa Boubaker

Online Walking Pattern Generation Using FFT for Humanoid

Robots e

Kenji Hashimoto, Hideki Kondo, Hun-Ok Lim and Atsuo Takanishi

Hexapod Walking Robot Locomeotion.

Franco Tedeschi and Giuseppe Carbone

Part V Robot Cooperation and Interaction

Distributed Cooperation of Multiple UAVs for Area Monitoring

MISSIONS e

José J. Acevedo, Begofia C. Arrue, Ivan Maza and Anibal Ollero

Contents

http://dx.doi.org/10.1007/978-3-319-14705-5_8
http://dx.doi.org/10.1007/978-3-319-14705-5_9
http://dx.doi.org/10.1007/978-3-319-14705-5_9
http://dx.doi.org/10.1007/978-3-319-14705-5_10
http://dx.doi.org/10.1007/978-3-319-14705-5_11
http://dx.doi.org/10.1007/978-3-319-14705-5_11
http://dx.doi.org/10.1007/978-3-319-14705-5_12
http://dx.doi.org/10.1007/978-3-319-14705-5_13
http://dx.doi.org/10.1007/978-3-319-14705-5_13
http://dx.doi.org/10.1007/978-3-319-14705-5_14
http://dx.doi.org/10.1007/978-3-319-14705-5_14
http://dx.doi.org/10.1007/978-3-319-14705-5_15
http://dx.doi.org/10.1007/978-3-319-14705-5_16
http://dx.doi.org/10.1007/978-3-319-14705-5_16

Contents ix

Robotic Manipulation Within the Underwater Mission Planning

Context. e 495
Javier Pérez, Jorge Sales, Antonio Pefalver, J. Javier Fernandez,

Pedro J. Sanz, Juan C. Garcia, Jose V. Marti, Raul Marin

and David Fornas

Erratum to: Motion and Operation Planning of Robotic Systems. El
Giuseppe Carbone and Fernando Gomez-Bravo

http://dx.doi.org/10.1007/978-3-319-14705-5_17
http://dx.doi.org/10.1007/978-3-319-14705-5_17
http://dx.doi.org/10.1007/978-3-319-14705-5_18

Part 1
Theoretical Background

Path Planning and Trajectory Planning
Algorithms: A General Overview

Alessandro Gasparetto, Paolo Boscariol, Albano Lanzutti
and Renato Vidoni

Abstract Path planning and trajectory planning are crucial issues in the field of
Robotics and, more generally, in the field of Automation. Indeed, the trend for robots
and automatic machines is to operate at increasingly high speed, in order to achieve
shorter production times. The high operating speed may hinder the accuracy and
repeatability of the robot motion, since extreme performances are required from
the actuators and the control system. Therefore, particular care should be put in
generating a trajectory that could be executed at high speed, but at the same time
harmless for the robot, in terms of avoiding excessive accelerations of the actu-
ators and vibrations of the mechanical structure. Such a trajectory is defined as
smooth. For such reasons, path planning and trajectory planning algorithms assume
an increasing significance in robotics. Path planning algorithms generate a geomet-
ric path, from an initial to a final point, passing through pre-defined via-points,
either in the joint space or in the operating space of the robot, while trajectory
planning algorithms take a given geometric path and endow it with the time infor-
mation. Trajectory planning algorithms are crucial in Robotics, because defining the
times of passage at the via-points influences not only the kinematic properties of the
motion, but also the dynamic ones. Namely, the inertial forces (and torques), to which
the robot is subjected, depend on the accelerations along the trajectory, while the
vibrations of its mechanical structure are basically determined by the values of the
jerk (i.e. the derivative of the acceleration). Path planning algorithms are usually
divided according to the methodologies used to generate the geometric path, namely:

A. Gasparetto (X)) - P. Boscariol

DIEGM - Dipartimento di Ingegneria Elettrica Gestionale E Meccanica,
University of Udine, Via Delle Scienze, 206, 33100 Udine, UD, Italy
e-mail: alessandro.gasparetto @uniud.it

A. Lanzutti
MBP, Via Toscanini, 48/B, 46043 Castiglione Delle Stiviere, MN, Italy

R. Vidoni

Faculty of Science and Technology,

Free University of Bozen-Bolzano Piazza Universita,
39100 Bolzano, Italy

© Springer International Publishing Switzerland 2015 3
G. Carbone and F. Gomez-Bravo (eds.), Motion and Operation Planning

of Robotic Systems, Mechanisms and Machine Science 29,

DOI 10.1007/978-3-319-14705-5_1

4 A. Gasparetto et al.

e roadmap techniques
e cell decomposition algorithms
e artificial potential methods.

The algorithms for trajectory planning are usually named by the function that is
optimized, namely:

e minimum time
e minimum energy
e minimum jerk.

Examples of hybrid algorithms, which optimize more than a single function, are
also found in the scientific literature. In this chapter, the general problem of path
planning and trajectory planning will be addressed, and an extended overview of the
algorithms belonging to the categories mentioned above will be carried out, with
references to the numerous contributions to this field.

Keywords Path planning - Trajectory planning - Roadmap - Cell decomposition -
Artificial potential + Minimum time + Minimum energy + Minimum jerk

1 Introduction

Human activity in many sectors is nowadays supported or substituted by robots,
which range from standard robots for industrial applications to autonomous robots for
complex tasks, such as space exploration. Indeed, the great versatility and flexibility
of robots allows them to be employed in different sectors, to perform even very
diverse tasks. Referring to the industrial environment, a robot can be defined [78]
as a mechanical structure made of several rigid bodies (links) connected one to
another by means of joints. Within the robot, it is possible to identify a structure that
implements mobility, a wrist which provides dexterity, and an end-effector which
performs the task given to the robot.

Regardless of the specific mechanical structure, in all types of applications a
generic task is achieved by a robot by imposing a specific motion to the end-effector.
This motion may be free or bound: the former case applies if the end-effector does
not have a physical interaction with the environment, while the latter case applies if
the end effector interacts with the environment by exchanging forces and/or torques.

The input of the control system of the robot is generally given by the law of motion,
which is generated by a dedicated module for motion planning. Such motion planning
module can operate off-line, by using a knowledge of the robot and the environment
which is given a priori, or can operate on-line: in this case, suitable sensors must be
employed to monitor the robot motion and enable the control system to adjust the
movements in real time.

Ultimately, controlling the robot means determining the forces and torques that
the actuators must develop at the joints, so as to ensure that the reference trajectories

Path Planning and Trajectory Planning Algorithms: A General Overview 5

are properly followed. However, this problem turns out to be very complex, because
arobot is an articulated structure, so the motion of a single link arm affects the other
links. Mathematically, this is expressed by the fact that the dynamic equations of
a robot (with the exception of Cartesian structures), contain some terms due to the
coupling effects between different links.

In most cases, robot controllers are based on closed loops, driven by the error
between the reference and the actual position, which allows to achieve the accuracy
required to the robot in executing the planned trajectory. In the case that, during a
manipulation task, there is contact between the end-effector and the environment,
the control problem is further complicated because not only the motion, but also the
forces exchanged in the interaction should be monitored and controlled.

In this chapter, we will focus on the path planning and trajectory planning prob-
lems, which constitute the two main parts of the general motion planning problem.
The interest for such topics is dramatically increasing, because operations at high
speed are required to robots in the modern automatic systems; hence, smooth motions
should be planned (where smooth means that such motions must avoid excessive val-
ues of accelerations of the actuators, as well as vibrations of the mechanical structure).

Many algorithms have been proposed, both for path planning and for trajectory
planning, in the scientific literature of the robotic domain. The aim of this chapter is
to provide a general overview of such algorithms, which have been subdivided into
suitable categories.

2 Path Planning

Path planning is a merely geometric matter, because it is defined as the generation
of a geometric path, with no mention of any specified time law. On the other hand,
trajectory planning consists in assigning a time law to the geometric path. In most
cases, path planning precedes trajectory planning; however, these two phases are not
necessarily distinct; for instance, if point-to-point trajectories are considered (i.e.
only the initial and final positions are specified), the two problems may be solved at
the same time.

In this section the analysis of available works in literature deals with the case of
systems without non-holonomic constraints.

Different types of paths are possible, depending on the specific case. For instance,
for industrial manipulators, the standard path is usually defined by the geometry of
the task, which is defined in a static way. In more advanced applications, or for
robots operating in dynamic environments, some extra features, such as the need for
automatic obstacle avoidance, may be added.

In applications of advanced robotics, the problem of path planning is definitely
very challenging, especially for robots characterized by a large degree of autonomy
or for robots that must operate in hostile environments (space, underwater, nuclear,
military, etc.).

6 A. Gasparetto et al.

The definition of the path planning problem is very straightforward: “find a
collision-free motion between an initial (start) and a final configuration (goal) within
a specified environment”. The simplest situation is when the path is to be planned in
a static and known environment; however, more generally, the path planning prob-
lem can be formulated for any robotic system subject to kinematic constraints, in a
dynamic and unknown environment.

Much work can be found the robotic literature, dealing with path planning. The
first definitions and algorithms date back to the 1970s. In [57] a complete overview
of the path planning techniques can be found. An overview of many techniques cited
in this work can be found also in the classic book [23] or in the recent book [48].
Other useful reviews of path planning techniques are [49, 55].

Some basic definitions are needed to introduce the path planning problem, namely:
the configuration space (C-space), the space of free configurations (C-free) and the
obstacles’ representation in the C-space (C-0bs).

The configuration space is the space of all possible robot configurations, where
a configuration ¢ is the specification of position and orientation of the robot A with
respect to a fixed reference frame Fy . Referring to Fig. 1, the C-space of the robot
A is R3, since the configuration of A is specified by the origin of F4 with respect to
Fyw, and by its orientation.

For an articulated robot (Fig.2), the C-space is given by its joint space (in this
case, R?). The C-obs is given by the image of the obstacles in the C-space, and the
C-free is defined as {C-space—C-obs}.

Path planning algorithms are usually divided in three categories, according to the
methodologies used to generate the geometric path, namely:

e roadmap techniques
e cell decomposition algorithms
e artificial potential methods.

Fig. 1 Mobile robot in a
2-dimensional space with
obstacles

B1

Y

Path Planning and Trajectory Planning Algorithms: A General Overview 7

360
C * qstart
270 obs
.
@
B Cfree
90 T
[]
qgoal
—— :
0 45 O 99 135 180

Fig. 2 C-space, C-free and C-obs for an articulated robot with two joints

2.1 Roadmap Techniques

The roadmap techniques are based upon the reduction of the N-dimensional config-
uration space to a set of one-dimensional paths to search, possibly on a graph.

In other words, this approach maps the free space connectivity into a system
of one-dimensional curves (the roadmap) in the C-free space or in its closure. The
roadmap R thus obtained contains a set of paths: hence, the path planning consists in
linking the initial and final configurations to R. In this way a feasible path between
the two configurations is found.

It is very natural to associate a graph to the roadmap and to define some optimality
index (e.g. the Euclidean length): the graph can then be searched in order to get the
optimal solution to the path planning problem (in most cases, this is represented by
the shortest path).

Figure 3 represents the so-called visibility graph, i.e. the graph whose nodes are the
vertices of all the obstacles in the configuration space. Searching the graph would
lead to get the shortest Euclidean path in the C-space. The nodes of the graphs
indicate point locations, while edges represents visible connections between the
nodes. Grey areas indicate obstacles to be avoided. The concept of visibility graph,
which represents a milestone in the literature related to path planning, was introduced
by Lozano-Pérez [63, 64].

Another kind of roadmap algorithms are those based on Voronoi diagrams, which
are defined as a way to divide the space into regions having the following charac-
teristic: given a set of points { p1, ... p,}, each point belonging to the ith region is
closer to p; than to any other p; # p;. This approach is dual to that based on the
visibility graph, because the Voronoi diagrams enable one to obtain a path lying at
the maximum distance from the obstacles, whereas the visibility graph generates a
path that passes as close as possible to the obstacle vertices.

8 A. Gasparetto et al.

Fig. 3 Visibility graph

Figure 4 shows some path generated by using Voronoi diagrams. The three squares
in the diagram represents obstacles, while the blue lines are the set of points equidis-
tant from at least two obstacles. Therefore the paths defined with this technique are
designed to be as far away as possible from nearby obstacles. Examples of path
planning algorithms may be found in [15, 35, 84].

2.2 Cell Decomposition Methods

According to the cell decomposition methods, the free space of the robot is subdi-
vided into several regions, called cells, in such a way that a path between any two
configurations lying in the same cell is straightforward to generate. It is then natural
to define a so-called connectivity graph, which represents the adjacency relations
between cells. Namely, the nodes of the graph represent the cells extracted from
the free space, and there is an arch between two nodes are connected if and only
if the corresponding cells are adjacent. The path planning problem is, again, turned
into a graph searching problem, and can therefore be solved using graph-searching
techniques.

Figure 5 illustrates the procedure described above, which is named exact cell
decomposition technique, because the union of the cell represents exactly the free
space. In some cases, an exact computation of the free space is not possible or
convenient. Approximate cell decomposition methods must therefore be employed.
Figure 6 shows how these techniques work:

Path Planning and Trajectory Planning Algorithms: A General Overview 9

Fig. 4 Paths resulting from Voronoi diagrams

e the whole C-space (assumed 2-dimensional) is divided into four cells;

e the algorithm checks if each cell is completely empty, completely full or mixed
(such words obviously refer to the occupancy by the obstacles);

e cach mixed cell is in turn divided into four subcells, and the algorithm is recursively
applied to check the status of every subcell and recursively divide each mixed
subcell into four sub-subcells.

The graph that may be naturally associated to the approximate cell decomposition is
a tree, named quadtree for 2-dimensional spaces (Fig.7), octree for 3-dimensional
spaces (Fig. 8), 16-tree for 4-dimensional spaces, and so forth.

2.3 Artificial Potential Methods

The artificial potential methodologies are a different approach to the path planning
problem. The basic idea is to consider the robot in the configuration space as a
moving point subject to a potential field generated by the goal configuration and
the obstacles in the C-space: namely, the target configuration produces an attractive
potential, while the obstacles generate a repulsive potential. The sum of these two
contribution is the total potential, which can be seen as an artificial force applied

10 A. Gasparetto et al.

Fig. 5 Exact cell decomposition: a subdivision of space into numbered polygons, b connectivity
graph, ¢ regions to be crossed, d path

. . r //77 o \ . Jaiiia :; 7. =n = \
| AN | il b
< / <\ < ///A ./ // <\ ST] l/
\ Q\/ h - Wi
| | b 1 /

Fig. 6 Approximate cell decomposition

to the robot, aimed at approaching the goal and avoiding the obstacles. Thus, given
any configuration during the robot motion, the next configuration can be determined
by the direction of the artificial force to which the robot is subjected. This normally
represents the most promising direction of motion in terms of free path. An example
of the application of the artificial potential method is shown in Fig.9.

The artificial potential method was originally conceived by Khatib [50] and fur-
ther developed by Volpe [91, 92]. Such a technique can find applications in many
fields, because it can be successfully implemented online, thus moving the obstacle
avoidance problem from the higher (and slower) level of path planners to the lower
(and faster) level of online motion controllers. This implies that the good features
of the artificial potential methods, especially the reactivity to environment changes,

Path Planning and Trajectory Planning Algorithms: A General Overview 11

9
<

[] Mixed cell

Il Full cell

D Empty cell

Fig. 7 Quadtree

[] Mixed cell
I Full cell
[] Empty cell

Fig. 8 Octree

duly detected by the robot sensors, enable the robot controller to manage unexpected
workspace changes in a fast way.

However, the artificial potential methods are intrinsically affected by a major
problem, namely the presence of local minima, where the robot may find itself
trapped. In order to overcome this problem, several solutions have been proposed:
for instance, using potential functions which do not have local minima [25, 26, 51,
53]. Such functions are called navigation functions.

In [39, 42] alternative applications of the artificial potential method are presented.

Another approach to solve the path planning problem is found in [5], where a
special kind of planners, named RPP (Random Path Planners), is proposed: local
minima are avoided by combining the concepts of artificial potential field with ran-
dom search techniques. Albeit with some limitations, RPP proved to be able to solve
path planning problems for robots with a high number of degrees of freedom, with
reasonable computation times.

Other examples of RPP can be found in [18-21].

12 A. Gasparetto et al.

.
Ui II

Fig. 9 The artificial potential method

2.4 Alternative Approaches to Path Planning

A possible alternative approach, which had remarkable results in very complex path
planning problems, is given by the Probabilistic Roadmap Planners (PRM). It is
a technique which employs probabilistic algorithms, such as random sampling, to
build the roadmap. The most important advantage of PRM is that their complexity
do not strictly depend on the complexity of the environment and on the dimension
of the configurations space. The basic idea is to consider a graph where the nodes
are given by a set of random configurations in the C-free. A local planner can then
try to connect these configurations by means of a path: if a path is found, a new node
is added to the graph. In this way the graph reflects the connectivity of the C-free.
In order to find a path between two configurations, these configurations are added to
the graph, then a graph search is performed in order to find a feasible path. Given the
probabilistic nature of the algorithm, post-processing is often necessary to improve
the quality of the path. PRM algorithms have been successfully applied to robotic
manipulators with up to 16 degrees of freedom. Examples of PRM can be found in
[1, 24, 45, 66].

There are some examples [29, 34] of path planners that take into account kinematic
and dynamic constraints of the robot, in addition to the pure geometric problem of
obstacles avoidance. This problem is referred to as kinodynamic motion planning.
Kinodynamic and nonholonomic motion planning can be handled by the Rapidly-
exploring Random Tree (RRT) method [58]. This method allows to search non-
convex high-dimensional spaces by randomly building a space-filling tree.

Another important version of the general problem is given by path planning in
presence of mobile obstacles. As it can be easily understood, this kind of problem

Path Planning and Trajectory Planning Algorithms: A General Overview 13

results very complex with respect to the basic version. This approach is used, for
instance, in [32, 33].

A general overview of the path planning problem can be found in [54] and in [43],
where the most important results achieved in the field of path planning, including
PRM and RPP techniques, are reported. In [43] itis claimed that all the methodologies
that have proven to be practically usable for path planning are based on a discretization
of the configuration space. There are two crucial requirements in order to ensure an
efficient implementation of path planning methodologies, namely: the efficiency of
collision detection algorithms and the efficiency of graph searching techniques.

3 Trajectory Planning

Solving the trajectory planning problem means generating the reference inputs for
the control system of the robot, so as to ensure that the desired motion is performed.
Usually, the algorithm employed for trajectory planning takes as inputs the path
generated by the path planner, as well as the kinematic and dynamic constraints of
the robot. The output of the trajectory planning module is given by the trajectory of
the joints, or of the end-effector, in form of a sequence of values of position, velocity
and acceleration.

The geometric path is normally defined in the operating space of the robot, because
the task to be performed, as well as the obstacles to avoid, are described in the
operating space more naturally than in the joint space. Thus, planning the trajectory
in the operative space means generating a sequence of values that specify the position
and orientation that the end-effector of the robot must assume at every time interval.
Planning the trajectory in the operating space is usually done when the motion follows
a path with specific geometric characteristics defined in the operating space; in this
case, the path can be specified in an exact form (i.e. taking the original path), or in an
approximate form, by allocating some path points and connecting them by means of
polynomial sequences. However, in most cases the trajectory is planned in the joint
space of the robot because, since the control action on the manipulator is made on the
joints, planning in the operating space requires a kinematic inversion to transform
the end-effector position and orientation values into the joint values.

In order to plan a trajectory in the joint space, first a sequence of via-points should
be extracted from the desired end-effector path, then a kinematic inversion is to be
performed to get the corresponding values of the robot joints. The trajectory is then
generated in the joint space by means of interpolation functions, taking into account
the kinematic and dynamic limits imposed to the robot joints (in terms of position,
velocity, acceleration and jerk). Normally, this way of planning the trajectory can
also avoid the problems involved in moving near singular configurations, and can
efficiently deal with the possible presence of redundant degrees of mobility. The
main drawback of planning a trajectory in the joint space is given by the fact that
the execution of a motion planned in the joint space is not so straightforward to
predict in the operative space, due to the nonlinearities introduced by the direct

14 A. Gasparetto et al.

kinematics. However, no matter if the trajectory is planned in the operating space or
in the joint space, it is crucial that the laws of motion resulting from the planning do
not generate forces and torques at the joints that are not compatible with the given
constraints: in this way the possibility of exciting mechanical resonance modes can
be greatly reduced. For this reason, the planning algorithms must output smooth
trajectories, i.e. trajectories represented by a curve whose derivatives are continuous
up to a certain order. In particular, it is highly desirable to ensure the continuity
of the accelerations of the joints, in order to get trajectories with a limited jerk,
because limiting the jerk is crucial in order to reduce the vibrations induced to the
robot (which may lead to considerable wear of the mechanical structure), as well
as to avoid the excitation of the resonance frequencies of the robot. The vibrations
caused by non-smooth trajectories may seriously damage the actuators and degrade
the tracking performance of the trajectory. Furthermore, low-jerk trajectories can be
executed faster and with a higher accuracy as demonstrated in [6]. In addition, there
are some applications where abrupt motions can jeopardize the quality of the work
or constitute a risk to the human operators working near the robot.

In order to classify the different trajectory planning methodologies into categories,
it is useful to consider that a trajectory is usually planned after some optimality
criterion has been set. The most significant optimality criteria that can be found in
the literature are:

e minimum execution time;
e minimum energy (or actuator effort);
e minimum jerk.

In addition to the above, hybrid optimality criteria have been proposed, such as,
for instance, time-energy optimal trajectory planning. With respect to the minimum
energy criterion, a short clarification is necessary. In most of the cases related with
trajectory planning, the term “energy” does not correspond to a physical quantity
measured in Joules, but it is defined as the integral of squared torques: in other
words, it measures the effort of the robot actuators. However, in the robotic literature
it is possible to find also trajectory planning algorithms where the optimality index
is “energy” in its strict meaning. Actually, this is not really a problem, because in
the electric motors used on the robots, the torque can be assumed proportional to the
current, so there is a correlation between the actuators’ effort and the energy required
to the system.

3.1 Minimum Execution Time Algorithms

The optimality criterion based on minimum execution time was the first to be con-
sidered in trajectory planning, because short execution times are strictly related
to high productivity in automatized production plants in industrial environments.
Thus, no wonder that many papers can be found, in the robotic literature, proposing

Path Planning and Trajectory Planning Algorithms: A General Overview 15

trajectory planning algorithms aimed at minimizing the performance index given by
the execution time.

The algorithms described in [7, 80] are defined in the position-velocity phase
plane. The basic idea of these algorithms is to write the dynamic equation of manip-
ulator in a parametric form using the curvilinear abscissa s of the path as the inde-
pendent parameter. The curvilinear abscissa s (path parameter) and its derivative s’
pseudo-velocity) constitute the state of the system, while the second derivative of s
(i.e. the pseudo-acceleration s”) is chosen as the control variable. In this way, it is
possible to transform the constraints given by the nonlinear robot dynamics, as well
as the constraints on the actuators, into constraints on the control variable depending
from the state of the system. For every point on the path, the maximum admissible
value for the pseudo-velocity of the end-effector is determined from the constraints; it
is then possible to build in the position-velocity phase plane (i.e. in the (s, s”) plane),
a velocity limit curve (VLC). The optimal trajectory is then computed by finding the
admissible control that yields, for each point of the path, the maximum velocity that
does not exceed the limit curve. The solution turns out to be in the form of a curve
(named switching curve) in the phase plane.

An alternative approach to minimum time trajectory planning consists in using
dynamic programming techniques, such as those described in [2, 81]. The basic
idea is to take the state space and discretize it by building a grid of points (called
state points). On the basis of the limits set on velocity, acceleration and jerk, it is
possible to associate to each point the set of the subsequent admissible state points,
and to define the cost of each possible solution by considering the time needed for
the motion. This cost is defined by assuming a constant value of acceleration for each
step. Finally, an algorithm based on dynamic programming generates the minimum
time trajectory. Compared with the phase plane methods, the dynamic programming
methods do not require the parameterization of the path and enables to choose an
arbitrary performance index. Therefore, such algorithms may be used as a general
technique for trajectory optimization. On the other hand, the phase plane approach
turns out to be very efficient in terms of computational load; moreover, it may also
be used for on-line trajectory planning, as in [28, 67].

A model-based approach is used to maximize the speed of industrial robots by
obtaining the minimum-time trajectories that satisfy various constraints commonly
given in the application of industrial robots in [52]. Conventional trajectory patterns,
such as trapezoidal velocity profiles and cubic polynomial functions.

The algorithms described above produce trajectories with discontinuous accelera-
tions and joint torques, because the dynamic models used consider the robot members
as perfectly rigid and do not take into account the actuator dynamics. Neglecting the
link flexibility and the actuator dynamics normally leads to some undesired effects.
First, in reality the robot actuators cannot generate discontinuous torques: this causes
the joint motion to be delayed with respect to the reference trajectory. This accuracy
in trajectory following is thus greatly reduced, and the tracking controller has to be
often activated during the execution of the trajectory. Moreover, each switching of
the actuators may cause the so-called chatter phenomenon, i.e. high frequency oscil-
lations inducing vibrations of the mechanical structure of the robot. This obviously

16 A. Gasparetto et al.

results in wearing of the mechanical components and in a decrease of the accuracy
in trajectory following. Again, the tracking controller is activated more frequently
and the actuators are further stressed. Another undesired effect resulting from an
inaccurate model is that, since the time-optimal control requires saturation of at least
one robot actuator at any time instant, it is impossible for the controller to correct
the tracking errors arising from disturbances or modelling errors.

In [26, 27] a possible solution to these kind of problems is proposed: in these
works, the phase plane method is used, together with a limitation set on the torque
variations (actuator jerks). The proposed algorithm takes the pseudo-jerk, defined
as the third derivative of the curvilinear abscissa, as the control variable: a dynamic
equation of the third order is thus obtained. The experimental results presented in [26]
show that, if some upper bound is set on the pseudo-jerk, time-optimal trajectories
can be practically obtained by simply employing a conventional PID controller.
This proves the correlation between accuracy in trajectory following and low values
of jerk.

A different way to limit the torque variations is to consider in the objective function
not only the execution time, but also an energy contribution: for instance in [79]
the integral of squared torques along the whole trajectory is taken into account.
The experimental results presented in [79] show that the increase of the overall
motion time is compensated by a greater accuracy in trajectory following, even if
conventional PD controllers are used. This results in a reduction of actuator stresses,
with obvious advantages in the total lifetime of the electro-mechanical components
of the robot.

It is possible to approach the problem of minimum-time trajectory planning by
defining a priori the primitives of the motion, i.e. the curves that define the trajectory
in the joint space. Such curves must be smooth functions, so that the control signals
and, consequently, the torque signals at the actuators, result also smooth functions.
The most common situation is that in which the path is specified using a limited
number of via-points: the solution is then given by spline interpolation. In the lit-
erature, several methodologies are proposed to compute time-optimal trajectories
for robot manipulators based on optimization of splines, whose order may be three
(cubic splines) or higher. The main differences among these techniques are:

e the type of constraints considered (either kinematic or dynamic);

e the algorithm used to compute the optimal trajectory;

e the possibility to extend the optimization problem, by taking into account other
optimization criteria, in addition to the minimum time.

The distinction based on the type of constraints can be considered the most important.
It can be extended to any type of trajectory planning algorithm, so that the two
categories of kinematic trajectory planning and dynamic trajectory planning can
be defined. The kinematic trajectory planning algorithms take as their input upper
(sometimes also lower) bounds on velocity, acceleration and jerk. In most cases
such bounds are considered constant. The dynamic trajectory planning algorithms
consider the dynamic model of the robot and define an optimization problem taking
into account dynamic constraints, such as bounds on the actuator torques, or on

Path Planning and Trajectory Planning Algorithms: A General Overview 17

the actuator jerks, defined as the variation of the torques. In some cases kinematic
constraint (typically the velocity) are also considered. Both approaches have pros and
cons: the kinematic trajectory planning has its main advantage in the simplicity and
in the lower computational load; on the other hand, the dynamic trajectory planning
features a better capacity to use the robot actuators. In other words, the kinematic
methods are based on a simplified computational model that yields a non-optimal
use of the robot actuators, although in most cases reasonably good trajectories are
planned. Dynamic methods are based on a more accurate model and therefore produce
better solutions, but at the cost of a heavier computational load, since they have to deal
with non-trivial issues, such as identification of the dynamic parameters of the robot,
or the efficiency in implementing efficient algorithms to solve the robot dynamic
equations.

An interesting example of an algorithm based on the inverse dynamic of a parallel
robot is given by [17]. In this work, a multi-objective optimisation problem is for-
mulated and a dedicated genetic algorithm is employed to find an optimal trajectory
based upon spline functions.

Splines function are therefore used as trajectory primitives in order to ensure
the continuity of the acceleration. Another example can be found in [59], where a
nonlinear optimization problem is set, namely the computation of the value of the
time intervals between the via-points, so as to minimize the total execution time
of the trajectory subject to kinematic constraints. The technique is based upon an
unconstrained optimization algorithm named FPS (Flexible Polyhedron Search), in
combination with an algorithm called FSC (Feasible Solution Converter), which
converts the solutions that are not physically feasible (i.e. that are not compatible with
the kinematic constraints) into feasible ones, by implementing a suitable time scaling
of the trajectory generated by the FPS algorithm. In [93], the same optimization
algorithm presented in [59] is used, but instead of cubic splines, cubic B-splines are
taken as primitives of motion.

The algorithms described above produce a local optimal solution, while other
minimum-time trajectory planning methods output a global optimal solution. Piazzi
and Visioli use interval analysis to calculate a minimum-time trajectory subject to
kinematic constraints at the joints. Such kinematic constraints are on the maximum
value of velocity, acceleration and jerk. In [71] they extend the results already pre-
sented in [71, 72]. The simulations presented in [71] showed an improvement of 18 %
of the total execution time with respect to the results yielded by a local optimization
algorithm.

In [40, 41] a global optimization method is presented, which combines a stochas-
tic technique, such as a genetic algorithm, with a deterministic procedure based on
interval analysis. The proposed technique can be applied to solve general global opti-
mization problems where semi-infinite constraints are defined. In [40] this algorithm
is applied to the problem of minimum-time trajectory planning with specific kine-
matic and dynamic constraints: namely, the trajectories, represented by cubic splines,
are subject to restrictions on the maximum actuator torques, as well as on the linear
and angular velocities of the end-effector in the operating space. It is remarkable

18 A. Gasparetto et al.

that, differently from usual, in [40] the velocity constraint is not imposed in the joint
space, but in the operating space of the end-effector.

A composition of polynomial functions of different orders are used in [11, 12] to
obtain jerk continuity along a trajectory planned from a set of pre-defined via-points,
obtaining a global minimum time solution.

Another example of minimum-time trajectory planning for robotic manipulators
can be found in [16]. In this case the objective function is made of two terms: the first
term takes the squared values of the optimization variables (i.e. of the time intervals
between the via-points), while the second term is the sum of the squared accelerations
computed at the via- points. The introduction of this second term has the effect of
increasing the trajectory smoothness with respect to a pure minimum-time approach.
The optimization is performed by using the DFP (Davidon-Fletcher-Powell) algo-
rithm, which does not consider the kinematic bounds, therefore performing an uncon-
strained minimization. The solution obtained by means of the DFP algorithm is then
subjected to a procedure of time-scaling, until the more restrictive kinematic bound
has been saturated. The resulting trajectory, although respecting the limits on veloc-
ity, acceleration and jerk, is sub-optimal with respect to time.

In [30] a technique for determining time-optimal path-constrained trajectories
subject to velocity, acceleration and jerk constraints, acting on both the robot actuators
and on the task to be executed, is presented. The solution of the optimization problem
is based upon a hybrid optimization strategy, which takes into account the path
description, the kinematic model of the robot and constraints defined by the user.
The resulting trajectories are optimal with respect to time, but not with respect to
smoothness.

In the work [60] a combination of spline functions up to the seventh order are
used together to achieve minimum time solutions with velocities, acceleration and
jerk bounds. Other examples of minimum-time algorithms subject to kinematic con-
straints may be found in [31, 49, 85, 86, 89]. In [74] the minimum-time trajectory
problem is solved under kinematic and dynamic constraints, i.e. teorque, power, jerk
and energy, taking into account both the robot dynamics and the obstacle presence.

3.2 Minimum Energy Algorithms

As already remarked, the minimum-time trajectory planning algorithms received a
lot of consideration in the robotic literature, mainly because of the strong industrial
interest to reduce the length of the production cycles. However, the minimum-time
optimization criterion is not the only one that can be considered: other criteria are
definitely more suitable for different needs and requirements.

The trajectory planning based on energetic criteria is interesting under many
aspects. On one hand, it generates smooth trajectories which are easier to track,
and reduce the stresses induced to the actuators and to the mechanical structure of
the robot. On the other hand, this optimization criterion enables one to better com-
ply with energy saving requirements, which are driven not only by mere economic

Path Planning and Trajectory Planning Algorithms: A General Overview 19

considerations, but may be imposed by specific applications in which the energy
source is limited by technical factors, such as robotic applications for outer space,
for underwater exploration or for military tasks.

A classical example of minimum-energy trajectory planning algorithm is con-
tained in [65], where a trajectory is optimized with respect to energy taking into
account constraints on the motion of the end-effector, as well as the physical limits
of the joints. The proposed objective function is the integral of squared torques. The
trajectories are expressed by cubic B-splines and, by exploiting some property of the
convex hull, it is possible to transform the joint limits into some limits set on the
optimization parameter, which are the control points of the B-splines. The resulting
motion thus minimizes the effort of the actuators.

In[2, 79] some techniques for optimal trajectories planning, with respect to energy
and time, are described: the function to optimize is made of two terms, the first
related to the execution time, the second related to the energy consumption. Such
algorithms are intended to reduce the stresses of the actuators and to facilitate the
trajectory tracking. In [79], the integral of the squared torques along the trajectory
is considered in the objective function, while in [2] the function of total energy is
considered.

Other examples of optimized trajectories, with respect to energy as well as to time,
are presented in [75-77, 90, 95]. In [75] the Authors consider a trajectory parame-
terized by cubic splines, subject to kinematic constraints set on the maximum value
of velocity, acceleration and jerk, and to dynamic constraint given by the maximum
torque applicable to the joints. In [76] the same Authors consider a trajectory para-
meterized by cubic B-splines, where the physical limits of the joints are added to the
torque and kinematic constraints. The objective function includes also an additional
term (penalty function), in order to avoid mobile obstacles expressed as spherical or
hyperspherical safety zones. In [77], two strategies for offline 3-dimensional optimal
trajectory planning of industrial robots, in presence of fixed obstacles, are presented.
In [90], a nonlinear change of variables is employed to convert the time-energy opti-
mal trajectory planning problem into a convex control problem based on only one
state variable. In [95], a methodology based on the minimization of an objective func-
tion which considers both the total execution time and the total energy spent along
the whole trajectory is presented; the via-points of the trajectory are interpolated
by means of cubic splines. Kinematic and dynamic constraints, in terms of upper
bounds on velocity, acceleration, jerk and input forces and torques are also consid-
ered. It is worth noting that in algorithms such as the one presented in [79] the energy
term is added in order to produce trajectories which result slower but smoother with
respect to those generated by minimum-time trajectory planning algorithms; on the
other hand, in approaches such as the one presented in [76] the objective function is
primarily designed to minimize the energy and to plan trajectories with no regard to
the execution time.

Recently, due to the development and installation of energy recovery and redistri-
bution devices in robotic systems, the minimum-energy topic has gained new interest
among the research community, e.g. [44, 68].

20 A. Gasparetto et al.

3.3 Minimum Jerk Algorithms

The importance of generating trajectories that do not impose discontinuities of the
actuator torques at the robot joints has already been remarked; for instance, in [26]
and in [27] this result is obtained by imposing upper bounds to the rate of change of
the actuator torques. However, this kind of approach requires the computation of the
third order dynamics of the robot.

An alternative method to obtain smooth profiles of the actuator torques is based
on the idea of limiting the jerk, defined as the time derivative of the acceleration.
Indeed, the torque variations depend upon the dominant term of the matrix of inertia
multiplied by the vector of the joint jerk. Thus, some trajectory planning methods take
the jerk as the variable to be minimized, in order to obtain smooth trajectories. The
minimization of the jerk yields positive results, such as: reduction of the error during
the trajectory tracking phase, reduction of the excitation of resonance frequencies,
reduction of the stresses induced to the mechanical structure of the robot and to the
actuators.

This results in a natural and coordinated motion: indeed, some studies suggest
that the movements of the human arm satisfy an optimization criterion based upon
the minimization of the jerk, or of the torque variations [82]. The minimum-jerk
trajectory planning for robotic manipulators are an example of optimization based
on physical criteria which mimic the human ability to produce natural movements [8].

In [56] the analytical solution of a trajectory planning problem for a point-to-point
path, based on a minimum-jerk optimization criterion, is presented. The optimiza-
tion, performed by applying Pontryagin’s principle, involves two objective functions,
namely: the maximum absolute value of jerk (minimax approach) and the time inte-
gral of the squared jerk.

In some cases, the total execution time of the trajectory is not imposed, so it can
be chosen so as to comply with the kinematic limits on velocity and acceleration.
However, most of the minimum-jerk algorithms that can be found in the robotic
literature consider an execution time imposed a priori.

In [82], the integral of the squared jerk is minimized along the executed trajec-
tory. In order to have a trajectory with a smooth start and stop, the values of velocity,
acceleration and jerk are set to zero at the first and at the last via-points. The proposed
algorithm is based upon a stochastic optimization technique performed by means of
neural networks. The algorithm does not ensure the exact interpolation of interme-
diate nodes, but allows a tolerance, which can be set by tuning appropriate weights.
This does not constitute a problem in cases where the exact interpolation is not
needed, but just the passage in the neighbourhood of the via-points is required. The
main limitation of this technique is that the resulting trajectories are not analytical
functions, but are numerically defined.

Another approach is contained in [83], where the interpolation of the via-points
is performed by means a trigonometric spline, thus ensuring the continuity of the
jerk. The algorithm assumes that the time interval between the via-points is known
and constant, and takes as input the values for the velocity, the acceleration and the

Path Planning and Trajectory Planning Algorithms: A General Overview 21

jerk, at the first and at the last via-points (such values are typically all set to zero).
There are some advantages in using trigonometric splines to interpolate the trajectory
via-points, for instance the property of locality: namely, if a via-point is changed,
it is not necessary to recalculate the whole trajectory, but only the two splines that
are connected to the via-point need to be recomputed. This property allows fast
computation, thus making it possible to implement obstacle avoidance procedures
in real time. The most significant aspect, in terms of trajectory optimization, is that
parameterizing the trajectory allows some degrees of freedom, namely those given
by the values of the first three derivatives (velocity, acceleration and jerk) at the
intermediate via-points. Such values can be adjusted in order to minimize an objective
function, such as the time integral of the squared jerk. The optimization presented in
[83] is not bounded, since no kinematic limits are imposed, and yields a closed form
solution, thus not requiring iterative minimization procedures.

In [70, 73] an algorithm based on interval analysis is presented. This technique
seeks the minimum of the maximum absolute value of the jerk along a trajectory
whose execution time is imposed a priori. It is therefore a so-called minimax approach
bounded on the trajectory execution time. The trajectories primitives are cubic splines
and the intervals between the via-points are computed, so as to obtain the lowest
maximum absolute jerk value. In [70] the Authors present a comparison with the
method based on trigonometric splines [83], reporting the highest values of the jerk,
of the torques and of the torque variations. The simulation, which calculates the
robot dynamics using the MatLab™ Robotics Toolbox, highlights the efficiency of
the minimax algorithm with respect to other approaches.

3.4 Hybrid Optimization Approaches

Optimal trajectory planning with respect to time, energy and jerk has been discussed
in the foregoing. Hybrid optimization approaches have also been proposed in the
robotic literature. For instance, in order to get the advantages of the jerk reduction
while executing fast trajectories, hybrid time-jerk optimal techniques are proposed,
for instance [9, 11, 36-38, 46, 69]. These algorithms differ from the primitives used
to interpolate the path, or from the optimization procedures implemented.

In[9, 11, 36-38] a minimum time-jerk trajectory planning technique is described,
based upon two algorithms aimed at the minimization of an objective function, which
is designed so as to ensure fastness in execution and smoothness of the trajectory at
the same time. Such an objective function is composed of a term which is propor-
tional to the total execution time and of a term which is proportional to the integral of
the squared jerk along the path. The proposed algorithm enables one to define con-
straints on the robot motion before the execution of the trajectory. The constraints
are expressed in form of upper bounds on the velocity, acceleration and jerk values

22 A. Gasparetto et al.

of all robot joints. In this way, any physical limitation of the real robot can be taken
into account when planning the trajectory. Unlike most jerk-minimization methods,
this technique does not ask for an a priori setting of the total execution time.

In [61, 62], the methodology is extended by taking into account also the power
consumption of the actuators and physical limits of the joints. In this way, the tech-
nique becomes a time-jerk-energy planning algorithm.

Several objectives are taken into account in the work [51]: in particular minimum
elctrical and kinematic energy, minimum time and maximum maniuplability are
obtained with the solution of a single optimization problem.

Minimum effort trajectories planned trough model-based approaches are pre-
sented in [10, 14]. The first one includes bounds on jerk, while second one has
bounded joint speed. The work [13] introduces the novel topic of robustness in tra-
jectory planning algorithms. Such approach allows to increase the tolerance of the
resulting trajectory to the inevitable mismatches between the dynamic model used
for the planning and the actual robot dynamics.

The problem of finding minimum time-effort trajectories for motor-driven paral-
lel platform manipulators, subject to the constraints imposed by the kinematics and
dynamics of the manipulator structure is the topic of the paper [21]. Computational
efficiency is obtained trough a hybrid scheme comprising the particle swarm opti-
mization method and the local conjugate gradient method. Also in [22] a constrained
multi-objective genetic algorithm (MOGA) based technique is proposed to address
this problem for a general motor-driven parallel kinematic manipulator. The planning
process is composed of searching for a motion ensuring the accomplishment of the
assigned task, minimizing the traverse time, and expended energy subject to various
constraints imposed by the associated kinematics and dynamics of the manipulator.

All the trajectory planning methods introduced above are applicable to rigid link
robot, with either serial or parallel kinematic configurations. However, it is worth-
while to mention that also cable-driven robots application are gaining a growing
interest in robotics. Among the advantages brought by this class of manipulators,
low overall mass and high stiffness make them very advantageous in many applica-
tions. On the other hand, the fact that they often require to use actuation redundancy
and that they operation must avoid cable interference [94], has led to the develop-
ment of trajectory planning algorithms specifically designed for them. The work
[87] presents a method to compute trajectories for underconstrained parallel robot
that ensures positive and bounded cable tension, while in [88] a similar procedure
is also experimentally validated. A detailed study of the dynamics of cable-driven
parallel robot is reported in [47], as a tool for developing accurate path planning
algorithms. The time-optimality of trajectories designed for cable-driven robot is the
topic covered in the works [3, 4].

Path Planning and Trajectory Planning Algorithms: A General Overview 23

4 Conclusions

In this paper, the fundamental problems of path planning and trajectory planning in
Robotics have been addressed. An overview of the most significant methods, that can
be found in the robotic literature to generate collision-free paths, has been presented.
Then, the problem of finding an optimal trajectory given a planned path has been
discussed and the most significant approaches have been described.

References

11.

12.

13.

14.

15.
16.

17.

. Amato NM, Wu 'Y (1996) A randomized roadmap method for path and manipulation planning.

In: Proceedings of the 1996 IEEE international conference on robotics and automation, pp
113-120

Balkan T (1998) A dynamic programming approach to optimal control of robotic manipulators.
Mech Res Commun 25(2):225-230

. Bamdad M (2013) Time-energy optimal trajectory planning of cable-suspended manipulators.

Cable-driven parallel robots. Springer, Berlin, pp 41-51

Barnett E, Gosselin C (2013) Time-optimal trajectory planning of cable-driven parallel mech-
anisms for fully-specified paths with gl discontinuities. In: ASME 2013 international design
engineering technical conferences and computers and information in engineering conference.
American Society of Mechanical Engineers

Barraquand J, Latombe JC (1991) Robot motion planning: a distributed representation
approach. Int J Robot Res 10(6):628—649

Barre PJ, Bearee R, Borne P, Dumetz E (2005) Influence of a jerk controlled movement law
on the vibratory behaviour of high-dynamics systems. J Intell Robot Syst 42(3):275-293
Bobrow JE, Dubowsky S, Gibson JS (1985) Time-optimal control of robotic manipulators
along specified paths. Int J Robot Res 4(3):554-561

Bobrow JE, Martin BJ, Sohl G, Wang EC, Kim J (2001) Optimal robot motion for physical
criteria.] Robot Syst 18(12):785-795

Boscariol P, Gasparetto A, Lanzutti A, Vidoni R, Zanotto V (2011) Experimental validation of
minimum time-jerk algorithms for industrial robots. J Intell Robot Syst 64(2):197-219
Boscariol P, Gasparetto A (2013) Model-based trajectory planning for flexible link mechanisms
with bounded jerk. Robot Comput Integr Manuf 29(4):90-99

Boscariol P, Gasparetto A, Vidoni R (2012) Jerk-continous trajectories for cyclic tasks. In: Pro-
ceedings of the ASME 2012 international design engineering technical conferences (IDETC),
pp 1-10

Boscariol P, Gasparetto A, Vidoni R (2012) Planning continuous-jerk trajectories for industrial
manipulators. In: Proceedings of the ESDA 2012 11th biennial conference on engineering
system design and analysis, pp 1-10

Boscariol P, Gasparetto A, Vidoni R (2013) Robust trajectory planning for flexible robots. In:
Proceedings of the 2013 ECCOMAS multibody dynamics conference, pp 293-294

Boscariol P, Gasparetto A, Vidoni R, Romano A (2013) A model-based trajectory planning
approach for flexible-link mechanisms. In: Proceedings of the ICM 2013—IEEE international
conference on mechatronics, pp 1-6

Canny J, Donald B (1988) Simplified voronoi diagrams. Discret Comput Geom 3(1):219-236
Cao B, Dodds GI (1994) Time-optimal and smooth constrained path planning for robot manip-
ulators. In: Proceedings of the 1994 IEEE international conference on robotics and automation,
pp 1853-1858

Carbone G, Ceccarelli M, Oliveira PJ, Saramago SF, Carvalho JCM (2008) An optimum path
planning for Cassino parallel manipulator by using inverse dynamics. Robotica 26(2):229-239

24

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

A. Gasparetto et al.

Caselli S, Reggiani M (2000) ERPP: an experience-based randomized path planner. In: Pro-
ceedings of the ICRA’00—IEEE international conference on robotics and automation, pp 1002—
1008

Caselli S, Reggiani M, Rocchi R (2001) Heuristic methods for randomized path planning in
potential fields. In: Proceedings of the 2001 IEEE international symposium on computational
intelligence in robotics and automation, pp 426431

Caselli S, Reggiani M, Sbravati R (2002) Parallel path planning with multiple evasion strategies.
In: Proceedings of the ICRA’02—IEEE international conference on robotics and automation,
pp 260-266

Chen CT, Liao TT (2011) A hybrid strategy for the time-and energy-efficient trajectory planning
of parallel platform manipulators. Robot Comput-Integr Manuf 27(1):72-81

Chen CT, Pham HV (2012) Trajectory planning in parallel kinematic manipulators using a
constrained multi-objective evolutionary algorithm. Nonlinear Dyn 67(2):1669-1681

Choset HM, Lynch KM, Hutchinson S, Kantor GA, Burgard W, Kavraki LE, Thrun S (2005)
Principles of robot motion: theory, algorithms, and implementation. MIT Press, Cambridge
Clark CM, Rock S (2001) Randomized motion planning for groups of nonholonomic robots.
In: Proceedings of the 6th international symposium on artificial intelligence, robotics and
automation in space, pp 1-8

Connolly CI, Burns JB (1990) Path planning using Laplace’s equation. In: Proceedings of the
1985 IEEE international conference on robotics and automation, pp 2102-2106
Constantinescu D (1998) Smooth time optimal trajectory planning for industrial manipulators.
Ph.D. Thesis, The University of British Columbia, 1998

Constantinescu D, Croft EA (2000) Smooth and time-optimal trajectory planning for industrial
manipulators along specified paths. J Robot Syst 17(5):233-249

Croft EA, Benhabib B, Fenton RG (1995) Near time-optimal robot motion planning for on-line
applications. J Robot Syst 12(8):553-567

Donald BR, Xavier PG (1990) Provably good approximation algorithms for optimal kinody-
namic planning for Cartesian robots and open chain manipulators. In: Proceedings of the sixth
annual symposium on computational geometry, pp 290-300

Dong J, Ferreira PM, Stori JA (2007) Feed-rate optimization with jerk constraints for generating
minimum-time trajectories. Int] Mach Tools Manuf 47(12-13):1941-1955

Dongmei X, Daokui Q, Fang X (2006) Path constrained time-optimal robot control. In: Pro-
ceedings of the international conference on robotics and biomimetics, pp 1095-1100

Fiorini P, Shiller Z (1996) Time optimal trajectory planning in dynamic environments. In:
Proceedings of the 1996 IEEE international conference on robotics and automation, pp 1553—
1558

Fraichard T (1999) Trajectory planning in a dynamic workspace: a state-time space approach.
Adv Robot 13(1):74-94

Fraichard T, Laugier C (1993) Dynamic trajectory planning, path-velocity decomposition and
adjacent paths. In: Proceedings of the 1993 international joint conference on artificial intelli-
gence, pp 1592-1597

Garrido S, Moreno L, Lima PU (2011) Robot formation motion planning using fast marching.
Robot Auton Syst 59(9):675-683

Gasparetto A, Zanotto V (2007) A new method for smooth trajectory planning of robot manip-
ulators. Mech Mach Theor 42(4):455-471

Gasparetto A, Zanotto V (2008) A technique for time-jerk optimal planning of robot trajectories.
Robot Comput-Integr Manuf 24(3):415-426

Gasparetto A, Lanzutti A, Vidoni R, Zanotto V (2012) Experimental validation and comparative
analysis of optimal time-jerk algorithms for trajectory planning. Robot Comput-Integr Manuf
28(2):164-181

Ge SS, Cui YJ (2000) New potential functions for mobile robot path planning. IEEE Trans
Robot Autom 16(5):615-620

Guarino Lo Bianco C (2001a) A semi-infinite optimization approach to optimal spline trajec-
tory planning of mechanical manipulators. In: Goberna MA, Lopez MA (eds) Semi-infinite
programming: recent advances. Springer, pp 271-297

Path Planning and Trajectory Planning Algorithms: A General Overview 25

41.

42.

43.

44.

45.

46.

47.

48.
49.

50.

51.

52.

53.

54.

55.

56.
57.
58.
59.
60.

61.

62.

63.

64.

65.

66.

Guarino Lo Bianco C, Piazzi A (2001b) A hybrid algorithm for infinitely constrained opti-
mization. Int J Syst Sci 32(1):91-102

Guldner J, Utkin VI (1995) Sliding mode control for gradient tracking and robot navigation
using artificial potential fields. IEEE Trans Robot Autom 11(2):247-254

Gupta K, Del Pobil AP (1998) Practical motion planning in robotics: current approaches and
future directions. Wiley

Hansen C, Oltjen J, Meike D, Ortmaier T (2012) Enhanced approach for energy-efficient trajec-
tory generation of industrial robots. In: Proceedings of the 2012 IEEE international conference
on automation science and engineering (CASE 2012), pp 1-7

Hsu D, Kindel R, Latombe JC, Rock S (2002) Randomized kinodynamic motion planning with
moving obstacles. Int J Robot Res 21(3):233-255

Huang P, Xu Y, Liang B (2006) Global minimum-jerk trajectory planning of space manipulator.
Int J Control, Autom Syst 4(4):405-413

Ismail M, Samir L, Romdhane L (2013) Dynamic in path planning of a cable driven robot.
Design and modeling of mechanical systems. Springer, Berlin, pp 11-18

Jing XJ (2008) Edited by. Motion planning, InTech

Kazemi M, Gupta K, Mehrandezh M (2010) Path-planning for visual servoing: a review and
issues. Visual servoing via advanced numerical methods. Springer, London, pp 189-207
Khatib O (1985) Real-time obstacle avoidance for manipulators and mobile robots. In: Pro-
ceedings of the 1985 IEEE international conference on robotics and automation, pp 500-505
Kim JO, Khosla PK (1992) Real-time obstacle avoidance using harmonic potential functions.
IEEE Trans Robot Autom 8(3):338-349

Kim J, Kim SR, Kim SJ, Kim DH (2010) A practical approach for minimum-time trajectory
planning for industrial robots. Ind Robot: Int J 37(1):51-61

Koditschek DE (1992) Exact robot navigation using artificial potential functions. IEEE Trans
Robot Autom 8(5):501-518

Kumar V, Zefran M, Ostrowski JP (1999) Motion planning and control of robots. In: Nof
Shimon Y (ed) Handbook of industrial robotics, 2nd edn, vol 2. Wiley

Kunchev V, Jain L, Ivancevic V, Finn A (2006) Path planning and obstacle avoidance for
autonomous mobile robots: areview. Knowledge-based intelligent information and engineering
systems. Springer, Berlin, pp 537-544

Kyriakopoulos KJ, Saridis GN (1988) Minimum jerk path generation. In: Proceedings of the
1988 IEEE international conference on robotics and automation, pp 364-369

Latombe JC (1991) Robot motion planning. Kluwer

LaValle SM (2006) Planning algorithms. Cambridge University Press

Lin CS, Chang PR, Luh JYS (1983) Formulation and optimization of cubic polynomial joint
trajectories for industrial robots. IEEE Trans Autom Control 28(12):1066-1073

Liu H, Lai X, Wu W (2013) Time-optimal and jerk-continuous trajectory planning for robot
manipulators with kinematic constraints. Robot Comput-Integr Manuf 29(2):309-317
Lombai F, Szederkenyi G (2008) Trajectory tracking control of a 6-degree-of-freedom robot
arm using nonlinear optimization. In: Proceedings of the 10th IEEE international workshop on
advanced motion control, pp 655-660

Lombai F, Szederkenyi G (2009) Throwing motion generation using nonlinear optimization
on a 6-degree-of-freedom robot manipulator. In: Proceedings of the 2009 IEEE international
conference on mechatronics, pp 1-6

Lozano-Pérez T, Wesley MA (1979) An algorithm for planning collision-free paths among
polyhedral obstacles. Commun ACM 22(10):560-570

Lozano-Perez T (1983) Spatial planning: a configuration space approach. IEEE Trans Comput
100(2):108-120

Martin BJ, Bobrow JE (1999) Minimum effort motions for open chain manipulators with
task-dependent end-effector constraints. Int J Robot Res 18(2):213-224

Nissoux C, Simon T, Latombe JC (1999) Visibility based probabilistic roadmaps. In: Proceed-
ings of the 1999 IEEE international conference on intelligent robots and systems, pp 1316-1321

26

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

A. Gasparetto et al.

Pardo-Castellote G, Cannon RH (1996) Proximate time-optimal algorithm for on-line path
parameterization and modification. In: Proceedings of the 1996 IEEE international conference
on robotics and automation, pp 1539-1546

Pellicciari M, Berselli G, Leali F, Vergnano A (2013) A method for reducing the energy con-
sumption of pick-and-place industrial robots. Mechatronics 23(3):326-334

Petrinec K, Kovacic Z (2007) Trajectory planning algorithm based on the continuity of jerk.
In: Proceedings of the 2007 Mediterranean conference on control and automation, pp 1-5
Piazzi A, Visioli A (2000) Global minimum-jerk trajectory planning of robot manipulators.
IEEE Trans Ind Electron 47(1):140-149

Piazzi A, Visioli A (1997b) A cutting-plane algorithm for minimum-time trajectory planning of
industrial robots. In: Proceedings of the 36th Conference on decision and control, pp 1216-1218
Piazzi A, Visioli A (1997a) A global optimization approach to trajectory planning for industrial
robots, In: Proceedings of the 1997 IEEE-RSJ international conference on intelligent robots
and systems, pp 1553-1559

Piazzi A, Visioli A (1997¢) An interval algorithm for minimum-jerk trajectory planning of robot
manipulators. In: Proceedings of the 36th Conference on decision and control, pp 1924-1927
Rubio F, Valero F, Sunyer J, Cuadrado J (2012) Optimal time trajectories for industrial robots
with torque, power, jerk and energy consumed constraints. Ind Robot Int J 39(1):92-100
Saramago SFP, Steffen V Jr (1998) Optimization of the trajectory planning of robot manipu-
lators tacking into account the dynamics of the system. Mech Mach Theory 33(7):883-894
Saramago SFP, Steffen V Jr (2000) Optimal trajectory planning of robot manipulators in the
presence of moving obstacles. Mech Mach Theory 35(8):1079-1094

Saravan R, Ramabalan R, Balamurugan C (2009) Evolutionary multi-criteria trajectory mod-
eling of industrial robots in the presence of obstacles. Eng Appl Artif Intell 22(2):329-342
Sciavicco L, Siciliano B, Villani L, Oriolo G (2009) Robotics. Modelling, planning and control.
Springer, London

Shiller Z (1996) Time-energy optimal control of articulated systems with geometric path con-
straints. J Dyn Syst Meas Control 118:139-143

Shin KG, McKay ND (1985) Minimum-time control of robotic manipulators with geometric
path constraints. IEEE Trans Autom Control 30(6):531-541

Shin KG, McKay ND (1986) A Dynamic programming approach to trajectory planning of
robotic manipulators. IEEE Trans Autom Control 31(6):491-500

Simon D (1993) The application of neural networks to optimal robot trajectory planning. Robot
Auton Syst 11(1):23-34

Simon D, Isik C (1993) A trigonometric trajectory generator for robotic arms. Int J Control
57(3):505-517

Takahashi O, Schilling RJ (1989) Motion planning in a plane using generalized Voronoi dia-
grams. IEEE Trans Robot Autom 5(2):143-150

Tangpattanakul P, Meesomboon A, Artrit P (2010) Optimal trajectory of robot manipulator
using harmony search algorithms. Recent advances in harmony search algorithm. Springer,
Berlin, pp 23-36

Tangpattanakul P, Artrit P (2009) Minimum-time trajectory of robot manipulator using harmony
search algorithm. In: Proceedings of the IEEE 6th international conference on ECTI-CON 2009,
pp 354-357

Trevisani A (2010) Underconstrained planar cable-direct-driven robots: a trajectory planning
method ensuring positive and bounded cable tensions. Mechatronics 20(1):113-127
Trevisani A (2013) Experimental validation of a trajectory planning approach avoiding cable
slackness and excessive tension in underconstrained translational planar cable-driven robots.
Cable-driven parallel robots. Springer, Berlin, pp 23-29

Van Dijk NJM, Van de Wouw N, Nijmeijer H, Pancras WCM (2007) Path-constrained motion
planning for robotics based on kinematic constraints. In: Proceedings of the ASME 2007 inter-
national design engineering technical conference and computers and information in engineering
conference, pp 1-10

Path Planning and Trajectory Planning Algorithms: A General Overview 27

90.

91.

92.

93.

94.

95.

Verscheure D, Demeulenaere B, Swevers J, De Schutter J, Diehl M (2008) Time-energy optimal
path tracking for robots: a numerically efficient optimization approach. In: Proceedings of the
10th international workshop on advanced motion control, pp 727-732

Volpe RA (1990) Real and artificial forces in the control of manipulators: theory and experi-
ments. The Robotics Institute, Carnegie Mellon University, Pittsburgh, 1990

Volpe RA, Khosla PK (1990) Manipulator control with superquadric artificial potential func-
tions: theory and experiments. IEEE Trans Syst, Man, Cybern 20(6):1423-1436

Wang CH, Horng JG (1990) Constrained minimum-time path planning for robot manipulators
via virtual knots of the cubic B-spline functions. IEEE Trans Autom Control 35(5):573-577
Williams RL, Gallina P (2002) Planar cable-direct-driven robots: design for wrench exertion.
J Intell Robot Syst 35(2):203-219

Xu H, Zhuang J, Wang S, Zhu Z (2009) Global time-energy optimal planning of robot tra-
jectories. In: Proceedings of the international conference on mechatronics and automation, pp
4034-4039

Off-Line and On-Line Trajectory Planning

Zvi Shiller

Abstract The basic problem of motion planning is to select a path, or trajectory,
from a given initial state to a destination state, while avoiding collisions with known
static and moving obstacles. Ideally, it is desirable that the trajectory to the goal be
computed online, during motion, to allow the robot react to changes in the envi-
ronment, to a moving target, and to errors encountered during motion. However, the
inherent difficulty in solving this problem, which stems from the high dimensionality
of the search space, the geometric and kinematic properties of the obstacles, the cost
function to be optimized, and the robot’s kinematic and dynamic model, may hinder
a sufficiently fast solution to be computed online, given reasonable computational
resources. As a result, existing work on motion planning can be classified into off-
line and on-line planning. Off-line planners compute the entire path or trajectory to
the goal before motion begins, whereas on-line planners generate the trajectory to
the goal incrementally, during motion. This chapter reviews the main approaches to
off-line and on-line planning, and presents one solution for each.

Keywords Motion planning - Trajectrory optimization * Online planning

1 Introduction

One of the basic problems in robotics is that of motion planning, which attempts
to move a robot from a given initial state to a destination state, while avoiding
collisions with known static and moving obstacles. We distinguish between a path
and a trajectory: a path italic represents a sequence of positions, defined in the robot’s
configuration space, which is the space of all positions, or configurations, that the
robot can achieve [1]. A trajectory italic can be viewed as a path with a velocity
profile along it, defined in the higher dimensional state space, where every point
defines a position, or a configuration, and the velocity vector at that point. Thus, path

Z. Shiller (X))
Department of Mechanical Engineering and Mechatronics, Ariel University, Ariel, Israel
e-mail: shiller@ariel.ac.il

© Springer International Publishing Switzerland 2015 29
G. Carbone and F. Gomez-Bravo (eds.), Motion and Operation Planning

of Robotic Systems, Mechanisms and Machine Science 29,

DOI 10.1007/978-3-319-14705-5_2

30 Z. Shiller

planning solves a geometric, or kinematic, problem, whereas trajectory planning
solves a dynamic problem [1]. In this chapter, we will focus on trajectory italic
planning.

Generally, it is desirable that the trajectory to the goal be computed online, during
motion, to allow the robot to react to changes in the environment to a moving target,
and to errors encountered during motion. However, the inherent difficulty in solving
this problem, which stems from the high dimensionality of the search space, the
geometric nature of the obstacles, the cost function to be optimized, and the robot’s
kinematic and dynamic model, prevents it from being solved sufficiently fast to be
done online, given reasonable computational resources. As a result, two branches
of research have emerged in the area of motion planning: off-line planning, where
the trajectory to the goal is computed before motion begins, and on-line planning
where the trajectory to the goal is computed incrementally during motion. We thus
associate off-line with the computation of the entire trajectory to the goal, and on-line
with incremental planning, regardless of the computational resources available for
the planning process.

Another distinction between off-line and on-line planners is that the former may
produce globally optimal solutions if the environment is fully known, whereas the
latter is locally optimal at best. The challenges in off-line planning are therefore: opti-
mality (local and global), completeness (will a solution be found if one exists), and
overall computational complexity. The challenges in online planning are: complete-
ness (is the planner guaranteed to reach the goal if a solution exists), computational
complexity at each step, and optimality (how far is a solution from the optimal and
is it bounded by an upper limit).

Off-line planners are most useful for repeatable tasks in static environments where
optimality is essential, as is the case in many industrial applications. On-line planners
are required in applications where the target states are determined on the fly, obsta-
cles are discovered during motion, the environment is changing during motion, the
computation time required for a global solution delays the task execution, or simply
as an alternative to a computationally expensive off-line search [2].

The different nature of the two types of planners has resulted in distinct strategies
to reaching the goal: the off-line planner takes generally a global view of the envi-
ronment to select the optimal trajectory to the goal, whereas the on-line planner may
select the next move based on a partial view of the environment. Both approaches
were pursued at the early stages of the development of the field of motion planning
in the early 80s [3-6]. The main focus then was on path planning, with the goal
of computing the shortest path from start to goal in the presence of static obstacles
[3, 4, 6].

Focusing on the shortest path resulted in geometric planners that account for the
geometry of the moving object and obstacles. While the computation of an obstacle-
free path may solve many important problems in industrial settings, where the robot
may move slowly, it is insufficient, and almost useless, when the robot needs to
move at reasonably high speeds, such as mobile robots moving through cluttered
environments, and autonomous vehicles negotiating freeway traffic. Furthermore,
the computed geometric path is insufficient to move the robot along the path unless

Off-Line and On-Line Trajectory Planning 31

some speed profile along the path is specified. Selecting the speed profile that can be
followed without the robot deviating from the path requires knowledge of the robot
dynamic behavior. This brings to focus the problem of trajectory planning, which was
addressed using tools rooted in optimal control theory. The two fields of research,
path planning and trajectory planning, were developed in parallel over the years until
recently when geometric planners were extended to searching for trajectories in the
state space [7, 8]. While the focus in this chapter is off-line and on-line trajectory
planning, we begin the literature review with geometric planners.

1.1 Geometric Planners

The introduction of the configuration space as the basic geometric motion planning
tool [4, 9, 10] reduced the search for an obstacle-free path to computing a continu-
ous path for a point from start to goal that avoids the forbidden regions representing
the physical static obstacles. Being a geometric problem, most off-line planners are
based on a geometric representation of the environment, through which a global
search produces the shortest path to the goal. The geometric representations may
consist of roadmaps or graphs that capture the topology of the free-space, generated
e.g. by a Voronoi diagram, a visibility graph, a tangent graph [11, 12], or by cell
decomposition [13]. Although each representation differs in the way it represents
the free space, they all consist of a connected network of path segments that can be
traversed from start to goal. The main computational effort in these planners is the
representation of the free-space. This includes mapping of obstacles to the config-
uration space and the initial construction of the roadmap. Once the roadmap was
constructed, the search for the shortest path is done using standard graph search
techniques such as Dijkstra’s search [14] or A* [15]. The remaining difficulties
stem from the dimensionality of the search space and the number of edges (seg-
ments) in the roadmap. The main computational effort here is the construction of the
roadmap.

An alternative approach to constructing roadmaps is to overlay a uniform grid over
the search space and represent the entire space by an undirected graph [2]. Assigning
high costs to edges that intersect obstacles, effectively separates between inacces-
sible nodes and nodes in the free space. As a result, this, like all approaches that
are based on a discrete representation of the search space, is resolution complete,
implying that at low grid resolutions one may miss paths that pass through tight
spaces between obstacles. Increasing graph resolution would severely impact the
computational complexity. Compared to the roadmap-based algorithms, the number
of nodes for the uniform grid representation is much greater. However, this rep-
resentation, which is quite general, is applicable to problems where obstacles are
not clearly defined, such as for mobile robots moving over rough terrain [16], as is
demonstrated later in this chapter.

The increased interest in solving high dimensional problems, such as motion
planning for humanoids or multi degrees-of-freedom arms, gave rise to a class of

32 Z. Shiller

sampling-based planners [17]. The most popular version of sampling-based planners
is based on rapidly exploring random trees (RRT) [17-19]. They search the way to
the goal by probing the configuration space (can be also done in the workspace) and
incrementally expanding a collision-free tree from an initial configuration. Because
the entire search is done “in the dark,” the planner attempts to reach unexplored parts
of the search space, resulting eventually in a uniform coverage of the free space.
The efficiency of these planners stems from the incomplete coverage of the free
space and from terminating the search when the goal is first reached. The solution
found is feasible but not optimal in any way. RRT based planners may not produce
optimal solutions even when exploring the entire search space [7, 20]. In addition,
they inherently have difficulties with tight spaces. Nevertheless, the RRT algorithms
were demonstrated for solving very complex problems [21].

An extension called RRT* was developed to asymptotically produce the opti-
mal solution [7]. The asymptotic optimality was achieved by adding a lower bound
estimate to the RRT search. Optimality is achieved iteratively at a great computa-
tional cost by running the algorithm repeatedly while refining the solution until either
exhausting the available computation time or reaching a desired level of optimality
[7]. Despite the great promise, the RRT* algorithm was demonstrated in [7, 20] for
the kinematic avoidance of very few planar and widely spaced obstacles, producing
a smooth near-optimal solution after a large number of iterations (10,000). Solving
a dynamic problem in a higher dimensional state space is expected to be much more
challenging. Recently, a path generated by an RRT search was further optimized
using a genetic algorithm to produce the shortest path for a hybrid manipulator with
six degrees-of-freedom [22]. The idea of further optimizing paths that were gen-
erated by a geometric planner is similar in nature to the off-line planner presented
here, except that the objective of the off-line planner is to produce a global optimal
trajectory, not only the shortest path.

The sampling-based planners represent a paradigm shift in the motion planning
community by (1) accepting probabilistic completeness, which is to say that the goal
may not be reached in a finite time, (2) accepting any solution, not necessarily the
optimal, and (3) abandoning the explicit geometric representation of the free config-
uration space in terms of roadmaps or graphs. This is a significant departure from
the previous practices that evaluated motion planning algorithms for completeness
and optimality.

1.2 Trajectory Planning (Off-Line)

The trajectory planning problem concerns the computation of robot motions that
move the robot between two given states, while avoiding collision with obstacles,
satisfying robot dynamics and actuator constraints, and usually minimizing some
cost function, such as energy or time.

Early work on trajectory planning, from the 1960s to the 1980s, was rooted in the
field of optimal control theory, which provides powerful tools to characterize and

Off-Line and On-Line Trajectory Planning 33

generate optimal trajectories when high speed motion is desired [23]. The elegant
necessary conditions, stated by the Pontryagin’s maximum principle, lead to the
formulation of the optimal control problem as a two-point boundary value problem,
and the development of algorithms that searched for the optimal control that generates
the optimal trajectories [23]. For time optimization problems, it was shown that the
time-optimal control is bang-bang. This in turn reduces the optimal control problem
to a parameter optimization by iterating on the switching times between the maximal
controls [24, 25].

The first attempt to use these theories for robotics was by Khan and Roth [26],
who computed the multi-axis time optimal trajectory for a linearized model of robot
dynamics. Solving this problem for the full robot’s dynamic model was computa-
tionally very difficult. The typically non-linear and coupled robot dynamics makes
such solutions computationally extensive. Adding obstacles makes the computational
challenge even harder.

One approach to reducing the complexity of the problem and facilitating a practical
realization of time-optimal motion planning is to decouple the problem by represent-
ing robot motions by a path and a velocity profile along the path. This decoupling
allows reducing the trajectory planning problem to two smaller problems: (a) com-
puting the optimal velocity profile along a given path, and (b) searching for the
optimal path in the n-dimensional configuration space.

The time optimal velocity profile along a specified path is computed using an effi-
cient algorithm, originally developed Bobrow, Shin and McCay and Pfeiifer [27-29],
and later improved by Shiller and Lu [30] and Slotine and Yang [31]. Assuming a
second order system, the solution to this problem was found to be bang-bang in
the acceleration, that is, applying the maximum or minimum acceleration so as to
maximize the velocity along the path. The switching times are computed efficiently
to avoid crossing the velocity limit curve, which reflects the actuator constraints and
the robot dynamics. This approach was later extended to computing time optimal
velocity profiles along specified paths for nonlinear third order systems, subject to
general jerk constraints [32].

The optimal path was computed using a nonlinear parameter optimization over
path parameters, such as the control points of a cubic B spline [33, 34]. In each
iteration of the optimization process, the optimal velocity profile along the path is
efficiently computed to produce the minimum time for that iteration. One advantage
of this approach is that each iteration yields a feasible trajectory, albeit not neces-
sarily optimal. The optimization can therefore be terminated at any time to yield an
acceptable solution.

A similar approach, known as direct optimization, differential inclusion [35],
and inverse dynamics optimization [36], was proposed by the aerospace community.
Common to these methods is the direct search for the optimal trajectory as opposed
to a search for the optimal control in the higher dimensional state and co-state spaces
[23]. Attempts to solve the multi-axis problem using graph search techniques in the
state space, solving the so called “kinodynamic” problem, did not yield practical
solutions [37, 38].

34 Z. Shiller

1.3 Online Planning

Early on-line planners were developed to address the lack of apriori information
about the environment. Called “sensor-based” algorithms, they navigate a point robot
equipped with position and touch sensors among unknown obstacles to reach a global
goal. A series of “bug” algorithms were developed, starting with the basic bug that
navigates by circumventing the detected obstacle always clockwise or counterclock-
wise until reaching the straight line to the goal, then continuing along that line until
either reaching the goal or hitting another obstacle [5]. Assuming long range vision
sensors, the bug strategies were extended to the Tangent Bug algorithm, which fol-
lows the tangent line to the next obstacle that obstructs the straight line to the goal
[39, 40]. It was shown that complete online navigation can be achieved with only a
finite amount of memory [5, 41, 42].

Another approach to online motion planning is based on potential functions
[43-45]. Representing the goal with an attractive potential, and the obstacles with
repulsive potentials, the path is generated online by following the negative gradient of
the potential function. While this approach is computationally efficient and is suitable
for on-line feedback control, it suffers from local minima, which may cause the path to
terminate at a point other than the goal. This problem was overcome using harmonic
potentials [43] and navigation functions [45]. These potentials, however, address only
the obstacle avoidance problem with no concern for path optimality. Furthermore,
the generation of the potential function is done off-line and may be time consuming.

A similar approach generates the shortest path by following the direction of steep-
est descent of a discretized distance function [46]. The main computational effort is
in numerically computing the distance function, which is done off-line. The com-
putation complexity increases rapidly with the number of obstacles and with grid
resolution.

The potential functions used to guide the trajectory towards the goal resemble
the value function, which is the solution to the Hamilton- Jacobi-Bellman (HJB)
equation [47—49]. The HJB equation states a sufficient condition of global optimality
(unlike the Pontryagin Maximum Principle, which is only a necessary condition),
and the value function represents the cost-to-go from any feasible state. The globally
optimal trajectory is then generated by selecting the controls that minimize the time
derivative of the value function. For time invariant systems, this amounts to following
the negative gradient of the value function, which drives the system time-optimally
to the goal from any initial state. This is similar to the potential field method, except
that the value function may be regarded as the “optimal” potential function.

Although the theoretical framework exists for deriving optimal feedback con-
trollers, it is impractical to derive a time-optimal control law, using the HJB equation,
for a typical obstacle avoidance problem that accounts for robot’s dynamics.

A recently developed online algorithm navigates towards the goal by optimally
avoiding one obstacle at a time [50, 51]. This transforms the multi-obstacle problem
with m obstacles to m simpler sub-problems with one obstacle each, thus reduc-
ing the size of the problem from exponential to linear in the number of obstacles.

Off-Line and On-Line Trajectory Planning 35

The incremental generation of the trajectories and the relatively low computational
effort at each step make this algorithm an efficient on-line alternative to the com-
putationally expensive off-line planning, thus trading optimality for efficiency. This
algorithm will be later discussed in this chapter.

This chapter is organized as follows: it starts with a formal problem statement of
the motion planning problem, focusing on trajectory planning rather than on path
planning. It continues with the theoretical solution for the optimization problem
using the Hamilton Jacobi equation. It then describes an efficient off-line planner
and a very efficient online planner. Both algorithms are demonstrated for a point
robot moving at high speeds over rough terrain (the off-line planner) and through
very cluttered environments (the online planner).

2 Problem Statement

In a typical motion planning problem, we wish to solve the following optimization
problem:

ty
min/ L(x,u)dt (1)
uJo
subject to the system dynamics:

X = f(x,u), 2

where x € R” is a point in the robots state space, and u € R™ is a vector of actuator
efforts, subject to the actuator constraints:

Wimin < Ui < Ujmax, 1 € {1,...,m}, 3)

obstacle constraints:
g(x) > 0; g e R¥, 4)

and the boundary conditions:
x(0) = x0; x(tf) = x5, ®)

where £ is the number of obstacles and 7 is the final time. If the objective function
is time, i.e. L(x,u) = 1, then 7 is free. We assume that the obstacles (4) do not
overlap with each other and with the goal xs.

Problem (1) is a two point boundary value (TPBV) problem: of all trajectories that
satisfy the boundary conditions (5), select the one that minimizes the cost function (1)
and satisfies system dynamics (2), control constraints (3) and obstacle constraints (4).

36 Z. Shiller

The global optimal trajectory can be computed using the Hamilton-Jacobi-
Bellman (HJB) equation, which states a sufficient condition for global optimality
[47-49]. Denoting the set of obstacles as O:

0=1{x:g(x) < 0l (6)

The control u* that is the solution to problem (1), satisfies, on R" — {xo} — O, the
HIJB equation:

muin vi(x,t) + < ve(x, 1), f(x,u) >} = —L(x, u) @)

subject to (3) and (4), where v(x, t) is a C? scalar function, satisfying

v(xp, 1) =0 ®)
v(x,t) >0,x ¢ xo)

The subscripts x and ¢ represent partial derivatives with respect to x and 7, respec-
tively, and < -, - > denotes the inner product on R”.

The scalar function v(x, t) is the value function [47, 48, 52], representing the
minimum cost-to-go to the origin (goal) from any given state. For an autonomous
system (time-invariant) and for fixed boundary conditions, v, = 0; assuming in
addition that the cost function to be minimized is time (L (x, u) = 1), reduces (7) to:

min{< vy (x), f(x,u) >} = —1 (10)

To satisfy (10), the projection of X = f(x, u) on v,(x) must equal —1. It follows
that the optimal control u* that minimizes (10) drives the optimal trajectory x* (x, u)
in the direction of the negative gradient, —v, (x), of the value function, as shown
schematically in Fig. 1. This is similar to the trajectory generation by potential field
methods [43—45, 53], except that here the potential function is the value function.
Since the value function has a unique minimum at the goal, trajectories generated
by following the negative gradient of the value function are globally optimal and are
guaranteed to reach the goal from any initial state.

Fig. 1 The optimal Value function Vv
trajectory X *(x, u*) slides X
opposite to the gradient

vy (x) of the value function

Off-Line and On-Line Trajectory Planning 37

The on-line planner for the multi-obstacle avoidance problem, described later in
this chapter, can be viewed in the context of the value function as following the
negative gradient of an approximate value function for this problem. It generates
near-optimal trajectories by avoiding obstacles one at a time, or equivalently, by
sequentially following the negative gradient of the return function for each obsta-
cle avoidance problem. The trajectory is generated incrementally, permitting robot
motion before the entire trajectory to the goal has been computed.

Obtaining an analytical expression for the value function is practically impossible
for other than for very simple cases. Computing the value function numerically would
require solving the optimization problem from every point in the state space. This is
essentially the approach used in [46] for solving the shortest path problem.

A discrete version of the HIB equation is the basis for the Bellman’s Princi-
ple of Optimality and Dynamic Programming [54]. Dynamic programming is the
optimization method used in most grid based optimizations, including the off-line
optimization discussed next in this chapter.

3 Off-Line Planner

The off-line planner presented here computes the global time optimal trajectory
between given boundary states in the presence of known static obstacles [2]. It com-
bines a grid search in the configuration space with a continuous local optimization.
In lieu of an expensive search in the 2n dimensional state space for one (globally
optimal) trajectory, this planner searches for many paths in the n dimensional con-
figuration space for an n degree of freedom robot. The reduction of the search to the
configuration space yields a significant (exponential) computational gain compared
to a full search in the state space. The complexity of this approach is exponential in the
dimension of the configuration space and linear in the number of nodes in the graph.

3.1 Summary of the Approach

This planner is based on a branch-and-bound search for the global optimal trajectory
between given end states in a static environment. It assumes an efficient mapping
from a curve in the configuration space to the optimal traversal time along that
curve. This mapping allows us to search for the optimal trajectory in the lower
dimensional configuration space. We call the projection of the optimal trajectory on
the configuration space the optimal path.

The branch-and-bound search begins by reducing the infinite set of paths between
given end points to a final set by representing the configuration space by an undirected
graph. The branch-and bound search then reduces this set to a small set of the most
promising paths. The paths in the final set are then pruned to retain the best path in
each path-neighborhood. These paths are then optimized using a nonlinear parameter

38 Z. Shiller

optimization to further reduce motion time. This last step significantly relaxes the
grid resolution required for the initial search to ensure global optimality.

This process was proven to generate the global optimal trajectory in addition to
producing a set of local minima [2]. The optimality of the solution depends on the
number of paths selected in the first step, grid resolution with respect to the distance
between obstacles, and the fidelity of the local optimization. This optimization was
demonstrated for a six DOF manipulator moving in a cluttered environment [2] and
for a mobile robot moving on general terrain [16].

3.2 The Graph Search

The purpose of the graph search is to efficiently produce a set of paths that explore all
regions in the configuration space and that may contain the optimal path. Obstacles
are accounted for by setting high costs to edges that penetrate obstacles. For motion
over rough terrain, obstacles are accounted for by considering their geometric shape
and determining if the robot can safely traverse these obstacles, similarly to traversing
other terrain features [16].

In the context of this algorithm, the optimal path is the one that can be traversed
at the minimum time between given end points, subject to robot dynamics, and
to control and obstacles constraints. Since metrics measured in the configuration
space are not good predictors for path optimality, it is necessary to consider a large
number of paths to ensure that they contain at least one path in the neighborhood of
the optimal path. By representing the configuration space with a uniform grid, we
reduce the infinite number of obstacle-free paths to a finite set.

One approach to generating a large set of paths, using a graph search, is to use
the k-best search by Dreyfus [55] to produce a set of shortest paths. It is similar
to a shortest path search except that it effectively excludes the k — 1 best paths
from the searched space while searching for the next kth best path. This allows
us to sequentially generate the paths until some upper bound on the cost function,
determined by the branch and bound search, is reached. The cost function may be path
length, or some other function that produces a lower bound estimate of the optimal
motion time along the path [2]. While this approach guarantees that the global and
a few local minima (within grid resolution) are found, it has the drawback that it
first generates a large number of paths in the neighborhood of the best path (k = 1),
usually in one homotopy class, before exploring other homotopy classes, as shown
schematically in Fig. 2. A homotopy class contains all paths that can be continuously
deformed into one another [1], as shown schematically in Fig. 3. Depending on grid
resolution, using the k-best search may require a very large number of paths in order
to cover the entire space. In addition, identifying a local minimum (that is not global
optimal) is quite tedious. The difficulty arises from the regions of optimality not
being easily quantified, and hence requiring that each new path be tested if it is in
the neighborhood of any path generated so far. The large number of paths required
by this approach thus imposes a high computational cost, first with the k-best search,
which is linear in &, and then in the pruning process, which is O (k log k).

Off-Line and On-Line Trajectory Planning

Fig. 2 Near shortest paths
found by the K shortest path
algorithm tend to group
around the shortest path

Fig. 3 Paths in one
homotopy class

39
Goal
/ g
Start
Goal

~
3
QQ

Start

The pruning process consists of selecting the best (shortest in time or distance)
of all paths in the initial set of paths, then discarding all paths that are within some
tube of a predefined diameter around the best path. The paths within a tube around
the next best path are similarly discarded, and the process repeats until all paths in
the initial set are either discarded or retained as the best path in their neighborhood.
The pruning process thus reduces an initially large set of paths to a smaller set of
promising paths, each is then locally optimized, as discussed later.

An alternative approach efficiently generates a large number of paths that cover
the entire search space [56, 57] and can be easily reduced to the most promising
path in each homotopy class, as shown schematically in Fig.4. In two steps, each
consisting of a shortest path search, it generates all shortest paths that pass through

Fig. 4 Paths of various
homotopy classes

40 Z. Shiller

each node in the graph. This allows an efficient coverage of the entire free-space and
the identification of a few promising local minima in addition to the global optimal
path .

This is essentially a single-pair search for n constrained paths through a graph with
n nodes. It starts with a single-source search, such as Dijkstra’s [14], that generates
the shortest path from the source s to the goal g (Fig.5). The cost ay; stored at
each node i is the cost from s to that node. Repeating this search from the goal
g to s stores the cost b, ; at each node i (Fig.6). Summing the two costs ¢;,4; =
as,i+byg ; yields the optimal cost ¢y, ¢ ; for the path between s and g that passes through
node i (Fig.7).

If each local minimum represents a homotopy class, the computational cost of
this approach is O (2) for the initial search, and on average O (m/p logm/ p) for the
pruning process, where m is the number of nodes and p is the number of homotopy
classes generated by this search [57]. Compare to the k-best search, O (m) for the
initial search and O (m logm) for pruning. This efficiency is achieved at the cost of
generating only a subset of all possible local minima, but at a computational cost far
smaller than the alternative.

Figure 8 shows a topographic surface that is to be traveresed from Start to Goal.
The surface was first tesselated by a unofrm grid, then the shortest paths through all
nodes were computed using the algorithm discussed earlier [56, 57]. Color marking

Fig. 5 Shortest paths from Goal
start to all nodes

Start
Fig. 6 Shortest paths from Goal
goal to all nodes

Start
Fig.7 Shortest paths Goal

through via points

Start

Off-Line and On-Line Trajectory Planning 41

Fig. 8 A surface map Goal

Fig. 9 A color coded surface
map. The color at each node
represents the optimal cost
for passing through that node

the nodes according to the cost of passing through each node produced the cost
map shown in Fig.9. The cost function for this case was a traversability measure,
calculated by dividing distance by the maximum safe velocity along each segment
along the graph [16]. Here, blue represents the lowest cost (global minimum), then
yellow, green and red represent gradually increasing costs. The cost map clearly
shows the traversability of each region, thus offering sub-optimal alternatives to the
global optimal path, which is colored blue. The blue “river”, whose nodes all have
the same (optimal) cost, might be wider in regions where the neigboring edges have
identical costs. In such cases, the global optimal grid path may not be unique, which
is a common artifact of the uniform discretization of the search space.

3.3 Branch and Bound Search

The goal of the branch-and-bound search is to efficiently reduce the initially large
set of paths in each homotopy class to a smaller set that contains the local optimal
path. This is done by dividing the initial set of paths into two smaller subsets: one
that contains all paths having a lower bound estimate on their cost that is higher

42 Z. Shiller

than the lower bound estimate of all paths in the second subset. The second subset is
discarded, and the process repeats by subdividing the remaining subset using a more
accurate lower bound estimate. Repeating this process, using a series of gradually
increasing lower bounds, thus reduces the initial large set of paths to a much smaller
set of promising paths. The search is terminated when the last subset has been shown
to contain no better solution than the one already at hand. The best solution found
during this search is the optimal path [15]. The fastest among the local minima found
in this process is the global optimal path.

In this search, the objective function is the minimum traveling time between the
two end points, whereas the initial set consists of all feasible (collision-free) paths
between the given end points. It remains to determine appropriate approximations of
the cost function that are guaranteed to produce lower bounds on the traveling time
along a given set of paths. The computational efficiency of this approach depends on
the proper selection of the lower bound estimates at each step. The most conservative
but efficient approximations are used first, when the number of path candidates is
large, and the more accurate but computationally expensive are used last. The last
test is the exact solution, which is the optimal traveling time along the path.

We use three lower bound estimates on the optimal motion time along a given
path, each represented by a different velocity profile: (1) maximum constant speed,
(2) velocity limit, and (3) optimal velocity along the path. The cost estimate is
computed by integrating the respective velocity profile along the path.

Maximum Speed: The first lower bound estimate, ¢{, assumes motion everywhere
at the maximum speed the robot can reach. It can be the tip velocity reached by
assuming no load speeds at all joints at the most stretched configuration, or the
maximum speed a mobile robot can reach on flat terrain. Dividing the distance along
each edge of the graph by the maximum speed produces a lower bound estimate,
obtained by the summation:

n=y 28 (an

Vimax

where Ax; is the Euclidean distance of the ith segment along the path, and v, is
the maximum speed.

Having assigned a fixed cost to all edges, the paths produced by the graph search
are rated by a lower bound estimate on the optimal motion time along each path.
Paths with lower bound estimates higher than the optimal motion time along some
arbitrary path can be discarded early in the search process.

Velocity Limit: Once a path has been selected from the grid search, it is smoothed
by cubic B splines, using the nodes of the graph along the path as control points.
This eliminates the sharp corners produced by the grid segments. If the smoothed
path penetrates an obstacle because of the rounded corners, it can be either discarded
or kept for the next lower bound test. Eventually, the local optimization, discussed
later, will divert the path away from the obstacle.

Off-Line and On-Line Trajectory Planning 43

Here we assume that the speed along the path follows the velocity limit curve
Smax(8), s being the distance parameter along the path, that accounts for robot
dynamics, actuator constraints, and path curvature, at every point along the path
[27-29, 32].

The lower bound 7, is obtained by the integral

sf o d
0= / i (12)
0 Smax

The computation of the velocity limit and the optimal velocity profile are briefly
discussed later.

The value #; is a true lower bound and greater than #; since the velocity limit
curve represents the true upper limit for the velocity profile along the path. This
evaluation is computationally more demanding than the previous one but is less
expensive than computing the time optimal velocity profile. This lower bound takes
into account the combined effects of robot dynamics, actuator constraints, and path
geometry.

Optimal Velocity: This is the exact solution for the optimal motion time and an
upper bound to the previous lower bounds. The optimal velocity profile is always
below the limit curve and at most tangent to the limit curve at a finite number of
points [30]. The computation of the optimal velocity profile is briefly discussed next.

3.4 Time Optimal Motions Along Specified Paths

The optimal motion time along the path represents the exact cost function for the
global search. It is computed using a well established algorithm [27-31, 58], which
accounts for robot dynamics, actuator constraints, and path geometry. It is applicable
to any fully actuated system such as industrial and mobile robots [16]. The algorithm
will not be repeated here, referring the reader to the respective literature [27-31, 58].

Key to this algorithm is the mapping of system dynamics to path coordinates.
This reduces the multi dimensional configuration space, in which the robot oper-
ates, to a single degree-of-freedom system, where the distance and speed along the
path, s, s, are its two states, and the tangential acceleration § is its control input.
The actuator constraints, coupled with path geometry, are mapped to constraints
on § and §, as shown schematically in Fig. 10 at some point s along the path. The
boundary of the range of speeds and accelerations, FSA, represents states where at
least one actuator reaches its limit. States outside of FSA are therefore dynamically
infeasible.

Ata given speed, the acceleration is bounded between its maximum and minimum
values, as shown in Fig. 10. The speed s,,, where the range of feasible accelerations
reduces to a point, represents the highest speed at which the robot can still move
along the prescribed path. Plotting s, along the path produces the velocity limit

44 Z. Shiller

Fig. 10 The range of P
feasible speeds and
accelerations (FSA)

FSA

e
ERL
(n.
oy

Fig. 11 Velocity limit curve
and time optimal velocity
profile

Velocity Limit Curve

S2
Time optimal velocity profile

curve, as shown schematically in Fig. 11. It serves as the upper limit for any velocity
profile along the path, optimal or not. Crossing the velocity limit curve implies that
the robot is moving at speeds that are not sustainable by the robot’s actuators or that
it does not follow to prescribed path.

The time optimal velocity profile is computed using “bang-bang” control, switch-
ing between maximum acceleration and maximum deceleration along the path. The
switching times are selected so that the optimal velocity profile avoids crossing the
velocity limit curve [30], as shown schematically in Fig. 11. In the schematic exam-
ple shown in Fig. 11, the time optimal velocity profile is integrated from the initial
point at zero speed, using the maximum acceleration. At some point s; along the
path, the acceleration is switched to the maximum deceleration until point s,, where
the optimal velocity profile is tangent to the velocity limit curve. From s,, the maxi-
mum acceleration is again integrated until some point s3, from where the maximum
deceleration is used to reach the final point at zero speed. The number of switches
is usually odd for a 2nd order system, and it depends on the shape of the velocity
limit curve, and the robot’s dynamic properties. This algorithm is computationally
very fast and can be used to efficiently assign the optimal motion time to every path
in the last set of paths of the branch and bound search.

Off-Line and On-Line Trajectory Planning 45

3.5 Local Optimization

The paths generated over the graph are forced to pass through the nodes of the graph
defined by the grid used to represent the search space. To relax the demands on the
grid resolution, a local optimization is used to locally alter the path to further reduce
motion time [33, 34]. The optimization problem is formulated as an unconstrained
parameter optimization, using the control points of cubic B splines as the optimization
variables, and the optimal motion time along the path as the cost function. Obstacles
are represented by penalty functions that account for the distance between the robot
and the obstacles. At each iteration of the local optimization, the optimal motion time
along the current path is computed using the method discussed earlier in Sect. 3.4,
and the control points are modified by the optimization algorithm so as to produce
paths with gradually decreasing optimal motion times. This process repeats until the
optimal motion time reaches a local minimum. This optimization is obviously local
since the path cannot “jump” over obstacles.

To reduce computation time and improve the convergence of the local optimiza-
tion, the number of control points is reduced by retaining only a few points for each
straight line segment along the grid path. It is important to note that a small num-
ber of control points may not adequately represent the true optimal path, however, a
large number of parameters may be computationally costly. The true optimum can be
approached asymptotically by successively increasing the number of control points
and repeating the local optimization.

The local optimization is used to optimize only a small number of promising
paths, selected from the paths remaining after the branch and bound search. These
paths are selected as the best in each homotopy class [57] or as the best in some
defined neighborhood of radius D,,,,. The classification of the paths into homotopy
classes is discussed in [57] and will not be repeated here. The selection of the best
path in each neighborhood is done by first discarding all paths that are contained in
a tube around the best path, each satisfying the inequality:

D = max|(pi(w) — po(w)| < Dpax, w=1[0,1];i =1... N, 13)

where po(w) is a point along the best path in the neighborhood, with w being a
normalized path distance, and p;(w) is a point along any path in the remaining set
of N — 1 paths. This process is repeated for the next best path among the remaining
paths until only a few paths, representing distinct regions, remain.

3.6 Summary of the Off-Line Planner

The off-line planner that uses the K-best search, is summarized in the following
pseudo code. In the following, “best path” refers to the path along which the optimal
motion time or a lower bound estimate is the smallest of all paths in the given set.

46 Z. Shiller

Algorithm 1: Off-line planning

Step 0: Initialize.

Receive the geometric description of the workspace, robot dynamics, actuator
constraints, dynamic and state constraints, current state x, target state x s;
Determine the robot maximum speed v, for Eq.(11);

Set an upper bound #,, to be used to terminate the first search;

Set diameter R for path filtering.

Step 1: Generate a graph over the workspace

Assign cost, usually Euclidean distance, to all edges on the graph.

Assign high cost to edges that connect unreachable nodes.

Step 2: Use the K-best search to generate the set Py of shortest paths between the
end points (the projections into the configuration space of the current and target
states). Stop the search when #1(K) > 1.

Step 3: Smoothing.

Smooth all paths in Py by B-splines, using the nodes along each path as control
points. Pj is the set of K smoothed paths.

Step 4: For all paths in Pj, compute a lower bound estimate 7, (i),i =1, ..., K,
using (12).

Step 5: Select the best path j: ©(j) = min{t2(i),i = 1, ..., K}. Compute the
optimal motion time 73(j); #3(j) serves as the next upper bound in the branch and
bound search.

Step 6: Move all paths in Pj that satisfy 1, (i) < 13(j),i = 1,..., K, to Pa.

Step 7: Compute the optimal motion time #3 (i) for all paths in P».

Step 8: Pruning.

Select the best path in P, and discard all paths that are inside a tube of radius R
around that path, using (13); Move the best path to P3; Repeat for the next best
path in P, until P, is empty. P3 now contains a small set of “good” paths.

Step 9: Local optimization.

Submit all paths in P53 to a local optimization. The resulting paths form the set of
local minima Py.

Step 9: Global optimum.

The best path in P53 is the global optimal path, along which the optimal motion
time is globally optimal.

STOP.

3.7 Example 1

Figure 12 shows the near-global time optimal trajectory, computed using the global
optimization discussed here, for a vehicle moving over general terrain. For this exam-
ple, the k-best search was used to generate the initial set of 500 paths, all shown in
Fig. 13. The grid resolution was set low at 1 m between nodes for a 10 x 10 m terrain
segment. The branch and bound search retained 22 best paths, each was smoothed by

Off-Line and On-Line Trajectory Planning 47

Fig. 12 A (near) global time
optimal path over general
terrain, generated by the
global planner

Fig. 13 500 shortest paths
generated over the uniform
grid overlayed over the

terrain j A

Fig. 14 22 best smoothed
paths retained by the branch
and bound search

a cubic B spline, as shown in Fig. 14. All 22 paths were locally optimized to further
reduce motion time, and the best path, shown in Fig. 12, was selected as the global
optimal solution. The time optimal velocity profile along the best path is shown in
Fig.15. Also shown in Fig. 15 is the velocity limit curve. Note that the vehicle slows
down before accelerating again to prevent it from reaching high speeds that would
cause it to airborne over the bump in the upper part of the terrain segment. The effect
of the bump on the vehicle speed is reflected in the drop of the velocity limit curve.

48 Z. Shiller

Fig. 15 The optimal 10
velocity profile and the 9
velocity limit curve along the 8
time optimal path 7
w 6

E 5

» 4

3

2

1

0

0 2 4 6 8 10

The solution obtained is near global optimal due to the choices of the grid resolution
and the termination condition of the local optimization.

Computation time depends on the number of paths generated in the graph search,
the number of promising paths left for the local optimization, and the number of
control points used to represent each path. The global planner was implemented in
C and run on an Intel core-i7 3:4 GHz desktop computer. For examplel, the global
optimal path was computed in 20 s, most of which was spent on the local optimization
of 22 paths.

The global optimization presented here is inherently off-line as it produces the
complete solution to the goal. It combines a search for a set of the best paths in
a grid in the configuration space with a local path optimization. This combination
allows to reduce the search to the lower dimensional configuration space without
compromising optimality. There are only few global planners that we can compare
to, especially those computing time optimal trajectories [7, 37].

The solution produced by this planner is a global optimum if the grid is suffi-
ciently small. The requirement on grid resolution is relaxed by assuming that the
region of convergence around the optimal path is large compared to the grid size.
Despite this approach being presented long ago, it is still computationally efficient
compared to more recent global optimizations [7, 37]. Lacking information on the
use of RRT* to solving dynamic problems, it is difficult to compare this popular
approach to ours.

4 Online Planner

We now address the online time-optimal obstacle avoidance problem for robots
moving in cluttered environments. Motivated by the observation that the effect of
an obstacle on the value function (the global cost-to-go function) in (10) is local
[51], we solve the multi-obstacle problem by avoiding obstacles one at a time. This

Off-Line and On-Line Trajectory Planning 49

is equivalent to approximating the value function of the multi-obstacle problem by
switching between the value functions of the individual problems, each avoiding a
single obstacle. Computationally, this transforms the multi-obstacle problem with m
obstacles to m simpler sub-problems with one obstacle each, thus reducing the size
of the problem from exponential to linear in the number of obstacles. As a result, this
approach produces an on-line planner, i.e. the trajectory is generated incrementally,
one step at a time, requiring a low computational effort at each step relative to the
original, inherently off-line, problem.

While the approach of avoiding obstacles optimally one at a time applies to any
robot dynamics, and convergence can be guaranteed for any obstacle shapes, we treat
here a point mass robot in the plane and convex obstacles.

We begin with the optimal avoidance of one obstacle.

4.1 Optimal Avoidance of a Single Obstacle

The time optimal avoidance of a single obstacle in the plane is relatively simple. It
can be computed using a global optimization [2], or by running a local optimization
[34] twice (one for each side of the obstacle for a planar problem).

Consider the following point mass model:

1
1 (14)

X=ur ; |uil

=
Vy=uz ; |uz| <
where (x, y)T € R? and (u1, u2)” € R? represent the configuration space variables
and actuator efforts, respectively.
We first derive the unconstrained trajectory, for states not affected by the presence
of the obstacle.

4.1.1 The Unconstrained Trajectory

The unconstrained trajectory for the decoupled system (14) is determined by the
minimum motion time of the slowest axis.
Consider first a single axis, represented by the double integrator

)'Cl = X2
X2 = u; ful <L (15)

Using optimal control theory [23], it is easy to show that the time-optimal control for
system (15) is bang-bang with at most one switch [50]. In the following, we denote
x = (x1,x2)and x5 = (x17, X27).

50 Z. Shiller

The minimum time-to-go from any state x to x can be computed analytically
[59, 60]:

tr(x,xp) = (16)

x22 x22f .
—xp—xf+2y—xi+xir+ 5+ 5 ifxeR

2 2
X2 +x2f +2\/+x1 —Xx1f +);—2 +)%,otherwise

where
R = {(x)|Si1(x) >0, $2(x) < 0}, (17)

and the switching curves S1(x), S2(x), shown in Fig. 16, are:

X3
S1(x) = x% —2(x1 —x15+ Tf) =0,
X3
Sz(x)zx%—i—Z(xl—xlf—Tf):O. (18)
The switching time ¢, is [60]:
ty(x,xp) = (19)

2 2
—xz+\/—x1+x1f+x72+%,ifxeR

x2 ng .
X2+ +x1 — x15 + 5 + 5, otherwise

Fig. 16 Switching curves in Xs A
the state space of a single
axis

Off-Line and On-Line Trajectory Planning 51

Equation (16) computes the optimal time-to-go from any given state. It is used to
determine the slowest axis of a multi axis system and set the motion time for the
slowest axis, as discussed later.

The time-optimal trajectory thus first follows a parabola from the initial state to
the switching curve, then follows the switching curve to the target state, as shown
schematically in Fig. 16. Trajectories starting from initial states left of the switching
curves (region R in Fig. 16) begin with u = 1, and right of the switching curves
with u = —1. Trajectories starting from states on the switching curve follow the
switching curve to the target with no switch. The switching time is determined by
the initial and final states.

Since the minimum time trajectory has only one switch (excluding trajectories
that emanate from initial states on the switching curves), reaching the target at a time
greater than the minimum time, 7 ¢, using bang-bang control, requires more than one
switch [50].

For the two axis system (15), each axis may reach the target at a different optimal
time. Obviously, the optimal time ¢ to reach the target is determined by the slow-
est axis. Assuming, without loss of generality, that the faster axis from any initial
state xo = (x10, X20, Y10, y20) to the target state x s is the y-axis, the time-optimal
trajectory is obtained by driving the x-axis optimally, and driving the y-axis so that
it reaches the target at the same final time, 7.

The trajectory of the x-axis is unique since it is optimal and hence has only one
switch, whereas the trajectory of the y-axis is not optimal and hence has at least two
switches.! It follows that the time-optimal path between the end points is not unique.
The set of all time-optimal paths is bounded by two extremal paths, generated by the
extremal trajectories, which are in turn generated by the extremal controls, u,,,, and
Upmin [50]:

1 if r €0, 1]
Umax(t) = 1 —1 if t € [y, 152] (20)
1 if t €t T]

—1 if ¢t € [0, t,3]

Umin(t) = 11 if t € [t3, t54] 2D
—1 if t € [ty4, T]

where T > 1 is specified, and

! +2aT T L
2o 1f — X10 o X20 > o
o =11 + «

T —
o= L Fx0=x7) +x2§ x2r). (22)

S*
=
Il

IThe switching time of the slowest axis occurs when its trajectory reaches one of the switching
curves given in (18).

52 Z. Shiller

1 T2
I3 = 2% <X1f —x10 = 2BT — x20T + 5 T ﬂz)
teq = 13 + :3

(T — x20 + x274)

> (23)

We call the two-switch trajectories the extremal trajectories. Note that if the optimal
motion times of both axes are identical, then the time-optimal trajectory is unique.

The unconstrained trajectory of system (14) from any state x = (x1, x2, y1, ¥2) to
the target state x y = (x17, X2, Y17, Y25) is thus determined by the optimal motion
time of the slowest axis. It can be used to drive the system as long as at least one
extremal trajectory avoids the obstacle. Otherwise, the obstacle must be avoided
using the constrained trajectory discussed next.

4.2 The Constrained Trajectory

The constrained trajectory is needed for points in the state-space from which all
unconstrained time-optimal trajectories to the target intersect the obstacle. We refer
to the set of such points as the Obstacle Shadow. In the kinematic case [51], the shadow
corresponds to the shadow created behind the obstacle by a point light source at the
target. The physical analogy for the dynamic problem is not as obvious.

The intersection of all the extremal time-optimal paths with the obstacle implies
the intersection of all unconstrained optimal paths. It is therefore sufficient to check
if both extremal trajectories intersect the obstacle to conclude that an avoiding tra-
jectory, with optimal motion time greater than the optimal motion time of each axis,
should be computed. Since the motion times of both axes are non-optimal, and hence
greater than the unconstrained time ¢, it follows that both axes have at least two
switches.

We compute the time optimal trajectory from xo to x s that avoids the obstacle,
numerically, using a line search over the traveling time, 7. = t¢ + 6. The search ter-
minates when the first trajectory that reaches the goal without intersecting the obsta-
cle is found. The computation of the constrained trajectory for one obstacle is, thus,
obtained by solving the following minimization problem over the single parameter, §:

te(x0, xf, OB) = rnéin tr(xp, xf) +46 24)
such that there exists j = 1, ..., 4 that satisfies:
Xex,j(t) & OB, (25)

where 77 (xo, x 7) is the unconstrained optimal time (16), and x,,, ;(?),t € [0,y +
d] represents the jth extremal trajectory. The four extremal trajectories Xy, j(f)

Off-Line and On-Line Trajectory Planning 53

correspond to the four combinations of the initial controls of both axes: (1, 1),
(—1,-D), (1, —1), (-1, 1). Although only two of these four trajectories are true
extremals, it is simpler to test all four. It is sufficient that only one extremal satisfies
(25).

4.3 Multi-obstacle Avoidance

The optimal avoidance of one obstacle is relatively simple, and is hence suitable
for on-line computation. We use it to solve the multi-obstacle problem by avoiding
obstacles one at a time. Key to this approach is the selection of the current obstacle
to be avoided at any given time, as discussed next.

4.4 The Current Obstacle

We select the current obstacle as the maximum cost obstacle, which takes the longest
time to avoid from the current state x to the goal x . Denoting f.(x, x s, OB(j)),
J = [1, m] as the minimum time it takes to avoid obstacle OB(j) from x to x 7, the
current obstacle, k, maximizes ¢:

te(x, x 7, OB(k)) > to(x, xs, OB(j)) forall j=1,...,m. (26)

The current obstacle is thus selected by first determining all obstacles with shadows to
the goal x ; containing the current state x, then computing the constrained trajectories
avoiding each obstacle to x s, and selecting the one with the longest motion time. If x
does not lie in the shadow of any obstacle, then the cost of all obstacles equals to the
unconstrained trajectory to the goal and none is selected to be avoided. One of the
extremals of the set of unconstrained trajectories is then selected for navigation. The
algorithm may switch between the extremals in case they collide with any obstacle,
until either reaching the goal or entering the shadow of any obstacle, in which case
the current obstacle is selected by (26).

Selecting at each step the obstacle with the highest cost to the goal produces a tra-
jectory that is close to optimal, since the other obstacles have a smaller impact on the
motion time to the goal, as is shown schematically in Fig. 17. In Fig. 17, the state x
is in the shadows of obstacles 1 and 4. Of those, the trajectory avoiding OB(4),
denoted X (x, xr, OB(4)), takes longer time than X (x,xy, OB(1)) (not shown).
Hence OB(4) is selected as the current obstacle. Obviously, any solution to the goal
must avoid obstacle 4. Hence, recognizing it early in the avoidance process increases
the likelihood that the resulting trajectory will be close to optimal. The intersection
of X (x, xy, OB(4)) with OB(1) will prompt a recursive process, discussed next.

While selecting the maximum cost obstacle is likely to result in near optimal
trajectories, other selection criteria, such as the nearest obstacle (obstacle 1 in Fig. 17)
may suffice for convergence.

54 Z. Shiller

Fig. 17 Selecting the — X(x,xf,0B(4))
current obstacle from x to x ¢

Unconstrained extremals

Current obstacle

4.5 The Avoidance Algorithm

The avoidance algorithm assumes convex and non-overlapping obstacles (in the
configuration space). It selects the current obstacle to be avoided, computes the time
optimal trajectory that avoids that obstacle, selects an intermediate goal along that
trajectory on the boundary of that obstacle, and attempts to reach that goal. It repeats
the process recursively until reaching the closest intermediate goal.

Algorithm 2: Online Avoidance

Step 0: Initialize. Receive current state x, target state x ;

Seti =0, g(i) = xy;

Step 1: Determine the current obstacle, OB(k), from x to g(i).

If k = 0 (x not in the shadow of any obstacle), go to Step 3.

Compute the optimal trajectory avoiding OB (k) to g(i).

Step 2: i =i + 1; Select an intermediate goal g (i) on the boundary of OBy along
the trajectory that avoids OB(k) to g(i — 1).

Check that the velocity at g (i) is not in the obstacle hole? of any obstacle, consisting
of infeasible states from which the obstacle is unavoidable. If it is, reduce speed
at g(i) as needed.

Go to Step 1.

Step 3: Follow the optimal trajectory to g(i). Set x = g(i).

Ifi =0, STOP.

i=i—1

Go to Step 1.

Algorithm 2 generates a series of intermediate goals until one is reachable by a
time optimal trajectory without colliding with any obstacle. Each intermediate goal
g(@) (i = 1) is selected along the constrained trajectory x.(#) from the current state
x to the current goal g(i — 1) at a point where x.(¢) is tangent to the current obstacle
OB4.. Usually, there is just one such point. In case x.(¢) follows the obstacle for some

2The obstacle hole is a subset of the obstacle shadow.

Off-Line and On-Line Trajectory Planning 55

distance, the point closest to the goal g(i — 1) is selected. When an intermediate
goal is reached, a new avoidance problem is attempted from that intermediate goal
to the next goal in the queue. Note that once an intermediate goal was reached, it is
removed from the queue and a new goal may be assigned the same index i. The goals
are added and removed from the queue while the trajectory gradually progresses to
the final goal x y = g(0). Remembering the intermediate goals generated during the
process is key to the convergence of this algorithm, as discussed later.

Step 2 of Algorithm 2 selects the speed at the intermediate goal g (i) that is both
safe and feasible. A safe velocity is one that does not penetrate any obstacle hole,
from which the obstacle is unavoidable. To simplify the search for the safe velocity,
we choose to reduce it to the maximum velocity at which the robot can circle the
current obstacle at its maximum lateral acceleration (the acceleration normal to its
direction of motion). Denoting this velocity as the curvature velocity, it is easily
proven that the curvature velocity does not lie in the obstacle hole of any obstacle.

Definition 4.1 Curvature Velocity. The curvature velocity, v., is defined as:

Ve =V Umax R 27

where u,;4, 1s the maximum lateral acceleration, and R is the radius of the obstacle.

It remains to verify that the velocity at g (i) is reachable from the current state x.
This is done by checking that a direct time optimal trajectory exists from x to g(i). A
direct trajectory is one that does not include loops. In case the velocity at g(i) is too
high, we scale it down until it is reachable from x; if the velocity at g(7) is too low,
the current speed, which was set to the curvature velocity, can be reduced by circling
the nearby obstacle at a decreasing speed. The curvature velocity (27) ensures that
the obstacle can be circled to allow a safe reduction in speed when necessary. While
this feature is necessary to ensure safety, it was not needed in any of the many cases
tested by this algorithm.

The adjustment of speeds at the intermediate goals would ensure that any con-
secutive intermediate goals are connected by a feasible trajectory. This implies that
a too high final velocity may be compromised for the sake of safety. Similarly, not
every initial velocity is feasible for the obstacle avoidance case, even if it does not
penetrate any individual obstacle hole. The speed reduction at the intermediate goals
to the curvature velocity is a conservative measure to ensure safety.

4.6 Convergence

Convergence implies that the algorithm can reach the target state from an arbitrary
feasible state, in a finite time. Since we cannot a priory determine the feasibility of
arbitrary initial and target velocities, convergence of Algorithm 2 can be proven under

56 Z. Shiller

the assumption of zero terminal speeds (the speeds at the initial and final points), for
convex obstacles that do not overlap with each other [50].

Algorithm 2 progresses incrementally towards the goal by moving through a
sequence of intermediate goals. Every intermediate goal subdivides the trajectory to
the goal into two smaller segments, and in fact breaks the avoidance problem into two
smaller problems. Repeating this process recursively further reduces the avoidance
problem until two consecutive intermediate goals are connected by an unconstrained
trajectory. The motion time along each segment is finite since it is traversed at the
minimum time. The number of such segments is bounded by the number of obstacles,
which is assumed finite. It follows that the total travel time from start to goal is also
finite, which proves convergence.

4.7 Optimality

The trajectory generated by Algorithm 2 is not necessarily optimal, since each step is
only locally optimal. While the paths (the projection of the trajectory to the configu-
ration space) generated by Algorithm 2 are generally close to the time optimal paths
computed by a global planner [16], as demonstrated next, the motion time along the
on-line trajectory is higher than the global optimal motion time due to the curvature
velocity (27) imposed at the intermediate goals.

4.8 Numerical Examples and Experiments

Algorithm 2 is demonstrated for a planar environment, consisting of 70 tightly spaced
circular obstacles.

4.8.1 Example 2

This example shows an on-line trajectory that avoids 70 obstacles, from the initial
state (xp, x2, ¥1, y2) = (10.46m, 0.001 m/s, 58.26 m, 0.001 m/s) to the goal state
(x17, %27, Y17, y25) = (52.55m,0m/s, 7.33m, 0m/s), as shown in Fig.18. The
spacing between the dots represents the speed along the path.

The motion time along this trajectory is 35.2 s, with a top speed of 3.4 m/s and an
average speed of 2.1 m/s. There were 12 intermediate goals generated for this case,
shown as empty circles along the trajectory. The total computation time was 4.3s,
with a time step Af of 0.1's, and an average computation time of 11 ms per-step. The
speed along the trajectory, as a function of distance traveled, is shown in Fig. 19.
The oscillations in the speed profile are due to the curvature velocity imposed at the
intermediate goals.

Off-Line and On-Line Trajectory Planning 57

Fig. 18 Trajectory 60 F
generated on-line in a tightly
spaced environment with 70
circular obstacles for
Example 2

5}
@
€

Fig. 19 Speed as a function

of distance traveled along the

online trajectory of

Example 2 2
E
°
[0
(0]
Q.
n

0 10 20 30 40 50 60 70 80
Distance Traveled [m]

4.8.2 Experiment-Global Optimality

This experiment compares the online planner with the global planner [16] for the
obstacle setup shown in Fig. 20 (48 obstacles).

Shown in Fig.20 are the trajectories generated by the online planner and the
global planner. The online and globally optimal paths have similar topologies as
they pass between the same obstacles. The velocity profiles along both trajectories
are shown in Fig.21. The motion time along the online trajectory was 28.9s over a
total distance of 93.8 m, with an average speed of 3.2m/s, compared to the global
optimal motion time of 20.7 s over a total distance traveled of 99 m, and an average
speed of 4.8 m/s. This difference is caused primarily by the reduction in speeds to
the curvature velocities (27) at the intermediate goals.

58

Z. Shiller

AT {07000 O
obstacles O '*.__.. O
+ 0 0:00 5

1 Sot00

1Y 0200 ¥ o

il OQ inine .-:‘..'ZA——GIobaI QC

0 ~O~G~O~ D)

10 0°0%0%0 0

AN a N ay (M

0 20 w 80 100

Fig. 21 Speed as a function
of distance traveled for the
online and global optimal
trajectories

Speed [m/s]

60

40
Distance Traveled [m]

\
\
L 1
80 100

Repeating this test for 50 randomly selected end points yielded similar results,
with the average motion time of the online trajectories being 30.52s, compared to
the average optimal time of 22.63 s. The average path length of the online trajectories
was 111.51 m, compared with 115.26m for the optimal trajectories. Here too, the
increase in the motion time despite the comparable path lengths is due to the imposed
curvature velocity at the intermediate goals, which is determined by the obstacle size.

4.9 Computational Issues

The consideration of the obstacles one at a time reduces the original problem with
m obstacles to m simpler sub-problems with one obstacle each.

The cost for this reduction is the loss of optimality, and the need to check at
each time step if all obstacles intersect the unconstrained optimal path from the
current state, and for those that do, solve the single obstacle problem. This may

Off-Line and On-Line Trajectory Planning 59

seem excessive, but the alternative (solving the original exponential problem) is
much worse. Our approach generates the trajectory incrementally, unlike the original
problem that requires a complete solution before making the first move. In fact, for
problems with many obstacles, such as in example 2 with 70 obstacles presented
earlier, the on-line (heuristic) solution may be the only viable alternative.

Practically, it may not be necessary to consider all obstacles at all times, but instead
consider only the obstacles within some radius of visibility around the robot. It would
be then necessary to limit robot’s speed to the stopping speed at the boundary of its
visibility range to ensure that it does not collide with an unforeseen obstacle.

To appreciate the computational advantage of this approach, we attempted to
compare it to the performance of efficient state-of-the-art algorithms. Currently, the
most popular approach is the RRT planner, which rapidly explores a random tree
to produce the first feasible solution to the goal [17-19]. The solution found is not
optimal in any way, and this class of algorithms is known to have inherent difficulties
with tight spaces. Yet, RRT is currently considered as the fastest algorithm to connect
between two points through cluttered environments.

We compared a kinematic version of our online algorithm to the RRT and RRT*
planners for avoiding 70 tightly space obstacles, all running on similar computers
[50]. Testing the algorithms for 100 randomly generated end points, the run time of
the online algorithm was on average 0.5 ms, compared to 3.5 ms of the RRT planner,
7times faster. However, the path lengths produced by the RRT planner were twice
as long as those produced by the online planner, which were near global optimum.
Attempting to optimize the paths using the RRT* planner took 0.5s to reach the
optimality levels of the online planner; this is 1,000times slower than the online
algorithm. These results demonstrate the sound efficiency, in both computation time
and optimality, of the online planner presented here. This is not surprising as the
online planner consistently executes locally optimal paths at each incremental step,
as opposed to the sampling-based planners which essentially search for a solution in
the dark.

5 Summary

Motion planning is one of the basic problems in robotics as very few robotic tasks do
not involve motion. The main challenge in motion planning is to produce a trajectory
that safely and efficiently moves the robot from one state to another while accounting
for its dynamic behavior. It is also desirable that the motion plan reflects the changing
nature of the task or of the environment. While this is obviously the ultimate goal,
early works on motion planning in the 80s settled for much less by focusing on geo-
metric path planning with no account for robot dynamics. The resulting algorithms
were useful for determining the shortest path from start to goal, but were useless for
moving the robot at other than very low speeds. To account for robot dynamics, opti-
mal control theory, developed in the late 60s, was applied then to robotics but failed
because of insufficient computation power and the high sensitivity of the numerical

60 Z. Shiller

solutions to the initial guess. Like in many other endeavors, the solution emerged by
solving a simpler problem.

The failure of the geometric algorithms to solve high dimensional problems gave
rise to a class of sampling-based planners, with the goal of producing any feasible
path in lieu of the shortest path expected by earlier work. The multi-dimensional
optimal trajectory planning problem was eventually solved by first computing the
optimal velocity profile along a given path. This lead to a local optimization of the
path and eventually to a global planner that computes “good” initial guesses for the
local optimization.

In this chapter, we reviewed the main approaches to off-line and on-line motion
planning, and presented one solution for each with a focus on trajectory planning.
It was shown that any motion planning problem can be theoretically solved using
the Hamilton Jacobi Bellman (HJB) equation. If the return function is known or
approximated, this approach offers an online solution. In its discrete form, the HIB
equation leads to dynamic programming, which is the basis for the combinatorial
optimizations used in off-line planning.

We presented an off-line planner that takes advantage of the efficient computation
of the optimal motion time along any path. The on-line planner presented converts the
original problem of optimally avoiding many obstacles to many simpler problems,
each avoiding optimally only one obstacle. The high correlation between the solutions
of the on-line and off-line planners is not surprising since both planners are based
on sound optimal control theories.

As the basic problem of trajectory planning is considered solved, and as computers
are becoming more powerful, the remaining challenge rests with online planning that
adapts or reacts to the changing nature of real life scenarios in the industry, in the
home, and on the road.

References

1. Choset H, Lynch KM, Hutchinson S, Kantor GA, Burgard W, Kavraki LE, Thrun S (2005)
Principles of robot motion: theory, algorithms, and implementations. MIT Press, Cambridge

2. Shiller Z, Dubowsky S (1991) On computing the global time optimal motions of robotic manip-
ulators in the presence of obstacles. IEEE Trans Robot Autom 7(6):785-797

3. Canny JF (1988) The complexity of robot motion planning. MIT Press, Cambridge

4. Lozano-Perez T, Wesley MA (1979) An algorithm for planning collision-free paths among
polyhedral obstacles. Commun ACM 22(10):560-570

5. Lumelsky VJ, Stepanov A (1987) Path planning strategies for a point mobile automaton moving
amidst unknown obstacles of arbitrary shape. Algorithmica 2:403-430

6. Schwartz JT, Sharir M (1983) On the piano movers’ problem: the case of a two-dimensional
rigid polygonal body moving amidst polygonal barriers. Commun Pure Appl Math 36:345-398

7. Karaman S, Frazzoli E (2011) Sampling-based algorithms for optimal motion planning. Int J
Robot Res 30(7):846-894

8. Manor G, Rimon E (2013) Vc-method: high-speed navigation of a uniformly braking mobile
robot using position-velocity configuration space. Auton Robot 34(4):295-309

9. Lozano-Perez T (1987) A simple motion planning algorithm for robotic manipulators. IEEE
Trans Robot Autom RA-3(3):224-238

Off-Line and On-Line Trajectory Planning 61

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Wein R, van den Berg JP, Halperin D (2005) The visibility-Voronoi complex and its applications.
In: Proceedings of 21st symposium on computational geometry, pp 63-72

Alexopolous C, Griffin PM (1992) Path planning for a mobile robot. IEEE Trans Syst Man
Cybern 22(2):318-322

Liu YH, Arimoto S (1992) Path planning using a tangent graph for mobile robots among
polygonal and curved obstacles. Int J Robot Res 11(4):376-382

LaValle SM (2010) Motion planning: the essentials. IEEE Robot Autom Mag 110
DijkstraEW (1959) A note on two problems in connexion with graphs. Numerische Mathematik
1:269-271

Papadimitriou CH, Steiglitz K (1982) Combinatorial optimization, algorithms and complexity.
Prentice-Hall, Englewood Cliffs

Shiller Z, Gwo YR (1991) Dynamic motion planning of autonomous vehicles. IEEE Trans
Robot Autom 7(2):241-249

Lavalle SM (1998) Rapidly-exploring random trees: a new tool for path planning. Technical
Report 98-11, Department of CS, Iowa State University

Hsu D, Latombe JC, Motwani R (1999) Path planning in expansive configuration spaces. Int J
Comput Geom Appl 4:495-512

Mazer E, Ahuactzin JM, Bessiere P (1998) The Ariadnes clew algorithm. J Artif Intell 9:295—
316

Karaman S, Walter MR, Perez A, Frazzoli E, Teller S (2011) Anytime motion planning using
the rrt*. In: International conference on robotics and automation

Amato NM, Bayazit OB, Dale LK (2000) Choosing good distance metrics and local planners
for probabilistic roadmap methods. IEEE Trans Robot Autom 16(4):442—447

Gmez-Bravo F, Carbone G, Fortes JC (2012) Collision free trajectory planning for hybrid
manipulators. Mechatronics 22(6):836-851. Special Issue on Intelligent Mechatronics
Bryson AE, Ho YC (1969) Applied optimal control. Blaisdell Publishing Company, Cambridge
Kiriazov P, Marinov P (1985) A method for time-optimal control of dynamically constrained
manipulator. Theory and practice of robotics and manipulators. MIT Press, Cambridge, pp
169-178

Niv M, Auslander DM (1984) Optimal control of a robot with obstacles. In: Proceedings of
American control conference (San Diego, CA), June 1984, pp 280-287

Khan ME, Roth B (1971) The near-minimum time control of open loop articulated kinematic
chains. J Dyn Syst Meas Control 93(3):164—-172

Bobrow JE, Dubowsky S, Gibson JS (1985) Time-optimal control of robotic manipulators.
IJRR 4(3):3-17

Pfeiffer F, Johanni R (1987) A concept for manipulator trajectory planning. IEEE Trans Robot
Autom RA-3(3):115-123

Shin KG, McKay ND (1985) Minimum-time control of robotic manipulators with geometric
path constraints. [IEEE Trans Autom Control AC-30(6):531-541

Shiller Z, Lu HH (1992) Computation of path constrained time-optimal motions with dynamic
singularities. ASME J Dyn Syst Meas Control 14(1):34-40

Slotine JE, Yang HS (1989) Improving the efficiency of time optimal path following algorithms.
IEEE Trans Robot Autom 5(1):118-124

Tarkiainen M, Shiller Z (1993) Time optimal motions of manipulators with actuator dynamics.
In: Proceedings of 1993 IEEE international conference on robotics and automation, vol 2, pp
725-730

Bobrow JE (1988) Optimal robot path planning using the minimum time criterion. IEEE Trans
Robot Autom 4(4):443-450

Shiller Z, Dubowsky S (1989) Time-optimal path-planning for robotic manipulators with obsta-
cles, actuator, gripper and payload constraints. IJRR 8(6):3-18

Seywald H (1994) Trajectory optimization based on differential inclusion. J Guid, Control,
Dyn 17(3):480-487

Bryson AE (1999) Dynamic optimization. Addison Wesley, New York

62

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.
53.

54.
55.
56.
57.

58.

59.

60.

Z. Shiller

Donald B, Xavier P (1989) A provably good approximation algorithm for optimal-time trajec-
tory planning. In: Proceedings of IEEE conference on robotics and automation, May 1989, pp
958-963

Sahar G, Hollerbach JM (1985) Planning of minimum-time trajectories for robot arms. In:
Proceedings of IEEE international conference on robotics and automation (St. Louis, MO),
March 1985, pp 751-758

Kamon I, Rimon E, Rivlin E (1998) Tangentbug: a range-sensor based navigation algorithm.
Int J Robot Res 17(9):934-953

Laubach S, Burdick J, Matthies L (1998) A practical autonomous path-planner for the rocky7
prototype microrover. IEEE international conference on robotics and automation

Choset H, Burdick JW (1995) Sensor based planning, part ii: incremental construction of the
generalized Voronoi graph. In: Proceedings of IEEE international conference on robotics and
automation, ICRA’95, pp 1643-1649

Sankaranarayanan A, Vidyasagar M (1991) Path planning for moving a point object amidst
unknown obstacles in a plane: the universal lower bound on worst case path lengths and a
classification of algorithms. In: Proceedings of IEEE international conference on robotics and
automation, ICRA’91, pp 1734-1941

Connoly CI, Burns JB, Weiss R (1991) Path planning using Laplace’s equation. In: IEEE
conference on robotics and automation, Cincinnati, OH, vol 1, pp 102-2106

Khatib O (1986) Real time obstacle avoidance for manipulators and mobile robots. Int J Robot
Res 1:65-78

Rimon E, Koditschek DE (1992) Exact robot navigation using artificial potential functions.
IEEE Trans Robot Autom 8:501-518

Jarvis R (1985) Collision-free trajectory planning using distance transforms. Trans Inst Eng
Aust Mech Eng ME10(3):187-191

Athans M (1965) Optimal control: an introduction to the theory and it’s applications. Academic
Press, New York

Cesari L (1983) Optimization—theory and applications: problems with ordinary differential
equations. Springer, New York

Moskalenko Al (1967) Bellman equations for optimal processes with constraints on the phase
coordinates. Autom Remote Control 4:1853-1864

Shiller Z, Sharma S, Stern I, Stern A (2013) On-line obstacle avoidance at high speeds. Int J
Robot Res 32(9-10):1030-1047

Sundar S, Shiller Z (1997) Optimal obstacle avoidance based on sufficient conditions of opti-
mality. IEEE Trans Robot Autom 13(2):305-310

Lee EB, Markus L (1967) Foundations of optimal control theory. Wiley, New York
Koditschek DE, Rimon E (1990) Robot navigation functions on manifolds with boundary. Adv
Appl Math 11:412-442

Bellman R (1957) Dynamic programming. Princeton University Press, Princeton

Lawler EL (1976) Combinatorial optimization. Holt, Rinehart and Winston, New York

Fujita Y, Nakamura Y, Shiller Z (2003) Dual dijkstra search for paths with different topologies.
In: ICRA, pp 3359-3364

Shiller Z, Fujita Y, Ophir D, Nakamura Y (2004) Computing a set of local optimal paths through
cluttered environments and over open terrain. In: ICRA, pp 4759-4764

Pham QC (2013) Characterizing and addressing dynamic singularities in the time-optimal path
parameterization algorithm. In: 2013 IEEE/RS]J international conference on intelligent robots
and systems (IROS), pp 2357-2363

Dreyfus S (1965) Dynamic programming and the calculus of variations. Academic Press, New
York

Sundar S (1995) Time-optimal obstacle avoidance for robotic manipulators. Doctoral Disser-
tation, Mechanical and Aerospace Engineering, University of California, Los Angeles, June
1995

Open Architecture for Vision-Based Robot
Motion Planning and Control

Theodor Borangiu, Florin Anton and Silvia Anton

Abstract This chapter introduces a methodology for the vision-based motion
control of robot manipulators. The motion control problem is decomposed into three
computational stages: motion planning, trajectory generation and trajectory tracking.
While the two latter activities are always executed in real time, motion is planned
in traditional robot systems off line, by learning robot points or by using numerical
output data from programs that plan minimal paths, avoid obstacles, etc. Guidance
vision is introduced as an advanced motion control method, which provides flexibility
when integrating industrial robots in computer-controlled manufacturing structures.
A dynamic look-and-move system architecture is discussed, as a robot-vision system
which is closed at task level. An open architecture is proposed as implementing solu-
tion for vision-based scene management and robot guidance, which integrates any
types of robot controllers and image processing libraries. The chapter also presents
a motion control algorithm for robots which are required to pick objects randomly
moving on conveyor belts. The algorithm for visual tracking of conveyor belts for
“on—the-fly” object grasping is partitioned in two stages: (i) visual planning of the
instantaneous destination of the robot, (ii) dynamic re-planning of the robot’s destina-
tion while tracking the object moving on the conveyor belt. The ensemble [conveyor
belt + actuator + sensor] is configured as a single-axis Cartesian robot, leading to
a cooperation problem between robot manipulators subject to multitasking control.
Experimental results are finally reported in what concerns the statistics of object
locating errors and motion planning errors function of the size of the objects of the
belt speed and of the light strobe.

Keywords Robot-vision system - Vision guided robot planning * Visual robot
servoing - Joint-space trajectory planning

T. Borangiu (X)) - F. Anton - S. Anton

Department of Automation and Applied Informatics,
University Politehnica of Bucharest, Bucharest, Romania
e-mail: theodor.borangiu@cimr.pub.ro

© Springer International Publishing Switzerland 2015 63
G. Carbone and F. Gomez-Bravo (eds.), Motion and Operation Planning

of Robotic Systems, Mechanisms and Machine Science 29,

DOI 10.1007/978-3-319-14705-5_3

64 T. Borangiu et al.

1 Introduction

The motion control problem refers to controlling the robot manipulator such that it
follows a pre-planned path. The motion control problem is generally decomposed into
three computational stages (Fig. 1): (1) Motion planning; (2) Trajectory generation;
(3) Trajectory tracking [1].

In the motion planning stage, desired paths are described in the r-dimensional task
space T (i.e. the locus of the positions and orientations that the robot tool must attain
in O C R™—the operational space, 7 C O), which is isomorphic to the special
Euclidian group SE>.

T ={x(t)|x e R",t e R"},7 C SE* = R* x SO’

The vectors X = xg =[po]T, n = no. of d.o.f. express the location of the nth
coordinate frame (x,,, y,,, Z»), attached to the end-effector, relative to the world frame
(x0, Yo, zo) attached to the base of the robot, p € R3 specifies the coordinates of the
origin of the task frame (or end-effector frame), whereas the current orientation ¢ of
the task frame is described either by the rotation matrix R—a member of the special
orthogonal group SO?, or minimally by a set of 3 Euler angles (in the sequel, the yaw,
pitch and roll angles will be considered). If the tool is a single rigid body moving
arbitrarily in the Cartesian 3D workspace, then 7 = SE? = R3 x SO, m = 6.

Because on one hand robotic tasks are specified with respect to one or more
coordinate frames, and on the other hand visual servoing of robots makes intensive

Off line ! Real time

computation | (non-vision robot systems)

External sensors

(video)
]
. 1
Motion
1
planner ! Internal sensors
(encoders)
A
s
Trajecto Trajectory B) Working
jeciory . - Manipulator [*®] . i
generator tracking T environment

~

Fig. 1 Functional architecture for the global robot motion planning and control problem

Open Architecture for Vision-Based Robot Motion Planning and Control 65

use of a number of specific, additional coordinate frames, coordinate transformations
are used in motion planning and tracking as a generalisation of poses to express
relative locations between such frames of interest [2, 3].

Coordinate transformations must be often composed in the stage of motion plan-
ning and tracking, off line or at run time, to obtain the desired pose of the end-effector.
Assuming that we are given the coordinate transformations xeis and XZZS expressing
respectively the location of the coordinate frame (x,;s, yyis)attached to the image
plane relative to the world frame (xo, Yo, zo) in the base of the robot, and the loca-
tion of the frame (xop;, Yo»j) attached to an object relative to (xys, yvis), then the
coordinates M%7 of a point in the object frame can be expressed in the world frame
by the composition rule (:):

MO [les [Mob]]] _ (X . vzs)[Mob]] _ XO [M()b]]

vzv obj vis ob]

The associated relative rotation matrix and translation are given by Rob] =
R(v)l sR;Z; ,p° obj RW Sp(‘jlb; + pw ;- In the V+ structured robot programming environ-
ment, the simple transformations: to.cam[cam]—available from camera-robot
calibration, and vis.loc—the object location computed at run time, stand respec-
tively for xm and XV” the object-attached frame is related to the world frame by
the composed transformatlon obj.loc <« to.cam[cam]:vis.loc

During motion planning stage, the desired paths are generated without timing
information, i.e., without specifying the velocity and the acceleration along the path.
Of primary concern is the definition of collision-free paths in the workspace. A
secondary objective may be included, for example the optimization of some cost
functions like: minimization of the total travel time or distance, keeping as low as
possible changes in direction, continuity of velocity, etc. [4].

The trajectory planner (generator) parameterises the end-effector path directly
in the task space either as a curve in SE3, or in R® when a minimal Euler rep-
resentation is used for SO3. The trajectory planner may also compute a trajectory
for the individual joints of the manipulator as a curve in the configuration space

={q(t)|qeR". 1 € Z",n = no.of do.f.}.

The trajectory planner TP, represented as block—and connection diagram in
Fig.2, is a software module, component of the basic software system of the robot
controller, being characterised as follows:

1. The inputs to the TP are the path description and constraints, and the constraints
imposed by the manipulator’s dynamics.

2. The output from the TP is the joint—or end-effector trajectory data, expressed
as a discrete time sequence of the values which must be attained by the position,
velocity and acceleration computed respectively in the configuration space q € C
or in the task space x = (p, ¢) € R, from the initial to the final pose.

3. The trajectory planning task is executed by the TP in one of the two following
modes:

e Assuming that a set of constraints (e.g. continuity or smoothness) on position,
velocity and acceleration of the manipulator’s joint variables has been explicitly

66 T. Borangiu et al.

Path constraints

—» Trajectory planner
Path e interpolating support points
specification . e time parameterization of path
e speed, acceleration profile
—P> . .
e (Inverse Kinematics)

la®.a@. 40} or
{x@), x(0), X}, 1€ Z

Dynamic constraints
of the manipulator

Fig. 2 Trajectory planner task and I/O representation

specified at selected joint configurations (called support—or interpolating
points) along the trajectory, the TP selects then a parameterised trajectory from
a class of polynomial functions in the total travelling time interval, which inter-
polates and satisfies the imposed constraints at the support points.

e A path that the end-effector must traverse is explicitly specified by an analyt-
ical function (e.g. a 3D straight-line path, a 2D circular-arc path in Cartesian
coordinates or any computed curve), and the TP adds a time law to compute
a trajectory that approximates the desired path either in joint coordinates or in
Cartesian coordinates.

In the first mode, the constraint specification and the planning of the manipulator
trajectory are performed in joint coordinates. In the second mode, the path constraints
are specified in Cartesian coordinates, and the joint actuators are servoed in joint
coordinates.

To compute a joint-space trajectory, a given end-effector path must be transformed
into a joint-space path via the Inverse Kinematics (IK) mapping. Due to the difficulty
of computing on line this mapping, the usual approach is to compute a discrete set of
joint vectors along the end-effector path (joint support vectors), and then to interpolate
in joint space between these support points in order to complete the joint-space
trajectory. Common approaches to trajectory interpolation include polynomial spline
interpolation using trapezoidal velocity profiles and time laws of blended polynomial
type, cubic polynomial trajectories, or trajectories generated by reference models [5].

2 The Trajectory Generation Problem in Robot
Motion Control

A path can be defined either in the joint space or in the operational space. Usually,
the latter is preferred since it allows:

e a natural description of the task the manipulator has to do,

Open Architecture for Vision-Based Robot Motion Planning and Control 67

e a simple description of the path constraints—these are due to regions of the
workspace which are forbidden to the manipulator (e.g. due to the presence of
obstacles), and

e adirect knowledge of the pose of the end-effector in the workspace [6].

A geometric path cannot be fully specified by the user due to complexity reasons.
Typically, areduced number of parameters are specified, such as: final points, possible
intermediate points, geometric primitives interpolating the points. Also, the motion
time law is not typically specified at each point of the geometric path, but rather
it regards: the total trajectory time, the constraints on the maximum velocities and
accelerations or the eventual assignment of velocity and acceleration at some points
of particular interest.

This section presents algorithms and implementing solutions for operational-
space and joint-space and motion planning. Real-time computational aspects and
performances are analysed.

2.1 Joint-Space Trajectory Planning

For this type of trajectory planning, the time history of all joint variables and of their
first two derivatives is planned to describe the desired motion of the manipulator.
Planning in the joint space has the following advantages:

e the trajectory is planned directly, in terms of the controlled joint variables q(#)
during motion execution;

e the trajectory planning can be done nearly in real time;

e the joint trajectories are planned with a reasonable computational effort.

The main disadvantage is the difficulty in determining the locations of the various
links and of the end-effector in the operational space, a condition which is usually
required to guarantee obstacle avoidance along the trajectory.

The global algorithm for generating joint-trajectory set points is given next:

[=ty;
loop: wait for next control interval;
t=t+At;
Update the trajectory planner tp(f) — compute the necessary joint posture
of the manipulator: {q(t), q(1), ('j(t)} attime 7,
if t=ty, exit

else goto loop.

Four constraints are imposed to the planned joint-space trajectory:

1. The trajectory set points must be non-iteratively readily calculable.
2. Intermediate points must be evaluated in a deterministic mode.

68 T. Borangiu et al.

3. The continuity of the joint position and its first two time derivatives must be
guaranteed so that the planned joint trajectory is smooth.
4. Extraneous motions must be avoided.

The constraints 1-4 for the planned trajectory will be satisfied if the time history
of the joint variables can be specified by polynomial sequences.

Robot controllers use electronic gearing in the joint-space trajectory generator in
order to synchronize the movement of one or more slave axes to the movement of a
master device, which can be an encoder, A/DC, or the trajectory of another axis, e.g.
the robot’s leading axis which must execute the longest displacement.

2.2 Operational-Space Trajectory Planning

The general case of Cartesian-space planning is considered, for which the global
algorithm is given below:

1=1y;
loop: wait for next control interval;
t=t+At;

Update the operational hand planner TP(#) — compute the necessary
position and orientation of the end-effector: {p(t), o), p@), m(t)}
in the operational space at current control time interval 7 ;

Compute the closed IK joint solution — CIKS, IK[TP(#)], corresponding to
TP(?);

lf = tfmal eXit;

else goto loop.
In general, task-space planning is done in two steps:

STEP 1: Generating or selecting the set of support points in operational coordinates
according to some rules, along the operational path

STEP 2: Specifying a class of functions to link the support points defined in STEP
1 (or to approximate the path segments) according to some criteria. The
criteria which are chosen are often dictated by the control algorithm fol-
lowing the trajectory planning, which tracks the desired path.

There are two approaches which can be used for achieving STEP 2:

1. The operational space—oriented approach: support points are generated along
the task path in operational coordinates. Then, the TP interpolates in operational
space between these support points and adds the time law expressed in terms
of the desired speed and acceleration profiles. The result will be the discrete

Open Architecture for Vision-Based Robot Motion Planning and Control 69

time sequence of values that must be attained by the end-effector’s position and
velocity computed in the task space, i.e. the trajectory in the task space.

Next, the task-space trajectory is converted into the corresponding joint-space
trajectory, by applying for inverse kinematics computation. Several techniques can
be used to this purpose:

e The kinematics inversion using the Jacobean pseudo-inverse J* or the Jacobean
transpose JT [1, 71;
e The resolved motion rate control (RMRC) algorithm in the form:

8qc(1) = T 1(qe(1))8xc (1)
where:

8qc(t) = q(tir1) — q(tr), 89c(t) = los(Xq(tkv1) — dk(q(%))

This corresponds to an incremental IK task space computation /og, §X.(¢) being
the incremental displacement along the operational path, and dk(q) is the time func-
tion that computes the Direct Kinematics model. Hence it can be observed that the
two time-consuming computing tasks:

— operational path interpolation between support points, and
— conversion of the task-space trajectory to a joint-space trajectory

are performed incrementally with arguments representing relative position and speed
values. This will consequently reduce the computation time and augment the band-
width of the TP (Fig. 3).

8%, (1),8% (1) dq,(1).8q, (1)

Generating
support points

Incremental Numerical

_ along the opera- IKJJT) integration
Operational tional path
path .
desgription Linking e
q.(0=q,()

support points by
interpolating in

Absolute DK

. (Direct
»| operational space | Kinematics)
Speed and ac- '
celeration x(t)
pQﬁles)
Y

Real-time computation

Fig. 3 Linking support points by interpolating in operational space

70 T. Borangiu et al.

Moreover, in order to additionally reduce the computing time, truncation of
results and approximations like sin ~ 0,cosf ~ 1 — 6%/2for |#| < & with &
a small, positive quantity, or reduced-order series development are accepted for the
IK computation task. This is because any induced errors will be compensated by
the DK task, placed on the feedback path and operating with the absolute values of
the argument “q.—the computed joint configuration on the operational path” [5, 8].
In the case of linear interpolation, the resulting output trajectory generated by the TP
is a piecewise straight line in the task space.

Attention must be paid as IK transformations do not produce unique solutions; in
addition, if the manipulator dynamics is included in the trajectory planning, then path
constraints will be specified in operational coordinates, while physical constraints
such as force, torque, velocity and acceleration limits of each joint motor will be
bounded in joint coordinates.

2. The joint space—oriented approach: converts first the support points that have
been defined along the operational path into their corresponding joint coordi-
nates, and the uses low-degree polynomial functions to interpolate between these
converted support points (Fig.4). Figures 3 and 4 represent two approaches used
for interpolating between support points generated along the operational path.

If the TP must generate a linear trajectory in the task space, the support points will
be on this linear path, but the linear joint-space interpolation between support points
will produce a final output trajectory which is a non—piecewise straight line in the
task space. According to the maximum allowed deviation in position of the planned
trajectory with respect to the ideal, linear one in the task space, a certain number of
support points will be defined on the operational path. The smaller the admitted devi-
ation, the larger the number of support points to be defined on the operational path.
This second approach is widely used, because of its reduced computational effort.

In the trajectory tracking stage, the computed reference trajectory is input to the
motion controller, whose function is to determine the end-effector to track the given
trajectory as close as possible. The trajectory tracking task is executed in real time

Speed and acceleration profiles

Xf(f) qc(t.)i q, ()
o) ‘t' 1 Selecting support : ! Linki . !
perationa ! ! ! inking support |
path points along the | Abi%lute | points by joint
description operational path E space interpolation
N A)
Y Y

Off-line computation Real-time computation

Fig. 4 Linking support points by interpolating in joint space

Open Architecture for Vision-Based Robot Motion Planning and Control 71

by the motion controller and consists in computing the time history of joint control
inputs u, i.e. the vector of control voltages for the n axes’ servomotors.

Task description is in most cases expressed in the m-dimensional operational
space (with a particular minimal representation for the end-effector orientation),
whereas control inputs (control velocities or forces/torques for the joint actuators)
are generated in the n-dimensional joint space. Consequently, two types of motion
control schemes have been thought of: with joint-space trajectory tracking and with
operational-space trajectory tracking.

3 The Taxonomy of Visual Robot Servoing

The Al approach to intelligent robot automation is best characterised as the attempt
to provide a robot with a symbolic representation of its environment and of its own
actions, to be exploited by some kind of inference procedure. In this field, the main
contributions of Al have been significant in two directions [9-11]:

e perception, with particular regard to object recognition and locating through vision;
e planning,i.e. the automatic construction of a sequence of actions capable to achieve
a predefined goal.

The behavioural intelligence of arobotic system refers to the following properties:

1. Flexibility: in different situations, the robot controller is able to produce appro-
priately different behavioural patterns in pursuit of different goals.

2. Robustness: the robotic system can absorb and neutralise the effects of incomplete
and noisy information and of limited changes in the environment’s structure and
dynamics.

3. Adaptiveness: the ability of the robotic system to alter behaviour significantly in
response to radical changes in the environment.

Robot-vision systems use intelligent image processing to detect, recognize or
track object features and act in consequence to plan and guide the motion of the
robot. The chapter introduces the Look-and-Move approach for guidance vision
(visually planning the robot’s motion—the industry solution), see Fig.5.

This is a hierarchical motion control structure, with the vision processor providing
(planning) set-points as references to the robot’s joint-level controller—thus using
joint data feedback to internally stabilise the robot. This structure leads to an inter-
laced look-and-move control scheme, where motion tracking and image processing
are pipelined as follows:

e while a motion segment is executed, no image is acquired and processed, and
e while an image is taken and treated according to the specific needs of a robot task,
the motion controller does not start generating a trajectory and tracking it.

72 T. Borangiu et al.

Camera-robot Robot-object Camera

calibration calibration RObOt
manipulator

s
Xyis

Cartesian-space Joint

trajectory controllers /
generator _encoders

vis

(Xobj) est

Trajectory tracking D> Arm

Pose
estimation

Image feature
extraction

bj L
(XZ)) st Object's image
(B est

Fig. 5 Position-based look-and-move visual servoing architecture for object tracking

It can be observed that, whereas the global robotic system operates in an open
loop structure at motion control level, it is subject to a closed loop control at the
global task level.

Position-based look-and-move control is further discussed in this section. As
described in Fig.5, features are extracted from the image and used to estimate
the pose)A(Z’bsj = (x;’}jsj.)est of the target (object, point) with respect to the camera.
Using these values, an error between the current estimated and the desired pose
of the robot, (XZZSJ-)d is defined in the task space 7. Thus, position-based control
neatly separates the control actions, i.e. the computation of the feedback signal
(x?)m = dk(qm,s),n —3 < s < n using the direct kinematics model dk(-) of
the robot manipulator, from the estimation problem involved in computing position
or pose ig}fl from visual data (f).;.

A visual positioning task is expressed by an error function E : 7 — R™. This
function is referred to as the virtual kinematic error function VKE. A positioning
task is fulfilled when the end-effector has been moved in pose x,, = x2 if E(x,) = 0.

Once a suitable VKE function defined and its parameters instantiated from visual
data, a compensator can be designed that reduces the value of the VKE function
to zero. This compensator computes at every sampling time instant the necessary
end-effector position (x,). that is sent as dynamic reference to the joint-space
(or operational-space) motion tracking controller [1]. Since the VKE functions are
defined usually in the Cartesian space, it is common sense to develop the compen-

sator’s control law through geometric insight.

Open Architecture for Vision-Based Robot Motion Planning and Control 73

4 Guidance Vision for Robot Motion Planning

The problem of visual feature tracking for robot motion planning and object access
control will be further presented for two types of working environments: (1) fixed
scene, e.g. workstation, storage, ASRS, and (2) mobile scene, e.g. conveyor belts
[12, 13].

4.1 Open, Vision-Based Robot Motion Planning for Fixed
Scene Foreground

An open, vision-based robot motion planning and control method and implementing
solution is presented in this section. The method allows using any general purpose
machine vision system (here an industrial camera with c-mount and AdeptSight
software) with any type of industrial robot controller (here ABB), with a proper
interfacing (Ethernet or serial communication).

In order to be used, a camera calibration is needed (which is provided by vision
any image processing library based on a calibration pattern), and also a robot-camera
calibration (which must be done manually by the robot technician); the models of
the objects to be accessed by the robot and the robot-object (class) grasping will be
off-line taught for collision free motion at execution time.

In industrial applications of position-based dynamic look-and-move control struc-
tures, the robot-vision system works in most cases with off line learned objects which
can be visually recognised and located at run time [14, 15]. It becomes thus possible:

e to recover the object’s pose,)A(gbj , relative to the base frame of the robot, from the
direct estimate iza of the object’s pose in the vision frame and by composing it
with the camera-robot calibration estimate X,;;

e to define stationing points S°/ on the object’s image, relative to a suitable object-

attached frame (Xop;, Yob;)-

Figure 6 shows a fixed camera configuration and related camera-robot transfor-
mations; this is an endpoint open-loop (EOL) system that only observe the target
object to guide the robot’s motion for grasping it.

The physical camera is related to the base coordinate system of the robot by the
time-invariant pose evaluated a single time during an interactive off line camera-
robot calibration session, and to the object in the scene by. The camera image of
the object is independent of the robot motion (unless the target is the end-effector
itself, described for example by image feature of the gripper’s fingerprints pro-
jected onto the image plane). The pose is computed at run time, and involves
the search, recognition and locating of image features(s) on the object of interest
[16-18].

74 T. Borangiu et al.

Stationary
camera

Visualised
object surface
_ Image
ok plane

obj Projection of visualized

object surface onto (x,;, ¥,;s)

x0

Fig.6 Stationary camera configuration and related camera—robot relative transformations xgh "

respectively for the feature tracking and feature tracking for object grasping tasks

For object grasping, the image features must unambiguously describe the entire
object for its successful identification and locating at run time. In addition, the pose
of the gripper, relative to the frame attached to the object in its current location, is
required.

For a stationary camera, the relationship between these poses is:

Xg = xgi s XZ’; : xzbj , for feature tracking for object grasping.
J

Assuming a random part presentation in the robot workstation, the object’s pose
relative to a (unique) camera frame, ﬁ:})é;sj_l will be estimated at run time in a first
stage in terms of the following image feature parameters:

e xc, yc: coordinates of the centre of mass C of the 2D projection of the object’s
visualised surface onto the image plane (xyis, Yyis);
e orient = Z(MIA, x,;,): orientation angle of the object.

The object-attached frame (xop;_1, Yonj_1) has the origin in C and the abscissa
Xopj_1 = MIA, where MIA stands for the object’s Minimum Inertia Axis (Fig. 7).

To move the robot to grasp objects of a certain class always in the same way,
irrespective of their location in the robot scene, the desired (unique) pose of the
gripper, xflf] , relative to the object-attached frame must be a priori learned.

Let us denote by G the projection of the end-tip point T, the origin of the gripper-
attached frame (x,, yn., z»), onto the image plane: G = projl(, . {T}.

For a desired grasping style, G?”-! is a stationing point in the object’s coordinates
(Xobj_1, Yobj_1), irrespective of the current position and orientation of the object. Its

Open Architecture for Vision-Based Robot Motion Planning and Control 75

Gripper in desired
Visualised grasping location

object surface

dir(C, G)

Y alpha

MIA

Yc

Fingerprint 2

»
»

Xc Xvis

Fig. 7 Definition of the object-attached coordinate frame

coordinates are: xg = dcg - cos(alpha); y¢ = dcg - sin(alpha), where dcg =
dist(C, G), and alpha = Z(dir(C, G), MIA) measured CCW from the Minimum
Inertia Axis MIA) to dir(C, G). In a second stage, the object-attached frame will be
shifted to origin G, by a translation of distance dc along dir(MIA) followed by arota-
tion of angle alpha about the normal in C to the image plane, as represented in Fig. 7.

Given an object pose, x(v)ﬁfj, estimated visually at run time, and assuming that the
object was recognised as a member of that class for which a relative grasping pose
le*” was a priori learned using a stationary camera calibrated to the robot base frame
by Xy;s, then the positioning error can be defined by the VKE function

. o0bj ~vis g n on .3 . gvis . gobj
E(xy; X, »Xop» Xpis) = X0 = Xy Xyjg Xopj - Xy s

where:

obj iori ki from learni icular ing style”
_obj _ | X, apriori known from learning, particular “grasping style

X
n ~obj . . « . "
[X, visually updated at run time, general “grasping style

With an EOL system, Xj = inverse(fcg) will be dynamically updated by the
trajectory generator to bring to zero the positioning error x'.. This can be simply
done applying for an IK-based Resolved Motion Rate Control algorithm.

The closed-loop servo control uses the visually estimated pose of the object, ﬁ;}};,
the estimated camera-robot calibration pose Xy;s, and assumes that reduced-error
direct kinematics (f(g)—and inverse kinematics (X;j) models are available. As for
the imposed grasping pose, for a priori unknown object location in the scene, some
components in ﬁZi’j must be estimated at run time whenever the “style" in which the
object will be grasped is general, i.e. such that G £ C and G ¢ MIA [19-21].

76 T. Borangiu et al.

For object access and handling using vision, the problem is reduced to expressing
the object position in the image relative to the robot base. This is done in the robot-
camera calibration session, the result of which is a relative transformation expressing
the position and orientation of the vision frame relative to the robot base. Once the
calibration is executed, robot points will be computed relative to the position and
orientation of the vision-attached frame, and the robot motion planning follows the
procedure described in Sect. 2.

The robot-camera calibration procedure requires the usage of an object that will
be handled by the robot; during the execution of the procedure the robot will move
the object to different locations and will acquire pictures, generating a set of pairs
of descriptions of the object’s location: (a) from the camera and (b) from the joint
encoders. The solution of this set of equations will describe the camera’s field of
view location relative to the robot base.

For testing purpose an AdeptSight system and ABB robot manipulator were used,
the robot-vision calibration process and the training of the object grasping model have
been integrated in a single procedure. The procedure consists in four human-robot
interactive steps where the robot grasps the object and places it different positions in
the workspace for image acquisition and processing [2]:

The calibration object is placed in the workspace and grasped by the robot and then
released (position P1), after which the robot clears the vision plane and the object’s
position in the vision plane is computed by the AdeptSight library. The point P1 is
the point which will be used to express all the positions of the objects in the image.
For example a position of an object will be computed as Po where Po is P1 shifted
with a set of offsets (for translations on X and Y and rotation on the Z axis). The
position of the object in point P1 is also computed in the vision plane, having the
coordinates Ply,, Ply, (the position of the coordinate system attached to the object
model) [22, 23].

In the second step the robot grasps the object and places it in the same position, but
rotated with 180° (point P 1’), in the vision coordinates P1’y,, P1’y,. By comparing
the position of the coordinate system of the object in these positions the system can
compute the position of the mass centre of the object (the mass centre of the model
relative to the grasping point). In this case the grasping point is located in the image
on the middle of the segment [P 1, P1'] (see Fig.8).

’

p [Poise = min(PLy, PUy) 4| Pl = P1y
85| Pyyisy = min(P1y, P1'y) + |P1, — P1/,

where Py, is the grasping point in the vision workspace.

Next the object is placed in a position P2 which is trained relative to the position
P1 shifted with 100 mm on X axis of the base coordinate system of the robot.

In the final step the robot places the object in the position P3 which is trained
relative to the position P1 shifted with 100mm on Y axis of the base coordinate
system of the robot. By knowing the correspondence robot-point—image-point, the
system can compute now the orientation of the vision plane relative to the robot base

Open Architecture for Vision-Based Robot Motion Planning and Control 77

dist(P1,P1’)

Fig. 8 The relationship robot point—vision point

coordinate system, and also the distance which the robot must cover to reach an object
which is placed at a certain distance from the initial point P1 in the image plane.
This can be expressed as follows: for 100 mm travelling length along the X coor-
dinate system (base coordinate system) the object moves in the image P2, — P1,
along the X,; axis, and P2y — P1, along Y,;s; the same travelling length on the Y
coordinate system generates P3; — P1y on X,;s axis, and P3, — P1y on Y, in
the vision workspace. It results also that the vision system is rotated with the angle:

o =atan2(P2y — Ply, P2x — Ply)

toward the base coordinate system. Hence for an object which is recognized in the
image at the location P,, the object will be grasped at the coordinates:

Pro=Po_i+ (P = P + (P — P,)2
~cos(+atan2(P,_y — P1_y, P,y — P1_;)

Py = Po_y+\(P1y = P)? + (P — P,_)?
-sin(e +atan2(P,_y — P1_y, P, x — P1 ;)
Prot = PG_rot + (Pv_rot - Pl_rot)

where Py, Py, Py, are the position coordinates and the rotation of the grasping
point of the object which was located in the vision workspace at the location P,
(Py_xs Py_y, Py_yor); P (PG_x, PG_y, PG_ror) is the grasping point (in the object’s

centre of the mass in the base coordinates system) for the object located in the image
inP1 (P1 , P1,, Pl).

78 T. Borangiu et al.

After the calibration is executed, the object model must be trained; this stage
involves object edges processing in order to obtain the geometrical model of the
object. The grasping position must be also trained in order to validate a collision
free point for accessing the object. The grasping position (for grasping validation)
is defined by two or more rectangular areas placed around the object and linked to
the object frame. These areas represent the projections of the gripper fingerprints on
the image plane and by processing the image colour inside these areas the program
detects the presence of obstacles and can invalidate the grasping position.

These three pieces of information are used for robot motion planning; first the
location of the field of view is used by extracting it from the calibration data, then
the location of the object in the field of view is computed (online) using the object
model and in the last stage the action of grasping the object is validated by using the
grasping model and collision free tests. Experimental results validating the proposed
solution are shown from a robotized ceramic production line (Fig.9).

The experimental application runs two communications threads: a TCP/IP server
and a serial communication thread. Both threads have the same role, they are lis-
tening and if they receive an acquisition request, they initialize the execution of the
AdeptSight sequence of tools (the vision program), returning three numbers specify-
ing the position and orientation of the plate (X, Y in mm, and the angle in degrees).
The position and orientation is specified relative to the calibration object.

S SesputSrFae e AW ey 1

B s
Y e— e T L v Ftuably MaichGuslly Chmlusbly Sysmstysl 1
& U Lo] B o] 01 05967 AEMSaE AEMT) OMIGE DMMISITS 1 0 1

Fig. 9 Real-time locating a ceramic plate for robot motion planning and grasping control

Open Architecture for Vision-Based Robot Motion Planning and Control 79

The requests are sent as ASCII characters, and they are of two types (i—
information for debugging or r—real requests); when the vision server receive a
request the vision sequence is executed, the object is recognized based on its bound-
ary contours, and the values (X, Y and rotation) relative to the initial grasping point
(from the calibration procedure) are computed and sent to the ABB robot.

When the robot receives the three values, it shifts the initial grasping position
(from the calibration) and grasps the plate. The following pseudo-code describes
how the communication is integrated with the vision server [24]:

Open the communication channel (Serial line)
Clear the serial line buffer
Request object coordinates from vision
Read the data streams (X,Y coordinates and rotation)
Transform the coordinates from string to real
Request object coordinates from vision
Read the data streams (X,Y coordinates and rotation)
Transform the coordinates from string to real
/*In order to avoid problems caused by communication errors
the coordinates are sent twice and only if they are the
same at the destination then the position can be computed*/
Verify if the coordinates are the same
IF YES
Compute the grasping position
//The position is computed relative to a predefined
//position pl
Close the communication
ELSE
Repeat the request

The presented image processing system, AdeptSight, is robust, offers generic
robot-vision functions, and can be easily integrated with controllers of other industrial
equipment (robots, measuring machines, ASRS, part feeders). AdeptSight allows a
rapid development of visually planned applications, based on visual tools which
can be combined and configured leading to sequences which can be executed from
external C# applications.

4.2 Multitasking Robot Motion Planning for Object Tracking
on Mobile Scenes

The problem of robot tracking objects of interest moving on conveyor belts and
randomly entering the robot’s dexterous space can be solved by integrating the fol-
lowing devices in a multitasking control structure, implemented on multiprocessor
robot controllers:

e the robot manipulator, tracking a conveyor belt;
e the conveyor belt, driven at constant, regulated speed;
e the vision module, inspecting parts on the conveyor belt.

80 T. Borangiu et al.

Conceptually, the problem is solved by defining a number of user tasks which
attach two types of “robots”: the n—d.o.f. manipulator grasping on-the-fly objects
moving on the conveyor belt, and one m < 3—axis “robot” emulating the conveyor
belt under vision control; m is the number of non-null projections of the conveyor belt
displacement direction on the 3 axes of an orthonormal reference frame (e.g., defined
in the belt tracking robot environment). These user tasks run concurrently with the
internal system tasks of a multitasking belt tracking robot controller, which are
responsible for trajectory generation, axis servoing and resources management [20].

In this respect, the minimum number of tasks to be defined for the tracking problem
is equal to 3:

e Task 1: Dynamic re planning of the destination location (grasping the moving
object) for the robot manipulator.

e Task 2: Continuously moving (driving) the m-axis vision belt. (e.g., m = 1)

e Task 3: Reading once the belt’s location the very moment an object of interest
has been recognised, located and its grasping estimated as collision-free, and then
continuously until the object is effectively picked.

4.2.1 Tasks and Priorities for the Multitasking Robot Motion
Planning Problem

Consider that each control system cycle of the robot is divided into 16 time slices of
one millisecond, the time slices being numbered 0 through 15. A single occurrence
of all 16 time slices is referred to as a major cycle. For a robot system, each of these
cycles corresponds to one output from the trajectory generator to the digital servos. A
number of user tasks, e.g. from O to 6, can be used and configured to suit the needs of
specific applications. Tasks are normally assigned default time slices and priorities
according to the current system configuration [5, 8].

Anexecution cycle is terminated when a STOP instruction is executed, a RETURN
instruction is executed in the top-level program, or the last defined step of the program
is encountered. Tasks are scheduled to run with a specified priority in one or more
time slices. Tasks may have priorities from —1 to 64, and the priorities may be
different in each time slice. The priority meanings are: 1-31 (normal user tasks); 32—
62 (used by robot controller’s device drivers and system tasks); 63 (used by trajectory
generator); 64 (used by the servo).

4.2.2 Scheduling Program Execution Tasks with Simultaneous
Belt Tracking

An analysis of the time slice and priority allocation for the system, and of default user
tasks imposes several requirements for timing and priority assignment of tasks: vision
guided robot planning (“‘object recognition and locating”), and dynamical re planning
of robot destination (“robot tracking the belt”) should always be configured on user

Open Architecture for Vision-Based Robot Motion Planning and Control 81

tasks 0 and/or 1, in “Look-and-Move” interlaced robot motion control applications,
due to the continuous assignment of these two tasks, over the first 13 time slices,
with high priorities [25].

Because vision guidance and motion re planning programs complete their compu-
tation in less than the 13 time slices (0—12), in order to give the chance to conveyor-
associated tasks (“drive” the vision belt, “read” the current position of the vision
belt) to provide the “robot tracking” programs with the necessary position update
information earlier than the slice 13, and to the high-priority trajectory generation
system task to effectively use this updates, a WAIT instruction should be inserted in
the loop-type vision guidance and motion re planning programs of tasks 0 and/or 1.

All time slices are checked, wrapping around from slice 15 to slice O until the
original slice is reached. If no runnable tasks are encountered, a null task executes.
Whenever a 1 ms interval expires, the multitasking OS performs a similar search of
the next time slice. If the next time slice does not contain a runnable task, execution
of the current task continues. If more than one task in the same time slice has the
same priority, they become part of a round-robin scheduling group. Programs that
execute in continuous loops, like vision guidance and motion re planning for belt
tracking, should generally execute a WAIT instruction occasionally (for example,
once through each loop execution). This should not be done, however, if timing
considerations for the tracking application preclude such execution delays in some
stages of vision and motion processing [6, 26].

As previously stated, the problem of conveyor tracking with vision guiding for
moving part identification and locating requires the definition of three user tasks, to
which the following programs were associated:

1. Task 1: program “track” executes in this task, withrobot 1 (e.g., SCARA) selected.
This program has two main functions, carried out in a 2—stage sequence:

STAGE 1: Continuous checking whether an object travelling on the conveyor
belt (it will be called in the sequel vision belt) entered the field of
view of the camera and the reachable workspace of the SCARA
robot. If such an event occurs, the vision is activated to identify
whether the object is of interest and to locate it. Processing on this
stage terminates with the computation of the end-effector’s location
which would move the SCARA robot in the object picking location
evaluated once by vision.

STAGE 2: Continuously re planning the end-effector’s location, computed
when the object of interest was located by vision, by consuming
the belt position data produced by encoder reads in the program
“read” which executes on task 3, and by dynamically altering the
robot’s target in the current motion segment.

2. Task 2: program “drive” executes in this task, with robot 2 ((m = 1)-axis robot,
i.e. the conveyor belt) selected. This program moves the belt in linear displace-
ment increments, at a sufficiently high rate to provide a jerk-free, continuous belt
motion. This program executes in stages 1 and 2 previously defined.

82 T. Borangiu et al.

3. Task 3: program “read” executes in this task, with robot 2 selected. This program
executes differently in the two stages of the application:

STAGE 1: Executes a single time upon receiving an input signal (“la_reco”,
e.g. for “LA” objects of interest) from vision in task 1, confirming
the recognition and successful locating of an “LA” part. In response,
“drive” reads the instantaneous belt position, which from now on
will be used as an offset for the position updates.

STAGE 2: Continuously reads the belt position, upon a request (“info” in the
example of the first case study) issued by “track” in task 1, when it
starts its dynamic target re planning process.

From the three user tasks, the default priority assignment is maintained. This leads
to the following priority analysis for a major cycle:

e Task 1 has the highest priority in time slices 0—12 (inclusively), with values of 19,
21,9 and 11.

e Task 2 has the highest priority (20) in a single time slice: 13.

e Task 3 never detains a position of highest priority with respect to tasks 1 and 2.

e The three tasks become part of a round-robin group as follows:

— tasks 2 and 3 in slices 0—12 inclusively,
— tasks 1, 2 and 3 in slices 14 and 15.

Because tasks 2 and 3 are in more than one round-robin group on different slices,
then all three tasks in the corresponding pairs of different slices appear to be in a big
group. This property can cause, in general, a task to be run in a slice one does not
expect; however, this risk is eliminated for task 1 in STAGE 2 since it will never be
runnable in slices 14 and 15 (after generating a WAIT).

As for tasks 2 and 3, they cannot generate this risk in the remaining slices
from 0-12, after “track” generates the WAIT, because they will switch continuously
between them at the beginning of each new time slice.

As aresult of the priority scan and scheduling, the programs in the three user tasks
execute as follows:

e STAGE l—vision is processing, the SCARA robot is not moving and no WAIT is
issued by task 1 (Fig. 10):

e STAGE 2—vision is not processing, the SCARA robot is moving and WAIT
commands are issued in task 1 by the “track” program after each re planning of
the end-effector’s target destination within a V4 major cycle of 16 ms:

— Task 1 runs in slices i — j,i < j,i > 0, j < 12, (when it detains the highest
priority), i.e., starting with the time moment when it is authorised to run by the
highest-priority system tasks “trajectory generation” and “servo” (in slice i), and
executing until it accesses the position update provided by task 3 from the most
recent belt encoder read, alters the last computed end-effector destination and
issues a WAIT (in slice j), to give the trajectory generator a chance to execute.

Open Architecture for Vision-Based Robot Motion Planning and Control 83

207 task 1 running "track", task priority,>=9
10T RR,RR

before request for
belt offset read
psm== after request for

I pr— 1

o) o
'g 20 T task 2 running "drive", task priority =20 belt offset read
2 104 RR RR
a.
g [refioteaiamaineieamanaspaceasnsinemm s)ofore request
s
)
220+ "4 after request
E 20 task 3 running "read", task priority =15 % q

10 1 RRRR

[Em eI SN RN RN NN IR RN RN IR IR RN befgre request

=24 after request
01112 1 millisecond time slices 12113114115

[¢——— One major system cycle ————»

==r = task waiting
== = task running

RR = round-robin member selection

Fig. 10 Priority assignment and tasks running in STAGE 1 of vision guidance for motion planning
in the belt tracking problem

— Task 2 runs: in slices (j + 1) — 12 switching alternatively with task 3 whenever
it is selected as the member of the round-robin group following task 3 that run
most recently, in slice 13 (it detains the highest priority), and in slice 15 (it is
member of the round-robin group following task 3 that run more recently—in
slice 14). Task 2 runs always exactly for 1 ms whenever selected, so that the
round-robin group scanning authorises task 3 to run always at the beginning of
the next time slice.

— Task 3 runs in slices (j + 1) — 12 switching alternatively with task 2 when-ever
it is selected as the member of the round-robin group following task 2 that run
most recently, and in slice 14 (it is member of the round-robin group following
task 2 that run more recently—in slice 13). The task 3 runs, whenever selected,
for less than 1 ms and issues a RELEASE “to anyone” command.

4.2.3 Dynamically Altering Belt Locations as Robot Motion References

The three previously discussed user tasks, when runnable and selected by the system’s
task scheduler, attach respectively the robots:

e Task 1: robot 1—a SCARA-type robot (e.g. Adept Cobra 600) is considered in
this case

e Task 2, 3: robot 2—the “vision conveyor belt” of a flexible feeding system is
considered.

84 T. Borangiu et al.

Program “track” executing in task 1 has two distinct timing aspects: during
STAGE 1, “track” waits first the occurrence of the on-off transition of a signal from
the photocell, indicating that an object passed over the sensor and will enter the field
of view of the camera. Then, after waiting for a period of time set up function of the
belt’s speed, “track” commands the vision system to acquire an image, identify an
object of interest and locate it [27, 28].

During STAGE 2, “track” alters continuously, once per each major 16 ms sys-
tem cycle, the target location of the end-effector, part.loc, that was computed (when
one “LA”-part was located by vision and returned in the vis.loc transformation) by
composing the following relative transformations (the ““:” character stands for com-
position)

part.loc=to.cam[1l]:vis.loc:grip.la

Here grip.la is the off line learned grasping transformation for the class of “LA”
objects. The updating of the end-effector target location for picking-on-the-fly “LA”
objects according to a predefined grasping style uses the V4 operation:

ALTER () Dx,Dy,Dz,Rx,Ry,Rz

which specifies the magnitude of the real-time path modification that is to be applied
to the robot path during the next trajectory computation (Dx, Dy, Dz/Rx, Ry, Rz
are the translations/ rotations respectively along the X, Y, Z axes).

This operation is executed by “track” in task 1 that is controlling the robot 1
(SCARA) in alter mode, enabled by the ALTON command. When alter mode is
enabled, this instruction should be executed once during each trajectory cycle. The
stopping decision is taken in “track” by using the STATE (select) function,
which returns information about the state of robot 1 (“Motion stopped at planned
location”) selected by task 1 executing the ALTER loop. The ALTOFF operation
was used to terminate real-time path-modification mode (alter mode) [3, 10, 14].

Program “drive” executing in task 2 has a unique timing aspect in both STAGES 1
and 2: when activated by the main program, it issues continuously motion commands
for the individual joint number 1 of robot 2—the vision belt.

Program “read” executing in task 3 evaluates the current motion of robot 2—the
vision belt along its single axis, in two different timing modes. During STAGE 1,
upon receiving from task 1 the request 1a_reco (an instance of “LA” was recog-
nised) to compute the belt’s offset, reads the current robot 2 location and extracts the
component along Y.

This invariant offset component, read when the “LA” was successfully located by
vision and the grasping authorised as collision-free, will be further used in STAGE
2 to estimate the updates of the yv_of f motion, to alter the SCARA robot’s target
location along the Y axis.

The program below shows how the STATE function is used to stop the con-
tinuous updating of the end-effector’s target location by altering at every major
cycle the position along the Y axis. The altering loop will be exit when motion
stopped at planned location, i.e. when the robot’s gripper, moving to track the part

Open Architecture for Vision-Based Robot Motion Planning and Control 85

travelling on the conveyor belt, arrives in the imposed picking position relative to
the moving part.

ALTON () 2 ;Enable altering mode

;The robot is commanded to move towards the grasping position
;computed when the object was VLOCATEd by vision.

MOVES part.loc
WHILE STATE(2)<>2 DO

;While the robot is far from the moving target (motion not

;completed at planned location...
ALTER(),-pulse.to.mm*y_off

;Continuously alter the target grasping location
WAIT

;Wait for the next major time cycle to give the trajectory

;generator a chance to execute

END

ALTOFF ;Disable altering mode

CLOSETI ;Robot picks the tracked object
DEPARTS ;Robot exits the belt tracking mode

MOVES place
;Robot moves towards the fixed object-placing location place

In the example presented, the ALTOFF operation has been used to terminate
real-time path-modification mode (alter mode). The instruction suspends program
execution until any previous robot motion has been completed (similarly to a BREAK
instruction), and then terminates real-time path-modification mode.

After alter mode terminates, the robot is left at a final location that reflects both
the destination of the last robot motion and the total AL TER correction that has been
applied [13, 17, 29].

The cooperation between the tasks on which run “track”, “drive” and “read” is
shown in Fig. 11.

86 T. Borangiu et al.

Enable belt drive

Disable by
end application

Task
Scheduler
trajectory Vo
generator
. Task 2
Major sys- —_—
tem cycle/

N Select Round-robin

3 “~. s new task switched selection
Task 1 k ’

Image Task 3

acquisition
Vision
Processing Disable by
ALTOFF

info

Fig. 11 Cooperation between tasks in the robot-vision belt tracking problem

5 Experimental Results and Conclusions

Visual robot motion planning allows relaxation of the numerous constraints which
arise when setting up a manufacturing environment, as well as the need for high-
precision material transportation and presentation devices, such as conveyors, vibrat-
ing bowls, a.o. The look-and-move motion planning methodology offers a robust
solution to create workstations with components from different manufacturers: image
sensors and cameras, vision software, robot manipulators, shop floor conveyors and
other mechanical devices.

The open architecture system for vision-based robot motion planning application
was developed in C# and managed the robot-vision communication and sequence exe-
cution. Also the camera-robot calibration procedure and the learning of the grasping
model learning were developed in the same open system concept based on standard
communication means [30, 31].

Figure 12 shows a screen capture of the open architecture robot-vision user appli-
cation interface. The application consists in precision locating with AdeptSight of

Open Architecture for Vision-Based Robot Motion Planning and Control 87

2 Inspectie Vizuala

o =T = Al @ @ (TR & @ [
DOHEZupEOo B e EAXI IR N
Name Status | Time A I T

P New Sequence Done 5344ms

System Devices

Controlers | Belts Cameras

BV 5% DI &
: Visio.. | Rob..

SL.
A01533000) (e %A | |
@ i

" o

L 0,000 0,000
AdeptSight 2.0.2.7 ready. 20 tooll) loaded.
[Stoplistenng | [Exscuta Inspectia |
Nume [T TranslatieXt | 25.61 [Mod Continuu
Tenp | 5362ms Translatie | 20.02 Ry 2131
Scalwe/1.00 Rosie [1247 v 148 _ (F2] (F2] [Cea]
% [
X |82
v
i (oo)
¥ |52
scal
A [1089

Fig. 12 Screen of the application interface for high-precision plate locating and vision-based robot
motion planning for stationary plate grasping

ceramic plates travelling on a conveyor belt and guiding the motion of an ABB
robot with help of the location data sent via standard communication channels and
interfaces.

The motion control method presented above for robots picking on-the-fly objects
on moving scenes was implemented in the V4 robot programming environment
with AdeptSight vision extension, and tested on a robot vision platform containing
one Adept Cobra 600 SCARA-type manipulator, a 3-belt flexible feeding conveyor
Adept Flex Feeder 250 and a stationary, down looking matrix camera Panasonic GP
MF 650 inspecting the vision belt with backlighting [10]. The vision belt on which
parts are travelling and are viewed by a fixed, down looking camera was positioned
parallel to the Y(axis of the manipulator, for a convenient robot access within a
window of 460 mm. Experiments have been carried out at several speed values of
the conveyor belt, in the range from 5 to 180 mm/s.

Table 1 shows the correspondence between the belt speeds and the maximum time
intervals from the visual detection of a part up to its effective grasping.

It can be observed that at the maximal speed of 180 mm/s, the robot-vision mul-
titasking controller is still able to direct the SCARA-type manipulator to access
visually detected, recognised and located objects.

88 T. Borangiu et al.

Table 1 Correspondence Belt speed (mm/sec) s |10 [30 [50 [100 [180
between belt speed and part 16115120 123 123

access time

=
~

Grasping time (max) (sec)

In the experiment reported in Chap. 4.1, the vision library was successfully inter-
faced to an ABB 1570 vertical articulated robot.

The novelty of the research consist in developing an open architecture system
for vision-based robot motion planning, allowing to use closed vision systems (here
AdeptSight), that can be integrated with proprietary systems (for example AdeptSight
has native functions which can be integrated only with Adept robots), with any other
devices (robots, machines, feeders, a.0.) using standard communication mechanisms
(serial line or Ethernet). Another novel contribution is the multitasking solution for
picking objects in motion from any type of conveyor modelled as a m < 3 degree of
freedom Cartesian robot.

References

1. Siciliano B, Sciavicco L, Villani L, Oriolo G (2010) Robotics, modelling, planning and control.
Springer, Berlin
2. Borangiu Th, Ecaterina O, Manu M (2000) Multi-processor design of nonlinear robust motion
control for rigid robots. Lecture notes in computer science, vol 1798. Springer, Berlin, pp
224-238
3. Borangiu Th (2002) Advanced robot motion control. Romanian Academy Press, Bucharest
4. Braun BM, Starr GP, Wood JE, Lumia R (2004) A framework for implementing cooperative
motion on industrial controllers. IEEE Trans Robot Autom 20:583-589
5. Gueaieb W, Karray F, Al-Sharhan S (2003) A robust adaptive fuzzy position/force control
scheme for cooperative manipulators. IEEE Trans Control Syst Technol 11:516-528
6. Battilotti S, Lanari L (1996) Tracking with disturbance attenuation for rigid robots. In: Pro-
ceedings of IEEE international conference on robot automation, Minneapolis, April 1996, pp
1570-1583
7. Borangiu Th, Anton F, Dumitrache A (2010) Robot programming. AGIR Publishing House,
Bucharest
8. Kawasaki H, Ueki S, Ito S (2006) Decentralized adaptive coordinated control of multiple robot
arms without using a force sensor. Automatica 42:481-488
9. Borangiu Th, Ionescu F, Manu M (2003) Visual servoing in robot motion control. In: Pro-
ceedings of 7th multi-conference on systemics, cybernetics and informatics SCI’03. Orlando,
27-30 July 2003, pp 987-992
10. Hutchinson S, Hager G, Corke P (1996) A tutorial on visual servo control. IEEE Trans Robot
Autom 12:6561-6670
11. Xie WF, Li Z, Tu XW, Perron C (2009) Switching control of image based visual servoing with
laser pointer in robotic assembly systems. IEEE Trans Ind Electron 520-529
12. Mendes JM, Restivo F, Leitao P, Colombo A (2010) Injecting service-orientation into multi-
agent systems in industrial automation. Lecture notes in computer science, vol 6114, pp 313—
320
13. Allotta B, Fioravanti D (2005) 3D motion planning for image-based visual servoing tasks. In:
Proceedings of the IEEE international conference on robotics and automation, Barcelona, pp
2173-2178

http://dx.doi.org/10.1007/978-3-319-14705-5_4

Open Architecture for Vision-Based Robot Motion Planning and Control 89

14.

15.

16.

17.
18.
19.
20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Nelson BJ, Papanikoloupoulos P, Khosla PK (1996) Robotic visual servoing and robotic assem-
bly tasks. IEEE Robot Autom Mag 23:97-102

Lowe DG (2004) Distinctive image features from scale-invariant keypoints. J Comput Vis
60(2):91-110

Hossu A, Borangiu Th, Croicu A (1995) Robot Visionpro machine vision software for industrial
training and applications. Version 2.2, Cat. #100062, Amsterdam, Tel Aviv, New Jersey, Eshed
Robotec

Wilson W, Hulls C, Bell G (2006) Relative end-effector control using Cartesian position-based
visual servoing. IEEE Trans Robot Autom 12:684-696

Miyabe T, Konno A, Uchiyama M, Yamano M (2004) An approach toward an automated object
retrieval operation with a two-arm flexible manipulator. Int J Robot Res 23:275-291

ABB, Technical Reference Manual, RAPID Instructions, Functions, and Data types, 2004
Adept Reference Guide, V+ Programming, Adept Technology Inc. 2011

Bilen H, Hocaoglu M, Unel U, Sabanovic A (2012) Developing robust vision modules for
microsystems applications. Mach Vis Appl 23(1):25-42

Borangiu Th, Ivanescu N, Brotac S (2002) An analytical method for visual robot -object
calibration. In: Proceedings of the 7th international workshop robotics in Alpe-Adria-Danube
region RAAD’98. Balatonfiired, pp 149-154

Chaumette F, Hutchinson S (2006) Visual servo control. Part I: basic approaches. IEEE Robot
Autom Mag 13(4):82-90

Martinez-Rosas JC, Arteaga MA, Castillo-Sanchez A (2006) Decentralized control of cooper-
ative robots without velocity-force measurements. Automatica 42:329-336

Gudifo-Lau J, Arteaga MA (2006) Dynamic model, control and simulation of cooperative
robots: a case study, mobile robots, moving intelligence. ARS/pIV

Chaumette F, Hutchinson S (2005) A general and useful set of features for visual servoing.
IEEE Trans Robot Autom 21:1116-1127

Lippiello V, Siciliano B, Villani L (2007) Position-based visual servoing in industrial multirobot
cells using a hybrid camera configuration. IEEE Trans Robot 23:73-86

Borangiu Th (2004) Intelligent image processing in robotics and manufacturing. Romanian
Academy Press, Bucharest

Corke P, Hutchinson S (2001) A new partitioned approach to image-based visual servo control.
IEEE Trans Robot Autom 17:507-515

Lazar C, Burlacu A (2009) Visual servoing of robot manipulators using model-based predictive
control. In: Proceedings of the 7th IEEE international conference on industrial informatics,
Cardiff, pp 690-695

Lazar C, Burlacu A, Copot C (2011) Predictive control architecture for visual servoing of robot
manipulators. In: Proceedings of the 18th IFAC world congress, Milano, pp 9464-9469

Grasping and Manipulation of Unknown
Objects Based on Visual and Tactile
Feedback

Robert Haschke

Abstract The sense of touch allows humans and higher animals to perform
coordinated and efficient interactions within their environment. Recently, tactile sen-
sor arrays providing high force, spatial, and temporal resolution became available
for robotics, which allows us to consider new control strategies to exploit this impor-
tant and valuable sensory channel for grasping and manipulation tasks. Successful
dexterous manipulation strongly depends on tight feedback loops integrating propri-
oceptive, visual, and tactile feedback. We introduce a framework for tactile servoing
that can realize specific tactile interaction patterns, for example to establish and main-
tain contact (grasping) or to explore and manipulate objects. We demonstrate and
evaluate the capabilities of the proposed control framework in a series of preliminary
experiments employing a 16 x 16 tactile sensor array attached to a Kuka LWR arm
as a large fingertip.

Keywords Grasping - Tactile servoing + Online motion planning

1 Introduction

The sense of touch allows humans to perform coordinated and efficient interactions
within their environment. Without the sense of touch, subjects have severe difficulties
maintaining a stable grasp or performing a complex action such as lightning matches
[1, 2]. Also in robot applications, lacking tactile feedback results in loosing an ini-
tially grasped object or failing to robustly carry out manipulation tasks [3]. In recent
years, the resolution and sensitivity of tactile sensors only sufficed for basic force
feedback during blind grasping [4]. However, tactile sensor arrays providing high
spatial and temporal resolution as well as high sensitivity [5, 6] emerged recently,
allowing for more advanced control methods involving tactile feedback too.

R. Haschke ()

Cognitive Interaction Technology Excellence Cluster (CITEC),
Bielefeld University, Inspiration 1, 33619 Bielefeld, Germany
e-mail: rhaschke @techfak.uni-bielefeld.de

© Springer International Publishing Switzerland 2015 91
G. Carbone and F. Gomez-Bravo (eds.), Motion and Operation Planning

of Robotic Systems, Mechanisms and Machine Science 29,

DOI 10.1007/978-3-319-14705-5_4

92 R. Haschke

Such control approaches—which we denote as tactile servoing in accordance
to corresponding control approaches involving direct visual feedback—require
advanced tactile perception methods and their integration into control programs for
direct robot control. Tactile servoing includes important tasks like sliding a finger tip
along an object’s surface, tracking specific surface structures like ridges, searching
for distinctive tactile patterns, or exploring the object shape by groping. Most of
these tasks are essential for both in-hand object manipulation [7], and haptic object
identification [8].

Drawing on ideas for visual servoing and applying image processing algorithms
to the tactile force image provided by modern tactile sensor arrays, it is possible to
extract basic tactile features in real time and employ them for robot control. The
challenging mission is to find generic features, which not only work in specific hard-
coded control scenarios on a specific type of tactile sensor, but that generalize to a
rich set of control tasks and sensor types.

We argue for a unified and open control framework that can cover many grasping
and manipulation tasks including tactile exploration. The proposed control approach
facilitates the exploitation of task symmetries to unleash redundancies which can be
efficiently utilized by subordinated tasks. Different, challenging tasks can be eas-
ily composed from a set of basic control primitives without the need for a detailed
situation modeling (object and hand shape, friction properties, etc.), thus providing
the foundation to yield robust manipulation skills also in unknown and unstructured
environments.

The remaining chapter is organized as follows: In the next section we introduce
the general concept of the control basis framework and discuss how efficient local
motion generation methods can reduce the need for explicit planning in grasping of
unknown objects. The subsequent Sect.3 will introduce some recent tactile sensor
developments and vision-based feature extraction methods to yield tactile features,
which are at the basis of four tactile servoing control primitives. Finally, in Sect.4 we
describe and evaluate some tactile exploration tasks that impressively demonstrate
the power of the proposed control framework.

2 Planning-Less Grasping in the Control Basis Framework

Grupen et al. first developed the idea of the control basis framework (CBF), which
allows to realize complex tasks by composition of several basic controllers [9, 10].
Each of those controllers realizes resolved motion rate control, mapping updates
of task control variables Ax to joint angle updates Aq of the robot. An important
key idea was to stack controllers by priority allowing a subordinate controller to
operate in the null-space of a higher-priority controller only, which can be easily
achieved using appropriate null-space projections. Given any nonlinear relationship
x(q) between joint and task-space variables, the relation of their velocities at any
point ¢ in time is linear and given as

X(1) = J(q() - q(1), (D

Grasping and Manipulation of Unknown Objects ... 93

where Jj;(q) = dx;/9q; is the task Jacobian at time . Then, the solution to realize
three priority-ordered task space motions x|, X2, X3 looks like this:

q=q; + Ni(q + N2q3) ()
= Ji (@x1 + N1 (J) (@)% + Ny I (@)%3) (3)

where Ji+ denotes the Moore-Penrose pseudoinverse of J; and N; = 1—J*J denotes
the corresponding null-space projector of task i =1, 2, 3.

To work in practice, it’s important, that every controller’s null-space is rich enough
to accommodate lower-priority motions, i.e. that there is enough redundancy. How-
ever, classical motion planning approaches attempt to control the end-effector motion
in all six degrees of freedom (dof) and thus do not leave the necessary redundancy.
But, exploiting the inherent symmetry of many everyday tasks, we can restrict our-
selves to a few task-relevant dofs and thus gain the required redundancy.

As a prominent example, consider the grasping of a spherical object. Nowadays
grasp planning approaches attempt to generate and evaluate grasps that approach the
sphere from all possible directions [11]. However, in this particular task, it’s only
important to drive the hand towards the sphere—no matter from which direction.
This reduced task description only consumes a single dof, namely the hand-object-
distance, and frees up all other dofs. The resulting task-space motion X is a straight-
line towards the goal, much like in classical Cartesian control. However, the redundant
space at a given goal distance is the complete sphere around the target and any null
space motion is automatically projected onto this sphere. In this manner, we can easily
approach spherical objects for grasping from any direction, without the need to pre-
compute a multitude of feasible grasps in advance. The corresponding task Jacobian
Jjj| can be easily computed from the Jacobian J of the standard forward transform:

Ji = (X — Xgoal)' - J 4)

Similarly, grasping a cylindrical object, like a bottle, only requires to align the hand
axis with the object axis—the orientation angle around this axis can freely be chosen
[12]. To allow even more flexibility, one may specify a task-space interval instead
of a unique target value [13]. Within the original control basis framework, Platt et
al. also propose more abstract controllers, e.g. to maintain force closure, to optimize
grasp quality, manipulability, or visibility [14].

2.1 Collision Avoidance

In the context of motion planning, an important subordinate control task is collision
and joint-limit avoidance. Joint limits can be easily avoided minimizing a quadratic
or higher-order polynomial function [12, 15]:

Hy = wi(qi—q" wi=@"™ —q"™")

94 R. Haschke

where q"' defines a reference pose, e.g. in the middle of the joint range, and the w;’s
weight the contribution of individual joints according to their overall motion range.

Local collision avoidance is achieved by a repelling force field originating from
each object. To this end, Sugiura [16] proposed to minimize a quadratic cost function
defined on the distance dj, = ||p1 — p2|| between the two closest points p; and p; on
the robot and the obstacle:

n(dp—dp)? dp<dp
0 otherwise

He, (pl) p2) = (6)

Here, dp acts as a distance threshold below which the force field becomes active and
n is a gain parameter. The gradient of this cost function directly serves as a joint-level
control target and can be easily computed in terms of the body point Jacobians J,
by applying the chain rule:

dcq = —VgHea = =20 (1 — dp/dp) (Jp, — Jp,)" (P1 — P2).)

Thus we yield straight-line task-space motions (e.g. of the end-effector in Cartesian
space), while the redundancy is exploited to circumvent obstacles as schematically
shown in Fig. 1, left. To allow more flexible obstacle avoidance, Behnisch [17] pro-
posed a relaxed motion control scheme, which allows deviations from straight-line
motions, if the robot gets too close to obstacles:

q=J (&= BXea) — N(VHea + VHg). 8)

Here, additionally to the null-space motion, which minimizes a superposition of both
cost functions Hq and H,,, an obstacle avoidance motion X, is directly allowed in
task-space as well. This contribution is determined by projecting the cost gradient
(7) to the task space:

Xeq = J \% Heq. 9

Fig.1 Goal-directed task-space motion with collision avoidance. Left restricting avoidance motions
to redundant space yields a straight line motion of the end-effector. Middle using relaxed motion
control (8), the trajectory more strongly avoids the obstacle for larger weights 8, but does not
converge to the target anymore. Right dynamic adaption of S achieves both goals, target reaching
and obstacle avoidance

Grasping and Manipulation of Unknown Objects ... 95

Choosing different values of the weight 8, we can smoothly adjust the importance
of collision avoidance and target reaching as shown in Fig. 1, middle. However,
because both contributions might be conflicting, the target is not always reached.
To prevent this, we can ensure, that the goal-directed motion always dominates the
collision avoidance motion with a margin ¢ by dynamically adapting 8, such that the
following condition is fulfilled:

IX]l — & = BllXcall- (10)

The resulting motion is shown in Fig. 1, right. Please note, that this approach—as
a local method—is prone to get stuck in local minima, if a straight target-reaching
motion is not collision-free. To avoid this failure, a deliberative planning method
at a global level is required. To this end, Behnisch [17] proposed to augment the
local motion generation with a globally acting, sampling-based planning method,
that, however, searches within the low-dimensional task-space instead of the full
joint space. This sharing of workload between a local, reactive planner and a global,
deliberative planner turned out to be very successful and computationally efficient.

2.2 Vision-Based Grasp Selection

Employing the outlined control basis framework to realize approaching motions for
grasping and exploiting the passive compliance of modern, often underactuated hands
[18, 19], grasp planning is extremely simplified: The fingers will automatically wrap
around the object due to the inherent compliance of the hand. Thus, the only task for
grasp planning is to choose a suitable grasp prototype and to align the hand to the
object during the approach phase.

As already observed by Cutkosky, humans employ only a very small number
of grasp postures that can be roughly separated into power and precision grasps.
Cutkosky’s taxonomy then further subdivides grasps by the shape of the object [20].
From our experience it suffices to use the three basic grasp prototypes shown in
Fig. 2 (power, precision, and pincer grasp). To chose an appropriate grasp for a given

precision
power grasp grasp [l pincer grasp

Fig. 2 Three basic grasp prototypes used for the Shadow Dexterous Hand. Depending on object
size, estimated weight, and envisioned manipulation task we choose from a power grasp, a precision
grasp, and a pincer grasp (left to right)

96 R. Haschke

object, we employ a real-time, model-free scene segmentation method [21], which
yields individual point clouds for all objects within the scene. Into each point cloud,
a superquadrics model is fitted that captures the coarse shape of the object, smoothly
varying between sphere, ellipsoid, cylinder, and box [22]. This model provides an
estimation of the position and orientation as well as the coarse size and shape of
the object. This information is utilized on the one hand to chose the grasp prototype
and on the other hand to setup an appropriate approaching controller, utilizing the
symmetries inherent to all recognized object shapes. A video illustrating the seg-
mentation capabilities and the achieved grasping skills is available at youtube [22].

3 Tactile Servoing

In order to extend traditional grasp and manipulation planning approaches beyond a
mere trajectory-centric view towards robust closed-loop controllers also integrating
multi-modal feedback from proprioception, vision, and tactile sensing, in the follow-
ing we discuss how the control basis framework (CBF) can be augmented by tactile
servoing controllers. The main idea of these controllers is to define an inverted task
Jacobian Js_1 that directly maps errors in the tactile feature vector onto a suitable
Cartesian velocity twist V of the sensor frame. Subsequently we employ the power
of CBF [23] to realize the computed sensor frame motion with appropriate joint
motions. However, before looking into the details of these control primitives, we
first review some recent developments in tactile sensing and discuss, which tactile
features can be extracted from latest tactile sensing arrays.

3.1 High Resolution Tactile Sensing

In the past decades tactile sensors were developed exploiting a variety of physical
principles—ranging from piezo-resistive or capacitive to optical or ultrasonic effects
(cf. Dahiya et al. [24] for a compact review). The BioTac® sensor can be considered a
breakthrough in tactile sensing, integrating high-frequency temperature and pressure
sensing with a grid of electrodes to resolve the point of contact as well as normal
and shear forces [25]. Analyzing high-frequency vibrations induced by slip-stick
transitions, the sensor is able to detect incipient slippage and to distinguish various
materials showing characteristic vibration patterns [26, 27].

Independently, Schiirmann et al. developed a modular sensor design tailored
towards high-frequency sensing for slip detection too, but also providing a high
spatial resolution for normal force sensing (on an array of 16 x 16 tactels spaced
at S5mm) at the high frame rate of 1.9kHz. Employing a multilayer perceptron net-
work, trained to predict slip velocities from Fourier coefficients of the tactile time
series, they were able to adjust the required grasping force to stably hold an object

Grasping and Manipulation of Unknown Objects ... 97

without knowledge about its weight or friction properties: Every time, when incipient
slippage is detected, the grasping force is increased by a fixed amount. Otherwise, it
is exponentially decaying to minimize the applied contact forces [28].

While these two sensors provide excellent sensitivity to high-frequency, small
amplitude vibrations, they are both rather bulky and not suited to be integrated into
human-sized robotic fingertips. Although there exists an adaptation of the BioTac®
sensor to the anthropomorphic Shadow Dexterous Hand™ [29], this integration
design removes the distal finger joint, which is important in various manipulation
tasks. Utilizing a new technology to realize 3D-shaped PCBs, Zenker et al. [30]
miniaturized the tactile sensor array, integrating 12 tactels and the measurement
electronics within a fingertip-shaped sensor-electrode that exactly matches the size
of the robotic fingertip (cf. Fig. 3).

All these sensors are rather rigid and thus not suitable to be worn by a human.
In order to measure interaction forces between the human hand and a manipulated
object too, a more flexible sensor hardware is required. A first approach into this
direction is the tactile glove developed by Biischer et al. [31] which is composed
from conductive and piezo-resistive fabrics layers. In contrast to previous attempts
to measure interaction forces, utilizing instrumented objects [32, 33], the sensorized
glove allows to measure tactile interaction patterns with arbitrary objects. Its low
construction height as well as the flexibility and stretchability of the fabrics, make
this sensor concept well suited to cover larger parts of robots too, e.g. to yield a
tactile-sensitive skin.

Given their high data frame rates, all sensor designs open up the opportunity to
be employed for closed-loop robot control, thus for the first time offering large-scale
reactivity to touch comparable to human sensitivity. Looking into the literature, only
a very few approaches exist that directly utilize tactile sensor information for control,
e.g. avery early [34] or a more recent one [35] on tactile contour tracking. However, a
generic tactile servoing framework allowing to achieve a multitude of tasks from the
composition of simple, basic controllers is missing so far. In the following sections we
will get a glimpse on the enormous potential that can be unleashed when combining
concepts from the control basis framework with tactile sensor information, thus
lifting grasping and manipulation skills for robots to the next level of robustness and
dexterity.

Fig. 3 Recent tactile sensors from Bielefeld University. From left to right a modular, flat 16 x 16
tactile sensor array, a 3D shaped tactile fingertip suitable for the Shadow Robot Hand, and a flexible
tactile glove manufactured from conductive fabrics

08 R. Haschke

Fig. 4 Sensor characteristics 4000 P ——
of all 256 tactels (and an sso0 b R

individual one—red solid

line) as acquired on a 3000 |

calibration bench
2500 £

2000 £ [

Sensor Output [raw]

1500)
1000

500 F

Force [N]

3.2 Feature Extraction from Tactile Images

Many tactile sensor designs propose an array of tactile sensing elements (tactels)
providing normal force information [6, 36, 37] for each element. Sometimes it is
also possible to compute contact force directions from this information [37]. Most
array structures also have a reasonable spatial resolution to allow for an explicit
control of the tactile force pattern sensed in a contact region. As a consequence, in
our control framework, we assume the availability of a tactile sensor array providing
a tactile image of normal force values measured by individual tactels.

Particularly, the device employed in our experiments is the 16 x 16 sensor array
depicted in Fig. 3, left. This sensor exploits the piezo-resistive sensing principle, mea-
suring changes in resistance of a conductive foam due to an applied force. The analog
measurement of each individual tactel is converted to a 12bit digital value covering
a pressure range of 0.1-10kPa.! Due to varying local conductive properties of the
foam, every tactel has a distinguished, squashed and noisy sensor characteristics as
shown in Fig. 4. To obtain a coarse force calibration, the characteristic measurement
function of each individual tactel is inverted in its linear range.

The intended tactile servoing tasks aim for controlling (a) the contact position on
the fingertip, (b) the contact force, and (c) the orientation of an object edge relative
to the sensor array. Hence, we propose feature extraction methods to provide the
current values of these control variables.

As a first processing step, the contact region on the sensor is identified, which
typically extends over several tactels due to the softness of the sensor foam. To
this end, we employ connected component analysis [38], well known from image
processing, to extract all connected regions in the binarized tactile image and choose
the largest one as the considered contact region R—neglecting all smaller regions
as originating from noise or spurious contacts. The binarization threshold is chosen
rather small, just above the noise level, to consider as much tactile information as

IThe sensor’s sensitivity and force range can be adjusted to the task. Here, we have chosen the
characteristics to provide a linear range from 0.1-1kPa.

Grasping and Manipulation of Unknown Objects ... 99

Fig. 5 Estimated (red) and 5
expected (green) contact _ /
position (COP) of a € 4 i
2 mm-diameter probe tip E

(S 3 Z‘BH—WH-

5 L

g et

32 v

©

3

,—g 1

calculated position —+—
) real pqsition .

0 . 1
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

real position [mm]

possible. Subsequently, the overall contact (normal) force f is determined as the sum
of forces f;; within the contact region and the contact position ¢ as the force-weighted
center of pressure (COP) of R:

=206 ce=r"> fic (11)

ijeR ijeR

where c;; are the discrete coordinates of the tactels on the sensor surface. Due to the
averaging effect from multiple tactels composing a contact region, we obtain a sub-
tactel resolution for the contact position as illustrated in Fig. 5. In this experiment a
probe tip, 2 mm in diameter, was moved across the sensor from one tactel to another,
i.e. about a distance of 5mm. At every point, the estimated and real probe position
(obtained from the robot’s end-effector pose) are compared.

Usually, we want to control the contact pressure instead of the overall contact
force. Considering manipulation of fragile objects, like an egg, it is the local pressure
that should be limited to not damage the object. To obtain a pressure value, we
normalize the overall measured force by the size of the contact region (measured as
the number of pixels in R):

p= 5 12)

To extract the orientation of an object edge that maps onto a line-shaped contact
region, we utilize the Hough transform, also well known from image processing [39].

3.3 Tactile Control Primitives

The proposed tactile servoing controller aims at realizing sliding and rolling motions
about the contact point while maintaining a specified normal contact force during
manipulation. Dependent on the actual task at hand, specific control primitives can
be selectively turned on or off. Additionally to this purely tactile-driven motion,

100 R. Haschke

an external task planner can provide a motion component V&', which is a twist
expressed in terms of the sensor frame O;. This motion component allows to realize
externally controlled tactile object exploration, e.g. to follow an object edge or to
run the sensor over the whole object surface as detailed in the experimental Sect. 4.

The general control scheme of our proposed controller is depicted in Fig. 6. The
control cycle starts by computing the deviation of the current tactile feature vector
f from the targeted one. This error is fed into PID-type controllers, acting inde-
pendently on all feature-error components. The resulting control variable u is a
linearly transformed version of Af. Please notice, that for effective force control a
non-zero integral component is required to compensate for static errors caused by
a pure P-controller. Additionally, the derivative component is necessary to suppress
undesired oscillations.

Subsequently, we compute a sensor motion V! aiming to reduce the feature error.
This is realized with a fixed, task-independent, inverted Jacobian matrix J, ! Both
entities are expressed in terms of the sensor coordinate frame O;, which is located
in the center of the sensor surface and aligned with the sensor such that the z-axis
equals the surface normal. This choice tremendously facilitates the determination of
J~!, which maps feature errors onto sensor motions.

The subsequent application of a task-dependent projector matrix P selecting cer-
tain twist-components for control and neglecting others, allows to selectively switch
on or off specific motion components. To this end, P is a simple 6 x 6 diagonal
matrix, where ones and zeros indicate, that the corresponding twist component is
or is not used for control. Summarizing, the feedback-part of the tactile servoing
controller is determined by the following equation:

yeet = p. -1 (Kp.Af(t)—i—KI-/Af(t)dt+KD-(Af(t)—Af(t—l))). (13)

Here V; = [v,, o] denotes the 6-dimensional twist vector composed of linear
and angular velocity components vy, @;. Kp j p denote diagonal matrices of PID-
controller gains and Af (r) = [Ax;, Ays, Af, Ax] denotes the deviation of the feature
vector composed of the positional error Axg, Ay, the normal force error Af, and the

ext
Ve

N
tact .
PID u rojector AR Vs Vg cerF (4
task planner —1 proj S
4 controller > Ji P matrix > AdTgY B> [P robot

tactile feature feature tactile image
extraction

Fig. 6 Control scheme for tactile servoing: the core feedback part computes a sensor motion V%
from tactile-feature deviations Af, which is superimposed with an external motion signal V&' and
subsequently fed into CBF’s inverse kinematics

Grasping and Manipulation of Unknown Objects ... 101

angular error A« of the line orientation. Note, that the latter one is measured modulo
7 in order to obtain angular errors in the range (—%,] and thus circumventing
singularities due to their circular nature. The rotational symmetry allows to restrict
the errors to this range instead of (—m, 7].

Finally, the twists originating from the tactile feedback-loop and the external task
planner are superimposed and fed to the inverse kinematics module of the control
basis framework. To this end, the twist V expressed in terms of the sensor frame
Oy needs to be transformed to the global frame O, which is realized by the adjoint

matrix derived from the forward kinematics Ty = (Rgs, Pgs):

R P, R
Adr,, = (gs Pglsegsgs) (14)

At the core of the tactile-feedback controller is the inverse Jacobian that maps
feature deviations onto a motion twist of the tactile sensor array:

1 0 0 O
01 0 O Axg
tact _ y—1 _ 0010 Ay;
V& =J; Af = 010 0 Af (15)
1 0 0 O Aa
0 0 0 1

This matrix can be easily determined in the sensor coordinate frame Oj: Positional
deviations are simply mapped onto corrective tangential motions in the x-y-plane of
the sensor. Normal force errors are mapped onto a corrective translational motion
along the z-axis of the sensor frame, which is normal to the sensor plane, pointing
towards the object. These linear motion components are determined by the first three
rows of J;l . The rotational error A« is mapped onto a rotational velocity around the
z-axis (last row). The motion components corresponding to the fourth and fifth row
of the inverted Jacobian realize a rolling motion of the sensor. These are triggered by
positional deviations again. Thus, an error Ax; is not only reduced by an appropriate
tangential linear motion of the sensor, but also by a rolling motion around the y-axis
of the sensor, that also moves the COP of the contact region closer towards its target
location.

The task-dependent projector matrices P can be used to toggle these individual
twist components on and off. For example, if contact position control is desired, one
will choose P = diag(l, 1, 0, 0, 0, 0). When additionally force control is required,
the third diagonal entry should be set to 1 too. In order to enable or disable the
orientation tracking of an object edge, you will set the last diagonal entry to 1 or
0 respectively. Finally, the fourth and fifth entries in the diagonal projector matrix
determine, whether rolling is enabled or not. In the following section, we will discuss
several application scenarios of the proposed tactile-servoing framework.

102 R. Haschke

4 Experimental Evaluation

As shown in Fig. 7, we mounted the tactile sensor pad as a large fingertip to a 7-dof
Kuka lightweight robot arm operated in joint-space compliance mode. The control
basis framework maps Cartesian-space twists into joint-angle velocities, thus chang-
ing the equilibrium posture of the robot controller. The tactile sensor pad provides
an array of 16 x 16 tactels measuring contact forces with 12bits resolution [6]. The
sampling frequency of the tactile sensor as well as the control cycle frequency of the
robot arm are set to 250 Hz. We use manually tuned PID parameters for the tactile
servoing controller.

All the experiments discussed in the following are also shown in a youtube video
[40] and follow the same course: Initially the robot is moved to its working area,
holding this posture until object contact is established. As soon as a pressure threshold
is exceeded, the robot switches to a specific, previously determined tactile servoing
task.

In order to reduce the noisiness of the feature signals, we apply a smoothing filter
to both the force/pressure feature and the line orientation feature «. To this end,
we average the ten most recent measurements, i.e. in a time window of 40 ms. The
position feature is smooth enough due to the averaging of Eq.(11).

4.1 Tracking Contact Points

Contact point tracking has an important application for multi-finger grasping and
manipulation. In both cases, fingers need to maintain object contact with a given
contact force and they should ensure, that the contact location remains on the fin-
gertip area—optimally in its center—to avoid slipping off. Consequently, the task-
dependent projector matrix has the form P = diag(1, 1, 1, 0, 0, 0) enabling contact
position and force control.

Fig. 7 Experimental setup:
tactile sensor mounted on
Kuka LWR

Grasping and Manipulation of Unknown Objects ...

Table 1 Statistical tracking results for force and position control

103

Object Steady state error Standard deviation Response time
Rigid pen 0.0032 0.039 2.5s
Toy box 0.0026 0.039 2.0s
Soft ball 0.0010 0.043 2.0s
X 0.0041 pixel 0.1146 pixel 1.8s
Y 0.0082 pixel 0.1158 pixel 1.8s
5 T T T T T T T
c— = xaxis
(o
5 “a y axis
5 A AR SN - ~
S Pt e i
X
a
-5 I I I I I i i
0 0.5 1 1.5 2 25 3 3.5 4
2 T T T T T T T

pressure

t(s)

Fig. 8 Tracking results for combined position and force control

Please notice, that the quality of force control depends on the stiffness of objects
(softer objects allow for a larger motion range given a fixed force range). We evaluated
the control performance on various objects of different stiffnesses: a rigid pen, a toy
box from stiff foam, and a soft ball. The results for maintaining a desired pressure level
of p = 1 are shown in Table 1. As expected, stiffer objects take longer to converge to
a stable tracking result (response time) and exhibit stronger force oscillations given
similar deflections. However, in all cases the desired force level will eventually be
well maintained with a small steady state error”

For contact position tracking, the goal is to maintain the COP of the contact
region at the center of the tactile sensor frame. The evolution of the errors in contact
position and force are shown in Fig.8. As can be seen from the top sub-figure an
initial position offset is corrected within half a second. The steady state error and

2The steady state errors and standard deviations are computed from a time series of 20s duration
starting after convergence (response time). All values are obtained by averaging over 20 trials.

104 R. Haschke

response time are summarized in Table 1. As can be seen from bottom sub-figure the
normal force applied in this experiment evolves randomly as it is not controlled. Note,
that a large normal force—due to friction—will also cause large tangential forces,
rendering the sliding motion more difficult. Hence, normal force control should be
generally enabled.

4.2 Track Contact Point and Increase Contact Area by Rolling

The fourth and fifth row of the task Jacobian (Eq. 13) provide another mode of oper-
ation to compensate for positional errors of the COP: Instead of realizing a transla-
tional sliding motion, this control behavior realizes a rolling motion, thus changing
the contact point both on the tactile sensor and the object’s surface. While previous
approaches to realize rolling employed complex algorithms to determine the point
of revolution and a corresponding joint-space robot motion [41], the tactile servoing
approach proposed here, is conceptually much easier: a deviation in contact position is
simply mapped to a rotational twist within the tangential plane of the sensor. Because
we do not explicitly compute the point of revolution and do not know the shape of
the object, the normal force will probably be disturbed due to this motion. However,
the normal force controller, running in parallel, will counteract and maintain a pre-
defined force level. The employed projector matrix equals P = diag(1, 1, 1, 1, 1, 0),
i.e. simultaneously realizing sliding and rolling as well as force control.

The resulting rolling motion is visualized in Fig.9. An initial positional off-
set along the y-axis is compensated by a rolling motion about the sensor’s x-axis

10 81‘ 82|

pixel error in'y
o 6]
4 (m‘
@

5} J
10 i i i i
0 1 2 3 4 5 6 7 8
= 0.6 T T T T
x
X S S2 S3
5
o 0.4r _,_/—-_/M/ﬁ/*\’ 4
S
ko) 0_2_/ i
(o))
c
©
5 O 1
5
w -0.2 i i i i i
0 1 2 3 4 5 6 7 8

Fig. 9 Orientation control of surface normals by rolling

Grasping and Manipulation of Unknown Objects ... 105

(stage S1). When the contact point error decays, the rolling motion ceases as well
(stage S2). After 4 s the object was displaced yielding a negative position offset that
was compensated by a rolling motion into the opposite direction (stage S3). This
behavior can nicely be seen in the video [40] as well.

The rolling behavior has the beneficial side-effect of increasing the area of contact
between the finger tip and the object. This is an important capability for grasp sta-
bilization. Although classical grasp planning considers point contacts only, a large
contact area naturally increases the grasp wrench space and thus increases the ability
to resist to external disturbances. Furthermore, a prerequisite for successful tactile
object exploration will be to maintain a large contact area during exploration in order
to collect as much shape information about the object as possible.

How this side effect is achieved? Assuming large object and sensor surfaces, a
small contact area typically results from a badly tilted sensor w.r.t. the object surface.
In this situation the sensor only touches an object edge instead of the whole surface.
This contact is often located off-center on the sensor array. The corrective rolling
motion to move the COP into the sensor’s center will also reduce the tilting and
eventually result in the desired surface contact. This state also constitutes a fixed
point of the controller dynamics, because the COP will be in the center of the tactile
array in this case.

4.3 Tracking an Object Edge on the Sensor Surface

The orientation around the normal axis is controlled using the orientation angle o of
aline in the tactile image emerging from an object edge on the sensor. For this control
task the last row of the Jacobian matrix is important, resulting in a projector matrix
P = diag(0,0, 1, 0,0, 1). The tracking result for this experiment is qualitatively
shown in the video [40] only. However, the next experiment also employs this control
primitive and provides an evaluation in Fig. 10.

Fig. 10 Tracking of a cable of unknown shape: tracking result is superimposed onto a scene photo
as a blue trajectory

106 R. Haschke

4.4 Tracking of an Unknown Object Edge

The previous experiments illustrated the performance of the proposed tactile ser-
voing controllers in various scenarios, neglecting external motion commands V.
However, the aim of the following two tasks is to illustrate, that complex explo-
ration behavior emerges if the tactile servoing motion and some externally provided
guidance motion are combined.

In the first experiment, we consider the task of tracking the unknown shape of a
cable lying flat on the table. To this end, the sensor should (i) be aligned to the local
orientation of the cable, (ii) maintain the tactile imprint within its sensor boundaries
(optimally in the center), and (iii) actively control the contact force. Accordingly
we choose a projector matrix P = diag(l, 1, 1, 0, 0, 1) selecting those subtasks. In
order to follow the cable in space, we additionally impose an external tangential
motion onto the sensor along its y-axis, which coincides with the desired orientation
of the cable. Thus V&' = [0, 1, 0, 0, 0, 0]".

Figure 10 shows a photo of the tracked cable superimposed with the object shape
(blue line) estimated from the forward kinematics of the robot arm when tracking
the cable with tactile servoing. After some initial oscillations, the robot manages to
align the cable imprint on the sensor with its y-axis.

4.5 Exploring the Shape of an Unknown Object

The second experiment illustrating the power of the proposed tactile servoing frame-
work, aims at tactile object exploration: The sensor should slide over the unknown
surface of the object in order to accumulate a dense shape model. Lacking an appropri-
ate control framework, previous work acquired the corresponding tactile information
by repeated establishment and breaking of object contact [42].

Torealize this complex task, we decompose it into several phases: after establishing
contact to the object, the robot maximizes the sensed contact area and aligns its y-axis
with the major axis of the contact region applying the control schemes of Sects. 4.2
and 4.3 simultaneously.

Subsequently, by imposing a tangential motion along the sensor’s x-axis (orthogo-
nal to the major axis of contact region), we induce the exploratory motion. The tactile
servoing controller maintains the optimal orientation and position of the tactile sensor
on the object’s surface by generating appropriate sliding and rolling motions. This
task exploits all tactile servoing behaviors employing the projector matrix P = 1.
As a result the object exploration behavior emerges automatically.

Similarly we can explore the object along the other direction, if we follow the
contact’s major axis instead (cf. previous task in Sect.4.4). Please notice, that in the
accompanying video [40] we change the direction of the external guidance motion
Ve in order to realize a scanning of the object into both directions. Figure 11 shows,
how this exploration behavior can be utilized to construct an object shape estimation
by touch.

Grasping and Manipulation of Unknown Objects ... 107

Fig. 11 Tactile object exploration using two tactile sensor arrays mounted onto Kuka LWR arms
(left) and the resulting tactile point cloud as a local estimation of object shape (right)

5 Conclusion

The introduced tactile servoing control framework allows to realize a large range of
tactile tracking and exploration tasks. To this end, it’s only necessary to choose the
task-specific projector matrix P choosing which tactile servoing primitives (sliding,
rolling, turning, force control) should be applied.

The integration of an externally driven guidance motion V* allows to realize
complex exploratory behavior. In the shown example tasks, we only used very sim-
ple, static guidance motions. However, if those guidance motions are computed from
tactile feedback as well, one can easily realize even more complex exploration behav-
ior, e.g. to drive the tactile sensor towards interesting spots on the object’s surface,
like ridges, edges or corners.

As you have seen, the formulation of tasks as a clever chosen set of primitive
controllers relaxes the need for explicit planning and modeling to a large extend,
such that both grasping and manipulation tasks become feasible also for unknown
objects. Such situations frequently occur in unstructured human environments, like
homes or hospitals, which are natural environments for service robots.

References

1. Jenmalm P, Johansson RS (1997) Visual and somatosensory information about object shape
control manipulative fingertip forces. J Neurosci 17:4486-4499

2. Johansson RS, Westling G (1984) Roles of glabrous skin receptors and sensorimotor memory
in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain
Res 56:550-564

3. Steffen JF, Elbrechter C, Haschke R, Ritter H (2010) Bio-inspired motion strategies for a
bimanual manipulation task. In: Proceedings of international conference on humanoid robots

4. DangH, WeiszJ, Allen PK (2011) Blind grasping: stable robotic grasping using tactile feedback
and hand kinematics. In: Proceedings of ICRA

5. Ho V, Nagatani T, Noda A, Hirai Sh (2012) What can be inferred from a tactile arrayed sensor
in autonomous in-hand manipulation? In: Proceedings of CASE, p 461

108

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

R. Haschke

Schiirmann C, Koéiva R, Haschke R (2011) A modular high-speed tactile sensor for human
manipulation research. In: World haptics conference

Li Q, Haschke R, Bolder B, Ritter H (2012) Grasp point optimization by online exploration of
unknown object surface. In: Proceedings of international conference on humanoid robots
Pezzementi Z, Plaku E, Reyda C, Hager GD (201 1) Tactile-object recognition from appearance
information. Trans Robot 27(3):473—487

Hart S, Sen S, Ou S, Grupen R (2009) The control basis API—a layered software architecture
for autonomous robot learning. In: 2009 workshop on software development and integration
in robotics at ICRA

Huber M (2000) A hybrid architecture for adaptive robot control. PhD thesis, University of
Massachusetts

Leén B, Ulbrich S, Diankov R, Puche G, Przybylski M, Morales A, Asfour T, Moisio S, Bohg
J, Kuffner J (2010) OpenGRASP: a toolkit for robot grasping simulation. In: Proceedings of
SIMPAR. Springer, Darmstadt, pp 109-120

Gienger M, Toussaint M, Goerick C (2010) Whole-body motion planning—building blocks
for intelligent systems. In: Harada K, Yoshida E, Yokoi K (eds) Motion planning for humanoid
robots. Springer, London, pp 67-98

Gienger M, Janflen H, Goerick C (2006) Exploiting task intervals for whole body robot control.
In: Proceedings of IROS, pp 2484-2490

Platt R, Fagg AH, Grupen RA (2010) Null-space grasp control: theory and experiments. IEEE
Trans Robot 26(2):282-295

Liegeois A (1977) Automatic supervisory control of configuration and behavior of multibody
mechanisms. IEEE Trans Syst, Man Cybern 7(12):861-871

Sugiura H, Gienger M, Jannsen H, Goerick C (2010) Reactive self collision avoidance with
dynamic task prioritization for humanoid robots. Int J Humanoid Robot 7(01):31-54
Behnisch M, Haschke R, Ritter H, Gienger M (2011) Deformable trees—exploiting local
obstacle avoidance. In: Proceedings of international conference on humanoid robots

. Catalano MG, Grioli G, Farnioli E, Serio A, Piazza A, Bicchi C (2014) Adaptive synergies for

the design and control of the Pisa/IIT SoftHand. Int J Robot Res 33(5):768-782

Odhner LU, Ma RR, Dollar AM (2013) Open-loop precision grasping with underactuated
hands inspired by a human manipulation strategy. IEEE Trans Autom Sci Eng 10(3):625-633
Cutkosky M, Howe RD (1990) Human grasp choice and robotic grasp analysis. In: Venkatara-
man ST, Iberall T (eds) Dextrous robot hands. Springer, New York

Uckermann A, Haschke R, Ritter H (2013) Realtime 3D segmentation for human-robot inter-
action. In: Proceedings of IROS

Uckermann A, Haschke R, Ritter H (2012) Real-time 3D segmentation of cluttered scenes for
robot grasping. In: Proceedings of international conference on humanoid robots. Video: www.
youtube.com/watch?v=72SwggQTBCS8

Schopfer M, Schmidt F, Pardowitz M, Ritter H (2010) Open source real-time control software
for the Kuka light weight robot. In: Proceedings of WCICA, pp 444-449

Dahiya RS, Metta G, Valle M, Sandini G (2010) Tactile sensing: from humans to humanoids.
IEEE Trans Robot 26(1):1-20

Wettels N, Santos VJ, Johansson RS, Loeb GE (2008) Biomimetic tactile sensor array. Adv
Robot 22(8):829-849

Fishel JA, Loeb GE (2012) Sensing tactile microvibrations with the BioTac— comparison with
human sensitivity. In: International conference on biomedical robotics and biomechatronics
(BioRob), pp 1122-1127

Xu D, Loeb GE, Fishel JA (2013) Tactile identification of objects using Bayesian exploration.
In: Proceedings of ICRA, pp 3056-3061

Schiirmann C, Schopfer M, Haschke R, Ritter H (2012) A high-speed tactile sensor for slip
detection. In: Prassler E, Burgard W, Handmann U, Haschke R, Higele M, Lawitzky G,
Nebel B, Nowak W, Ploger P, Reiser U, Zollner M (eds) Towards service robots for everyday
environments, vol 76. Springer, New York, pp 403-415. Video: www.youtube.com/watch?v=
mSq8e4PU90s

www.youtube.com/watch?v=Z2SwggQTBC8
www.youtube.com/watch?v=Z2SwggQTBC8
www.youtube.com/watch?v=mSq8e4PU90s
www.youtube.com/watch?v=mSq8e4PU90s

Grasping and Manipulation of Unknown Objects ... 109

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Shadow Robot Company. Shadow Dexterous Hand (2013). http://www.shadowrobot.com/
products/dexterous-hand

Ké&iva R, Zenker M, Schiirmann C, Haschke R, Ritter H (2013). A highly sensitive 3D-shaped
tactile sensor. In: International conference on advanced intelligent mechatronics (AIM)
Biischer G, Kdiva R, Schiirmann C, Haschke R, Ritter H (2012) Tactile dataglove with fabric-
based sensors. In: Proceedings of international conference on humanoid robots

Maycock J, Essig K, Haschke R, Schack T, Ritter H (2011) Towards an understanding of
grasping using a multi-sensing approach. In: Proceedings of ICRA, pp 1-8

Roa M, Kd&iva R, Castellini C (2012) Experimental evaluation of human grasps using a
sensorized object. In: International conference on biomedical robotics and biomechatronics
(BioRob)

Chen N, Zhang H, Rink R (1995) Edge tracking using tactile servo. In: Proceedings of IROS,
vol 2. August 1995, pp 84-89

Martinez-Hernandez U, Lepora NF, Barron-Gonzalez H, Dodd TJ, Prescott TJ (2012) Towards
contour following exploration based on tactile sensing with the iCub fingertip. In: Herrmann
G, Studley M, Pearson M, Conn A, Melhuish C, Witkowski M, Kim J-H, Vadakkepat P (eds)
Advances in autonomous robotics. Lecture notes in computer science, vol 7429. Springer,
Berlin, pp 459-460

Schmitz A, Maiolino P, Maggiali M, Natale L, Cannata G, Metta G (2011) Methods and
technologies for the implementation of large-scale robot tactile sensors. Trans Robot 27(3):389—
400

Wettels N, Loeb GE (2011) Haptic feature extraction from a biomimetic tactile sensor: force,
contact location and curvature. In: Proceedings of ROBIO, pp 2471-2478

Suzuki K, Horiba I, Sugie N (2003) Linear-time connected-component labeling based on
sequential local operations. Comput Vis Image Underst 89(1):1-23

Duda RO, Hart PE (1972) Use of the Hough transformation to detect lines and curves in
pictures. Commun ACM 15(1):11-15

LiQ (2013) A control framework for tactile sensing. Video: https://www.youtube.com/watch?
v=TcWipks3qJO

Schopfer M, Ritter H, Heidemann G (2007) Acquisition and application of a tactile database.
In: Proceedings of ICRA, pp 1517-1522

Meier M, Schopfer M, Haschke R, Ritter H (2011) A probabilistic approach to tactile shape
reconstruction. Trans Robot 27(3):630-635

http://www.shadowrobot.com/products/dexterous-hand
http://www.shadowrobot.com/products/dexterous-hand
https://www.youtube.com/watch?v=TcWipks3qJ0
https://www.youtube.com/watch?v=TcWipks3qJ0

Part 11
Motion Planning of Robotic Manipulators

Obstacle Avoidance with Industrial Robots

T. Petri¢, A. Gams, N. Likar and L. Zlajpah

Abstract One of the important features that a robot must possess when working in
an unstructured environment is the ability to deal with objects. Such objects can be a
part of the task, e.g., in assembly operations, or they can represent an obstacle. In the
case when contact with the objects is not desired, the main issue is how to perform
the desired task without any risk of collisions with the objects in the workspace. A
general strategy for obstacle avoidance is to reconfigure the robot so that it is not
in the contact with the obstacle. However, a reconfiguration without changing the
task motion is only feasible if the robot has sufficient redundant degrees of freedom
(DOFs). In this chapter we present different approaches to the control methods of
redundant robot manipulators performing multiple tasks with obstacle avoidance.
The pros and cons of the presented methods and the differences between them are
also discussed. The performance of the methods is also demonstrated by simulation
and on real robots.

Keywords Redundantrobots - Obstacle avoidance - Kinematic control - Prioritized
task control - Dynamic movement primitives

T. Petri¢ - A. Gams - N. Likar - L. Zlajpah ()

Department for Automation, Biocybernetics and Robotics, Jozef Stefan Institute,
Jamova Cesta 39, Ljubljana, Slovenia

e-mail: leon.zlajpah @ijs.si

T. Petri¢

e-mail: tadej.petric @ijs.si

A. Gams
e-mail: andrej.gams @ijs.si

N. Likar
e-mail: nejc.likar @ijs.si

© Springer International Publishing Switzerland 2015 113
G. Carbone and F. Gomez-Bravo (eds.), Motion and Operation Planning

of Robotic Systems, Mechanisms and Machine Science 29,

DOI 10.1007/978-3-319-14705-5_5

114 T. Petric et al.

1 Introduction

In this chapter we give a brief overview of the most commonly applied
obstacle-avoidance algorithms. In general, the algorithms can be divided into global
and local. While the former rely on planning, the latter are control-based. We present
different control-based approaches, that rely on kinematic algorithms to avoid the
obstacles with the end-effector or with any other part of the body of the robot. We also
discuss how to include obstacle-avoidance algorithms in novel trajectory-generation
methods, such as dynamic movement primitives.

Just as with humans, robotic mechanisms have to act in environments with other
objects and agents moving around, interacting with them, influencing the very same
environment. The environment can be highly structured, like an industrial setting, or
it can be very cluttered, like a kitchen or a workshop. Contact between the robot and
an object is very likely to happen in any environment. The contacts can be part of
the task, but they may very well also be an undesired event, and consequently, it is
necessary to give the highest priority to avoiding them. Different obstacle algorithms
have been proposed for this to ensure that tasks that demand no contact with objects,
perceived as obstacles either at the end-effector or at any other point of the robot,
can be successfully fulfilled.

A natural strategy of obstacle avoidance is to move the manipulator into a con-
figuration where it is not in contact with the obstacle. In order to avoid interference
with the motion of the end-effector, redundant degrees of freedom (DOFs) have to be
utilized to achieve a collision-free configuration. The amount of flexibility depends
on the degree of redundancy, i.e., on the number of redundant DOFs. The kinematic
control of redundant mechanisms, where the redundancy is defined as the difference
between the required and available DOFs, was thoroughly studied [1-4].

Two different strategy classes can be employed when solving the obstacle-
avoidance problem, i.e., global and local. Global strategies rely on planning. They
guarantee to find a collision-free path from the initial point to the goal point, if such a
path exists. Typically, they are applied in the configuration space, which is also where
the manipulator and all the obstacles are mapped. A collision-free path is found in the
unoccupied portion of the configuration space [5—7]. One of the major drawbacks is
that such methods rely on the assumption that the environment is not changing, as the
computational complexity of the algorithms prevents any re-calculation within the
typical response time of a manipulator. Despite efforts to reduce the computational
complexity of such global algorithms [8—10], these methods cannot offer ability for
real-time implementations. This limits their applicability to static and well-defined
environments.

Local strategies, on the other hand, treat obstacle avoidance as a control prob-
lem. They exploit the capabilities of low-level control, e.g., they can use the sensor
information to change the path if an obstacle appears or moves in the workspace.
They are primarily suitable when the obstacle position is not known in advance, but
is detected in real-time during the task’s execution. In this sense, they are not meant
to replace the global, higher-level path-planning methods. Local methods are also

Obstacle Avoidance with Industrial Robots 115

computationally less demanding than global methods. However, local methods may
cause suboptimal behavior or may even become stuck when a collision-free path
cannot be found from the current configuration.

The collision avoidance of redundant manipulators was thoroughly studied
[11-20]. The approach proposed by Maciejewski and Klein [17] is to assign to
the critical point an avoiding task-space motion, with which the point is then moved
away from the obstacle. Colbaugh et al. [12, 13] used configuration control and
they defined the constraints representing the obstacle avoidance. On the other hand,
Khatib [15] proposed to use potential fields where obstacles generate repulsive forces
that prevent the roboto to come too close to the obstacle. Similar approaches were
used later by several authors proposed potential functions where a repulsive potential
is assigned to obstacles and an attractive potential is assigned to the goal position
[16, 18, 20-25]. Yet another approach uses the optimization of an objective function
maximizing the distance between the manipulator and the obstacles [14].

Many of the methods are applied at the kinematic level of control, using null-
space velocity control for the internal motion of a redundant manipulator. However,
some of the control strategies are acceleration based or torque based, considering
also the manipulator dynamics [11, 15, 26, 27]. It has been established that cer-
tain acceleration-based control schemes exhibit instabilities [28]. An alternative is
the augmented Jacobian, as introduced in [2]. Here, a secondary task is added to
the primary task to obtain a square and, therefore, an invertible Jacobian matrix.
The drawback to this technique is the algorithmic singularities, which occur when
the secondary task causes a conflict with the primary task. The use of the second-
order inverse kinematic, either at the torque or acceleration level, was thoroughly
explored by Khatib [29], resulting in the recent task-prioritized humanoid applica-
tions [30-32].

Most of the local obstacle-avoidance strategies at the kinematic level aim at assign-
ing a motion component away from the obstacle for every point on the manipulator
close to the obstacle [12-14, 16, 17, 19]. A similar situation applies to the pre-
sented proposed strategies. The emphasis of the presentation is on the definition of
the avoiding motion. The latter is typically defined in Cartesian space, and this can
be used to define the obstacle avoidance as a simple one-dimensional problem, with
a one-dimensional operational space for each critical point. This avoids singularity
issues when the redundancy level is locally too low. Alternatively, an approximative
calculation can be used for the avoiding motion. In contrast to the exact avoiding
motion as proposed in [17], the obtained velocity direction does not exactly coincide
with the direction away from the obstacle [33]; however, the calculation is faster. In
the case of multiple obstacles the situation is even more complex and more specific
methods have to be applied, which also consider the relationship between the obsta-
cles and the required avoidance movements. In the chapter we discuss strategies that
consider multiple, simultaneously active obstacles in the neighborhood of the robot.

Control of a manipulator, that is redundant with respect to the task can be broken
down to control subtasks with different priorities. The main, also called the primary,
task is commonly associated with the end-effector pose (position and orientation).
Other sub-tasks, such as obstacle avoidance, joint configuration, etc., are then given

116 T. Petric et al.

lower priorities. Sometimes, this is not the case. For example, the safety of the robot or
objects/people in its workspace could be more important, and should also be fulfilled
if the end-effector motion is disturbed. In dynamical environments the priority of the
tasks can also change with time. In general, task-priority algorithms do not provide
a simple means of changing the priority of tasks or transitions between them [34]. In
the chapter we present a formulation that makes the end-effector pose the secondary
task and obstacle avoidance the primary one. The novelty is in making the primary
task (the obstacle avoidance) active only when necessary, i.e., only when the robot
crosses a predefined distance-to-the-obstacle threshold. In this aspect, while far from
the obstacle, the algorithm allows undisturbed control of the secondary task (as if it
were the primary task) [35-37]. Upon reaching the threshold distance, the primary
task (obstacle-avoidance) smoothly takes over and only allows motion in the null-
space of the primary task. A similar approach was proposed by Sugiura et al. [38],
who proposed a blending solution for the end-effector motion, and by Mansard et al.
[30], with a generic solution to build a smooth control law for any kind of unilateral
constraints.

The last approach we present is solving the obstacle-avoidance problem with
the use of novel methods of generating and encoding trajectories with dynamical
systems. We show how DMPs offer the means for on-line modulation and adaption of
the trajectory in order to take into account the dynamic events from the environment.
Introducing a coupling term to the dynamical equations encoding the trajectory, we
can modulate its spatial evolution to avoid an obstacle. The choice of the coupling
term may be specialized for a given task. Various aspects and applications of the
proposed dynamical systems approach are discussed and evaluated.

The computational efficiency of the proposed algorithms, both at the kinematic
level using classic control, and using the dynamical systems, allows real-time applica-
tion in cluttered and/or time-varying environments. We demonstrate the applicability
with simulations of a highly redundant planar manipulator moving in an unstructured
and time-varying environment and by experiments on a real robot manipulator.

2 Background

The robotic systems under study are redundant serial manipulators. We consider
the robot as a redundant system when the dimension of the joint space n exceeds
the dimension of the task space m. The difference between n and m is denoted as the
degree of redundancy r = n — m. Note that this definition of the redundancy is not
only a characteristics of the manipulator itself, but also of the task. This means that a
nonredundant manipulator may also become a redundant manipulator for a specific
task.

The relationship between the configuration variable ¢ and the task variable x can
be described by the following equation

x = f(q) S

Obstacle Avoidance with Industrial Robots 117

where f is an m-dimensional vector function. The corresponding relationship
between the joint velocities ¢ and the task velocities x is obtained by differenti-
ating (1)

x=1Jq 2)

where J is the m x n Jacobian matrix. The control problem is how to generate the
motion in joints that will result in the desired task-space motion. At the velocity
kinematic level this means calculating ¢ using the desired task-space velocities X.
For a non-redundant manipulator (n = m) and when the robot is not in a singular
configuration ¢ (J has full rank, rank (J) = n) the joint velocities ¢ can be calculated
from (2) as

g=J'x 3)

where J~! is the inverse of the Jacobian matrix J. To avoid any drifts, a task-space
controller is usually implemented for x, namely

¥ =x,+Ke “4)

where x, is the desired task-space velocity, e, e = x4 — x, is the task-space error,
and K is a positive definite gain matrix.

In the case of a kinematically redundant manipulator, the manipulator possesses
more DOFs then required to execute a task, i.e., the dimension of the joint space n
exceeds the dimension of the task space m, n > m. It is obvious that the Jacobian J
is no longer a square matrix, but an m x n matrix, and hence the inverse J ~1 does not
exist and (3) cannot be used. The classic general solution of (2) for a kinematically
redundant manipulator is

g =J'x+N¢ 5)

where J# is a generalized inverse of the Jacobian matrix J, N is a matrix representing
the projection into the null space of J, and ¢ is an arbitrary n-dimensional joint-
velocity vector. From (5) it is clear that N projects the velocity ¢,, into the null-space
of J and the corresponding motion does not affect the task motion. Remarkably,
there is an infinite number of solutions ¢. In most cases it is required to pursue a
minimum-norm velocity leading, to the selection of the Moor-Penrose inverse J +,
JT =JTJIT)~ !, as the generalized inverse in (5)

§=J"x+A-J"D¢ (6)

The first r.h.s. term in (6), i.e., the particular solution, provides the least-squares
solution, i.e., it minimizes ||x — J¢||, with a minimum joint-velocity norm. With the
second r.h.s. term in (6) different joint velocities ¢ can be obtained that result in
the same end-effector velocity x. This additional joint motion can be exploited to

118 T. Petric et al.

achieve some additional goals, i.e., some kind of optimization, obstacle avoidance,
to fulfill some functional constraints or to execute additional constraint tasks. To
perform this additional subtask, the velocity ¢ is used. Then the secondary task is
defined by some motion x; = f;(q) like in the case of obstacle avoidance, the
velocity @ can be defined as

p=J% (7
Another possibility is to define ¢ as
9 =K,Vp, 3

where, p is a function representing the desired performance criterion, Vp is the
gradient of p, and K, is a gain. So, using (8) the optimization of p can be achieved.

3 Obstacle-Avoidance Strategy

The obstacle-avoidance problem usually defines how to control the manipulator
in order to track the desired end-effector trajectory while simultaneously ensuring
that no part of the manipulator collides with any obstacle in the workspace of the
manipulator. To avoid any possible obstacles the manipulator has to move away from
them into a configuration where the distance between them becomes larger, as shown
in Fig. 1. Reconfiguration of the manipulator without changing the motion of the end-
effector is only possible if the manipulator has redundant DOFs. Note that in some
cases it is possible that the redundant manipulator cannot avoid an obstacle, because
it might be in a configuration where the avoiding motion in the desired direction is
not feasible. Having a high degree of redundancy reduces the chance of getting into
a such configuration, especially if the manipulator is working in an environment that
has many potential collisions with obstacles.

Usually, the basic strategy for obstacle avoidance is to identify the points on the
robotic arm that are near obstacles and then assign to them the motion component
that moves those points away from the obstacle, as shown in Fig. 1. The robot motion
(configuration) is changed if at least one part of the robot is at a critical distance from
an obstacle. We denote the obstacles that are closer to the critical distance as the
active obstacles and the corresponding closest points on the body of the manipulator
as the critical points.

For industrial robots it is usually assumed that the motion of the end-effector is
not disturbed by any obstacle. If such a situation occurs, either the task execution
has to be interrupted and the higher-level path planning has to recalculate the desired
motion of the end-effector or if the path-tracking accuracy is not important the control
algorithms that move the end-effector around obstacles on-line can be used.

Since the position of the obstacle is usually not known in advance, the obstacle-
avoidance algorithm must work in real-time. In order to ensure these requirements

Obstacle Avoidance with Industrial Robots 119

Obstacle

Critical

distance Fo

Desired " Task path
motion

Fig. 1 Manipulator motion in the presence of some obstacles

some sensors have to be used to determine the position of the obstacles or to measure
the distance between the obstacles and the body of the manipulator. There is a variety
of sensor systems that can be used for such obstacle detection. In many cases a vision
system is used to detect obstacles. Another possibility is offered by tactile sensors,
like artificial skin, which can detect the obstacle only if they touch it, or by proximity
sensors, which can sense the presence of an obstacle in the neighborhood.

4 Obstacle Avoidance Using Kinematic Control

The basic strategy for obstacle avoidance considers the obstacle-avoidance problem
at the kinematic level. We denote x, as the desired velocity of the end-effector, and
A, as the critical point on the obstacle (see Fig. 1). To avoid a possible collision, one
possibility is to assign a velocity to A, such that it would move the manipulator away
from the obstacle, as proposed in [17]. Here, the motion of the end-effector and the
critical point can be defined as

Jq = xe Joq = xo (9)

where J, is a Jacobian matrix associated with the point A,,. In the following, different
possibilities for finding the solution for both equations will be presented.

4.1 Exact Solution

Let x in (5) be equal to x.. Then, by combining (5) and (9) we obtain

¢ = TN, — JI %) (10)

120 T. Petric et al.
Using ¢ in (5) gives the final solution for ¢ in the form
g = 3% + JN* (ko — T %) (11

Note that N is both hermitian and idempotent [4, 17]. Here the first term J*¥ guar-
antees the tacking of the desired end-effector. Also, x is used in (11) instead of x,
to indicate that a task-space controller can be used to compensate for any task-space
tracking errors

x =x4+ Ke. (12)

where x4 is the desired task-space velocity, K is an m x m positive-definite matrix
and e is the task-position error, defined as

e=x4—X. (13)

Here, x is the desired task-space position. The second term in (11), i.e., the homo-
geneous solution ¢, represents the part of the joint velocity causing the motion of
the point A,. The term J JJf%, is the velocity in A, due to the end-effector’s motion.
The matrix J,N is used to transform the desired critical point velocity from the oper-
ational space of the critical point into the joint space. Note that the above solution
guarantees that we achieve exactly the desired x, only if the degree of redundancy
of the manipulator is sufficient.

4.2 Exact Solution with Reduced Operational Space

The system’s ability to avoid obstacles is defined with the matrix J,N, which com-
bines the kinematics of the critical point A, and the null-space matrix of the whole
manipulator. Here, the properties of the matrix J,N depend on the position of the
point A, and also on the definition of the operational space associated with the crit-
ical point A,. Usually, all the critical points are defined in Cartesian space, which
implies that the velocity x,, is a 3-dimensional vector and the dimension of the matrix
JoN is 3 x n. This means that at least 3 DOFs are needed to move one point from an
obstacle. Consequently, it might seem that a manipulator with two redundant DOFs
is not capable of avoiding obstacles. However, we know from our experience that
this is not true. For example, consider a planar 3 DOF manipulator that can move
along a straight line and only the positions of the end-effector are important. In this
case, the task space is 2-dimensional and the manipulator has one free degree of
redundancy. Defining the velocity x, in the same space as the end-effector velocity,
i.e., as a 2-dimensional vector, reveals the matrix J,N to have the dimension 2 x 3.
Furthermore, due to one degree of redundancy the components of the velocity vector
X, are not independent. Hence, the rank of J,N is one, and the pseudo-inverse J,N)#
does not give a feasible solution, at least the desired avoiding velocity x, cannot be
achieved.

Obstacle Avoidance with Industrial Robots 121

On the other hand, as the obstacle-avoidance strategy only requires motion in the
direction of the line connecting the critical point with the closest point on the obstacle,
this is a one-dimensional constraint for which only one degree of redundancy is
needed. Therefore, we propose using areduced operational space [39] for the obstacle
avoidance and define the Jacobian J, as follows.

Let d, be the vector connecting the closest points on the obstacle and the manip-
ulator (see Fig. 1) and let the operational space in A, be defined as one-dimensional
space in the direction of d,. Then, the Jacobian that relates the joint-space velocities
¢ and the velocity in the direction of d, can be calculated as

Jo, =n'J, (14)

where J, is the Jacobian defined in the Cartesian space and n, is the unit vector
in the direction of d,, n, = ”2—” Now, the dimension of the matrix J4, is 1 x n,

and the velocities %, and J,;,J¥x, become scalars. Consequently, the computation
of (JdoN)# is also much faster [33, 35, 39]. Note that in this case we do not have to
invert any matrix because the term (JdoNJgo) is a scalar.

4.3 Selection of Avoiding Velocity

The performance of the obstacle-avoidance algorithm mainly depends on the selec-
tion of the desired critical point velocity x,. We propose changing x, with respect to
the distance to the obstacle ||d, |

Xo = QyV, (15)

where v, is the nominal velocity and «,, is the obstacle-avoidance gain defined as

2
(”‘j,v—mu) —1 for |dy|| < dp
0 for |ld,ll > dp,

(16)

oy =

where d,, is the critical distance to the obstacle. If the obstacle is too close (||d, ||
< dp) the main task should be stopped. The distance dp, is subjected to the dynamic
properties of the manipulator and can also be a function of the relative velocity d,.
To ensure smooth transitions it is important that the magnitude of x,, at d,, is zero.
Special attention has to be given to the selection of the nominal velocity v,. Large
values of v, would cause unnecessarily high velocities, which results in a rapid
movement far from the obstacle. Such motion is undesirable and may cause problems,
especially if there are more obstacles in close proximity. Namely, the manipulator
may bounce between them. On the other hand, too small a value of v, would not
move the manipulator away from the critical point, which is undesirable as well.
Selecting the right v, is a trade-off between how quickly and how smoothly the robot
avoids the obstacle.

122 T. Petric et al.

For smoothing the motion Maciejewski et al. [17] proposed a factor «, which
changed the amount of homogenous solution to be included in the total solution

g =%+ anJ,N* &, — 3o, T %0) (17)

In our case we have selected «y, as

1 for ldoll < dm
ap = %(1 — cos (n%)) for dy, < |ld,|| < d; (18)
0 for d; <||d,l||

where d; is the distance at which the obstacle influences the motion. Note that in
the region between dj, and d,,, the complete homogenous solution is included in the
motion specification and the avoidance velocity is inversely related to the distance.
Between d,, and d; the avoidance velocity is zero and only a part of the homogenous
solution is included. As the homogenous solution compensates for the motion in
the critical point due to the end-effector motion, the relative velocity between the
obstacle and the critical point decreases when approaching from d; to d,,, if the
obstacle is not moving. With such a selection of «,, and «},, smooth velocities can be
obtained.

The control law given by (17) was derived for a single obstacle. When more than
one obstacle is active at the same time, then the worst-case obstacle, which is the
nearest, has to be used. This solution may result in discontinuous velocities and
may cause oscillations in some cases. In particular when switching between active
obstacles the particular homogenous solutions are not equal and a discontinuity in
the joint velocities may occur. To improve this behavior we propose using a weighted
sum of the homogenous solution of all the active obstacles

no
g =%+ wianiq, (19)
i=1
where 7, is the number of active obstacles, and w;, aj,,; and ¢, ; are the weighting

factor, the gain and the homogenous solution for the ith active obstacle, respectively.
The weighting factors w; are calculated as

o di =]
TS (di — ldo)

(20)

Although the actual velocities in the critical points differ from the desired ones, using
an exact solution significantly improves the performance.

As an illustration we present the simulation of a planar manipulator with five
revolute joints. The primary task is to move along a straight line from point P;
to point P,. The desired trajectory is shown by the green line in Fig.2. The task

Obstacle Avoidance with Industrial Robots 123

Fig. 2 Planar 5 DOF
manipulator: tracking of a
line from point P; to P» and
obstacle avoidance using an
exact solution

trajectory has a trapezoid velocity profile with an acceleration of 4 ms~2 and a max.
velocity of 0.4 ms™!. We chose the critical distance d,,, = 0.2 m and the radius of the
obstacle was r = 0.2m. The initial configuration of the manipulator was selected
such that the motion was obstructed by an obstacle. The simulation results using the
exact velocity controller EX (17) are presented in Figs.2 and 3.

In the top plot in Fig.3 we can see that the critical distance d,, is always above
the predefined threshold dyp = 0.2. However, in the middle plot we can see that with
the exact method in some cases the joint velocities may not be smooth, which may
also reflect in the tracking accuracy, as shown in the bottom plot. Even so, note that
the tracking accuracy of the end-effector is in the range of 107°,

4.4 Approximate Solution

Another possible solution for ¢ is to calculate the joint velocities for the secondary
goal as

¢ =T % 1)

without compensating for the contribution of the end-effector motion and then sub-
stituting ¢ into (5) yields

124 T. Petric et al.

0.3 \/ X i
"B 0.2 Hmmm iy | o
= e [|
S e L1k
= 01 link} i
— links
0
2
=z ! i
<
=
< 0 -
>
-1
3 X 107°
— 2]
)
)
1 i
0

0 1 2 3 4 5 6 7 8 9 10
t[s]

Fig. 3 Top plot shows the distance between the obstacle and the nearest link. Middle plot shows
the joint velocities and the bottom plot shows the end-effector tracking error

g =J'% +NJ} %, (22)

This approach avoids the singularity problem of (J4,N) [1]. The formulation (22),
however, does not guarantee that the desired x, will be exactly achieved even if the
degree of redundancy is sufficient. This is because in general JdoNJjoxo is not equal
to X,.

To avoid the obstacle the goal velocity in A, is represented by the vector x,.
Using the original method (11) the velocity in A, is exactly x,. The joint velocities
in the exact solution ensure that the component of the velocity at point A, (i.e., J,q)
in the direction of x,, is as required. The approximate solution gives, in most cases, a
smaller magnitude of the velocity in the direction of X,. Therefore, the manipulator
moves closer to the obstacle when an approximate solution is used. This is not
so critical, because the minimum distance also depends on the nominal velocity v,,
which can be increased to achieve larger minimum distances, if needed. Additionally,
the approximate solution possesses certain advantages when many active obstacles
have to be considered. The joint velocities can be calculated as

No
q = J#x +N ZJgﬂy,’xu,i (23)

i=1

Obstacle Avoidance with Industrial Robots 125

Fig. 4 Planar 5 DOF
manipulator: tracking of a
line from point P; to P» and
obstacle avoidance using an
approximate solution

where n, is the number of active obstacles and, therefore, the matrix N has to be
calculated only once. However, the pseudo-inverses Jﬁ‘i have to be calculated for
each active obstacle.

We have implemented the approximate velocity controller AP (22) for the
same system and the task as shown in Figs.2 and 3. The results are presented in
Figs.4 and 5. We can see that the links are coming closer to the obstacle compared to
the case of using the exact controller. Note that discontinuities in the joint velocities
may also occur here, and that the tracking error of the end-effector is in the same
range as in the case of the exact controller.

4.5 Experimental Results

To support the simulation results we applied the obstacle-avoidance control using
the approximated solution (23) to the 7 DOF Kuka LWR robot. The primary task for
the robot was manipulating the ball in the Cartesian task space and the secondary
task was avoiding human contact (a human was treated as an obstacle for the robot).
The experimental setup is shown in Fig. 6.

The human motion is captured using the Microsoft Kinect sensor. Microsoft
Kinect is based on a range camera developed by PrimeSense, which interprets
3D scene information from a continuously projected infrared structured light.

126 T. Petric et al.

0.2

0.15
0.1

|| [m]

0.05

g4 [rad]

x10

e [m]

o 1 2 s 4 5
1 [s]
Fig. 5 Top plot shows the distance between the obstacle and the nearest link. Middle plot shows
the joint velocities and the bottom plot shows the end-effector tracking error

Fig. 6 Experimental setup for the manipulation task with the KUKA LWR robot, while avoiding
the human in the robot workspace. The picture is taken with the Microsoft Kinect camera. Note
that the picture from the Microsoft Kinect camera is mirrored

Obstacle Avoidance with Industrial Robots 127

Fig. 7 The image sequence shows obstacle avoidance using an approximate solution

By processing the depth image, the PrimeSense API enables the tracking of human
limb movements in real time. To acquire the closest points (interpreted as point obsta-
cles) between the human and the robot, we calibrated the Microsoft Kinect sensor
to the robot base coordinate system. To obtain the proper transformation matrix, we
recorded at least four pairs of points in both coordinate systems. During the cal-
ibration procedure the human placed his hand at the same locations as the robot
end-effector and the position of the human hand and the position of end-effector
were measured in the Kinect and robot base coordinate systems, respectively. The
transformation matrix was calculated using least-squares fitting of two points set, as
described in [40].

The results are shown as a sequence of photos in Fig.7, where we can see a
successful pose adaptation in order to prevent human contact, while maintaining the
position of the end-effector.

5 Obstacle Avoidance as a Primary Task

The development of multi-arm robot mechanisms and humanoid robots emphasized
the importance of being able to perform multiple tasks simultaneously [41-43], like
controlling multiple points on the robot structure, stability, pose control or obstacle
avoidance. Whether it is feasible that the robot can achieve all the goals at the
same time depends on the one hand upon the robot’s dexterity and its configuration,
and on the other hand upon the goals themselves. Although highly redundant robot
manipulators can perform multiple tasks, it is not likely that all the tasks can be
fulfilled simultaneously or at least not all the time. For example, the robot may be
able to perform all the tasks in one configuration, but when the robot moves to another
configuration, some goals may become conflicting with the motion. In this case, it is

128 T. Petric et al.

impossible to satisfy all the goals and the conflict can be handled in the framework
of the task priority, where the tasks are arranged by their relevance. The priority
indicates how important a task is compared to others and it can also imply some
other things, like how important it is to execute the task accurately. Typically, the
lower-priority tasks are less important and they are fulfilled completely only if not
they are interfering with higher-priority tasks. The task with the highest priority is
usually referred to as the primary task.

With multiple tasks it is important to know the relationship between the tasks.
Assuming that each task can be executed per se, i.e., a feasible solution exists for
all the tasks, this is not a guarantee that all tasks can be executed simultaneously.
Namely, the motion necessary to perform one task can disturb the execution of other
tasks and, hence, some tasks may become unfeasible with respect to others. The
dependency between tasks can be determined by analyzing the range of the associated
Jacobian inverse mappings [44—46]. It is important to know the relationship between
the mapping, but it is not essential for the solution. When two tasks are disturbing
each other, then it is necessary to ensure that the task with higher priority is fulfilled
and then we should try to fulfil the lower-priority task as well as possible.

For a redundant robot one possible solution for obstacle avoidance is to consider
the obstacle-avoidance task as a primary task 7, and the end-effector tracking as a
secondary task 7}, defined by

Xaq = fa(q) Xp = fb(q) (24)

For each of the tasks, the corresponding Jacobian matrices can be defined as J, and
J», with the corresponding null-space projections denoted by N, and Nj,. Assuming
that task 7, is the primary task, Eq. (5) can be rewritten as

Gg=Jx%, +NJbx, (25)

Previously, we have assumed that the end-effector motion is not disturbed by an
obstacle. Now, it is assumed that the motion of the end-effector can be disturbed by
any obstacle. If such a situation occurs, the task execution usually has to be interrupted
and higher-level path planning has to be employed to recalculate the desired motion
of the end-effector. However, if the end-effector path tracking is not essential, we
can use the proposed control (25). Consequently, no end-effector path recalculation
or higher-level path planning is needed.

Figure 8 shows an example of the prioritized control where we can see that in this
case the robot can avoid obstacles even if they appear on the Cartesian task path. The
same parameter set was used as in Sect.4, except for the obstacle diameter, which
was now set to r = 0.4m. In Fig.9 we can also see that the critical distance d,, is
exactly the same as the predefined dy = 0.2, which was expected since the obstacle-
avoidance task is now the task with the highest priority. In contrast, in this particular
example, we can see that such an approach has a disadvantage when compared to
the global path search algorithms since the resulting motion may be suboptimal and
as a result it may become stuck.

Obstacle Avoidance with Industrial Robots 129

Fig. 8 Planar 5 DOF manipulator: tracking of a line from point Pj to P, is a secondary task and
obstacle avoidance is the primary task

0.2 F v Y L

015 —link |
0.1 [m=——link, i
e [0k 3
linky -
e [0k 5

|dn| [m]

0.05

t [s]

Fig. 9 Top plot shows the distance between the obstacle and the nearest link. Middle plot shows
the joint velocities and the bottom plot shows the end-effector tracking error

5.1 Smooth Transition Between Tasks

Another important aspect that should be considered with multiple tasks is the ability
to change the task priority. When a robot is working in a changing environment, it
may happen that the situation requires that one task becomes more important than
before. A good example is obstacle avoidance, where the priority of the avoiding task

130 T. Petric et al.

may depend on the type of obstacle and on the distance to the obstacle. Therefore, it
is beneficial if the control method enables a smooth change of task priorities. Using
formulation (25) this cannot be done in a smooth way. Therefore, we propose a new
definition of the velocity ¢ [35]. The velocity ¢ is now defined as

q = Jika + NJjis, (26)
where the matrix N/, is given as
N, =T—2(xs)J"J. 27)

where A(x,) is a scalar measure of how “active” is the primary task 7, scaling the
vector x, to the interval [0, 1]. When the primary task 7, is active A is A(x,) = 1,
and when the task T} is not active, it is A(x,) = 0.

The proposed algorithm allows a smooth transition in both ways, i.e., between
observing the task 7, and the task 7} in the null-space of the task T, or just the
unconstrained movement of the task 7;,. The proposed approach is general and can
be used for different robotic tasks.

For obstacle avoidance using (26), we define the primary task 7, to be the motion
in the direction d(and the motion of the end-effector to be the task 7. Using the
reduced operational space yields

Jo=1Ja,, (28)
Jp=1J. (29)

Next, (26) can be rewritten in the form
g =T %, +NoJ'x. (30)

Here, x is the task controller for the end-effector tracking and let A (do) = «y,, then
N is given by

Ny =1—apJ)J,. (31)

Formulation (30) allows an unconstrained joint movement while «;, is close to
zero (o ~ 0). Thus, the robot can track the desired task-space path while it is
away from the obstacle. On the other hand, when the robot is close to the obstacle
(o, & 1), the null space in (31) takes the form N6 = No, and only allows movement
in the null space of the primary task, i.e., the obstacle-avoidance task. In this case,
we can still move the end-effector, but the tracking error can increase due to the
obstacle-avoiding motion.

Simulation results using the control algorithm (30) are presented in Figs. 10
and 11. We can see in Fig. 10 and in the top plot of Fig. 11 that in the case of a
smooth transition between tasks the tracking error may become significant while

Obstacle Avoidance with Industrial Robots 131

Fig. 10 Planar 5 DOF manipulator: smooth transition between the primary task of obstacle avoid-
ance and the secondary task of tracking a line from point Pj to point P

—link,

0.1 | === linky,]
—link 5

0 link | 4

—— links

|| [m]

qq [rad]
o

0.4

e [m]

0.1

t[s]

Fig. 11 Top plot shows the distance between the obstacle and the nearest link. Middle plot shows
the joint velocities and the bottom plot shows the end-effector tracking error

the robot is close to the obstacle. The main reason for such behaviour is that in this
case the obstacle-avoidance becomes primary and the end-effector tracking is the
secondary task projected into the null space of the obstacle-avoidance task. Even
though this may seen impractical, it is useful in situations when the obstacle is in the
path of the end-effector. Since by using such control, the robot can avoid obstacles
in real-time without using any additional path-planners if obstacles appear on the
end-effector path during the motion.

132 T. Petric et al.

An important observation is also that for this particular task and for the same
configuration and parameter set as used in the example presented in Fig. 9, the robot
does not become stuck in the local minimum. The main reason for such behaviour
is that the transition to obstacle avoidance is now smooth and consistent. However,
as we can see in the top plot in Fig. 11, as a consequence the robot comes closer to
the obstacle. Note that this minimal distance to the obstacle could be increased by
increasing the value of d.

5.2 Prioritized Damped Least-Squares Inverse

Another possibility for simultaneous end-effector tracking and obstacle-avoidance
simultaneously is to treat them equally. Let us stack all the tasks the robot should
perform x;,i = 1, ..., k into an extended task vector

T
sz[xlT,sz,...,x,{] (32)
Then, the relation between the task space velocities and the joint velocities is given as
xg=Jeq (33)

where the extended Jacobian is given in the form

T
Je =[98,] (34)
The solution to (33) (denoted later as E) is given in the form
.yt
q=Jpxg (35)

As all the tasks are included in x g there is no need to consider the homogenous part
of the solution, i.e., the null-space velocity, to solve these tasks. If the rank of Jg
equals at least the dimension of all the tasks, rank(Jg) > my;, then the solution to
(35) results in ¢, which fulfill all the tasks.

Even though the approaches proposed by [2, 44, 47-49], for the calculation of
joint velocities in the case of multiple prioritized tasks, solve the inverse kinematic
problem when the system of equations is not ill-conditioned, it is likely that during the
execution of multiple tasks the manipulator moves toward the configuration where
one of the Jacobian matrices is near singularity and, consequently, the obtained joint
velocities ¢ become unfeasible. To overcome the problem of unfeasible velocities
we could apply the damped least-squares (DLS) technique. Applying DLS to the
extended Jacobian method gives feasible joint velocities. However, if the rank of the
extended Jacobian Jg is not sufficient with respect to the dimensions of all the tasks

Obstacle Avoidance with Industrial Robots 133

k
rank(Jg) < Zmi (36)

i=1

then (35) results in a “best fit” (in a least-squares sense) solution. Since in (35) all
the tasks are treated equally, it is not possible to prioritize some of the tasks in favor
of others. To overcome this drawback we propose an approach in the framework of
a DLS extended Jacobian [48, 50].

The basis of this method is a combination of the extended Jacobian approach (35)
and the DLS inverse technique. The proposed solution is given in the form

qg=Jpir (37)
where
I =JLAeJp +2°P)! (38)
and (P) is an m; x m; diagonal matrix

pily 0 ... 0
0 p212 .. 0
P= . . (39)

0 0 ...pklk

where p; are scalars depending on the desired priority of the task 7;, and I; are
m; X m; unit matrices. We denote this method as the priority weighted damped
least-squares Jacobian method (denoted later as PWDLS). The proposed solution
(38) with priority factors (39) minimizes

k
WNg0+ D prlle — Jeg | (40)
i=1

The method is similar to the method proposed in [50] except that the weighting
factors are defined by the priority of the tasks. For improving the performance it
is essential to suitably select the factors in the damping term in (38). To focus on
the priority issue of the problem, we assume that the optimal value for the damping
factor A has been selected using one of the well-known methods [48, 51-54]. To
determine the optimal value of A all the values p; are setto 1,1i.e., P =1

When dealing with the priority in the framework of redundancy resolution, the
terms primary task, secondary task, and so on, imply that the control has fulfilled
the primary task first, and next the secondary task, without disturbing the primary
task. This philosophy is used by all redundancy-resolution schemes dealing with
prioritized tasks. None of the redundancy schemes can deal with the information
about “how much” one task is more important than the other. For example, even for

134 T. Petric et al.

the obstacle-avoidance schemes, where the distance to the obstacle can be used as a
measure of the importance of particular critical points, this information is actually
used only to order the critical points. On the other hand, the parameters p; can be
used to quantify the relative importance of the tasks 7;. So, it is possible to quantify
the priorities of the tasks [55]. It is obvious that the following relation must hold

Priority(7;) > Priority(T;) <& p; < pj, i,j €{l,...,k} 41

To gain more insight into the relation between the tasks 7; one can compare the
desired task velocities X and the task velocities x, obtained as a solution of (42)

Xpo =Jpq = Jedii, = Ax (42)

The m, x m, matrix A represents the mapping between x and x, and can be divided
into several submatrices

A1 Ap .. A
Ar1 A2y ... Aoy

A= (43)

A1 Ak o Ak

where A; ; are m; x m; matrices. Remarkably, the diagonal matrices A; ; represent
the transformation of the task velocity x; in the space of the task 7;, and the off-
diagonal submatrices represent the influence between the tasks. Note that as p; are
not equal, A is a non-symmetric matrix. The explanation is apparent, the task with
higher priority influences the task with lower priority more a vice versa.

An example of using the (42) algorithm is shown in Figs. 12 and 13. Here we can
see similar behaviour as when using a smooth transition between tasks, e.g., Figs. 10
and 11. By comparing the results, the main difference between those two approaches
while using the same parameter set is that in the case of PWDLS the robot comes
closer to the obstacle.

In the following we present how the selection of p; influences the solution of (42).
For a better understanding we present a 4 DOF planar manipulator with revolute

Fig. 12 Planar 5 DOF
manipulator: tracking of a
line from point P; to point
P, and obstacle avoidance
using PWDLS Jacobi

Obstacle Avoidance with Industrial Robots 135

0.2 v PP p
0.15 |,

—linkl
0.1 [=——link,
e [0k 3
li’lk4 B
e itk 5

|| [m]

0.05

0.5

qq [rad]

0.4

03F E

0.2 E

e [m]

0.1}]

Fig. 13 Top plot shows the distance between the obstacle and the nearest link. Middle plot shows
the joint velocities and the bottom plot shows the end-effector tracking error

joints where three control points have to be moved in different directions due to
the obstacles near the robot. Note that in this example, the distance between each
obstacle and the robot body is the same for all obstacles. Consequently, the desired
avoiding motion is similar for all the critical points (except the direction, of course).
We assume that only the positions of the control points are important and so the
tasks are 2-dimensional, m; = 2. Consequently, m; = 6 and n = 4. As Jg has
more rows than columns, the system is overdetermined and no exact solution exists.
Figure 14 shows the situation for four different selections of P. The case a) presents
the solution without prioritizing tasks (as a classic extended Jacobian approach). The

(a) b
JE!

(0 b (d) (b

T T I 7

Fig. 14 Influence of different priority factors in (42) for three tasks and for four priorities sets:
ap=I[11,11bp =[l,a,d*,¢cp =1la1,a®,dp = [a,a® 1], where a = 5 and 1 =
1078. The circles represent the geometrical representation of submatrices A; ;: unit sphere (red) —
ellipsoid (blue). Red vectors are the desired task velocities X and blue vectors are the resulting task
vectors X,

136 T. Petric et al.

other three cases show the situation when each of the tasks becomes the main task.
Note that the motion in a particular control point is not only due to the desired motion
in that point but in other control points the desired motion contributes to. Actually,
in case (d) most of the motion in control point 2 is due to the motion of the other two
tasks. As one can see, with a suitable selection of p; the proposed method makes it
possible to achieve the desired behavior of the whole system.

As the priority can be defined by changing the controller parameters rather a
by changing the controller structure, the proposed method is also suitable when the
priority has to change during the tasks’ execution. Note that the priority change can be
done continuously and no discontinuity in the joint-space solution ¢ is experienced.
A method for determining the actual values of p; is beyond the scope of this chapter.
In general, it depends on the needs of all the tasks and the specific circumstances
during the tasks’ execution.

5.3 Experimental Results

To demonstrate the properties of the algorithm given with (42) we extended the task
of the bimanual cooperation of two Kuka LWR robots equipped with Barret-Hand
grippers holding a plate while balancing a bottle [56] with the task of preventing
human contact. As in the case of the experiment in Sect.4, the human motion was
obtained using the Microsoft Kinect sensor. The results are shown in Fig. 16 and
as a sequence of photographs in Fig. 15, where we can see that robots are able to
successfully perform multiple tasks simultaneously, i.e., preventing human-robot
contact and preserving the plate’s orientation.

Fig. 15 A sequence of still photographs shows the movement of two Kuka LWR robots, while
they successfully avoid a human arm that is approaching the robot in the robot’s work space. The
detection and tracking of the human arm was done in real time using a Microsoft Kinect sensor

Obstacle Avoidance with Industrial Robots 137

|dp| [m]

qy, [rad]
T
*i
|
!
|

gg [rad]
|
|

e [m]

t [s]

Fig. 16 Results of a bimanual cooperation of two Kuka LWR robots equipped with Barret-Hand
grippers holding a plate while balancing a bottle with the task of preventing human contact. The
top plot shows the closest distance between human and nearest robot link. Second and third plot
shows the joint velocities for obstacle avoidance for left and right robot respectively. Bottom plot
shows the task error of balancing a bottle on a plate

6 Obstacle Avoidance Using Dynamical Systems

In this section we introduce dynamic movement primitives, which can be used
to encode arbitrary trajectories, and are often associated with the learning-by-
demonstration approach of controlling robots. We first provide the basics of the
dynamic motor primitives, followed by obstacle-avoidance modulation. The obsta-
cle avoidance in the DMP framework presented here is a modified approach of [57].
Simulated and real-world results are presented.

6.1 Dynamic Movement Primitives

The theoretical foundations of the dynamic movement primitives (DMPs) trajec-
tory representation was developed by Ijspeert et al. [58]. Here the discussion is
limited to discrete movement primitives, which can encode control policies for
discrete point-to-point movements. See [59-61] for the discussion of rhythmic
DMPs. The representation proposed by Ijspeert et al. is based on a set of nonlinear

138 T. Petric et al.

differential equations with a well-defined attractor dynamics. We used the most
current formulation as outlined in [57]. For a single degree of freedom denoted by
v, which can either be one of the internal joint angles or one of the external task-
space coordinates, the following system of linear differential equations with constant
coefficients denotes a dynamic movement primitive

tZ=0a(B(g—y) —2)+ fx), (44)
Ty =2z. 45)

f(x) is defined as a linear combination of nonlinear radial basis functions

L Wil (x)
f)=—F——x (46)
Z{vzl Yi(x)
W) = exp (< (x = ci)?))

where ¢; are the centers of radial basis functions distributed along the trajectory and
h; > 0 their widths. Provided that the parameters «;, f,, T > 0 and «; = 48;, the
linear part of the system (44) and (45) is critically damped and has a unique attractor
pointat y = g, z = 0. A phase variable x is used in (44), (46) and (47). It is utilized
to avoid the direct dependency of f on time. Its dynamics is defined by

TX = —0 X, (48)

with the initial value x(0) = 1. ay is a positive constant.

The weight vector w, composed of weights w;, defines the shape of the encoded
trajectory. [58, 62] describe the learning of the weight vector. Multiple DOFs are
realized by maintaining separate sets of (44)—(47), while a single canonical system
given by (48) is used to synchronize them.

6.2 Obstacle Avoidance

A control policy given by the DMP can encode either separate joint trajectories,
or external task-space coordinates. Obstacle avoidance in Cartesian space is easier
to implement since the trajectory is usually planned in Cartesian space as well.
Let us assume a three degree-of-freedom DMP system that encodes point-to-point
reaching in Cartesian space. The 3-D position vector of the 3 DOF discrete dynamical
system is encoded by y = [y1, y2, y3]7. The objective is to generate a reaching
movement to a goal state g = [g1, g2, g3]7 . On the way to the goal state, an obstacle
is positioned at 0 = [o1, 03, 03]T and needs to be avoided. A suitable coupling term
C; =1[Ci1,C 2, C,,3]T for the obstacle avoidance can be formulated as follows:

Ci =y sig(lo—yl) Ry (7w — ¢) exp (—B¢), (49)

Obstacle Avoidance with Industrial Robots 139

where

—_wy
¢ = arccos (w), (50)

llo—yllyll

. 1
31g(x) = m, (51)
T
R = exp ((E —¢) n), (52)
— w. (53)
lo—ylllyll

¥, B, and n are the scaling factors and d is the distance at which the obstacle should
start affecting the robot’s motion. The coupling term as defined above generates a
velocity component that is in a plane defined by the vectors 0 — y and y. It is also
orthogonal to the line 0—y, which is connecting the tip of the robot and the obstacle.

We can ensure that the tip of the robot, i.e., the end-effector, avoids the obstacle
by adding the coupling term C; to Eq. (45)

t2=0o:(B:(g—y) —2) +f(x) + C (54

The resulting behavior is shown in Fig. 17. Note that in this way we can only ensure
that the robot tip avoids the obstacle. However, the rest of the robot could still collide
with it. Effectively, such an implementation of obstacle avoidance treats the problem
of the end-effector collision as the primary task. Given that the DMP encodes a
task-space trajectory, the actual joint trajectories are calculated using IK algorithms.
Null-space obstacle avoidance such as discussed in Sect.4 can be employed for the
obstacle avoidance of separate segments of the robot.

6.3 Experimental Results

To show the applicability of the dynamic system for trajectory generation we applied
it to two Kuka LWR robots. The task was a bimanual cooperative manipulation
while avoiding obstacles. The obstacles in this example were detected using the

Fig. 17 The obstacle is the
black sphere, which is
directly in the path of the
robot, denoted by green.
When the obstacle-avoidance
term is introduced, the robot
takes the blue trajectory

140 T. Petri€ et al.

Fig. 18 The image sequence shows a bimanual task, controlled with dynamical systems

stereo-vision cameras. The results are shown in Fig. 19 and as an image sequence in
Fig. 18. As we can see one of the arms encounters an obstacle, given by the orange
ball, and has to adapt its predefined trajectory (straight line) similar to that shown in
the example given in Fig. 17. The control of the other arm is adapted as well in order
to maintain a constant distance between them.

7 Conclusion

The presented approaches for on-line obstacle avoidance for redundant manipulators
are based on redundancy resolution at the velocity level. For the first presented
methods, the primary task is determined by the end-effector trajectories and for the
obstacle avoidance the internal motion of the manipulator is used. The goal is to
assign each point on the body of the manipulator, which is close to the obstacle, a
velocity component in a direction that is away from the obstacle. We have shown
that it is reasonable to define the avoiding motion in a one-dimensional operational
space. In this way, some singularity problems can be avoided when not enough
“redundancy” is available locally. Additionally, the calculation of the pseudo-inverse
of the Jacobian matrix J, is simpler as it includes a scalar division instead of a
matrix inversion. Using an approximate calculation of the avoiding velocities has
its advantages computationally and it makes it easier to consider more obstacles
simultaneously.

Next, the control algorithms are presented, where the tasks’ priorities can be
altered during the execution of the motion. In the context of obstacle avoidance this
means that the obstacle can also appear on the desired end-effector trajectory. For
changing the priorities of the task we first show how to modify the prioritized task-
control algorithm at the velocity level to implement smooth transitions between tasks
with different priorities. The higher-priority task will only be active when the desired

Obstacle Avoidance with Industrial Robots 141

0.2 | _—/ 1
0.1

|dp| [m]

=

<

=

~

S
ool ‘ ‘ ‘ ‘ ‘ 1

5 oif]

<

=0 =< p

S -01t]
_02 L 1 1 1 1 1 1 1 1 1]
0.03

— 0.02 1

B

® 001 | 1

0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

t [s]

Fig. 19 Top plot shows the distance between the obstacle and the nearest link. Note that obstacle
avoidance is active only under 0.25 m and that it only acts while the velocity is towards the obstacle.
Once the robot is past the obstacle, the perturbation-rejection properties of DMPs ensure smooth
return to the original trajectory. Second and third plot shows the joint velocities for left and right
robot respectively, which are continuous and derivable. Bottom plot shows the task error

criterion is met and otherwise the higher-priority task is smoothly deactivated. This
characteristic to separate tasks and to activate them only when necessary, improves
the performance of the robot significantly. Furthermore, the presented method does
this activation/deactivation of tasks in a smooth way. We also explain how to find
the necessary motion of the robot for all the tasks simultaneously using the extended
Jacobian. As such an approach does not always give a feasible solution we propose
to use a priority weighted damped least-squares Jacobian for arranging the tasks
by priority. In this way the best solution can be found for the particular situation.
With some examples we show how the priority-based damping factors influence the
motion generation for particular tasks. With a proper choice of these factors it is
possible to get such joint velocities which ensure the desired behavior in the best
possible way.

142 T. Petri€ et al.

Finally, we show how a dynamical system for trajectory generation can be
modified to be suitable for online control. Since the dynamical system can only
avoid obstacles that appear in the trajectory path, it is necessary to use a control
method that can modify the robot null-space configuration if needed. The combina-
tion of both dynamical systems for trajectory generation and control with obstacle
avoidance is a powerful framework that can easily be used in different applications.

References

1. Chiaverini S (1997) Singularity-robust task-priority redundancy resolution for real-time kine-
matic control of robot manipulators. IEEE Trans Robot Autom 13(3):398-410. doi:10.1109/
70.585902

2. Egeland O (1987) Task-space tracking with redundant manipulators. IEEE J Robot Autom
3(5):471-475. doi:10.1109/JRA.1987.1087118

3. Lenarcic J, Stanisic M (2003) A humanoid shoulder complex and the humeral pointing kine-
matics. IEEE Trans Robot Autom 19(3):499-506

4. Nakamura Y, Hanafusa H, Yoshikawa T (1987) Task-priority based redundancy control of robot
manipulators. Int J Robot Res 6(2):3-15

5. Kuffner JJ, Lavalle SM (2000) RRT-connect: an efficient approach to single-query path plan-
ning, April, pp 995-1001

6. Lozano-Perez T (1983) Spatial planning: a configuration space approach. IEEE Trans Comput
100(2):108-120

7. Lozano-Pérez T, Wesley MA (1979) An algorithm for planning collision-free paths among
polyhedral obstacles. Commun ACM 22:560-570

8. Burns B (2005) Toward optimal configuration space sampling. In: Proceedings of robotics:
science and systems, pp 1-6

9. Diankov R, Kuffner J (2007) Randomized statistical path planning. In: Proceedings of
IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp 1-6. doi:10.
1109/IROS.2007.4399557. http://ieeexplore.ieee.org/Ipdocs/epic03/wrapper.htm?arnumber=
4399557

10. Toussaint M (2009) Robot trajectory optimization using approximate inference. In: Proceedings
of the 26th annual international conference on machine learning—ICML’09. ACM Press, New
York, pp 1049-1056. doi:10.1145/1553374.1553508. http://portal.acm.org/citation.cfm?doid=
1553374.1553508

11. Brock O, Khatib O, Viji S (2002) Task-consistent obstacle avoidance and motion behavior
for mobile manipulation. In: Proceedings of IEEE international conference on robotics and
automation, ICRA’02, vol 1, pp 388-393. doi:10.1109/ROBOT.2002.1013391

12. Colbaugh R, Seraji H, Glass K (1989) Obstacle avoidance for redundant robots using config-
uration control. J Robot Syst 6(6):721-744

13. Glass K, Colbaugh R, Lim D, Seraji H (1995) Real-time collision avoidance for redundant
manipulators. IEEE Trans Robot Autom 11(3):448-457

14. Guo Z, Hsia T (1993) Joint trajectory generation for redundant robots in an environment with
obstacles. J Robot Syst 10(2):199-215

15. Khatib O (1986) Real-time obstacle avoidance for manipulators and mobile robots. Int J Robot
Res 5(1):90-98. doi:10.1177/027836498600500106

16. Kim JO, Khosla PK (1992) Real-time obstacle avoidance using harmonic potential functions.
IEEE Trans Robot Autom 8(3):338-349

17. Maciejewski AA, Klein CA (1985) Obstacle avoidance for kinematically redundant manip-
ulators in dynamically varying environments. Int J Robot Res 4(3):109-117. doi:10.1177/
027836498500400308

http://dx.doi.org/10.1109/70.585902
http://dx.doi.org/10.1109/70.585902
http://dx.doi.org/10.1109/JRA.1987.1087118
http://dx.doi.org/10.1109/IROS.2007.4399557
http://dx.doi.org/10.1109/IROS.2007.4399557
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4399557
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4399557
http://dx.doi.org/10.1145/1553374.1553508
http://portal.acm.org/citation.cfm?doid=1553374.1553508
http://portal.acm.org/citation.cfm?doid=1553374.1553508
http://dx.doi.org/10.1109/ROBOT.2002.1013391
http://dx.doi.org/10.1177/027836498600500106
http://dx.doi.org/10.1177/027836498500400308
http://dx.doi.org/10.1177/027836498500400308

Obstacle Avoidance with Industrial Robots 143

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

McLean A, Cameron S (1996) The virtual springs method: path planning and collision avoid-
ance for redundant manipulators. Int J Robot Res 15(4):300-319

Seraji H, Bon B (1999) Real-time collision avoidance for position-controlled manipulators.
IEEE Trans Robot Autom 15(4):670-677

Volpe R, Khosla P (1993) A theoretical and experimental investigation of impact control for
manipulators. Int J Robot Res 12(4):351-365

Feder HJS, Slotine JJE (1997) Real-time path planning using harmonic potentials in dynamic
environments. In: Proceedings of IEEE international conference on robotics and automation,
April, pp 874-881

lossifidis I, Sch G (2006) Dynamical systems approach for the autonomous avoidance of
obstacles and joint-limits for an redundant robot arm. In: Proceedings of IEEE/RSJ international
conference on intelligent robots and systems, pp 580-585

Khansari-Zadeh SM, Billard A (2012) A dynamical system approach to realtime obstacle
avoidance. Auton Robot 32(4):433-454.doi:10.1007/s10514-012-9287-y. http://link.springer.
com/10.1007/s10514-012-9287-y

Park DHPDH, Hoffmann H, Pastor P, Schaal S (2008) Movement reproduction and obstacle
avoidance with dynamic movement primitives and potential fields. In: Proceedings of 8th IEEE-
RAS international conference on humanoid robots, humanoids 2008. IEEE, vol 121, pp 91—
98. doi:10.1109/ICHR.2008.4755937. http://ieeexplore.ieee.org/Ipdocs/epic03/wrapper.htm?
arnumber=4755937

Sprunk C, Lau B, Pfaff P (2011) Online generation of kinodynamic trajectories for non-circular
omnidirectional robots. In: Proceedings of IEEE international conference on robotics and
automation, pp 72-77

Newman WS (1989) Automatic obstacle avoidance at high speeds via reflex control. In: Pro-
ceedings of IEEE international conference on robotics and automation. IEEE, pp 1104-1109
Xie F, Qu Z, Garfinkel A (1998) Dynamics of reentry around a circular obstacle in cardiac
tissue. Phys Rev E 58(5):6355

O’Neil K (2002) Divergence of linear acceleration-based redundancy resolution schemes. IEEE
Trans Robot Autom 18(4):625-631. doi:10.1109/TRA.2002.801046

Khatib O (1987) A unified approach for motion and force control of robot manipulators:
the operational space formulation. IEEE J Robot Autom 3(1):43-53. doi:10.1109/JRA.1987.
1087068

Mansard N, Khatib O, Kheddar A (2009) A unified approach to integrate unilateral constraints
in the stack of tasks. IEEE Trans Robot 25(3):670-685. doi:10.1109/TR0O.2009.2020345
Sentis L, Park J, Khatib O (2010) Compliant control of multicontact and center-of-mass behav-
iors in humanoid robots. IEEE Trans Robot 26(3):483-501. doi:10.1109/TR0O.2010.2043757
Stasse O, Escande A, Mansard N, Miossec S, Evrard P, Kheddar A (2008) Real-time (self)-
collision avoidance task on a HRP-2 humanoid robot. In: IEEE international conference on
robotics and automation, pp 3200-3205

Zlajpah L, Petri¢ T (2012) Serial and parallel robot manipulators—kinematics, dynamics, con-
trol and optimization, chap obstacle avoidance for redundant manipulators as control problem.
InTech, pp 203-230

Sciavicco L, Siciliano B (2005) Modelling and control of robot manipulators, 2nd edn.,
Advanced textbooks in control and signal processingSpringer, London

Petri¢ T, Zlajpah L (2013) Smooth continuous transition between tasks on a kinematic control
level: obstacle avoidance as a control problem. Robot Auton Syst 61(9):948-959

Petri¢ T, Gams A, Babic J, Zlajpah L (2013) Reflexive stability control framework for humanoid
robots. Auton Robot 34(4):347-361. doi:10.1007/s10514-013-9329-0

Petri¢ T, Zlajpah L (2011) Smooth transition between tasks on a kinematic control level:
application to self collision avoidance for two kuka lwr robots. In: 2011 IEEE international
conference on robotics and biomimetics, pp 162—-167

Sugiura H, Gienger M, Janssen H, Goerick C (2007) Real-time collision avoidance with whole
body motion control for humanoid robots. In: IEEE/RSJ international conference on intelligent
robots and systems, IROS 2007, pp 2053-2058. doi:10.1109/IROS.2007.4399062

http://dx.doi.org/10.1007/s10514-012-9287-y
http://springerlink.bibliotecabuap.elogim.com/10.1007/s10514-012-9287-y
http://springerlink.bibliotecabuap.elogim.com/10.1007/s10514-012-9287-y
http://dx.doi.org/10.1109/ICHR.2008.4755937
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4755937
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4755937
http://dx.doi.org/10.1109/TRA.2002.801046
http://dx.doi.org/10.1109/JRA.1987.1087068
http://dx.doi.org/10.1109/JRA.1987.1087068
http://dx.doi.org/10.1109/TRO.2009.2020345
http://dx.doi.org/10.1109/TRO.2010.2043757
http://dx.doi.org/10.1007/s10514-013-9329-0
http://dx.doi.org/10.1109/IROS.2007.4399062

144

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

T. Petric et al.

Zlajpah L, Nemec B (2002) Kinematic control algorithms for on-line obstacle avoidance for
redundant manipulators. In: IEEE/RSJ international conference on intelligent robots and sys-
tems, vol 2, pp 1898-1903. doi:10.1109/IRDS.2002.1044033

Arun KS, Huang TS, Blostein SD (1987) Least-squares fitting of two 3-d point sets. IEEE
Trans Pattern Anal Mach Intell 5:698-700

Khatib O, Brock O, Chang KS, Ruspini D, Sentis L, Viji S (2004) Human-centered robotics
and interactive haptic simulation. Int J Robot Res 23(2):167-178

Konietschke R, Hirzinger G (2009) Inverse kinematics with closed form solutions for highly
redundant robotic systems. In: Proceedings of IEEE international conference on robotics and
automation. IEEE, pp 2945-2950

Santis AD, Siciliano B (2008) Inverse kinematics of robot manipulators with multiple moving
control points. In: Lenarci¢ J, Wenger P (eds) Advances in robot kinematics: analysis and
design. Springer, New York, pp 429438

Antonelli G (2009) Stability analysis for prioritized closed-loop inverse kinematic algorithms
for redundant robotic systems. IEEE Trans Robot 25(5):985-994. doi:10.1109/TRO.2009.
2017135

Chiaverini S, Oriolo G, Walker ID (2008) Kinematically redundant manipulators. In: Siciliano
B, Khatib O (eds) Springer handbook of robotics, chap 11. Springer, Berlin, pp 245-268
Park J, Choi YJ, Chung WK, Youm Y (2001) Multiple tasks kinematics using weighted pseudo-
inverse for kinematically redundant manipulators. In: Proceedings 2001 ICRA. IEEE interna-
tional conference on robotics and automation (Cat. No.0O1CH37164), vol 4. IEEE, pp 4041—
4047

Baerlocher P, Boulic R (1998) Task-priority formulations for the kinematic control of highly
redundant articulated structures. In: Proceedings of IIEEE/RSJ international conference on
intelligent robots and systems, vol 1, October, pp 323-329

Chiaverini S, Siciliano B, Egeland O (1994) Review of the damped least-squares inverse kine-
matics with experiments on an industrial robot manipulator. IEEE Trans Control Syst Technol
2(2):123-134

Sciavicco L, Siciliano B (1986) Solving the inverse kinematic problem for robotic manipulators.
In: Morecki A, Bianchi G, Kdzior K (eds) Proceedings of the 6th CISM-IFToMM symposium
on theory and practice of robots and manipulators. Springer, Krakow, pp 107-114

Egeland O, Sagli J, Spangelo I, Chiaverini S (1991) A damped least-squares solution to redun-
dancy resolution. In: Proceedings 1991 IEEE international conference on robotics and automa-
tion. IEEE Computer Society Press, pp 945-950

Buss SR, Kim JS (2004) Selectively damped least squares for inverse kinematics. J Graph
Tools 10:37-49

Deo A, Walker I (1992) Robot subtask performance with singularity robustness using optimal
damped least-squares. In: Proceedings 1992 IEEE international conference on robotics and
automation. [IEEE Computer Society Press, pp 434—441

Maciejewski A, Klein C (1988) Numerical filtering for the operation of robotic manipulators
through kinematically singular configurations. J Robot Syst 5(6):527-552

Nakamura Y, Hanafusa H (1986) Inverse kinematics solutions with singularity robustness for
robot manipulator control. Trans ASME J Dyn Syst Meas Control 108(3):163-171

Zlajpah L (2013) Multi-task control for redundant robots using prioritized damped least-squares
inverse kinematics. In: 22nd international workshop on robotics in Alpe-Adria-Danube region,
Portoroz, Slovenia, 11-13 September 2013

Likar N, Nemec B, Zlajpah L (2012) Virtual mechanism approach for dual-arm manipulation.
Robotica 1:1-16

Ijspeert A, Nakanishi J, Pastor P, Hoffmann H, Schaal S (2013) Dynamical movement primi-
tives: learning attractor models for motor behaviors. Neural Comput 25(2):328-373

Ijspeert A, Nakanishi J, Schaal S (2002) Movement imitation with nonlinear dynamical systems
in humanoid robots. In: IEEE international conference on robotics and automation (ICRA), vol
2. Washington, DC, pp 1398-1403

http://dx.doi.org/10.1109/IRDS.2002.1044033
http://dx.doi.org/10.1109/TRO.2009.2017135
http://dx.doi.org/10.1109/TRO.2009.2017135

Obstacle Avoidance with Industrial Robots 145

59. Gams A, Ijspeert AJ, Schaal S, Lenar¢i¢ J (2009) On-line learning and modulation of periodic
movements with nonlinear dynamical systems. Auton Robot 27(1):3-23

60. Ijspeert AJ, Nakanishi J, Schaal S (2002) Learning rhythmic movements by demonstration
using nonlinear oscillators. In: Proceedings of IEEE/RSJ international conference intelligent
robots and systems. Lausanne, pp 958-963

61. Petric T, Gams A, Ijspeert AJ, Zlajpah L (2011) On-line frequency adaptation and movement
imitation for rhythmic robotic tasks. Int J Robot Res 30(14):1775-1788

62. Ude A, Gams A, Asfour T, Morimoto J (2010) Task-specific generalization of discrete and
periodic dynamic movement primitives. IEEE Trans Robot 26(5):800-815

Path Planning Kinematics Simulation
of CNC Machine Tools Based on Parallel
Manipulators

Luc Rolland

Abstract Since the very successful application of parallel robots in material
handling, many projects attempted to implement the Gough platforms as milling
machine manipulators with limited success mainly achieving roughing. The displace-
ment of the milling tool should meet surface finish requirements while increasing
tool feedrate in order to improve productivity. This work introduces geometric for-
malization of surface finish which is more realistic then classic error calculations.
This research work also proposes an off-line simulation tool analysing the milling
task feasibility using a robot constituted by a general hexapod parallel manipulator,
controlled by a typical CNC controller implementing classic position based algo-
rithms where joint space polynomial interpolation is utilized. High and very high
speed milling simulation results show the implementation of linear and third order
interpolation between the actuator set-points calculated from the CAD/CAM com-
puted end-effector or tool set-points. Linear interpolation is not sufficient for high
speed milling and then third order interpolation reach the required surface finish at
feasible CNC sampling rates.

Keywords Parallel manipulator - CNN - Kinematics simulation

Since the very successful application of parallel robots in material handling, many
projects attempted to implement the Gough platforms as milling machine manipula-
tors with limited success mainly achieving roughing.

The displacement of the milling tool should meet surface finish requirements.
Users also wish to increase tool feedrate in order to improve productivity thereby
reaching high speed milling levels. Even a constant high speed feedrate brings im-
portant challenges since they mean higher actuator accelerations even on straight
lines. This work introduces geometric formalization of surface finish which is more
realistic then classic error calculations.

L. Rolland ()

High Performance Robotics Laboratory, Memorial University of Newfoundland,
St-John’s Campus, St-John’s, NL, Canada

e-mail: Irolland@mun.ca

© Springer International Publishing Switzerland 2015 147
G. Carbone and F. Gomez-Bravo (eds.), Motion and Operation Planning

of Robotic Systems, Mechanisms and Machine Science 29,

DOI 10.1007/978-3-319-14705-5_6

148 L. Rolland

This research work proposes an off-line simulation tool analysing the milling
task feasibility using a robot constituted by a general hexapod parallel manipulator,
namely the Gough Platform, often referred as the Stewart Platform. Moreover, in
order to meet the machine-tool standards, the parallel robot will be controlled by
a typical CNC controller implementing classic position based algorithms adapted
to the parallel robots with any kind of actuator polynomial interpolation. Control
sampling rates are studied and their impact evaluated.

High and very high speed milling simulation results show the implementation
of linear and third order interpolation between the actuator set-points calculated
from the CAD/CAM computed end-effector or tool set-points. The results show that
linear interpolation are not sufficient for high speed milling and then third order
interpolation reach the required surface finish at fast and feasible CNC sampling
rates.

1 Introduction

After the confirmed success of parallel robots as flight simulators followed by their
more recent breakthroughs in material handling, they are actually implemented as
machine-tools. Several commercialization attempts were made over the years. With
the promise of increased productivity, we aim to achieve the two following goals:

1. To reach higher feedrates while keeping excellent surface finish quality
2. To obtain faster accelerations during path transfers between task trajectories.

The main advantages of these robotic manipulators compared to serial ones are
simpler construction, more rigid structures, non-cumulative kinematics chain deflec-
tions, greater throughputs from higher accelerations and less energy consumption
from smaller actuators. On the other hand, these manipulators feature drawbacks
such as limited workspace and complex non-linear kinematics.

In material handling applications the ratio between actuator displacement travel
and accuracy is around 1,000 over 1 mm, whereas in milling applications the ratio
becomes 1,000 over 1 micron, meaning it 1,000 times larger.

Due to the highly non linear nature of parallel robots, their implementation still
poses serious challenges.

Initial path planning investigations for parallel robots were trying to determine
if any task would include their entire paths inside the robot workspace, where the
notion of trajectory quality has been formulated in terms of distances from actu-
ator limits [39]. Kinematics chain collision was added to the analysis [11]. Path
planning involved singularity investigation to avoid instantaneous self-motion [46].
Singularities were extensively studied [3, 21, 23]. The problem evolved into multi-
objective optimization finding the optimum path according to a certain number of cri-
terias [9, 10]. Chablat and Wenger [41] introduced collision avoidance to singularity
analysis to answer the question of moveability in the presence of obstacles. Planning
time-minimal trajectories were introduced by [1, 27]. In [29], the authors minimize

Path Planning Kinematics Simulation of CNC Machine Tools ... 149

electrical energy, kinetic energy, robot motion time separating two sampling periods,
and maximize a measure of manipulability allowing singularity avoidance.

More specifically, implementing the Gough platform as a milling machine, often
referred as the Stewart platform, path planning was studied where the contour error
was used as a performance criteria to determine the effect of PID controls applied on
each actuator [38]. The redundant sixth degree-of-freedom was utilized for optimiza-
tion according to various criterias [44]. Path planning schemes also targeted the axial
force minimization [65], where maximum constant cutting force along the contour
were maximized [49]. Then, added objectives included stiffness maximization [52].

This research work addresses the feasibility of a successful machining task in
terms of surface finish quality, the manipulator type, the sensor accuracy, the control
strategy (position or velocity control), typical feedback servo loops, signal digiti-
zation, time digitization, inter-point polynomial interpolation, the related computer
numerical control algorithms and even signal synchronization. This general frame-
work allows to study any specific robot controlled by any typical Computer Numer-
ical Controls (CNC). A novel formal approach to evaluate surface finish is proposed
including a milling task description. A CNC module simulation block is introduced
where the effect of time and signal digitization can be studied allowing to adjust
sampling rates. The task is analyzed from a pure kinematics point of view, allowing
to determine the best achievable result and eventually increase machining parameters
such as feedrates.

In the next section, the high speed milling problem and context are explained.
It includes the theoretical background on parallel manipulator kinematics and CNC
control The third section reviews the machining Process. The fourth section covers
the geometric formalization of surface finish. The fifth section presents the path
planning simulation results with position control.

2 General Issues with Parallel Kinematic Machines

2.1 Problem Statement

To obtain five axis CNC machining at high speed feedrate levels, the Gough platform
or hexapod has to be envisaged with six kinematics chains between the fixed base
and the mobile platform where the tool is located, Fig. 1. Then, three possible cases
can be derived. The 6UPS/6SPU configuration contains each kinematics chain with
a free prismatic actuator (P) between one Universal joint (U) and one ball joint
(S); the 6RUS/6RSU includes kinematics chains constituted by a revolute actuator
(R) operating a crank moving a bar including one Universal joint (U) and one ball
joint (S); and finally the 6PUS/6PSU replacing the crank by a tracked prismatic
actuator (P).

In reality, any robotic system is never constructed identical to the ideally designed
one. A significant difference can be often observed between the theoretical and

150 L. Rolland

PRRS

Fig. 1 Typical 6-6 parallel robots: the 6UPS/6SPU, 6RUS/6RSU and 6PUS/6PSU

practical configurations translating into errors on the passive joint positions of the
mobile platform and the fixed base. These configuration errors will without doubt
have a significant impact on milling precision. These discrepancies will usually grow
following various milling operations where unpredictable wear is occurring in the
joints. These will also appear following maintenance where the manipulator was
reassembled if not followed by an adequate calibration procedure [20].

In the literature, we can identify several procedures and software analysing the
characteristics and performance of robotic manipulators [76]. These studies seek
to evaluate the extremes of a certain number of criterions. More specifically, in
parallel robotics, lets highlight some interesting packages proposing some level of
verifications:

1. Localisation of robot trajectories inside the workspace [39, 43].

2. Singularities over nominal trajectories inside the workspace [21, 39, 46].
3. Power and torque of motors [61].

4. Positioning errors [38, 50].

These analyses concern the entire workspace where performance can be affected
by large variations. In many scenarios, it may be possible to achieve the task over a
large portion of the workspace and then the task quality may not reach the desirable

Path Planning Kinematics Simulation of CNC Machine Tools ... 151

levels in certains specific areas of the workspace. The performance analysis shifted
away from workspace studies towards the task trajectories themselves studying the
following factors:

1. the joint travel in terms of the actuators and passive joints [39]

2. the kinematics chain and platform collisions [11, 39], extrapolated from serial
robotics work [71]

. maximum velocity [35]

. dynamic rigidity [62]

. servo modeling [38, 62]

. robot control [38]

. tool deformation in milling tasks [25]

. sixth rotation angle optimization for milling tools [20, 44].

[e BN I o) RNV, I SOV]

These research works do not include all the important criterias. The displacement
of the milling tool should meet surface finish requirements and tool feedrate. The
second criterion will be increased in order to improve productivity. Even a constant
feedrate brings important challenges on trajectories such as arcs since they mean
higher accelerations.

The goal of this work is to propose tools analysing the milling task feasibility
using a robot constituted by a 6-6 hexapod parallel manipulator, namely the Gough
Platform, often referred as the Stewart Platform. Moreover, in order to meet the
standards of the machine-tool domain, the parallel robot will be controlled by a
typical CNC controller implementing classic algorithms adapted to parallel robots.

The factors influencing robot trajectory following are the sub-space of task execu-
tion, tool feedrate, position sensor accuracy and the choice of control algorithms. The
milling task is in turn described by several robot trajectories. For high speed milling,
surface finish is required to obtain asperities not exceeding 10-20 i over the entire
trajectories constituting a milling task. To qualify as high speed milling (HSM), the
feedrate should reach 20 m/min and the target is even 60 m/min, classified as ultra
high speed milling (UHSM).

The simulation system will require solving the kinematics problems several times.
To alleviate many problems related to usual numerical methods, an exact and cer-
tified method was derived and will be applied to perform end-effector position and
orientation calculations [59, 60]. This method implements ideal based techniques
utilizing Groebner bases and rational univariate representations (RUR) insuring that
the produced equivalent system is exactly corresponding to the original system. The
RUR system includes one univariate equation from which the real roots are calcu-
lated and proven in one-to-one objective correspondence with the original kinematics
problem. Then, proven root isolation techniques will provide for all the exact real
roots. The system applies the modular black-box approach where any user can re-
place the selected kinematics solver by any other, at the condition that it provides for
sufficient accuracy to study milling tasks.

In practice, during design, construction, start-up or after robot maintenance, these
simulation tools will allow to select the complete control approach including sen-
sors and the path planning algorithms; The operator will be able to study the control

152 L. Rolland

scheme, the path following algorithms, the joint interpolation functions, the axis
servo controls, the response-time of the various control levels, the effect of time dis-
cretization, the effect of digital conversions and parameter fine-tuning. The proposed
tools will allow to determine milling task feasibility.

2.2 Kinematics of the General 6-6 Parallel Manipulator

Any manipulator is characterized by its mechanical configuration parameters and the
posture variables. The configuration parameters are thus OA, Ry the base attachment
point coordinates in Ry (the base reference frame, located at O), and CBy, , the
mobile platform attachment point coordinates in R,, (the mobile platform reference
frame, located at C). The kinematics model variables are the joint coordinates and
end-effector generalized coordinates. The joint variables are described as /;, the
prismatic joint or linear actuator positions. The generalized coordinates are expressed
as 7() comprising the end-effector position and orientation.

The kinematics model is an implicit relation between the configuration parameters
and the posture variables, F(?(), L, OA|Rf , CB\RM) = Owhere L = {l,...,ls}. For
the sake of clarity and simplicity, OA Iy will be replaced by OAp and CB|, by
CBo.

This simulator shall only require successive passages from the joint space to the
task space and vice versa, Fig. 2. The Inverse Kinematics Problem (IKP) is defined
as:

Definition 1 Given the generalized coordinates of the manipulator end-effector, find
the joint positions.

Accordingly, the Forward Kinematics Problem (FKP) is defined as:

Definition 2 Given the joint positions, find the generalized coordinates of the ma-
nipulator end-effector.

Fig. 2 Kinematics model Manipulator configuration

OA

, CB ‘
Rf Rm

Joint

coordinates .
Generalized

coordinates
] —

_X

1

I

Path Planning Kinematics Simulation of CNC Machine Tools ... 153

Usually the IKP is required to model the FKP. To solve the FKP, an exact method
based on Groebner bases and rational univariate representations shall be applied
[59, 60].

The forward kinematics problem (FKP), Fig. 2, has been identified as a difficult
problem [57]. Usually the inverse kinematics problem is required to model the FKP
and is defined as [56]: given the generalized coordinates of the manipulator end-
effector, find the joint positions.

Accordingly, the forward kinematics problem is defined as [56]: given the joint
positions, find the generalized coordinates of the manipulator end-effector.

The kinematics problem can be described that, contrarily to serial manipulators,
the inverse kinamtics problem yields a closed-form explicit solution and the for-
ward kinematics involves the resolution of at least six non-linear equations. These
kinematics models play an increasingly important role when robotic manipulator
accuracy is decreased to the micron level.

2.3 Vectorial Formulation of the Implicit Kinematics Model

Containing as many equations as variables, vectorial formulation constructs an equa-
tion system for each kinematics chain [54], as a closed vector cycle between the A;
and B; kinematics chain attachment points, the fixed base reference frame O and the
mobile platform reference frame C. For each kinematics chain, an implicit function
m = U (X) can be written between joint positions A; and B;. Each vector m
is expressed knowing the joint coordinates L and X giving function U»(X, L). The
following equality has to be solved: U1(X) = Ux(X, L). The distance between A;
and B; is set to [;. Thus, the end-effector position X or C can be derived by one
platform displacement &?) and then one platform general rotation expressed by the
rotation matrix Z. For each distinct platform point ET owithi =1,...,6,seeFig.3,
the position can be calculated in terms of the base reference frame [53]:

— — —
OBip = OC + ZCB; (D

The vectorial formulation evolves as a displacement based equation system using
the following relation:

— — —>
AiBi = OC +ZCB; — OA; 2)

These six equations cannot be applied as such. Hence, each kinematics chain can
be expressed using the distance norm constraint [53]:

I} =11AiBi|? 3)

The rotation matrix & can be written utilizing various orientation models with
their specific rotation variable sets such as navigation angles (yaw, pitch and roll),
Euler angles, quaternions or even taking the nine rotation matrix components as

154 L. Rolland

Fig. 3 Kinematics chain and
mobile platform vectors

variables [60]. Implementing the Eq. (3) directly, various displacement based equa-
tion models can be derived depending on the selected orientation variables [60].

Another excellent approach is called the position based modeling and consists
in considering any rigid object to be positioned into three dimensional space by
three distinct points, Fig. 3. Any rigid body three points are actually characterized by
three distinct distance constraints and a pointing axis which remain constant. This
principle was then applied to the forward kinematics model of parallel manipulators
by Lazard [55]. It is easy to choose three distinct points which are not collinear on
most mobile platforms. These three points are usually selected to coincide with three
joint centers connecting the mobile platform to the kinematics chains allowing to
utilize the vectorial model, Fig.3 and to rewrite of m , Eq.(2) as it is explained in
details in [60].

Two reasons justify the choice of the position based model. Every variable yield
the same units and their ranges are equivalent leading to the same weight in the

Path Planning Kinematics Simulation of CNC Machine Tools ... 155

equation system. The rotation impact is included into the point parameters and made
equivalent to the translation impact.

The coordinates of the three distinct joint center points become the nine variables
from which constraints equation can be written. The three platform distinct points
are usually selected as the three first joint centers, namely Bj, By and B3. Each
coordinate of the selected joint centers becomes a variable. The nine end-effector
variables are set to: ﬁi\o = [x;, yi, zi] fori = 1...3. To simplify computations,
we choose one non-Cartesian reference frame R, to be located at B; joint center.
Then, we define u1, u; and u3 as Ry, reference frame axes which are calculated by:

— —_—
BB B1B3

Ul = —=—, Up = ——=—, U3 =U| AU 4
[|B1 B2 ||B1B3]|

This new reference frame Ry, is applied instead of R,, as the mobile platform Carte-
sian reference frame and has its origin located at By and the reference frame axes
u1 and u; point towards By and B3 respectively. The third reference frame u3 points
perpendicular to the plane determined by Bj, B, and Bs. It becomes the mobile plat-
form pointing axis. This transformation is achieved to produce a simpler equation
system.

Knowing that the mobile platform is supposed infinitely rigid, any platform point
M can be expressed in the reference frame Rp, by calculating the following linear
composition: N
BiM = apyuy + byuz + cyusz 4)

where ayr, by, ¢y are constants in terms of these three points. Hence, in the case
of the IKP , the constants are noted ap,, bp,, cp;, i =i...6 and can explicitly be
deduced from the mobile platform fixed distances CB|c by solving the following
linear system of equations:

H .
BlBilel =apui +bpuy +cpuz, i =1...6. (6)

— —
where BlBi\Rhl = B1Bj|c.

Note that the mobile platform fixed distances CB,c are given by the configuration
which is obtained from the design values or deduced from a calibration procedure
after the Gough platform manipulator construction. The configuration file is provid-
ing the position of all six joints of the mobile platform relative to the mobile platform
reference frame and this ensure that the points belong to the same rigid body which
is the mobile platform.

Equation 7 requires that we calculate the configuration distances with:

— S —
B1Bjjc =CB; —CBy, i=1...6. (7)

Hence, the remaining three mobile platform joint centers B4, Bs and Bg are ex-
pressed in terms of the nine end-effector variables.

156 L. Rolland

—_— 2
Using the relations Eq. (6), the distance constraint equations ll.2 =||A;Bijoll , i =
1...6 can be expressed. Thus, fori = 1...6, the IKP is obtained by isolating the
[; actuator variables in the six following equations:

F=i—0Ax)* +(i— 0Ap) + (zi — 0AR)?, i=1...3 (8
2 —_—> —_— 2 .
li :HBIB”R,,] —OAi0|| s i=4...6 (9)

2.4 The Inverse Kinematics Problem

The Egs. (3) or (9) are actually the two general forms of the explicit IKP.

2.5 The Forward Kinematics Problem

For the general Gough platform parallel manipulator, it is actually not possible to
express the FKP directly or explicitly [45]. We have to revert to the IKP expression
which gives an algebraic system comprising six equations in terms of three point vari-
ables: x1, y1, 21, X2, ¥2, 22, X3, ¥3, 23, Eq. (9). This system contains algebraic (poly-
nomial) functions which can be handled by the numerical solvers implemented in all
genetic algorithms.

The usual method advocated for writing the FKP equation system starts by rewrit-
ing the IKP as functions. This produces an algebraic system of three leg equations
and three functions in terms of the nine variables: x;, y;, zi, i = 1, 2, 3.

Fi=(xi — OAi)* + (i — OAp)* + (zi — OA)* =17, i =1...3 (10)
—> — 2 2 .
Fi =B, — OAioll =1, i=4...6 (11)

When solving the FKP with numeric or algebraic methods, it is necessary to
provide a zero-dimensional system, meaning an equation system which contains as
many equations as their are variables [59, 60]. In this case, this means that to the six
equations provided by the IKP, three more shall be selected to close the system.

Moreover, the actual FKP is derived directly from the IKP model, Eq.(11), and it
does not provide for any information to constrain the position of the mobile platform
joint positions which are necessary to describe the FKP.

Hence, to complete the algebraic system and to constrain the mobile platform
joint positions, three constraints are derived from the following three functions. Two
functions can be written using two characteristic platform distances, expressed as
norms between the Bj, B, distinct points and the Bj, B3 ones. The computations
will select the variables which are only at the right distance from the B; reference
joint point. These constraint equations require one last equation. The points are

Path Planning Kinematics Simulation of CNC Machine Tools ... 157

known relative to each other in terms of distance but the mobile platform alignment
is left undetermined. To alleviate this problem, the third constraint equation will
determine where the mobile platform is pointing. The pointing vector is selected as
the one perpendicular to the three points B;, i = 1, 2, 3 by calculating the vectorial
multiplication of the two vectors separating B> and B3 from Bj:

_ 2 2 2 A 2
Fr = (2 =x)" + (02 = y0)" + (22 = 200" = ||B2Big, |l (12)
_ 2 2 2 > 2
Fg = (3 —x1)"+ (3 —y)" + @ —2)" = |[B3Bi, |l (13)
Fo=(x3 —x1)(x2 —x1)+ (3 —yD (2 — y1) + (23 —z1)(z2 — 21)
— —
—||BBBI|Rh1||/\||B2BI|Rh1|| (14)

The choice of Fy, the last function, provided an important mobile platform con-
straint related to the pointing axis. For Fy, it would be possible to write a function
related to the distance between B, and B3 but our experience shows us that it does
lead to better results then the platform pointing function.

The result constitutes then an algebraic system with nine equations in the former
nine unknowns.

2.6 Machine Tool Control

In a high speed milling machine, a typical Gough platform being a general 6-6
or hexapod robot is constituted by several parts driven by a controller connected
to a remotely located CAD-CAM computer. As it is explained in [45], one CNC
machine-tool is essentially considered identical to a robot achieving the predeter-
mined continuous path following encountered in machine tool processes.

The CNC is defined as the control system capable to manage the machine-tool
and its control in order to follow a program achieving a milling task [45].

Practically, the CNC handles a written program in a standard format constituded
by G codes from the ISO standard [36, 37]. Note that the machine-tool industry
considers this format mandatory for machine-tool controls. Any simulation package
shall consider that CNC systems handle these codes and simulate their operations.

In typical CNC, the control unit is divided into three control stages or levels:
the off-line CAD-CAM level providing the task set-points describing the nominal
paths, the on-line nominal path following as the upper controller level and the mo-
tor servoing as the lower controller level, usually driving directly the actuators by
implementing one PID feedback loop for each axis. Each stage operates in discrete
time according its own cycle time or sampling rates:

e T.: The task trajectory set-point file sampling rate produced by the CAM program.
e T),: The path following cycle time corresponding to the time required to calculate
the joint servo trajectory set-points.

158 L. Rolland

e T: The motor servo cycle time corresponding to the time dedicated to PID loop
computation.

e T,: The motor amplifier sampling rate which gives the time at which their output
is being refreshed.

The simulation module will allow to test and verify the three first cycle times.
The amplifier sampling rates will not be included in the simulation work. The task
follows one or several nominal functions from which discretization produces the task
path file containing a large number of points being dependent on the sampling rates.
The number of points will have an impact on surface finish and impact CNC'’s ability
to follow the nominal path.

The machine-tool operates in a spatial continuous domain which is completely
described by 6 dimensions (3 translations and 3 rotations), A = 6, with parameters
€ 9. To execute a milling task, the path following algorithm may require from three
to five axes control. The sixth axis corresponds to the tool spindle rotation axis and
therefore does not participate to the trajectory pursuit. The CNC should then receive
five analog inputs or encoder inputs for actuator axis positions and drive five analog
or direct pulse-width-modulation outputs for actuator positioning. The simulation
will not include the tool spindle axis angular speed control.

The CNC can either implement one of the two control types: position and speed
control [15]:

e Position control is preferred when you can calculate the IKP. Joint position control
follows the trajectory profile at the axis level from interpolated point to interpo-
lated point and does not control the velocities between these points leading to a
discrepancy between the exact nominal trajectory and the achieved trajectory at the
tool level. If the range of motion is important then the robot reaches its destination
with larger inaccuracies. The traditional solution is to slowdown robots.

e Speed control is based on small displacements and implements the computation
of the inverse Jacobian matrix. You will need to calculate the FKP.

2.7 Task Space Conversion to Joint Space

In principle, implemented in the off-line CAM, the trajectory planning algorithm
calculates one inverse kinematics problem from the Cartesian-space set-point trajec-
tory functions to determine the six actuator-space functions which are then called
the joint set-point trajectories. The real continuous signals are computed from these
functions. Then, the continuous signals are sampled according to the first level cycle
time T}, corresponding to the time required to calculate these points and the signal
magnitude discretized into a certain number of bits (Fig. 4).

When planning and following any task path, the upper level controller calculates,
in advance and in real time at eacht = k T), fork = 1...n, where n, is the number
of points provided by CAD/CAM, all interpolated points between joint set-points
that will then serve as set-points to the six lower level servo controllers driving the

Path Planning Kinematics Simulation of CNC Machine Tools ... 159

Fig. 4 Example of signal li(t) i
and time digitization of Nominal !
nominal actuator function |
”””””””””” ;”;””””””3’”’>
o - — It s
1) P ~ s
interp 1 ~ AN 3
path "
:I
#
7777777 SRR O O) ES N D L
1 2 3 o 7 8 1t (kT
li(n) R ¢ (KTp)
interp 2 A |
axis o il
i1 "
"
it
J i L NN ISR R S S
5 10 20 30 40 1 t(nTs)
1 |
Set—points ,
axis |
f
"
n
:
S
t (ms)

actuators. It is interpolating these reference values using a polynomial interpolation
function or blended polynomial function sets (Fig.5). Since the majority of control
algorithms calculate the instructions in the joint space and there are no sensors for
performing a return position on the end-effector where the milling tool is located in
task space, then the controller must perform the forward kinematics problems (FKP)
calculations to return the tool Cartesian position and orientation.

Fig. 5 Details of actuator Set—points
signal digitization 1
i

Nominal curve
interpollation 1

interpollation 2

asservissement

t (ms)

160 L. Rolland

3 CNC Handling of the Machining Process

3.1 Introduction on Milling

Tournassoud emphasizes that the robotic task is defined in terms of constraint veri-
fication for a set of measurements applied on the system [71]. All the performance
of a robotic task is then reduced to trajectory tracking and is expressed as follows:

Let qo be an initial configuration and qy a final configuration, both achievable,
that is to say, within the robot workspace and non-singular, then one trajectory H ())
with A € [0, 1] is calculated in the free space, such that H(0) = qo and H(1) = qy.

Nilsson and Udupa proposed initial work on robotic tasks for specific robots
[48, 73]. In [34], a first general approach included the first trajectory planning al-
gorithm. In [6, 31], numerous work summary indicates mostly obstacles avoidance.
Coiffet extends the application of constraints to the end-effector member maintained
in a constant orientation, singularity avoidance and sampling rates [15]. Specifically,
the milling goal is to produce a workpiece by material removal [45]. The end result
is an object whose surfaces are characterized by a certain quality of surface finish.
This quality is normally defined by a permissible error denoted by a tolerance in
terms of the part’s drawing and an index describing the surface quality. The part
is thus represented like a geometric object drawn using one typical CAD software.
The CAM functionality translates the virtual object shape into a certain number of
paths spanning and scanning the part. These task paths are the CNC set-points in one
machining file.

The machining path is defined as the functional path that determines the contact
position between the tool tip and the workpiece [11].

3.2 Description

Several parameters are required to proceed with tool operation description: tool
tip position, tool tip orientation, tool feedrate, nominal trajectory to follow during
machining and tool rotational speed. These parameters, except the last one, have
been integrated into the simulation tool since they are all specifically related to the
robot operation. Machining consists of a set of task trajectories, Fig. 6.

Simulation proceeds with surfacing tasks which are easy to visualize and simple
to represent. However, from the point-of-view of the robot control, they are not
necessarily easier with a parallel manipulator featuring non-linear kinematics.

Definition 3 Let H be a machining task, cut into a set of m paths, H = hy, ks, ...,
hy,. Let 74, be called the total time to perform all machining and let t; be path i
duration.

The trajectory P, departure point and the Py arrival point or final point are re-
spectively corresponding to time t = 0 and ¢ = 71, [35, 69]. We know that the

Path Planning Kinematics Simulation of CNC Machine Tools ... 161

Fig. 6 Example of a typical
milling task

Tooltip

U

Workpiece

end-effector is at rest at the point of departure and arrival, where the velocity and
acceleration are then set to zero at these points. For each task path £;, the start point
and the end point are made to respectively correspond to times #; = > ;_; Tk— and
t=20— -

The realization of the task is essentially reduced to the location of the tool tip
in task space. According to Chedmail and Mery [11, 45] the majority of machining
tasks consists of two types of paths, Fig. 6: Continuous machining path and transition
paths between them when there is no contact between the tool and the part. The
transitions can be described as robotics classical point-to-point motion which should
last a minimum amount of time [45]. This is actually where parallel robots can also
be of advantage compared to massive serial Cartesian machines.

Definition 4 The functional paths are defined as continuous paths corresponding to
the machining process of the workpiece [11].

These paths are usually made at a constant feedrate to ensure the quality of the
finished surface. Each functional path is defined by two nominal functions: one func-
tion describing the tool Cartesian position, a second function describing orientations.
For example, in Fig. 6, we observe that the straight line segments are the machining
paths. A task is defined by a succession of displacements when the tool is actually
in operation [45]:

X{" Ry = (xi (1), i (1), zi (1), 01, (1), 02, (1), 03, (1))’ (15)

Typically, milling tasks generally consist of sets of arcs, straight lines, spirals
and eventually splines. The robot moves the end-effector at constant feedrate. This
translates by the following Cartesian constraint: | |m| | = F, where F, isaconstant.
Thus, the speed being the velocity magnitude is always constant. These tasks are
usually defined on planes parallel to the XY plane of Rz, the robot reference frame,
meaning that we must ensure that: Py[z] = Pr[z] = P;[z].

162 L. Rolland

3.3 Trajectory Position Nominal Function

A task is defined by a parametered nominal function set where each function is

defined as B (2) with A € [0, 1] to exactly describe the task trajectory to follow.
It covers the vast majority of machining work in the industry [45]. For each segment,
we assign A = 0 to the start point P, to and end point Py with A = 1. The task will
seek to move the robot tool along a function whose general implicit form is defined
as follows: —n

om
P (W)= f(Pa, Py, 2) (16)
In the case of a constant feedrate, T represents the time to complete a path, one can

express the parameter A versus time t according to the following relationship: A = %
The implicit function becomes:

Prom(ey = f(Py, Py.t. 7). (17)
Knowing that the traveled distance 4§ is the actual distance along the path between

P, the start point and Py the final point and is calculated by 8§ = F, t where F; is
the constant tool feedrate. Then, the implicit function is expressed by:

B @) = f(Pa, Py.t, Fy). (18)

This form will be retained for the simulation since, in the machine-tool domain,
it is customary to specify the machining tasks in terms of initial points, endpoints,
path type and feedrate [45].
3.3.1 Trajectory in a General Plane
For reasons of simplicity, the machining majority is arranged on planes parallel to
the XY plane.
3.3.2 Straight Line Segment Formulation

The straight line segment starts by calculating the trajectory time:

P;— P
. - Fa = Pyl (19)
Fy
Then, the segment equation is determined by:
Py — P,
?"Om =P+ u t (20)
T

Path Planning Kinematics Simulation of CNC Machine Tools ... 163
3.3.3 Arc Formulation

It is therefore proposed several methods to evaluate an arc depending on the data
entered:

o First case—start point: P4, end point: P, feedrate: F,, centre of rotation: CC and
radius: r;

e Second case—start point: P4 or end point: Py, displacement angle: 8¢, feedrate:
F,, centre of rotation: CC and radius: r;

e Third case: start angle: ¢, end angle: @, feedrate:: F,, centre of rotation: CC and
radius: r.

Two additional inputs are necessary. To calculate the path as such, Py is not
directly used and it will only used calculate the total time 7.

Firstly, the angular velocity is calculated and then, the circular function is in-
stantiated. Particular attention must be brought to the ¢ angle calculation which
corresponds to either the starting point or end point:

e to match the start time which is not always zero,
e to proceed with quadrant verification related to trigonometric function inversion.

The first case is selected being considered sufficient for simulation purposes and
the following algorithm is implemented:

Arc(Input) w= ?
if P;[2] — CC[2] % Olthen 1
o= arccos(i“’l%}:ggh 1y
else
=7 — arccos(ipﬁw:gghﬂ)
if Pr[2] — CC[2] = O then
' Py[1]-CC[1]

D = arccos(W)
else Ps[1]-CCI1]
~ =7 — arccos(m)
p nom = [¢CC[1] + rcos(wt + @), CC[2] + rsin(wt + ¢), Py[3]]
tau = —+

w
—
return(P "™, 1)

3.4 Trajectory Orientation Nominal Function

The end-effector motion can be modeled to obtain decoupled translation and ro-
tation displacements [15, 26]. Many methods exist for modeling orientations and
their displacements: navigation angles (roll, pitch, yaw), two types of Euler angles,
quaternions, Rordrigues parameters, the normal vector to the mobile platform, the
pointing vector of the tool axis, etc. The constant orientation was selected for the
proposed simulation.

164 L. Rolland

The first set of encountered trajectories are the so-called 3 DOFs milling tasks or
surfacing tasks. These are performed at constant orientation where the tool axis is
kept perpendicular to the workpiece. To simplify calculations, the parallel robot is
positioned to keep the tool axis parallel to the base reference frame z axis. Then, the
rotation matrix is equal to the identity matrix. This means that the end-effector axis is
setto N. = [0, 0, 1] whichis selected for orientation formulation, since many rotation
formulations lead to singularities when R = I (Euler angles , Bryant angles, etc.)
as shown in [15, 26]. Path planning can be simplified with the calculations avoiding
rotation matrix transformations. This axis can be called pointing axis or normal axis
since it is usually selected the mobile platform normal axis coinciding with the tool
axis.

It is possible to apply the same formulation for any other constant pointing axis
displacement. The normal vector becomes N. = [ny, ny, n;]. However, in this case,
the normal rotation parameters are the converted into a rotation matrix. This is used
to calculate the IKP in trajectory analysis.

3.5 Milling Task Preparation

One mechanical workpiece is drawn on a CAD program as a virtual solid. The
CAM machining module defines cutting planes on the workpiece. It proceeds by
intersecting the cutting planes with the virtual solid to determine several parallel
surfaces. It fills the surface with cutting paths resulting into a set of nominal Cartesian
trajectory functions that are saved in a nominal Cartesian trajectory file. The CAM
program further transforms the nominal Cartesian trajectory functions into sets of
points that are saved in a theoretical Cartesian trajectory set-point file which can be
uploaded to the CNC controller.

3.6 Initial Digitization of Milling Trajectories

Asinput, atask definition file comprises a series of nominal functions; each function is

of the form X "o (1)}, - The points of departure and arrival Pp and P are known for
each function. Theoretical positions are thus calculated from these nominal symbolic
functions: X), = ?()T’ro’" (1) at each T, sampling cycle. Time T is assumed to
remain constant throughout ihe process. The total time is therefore set to t = ¢ T,
forc =1, ...,s. Firstly, a first time digitization occurs at the sampling rate, Fig. 7,
which has the effect of transforming the paths in point series.

Finally, the CAM program considers that all theoretical points are connected by
line segments in some kind of linear approximation, Fig.7. Further point sampling
is then performed by separating the points selected by a calculated distance in accor-
dance with a chord error E., Fig. 8. Thus, as an arc is bent by a straight line rope, each

Path Planning Kinematics Simulation of CNC Machine Tools ... 165

Fig. 7 Digitization of task P
Cartesian theoretical path

theoretical section S~ o

—
-

Fig. 8 Digitization of task [y e e e e _@ @ @ L 4 r

pair of set points sees a line segment connecting them. This cord is at a maximum
distance of E. from the nominal trajectory. Let the arc be of radius R and length
L,then E. = R — Rcos(ﬁ). In order to obtain a predetermined E, cord error, the

arc point distance is calculated by: L = arccos(1 — %). Then, the cord distance is

calculated by: D = 2,/E? — 2R E.. Knowing the constant feedrate and the cord
distance, the sampling time T, is then calculated. Each new point will then add to
the original theoretical path file. The resulting file is called the complete theoretical
Cartesian path. The CAM program linearization is typically already introducing an
error, so that the accuracy of the robot can never be better than this E.cord error
value.

Then, the IKP is calculated on each theoretical Cartesian path. For each pose point
comprising the position and orientation, the actuator positions are calculated. The
result will be written in an actuator theoretical set-point file which is then uploaded
to the CNC controller.

3.7 Second Digitization of Milling Trajectories

Running at a smaller cycle time, the six servo feedback loops traditionally implement
a PID feedback loop on each linear axis position. During each T), cycle time, the path
following level interpolates a certain number points inside the interval determined
by each point pair in the actuator theoretical set-point file. The number of points
is determined by: N = ﬂoor(%) where Ty is the servo feedback loop cycle time
determined by the time to calculate the PID algorithm. Actuator point sampling is
then performed by utilizing a polynomial interpolation function.

166 L. Rolland

Typically, in many CNC controllers, it is observed that the servo sampling rate
(second level) can be ten times the cycle time of the first level.

4 Verification Criteria for Machining

4.1 Machining Accuracy

The most important performance criterion is the machining surface finish. Since
machining requires a trajectory following with high precision, we must ensure that
the path is simulated within a given precision [45].

In classic robotics, the majority of path planning applications are classified as
point-to-point and a marginal number are concerned by continuous paths such as in
machining. However, even when implementing continuous, the robot control algo-
rithms handles points. The main difference with point-to-point control is that the task
is defined by several hundreds of points instead of a few points. Liege and Coiffet
define four types of precision: static accuracy, dynamic accuracy, repeatability and
resolution [15, 32]. Repeatability stands for the reproduction accuracy of the same
movement and does not really apply for continuous trajectory tasks. The resolution
is the smallest amount of change in the positions and orientations. It is determined
by robot component choices.

Definition 5 Static accuracy is defined as the ability of the robot to position and
orient the end-mechanism in accordance with the programmed instructions.

This notion is applicable to a specific point and then cannot be extrapolated to
one entire continuous trajectory.

Definition 6 Dynamic accuracy is the ability of the robot to follow a path by the
end-effector mechanism in accordance with the programmed path.

In principle, the error is calculated at all points along its theoretical path X (kT)""
where k = 1, ..., k. Where is the k;,,, number of discretized points. The error
vector between the nominal path and the simulated path is then:

F*T) = X T — X (kT)"" (1)

The distance or error vector magnitude is also calculated:

e(kT) = ||X (kT)" — X (kT)""|] (22)

After calculating the error vector or value of distance for a path, we determine the
overall path accuracy for each error vector component and the error vector distance
by choosing the largest value.

Path Planning Kinematics Simulation of CNC Machine Tools ... 167

4.2 Error over the Cartesian Position

4.2.1 Calculation of the Absolute Error and the Error Vector Between
the Points

In practice, the end-effector precision calculation is divided into two task space parts:
Cartesian position and Cartesian orientation. For the error in the Cartesian position,
we obtain the equation is calculated for each theoretical Fig. 8:

e(kT) = ||X (kT)*"™ — X (kT)™"|] (23)

We also study the nature of the error vector.

ekT) = X(KT)*"™ — X (kT)™" (24)

This calculation is also applicable on theoretical points of the CAD produced files.

Since the error along the trajectory is not as significant as the transversal path
error, we calculate the tangential error and transversal error, Fig.9. The transverse
error can also be called cross-sectional, normal or perpendicular error.

The tangential error allows us to evaluate if the simulated path is ahead or behind
the nominal planned route. A tangential error indicating that the real path is followed
ahead of time is of course advantageous because it means that the trajectory can be
continued in a shorter time than expected. In fact, Liegeois states that a robot can be
late in the path set without the finished surface being affected [32]. A tangential error
indicating that the real path is plagued by a slowdown may not necessarily affect the
surface finish as such and therefore is not so considered important.

On the other hand, the transversal error will directly affect the surface finish. It
corresponds to the difference between the simulated path and the nominal path at
time t = kT where k = 1, ..., m with m the number of points. Then, we try to
determine if the simulated path is located within a given path tube with a predefined
radius. The tube radius is determined by machining tolerances.

Fig. 9 Error vector, s
tangentielle error and P(KT) l
transverse error

im

trans nom

E(KT) P()

th
tang P(kT)
E(kT)

168 L. Rolland

To calculate the vector tangential error, we must determine the unit vector
tangential to the nominal curve through the velocity vector:

V.(t
a@ = —) 25)
Vel

The value of the tangential error is obtained by:
— ——
e(kT) "8 = u(t) - SPkT) (26)

Applying the Pythagorean theorem, we finally find the value of the transversal
error:
e(kT)"" = [(e(kT))* — (e(kT)"")*]'/2 @7

The calculation of transversal error with respect to the nominal trajectory is not
exact but an approximate value of the deviation sought because it is obtained from the
digitized values and is not necessarily the perpendicular error defined as the minimal
distance between the nominal and theoretical trajectories. It is necessary to nuance
this comment. The perpendicular error may not be a direct measurement of surface
finish. For example, during 3D milling, the robot is positioned so as to obtain the
Z-axis of the terminal member perpendicular to the surface to be machined. Then,
we seek to mill a planar surface that is positioned parallel to the XY plane and the
finished surface will be evaluated by calculating &(kT').. Upon reaching the portion
of the part where a wall is reached, the wall perpendicular error will be determined.

4.3 Calculate the Actual Deviation from a Nominal Curve

To be meaningful, dynamic precision must be defined relative to the nominal path
[32]. On the Fig.9, we note that 8(73"“”5 is not the actual deviation from the
nominal curve. To achieve this, we must calculate the point P being the closest to
P(kT)*™™ on the nominal curve. To do this , we determine the time r9¢* which
corresponds to the point P on the nominal curve, Fig.9, and two methods can be
derived.

The first method consists in determining the normal to the nominal curve which
is performed by solving the following system:

—_— — —
(PT)™™ — P(@)"™) - Ve(t) =0 (28)

%
The second method consists in searching the minimum distance between P (kT)"
—
and P (¢)"°™ by calculating the minimum of the function:

Path Planning Kinematics Simulation of CNC Machine Tools ... 169
—_— —
G(t) =[|PK&T)"™ — P@)""|] (29)

which corresponds to determining the time at which the derivative of the function is
zero, that is to say v_vhen G (1) =0. 3
Introducing 9V time in the function, we obtain P and then the deviation is
calculated:
- 5. .
e(kT) = ||P(kT)"" — P|| (30)

Deviation value is determined by calculating the maximum deviation of an entire
trajectory. The second approach for calculating the deviation 7%¢" has the advantage
of being less complex in terms of calculations and therefore will be preferred.

4.4 Calculation of Deflection from a Straight Line Segment

When the nominal paths are straight lines, it is not necessary to perform the calcula-
tion of the deviation to approach presented in the previous section. Determining the

deviation P (kT) directly by calculating the distance between the simulated P (kT)
— —
and the line defined by the starting point P; and the arrival point P, of the section:

e
— 5 _— PP, 12
e(kT) = (|[Pr P(KT)|I” — || P1 P(kT)*ﬁH) (31)
1172

4.5 Calculation of the Deviation from a Theoretical Curve

There are many cases where the nominal functions are not available and the curves
are not necessarily straight lines. For example, as we have already explained, many
CAD program produce files with an E. cord error between selected points. Not
knowing the curve profile between these points, the CAM module interpolates using
a linear function, that is to say, we assume that the points are connected by line
segments, being different from the exact shape having then an unknown curvature.
The curvature was lost in the digitization process. The deviation calculation takes
then Eq. (31). The question to be carefully addressed is the choice of the points P

—
and P,. We wish to determine the theoretical interval being closer to P, the point
simulated, Fig. 10. The comparison is limited to adjacent intervals: the i — 1 segment
—

before and the segment i after the point P,éh.
There are two possible methods for interval selection. The first method is selecting
the interval by the scalar products respectively for the interval i — 1 and i:

170 L. Rolland

sim
P(KT)

devi
E(kT)

Fig. 10 Deviation vector from the theoretical points

> th > th 2

Vk—1 = (Pe—1" — P'") - eP(kT) (32)
_ > th _ > th 2

vk = (Pr+1 P’™) - eP(kT) (33)

The closest interval will be identified by selecting the positive result between v;_1
and v;.
The second method involves the calculation of the time corresponding to the point
on each straight line segment:
P—xslm + P—yslm + Fzslm
— —
1P = Pt

o1 =T, where P = Psim _ Pt (34)

P—sim + Fsim + Fsim) =
e =Tp— < where P = BSm — plh (35)
[| Peg1h — Pthy|?

The two times are then compared with the cycle time T), and the closest interval from
the point is the one confirming 0 <t < T),.

The second approach is less complex to implement and has been chosen.

The distance is determined by replacing P; and P, by the extrema of the chosen
interval in Eq. (31). This distance is not equal to the actual deviation since each inter-
polation corresponds to the straight line segment between two points. It is necessary
to take the deviation vector and add the vector related to the E. error being perpen-
dicular to the straight line segment and included in the plane defined by the velocity
vector at point i and the vector aligned with straight line segment.

Note that if the theoretical path is a straight line, then we can calculate the deviation
directly with Eq. (31).

Path Planning Kinematics Simulation of CNC Machine Tools ... 171

4.6 Calculate the Actual Deviation from a Theoretical Curve
with a Small Radius of Curvature

In the case where the radius of curvature is high, this method is not guaranteed to

calculate the minimum distance, since the theoretical Pk’h is not necessarily the
closest to the simulated P;*""" point. For example, such a situation is encountered

when machining rectangles with corners with radii of curvature tending towards 0.
—

To remedy this problem, an added algorithm determines P,"", the closest the-

oretical simulated point, by seeking the value of n such that (1P, — Psim)) is

minimized by varying n from n — 20 to n 4- 20. Indeed, it is not necessary to test all
trajectory points. Then, the deviation is calculated with the aforementioned method.

4.7 Orientation Errors

There would as many methods to calculate errors over the orientations as there exists
representation models. We chose to determine the orientation error by calculating
the variations on the normal vector because it is more ergonomic to visualize the
movement of a vector that characterizes the parallel robot mobile platform.

SN.(kT) = Ne(kT) — N(kT)!" (36)

In addition, CAD programs represent orientations by expressing the pointing vec-
tor collinear with the tool axis which, in the case of parallel robots, is commonly
corresponding to the mobile platform normal vector.

4.8 Actuator Joint Errors

The simulator also compares the theoretical and simulated actuator joint trajectories,
thereby obtaining the actuator error for the six actuators. For i = 1,...,6, we

calculate ;'™ = Li™ — L;h.

4.9 Error Models

In order to simulate a realistic trajectory pursuit, error models are introduced at
different levels of the simulator. The majority of errors are introduced by adding
a parameter to a function determined by randomly selecting a value in a specific
interval [—max, +max].

172 L. Rolland

We have chosen to the modeling of all the following errors:

CAD file precision,

sensor accuracy, 8 /;,

configuration precision, §O A; and §C B;,

precision on the calculation of the FKP,

resolution of time measurement A¢ and temporal digitization,
the resolution of signal digitization,

the asynchronous nature of joint signal updates.

We can thus simulate a trajectory introducing all errors, any combination of these
or even only one. The simulation can be tailored to the actual study and it is possi-
ble to isolate errors and investigate their impact on surface finish. We propose two
alternative calculation errors:

e the relative error between two steps,
e the absolute error giving the end-effector accuracy.

5 Results of Path Simulation

In this section, as part of the path planning related to milling and by extension to
all high accuracy applications, kinematics simulation results calculates end-effector
surface finish impact integrating configuration inaccuracies and position based CNC
control strategies. The results are compiled, presented, analyzed and compared.

5.1 Parallel Robot Configuration

We try one difficult FKP example on a typical 6-6 hexapod with 40 complex solutions
out of which 16 real solutions can be extracted. Let us take a typical 6-6 configuration
example written in a configuration text file which includes the manipulator essential
parameters: the coordinates of the joint center positions O A; and the coordinates
of the joint center positions CB;. The unit is the millimeter. These values were
determined by a calibration procedure from a real robot and are shown on Table 1.

5.2 Typical Trajectory and Realistic Milling Configuration

We have implemented various control strategies in position by interpolating points
by polynomial functions of the first degree and third degree. In the first case, one has
to calculate the acceleration as a function of the end conditions.

Path Planning Kinematics Simulation of CNC Machine Tools ... 173

Table 1 Parallel manipulator configuration table

Joint coordinates Respective values

OA1(x) OA1(y) OA (2) 464.141 389.512 —178.804
0Ay(x) OAx(y) OAx(2) 569.471 207.131 —178.791
0A3(x) OA3(y) OA3(2) 529.050 —597.151 —178.741
CBi(x) CBi(y) CBi(z) 68.410 393.588 236.459
CBy(x) CBy(y) CBa(2) 375.094 —137.623 236.456
CB3(x) CB3(y) CB3(2) 306.664 —256.012 236.461
Vertical {mm) Vertical (mm)

708 -
706 -
04 -

Horizontal (mm)

Fig. 11 Selected nominal paths

We chose two nominal paths located on planes parallel to the XY plane. These
path nominal functions are respectively determined by the following configurations,
Fig.11:

e aline segment starting at point [500, 20, 1,200] and ending at point [1,500, 20, 1,
200] traveled at three constant feed forward speeds: 30, 45 and 60 m/min.

e an arc of radius 500 mm from the point [100, 600, 700] to reach point [—400, 100,
700] using the same three feed rates. The center of the arc is point [100, 100, 700].

Note that the selected tasks are simulated trying to reproduce realistic milling
conditions. We will study the trajectories at different feed rates which are set to 30,
45 and 60 m/min. The feedrates of 30 and 60 m/min speeds correspond to the speeds
of high speed milling HSM and ultra high speed milling UHSM respectively. A study
is also conducted on the impact of path following cycle times which will be set at 5,
10 and 20 ms.

The simulator computes and sketches the two resulting Cartesian tool paths uti-
lizing a controller with a cycle time of 10ms and a feed rate of 30 m/min, Fig. 12
where the one dimension is exaggerated to visualize the path errors. There is a com-
plex high-frequency noise on every simulated patterns which highlight sudden and
unpredictable changes in the continued trajectory.

174 L. Rolland

Vertical (mm) Vertical {mm)

g8

1200

EEEREE]

F0.001 -4l
Transversal (mm)

o
Horizontal (mm)

Fig. 12 Simulated path pursuits: straight line segment and arc

(Hm)

o)

“deviation_ligne_eny

‘Geviation ligne_enpos_crdred_10ms

|

0.2 04 06 08 1.0 1.2 1.4 16 1.8 (s)

0 02 04 06 08 1.0 1.2 1.4 1.6 1.8 (s) 0

(um)
10

‘deviation_ligne_enpos_ordre1_20ms_30mmin.mup gnup’

i

0 02 04 06 08 1.0 1.2 1.4 16 1.8 (s)

Fig. 13 Simulated path deviation for a straight line segment: cycle times of 5, 10 and 20 ms, linear
joint interpolation

5.3 Control with Linear Interpolation

5.3.1 Straight Line Segment with Linear Interpolation

The first tests with the simulator implements the first level control proceeding with
actuator joint set-point interpolation utilizing a linear interpolation. In the first analy-
sis, we calculate the deviation of a typical path segment simulated over a nominal
path. We therefore study the straight line segment path by first varying the cycle time
of the order and the results are shown in Fig. 13.

Path Planning Kinematics Simulation of CNC Machine Tools ... 175

At Sms, the deviation is a high frequency signal oscillating around a straight line
function f(#) = t/4+ 1 in microns. The amplitude increases and has peaks reaching
3.61L. At 10ms, the signal oscillates around a constant straight line at 1.8 w and
oscillations then to increase very slowly. At 20ms, the average rose to 4.75w and
the extrema of the oscillations are 1 and 8.5 . with peaks at 9.5 .

In the second analysis, we study the same trajectory by now varying the feed-rates
and the results are shown in Fig. 14.

At feedrates of 30 m/min, the average is near 2 v and the high frequency oscilla-
tions feature peaks from 0 to 3.5 . At 45 m/min, a similar signal is obtained where
the average rises to 3.5 and peaks reach 6 .. A 60 m/min, the oscillation average
reaches 5 with 10 peaks.

We continue the analysis by showing graphs of vertical errors that are perpendic-
ular to the machined surface errors since they provide with an excellent account of
surface finish. The first graph shows the results at the selected feedrates, Fig. 15.

At feedrates of 30 m/min, the signal shows a high frequency oscillation with an
average of approximately 1.25 . with peaks as low as —1 and as high as 3 1. At
45 m/min, there is an oscillation between —1 and 5 with an average of just over
2.5. A 60m/min, it is observed that the oscillation evolves mainly around 4.7
between —1 and 8.5 u with some peaks at 10 and —1.5 (Fig. 16).

(Hm) (Hm)

"deviation_ligne_enpos_ordre1_10ms_30mmin.mup.gnup’

“devition_ligne_enpos_ordre1_10ms_4smmin.mup.gnup’ ——

6

'I ’I
: i

0 02 04 06 08 10 12 1.4 16 1.8 (s) 0 0.2 04 06 08 1.0 12 (s)
(Hm) e

‘devition_ligne_enpos_ordre1_10ms_gommin.mup.gnup’' ——

0

8 Il

‘ I

] |

2

0 o0z o4 06 08 (9

Fig. 14 Simulated path deviation for a straight line segment: feedrates of 30, 45 et 60 m/min, linear
joint interpolation

176 L. Rolland

(um) (um)
4 “erreur_Z_ligne_enpos_ordre1_10ms_30mmin.mup.gnup’ ——— 6 “erreur_Z_ligne_enpos_prdre1_10ms_45mmin.mbup.gnup’ ——
5
| | 4
N ‘ 3
A 5
1
0
1
2 — . 2
0 02 0.6 1.0 1.4 1.8 (s) 0 02 0.6 10 1.2 (9)
(Hm)
12 ‘erreur_Z_ligne_enpos_ordre1_10ms_60mmin.mup.gnup’ ——
10
8
6 ‘ Il
. ‘
2
0
2 s L L L L L L
0 0.2 0.4 0.6 0.8 (s)

Fig. 15 Simulated vertical error for a straight line segment: feedrates of 30, 45 et 60 m/min, linear
joint interpolation

We close this simulation cycle with vertical errors at the selected cycle times,
Fig. 16.

At5ms, the signal is oscillating at a high frequency of around 0.3 . The amplitude
of oscillation increases significantly. Peaks reached 2.4 and —1.6 . causing surface
finish error to become 4. At 10ms, the signal oscillates around 1.6 with an
amplitude increasing less rapidly where extremas of 3.75 and — 1.6 are extracted
giving surface finish variations of 5.35 .. At 20 ms, the oscillation is constant between
8.5 and —0.5 with an average of 4.2 .. Peaks reach —1.4 and 9.5 . leading to vertical
variations of almost 11 1.

Simulation results are collected in Table 2. On the table, the order of interpolation
functions, the T}, cycle time in ms, the F, feed rate in m/min, then the minimum and
maximum extremas for the ¢ vector error magnitude in microns, the £ vertical error
in microns and ||8]| deviation in microns.

As might be suspected by intuition, we get better results by reducing the path
controller (first level) cycle time and also the feedforward velocity. At very high
speeds or with long cycle times, we met and exceeded the threshold of 10w. At
feedrates below or equal to 30 m/min and cycle times equal or less than 10 ms, the
kinematics surface finish or the best feasible surface finish would reach 5 .

Path Planning Kinematics Simulation of CNC Machine Tools ... 177

(pm)

20t
1571
1.0 1

0.5 gli

0
05t
-1.0r
-1.51

(Hm)
4

Terreur_Z ligne_enpos_ordrel_10ms_30mmin.mup.gnup’

3

0

l
| |
2 0l it ‘ I
\WM “j‘”‘ i ‘ g | \‘ \‘ ‘l‘
; | ‘
‘ 1 ‘ “ It ‘ }
0
4
04 08 12 16 (8 20 250z 06 70 T4 T8 ()
(um)
10 “erreur_Z ligne_enpos_ordra1_20ms_30mmin.mup.gniip’
|
8 Il
“H It ‘ ‘ fl “\
s I
S
I | |
|
0
2
0 0.4 08 T2 16 (5) 20

Fig. 16 Simulated vertical error for a straight line segment: cycle times of 5, 10 et 20 ms, linear

joint interpolation

Table 2 Simulated errors and deviations for a straight line segment: position control with linear

joint interpolation

Order Tp Fr max Smin Erznax S?in ||5 | |max ||8‘ |min
ms m/min | p U n 0 W U
1 10 30 4900 |0.142 3716 | —1.738 3796 |0.047
1 10 45 7.198 |0.219 5918 —1.403 6.055 |0.047
1 10 60 11.872 | 0.026 10.067 | —1.403 |10.106 |0.096
1 5 30 3783 |0.142 2470 |—1.738 | 3.726 |0.021
1 10 30 4900 |0.142 3716 | —1.738 3.796 |0.047
1 20 30 11.487 |0.258 9.734 | —1.403 | 9.747 |0.096

5.3.2 Arc with Linear Joint Interpolation

In the second analysis, the same simulation process is repeated for a typical arc path
y first varying the cycle time of the order and the results are shown in Fig. 17.

On Fig. 17, the signals are high frequency oscillations around a constant value.
At 5ms, the signal oscillates around an average of 1.5 with peaks evolving from
0 to 3. At 10ms, the signal oscillates around the value of 4 . between extremas of

178 L. Rolland

(um) (Hm)
4

“deviation_arc_enpos_orcre!_5ms_30mmin.mup.gnup’ —— T “deviation arc_enpos_orcre1 10ms_30mmin.mup.gnup’ ——

w
\M ‘
“ b \

0 0.6 1.0 1.4 (um)

(Hm)
30

‘deviation_arc_enpos_ordre1’ 20ms_30mmin.mup.gnup’ ——
| i ‘
25|t H | ‘ | (Lt M et

20

15
I

IH ‘\“‘\H““ [fith

5

0 02 04 06 08 1.0 12 14 (s)

Fig. 17 Simulated path deviation for an arc: cycle times of 5, 10 et 20 ms, linear joint interpolation

0.5 and 7.5 | with peaks near 0 and 8 . Increasing to 20 ms, the average increases to
14 . The signal resembles a very regular high frequency sinusoidal curve ranging
from near O to 27 .

In the second analysis, we then continue the arc path analysis by plotting vertical
errors at the usual different feed-rates and the results are shown in Fig. 18.

The feedrate change from 30 m/min speed to 45 m/min doubles the signal av-
erage and its oscillation amplitude (from [0, 8] to [0, 16]). Similarly, The feedrate
change from 30 m/min speed to 60 m/min triples the signal average and its oscillation
amplitude (from [0, 8] to [0, 27]). In the later, the signal average is 15w (Fig. 19).

The feedrate change from 30 m/min speed to 45 m/min doubles the signal average
and its oscillation amplitude (from [—0.5, 3] to [—0.5, 6]). Similarly, The feedrate
change from 30 m/min speed to 60 m/min triples the signal average and its oscillation
amplitude (from [—0.5, 3] to [—0.5, 10.5]). In the later, the signal average nears 5.5 .

To end this simulation cycle, vertical errors are computed at the selected cycle
times, Fig.20.

The oscillating signals are similar to the high frequency previous ones. At Sms,
the oscillation ranges from —0.25 and 1.25p with an average at around 0.5 . At
10ms, the oscillation extremes reach —0.2 and 2.8 u with an average at 1.5u. At
20ms, the signal is a high frequency composite oscillation with extremas at 0 and
10.5 and peaks at —1 and 11 .

Path Planning Kinematics Simulation of CNC Machine Tools ... 179

(um) (um)
deviation_arc_enpos_order1_10ms_30mmin.mup.gnup" 18

8 1

6
7 1 14
6] 12
-1l : it
il |
” 6
2 1 4
1 2
‘ ‘ ‘ ‘ ‘ 1‘.4 ¢ ‘ ‘ ‘

| .
0 02 04 06 08 10 1.2 s) 0 0.2 0.4 0.6 0.8 1.0 (s)
‘deviation_arc_enpos_order1_10ms_60mmin.mup.gnup’

012 ‘ 0.4

Fig. 18 Simulated path deviation for an arc: feed-rates of 30, 45 et 60 m/min, linear joint interpo-
lation

"deviation_arc_enpos_order!_10ms_dSmmin.mup.gnup’

(um)

2

o

2

o

-
o

o

o

0 (s)

(um) (um)

‘ermeur_2_arc_enpos_ordre1_10ms_30mmin.mup.gnup’

“erreur Z_arc_enpos_ordrel_10ms_asmmin.mup.gnup’

3.0

N o w A~ oo

1 ‘ ‘

0

-1.0 -1
0 02 04 06 08 1.0 12 14 (s 0 0.1 0.2 0.3 0.4 0.5 (s)

‘erreur_Z_arc_enpos_ordre1_10ms_60mmin.mup.gnup’

IS

n

o

0 01 02 03 04 05 06 07 (s

Fig.19 Simulated vertical error for an arc: feed-rates of 30, 45 et 60 m/min, linear joint interpolation

180

(Hm)

L. Rolland

15

eniur Z_arc_enpos_ordreT_5ms_30mmin.mup.gnup’

“errolr_Z_arc_enpos ordre1_10ms_30mminmup.gnup ——

0.4

()

n

Y

“erreur_Z_arc_enpos_ordre1_20ms_30mmin.mup.gnup’

0.2

0.4 0.6

s 08

Fig. 20 Simulated vertical error for an arc: cycle times of 5, 10 et 20 ms, linear joint interpolation

Table 3 compiles the results of kinematics simulations for the arc path tests.
The results confirm the former results obtained with straight line segments. The
simulator can provide surface finish of 10w, only in the case of high speed milling

(<30 m/min).

5.3.3 Discussion on the Linear Joint Interpolation

From the kinematics analysis simulation, providing the lowest performance bounds,
the CNC robot controller with linearly approximated trajectories can reach the surface

Table 3 Simulated errors and deviations for an arc: position control with linear joint interpolation

Order | T, F, gmax gmin e epin [18][max | [|8]|min
ms m/min | K n n w w n
1 10 30 8.164 |3¢7° 32325 | —0.806 | 8.157 | 0.016
1 10 45 16.128 | 0.023 6.533 | 0481 | 6.533 |—0.481
1 10 60 27.178 |0.129 |10.803 | —0.806 |27.093 | 0.043
1 5 30 3.602 | 0.023 1378 | —0.806 | 3.598 | 0.023
1 10 30 8.164 |3¢7° 32325 | —0.806 | 8.157 | 0.016
1 20 30 27.178 |0.129 |10.803 |—0.806 |27.093 | 0.037

Path Planning Kinematics Simulation of CNC Machine Tools ... 181

finish if the feed-rate and path following cycle time are set properly. The controller can
provide surface finish of 10w, only in cases up to high speed milling (<30 m/min).
The surface finish is not met at faster feedrates. Linear interpolators should keep
control cycle times relatively short (<10 ms) in order to reach the required surface
finish. The surface finish is not met at longer cycle times.

To achieve an accuracy of less than 10, one should set the response time at
10msec or less and maintain the feed-rates below 45 m/min. This also means that
UHSM is not feasible.

Those linear displacements are performed by a robotic system which is not linear.
The interpolators try to transform curved path segments into linear path segments
leading to interrupted segments. The linear interpolation is only matching the po-
sitions at the ends of the intervals, Fig.7. As an advantage, the linear interpolation
algorithm implementation is easy and does not require difficult computations lead-
ing to smaller cycle times. As disadvantage, with the application of parallel robots,
the control system will not be able to reach 10 surface finish without very fast
controllers featuring small cycle times. Moreover, rapid feedrates are not practical.

Let us add that the Cartesian velocity vector undergoes abrupt changes when
passing from one linear segment to another which will result in dynamics overshoot.
In fact, the continuation of this type of movement by an effective robot is impossible
without stopping at each interval change which would mean slowing down the milling
process.

This type of interpolation is only recommended for roughing milling.

5.4 Control with Third Order Interpolation

5.4.1 Straight Line Segment with Third Order Interpolation

The second simulation test series implement the first level control proceeding with
actuator joint set-point interpolation utilizing a third order polynomial interpolation.
In order to ensure the continuity of movement, it is then found to match the positions
and joint velocities at the ends of intervals. As it was done for linear interpolation,
tests begin with an analysis of deviation with the different selected feed-rates, Fig. 21.

The three signals are featuring growing high frequency oscillations until the tra-
jectory ends. At 30 m/min, the signal oscillates around a straight line described by
equation f () = 0.375¢ + 0.75 and it peaks at 3.75 . At 45 m/min, the curve devi-
ation appears more advantageous since it oscillates about the same straight line axis
as with 30 m/min and the signal peaks do reach just under 3 . At 60 m/min, the same
conclusions can be deduced and the peaks exceed 3 slightly.

The test are repeated by varying the cycle time of the CNC controller. The results
are shown in Fig. 22.

182 L. Rolland

(Hm) Deviation de position
4 0.003

‘deviation_ligne_enpos_ordre3_10ms_30mmin.mup.gnup’ “deviation.ligne_enpos. ordre3_10ms_ 45mmin mup-gnup ——

0.0025

0.002

0.0015

Decallage (mm)

0.001

0.0005 |

0 02 04 06 08 1.0 1.2 1.4 1.6 1.8 (s) 0 02 04 06 08 1 12 14
Temps de trajet

Deviation de position

“deviation_ligne_enpos_ordre3_10ms_60mmin.mup.gnup’ ——

0.0035
0.003
0.0025
0.002
0.0015

Decallage (mm)

0.001

0.0005

0 " " h n " " " H "
0 01 02 03 04 05 06 07 08 09 1
Temps de trajet

Fig. 21 Simulated path deviation for a straight line segment: feedrates of 30, 45 et 60 m/min, cubic
joint interpolation

The three signals are actually very similar and are featuring growing high fre-
quency oscillations until the trajectory ends. The signals oscillate around a line
described by equation f(¢) = 0.375 4 0.75¢. The peaks reach 3.75 . Note that the
feed-rate does not seem to impact deviation significantly. The difference between the
error vector ||¢|| and deviation [|§]| is less than one micron. This result means that
the third order interpolation allows accurate theoretical trajectory following. This
also means that the path following will take place without undue delay or advance
(Fig.23).

The three signals are actually very similar and are featuring growing high fre-
quency oscillations until the trajectory ends. The graphs show signals which are
centered on 0.2 p with increasing oscillation with peaks getting close to 2 and —2 ..

The vertical error is simulated at various feed-rates, Fig.24.

The three signals are actually very similar and are featuring growing high fre-
quency oscillations until the trajectory ends. The signals are around the constant
value 0.1 p with peaks from —1.8 to 2 . At 45 m/min, the peaks are 1.4 .

Table4 shows a compilation of results.

All error and deviation values remain below or equal to 4 .

Path Planning Kinematics Simulation of CNC Machine Tools ... 183

Deviation de position
0.004

0.0035

(um)
4

‘deviation_ligne_enpos_ordre3_5ms_30mmin.mup.gnup’ ‘deviation_ligne_enpos_ordre3_10ms_30mmin.mup.gnup’

0.003
0.0025
0.002
0.0015
0.001
0.0005

Decallage (mm)

0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1.0 1.2 1.4 1.6 1.8 (s)
Temps de trajet

Deviation de position
0.0035

'deviation_ligne_enpos_ordre3_20ms_30mmin.mup.gnup’

0.003
0.0025

0.002

0.0015 1

Decallage (mm)

0.001

|

0 " N h N N s N H N
0O 02 04 06 08 1 12 14 16 18 2

0.0005

Temps de trajet

Fig. 22 Simulated path deviation for a straight line segment: cycle times of 5, 10 et 20 ms, cubic
joint interpolation

5.4.2 Arc with Third Order Interpolation

The same simulation process is repeated for a typical arc path by first varying the
feed-rate and the results are shown on Fig. 25.

The three signals are actually very similar and are featuring irregular oscillation
signals with averages at approximately 0.5 w with peaks at 0,02 and 1.85 . As the
feedrate increases, the deviation signal becomes less dense indicating a reduction of
oscillation frequencies.

The simulation is repeated by varying the cycle time of the CNC controller and
the results are shown in Fig.26.

The three signals are actually very similar and are featuring irregular oscillation
signals with averages at approximately 0.5 ju. Moreover, the deviation remains below
2 regardless of the case (Fig.27).

In Fig. 24, the simulation results are shown for the selected feedrates.

The three signals are actually very similar and are featuring irregular oscillation
signals with averages at approximately 0,1 i with extremas at —0.4 and 0.6 and
peaks at +0.8 .

We then study the vertical error where the controller cycle times are varied, Fig. 28.

184 L. Rolland

Erreur verticale (perpendiculaire la surface) Erreur verticale (perpendiculaire la surface)
0.0025 Terreur Z_ligne_enpos_ordre3_5ms_30mmin.mup.gnup’ —— 0.0025 “erreur_Z_ligne_enpos_ordre3_10ms_30mmin.mup.gnup' ——
0.002 0.002
. 0.0015 0.0015
E o001 € o0.001
£ £
— 0.0005 = 0.0005
=} >
9] 0 ° 0
= =
W -0.0005 W' .0.0005
-0.001 -0.001
-0.0015 -0.0015
.0.002 P S B -0.002 P S S B
0 0204 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 1.8 2
Temps de trajet Temps de trajet

Erreur verticale (perpendiculaire la surface)

“erreur_Z_ligne_ enpos. ordre3_20ms_30mmin.mup.gnuff ——

0.002

0.0015

0.001
0.0005

-0.0005

Erreur (mm)
o

-0.001
-0.0015
-0.002

0 01 02 03 04 05 06 07 08 09 1
Temps de trajet

Fig. 23 Simulated vertical error for a straight line segment: cycle times of 5, 10 et 20ms, cubic
joint interpolation

As it was observed for the former tests, the vertical error signals are very similar
and their density is inversely proportional to the controller cycle time.

Tests ends by collecting the results onto the following Table 5.

The results barely exceed the value of 2 u whatever the speed and response time.

5.4.3 Discussion of the Third Order Joint Interpolation

A trajectory tracking using third order interpolators gives very satisfactory results.
In all instances, deviation of less than 2 . are obtained.

It is notable that the arc path results are better than for straight line segment. The
difference between the error vector and deviation is at most 0.2 .. As a consequence,
the simulated path is not significantly delayed or ahead of the nominal path. It is
observed that the curve is simulated even closer to the theoretical curve for the case
of the line segment.

The results of surface finish indicate milling quality within 5 and 2 respec-
tively for the line segments and circular arcs. Indeed, the results of the third order
interpolation show that hexapod performance should be sufficient for UHSM (fee-
drate of 60m/min or higher). Position control with cubic interpolators are highly
recommended.

Path Planning Kinematics Simulation of CNC Machine Tools ... 185

5Erreurverticale (perpendiculaire la surface) 5Erreurverticale (perpendiculaire la surface)

0.002 "erreur_Z ligne_enpos_ordre3_10ms_30mmin mup.gnup —— 0.001 ‘ermeur_Z_ligne_enpos_ordre3_10ms_45mmin mup.gnup —
0.002
0.001
0.0015
€ 0.001 E 0.0005
g £
T 0.0005 = ol
>
g o 8
W .0.0005 W -0.0005
-0.001
-0.001
-0.0015
-0.002 -0.0015
0 02040608 1 12 14 16 18 2 0 02 04 06 08 1 12 14
Temps de trajet Temps de trajet

Erreur verticale (perpendiculaire la surface)
0.002 —

Terreur_2 ligne_enpos_orded_10ms_S0mmin mup.gnufy ——

0.0015
0.001
0.0005
0
-0.0005

Erreur (mm

-0.001
-0.0015
-0.002

0 01 02 03 04 05 06 07 08 09 1
Temps de trajet

Fig. 24 Simulated vertical error for a straight line segment: feedrates of 30, 45 et 60 m/min, cubic
joint interpolation

Table 4 Simulated errors and deviations for a straight line segment: position control with cubic
joint interpolation

Order | Trajet | F, gmax gmin el eyin (8] (8|
ms m/min | W B 18 13 1 B
3 10 30 3787 10069 |2.124 | —1936 |3.786 | 0.021
3 10 45 4053 0069 2351 |-2.059 |3285 | 0.032
3 10 60 3692|0069 1978 |—1.738 |3.146 | 0.035
3 5 30 3787 10069 |2.124 | —1936 |3.786 |0.021
3 10 30 3787 0069 2124 |—1.936 [3.786 | 0.021
3 20 30 3692|0069 1978 |—1.738 |3.146 | 0.035

Furthermore, algorithms can be implemented in a conventional CNC adjusted
with relatively slow response time.
Among other advantages, the following can be observed:

e The relative ease for calculating joint speeds at the beginning and the end of a
trajectory interval.
e The continuity of movement is ensured.

186

0.002
0.0018
0.0016
0.0014
0.0012

0.001
0.0008
0.0006
0.0004
0.0002

Decallage (mm)

L. Rolland
Deviation de position 0,002 Deviation de position
“deviation_arc. enpos_ordre3_10ms_80mmin.mup.gnup —— 06018 “deviation_arc_enpos_ordre3_10ms_45mmin.mup.gnup’ ——
1 —~ 0.0016
£ 0.0014
i £ o
l 1 Y 0.0012
‘ 1 o 0.001
‘ g S 0.0008
J9J
1 A 0.0006 ‘
g 0.0004
: 0.0002
n n n n n n 0 n n n n n
0 02 04 06 08 1 12 14 16 0 0.2 04 06 0.8 1 1.2
Temps de trajet Temps de trajet
Deviation de position
0.002 "deviation_arc_enpos_ordre3_10ms_60mmin.mup.gnup’ ——
0.0018
£ 00016
£ 0.0014
o 0.0012
2 I
< 0.001
§ 0.0008 |
QO 0.0006 H
0.0004 f
0.0002
0
0 01 02 03 04 05 06 07 08

Temps de trajet

Fig.25 Simulated path deviation for an arc: feedrates of 30,45 et 60 m/min, cubic joint interpolation

0.002
0.0018
0.0016
0.0014
0.0012

0.001
0.0008
0.0006
0.0004
0.0002

Decallage (mm)

Deviation de position

Deviation de position

0.002

*deviation_arc_enpos_ordre3_5ms_30minin.mup.gnup’

0.0018
0.0016
0.0014
0.0012

0.001
0.0008
0.0006
0.0004
0.0002

Decallage (mm)

0 02 04 06 08 1

Temps

Decallage (mm)

de trajet

“deviation_arc_enpos_ordre3_10ms_30mmin.mup.gnup’

0
14 16 0 02 04 06 08 1
Temps de trajet

Deviation de position

0.002
0.0018
0.0016
0.0014
0.0012

0.001
0.0008
0.0006
0.0004
0.0002

“deviation_arc_enpos_ordre3_20ms_30mmin.mup.gnup’ ——

04 06 08 1 12 14 16
Temps de trajet

12 14 16

Fig. 26 Simulated path deviation for an arc: cycle times of 5, 10 et 20 ms, cubic joint interpolation

Path Planning Kinematics Simulation of CNC Machine Tools ...

Erreur verticale (perpendiculaire a la surface)
0

“errelir_Z_arc_enpos. ordre3_10ms_30mmin.mup.gnup’ ——

0.0008

187

Erreur verticale (perpendiculaire a la surface)

‘erreur:Z,arc,enpbs,ordreaj0ms,45m'min mup.gr‘\up‘ -

0.0006
0.0004
0.0002
0
-0.0002
-0.0004
-0.0006
-0.0008

Erreur (mm)

0.0006 |
0.0004 |
0.0002

0|
-0.0002
-0.0004
-0.0006
-0.0008

Erreur (mm)

-0.001 —

0 02 04 06 08 1 12 14 16

Temps de trajet

-0.001 R R R R
0 0.2 0.4 0.6 0.8 1 1.2

Temps de trajet

Erreur verticale (perpendiculaire a la surface)

0.0008
0.0006
0.0004
0.0002
0
-0.0002
-0.0004
-0.0006
-0.0008
-0.001 n

Erreur (mm)

'errﬂr,Z,aré,enposlordreajOms,SVOmrnin rr'nup.gnuﬁ’ -

0 01

02 03 04 05 06 07 08

Temps de trajet

Fig.27 Simulated vertical error for an arc: feedrates of 30, 45 et 60 m/min, cubic joint interpolation

Erreur verticale (perpendiculaire a la surface)
0.0008

“erreur_Z_arc_enpos_ordre3_5ms_30mmin.mup.gnup’

Erreur verticale (perpendiculaire a la surface)

0.0008

“erreur_Z_arc_enpos_ordre3_10ms_30mmin.mup.gnup’

0.0006
0.0004
0.0002
0
-0.0002

Erreur (mm)

-0.0006
-0.0008
-0.001

-0.0004 {

0.0006
0.0004
0.0002

o1
-0.0002 |
-0.0004 |
-0.0006
-0.0008
" -0.001 "

Erreur (mm)

02 04

06 08 1

Temps de trajet

Erreur (mm)

14 16 0 02 04 06 08 1

Temps de trajet

Erreur verticale (perpendiculaire a la surface)

0.0008

0.0006
0.0004
0.0002
0
-0.0002 |
-0.0004 l
-0.0006
-0.0008
-0.001

‘erreur_Z_arc_enpos_ordre3_20ms_30mmin.mup.gnup’ ——

0

0.2

04 06 08 1 12 14 16
Temps de trajet

Fig. 28 Simulated vertical error for an arc: cycle times of 5, 10 et 20 ms, cubic joint interpolation

188 L. Rolland

Table 5 Simulated errors and deviations for an arc: position control with cubic joint interpolation

Order T, F, gmax gmin £7a% Sgin 8| [151min
ms m/min n W n n " W
3 10 30 2.034 0.042 0.695 —0.806 |1.939 0.012
3 10 45 1.991 0.023 0.704 —-0.812 | 1.816 0.037
3 10 60 1.823 0.058 0.695 —0.806 |1.802 0.040
3 5 30 2.196 0.023 0.704 —0.812 |1.939 0.012
3 10 30 2.034 0.042 0.695 —0.806 |1.939 0.012
3 20 30 1.823 0.058 0.695 —0.806 |1.802 0.033

The only drawback is that the acceleration continuity will not be ensured. Indeed,
nothing prevents large acceleration variations to be applied on the motors.

5.5 Discussion on the Results of Position Control

Linear orders are not recommended despite their simplicity because you can not
perform high-speed machining. The third order gives the best results because the
accuracy is always ensured to remain under 4 and 2 o respectively for straight line
segments and arcs. Order 5 provides slightly less favorable results and it is more
complex to implement.

The implementation of high order interpolators becomes difficult because you
have to compute interval transition conditions that are not easy to calculate.

All interpolators allow to follow trajectories with feed-rates up to 30 m/min cor-
responding to HSM at rapid cycle times of 5ms or less. Note that trying to verify
UHSM with feedrates up to 60 m/min, the results indicate the application of order
three or five. Any case is feasible with third order interpolations.

6 Conclusion

The existence of an exact method for solving the FKP of the general 6-6 hexapod
allows the design of a complete kinematics simulator to study milling processes. A
certified calculation method of the robot end-effector position has been implemented
in the analysis of milling tasks. It consists of a trajectory following algorithm required
for task planning applications, simulation and control. Several modeling modules can
simulate various essential elements: parallel manipulator configuration, kinematics
modeler and solver, CNC control algorithms, set-point interpolators and performance
calculations. For performance evaluation, new metrics were proposed to evaluate
surface finish more accurately.

Path Planning Kinematics Simulation of CNC Machine Tools ... 189

This simulation package provides a kinematics result in the form of the trajectory
deviation and vertical error as a lower bound on the estimation of the surface finish
of any milling task.

We studied the performance of the classic CNC position control scheme applied to
the general 6-6 parallel robots and compared it with an existing hexapod. Modeling
of various interpolation strategies at various feedrates and cycle times allowed us to
determine that milling quality surface finish can be obtained for HSM if third-order
interpolations are implemented. We can also implement functions interpolations of
the fifth order, but we must implement control cycle time less than or equal to 10 ms
but they remain more mathematically involved to prepare. Linear interpolations will
not allow for HSM and will only be limited to roughing at feedrates slower then
20 m/min.

With position control, UHSM becomes only feasible if third order interpolations
are established. Results are slightly better for arcs then for straight line segments.

This work has allowed the design and programming of a complete robotic simula-
tion package served as the backbone for the complete high speed milling simulation
program prepared as a collaboration of the INRIA in Nancy and Paris VI Universityto
fine-tune general Gough platforms and their position-based CNCs.

Acknowledgments This research work was produced by the author during his PhD and with special
funding from the Lorraine Region, the INRIA and CMW-Marioni. It has helped French hexapod
manufacturers to fine-tune their milling machines.

References

1. Abdellatif H, Heimann B (2005) Adapted time-optimal trajectory planning for parallel ma-
nipulators with full dynamic modelling. In: IEEE international conference on robotics and
automation. Barcelona, 19-22 April 2005, pp 413418

2. Bayaziz OB, Xie D, Anamato NM (2005) Iterative relaxation of constraints: a framework
for improving automated motion planning. In: IEEE international conference on robotics and
automation. Barcelona, 19-22 April 2005 pp 3433-3440

3. Bhattacharya S, Hatwal H, Ghosh A (1998) Comparison of an exact and an approximate
method of singularity avoidance in platform type parallel manipulators. Mech Mach Theory
33(7):965-974

4. Bohigas O et al (2012) A singularity-free path planner for closed-chain manipulators. In: IEEE
international conference on robotics and automation, Saint Paul, 14-18 May 2012 pp 2128-
2134

5. Bohigas O, Manubens M, Ros L (2012) Planning singularity-free force-feasible paths on the

stewart platform. In: ARK. Innsbruck, 25-28 June 2012 pp 245-253

Brady M et al (1982) Robot motion: planning and control. MIT Press, Cambridge

7. Briot S, Arakelian V (2008) Optimal force generation in parallel manipulators for passing
through the singular positions. Int J Robot Res 27(2):967-983

8. Carbone G, Gmez-Bravo F, Selvi O (2012) An experimental validation of collision-free trajec-
tories for parallel manipulators. Mech Based Des Struct Mach 40(4):414-433

9. Carbone G et al (1997) An optimum path planning for Cassino parallel manipulator by using
inverse dynamics. Robotica 26(02):229-239

>

190 L. Rolland

10. Chablat D, Wenger P (1998) Moveability and collision analysis for fully-parallel manipulators.
In: 12th RoManSy, Paris, 6-9 July 1998 pp 61-68

11. Chedmail P, Hascoet JY, Guerin F (1994) Collision detection analysis for milling. Adv Manuf
Syst 1:247-252

12. Chen C-T, Chi H-W (2008) Singularity-free trajectory planning of platform-type parallel ma-
nipulators for minimum actuating efforts and reactions. Robotica 26(3):371-384

13. Chen C-T, Liao TT (2008) Optimal path programming of the Stewart platform manipulator us-
ing the Boltzmann-Hamel-d’ Alembert dynamics formulation model. Adv Robot 22(6-7):705—
730

14. Chen Y, MclInroy JE, Yi Y (2003) Optimal, fault-tolerant mappings to achieve secondary goals
without compromising primary performance. IEEE trans robot autom, vol 19(4). University
Park, pp 681-691

15. Coiffet P (1986) Les robots, tome 1, modelisation et commande. Hermes, Paris

16. CortsJ (2003) Motion planning algorithms for general closed-chain mechanisms. Ph.D. Thesis,
Institut National Polytechnique de Toulouse, Toulouse, 16 December 2003

17. Corts J, Simon T, Laumond J-P (2002) A random loop generator for planning the motions of
closed kinematic chains using PRM methods. In: IEEE international conference on robotics
and automation. Washington, 11-15 May 2002 pp 2141-2146

18. Corts J, Simon T (2003) Probabilistic motion planning for parallel mechanisms. In: IEEE
international conference on robotics and automation Taipei, 14—-19 September 2003 pp 4354—
4359

19. Dallefrate D et al (2002) A feed rate optimization technique for high-speed CNC machining
with parallel manipulators. In: 3rd Chemnitzer Parallelkinematik Seminar, Chemnitz, 23-25
April 2002 pp 371-388

20. Daney D (2000) Etalonnage geometric des robots paralleles. Ph.D. thesis, Universite de Nice-
Sophia Antipolis

21. Dasgupta B, Mruthyunjaya TS (1998) Singularity-free path planning for the Stewart platform
manipulator. Mech Mach Theory 33(6):711-725

22. Dash AK et al (2002) Workspace analysis and singularity-free path planning of parallel ma-
nipulators. In: International conference on mechatronics technology (ICMT), Fukuoka, 29
September—3 October 2002 pp 457-462

23. Dash AK et al (2003) Singularity-free path planning of parallel manipulators using clustering
algorithm and line geometrie. In: IEEE international conference on robotics and automation,
Taipei, 14-19 September 2003 pp 761-766

24. Dash AK et al (2005) Workspace generation and planning singularity-free path for parallel
manipulators. Mech Mach Theory 40(7):778-805

25. Depince P, Hascoet JY, Furet B (1997) Compensation de trajectoire d’usinage: simulation et
experimentation. In: Proceedings of 13e Congrs franais de mcanique, vol 3. pp 293-296

26. Dombre E, Khalil W (1999) Modelisation, identification et commande des robots, seconde
dition. Robotique. Hermes, traite des nouvelles technologies edition

27. Huang T et al (2007) Time minimum trajectory planning of a 2-DoF translation parallel robot
for pick-and-place operations. Ann CIRP 56/1/2007:365-368

28. Jui CKK, Sun Q (2003) Path trackability and verification for parallel manipulators. In: IEEE
international conference on robotics and automation. Taipei, 14—19 September 2003 pp 4336—
4341

29. Khoukhi A, Baron L, Balazinski M (2009) Constrained multi-objective trajectory planning of
parallel kinematic machines. Robot Comput-Integr Manuf 25(4-5):756-769

30. Lahouar S, Zeghloul S, Romdhane L (2008) Singularity free path planning for parallel robots.
Analysis and design: advances in robot kinematics, pp 235-242

31. Latombe JC (1991) Robot motion planning. Kluwer Academic Publisher, Boston

32. Liegeois A (1984) Les robots, tome 7, analyse des performances et CAO. Hermes, Paris

33. LiuG, Trinkle JC, Shvalb N (2006) Motion planning for a class of planar closed-chain manip-
ulators. In: IEEE international conference on robotics and automation, Orlando, 1618 May
2006 pp 133-138

Path Planning Kinematics Simulation of CNC Machine Tools ... 191

34.

35.

36.
37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Lozano-Prez T, Wesley M (1979) An algorithm for planning collision-free paths among poly-
hedral obstacles. In: Communications of ACM, vol 22, pp 560-570

Luh JYS, Lin CS (1981) Optimum path planning for mechanical manipulators. Trans ASME
142-151

Magnin R, et Urso JP (1991) Commande numerique, programmation. Memotech

Marty C, Cassagnes C, La Martin P (1993) pratique de la commande numerique des machines-
outils. Technique et documentation. Lavoisier, Paris

Masory O, Xiu D (1998) Contour errors in a new class of CNC machine tools. In: Proceedings
of WAC9S8, vol 1, pp 791-798

Merlet JP (1993) Manipulateurs paralleles, septieme partie: Verification et planification de
trajectoire dans I’espace de travail. Technical Report 1940, INRIA, Sophia-Antipolis, June
1993

Merlet J-P (2000) An efficient trajectory verifier for motion planning of parallel machine. In:
Parallel kinematic machines international conference, Ann Arbor, 14—15 September 2000
Merlet J-P (2001) A generic trajectory verifier for the motion planning of parallel robots. J
Mech Des 123(4):510-515

Merlet J-P (2007) A local motion planner for closed-loop robots. In: IEEE international con-
ference on intelligent robots and systems (IROS), San Diego, 22-26 September 2007 pp 3088—
3093

Merlet J-P, Mouly N (1994) Espace de travail et planification de trajectoire des robots parallles
plans. Technical Report 2291, INRIA, Sophia-Antipolis, February 1994

Merlet JP, Perng MW, Daney D (2000) Optimal trajectory planning of 5-axis machine-tool
based on a 6-axis parallel manipulator. Adv Robot Kinemat 1(1):315-322

Mery B (1997) Machines a commande numerique. Hermes, Paris

Nenchev DN, Uchiyama M (1996) Singularity-consistent path planning and control of parallel
robot motion through instantaneous-self-motion type. In: IEEE international conference on
robotics and automation. Minneapolis, 24-26 April 1996 pp 1864—-1870

Nguyen CC et al (1992) Trajectory planning and control of a Stewart platform-based end-
effector with passive compliance for part assembly. J Intell Robot Syst 6(2-3):263-281
Nilsson N (1969) A mobile automaton: an application of artificial intelligence. In: Proceedings
of the international joint conference on artificial intelligence, pp 509-520

Oen K-T, Wang L-CT (2007) Optimal dynamic trajectory planning for linearly actuated plat-
form type parallel manipulators having task space redundant degree of freedom. Mech Mach
Theory 42(7):727-750

Patel A, Ehmann K (1997) Volumetric error analysis of a Stewart platform based machine tool.
In: Annals of the CIRP, vol 46, pp 287-290

Pouyan A et al (2010) Eliminating redundancy and singularity in robot path planning based on
masking. Expert Syst Appl 37(9):6213-6217

Pugazhenthi S, Nagarajan T, Singaperumal M (2002) Optimal trajectory planning for a hexapod
machine tool during contour machining. Proceed Inst Mech Eng Part C, J Mech Eng Sci A
216(12):1247-1257

Merlet JP (1997) Les Robots Parallel, 2nd edn. Herms, Paris

Dieudonne JE, Parrish RV, Bardusch RE (1972) An actuator extension transformation for a
motion simulator and an inverse transformation applying Newton-Raphson’s method, Technical
Report D-7067. NASA, Washington

Lazard D (1993) On the representation of rigid-body motions and its application to generalized
platform manipulators.] Comput Kinemat 1:175-182

Raghavan M (1993) The Stewart platform of general geometry has 40 configurations. ASME
J Mech Des 115:277-282

Raghavan M, Roth B (1995) Solving polynomial systems for the kinematic analysis and syn-
thesis of mechanisms and robot manipulators. Trans ASME 117:71-79

Rolland L (2001) Introduction to algebraic methods for solving the forward kinematics prob-
lem of parallel robots applied to high throughput and high accuracy. In: 3rd European-Asian
congress on mechatronics, Besancon, 9-11 October 2001

192 L. Rolland

59. Rolland L (2005) Certified solving of the forward kinematics problem with an exact algebraic
method for the general parallel manipulator. Adv Robot 19(9):995-1025

60. Rolland L (2008) Synthesis on modeling and certified solving of the kinematics problems
of Gough-type parallel manipulator with an exact algebraic method. In: Wu H (ed) Parallel
manipulators, towards new applications. I-Tech Education and Publishing, Vienna, pp 175-206

61. Salerni G (1995) The linear delta. Technical report, University of Pisa

62. Shulz et al (1999) Dynamic stiffness and contouring accuracy of a HSC linear motor machine.
In: Proceedings of the 2nd international conference on high speed machining, vol 1. Darmstadt,
pp 75-83

63. ShulzH, Gao H, Stanik B (1999) Analysis and optimization of the dynamic contouring accuracy
using the example of a linear motor machine tool. In: Proceedings of the 2nd international
conference on high speed machining, vol 1. Darmstadt, pp 107-115

64. Sen S, Dasgupta B, Mallik AK (2003) Variational approach for singularity-path planning of
parallel manipulators. Mech Mach Theory 38(11):1165-1183

65. Shaw D, Chen Y-S (2001) Cutting path generation of the Stewart platform-based milling
machine using an end-mill. Int J Prod Res 39(7):1367-1383

66. Soni AH, Tanasi GC, Varanasi S (1995) Closed-loop multi-degree freedom mechanisms for
surface generation and patching in machining 3d surfaces. In: 9th IFToMM world congress on
the theory of machines and mechanisms. Milan, 30 August-2 September pp 2668-2674

67. Su H-J, Dietmaier P, McCarthy JM (2003) Trajectory planning for constrained parallel manip-
ulators. ASME J Mech Des 125(4):709-716

68. Takeda Y (2005) Kinematic analysis of parallel mechanisms at singular points at which a
connecting chain has local mobility. In: Computational kinematics, Cassino, 4-6 May 2005

69. Taylor R (1979) Planning and execution of straight line manipulator. IBM J Res Dev 23(4):424—
436

70. Tchon K et al (2012) Motion planning for parallel robots with non-holonomic joints. In: ARK,
Innsbruck, 25-28 June 2012 pp 115-122

71. Tournassoud P (1992) Planification et controle en robotique, application aux robots mobiles et
manipulateurs. Robotique. Hermes, Paris, Traité des nouvelles technologies edition

72. Trinkle JC, Milgram RJ (2002) Complete path planning for closed kinematic chains with
spherical joints. Int J Robot Res 21(9):773-789

73. Udupa SM (1977) Collision detection and avoidance in computer controlled manipulators. In:
Proceedings of the international joint conference on artificial intelligence, pp 737-748

74. Ur-Rehman R, Caro S, Chablat D, Wenger P (2010) Multi-objective path placement of parallel
kinematics machines based on energy consumption, shaking forces and maximum actuator
torques: application to the Orthoglide. Mech Mach Theory 45(8):1125-1141

75. Vaca R, Aranda J, Thomas F (2012) Simplified Voronoi diagrams for motion planning of
quadratically-solvable Gough-Stewart platforms. In: ARK, Innsbruck, 25-28 June 2012 pp
157-164

76. Vaishnav RN, Magrab EB (1987) A general procedure to evaluate robot positioning error. Int
J Robot Res 6(1):59-74

77. Yakey JH et al (2001) Randomized path planning for linkages with closed kinematic chains.
IEEE Trans Robot Autom 17(6):951-958

Planning Automatic Surgical Tasks
for a Robot Assistant

Enrique Bauzano Nuifiez, Belen Estebanez Campos,
Isabel Garcia Morales and Victor F. Muiioz Martinez

Abstract One of the main goals of surgical robotics has always relied on developing
a robotized platform to allow the surgeon make an intervention alone, which is also
known as the co-worker concept. These robotic systems have evolved over the last
years depending on their tasks and interfaces with the surgeon. This evolution led
to the teleoperated systems, which have the main drawbacks of a high complexity
and economic costs. Many researchers have focused their efforts in minimizing these
problems by automating certain actuations on the surgical environment. In this way,
this chapter focuses on the design and implementation of a robotic surgical motion
controller, which has been designed for performing autonomous tasks to assist the
surgeon with an additional instrument. For this purpose, a hierarchical architecture
has been implemented which includes an auto-guide velocity planner connected to
a force controller. The first one, a trajectory planner based on a behavior approach,
is devoted to find a collision-free trajectory of the surgical instrument tip held by
the robot, with the final aim of reaching a target location inside of the abdominal
cavity. However, the surgical tasks may also require pressing the tissue or stretching
the thread for needle suturing. In this way, the force controller grants the exertion of
these required forces. The performance of both, the trajectory planner and the force
controller, have been tested by means of in vitro trials.

Keywords Laparoscopic surgery - Real-time automatic movements - Force
feedback control - Surgical robot assistant

1 Introduction

Over the last years, robotic systems have been introduced in several surgical tech-
niques as an additional and very valuable tool for surgeons. Some of their benefits
include a higher precision, improved security and freedom on the movement of the

E. Bauzano Nufiez (&) - B. Estebanez Campos - I. Garcia Morales - V.F. Mufioz Martinez
University of Malaga, Severo Ochoa 4, 29590 Malaga, Spain
e-mail: ebauzano@uma.es; vimm@uma.es

© Springer International Publishing Switzerland 2015 193
G. Carbone and F. Gomez-Bravo (eds.), Motion and Operation Planning

of Robotic Systems, Mechanisms and Machine Science 29,

DOI 10.1007/978-3-319-14705-5_7

194 E. Bauzano Nuiez et al.

surgical instruments. Almost all commercial surgical robots have been designed for
two main surgical procedures: orthopedics or neurosurgery interventions, and mini-
mally invasive surgery (MIS) techniques.

The orthopedics procedures are covered by the computer-aided design and man-
ufacturing methodologies (CAD/CAM), which lead to the concept of Computer
Integrated Systems (CIS) [1, 2]. The CAD/CAM systems are mainly focused on
orthopedic surgery because the work on the bones is very similar to the mechanized
on a piece of raw material. Systems based on CAD/CAM aid the surgeon during
the standard procedure followed on any intervention as described on the scheme of
Fig.1 [3]. After the medical diagnostic, firstly all the relevant information about the
patient is gathered with non-invasive CAD techniques on the preoperative phase.
This information of the anatomical model is used for planning the intervention with
the use of surgical navigator systems [4, 5]. Once the planning is generated, secondly
the intervention is performed during the intraoperative phase with a CAM integrated
on the robot and a register procedure [6]. The virtual coordinates obtained from the
model of the patient are updated in this phase with the real ones in order to establish
a correspondence to guide the surgeon correctly [7]. Finally, the patient recovery is
followed on the postoperative phase.

Preoperative Intraoperative
Computer |
Assisted Update Model —» Update Plan
Planning
Patient- — I
Specific Model) Computer
A = @—— Assisted

| Execution |

o

Postoperative
Diagnostic . ;
Computer i . Patient
Assisted

Patient 'Anatomy Model|
] Assessment

Fig. 1 Architecture of a surgical CAD/CAM system, where the preoperative phase is CAD and the
intra-operative phase is CAM

Planning Automatic Surgical Tasks for a Robot Assistant 195

Fig. 2 Robodoc on the /eft and SpineAssist on the right

Some of the first commercial CAD/CAM robot systems are the Robodoc by Inte-
grated Surgical Systems [8] or Caspar by Ortho Maquet [9], which are both devoted
to the hip and knee orthopedic surgery. One of the latest releases, the SpineAssist
[10], consists of a specialized robot for prosthetic interventions on the spinal column
(see Fig.2).

The second kind of procedures (MIS) covers the surgical robots specialized in
abdominal interventions. MIS has become one of the most important surgical tech-
niques over the last years due to its capability of reducing the postoperative conva-
lescence and diminishing any other complications. As a consequence, MIS offers
several social and economic consequences like minimizing the stay of patients at
the hospital. As opposite to the orthopedic systems, MIS robots assist the surgeon
during the surgical procedure and are not programmed on a previous phase of the
intervention.

In general terms, MIS robots are designed to handle instrumentation on laparo-
scopic procedures with automated movements generated by direct orders of the sur-
geon or by teleoperation with a master-slave system. Commercial systems for the
first group are mainly focused on positioning the laparoscopic camera, for example
the AESOP by Computer Motion shown on the left side of Fig.3 [11], the EndoAs-
sist by Armstrong Healtcare [12] or the Lapman by Medsys [13]. On the other hand,
most relevant teloperated systems includes several robotic arms like ZEUS by Com-
puter Motion [14] and Da Vinci by Intuitive Surgical (see right image of Fig.3) [15].
Both systems have three slave manipulators so one of them handles the laparoscopic

196 E. Bauzano Nuiez et al.

Fig. 3 The AESOP robot laparoscopic assistant on the left and the Da Vinci system on the right

camera whereas the others manage the surgical instruments. More specifically, the
Da Vinci system has been used on an intercontinental tele-interventions from San
Francisco to Boston and from Manhattan to Strasbourg.

There are several automation techniques for MIS robots that have been already
covered on the literature [16]. One of them is the visual servoing, which consists
of automatically guiding the laparoscopic camera. This technique has been used
for the safe movements of the endoscope on cardiac surgery [17] or the prediction
of the end effector location [18, 19]. Other works are based on the automation
of surgical maneuvers without the direct intervention of the surgeon on in vitro
experiments, so they are not designed for a collaborative assistance. For example, the
recognition of surgical tasks that initially focused on the evaluation of the surgeon’s
skills [20], has been adapted in some developments to transfer those skills to a robot
assistant. Moreover, some of the main surgical tasks have been fully automated like
the automatic stitching [21] and knot tying [22] on suture procedures, as well as the
grasping and lifting on tissue retraction [23].

In this way, the contents of this chapter focuses on the control movements of the
surgical assistants, as well as the most relevant planning methodologies to displace
the surgical tools handled by the robot. For this purpose, firstly the main kinematic
structures to spherically navigate the laparoscopic instruments are presented in Sect. 2
with their particular problems and the general control schemes for each of them.
Secondly, the chapter makes a classification of surgical robots in groups depending
on their degree of autonomy in Sect. 3. Each of these groups have a general planning
method to generate the appropriate trajectories for the robot instrumentation. One of

Planning Automatic Surgical Tasks for a Robot Assistant 197

these methods, and a current trends of surgical robotics, consists of the collaborative
planning with the surgeon’s tasks. Thus, the following Sect. 4 is focused on this kind
of robots with the auto-guide planner a special system capable of find trajectories
related to a desired location or force exerted by the robot instrument. Finally, the
chapter will present the platform on Sect.5, where this collaborative system has
been implemented and an experimental result to show the behavior of the proposed
auto-guide planner.

2 Laparoscopic Navigation

All robot assistants require the development of kinematic structures for the robotic
arms that handle the surgical instruments. Moreover, these mechanisms must be
controlled by specific algorithms for tool movements that compute the trajectories
with precision. In this way, Fig.4 shows a scheme of the laparoscopic navigation,
which consists of a controlled movement of the laparoscopic tool in order to locate
it at certain coordinates inside the abdominal cavity. It can be seen that the Robot
Arm holds the laparoscopic tool and describes spherical trajectories around the place
where it is inserted into the Abdomen of the patient (Fulcrum Point). Thus, actual
localization of the instrument can be established through the spherical coordinates
o (orientation), B (altitude) and p (external distance from the robot Wrist to the
fulcrum). These parameters are related to the fulcrum frame of reference {7} located
at the fulcrum point, which is also referred to the base Robot Frame of Reference
{B} for planning the movements of the laparoscopic tool.

The main problem of the laparoscopic navigation relies on the uncertainty of the
fulcrum point from the robot frame of reference { B} point of view. More specifically,

Fig. 4 Navigation of the
surgical tool Robot Frame of Robot Arm
R__el'e rence

z

~ Fulcrum
Point

Abdomen __

198 E. Bauzano Nuiez et al.

it is quite difficult to locate the patient over the operating table and perform the
incision on its abdominal wall, in such a way that the location of {/} related to { B}
is known with accuracy. This uncertainty leads to an imprecise positioning of the
instrument at the specified spherical location. From a kinematics point of view, this
problem can be solved with the exact knowledge of the three spherical coordinates
o, B and p where the instrument is currently located respect to frame {/}. However,
while coordinates & and 8 can be obtained from the kinematics model of the robot
arm and the measure of its inner sensors, it is not possible to obtain the distance p
without the use of external 3D trackers.

Following subsections state the current commercial solutions which are able
to solve this problem of the spherical laparoscopic navigation through different
approaches: the actuated and passive wrists.

2.1 Remote Center of Rotation

This kind of wrists has its degrees of freedom directly actuated by motors, and
thus the position and orientation of the laparoscopic tool can be established with
the corresponding joint vector. These wrists avoid the inconvenience of the location
accuracy regard to special mechanical structures. These devices are designed to rotate
the tool around a remote center of rotation that must be calibrated accordingly. With
this system, the precision of the spherical movements is guaranteed as long as the
fulcrum point remains at the same location. Figure 5 shows on the up side the four-
link scheme used on the Da Vinci robotic assistant, whereas the down side presents
the implantation of this wrist as it is described on the corresponding patent [24]. The
displacement of the four-link system labeled as 20 orientates the tool at 22a that turns
around point 22 where the fulcrum shall be located. The main problem of these kind
of wrists relies on the precise localization of the fulcrum at the remote center of the
wrist, because otherwise undesired forces can be exerted over the abdominal wall of
the patient.

There are other schemes for remote center of rotation systems based on four-link
mechanisms, for example the Black Falcon [25], the Blue Dragon [26] or the robotic
extender configuration [27]. Other works use semicircular elements for this purpose
as the Endobot system, shown in Fig. 6, which is composed by two robotic arms [28].

This wrist configuration is commonly used on master-slave systems due to the
precision on the tools movements. Thus, control schemes that manage these mecha-
nisms are based on the control of the Cartesian velocity of the laparoscopic tool as it
is expressed on Fig. 7. It can be seen that the movement order obtained from a master
device is computed by a planner which sends the control inputs for the robot and the
remote center of rotation wrist. The feedback signal is the inverse Jacobian of the
corresponding wrist used to control the velocities of the elements of its structure.

Planning Automatic Surgical Tasks for a Robot Assistant 199

Fig. 5 Remote center of
rotation scheme used on Da
Vinci robotic assistant

Fig. 6 Two-arm Endobot
system with remote center of
rotation wrists

2.2 Passive Wrists

A robotic assistant based on a passive wrist has one or more non-actuated degrees
of freedom. Although it is possible to establish the Cartesian position of the tool,
its orientation depends on the relative position between the wrist center of rotation
and the fulcrum point. This configuration guarantees that no forces are exerted over
the fulcrum point, since its mechanical structures allows the accommodation of the
surgical instrument. However, any uncertainty on the relative position between the
assistant and the fulcrum point reduces the precision on the robot tool tip positioning.
The problem is that the insertion cannot be computed with the inner sensors of the
robot arm, and must be estimated with the use of geometrical techniques [29]. Passive
wrist can be found on systems like AESOP [11] or ZEUS [14].

200 E. Bauzano Nuiez et al.

ReEmOTE CENTER OF ROTATION CONTROLLER

INVERSE
Jacosian
Tool
Command TooL WITH
—— PLANNER Rosot Arm REMOTE WRIST

Fig. 7 Control basic scheme for remote center of rotation wrists

Z

Fig. 8 Endobot robot assistant with a passive wrist

Figure 8 shows the scheme of AESOP system as it is described on its patent [30].
The arm joints labeled as 24, 38 and 34 are actuated. However, the two degrees of
freedom of the wrist (30 and 32) are not actuated.

Robotic assistants with passive wrists are mainly used for the management of the
laparoscopic tool, which requires less precision on its localization than a standard
instrument used for interacting with the patient’s organs. Thus, a lack of precision on
the location of the laparoscopic tool just leads to an error when targeting the region
of interest, which is a non-critical task. The control loop was closed by the own
surgeon during the first versions of AESOP. In this way, the surgeon commanded the
robot to make an increment of the rotation or altitude angle for the camera until the
image reached the anatomical region of interest. However, to achieve a more precise
positioning, it is necessary to estimate the coordinate p during the movement with
geometrical techniques.

Figure 9 proposes the control scheme for robot assistants with passive wrists. The
planner transforms the movement order of the surgeon to a Cartesian position of the

Planning Automatic Surgical Tasks for a Robot Assistant 201

PassIVE WRIST CONTROLLER

Tool
Command | INCREMENTAL TooL wiTH
— RosoT ARMm
PLANNER PassIive WRIST
GEOMETRIC
P ESTIMATOR a p

Fig. 9 Control scheme for passive wrists

rotation center of the wrist, whereas the orientations « and 8 are computed with the
inner sensors of the robot. For each measure of these angles, the geometric estimator
computes the axis of the laparoscopic tool. In this way, the estimated axes obtained
each two consecutive positions of the tool intersect in one point that can be used
for the estimation of the distance p. With the use of this scheme, the estimation of
distance p can be improved over the movement, but it does not include any method
to solve a positioning error in case the system does not achieve a realist estimation
of the p parameter.

2.3 Actuated Wrists

The third category of wrists does not use any kind of additional mechanical structure,
but it assembles the surgical instrument right to the end effector of the manipulator.
However, these wrists require a force feedback controller like shown in Fig. 10 for
computing the insertion of the instrument and positioning it into the abdominal cavity
with accuracy [31, 32]. The geometric estimator of the passive wrists is replaced by
a Force Estimator that obtains the external distance estimation from the force and
torque measurements.

ACTUATED WRIST CONTROLLER

Tool
Command i ROk A TooL WITH
AcTIVE WRIST
FORCE
P ESTIMATOR Force, Torque

Fig. 10 Control scheme for direct actuated wrists

202 E. Bauzano Nuiez et al.

This methodology presents two main problems. On one hand, the forces exerted
over the tool tip must be separated from those applied by the abdominal wall. On the
other hand, laparoscopic tools are used to be flexible, so their deformation affects
the positioning accuracy. These problems are usually solved by integrating a force
sensor on the trocar, as well as by using special rigid instruments.

3 Planning Methods on Laparoscopic Surgery

All the kinematic structures commented on previous section require a planner element
to navigate the laparoscopic tool. The trajectory generated by this planner mainly
depends on the degree of automation for the robot to complete its tasks. In this way,
Fig. 11 establishes a classification of the robot assistants attending to their degree of
automation.

The right side presents the commanded robots, usually cameramen assistants
specialized on controlling the laparoscopic camera movements. Such movements
can be directly managed by the surgeon through a communication interface, as well

as automatically performed for the tracking of the surgeon’s tools or a point of
interest.

$,
i
&

* Tele-Surgery

* Master-Slave commands
systems * Visual Servoing
* Augmented * Augmented reality

surgeon’s skills

.—u

SEMI-AUTONOMOUS ROBOTS

* Biopsies
* Auto-guided tools
= Automatic surgical tasks

Autonomous ROBOTS

Fig. 11 Classification of surgical robots depending on their autonomy degree

Planning Automatic Surgical Tasks for a Robot Assistant 203

The upper-left side of the graph shows the teleoperated robots, which directly
replicate the surgeon’s movements on the surgical tools managed by the robot arms.
These systems may also improve surgeon’s skills, for example by suppressing the
constraints on the movements imposed by the laparoscopic surgery (fulcrum point,
additional degrees of freedom on the tool tip...).

The down side of the diagram represents the group of robot assistants that can
work without any intervention on the surgeon’s hand. Autonomous robots are systems
capable of make biopsies or the automatic guidance of a surgical tool on the region
of interest. Meanwhile, the surgeon focuses on the main tasks of the intervention
while verifying that the overall procedure is followed as expected.

The intersection of these groups of robot assistants represent the semi-autonomous
robots. This subgroup consists of those systems that have certain degree of autonomy,
in such a way that they always collaborate with the surgeon’s tasks. These robots
are very versatile, since they combine different capabilities as the tracking of the
laparoscopic camera in combination with the management of a surgical instrument
for assisting the surgeon in a collaborative way.

Firstly, the following Sects. 3.1-3.3 describe different planning strategies for each
of the groups of robot assistants explained with Fig. 11: commanded, teleoperation
and autonomous planning. After this explanation, Sect. 4 introduces a planning strat-
egy proposed by the authors for a more advanced semi-autonomous robot assistant.

3.1 Commanded Planning

One of the challenges of surgical robot focuses on the substitution of the human
cameraman on the MIS procedures as represented on Fig. 12. This surgical techniques
require that the assistant centers the camera on the region of interest where the surgeon

Fig. 12 Surgical robot

working in commanded _1, Surgeon
mode with the surgeon A/ ~J

A S

204 E. Bauzano Nuiez et al.

makes the intervention. Fatigue or stress of this assistant may affect the image quality,
in such a way that the endoscope may touch tissue, center a wrong area or the image
is unstable due to the trembling of his hand.

The use of arm manipulators for managing the endoscope avoids the problems
stated above, and provide more accurate movements and a steady hand along all
the intervention. These robots need a communication interface with the surgeon to
perform the corresponding orders accordingly. Most elemental systems use a joystick,
others use a gyroscope attached to the surgeon’s head in order to drive the image with
head’s movements [33], or recognize voice commands [34]. There are also works
where the robot movements are guided by interpreting the head’s movements with
vision algorithms [35], and others with a remote controller attached to the surgeon’s
hand [13].

The first laparoscopic camera positioners were the ones based on the classic
works of R.H. Taylor and J. Funda with their LARS [36] and HISAR [37] systems,
respectively. Other commercial robot assistants followed these ones like the already
mentioned AESOP [11], ENDOASSIST [12] or LAPMAN [13]. These systems are
considered the first step on the co-worker concept, where the surgeon may perform
a full intervention without any human assistance. In this way, the University of
Malaga developed the ERM system, a laparoscopic camera positioner commanded
by the surgeon’s voice or directly with a joystick, as shown on Fig. 13 [38]. This robot
uses a passive wrist for navigating the laparoscopic tool, and as additional features it
is able to work without wires and has wheels to place it wherever the surgeon wants.

3.2 Tele-Operation Planning

On many surgical procedures the assistant does not only locate the endoscope, but
also handles other instruments. In this way, robot assistants would require a more
sophisticated systems that manage specific tools in addition to the laparoscopic cam-
era. This feature can be considered as another step towards the co-worker concept.

One of the most addressed focuses on the scientific literature for achieving this
co-worker system consists of the use of teleoperation and telepresence techniques.
Figure 14 shows the fundamentals of a teleoperation station, where the surgeon
remotely controls the surgical instruments attached to the arm manipulators.

Thus, several works appeared on the middle nineties which defined the limita-
tions of the movement controller systems to teleoperate surgical instruments into
a restricted environment as the abdominal cavity [39]. Moreover, some developers
started the design of special mechanical structures to handle the instruments which
also allowed the planning of accurate trajectories [27]. Some telepresence features
were added, for example the force feedback through haptic devices that provided
some kind of tactile sensing to the surgeon [25, 29, 40], and even to distinguish
among different tissue textures [41]. There are also teleoperated systems that improve
the surgeon’s skills in order to perform sub-millimeter tasks [42, 43].

Planning Automatic Surgical Tasks for a Robot Assistant 205

=

Fig. 13 ERM system for holding the laparoscopic camera (left) and its user interface based on the
surgeon’s voice or joystick device (right)

Image of the
Surgeon Surgical Workspace

Online
Robot Control

Fig. 14 Surgical robot remotely teleoperated by the surgeon

There are more complex teleoperated systems with two arm manipulators to han-
dle surgical instruments and an additional one to manage a stereo vision system [36].
The most relevant commercial system of this class is the Da Vinci platform [15],

206 E. Bauzano Nuiez et al.

Fig. 15 The MiroSurge by DLR on the left and RAVEN-II by the University of Washington on the
right

which has been already commented in the introduction and shown on Fig. 3 and has
been successfully tested with different MIS techniques of several hospitals around
the world.

Although Da Vinci is the most known and used teleoperated system, there are
other robots of this kind currently in development. Two examples of these works on
this field are MiroSurge from the DLR [44] and the Raven-II from the University of
Washington [45], which can be shown in Fig. 15.

3.3 Autonomous Planning

The enormous complexity and costs of the teleoperated systems limit their clinic
impact. A simpler system designed to make more specific tasks, without special
installations and no additional training can be more reliable for improving certain
laparoscopic procedures. In this way, there are several lines of research which propose
systems with two robotic arms, one to handle the endoscope and the other for an
extra instrument [46]. As an illustrative scenario, Fig. 16 shows how the surgeon
firstly programs the procedure on the computer. This information is used during the
intervention for the robot to run the corresponding sequence of tasks that completes
the planned procedure.

Despite these efforts and their proven accuracy, some authors still defend that
the use of robots in surgery may lengthen the intervention time [47]. Thus, other
alternatives must be proposed in order to increase the reliability of robotic assistants.
One solution consists of the automation of certain surgical tasks. In this way, there
are works that automate the movement of the camera [48] depending on the current
state of the intervention. Others are based on dividing complex tasks like the suture
in more elemental actions feasible by the robot assistant [28].

One of the most commons techniques for performing automatic tasks is the visual
servoing, which consists of dynamically following with the endoscope a surgeon’s
tool or a target marked on the tissue [49]. The control movement of the surgical

Planning Automatic Surgical Tasks for a Robot Assistant 207

Surgeon

Surgeon

Computer

o~ [

L Robot L L B
1T atient
=

| [—
M~

/L _,"":'.- |
\{.
CCF 2004

—

Fig. 16 Surgeon plans the intervention on the left, and then the robot performs the autonomous
tasks on the right

instruments implies the computation of their linear and angular velocity references
ateach time period. These references are obtained regard to the analysis of the images
received by a calibrated stereo vision system [50], or also with the image acquisition
through a traditional laparoscopic camera [51]. This last situation requires the use of a
modified instrument that emits a laser in order to measure the distance to the closest
organ. This technique allows a safe movement of the laparoscopic tool towards a
target location by following the surface of an organ at a certain distance. A variant of
this work uses the robotic arms for cardiac surgery. More specifically, with a visual
guidance the instruments movements can be synchronized with the heart beats [52],
in such a way that the organ remains static from the surgeon’s point of view and
can make teleoperated cardiac procedures that otherwise would be very difficult.
Other works introduce the use of ecographs as feedback [53]. Therefore, despite the
increase of automation on robot assistants, they may complement the capabilities of
the teleoperated systems.

4 Collaborative Planning: Auto-Guided Movements

The environment where the robot interacts with the patient as well as the surgeon
consists of a closed space, the abdominal cavity, as it is shown in Fig.17. Both
tools handled by the surgeon, the Camera and the instrument of the Robot Tool,
are inserted through their respective fulcrum points over the abdomen. Moreover
this environment also includes the surgeon’s tools used for surgery procedures. The
Surgeon’s Primary Tool is considered the target for the robot, whereas the Surgeon’s
Secondary Tool is the obstacle. The surgeon is able to displace his tools during any
robot movement.

208 E. Bauzano Nuiez et al.

Camera Surgeon’s
Secondary Tool

Robot Tool | Surgeon’s
{ |I Primary Tool
|
Abdomen 1| ﬁ

View
Field

LT
-
.
-

: o~ Target
RObOt / Tagaan®

Trajectory

Fig. 17 The camera focuses over the surgical workspace, whereas the robot tool goes where the
surgeon’s target tool is located

The abdominal cavity where the robot instrument may move is defined by a cone-
shaped view field, which contains the scene seen in the screen by the surgeon. This
work considers the displacement of the robot tool to the surgeon’s primary tool
location as the proposed auto-guided movement. The secondary tool, as well as the
tissue and organs inside the abdominal cavity focused by the camera, are defined as
obstacles to be avoided during an automatic task. The trajectory has to be computed
on-line, because the surgeon’s tools are continuously being displaced during the
intervention.

There are two main collaborative actions that the robot should develop in order
to interact with the surgeon:

Pressure over the tissue (top of Fig. 18). The goal of this actuation consists of
exerting a force F by means of a movement along the direction defined by the vector
I'f.

Navigation to a target location (bottom of Fig. 18). The purpose of this actuation
relies on reaching the target location O with the Robot Tool tip while it avoids the
contact with the Surgeon’s Tool and the Tissue on the inner abdominal cavity.

The motion planner has been designed as shown in Fig. 19 to manage these actu-
ations. The required location r, for the Robot is computed by means of a hybrid
force-position controller, where ry and r¢ are the respective contributions from the
position and force control.

The position and force controllers receive as inputs a desired location rq and force
exerted Fq. The position and force vectors rp and ry are expressed in areference frame
attached to the endoscope tip. The hybrid position-force controller of Fig. 19 includes

Planning Automatic Surgical Tasks for a Robot Assistant 209

Fig. 18 Possible robot
actions for a collaborative
planning: pressure over
tissue (fop) and navigation to
target location (bottom)

Tissue

Surgeon’s
Tool

a force-accommodative controller which feedbacks the robot-tissue interaction force
F and outputs the vector force Fy, which is substracted to Fq afterwards and trans-
formed to ry by means of a gain K, which models the robot-environment relative
stiffness (1) with:

re =K' (Fa—Fyp) (1)

where the stiffness K is adjusted by in vitro experiments with similar materials to the
abdominal cavity tissues.

Secondly, the position control consists of an Auto-Guide Planner which focuses
on finding a free-obstacle trajectory towards rq inside the abdominal cavity. For this
purpose, this element has been designed as shown in Fig. 20 to combine the behavior
of three modules: the Local Planner, which computes the trajectory towards the
target location by using the Artificial Potential Fields (APF) algorithm; the Velocity
Correction, which adapts the robot tool velocity depending on the trajectory of the

210 E. Bauzano Nuiez et al.

MOTION PLANNER

PosITIoN CONTROL

vy

Ty AUTO-GUIDE L
PLANNER

v

ROBOT

E. | controL F
Pl

FORCE CONTROL

Fig. 19 Motion planner system for robot autonomous actuations

AUTO-GUIDE PLANNER

V.V, BEHAVIOR
MANAGER
i
H
LocAL Y |‘L|(‘
PLANNER =
v v r
VELOCITY 2 I_(“_I A y| p
CORRECTION 2] \. / /s
TooL Y3 |_('__|
| Foiower | i)

Fig. 20 The proposed auto-guide planner system for finding free-obstacle paths

surgeon’s tool; and the Tool Follower, which considers an intentional contact of the
surgeon’s tool to modify the robot tool location.

The outputs of these behaviors vy, v, v3 are weighted by their respective gains
c1, €2, c3, which are computed by the Behavior Manager. This element receives both
vectors of the tools velocities: the robot v, and the surgeon vg. The weights ¢, ¢ and
c3 are processed by a fuzzy logic algorithm. Thus, the contribution of the Position
Control rp already described in Fig. 18 is obtained by integrating the planned velocity

vp (2):

Planning Automatic Surgical Tasks for a Robot Assistant 211
Table 1 Fuzzy rules of the behavior manager
Robot velocity Surgeon’s velocity
1 2 3 4 5 6 7 8
1 A MA FA MA MN MA FA MA
2 MA A MA FA MA MN MA FA
3 MN MC A MA MN MC MN MA
4 MC MN MA A MC MN MA MN
5 MN MA FA MA A MA FA MA
6 MA MN MA FA MA A MA FA
7 MN MC MN MA MN MC A MA
8 MC MN MA MN MC MN MA A
FA moving far away, MA moving away, A advancing, MN moving nearby, MC moving closer

kT kT
rp = / vpdt = / (c1v1 + Covy + C3v3)dt 2)
(k=T (k=T

The fuzzy-logic algorithm for the Behavior Manager uses a Mandani fuzzification
and a center of gravity defuzzification. The velocities v, and vy are the antecedent
data, which are classified by dividing the space into eight quadrants around the
reference frame of the camera. Firstly, Table 1 computes the quadrant location of
velocities vy and vy to establish the relative direction of the movement between both
tools.

On the other hand, Table?2 represents the membership functions of each weight
c1, ¢2, c3. For example, if the surgical tools are Moving Away, then the Local Planner
behavior has a very high relevance (¢), there is almost no need of a velocity correction
(¢p) and a null effect for the tool follower (c3).

Once the behavior manager processes the weights c1, ¢z, ¢3, expression (2)
requires the velocity vectors vy, vz, v3 of each behavior module shown on Fig. 19.
First behavior is the Local Planner, which is devoted to find free-obstacle trajec-
tories and has been designed with an APF algorithm. The APF associates a virtual
repulsion field to each obstacle and a virtual attraction field to the target location. The
obstacles considered in this work consist of the surgeon’s tool and the organs/tissues
inside the abdominal cavity. The surface of the inner tissue is represented by a grid
of M — 1 vertices generated through a monocular SLAM technique with reallocation

Table 2 Qutput weights of 1 2 3

the behavior manager -
Far away Very high Very low Null
Away Very high Very low Null
Advancing High Low Very low
Nearby Medium Very high Very low
Closer Very low Medium Very high

212 E. Bauzano Nuiez et al.

for laparoscopic sequences [54]. This work has considered the virtual forces vectors
of attraction F2 and repulsion F™P suggested by [55], because the extra unitary
vector n on F™P prevents the trajectory to find local minima position (3):

Fatt — ZKQZIAI,

1 1 ArgPm Ny 0
PR — [Krep (7 =) (2= +2) om =il @
0 Pm = ,021

The gains K“, K™ on (3) represent the relevance of that virtual force relative to
the others. Parameter p,, defines the minimal distance between the robot tool and that
mth obstacle, Py, is the unitary vector with that direction and p,% is the maximum
distance where the virtual field may affect the robot trajectory (see Fig.18). The
distance between the robot’s tool tip and the target location is denoted by Ar, and
modifies the contribution of the repulse force nearby the target location. The velocity
v1 computed by the Local Planner on (4) is the integration of the total virtual force,
where virtual mass has been considered to be one.

M
Vi = /Fa“ + > Fnrdt “4)

m=1

Second behavior is the Velocity Correction. This module adjusts the current
velocity of the robot tool v, depending on the relative minimal distance p,, and the
expected time of collision with the surgeon’s tool. Those parameters are used as
input variables of a fuzzy-logic algorithm similar to the one proposed in [56]. The
consequent parameter denoted as K is limited a value between [0, 1] to guarantee
the reduction of the robot tool velocity, thus the velocity v, computed by the velocity
correction is (5):

V2 = Kovy &)

The third and last behavior is the Tool Follower. This module considers those
situations where the surgeon wants to displace the robot tool by using his own tool
(for example, if the robot tool is in front of the camera or blocks the surgeon’s tool to
perform a surgical task). To solve these problems, the tool follower module models the
virtual collision between the surgeon and robot tools with a spring bumper. Whenever
both tools are very close (that decision is made by the Behavior Manager, as it has
been previously explained), this spring bumper exerts a virtual force of repulsion to
the robot tool which can be integrated and leads to the velocity computed by the tool
follower (6):

V3 = / B3vg + K3(P — Pe)dt (6)

Planning Automatic Surgical Tasks for a Robot Assistant 213

where B3 and K3 are the constants for the spring bumper modeled, and P, is the
minimal distance of equilibrium between the surgeon and the robot tools.

5 Case of Study: CISOBOT Platform

This section is devoted to describe the experiments and the results for the auto-guided
system evaluation. For this purpose, it has been used the CISOBOT system, designed
and developed in the University of Malaga (see Fig.21). This system consists of a
two-arm robotic system for holding both, an endoscope and a surgical instrument.
On the left side of this picture, it is showed the Endoscope Arm equipped with a
non-actuated two degrees of freedom wrist for endoscope movements [38]. On the
other hand, the Tool Arm (on the right side of the endoscope arm) has an actuated
wrist with a force sensor in order to feedback information about the forces exerted in
the abdominal wall [32]. In this way, the Endoscope Arm is commanded by the sur-
geon’s voice for performing left, right, up, down, inside and outside basic endoscope
movements, and the Robot Tool held by the Tool Arm is controlled by means of the
auto-guided planning proposed on Sect. 4. Therefore, the Tool Arm will accomplish
the experiments described in the following subsections.

- LAPAROSCOPIC
I MoNITOR

Fig.21 Experimental setup for the auto-guided system method proposed with CISOBOT platform

214 E. Bauzano Nuiez et al.

In order to complete the experimental set-up, an Optical 3D Tracker (right side on
the picture) gives information on the location thanks to the passive marks attached
over the Surgeon’s Tool. On the auto-guiding experiment, the surgeon will hold an
additional Guide Tool in order to mark the target location where the robot should
move the needle. This sensor tracks data of the surgeon’s position and orientation
for both tools simultaneously. Finally, a standard Patient Simulator is used in order
to emulate the abdominal cavity.

Firstly, this section explains the robot architecture that controls CISOBOT plat-
form previously described. Next, an experiment illustrates the functioning of the
auto-guide planner system already explained in Sect.4.

5.1 Robot Architecture

The architecture scheme of Fig. 22 resumes the features of CISOBOT system. On one
hand, the Camera Arm box includes a passive wrist controller which is similar to the
one explained on Sect.2.2. As an input, the scheme receives the Camera Command
given by the surgeon and is processed by an Incremental Planner that generates the
corresponding trajectory for the camera. The feedback of the position and orientation
of the endoscope is processed by the Geometric Estimator to give an approach of the
real external distance required for the spherical navigation.

ROBOT ASSISTANT
TooL ARM
External
Distance FoRCE Measured Force/Torgue
ESTIMATOR
Targjel 1
Location | MOTION TooL WITH
—— RoBOT ARM =
: PLANNER FORCE SENSOR :
I Robot Location I
Tracked Surgeon's Tools
Location Tools 3D Movement i
TRACKER
Camera
Command | INCREMENTAL PassIVE WRIST
; PLANNER RoBoT ARM WITH ENDOSCOPE
External
i Distance GEOMETRIC | Spherical Orientation | :
EsSTIMATOR :

CAMERA ARM

Fig. 22 Architecture scheme for CISOBOT robot assistant

Planning Automatic Surgical Tasks for a Robot Assistant 215

On the other hand, the Tool Arm box is devoted to the control of the actuated wrist
of the arm manipulator with the laparoscopic instrument. In this case, the controller is
based on the actuated wrist controller explained in Sect. 2.3, so the external distance
is computed by means of a Force Estimator which receives the forces and torques
measured by a force sensor attached to the end effector of the robot. As input, the
Motion Planner receives the following data: the target location; forces and torques
exerted by the tool; the robot location; and the Tracked Location measured by a
3D Tracker that scans the location of the surgeon’s tools in real time. This Motion
Planner works in the same manner as the collaborative planning explained in Sect. 4
and shown on Fig. 19.

5.2 Experimental Results

This experiment proposes to take a needle to a target location for a suture procedure.
Therefore, the goal is to compute a free obstacle trajectory for the robot tool in real
time from the initial tool location to the target by avoiding the surgeon’s tool as well
as the patient inner tissue. The robot tool is already located inside the abdominal
cavity with the needle on its tool tip and the target location is defined by a second
surgical tool whose location is read by optical 3D tracker. The robot will stop once
the target location is achieved.

Figure23 shows some snapshots of the resulting trajectory of an auto-guided
movement with the robot tool, where the surgeon’s tool has freedom of movement.
This figure also shows one graph which plots the distance between both tools (dotted
line) and the distance towards the target (solid line), whereas another graph represent
the velocities of the robot and the surgeon tools. In order to demonstrate the behavior
of the auto-guided planning methodology, this figure is divided into three time frames
identified by the top labeled picture and separated by a verticals thick dotted line.

This experiment is focused on showing the actuation of all behaviors: the Local
Planner with its APF algorithm, the Velocity Correction and the Surgeon’s Tool
Follower. For this purpose, the movement of the surgeon’s tool consists of two
oscillations and each one corresponds to two peaks in the Robot-Surgeon distance
graph (dotted line), one caused by a surgeon forward movement and the other one
caused by a backward displacement. In this way, the surgeon tool interferes the robot
trajectory in the time frames labeled 1 and 2 in Fig.23.

The first oscillation happens on the zone labeled as 1, where the surgeon’s tool
sweeps the robot tool. As a result, the auto-guide planner changes the robot velocity
to reach the surgeon’s tool velocity, as it has been described on the Surgeon’s Tool
Follower behavior. When the surgeon’s tool moves backward the robot may increase
its velocity up to the APF planned one.

The second oscillation can be seen on the time frame 2 of the velocity graph of
Fig. 23. This time, the surgeon’s tool blocks the robot trajectory, so the robot velocity
must shrink its speed to avoid the collision with the surgeon’s tool. Similarly to the

216 E. Bauzano Nuiez et al.

i | ; | ; Robot-Target Distance
£ 100 : : oL Robot-Surgeon Distance [
z . SRS RS SRR SRR SR S
Q P i i i :
_Q i - E
o 1
0) i
25 3 3.5 4 4.5 5
I
300 —_———
| = ===Velocity v, (APF)
%: 200 -« ===« Velocity vs (Surgeon)
E .
; | e VElOCtY V, (RODOL)
8 100 I R SR ——
@ : H H
>
5

3
Time (seconds)

3.5

Fig. 23 Auto-Guided trajectory with the surgeon’s tool as a dynamic obstacle

first oscillation, when the surgeon’s tool moves away then the robot tool may follow
the APF planned trajectory for reaching the target location.

6 Discussion

This chapter has resumed the current state of the development on the main controllers
for navigating the laparoscopic tools for the robot assistants, as well as the differ-
ent planning systems classification depending on their degree of autonomy. More
specifically, the authors have presented their contribution of an auto-guided plan-
ning for collaborative surgical robots. This motion planner can generate trajectories

Planning Automatic Surgical Tasks for a Robot Assistant 217

either with a target force or location while it avoids possible obstacles on the robot
tool trajectory. These two issues together are not implemented in the most relevant
commercial robotic assistants.

The global control architecture of CISOBOT uses an actuated wrist instead of a
remote center of rotation one for handling the tool. Although the second solution is
the most frequent mechanism for surgical instrument movements, it only provides
an initial robot calibration and it is not able to react for unexpected changes in the
fulcrum point position. This question has a strong influence on the patient’s safety,
since unwanted forces can be exerted in his abdominal wall. On the other hand, the
actuated wrist controller estimates the fulcrum location online so it can adapt the
tool navigation and minimize a potential damage on the abdomen.

Furthermore, a valid strategy focused in the robot co-worker concept has been
developed. This is based on real time free-obstacle trajectory computation in order to
assist the surgeon in tasks like needle delivery. Collisions with both, inner tissue and
surgeon tool are avoided by means of 3D tracker surgical tool position estimation and
a 3D map generator of the inner organs and tissue of the patient. In order to validate the
methodology, a two arm robotic system has been used for implementation purposes.
An experiment where the robot takes needle to the surgeon’s tool has been developed
with success.

Related to the future of auto-guiding tasks, the authors believe that a deeper inter-
action between the camera movements and the robot tool would improve auto-guiding
tasks. Auto-guiding tasks are also very useful not only for searching trajectories, but
also for other more complex autonomous maneuvers like knot tying, suture or hold
tissue where the robot interacts with the surgeon and the patient.

The final goal of this work consists of developing an autonomous platform, which
aids the surgeon during the surgical procedure without direct orders for the robot to
perform a certain task. In this way, the robot would develop the expected tasks at
each step of the surgical procedure (if it can be divided as a protocol), but if the
surgeon wants to change its behavior he or she always could do it by sending easy
commands through gesture or voice.

References

1. Fichtinger G, Stoianovici D, Taylor RH (2001) The surgical CAD/CAM paradigm and an
implementation for robotically-assisted percutaneous local therapy. Paper presented at the 30th
applied imagery pattern recognition workshop, 10—-12 October 2001, pp 3-8

2. Taylor RH, Stoianovici D (2003) Medical robotics in computer-integrated surgery. IEEE Trans
Robot Autom 19(5):765-781

3. Kazanzides P, Fichtinger G, Hager GD, Okamura AM, Whitcomb LL, Taylor RH (2008) Sur-
gical and interventional robotics—core concepts, technology, and design. IEEE Robot Autom
Mag 15(2):122-130

4. Chapuis J, Schramm A, Pappas I, Hallermann W, Schwenzer-Zimmerer K, Langlotz F, Caver-
saccio M (2007) A new system for computer-aided preoperative planning and intraoperative
navigation during corrective jaw surgery. IEEE Trans Inf Technol Biomed 11(3):274-287

218

5.

6.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

E. Bauzano Nuiez et al.

Fichtinger G, Kazanzides P, Okamura A, Hager G, Whitcomb L, Taylor R (2008) Surgical and
interventional robotics: part II. IEEE Robot Autom Mag 15(3):94-102

Bootsma GJ, Siewerdsen JH, Daly MJ, Jaffray DA (2008) Initial investigation of an automatic
registration algorithm for surgical navigation. Paper presented at 30th annual international
conference of the IEEE engineering in medicine and biology society, 20-25 August 2008, pp
3638-3642

. Hager G, Okamura A, Kazanzides P, Whitcomb L, Fichtinger G, Taylor R (2008) Surgical and

interventional robotics: part III. IEEE Robot Autom Mag 15(4):84-93

. Sungchoon L, Medi NT, Jeonghoon L, Kyunghwan K (2010) Control performance of a motion

controller for robot-assisted surgery. Paper presented at IEEE workshop on advanced robotics
and its social impacts (ARSO), 26-28 October 2010

. Meister D, Pokrandt P, Both A (1998) Milling accuracy in robot assisted orthopaedic surgery.

Paper presented at proceedings of the 24th annual conference of the IEEE industrial electronics
society, vol 4, 31 August—4 September 1998, pp 2502-2505

. Pechlivanis I, Kiriyanthan G, Engelhardt M, Scholz M, Lucke S, Harders A, Schmieder K

(2009) Percutaneous placement of pedicle screws in the lumbar spine using a bone mounted
miniature robotic system, first experiences and accuracy of screw placement. Spine J 34(4):392—
398

. Wang Y, Laby K (1998) Automated endoscope system for optimal positioning. USA patent

US5815640

. Dowler N, Holland S (1996) The evolutionary design of an endoscopic telemanipulator. IEEE

Robot Autom Mag 3(4):38-45

. Polet R, Donnez J (2008) Using a laparoscope manipulator (LAPMAN) in laparoscopic gyne-

cological surgery. Surg Technol Int 17:187-191

. Marescaux J, Rubino F (2003) The ZEUS robotic system: experimental and clinical applica-

tions. Surg Clin N Am 83:1305-1315

Guthart GS, Salisbury JK (2000) The intuitive telesurgery system: overview and application.
Paper presented at proceedings of the IEEE international conference on robotics and automa-
tion. San Francisco, 24-28 April 2000, pp 618-621

Kranzfelder M, Staub C, Fiolka A, Schneider A, Gillen S, Wilhelm D, Friess H, Knoll A, Feuss-
ner H (2012) Toward increased autonomy in the surgical OR: needs, requests, and expectations,
Surg Endosc. doi:10.1007/s00464-012-2656-y

Elhawary H, Popovic A (2011) Robust feature tracking in the beating heart for a robotic-guided
endoscope. Int] Med Robot Comput Assist Surg 7:459—468

Weede O, Monnich H, Miiller B, Worn H (2010) An intelligent and autonomous endoscopic
guidance system for minimally invasive surgery. Paper presented at IEEE international confer-
ence on robotics and automation. Shangai, 9-13 April 2010, pp 5762-5768

Staub C, Osa T, Knoll A, Bauernschmitt R (2010) Automation of tissue piercing using circular
needles and vision guidance for computer aided laparoscopic surgery. Paper presented at IEEE
international conference on robotics and automation. Alaska, 3-8 May 2010, pp 4585-4590
Reiley CE, Hager GD (2009) Task versus subtask surgical skill evaluation of robotic mini-
mally invasive surgery. Paper presented at medical image computing and computer assisted
intervention, pp 435-442

Nageotte F, Zanne P, Doignon C, Mathelin M (2009) Stitching planning in laparoscopic surgery:
towards robot-assisted suturing. Int J Robot Res 28(10):1303-1321

Fuhan H, Payandeh S (2007) Real-time knotting and unknotting. Paper presented at IEEE
international conference on robotics and automation. Roma, 10-14 April 2007, pp 2570-2575
Patil S, Alterovitz R (2010) Toward automated tissue retraction in robot-assisted surgery. Paper
presented at IEEE international conference on robotics and automation. Alaska, 3—8 May 2010,
pp 2088-2094

Cooper T, Blumenkranz SJ, Guthart GS, Rosa D (2006) Modular manipulator support for
robotic surgery. Intuitive Surgical Inc, Patent no WO 2006/079108 A1l

http://dx.doi.org/10.1007/s00464-012-2656-y

Planning Automatic Surgical Tasks for a Robot Assistant 219

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Madhani A, Niemeyer G, Salisbury K (1998) The black falcon: a teleoperated surgical instru-
ment for minimally invasive surgery. Paper presented at proceedings of the IEEE/RSJ inter-
national conference on intelligent robots and systems. Victoria BC, Canada, 13—17 October
1998, pp 936944

Rosen J, Brown JD, Chang L, Barreca M, Sinanan M, Hannaford B (2002) The
blueDRAGON—a system for measuring the kinematics and the dynamics of minimally inva-
sive surgical tools in-vivo. Paper presented at proceedings of the IEEE international conference
on robotics and automation. Washington DC, May 2002, pp 1876-1881

Faraz A, Payandeh S (1999) On inverse kinematic and trajectory planning for tele-laparoscopic
manipulator. Paper presented at proceedings of IEEE international conference on robotics and
automation. Detroit, Michigan, May 1999, pp 1734-1739

Kang H, Wen JT (2001) EndoBot: a robotic assistant in minimally invasive surgeries. Paper
presented at proceedings of the IEEE international conference on robotics and automation.
Seoul, Korea, 21-26 May 2001, pp 2031-2036

Ortmaier T, Hirzinger G (2000) Cartesian control issues for minimally invasive robot surgery.
Paper presented at proceedings of IEEE/RSJ international conference on intelligent robots and
systems, 31 October—5 November 2000, pp 565-571

Wang Y, Laby KP (1998) Automated endoscope system for optimal positioning. Computer
Motion. Patent no US5815640

Zemiti N, Ortmaier T, Morel G (2004) A new robot for force control in minimally invasive
surgery. Paper presented at proceedings IEEE international conference on intelligent robots
and systems. Sendai, Japan, 28 September—2 October 2004, pp 3643-3648

Bauzano E, Muiioz VF, Garcia-Morales I, Estebanez B (2009) Three-layer control for active
wrists in robotized laparoscopic surgery. Paper presented at IEEE international conference on
intelligent robots and systems. St. Louis, 11-15 October 2009, pp 2653-2658

Stolzenburg JU, Franz T, Kallidonis P, Minh D, Dietel A, Hicks J, Nicolaus M, Al-Aown A,
Liatsikos E (2010) Comparison of the FreeHand robotic camera holder with human assistants
during endoscopic extraperitoneal radical prostatectomy. BJU Int 107(6):970-974. doi:10.
1111/.1464-410X.2010.09656.x

Sackier J, Wooters C, Jacob L, Halverson A, Uecker D, Wang Y (1997) Voice activation of a
surgical robotic assistant. George Washington University, Washington

Nishikawa A (2003) Face mouse: a novel human machine interface for controlling the position
of a laparoscope. IEEE Trans Robot Autom 19(5):825-841

Taylor R (1995) A telerobotic assistant for laparoscopic surgery. IEEE Eng Med Biol Mag
14(3):279-288

Funda J, Gruben K, Eldridge B, Gomory S, Taylor R (1995) Control and evaluation of a 7-axis
surgical robot for laparoscopy. Paper presented at proceedings of IEEE international conference
on robotics and automation, pp 1477-1484

Muiioz VF, Garcia-Morales I, Perez-DelPulgar C, Gomez-DeGabriel JM, Fernandez-Lozano
J, Garcia-Cerezo A, Vara-Thorbeck C, Toscano R (2006) Control movement scheme based on
manipulability concept for a surgical robotic assistant. Paper presented at IEEE international
conference on robotics and automation. Florida, May 2006, pp 245-250

Funda J, Taylor R, Eldridge S, Gruben K (1996) Constrained Cartesian motion control for
teleoperated surgical robots. IEEE Trans Robot Autom 12(3):453-465

Tavakoli M, Patel R, Moallem M (2003) A force reflective master-slave system for minimally
invasive surgery. Paper presented at proceedings of the IEEE/RS]J international conference on
intelligent robots and systems. Las Vegas, Nevada, pp 3077-3082

Rosen J, Hannaford B, MacFarlane M, Sinanan M (1999) Force controlled and teleoperated
endoscopic grasper for minimally invasive surgery: experimental performance evaluation. IEEE
Trans Biomed Eng 46(10):1876-1881

Dario P, Hannaford B, Menciassi A (2003) Smart surgical tools and augmenting devices. IEEE
Trans Robot Autom 19(5):782-792

Wolf A, Shoham M (2009) Medical automation and robotics. Springer handbook of automation.
Springer, Berlin, pp 1397-1407

http://dx.doi.org/10.1111/j.1464-410X.2010.09656.x
http://dx.doi.org/10.1111/j.1464-410X.2010.09656.x

220

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

E. Bauzano Nuiez et al.

Konietschke R et al (2009) The DLR mirosurge—a robotic system for surgery. Paper presented
at IEEE international conference on robotics and automation. Kobe, pp 1589-1590
Hannaford B et al (2013) Raven-II: an open platform for surgical robotics research. IEEE Trans
Biomed Eng 60(4):954-959

Schurr M, Arezzo A, Buess G (1999) Robotics and systems technology for advanced endoscopic
procedures: experiences in general surgery. Eur J Cardio-Thorac Surg 16(2)

Mayer H, Nagy I, Knoll A, Schirmbeck E, Bauemschmitt R (2004) The endo[pa]r system for
minimally invasive robotic surgery. Paper presented at proceedings of IEEE/RSJ international
conference on intelligent robots and systems. Sendai, Japan, 28 September—2 October 2004,
pp 3637-3642

Ko S, Kim K, Kwon D, Lee W (2005) Intelligent interaction between surgeon and laparoscopic
assistant robot system. Paper presented at proceedings of IEEE international workshop on
robots and human interactive communication, pp 60-65

Casals A, Amat J, Prats D, Laporte E (1995) Vision guided robotic system for laparoscopic
surgery. Paper presented at IFAC international congress on advanced robotics. Barcelona, Spain
Hynes P, Dodds GI, Wilkinson AJ (2005) Uncalibrated visual-servoing of a dual arm robot for
surgical tasks. Paper presented at proceedings of IEEE international symposium on computa-
tional intelligence in robotics and automation, 27-30 June 2005, pp 151-156

Krupa A et al (2003) Autonomous 3-D positioning of surgical instruments in robotized laparo-
scopic surgery using visual servoing. IEEE Trans on Robot Autom 19(5):842-853

Gangloff J, Ginhoux R, Mathelin M, Soler L, Marescaux J (2006) Model predictive control
for compensation of cyclic organ motions in teleoperated laparoscopic surgery. IEEE Trans
Control Syst Technol 14(2):235-246

Vitrani MA, Morel G, Bonnet N, Karouia M (2006) A robust ultrasound-based visual servoing
approach for automatic guidance of a surgical instrument with in vivo experiments. Paper
presented at the 1st IEEE/RAS-EMBS international conference on biomedical robotics and
biomechatronics, 20-22 February 2006, pp 35-40

Grasa OG, Civera J, Montiel JMM (2011) EKF monocular SLAM with relocalization for
laparoscopic sequences. Paper presented at IEEE international conference on robotics and
automation. Shanghai, 9-13 May 2011, pp 4816-4821

Enxiu S, Tao C, Changlin H, Enxiu S, Junjie G (2007) Study of the new method for improving
artificial potential field in mobile robot obstacle avoidance. Paper presented at IEEE interna-
tional conference on automation and logistics. Jinan, 18-21 August 2007, pp 282-286
Fernandez R, Mandow A, Muifioz VF, Garcia-Cerezo A (1998) Real-time motion control for
safe navigation. Paper presented at IFAC symposium on intelligent autonomous vehicles

Part 111
Motion and Operation Planning
for Wheeled Robots

Motion Planning Using Fast Marching
Squared Method

S. Garrido, L. Moreno and Javier V. Gomez

Abstract Robotic motion planning have been, and still is, a very intense research
field. Many problems have been already solved and even real-time, optimal motion
planning algorithms have been proposed and successfully tested in real-world sce-
narios. However, other problems are not satisfactory solved yet and also new motion
planning subproblems are appearing. In this chapter we detail our proposed solution
for two of these problems with the same underlying method: non-holonomic plan-
ning and outdoor motion planning. The first is characterized by the fact that many
vehicles cannot move in any direction at any time (car-like robots). Therefore, kine-
matic constrains need to be taken into account when planning a new path. Outoor
motion planning focuses on the problem that has to be faced when a robot is going to
work in scenarios with non-flat ground, with different floor types (grass, sand, etc.).
In this case the path computed should take into account the capabilities of the robot
to properly model the environment. In order to solve these problems we are using
the Fast Marching Square method, which has proved to be robust and efficient in the
recent past when applied to other robot motion planning subproblems.

Keywords Fast marching + Fast marching square - Outdoor path planning -
Non-holonomic path planning

1 Introduction

In nature, there are many fields that can be used as attractive fields. For example, the
electromagnetic fields. We can guide us following the gradient of the field produced
by an antenna and reach its position. In nature, there are also many fields that can be

S. Garrido (<) - L. Moreno - J.V. Gémez
Carlos III University of Madrid, Madrid, Spain
e-mail: sgarrido@ing.uc3m.es

L. Moreno
e-mail: moreno@ing.uc3m.es

J.V. Gémez
e-mail: jvgomez @ing.uc3m.es

© Springer International Publishing Switzerland 2015 223
G. Carbone and F. Gomez-Bravo (eds.), Motion and Operation Planning

of Robotic Systems, Mechanisms and Machine Science 29,

DOI 10.1007/978-3-319-14705-5_8

224 S. Garrido et al.

used as repulsive fields, for example the field produced by a system of particles with
the same electrical charge of the charge placed in the position of interest.

The problem with the potential fields is how to joint the two fields. Historically,
different researchers have tried with different mathematical operations, but in this
way, the total field has local minima that make the field unusable to find a path from
the initial point to the goal.

Instead of using mathematical operations to joint the two fields, the Fast Marching
Squared (FM?) method propose to joint the fields as Nature does. The bees and other
insects that use the light to guide themselves can go out from a semidarkness room to
the sunny exterior guiding themselves to the lighter zones as in Fig. la. In the same
way, if we consider the light ray trough a system of lenses, it goes by the path that
consumes a minimum time.

These considerations lead us to think that the solution is to use the repulsive field
as the refraction index of space in which a light wave is propagated. In this way, the
intuition about the propagation of the light in a non homogeneous media can guide
us. In the typical road mirage, as you drive down the roadway, there appears to be a
puddle of water on the road several metres in front of the car. The light rays coming
from the sun are twisted in the vicinity of the hot road, due to the different refractive
indices of the different layers of air parallels to the road, and make the beam reaches
the driver’s eyes as in Fig. 1b.

Mathematically, the propagation of the light is given by the Eikonal equation that
is equivalent to the Fermat’s principle: Light traveling through some substance has a
speed which is determined by the substance. The actual path taken by light between
any two points, in any combination of substances, is always the path of least time
that can be traveled at the required speeds.

The Fermat’s principle is especially interesting in our application, because if we
have only a source of light waves, each point is connected with the source with a light
path that it is parameterised by the time. The set of all the points of the domain with
the time as last coordinate in the case of two spatial coordinates, gives us a Lyapunov
surface in which the level curves are isochronals and the Fermats paths are orthogonal
to them. It is impossible for the method to have local minima, because if there exists
alocal minimum x, and the time between other point y and X is minimum, as the time

(b) Incoming Light Ray ‘.'

Fig. 1 a In a semidarkness room a bee goes to the lighter zones to go outside. b In the pavement
mirage the sun rays bend near the hot road and go to the driver’s eyes

Motion Planning Using Fast Marching Squared Method 225

between x and the origin is minimum then the minimum time trajectory between y
and the origin passes trough x, i.e. the point x is not a local minimum.

In summary, the proposed method consists in the construction of a repulsive field
by propagating a wave from the obstacles and walls. This gives us a refraction index
or a slowness potential proportional to the inverse of the propagation velocity of
the wave in the medium. Using this first potential as refraction index, a wave is
propagated from the goal point. This results in the Lyapunov surface of the second
potential. Applying gradient descent, maximum slope paths are obtained. Therefore
these are the minimum time trajectories. The level sets of this second potential are,
by definition isochronals, i.e. its points are at the same time from the origin.

In Fig.2 are shown the funnel potential of the light wave propagation with a
constant refraction index and a path obtained in that way.

In Fig.3a is shown the repulsive potential built by propagating the wave from
obstacles and walls (first potential). It is similar to the distance transform, but in this
case is continuous, not discrete. In Fig. 3b is shown the fronts of the propagation of
the second wave, and the corresponding path.

As the first potential can be interpreted as a difficulty map, and each point of
the previous trajectory has associated a value of grey or difficulty, we can use it as

(a) (b)

1 = LY
T e e y -
So—% o 8 2 r

Fig. 2 Lyapunov surface when the propagation wave starts in a point and the refraction index is
constant (a) and Fast Marching Path when the refraction index is constant (b)

/‘j\ \\\&\‘Ir

ﬂ’//mu N\~
\.4

(a) (b)

e S Y

Fig. 3 a Repulsive field by propagating a wave from the obstacles and walls (first potential) and b
the corresponding wave fronts and its fast marching path when the refraction index is given by a

226 S. Garrido et al.

(a) (b)

velocity

1000 2000 3000 4000 5000 6000 7000 8000 R T -

Points

Fig.4 aRelative velocity profile of the path obtained in the previous figure, where 1 is the maximum
velocity and b its Lyapunov surface

velocity profile with a maximum velocity given by the white color and zero velocity
given by the black color, as shown in Fig. 3a. In Fig. 4b is shown the second potential
(or funnel potential) of Fig. 3, in which the third axis represents time.

In Fig.5 is shown an example of all the process: map of the environment, first
potential and three moments of the wave expansion Fig.5c—e. In the last is shown
the corresponding path.

It is possible to stop the calculation of the first potential at different distances,
or different levels of saturation. In this way, it is possible to have different kinds
of shapes of the path: more or less close to the walls and obstacles. In Fig.6 are

(a) (b) (c) (d) (e)

Fig. 5 Example of environment a, first potential b and tree moments of the wave exponsion c—e.
In the last is shown the corresponding path

(a) (b) (c) (d)

Fig. 6 First potential and the paths that correspond to different levels of saturation. a Saturation:
0.75. b Saturation: 0.5. ¢ Saturation: 0.25. d Saturation: 0

Motion Planning Using Fast Marching Squared Method 227

Initial binary map Dilated map

[PO

{";1 e

@

Time of arrival potential, T(x)

Global minimum|

s

Y AN SR W,

4

Fig. 7 Laser data of our Lab (original map), First potential, second potential and the path corre-
sponding to a high level of saturation

——Path - GoalPoint + Start Point

Velocities map Time of arrival potential, T(x)

[StartPoint___ Goal Point - Path|

Fig. 8 First potential, second potential and the path corresponding to a medium level of saturation

shown the paths that correspond to different levels of saturation. In Figs.7, 8 and 9
are shown the first potential, second potential and the path corresponding to a three
different levels of saturation for an environment data taken by the robots laser.

Fortunately, there exist a good method to solve the light propagation (Eikonal)
equation numerically. This method is the Fast Marching (FM) method and was devel-
oped by Sethian [1]. It is an efficient computational numerical algorithm for tracking
and modelling the motion of a physical wave interface (front) without reflexions.
This method has been applied to different research fields, including computer graph-
ics, medical imaging, computational fluid dynamics, image processing, computation
of trajectories, etc. [2—4].

228 S. Garrido et al.

Velocities map

Time of arrival potential, T(x)

1.4 e W

12 ’ ; 4
" —
% 9]

1 ¢ iy

08

06 .

04 !

0.2 i i

0

[Start Point Goal Point__-__Path]

0.9
' 0.8

AR SO -4

/ o1

Fig. 9 First potential, second potential and the path corresponding to a low level of saturation

The computational efficiency of the method allows the planner to operate at high
rate sensor frequencies [5, 6]. For small and medium scale environments, the pro-
posed method avoids the need for a collision avoidance algorithms plus a global
motion planner. This enables simplification of the mobile robot or mobile manipu-
lator architectures, while maintaining good time response, smooth and safe planned
trajectories with continuous curvature. The trajectory generated by the planner is the
fastest possible to achieve the goal position, by implication the best path according to
the maximum acceptable velocity at each point in the trajectory (path plus velocity).

2 The Eikonal Equation and the Fast Marching Planning
Method

One way to characterise the position of a front in expansion is to compute the time of
arrival T, in which the front reaches each point of the underlying mathematical space
of the interface. It is evident that for one dimension we can obtain the equation for
the arrival function T in an easy way, simply considering the fact that the distance 6
is the product of the speed F and the time 7.

0=F-T (1)

The spatial derivative of the solution function becomes the gradient

I=F— 2

Motion Planning Using Fast Marching Squared Method 229

and therefore the magnitude of the gradient of the arrival function 7 (0) is inversely

proportional to the speed.

1
7 =IVTI 3)

For multiple dimensions, the same concept is valid because the gradient is orthog-
onal to the level sets of the arrival function 7 (6). In this way, we can characterise
the movement of the front as the solution of a boundary conditions problem. If speed
F depends only on the position, then the Eq. (3) can be reformulated as the eikonal
equation:

|VT| F = 1. 4)

The Fast Marching Method is a numerical algorithm for solving the Eikonal
equation, originally, on a rectangular orthogonal mesh introduced by Sethian in 1996
[1]. The Fast Marching Method is an O (n) algorithm as has been demonstrated by
[7], where n is the total number of grid points. The scheme relies on an upwind finite
difference approximation to the gradient and a resulting causality relationship that
lends itself to a Dijkstra-like programming approach.

Fast Marching Methods are designed for problems in which the speed function
never changes sign, so that the front is always moving forward or backward (there are
no reflections, interferences or diffractions). This allows us to convert the problem
to a stationary formulation, because the front crosses each grid point only once. This
conversion to a stationary formulation, in addition to a whole set of numerical tricks,
gives it its tremendous speed.

Since its introduction, the Fast Marching Method approach has been successfully
applied to a wide array of problems that arise in geometry, mechanics, computer
vision, and manufacturing processes, see [5] for details. Numerous advances have
been made to the original technique, including the adaptive narrow band methodology
[8] and the Fast Marching Method for solving the static eikonal equation [5]. For
further details and summaries of level set and fast marching techniques for numerical
purposes, see [5].

2.1 Properties

The proposed FM? algorithm [6, 9—12] has the following key properties:

e Fast response. The planner needs to be fast enough to be used reactively in case
unexpected obstacles make it necessary to plan a new trajectory. To obtain this
fast response, a fast planning algorithm and fast and simple treatment of the sensor
information is necessary. This requires a low complexity order algorithm for a real
time response to unexpected situations.

e Smooth trajectories. The planner must be able to provide a smooth motion plan
which can be executed by the robot motion controller. In other words, the plan does
not need to be refined, avoiding the need for a local refinement of the trajectory.

230 S. Garrido et al.

The solution of the eikonal equation used in the proposed method is given by the
solution of the wave equation:

¢ = ¢,Oeiko(nxfcol)

As this solution is an exponential, if the potential n(x) is €’ then the potential ¢
is also ¥"*° and therefore the trajectories calculated by the gradient method over
this potential would be of the same class. At least from a theoretical point of view,
because the equation is solved numerically and the result is an approximation of
that trajectory.

This smoothness property can be observed in Fig. 3, where trajectory is clearly
good, safe and smooth. One advantage of the method is that it not only generates
the optimum path, but also the velocity of the robot at each point of the path. The
velocity reaches its highest values in the light areas and minimum values in the
greyer zones. The FM? Method simultaneously provides the path and maximum
allowable velocity for a mobile robot between the current location and the goal.

e Reliable trajectories. The proposed planner provides a safe (reasonably far from
a priori and detected obstacles) and reliable trajectory (free from local traps). This
avoids the coordination problem between the local collision avoidance controllers
and the global planners, when local traps or blocked trajectories exist in the envi-
ronment. This is due to the refraction index, which causes higher velocities far
from obstacles.

e Completeness. As the method consists of the propagation of a wave, if there is a
path from the initial position to the objective, the method is capable of finding it.

2.2 Algorithm Implementation on an Orthogonal Mesh

The Fast Marching Method applies to phenomena that can be described as a wave
front propagating normal to itself with a speed function F = F (i, j). The main idea
is to methodically construct the solution using only upwind values (the so called
entropy condition). Let T(i, j) be the solution surface 7' (i, j) at which the curve
crosses the point (i, j), then it satisfies |[VT|F = 1, the Eikonal equation.

In order to understand how fast marching works, imagine an imprudent visitor that
leaves unextinguished fire at some location in a natural reserve. The flame quickly
becomes a forest fire, which expands outwards. Fire consumes the reached trees so the
fire always propagates forward. We can record the fire front position at different points
in time. It appears that the fire traverses the route having the smallest propagation
time (and hence, the shortest length if the velocity is constant). In optics and acoustics
this fact is known as Fermats principle or, in a more general form, the least action
principle. In plain language, Fermats principle states that light traveling between two
points always chooses the quickest path. Snells law of refraction follows directly from
this principle.

Motion Planning Using Fast Marching Squared Method 231

Itis necessary to know that the propagation happens from smaller to bigger values
of T. The algorithm classifies the points of the mesh into three sets: black, red and
green, because our interface propagates like of a forest fire. Black points are points
where the arrival time has been computed and is not going to change in the future.
Green points are points thathaven’t been processed yet, for which the arrival time have
not been computed up to now (corresponding with live trees). Red points are those
belonging to the propagating wave front, which can be considered as an interface
between the black and the green regions of the triangular mesh. In our forest fire
example, red points correspond with trees that are currently in flames. Initially, only
the source x(is marked as black and all points adjacent to it, are marked as red. The
remaining points are marked as green. At each iteration, the red with the smallest
value of T(x) is put into the black set. This T(x) value is calculated using the black
points in triangles sharing it. The updated adjacent points are tagged as red. The
process continues until all points become black or the goal is reached.

This equation is applied on grid points. Grid points are classified in three different
types: alive, trial and far.

e Alive Points (black points) are points where values of T are known.

e Trial Points (red points) are points around the curve (alive points), where the
propagation must be computed. The set of trial points is called narrow band. To
compute propagation, points in the narrow band are updated to alive points, while
the narrow band advances.

e Far Away Points (green points) are points where the propagation was not computed
yet. During the propagation far away points are converted to trial points.

Figure 10a explain this idea: in the first subfigure the black point (alive) represents
the initial curve; in 2nd subfigure the value of T is computed in the neighbourhood
of black point; this neighbourhood is converted from far away (green) to trial points
(red); in 3rd subfigure the trial point with smallest value of T is chosen (point A); in
4th subfigure the values of T are computed in the neighbours of point A, converting
them from far away to trial. In fifth subfigure the trial point with smallest value of T
is chosen (for example, “D”); in the last subfigure the neighbours of D are converted
from far away to trial. And so on.

(a) (b)

.0-'# 0:0.
2

PEODD
P
00, 00

.0.'!- Q.Q:
R g

(- S + 4+ R I e S

.4.+ +.+. .o S +.

90000 @ O

O Cells not evaluated yet @ Wave source @ Cells to be solved B Cells i,j with D{i.j) > 0
D(i0,j0)=0 in the next iteration

Fig. 10 Scheme of fast marching propagation with an initial point. Different colores (blue to red)
represent different arrival times in increasing order. a Iteration of FM with one wave in 2D. b Time
of arrival potential D(x) (third axis)

232 S. Garrido et al.

O Cells not evaluated yet
@ Wave source, D{i0,j0)=0
@ Cells to be solved
in the next iteration
88 cells i with 0(ij) > 0

Fig. 11 Scheme of fast marching propagation with two initial points. Different colores (blue to
red) represent different arrival times in increasing order. a Iteration of FM with two propagating
wave (in 2D). b Time of arrival potential D(x) (third axis)

Figure 11 represents the scheme of Fast Marching propagation with two initial
points.

2.3 Algorithm Implementation on an Triangular Mesh

The numerical basis of the fast marching method and its foremost difference with
Dijkstra’s algorithm resides in the update procedure. While in Dijkstra’s algorithm
the path is restricted to the graph edges, and a graph vertex was updated each time
from an adjacent vertex, in fast marching, because the path can pass through the
triangular faces of the mesh, a vertex has to be updated from a triangle, requiring
two supporting vertices. We assume that the update step is applied to a triangle
(x1, x2, x3), where x| is the red point with the smallest arrival time 77 = T (x1), x2
is a point for which some arrival time approximation 7> = T (x») is available, and
x3 is the red or green point, whose arrival time approximation 73 = T (x3) is that
the triangle lies in the plane with x3 = 0. In essence, given that the front reaches x;
at time 77 and x; at time 7>, the update step has to estimate the time when the front
arrives to x3, as shown in Fig. 12.

2.4 Results of FM? Method

To illustrate the potential of the proposed method, four working conditions are evalu-
ated (sensor-based operation, map-based operation, combined operations, behaviour
in cluttered environment and the computational cost is shown.

Motion Planning Using Fast Marching Squared Method 233

Triangular Fast Marching update step applied to a
triangle (x,, X, X;)
= Given x, with the smallest arrival time d;

= T(x,) and x, with arrival time d, = T(x,),
it is needed to calculate d; = T(x;)

* The equation of the line is
ax+by-d=0

 Substituting the data
ax,, +bx, =d,
ax,, +bx,, =d,
and solving the equation, the normal
vector is n=(b,-a)

* Finally the time d,=11(x;) is
ds=ax;;+bxs,

Fig. 12 Scheme of fast marching update step

Fig. 13 Laser scan data
corresponding to a corner of

T
z:.j?'o"’w e
-
a corridor of our university A VY

2@ Peopp gooretropt sprranil

2.4.1 Sensor-Based Planning

In the first test, the method proposed is applied directly to the data obtained from
a laser scan around the robot, where the method obtains a good trade off between
trajectory distance, distances to obstacles and smooth overall trajectory as shown in
Figs. 13 and 14. These images correspond to a corner of a corridor of our University.

234 S. Garrido et al.

Fig. 14 Repulsive potential of the scanned data and trajectory obtained with the FM? method

AL Er BT <[EAL

Fig. 16 Motion trajectory obtained with the FM? method for the UC3M Robotics Lab floor

2.4.2 Map-Based Planning

In the second test, in order to show global plan capabilities, the method is applied
to the whole plant of the building where the Robotics laboratory is located. The
laboratory floor is around 2,000 m?> (medium size). The results are shown in Figs. 15
and 16.

2.4.3 Combined Planning

The third test shows the combination of the global and local properties of the method.
In this case a simple trajectory motion is determined from an initial position to the
goal position. During the motion, the robot observes the environment with its laser
scan, places it on the map and plans a new trajectory. Local observations (obstacles
located in the middle of the corridor) result in slightly modified trajectories to avoid

Motion Planning Using Fast Marching Squared Method 235

Fig. 17 Dynamical evolution of the path when the robot reads information about the new obstacles
(marked with green ellipsoids) absent in the previous map and the robot cannot pass through the
corridor

the obstacles detected (Fig. 17). In the last image in Fig. 17 the detected obstacles
blocked the corridor and the sensor based global planner finds a completely different
trajectory. It is worth noting that in this case, the fact that the global planning capa-
bility takes action, allows automatic replanning of the trajectory. This replanning is
not possible with some other methods due to the separation of the two planners.

This technique shows the advantage of a method which is not only local, but also
global, that combines sensor based local planning capabilities with global planning
capabilities to react quickly to the obstacles while maintaining reliability in the
planned trajectory. The method always finds the solution, if one exists.

3 Application of the FM? to Car-Like Robots

An important kind of robots are the nonholonomic robots, that can’t move freely in
any desired direction, but they have to accomplish a set of constraints. A typical case
are the car-like robots.

236 S. Garrido et al.

In this section, we are going to describe how to apply the FM? method to car-
like robots. An interesting feature that has not been sufficiently highlighted in the
previous sections is that by using the gradient over the second potential, it is possible
to calculate a vector field whose field lines are the paths that go from each point to
the target, away from obstacles and walls.

In order to apply the proposed method, it is considered a 3D C-Space of the envi-
ronment, with the two dimensions of the robot’s position and the vehicle’s orientation
as the third dimension. Computing a trajectory along the C-Space built taking into
account the vehicle’s dimensions, it is possible to guarantee the absence of collisions.
This means we operate over the configuration space instead of the bi-dimensional
environment map (see Fig. 19, in which the third dimension is the orientation of the
robot, with 21 possible values. These orientations are repeated above and under the
principal interval in order to permit manoeuvres). The C-space has been built itera-
tively placing the vehicle in every position and with every possible angle. This is a
slow task, but it can be done offline and once per map.

After that, the slowness potential (distance transform) is calculated using the Fast
Marching method for this resultant space. The wave is propagated from the walls of
the previously calculated C-space.

Based on this slowness map, the Fast Marching Method creates the second poten-
tial 7'(x) that represents arrival time of the wavefront, and in this way the method
gives the arrival time as the fourth axis. The origin of the wave is the goal point,
which continues propagating until it reaches the current position of the robot.

Using this Funnel shaped second Potential the associated O XY vector field is
calculated. This vector field has as field lines the different line paths from the different
points of the C-space and all of them finish in the goal point. This lines, also, go
away from the obstacles. This vector field is going to be used to move the car-like
robot (Fig. 18).

Fig. 18 A car-like robot 17

Motion Planning Using Fast Marching Squared Method 237

Fig. 19 Three dimensional C-space of the car-like robot, where the third dimension is the orien-
tation. These orientations are repeated above and under the principal interval in order to permit
manoeuvres

[1]

[

Fig. 20 Parking maneuver using FM2-NH

Car-like robots have a limited steering angle causing them to move along paths
of bounded curvature. This can be expressed as a constraint on the curvature radius.
This constraint can be directly included in the algorithm using the vector field, in
form of limits during the path calculation. Figure 20 shows the result to apply the
algorithm to a parking manoeuvre.

Finally, starting from the initial position and orientation, the path is constructed
step by step, according to the following order:

e The front wheels are aligned with the vector field in the midpoint of the front axis.

e The perpendicular lines to the front and rear wheels are considered and their
intersection is taken as center of the step movement.

e With the previously calculated center, the vehicle is moved a circumference arc of
length proportional to the vector modulus correspondent to that point.

The previous process is repeated from the new point until the destination point is
reached. The final point and orientation is always reached because the funnel potential
end at this point and orientation.

Consider the car-like robot shown in Fig. 18. In this figure (x, y) is the position of
the center of the rear axis, 6 is the car orientation respect the O X axis. It is necessary
to take into account the non-holonomic constraint

ycosf —xsinf =0

238 S. Garrido et al.

and the car-like movement can be modelled, assuming the distance between the front
and rear axes as 1, as

X v cos¢ cosb 0 0
y v cos¢ sinf 0 0
6= v sin¢ +lolvi+]o]wm (5)
v 0 1 0
é 0 0 1

where ¢ is the front wheels orientation, v is the car velocity and vy, v, are the two
control inputs: acceleration of the car and angular velocity of the front wheels.

An interesting remark is that in this equation everything is done by the vector field
except the control inputs vy, vp: the acceleration of the car and the angular velocity
of the front wheels. These control inputs can be deduced and in this way the method
not only give the trajectory but also the control inputs to follow that trajectory.

The result of an example of the nonholonomic version of the FM? method can be
observed in Fig.21, where a corridor of the university is shown. The corresponding
C-space is represented in Fig. 19. The top and the bottom are connected because the
angle wraps around 27r. The trajectory obtained is smooth and safe.

To illustrate the capability of the proposed method, different situations are shown
(see Figs.23 and 24). In the case of the Fig.23, a simple trajectory is determined
from an initial position and orientation to the goal position and orientation. Local
observations (obstacles located in the scene) originate slightly modified trajectories
to avoid the detected obstacles. We can conclude that the four situations have good
trajectories (safe and smooth) between the initial and the final point. In the enlarged
image we can see the velocity field (see the Fig.22) calculated for the movement of
the car-like robot, where the vectors have been normalised for a better visualisation.
This technique shows the advantage of a method which is not only local, but also

Fig. 21 FM?-NH applied to
the car-like robot in the
university corridor

Motion Planning Using Fast Marching Squared Method

.y

SODDDDIDOOOLOO N
200 NSO
SO

195 =

190 e R

Vo

185 ki e e
Vo e e e

Vs

.
180 ki

175},

o
170 &

SSSEEEEEEEESSe
e

4
2

BRI
SN
SIS

R R S RN
RN R RN NS
FEEEEEEEERRRRRRN NN
B R Y

RN

N\
NV

h

Py I N

4

B R e
N R R R R R N R RN

i

110 115 120 125 130 135

Fig. 22 Movement of the vehicle on the vector field

140

145

150

155

Fig. 23 Different motion trajectories obtained with the proposed method (non holonomic)

239

global, which combines sensor based local planning capabilities with global planning
capabilities to react to the obstacles very quickly while maintaining reliability in the
planned trajectory. The proposed method is highly efficient from a computational
point of view because the Fast Marching can be implemented with complexity O(n),
where n is the number of cells in the environment map.

240 S. Garrido et al.

Fig. 24 Example trajectory
obtained with FM2-NH

3.1 Comparison with Existing Methods

The common limitation of all the reactive navigation methods is that they cannot guar-
antee global convergence to the goal location because they use only a fraction of the
information available (the local sensory information). Some researchers have worked
on introducing global information into the reactive collision avoidance methods to
avoid local trap situations. This approach has been adopted by Ulrich and Boren-
stein [13] which uses a look-ahead verification to analyse the consequences of a given
motion a few steps in advance to avoid trap situations. Other authors exploit the infor-
mation about global environment connectivity to avoid trap situations (Minguez and
Montano [14]). Those solutions still maintain the classical two level approach, and
require additional complexity at obstacle avoidance level to improve the reliability
at this level.

The proposed method is consistent at local and global scale because it guarantees
a motion path (if it exists), and does not require global replanning supervision to
restart a planning when a local trap is detected or a path is blocked. Furthermore, the
path calculated has good safety and smoothness characteristics.

Most of the other methods give paths that are not smooth, even though they only
provide a few loose points linked by segments of straight lines. The only methods
that give comparable results are based on harmonic functions (the solutions of the
equation of Laplace) but they have the problem of slowness.

4 How to Deal with Difficulty and Uncertainty in an Outdoor
Environment to Plan Trajectories Using the Fast Marching
Method. Algorithm Implementation on a Triangular Mesh

This section applies the FM? to the problem of finding trajectories for an outdoor
robot. The objective is to apply Fast Marching to a 3D triangular mesh that represents
the surface terrain to find a trajectory between two points. The proposed method uses a
triangular mesh because this kind of grid adapts better to 3D surfaces. The advantages

Motion Planning Using Fast Marching Squared Method 241

of this approach are that, in the first step of the method, the algorithm calculates a
weight matrix W that can represents difficulty, refraction index (inverse of speed) or
uncertainty based on the information extracted from the 3D surface characteristics
and the sensor data of the robot. In the experiments carried out in this work these
features are the spherical variance, the gradient of the surface, the height, and also
the incertitude in the map because some portions of the map can’t be measured
directly by the robot. This difficulty matrix is used to define the speed of propagation
of the Fast Marching wave in order to find the best path depending on the task
requirements, e.g., the trajectory with the fastest path, the least energy consumption,
the most plain terrain, the safest path or the known terrain. The method also gives
the robot’s maximum admissible speed in each point. This depends on difficulty
matrix. The results presented in this chapter show that it is possible to model the path
characteristics as desired, by varying this difficulty matrix W.

4.1 Matrix W: The Difficulty Map

The proposed method is based on the FM method, changing the speed of propagation
of the wave using a potential generated from the 3D environment characteristics and
the robot limitations. This way, the method changes the time when the front reaches
each point and when the generated trajectory is calculated. This trajectory is not
going to be the simple geodesic, but it is going to be modified according to the robot
and task needs. To be able to modify this speed, the proposed method creates a weight
matrix W, which is currently built based on the main characteristics of the 3D surface:
the spherical variance, the saturated gradient, the height and the uncertainty. Some
other characteristics can be added to the method and it will build a different potential
surface.

4.1.1 Spherical Variance

The spherical variance is a measure the roughness of a surface. It can determine if a
zone is crossable or not. In [15], it is presented a method to calculate the roughness
degree. This method is based on the normal vector dispersion in each point of the
surface:

e In a uniform terrain (low roughness), the normal vectors in a surface will be
approximately parallel and, for this reason, they will present a low dispersion.

e On the other hand, in an uneven terrain (high roughness) the normal vectors will
present great dispersion due great to changes in their orientation.
The method to calculate the spherical variance is:

1. Given a set of n normal vectors to a surface, defined by their three components
{(xi, vi, zi)}, the module of the sum vector R is calculated by:

242 S. Garrido et al.

n 2 n 2 n 2
R= (Zx,-) +(Zy,-) +(Zi) (6)
=0 i=0 i=0

2. Next, the mean value is normalised by dividing the module R between the number
of data n, so the value of the result is within [0, 1]. In this way, we have

R
— € [0,1] (7
n
3. Finally, the spherical variance S, is defined as the complementary of the previous
result.
R
Sy=1—— (8)
n

when S, = 1, there exists a maximum dispersion that can be considered as the
maximum roughness degree, and when S, = 0, a full alignment exists and the
terrain will be completely flat.

4.1.2 Saturated Gradient

The gradient of a surface is a vectorial field. In each point, the gradient point in the
direction of the greatest rate of increase of the scalar field in that point, and whose
module is the greatest rate of change in that point.

The gradient of f(x, y) is defined to be the vector field whose components are
the partial derivatives of f. That is:

o of af
Vi= G gy

) 9)

In order avoid having path slopes greater than the robot can perform the gradient
is saturated with that limit. That means that, if the gradient value exceeds that limit,
the point will not be included in the list of accessible points determined by the robot
limitations.

4.1.3 Construction of Matrix W

By using this matrix W the algorithm modifies the path that the robot is going to
follow across the 3D surface. The way the matrix modifies the path is by giving a
viscosity value for each point on the surface. It means that the propagation speed of
the front end of the FM wave is modified. Hence, the time when the wave reaches
each point will depend on that difficulty. It is possible to add as many characteristics
as we need to get different paths. These characteristics will modify the viscosity at
each point.

Motion Planning Using Fast Marching Squared Method 243

The saturated gradient, the spherical variance, and the height are three matrices
G, Sv, and H with the same size as the vertex matrix (the 3D mesh). The value of
each vertex of the 3D grid will be determined by the calculated gradient, spherical
variance, and the height of each point.

The matrix W is a weighted average of each surface characteristic we are interested
in, and in each case it gives more importance to the more important factors depending
on the task requirements.

The values of the component matrices vary from O to 1, so the values of matrix
W are also within this range. The components of matrix W with a value of O (less
difficult) will be points in the verfex matrix with maximum speed. Hence, these are
points which the robot can cross without any problem and at its maximum speed.
The elements of W with a value of 1 will be points with a minimum speed, and in
that case, the robot will not be able to pass across them.

W=a-G+ay -Sv+a3-H (10)

where:

Sa=1 (an

i

After the difficulty matrix W is generated, the method runs the FM algorithm
over the modified mesh (3D mesh 4 matrix W) to calculate the best trajectory. With
the FM method the path found will be the less time path in the W metrics. If W
is constant, this path will be the shortest because all the points in the surface will
have the same ‘speed’ for the front propagation, i.e. the path is the geodesic. With a
non constant matrix W, the proposed method changes that ‘speed’, since this matrix
gives information about the difficulty to pass through each point of the surface. The
trajectory will be modified depending on the surface conditions and characteristics
and according to the robot limitations. Since the method modifies the ‘speed’ of the
Fast Marching wave, and in each point W gives the difficulty that can be interpreted
as maximum speed, it gives not only the best trajectory, but also the speed to control
the robot.

4.1.4 Test on Data Taken in Advance

As previously stated, in the proposed method we need terrain data that can be an
elevation map, global or local laser data or a mixture of all. In relation to the outdoor
environment reconstruction, a triangle-based 3D surface is chosen.

The method works in 3D, in order to create a triangular mesh, the algorithm reads
the data from the bitmap file to create the three matrices X, Y, and Z and then, it
builds a 3D mesh based on X, Y and Z coordinates. The fist step of the algorithm is
to generate a Delaunay triangulation in 3D.

After the mesh is created, the algorithm extracts the vertices and the faces of the
triangles. Using these values, the algorithm is able to model the 3D triangular surface.

244 S. Garrido et al.

Fig. 25 Path calculated when a W = A and when b W = G in a mars map

Several paths over the surface already presented will be obtained between the
same initial and final points. Those paths are obtained by varying the values of the
weight factors a; of matrix W.

In the case that W = A, this implies that the difficulty of the path will be deter-
mined by the height of every point of the mesh. In Fig.25a, the path obtained when
the height is penalised, without considering the roughness of the surface or its incli-
nation, is presented. As can be observed, the calculated path will try to reach the final
point passing trough the deepest part of the map.

On the other hand, if we decide to calculate the path penalising just the inclination
of the surface, then the difficulty matrix is defined as W = G. In this case, as shown
in Fig. 25b, the path will follow the parts with smallest slope.

The general idea proposed in this section is the possibility of combining the
different matrices in order to obtain a path that considers the height A, the roughness
Sv, and the inclination G of the surface, among others. In the previous figures, it can
be observed that, for the selected initial and final points, the height matrix favour that
the path goes all the way trying to avoid the highest parts of it. On the other hand,
the gradient matrix G favours the path with smallest slope. Therefore, we can select
the values of each weight factor a; in order to consider the limitations or features of
the robot used.

The final step is to propagate the wave using as refraction index the difficulty
matrix W from the goal point until it gets the present position of the robot and in this
funnel shaped potential, the trajectory is calculated by using the gradient method.

Figure 26a shows a view of the path obtained when W = Sv. As can be observed
the result is an intermediate path. Figure 26b shows a view of the path obtained when
W =020%A+0.40* Sv+0.40 % G.

Moreover, the values of the weight factors a; can be changed if the robot to be used
is different or modified. It is also important to note that the trajectories calculated
are a tentative path for the robot. The path can be modified online by modelling the
environment with the robot sensors and recalculating the trajectory in a local area.

Motion Planning Using Fast Marching Squared Method 245

Fig. 26 Path calculated usinga W = Svand whenb W = 0.20 % A +0.40 % Sv+0.40 * G in a
mars map

4.1.5 Introduction of the Uncertainty in the Slowness Matrix W

When there is a certain uncertainty the robot has to modify the trajectory or the
velocity. For example, in the case of robot in Mars, if the robot doesn’t have enough
information of part of the trajectory, because it hasn’t visual data of that part, could
be better to change the trajectory to zones the robot can visualise.

How can we introduce that uncertainty in the map in order to change the trajectory?
Fortunately, the viscosity matrix W can also be understood as an uncertainty matrix,
the grey degree can be understood as a measurement of the uncertainty.

For example, suppose that the robot has no data of the points lower than its
altitude, in that case the shadow points are represented in the matrix W with values
next to zero (velocity of the media). In Fig.27 is shown the difference between the
robot trajectories without and with uncertain data of the points lower than the robot’s
altitude. As can be seen in the figure on the right, the trajectory is modified to not to

EVAY- 0
S e
2

Sl
4((4

35

Fig. 27 Difference between the robot trajectories a without and b with uncertain data of the points
lower than its altitude

246 S. Garrido et al.

go through the lower areas. In Fig. 28 is shown the difference between the difficulty-
uncertainty W matrices when the robot has and hasn’t data of the points lower than
its altitude. As can be seen in the right figure the lower parts have a bluish colour due
to a bigger uncertainty and lower values in the W matrix that correspond to lower
media velocity. In Fig.29 is shown the difference between the wave expansion D
matrices when the robot has and hasn’t data of the points lower than its altitude. As
can be seen, in the figure on the right, the expansion of the wave is more directed to
the zone with less incertitude.

Fig.28 Difference between the difficulty-uncertainty W matrices when the robot a has and b hasn’t
data of the points lower than its altitude

(b)

Fig. 29 Difference between the wave expansion D matrices when the robot has and hasn’t data of
the points lower than its altitude

Motion Planning Using Fast Marching Squared Method 247

(b)

Fig. 30 Difference between the difference in the paths when the gradient a is not saturated and b
when it is

(b)

o~
0 Fi

Fig. 31 a Spheric variance and b the saturated gradient corresponding to the previous figures

In Fig. 30 is shown the difference in the paths when the gradient is not saturated
and when it is.

In Fig. 31 are shown the saturated gradient and the spheric variance corresponding
to the previous figures.

5 Conclusions and Future Work

As shown along the chapter, the FM and FM? methods are very powerful when
applied to robot motion planning. Many different problems can be faced with the
same underlying method in addition to minor modifications.

248 S. Garrido et al.

When applied to 2D or 3D environments, the FM? method is able to provide
efficient solutions in a very short period of time, reaching even real-time applications.
However, as it is based on grid maps, it suffers from the curse of dimensionality. The
number of cells in an environment representation increases polinomically with the
dimensions.

Therefore, future work focuses on applying different heuristics, and include pre-
vious experience in the planner in order to boost the plannification process.

References

1. Sethian JA (1996) A fast marching level set method for monotonically advancing fronts. Proc
Natl Acad Sci 93:1591-1595
2. Jbabdi S, Bellec P, Toro R, Daunizeau J, Plgrini-Issac M, Benali H (2008) Accurate anisotropic
fast marching for diffusion-based geodesic tractography. Int J Biomed Imaging 2008:12
3. Li H, Xue Z, Cui K, Wong STC (2011) Diffusion tensor-based fast marching for modeling
human brain connectivity network. Comput Med Imag Graph 35(3):167-178
4. Yang K, Li M, Liu Y, Jiang C (2010) Multi-points fast marching: a novel method for road
extraction. In: Proceedings of the 18th international conference geoinformatics: GIScience in
change, geoinformatics, June 2010, pp 1-5
Sethian JA (1996) Level set methods. Cambridge University Press, Cambridge
6. Garrido S, Moreno L, Abderrahim M, Blanco D (2009) FM2: a real-time sensor-based feedback
controller for mobile robots. Int J Robot Autom 24(1):3169-3192
7. Yatziv L, Bartesaghi A, Sapiro G (2005) A fast O(n) implementation of the fast marching
algorithm. J Comput Phys 212:393-399
8. Adalsteinsson D, Sethian JA (1995) A fast level set method for propagating interfaces.] Comput
Phys 118(2):269-277
9. Garrido S, Moreno L, Blanco D (2007) Sensor-based global planning for mobile robot navi-
gation. Robotica 25:189-199
10. Garrido S, Moreno L, Blanco D (2008) Exploration of 2D and 3D environments using Voronoi
transform and fast marching method. J Intell Robot Syst 55(1):55-80
11. Valero-Gomez A, Gomez J, Garrido S, Moreno L (2013) The path to efficiency: fast marching
method for safer, more efficient mobile robot trajectories. Robot Autom Mag, IEEE 20(4):111—
120
12. Gomez JV, Vale A, Valente F, Ferreira J, Garrido S, Moreno L (2013) Fast marching in motion
planning for Rhombic like vehicles operating in ITER. In: IEEE international conference on
robotics and automation, pp 5533-5538
13. Ulrich I, Borenstein J (2000) Vfh*: local obstacle avoidance with lookahead verification. In:
Proceedings of the IEEE international conference on robotics and automation, pp 2505-2511
14. Minguez J, Montano L (2001) Global nearness diagram navigation. In: Proceedings of the
IEEE international conference on robotics and automation, Seoul, Korea, pp 33-39
15. Castejon C, Boada B, Blanco D, Moreno L (2005) Traversable region modeling for outdoor
navigation. J Intell Robot Syst 43(2—4):175-216
16. Alton KR, Mitchel IM (2008) Fast marching methods for stationary Hamilton-Jacob equations
with axis-aligned anisotropy. SIAM J Numer Anal 47(1):363-385
17. Petres C, Pailhas Y, Evans J, Petillot Y, Lane D (2005) Underwater path planing using fast
marching algorithms. IEEE Oceans 2005 Eur Conf 2:814-819

e

Motion Planning of Large Scale Vehicles
for Remote Material Transportation

Alberto Vale and Isabel Ribeiro

Abstract The International Thermonuclear Experimental Reactor ITER) project is
aworldwide research experiment that aims to explore nuclear fusion as a viable source
of energy for the coming years. Mobile robotics plays an important role in the remote
handling systems that perform the maintenance operations in ITER. The Cask and
Plug Remote Handling System (CPRHS) is one of the remote handling systems that
transports heavy and highly activated in-vessel components between the Tokamak
Building and the Hot Cell Building, the two main buildings of the ITER facility.
The CPRHS has dimensions similar to an autobus, maximum weight of 100 tons,
kinematics of a rhombic like vehicle (two drivable and steerable wheels) and has to
move in cluttered environments. The main challenges described in this chapter are
the definition of motion planning strategies that cope with the building maps and
the cluttered environments. The algorithms were developed and implemented in a
standalone application that receives CAD models of the buildings and returns the
best trajectories, including reports of the most risky points of collision, and the swept
volume of the vehicle along the missions. More than 700 trajectories were computed
for different CPRHS types applied in the models of the real scenarios, crucial to
proceed with the construction of the Tokamak Building.

Keywords Line guidance - Free roaming - Remote handling - ITER and Nuclear
fusion facilities

A. Vale (X)

Instituto de Plasmas e Fusdo Nuclear, Instituto Superior Técnico, Universidade de Lisboa,
Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

e-mail: alberto.vale @tecnico.ulisboa.pt

I. Ribeiro

Laboratério de Robética e Sistemas em Engenharia e Ciéncia, Instituto Superior Técnico,
Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

e-mail: isabel.ribeiro @tecnico.ulisboa.pt

© Springer International Publishing Switzerland 2015 249
G. Carbone and F. Gomez-Bravo (eds.), Motion and Operation Planning

of Robotic Systems, Mechanisms and Machine Science 29,

DOI 10.1007/978-3-319-14705-5_9

250 A. Vale and I. Ribeiro

1 Introduction

There is a practical need for developing and exploring nuclear fusion as a source
of energy for the humankind benefit. The shortage predictions on fossil fuels,
especially with the inevitable oil extraction decline, requires an urgent development
and exploration of new sources of energy.

The current energy supply policy is mostly based on fossil fuels (oil, coal and
natural gas) representing almost 80 % of the total energy consumption [1]. To worsen
this scenario, the world population is expected to grow from 6 to 9 billion people
until 2050 [2], resulting on an expressive raise of energy demand.

According to [3], no single technology is likely to provide all of the world’s future
energy needs and replace the actual oil-based energy infrastructure. It is necessary to
achieve a more sustainable mix of fossil fuels and, more importantly, to develop an
energy consumption-frame based on new technologies and alternative energies such
as solar, geothermal and nuclear, fission and fusion power.

The International Thermonuclear Experimental Reactor (ITER) project is a world-
wide research experiment that aims to explore nuclear fusion as a viable source of
energy for the coming years. The project is funded by seven member entities: the
European Union (EU), India, Japan, China, Russia, South Korea and the United
States. The largest experimental tokamak nuclear fusion reactor will be located at
the Cadarache facility, in the south of France, as depicted in Fig. 1.

Besides the major scientific objective of exploring the nuclear fusion as a source
of energy, the fusion power plants must be safely and effectively maintained through
Remote Handling (RH) techniques, due to restrictions on human being in activated
areas.

During ITER lifetime, the internal components of the vacuum vessel of the reactor,
such as the blanket and divertor modules, will become activated due to exposure to
highly energetic neutrons released during the fusion reaction. Additionally, these
in-vessel materials might get contaminated with small amounts of radioactive dust.

Divertors Human helight

Fig. 1 The ITER Tokamak (left image) and the scientific buildings and facilities that will house
the ITER experiments (right image) in Cadarache, south of France

Motion Planning of Large Scale Vehicles for Remote Material Transportation 251

Hence, the components that provide the base functions for the ITER machinery will
need to be periodically inspected and upgraded. To manage such operations and
provided that human presence will be not authorized in activated areas, the ITER
maintenance system will mostly rely on RH devices [4].

1.1 The Scenario

Among the various RH systems that are expected to operate in ITER, this work focus
on a large and complex transporter unit that was chosen for the transfer of heavy and
contaminated loads between the two main buildings of ITER, the Tokamak Building
(TB), lodging the tokamak reactor and with access by vacuum vessel port cells (from
this point forward simply identified as “ports”) and the Hot Cell Building (HCB),
that will work mainly as a support area. A lift establishes the only interface between
the different levels of TB and between the TB and the HCB. Figure 2 represents the
interface between the TB and the HCB. It also depicts a mission between one port
in one level of TB and a refurbishment docking place in HCB.

The foreseen RH equipment will have a large impact on the design and assembly
of the remaining ITER components, namely on building structural aspects and inter-
faces. Therefore, motion planning studies for the Cask and Plug Remote Handling
System (CPRHS) in all of its missions are required for the sake of the feasibility of
the ITER buildings design and for the space reservation for the RH missions, carried
out by the CPRHS, as described in [5].

In ITER, the environment in all levels of TB and HCB is mostly composed by
static and well structured scenarios, as displayed in Figs. 3 and 4 and each level of the
buildings can be modeled using a 2D map representation that will be used for motion

gusies,

e o e . e o s 2 s e 2

Reactor Transporter unit in

mission

Hot Cell Building ||

Fig. 2 A 3D snapshot of the CAD models from the two main buildings in ITER, emphasizing the
reactor, the vehicle and a particular mission between the buildings

252 A. Vale and I. Ribeiro

Fig. 3 The three levels of Tokamak Building in a split view (second image), in particular the 2D
maps of the level B1 (first image) and the level L1 (third image)

I

L Il H
s o o | e
L=

0 |
L1

Fig. 4 The five levels of Hot Cell Building in a split view (second image), in particular the 2D
maps of the level B2 (first image) and the level L1 (third image)

planning evaluation. The adopted representation for a map is a set of 2D points in
the global Cartesian referential defined in the ITER buildings design and a set of
line segments. Each line segment connects two different points and it is assumed
that there is no crossing between lines. In case of intersection, a 2D point resulted
from the intersection is created and each crossed line segment is split in two new line
segments, one starting and the other ending in the splitting point, respectively.

In TB, the vehicles can operate in three levels (from bottom to up): B1, L1 and L2,
as illustrated in Fig. 3. In HCB, the vehicles may operate in five levels (from bottom
toup): B2, B1,L1,L2 and L3, as in Fig.4.

The entire work developed in this project is applied to the scenario of ITER
buildings. However, the same research and development in terms of mobile robots
navigation can be applicable to any other type of scenario as warehouses or office
type environments.

Motion Planning of Large Scale Vehicles for Remote Material Transportation 253

1.2 The Vehicle

The CPRHS is a critical element of the ITER remote maintenance system devoted to
transportation of components between the TB and HCB. Due to the necessary con-
finement of contaminated components the CPRHS is defined as Safety Importance
Class 1 (SIC-1) plus the mobile nature of the CPRHS brings with it a significant
number of complex interfaces with other ITER sub-systems [6]. The geometry of
the CPRHS and its payload vary according to the components to be transported
and hence, different CPRHS typologies will operate in ITER. As a reference, the
largest CPRHS dimensions are 8.5m x 2.62m x 3.62m (length x width x height),
as depicted in Fig.5, and the total weight with the maximum load can reach up to
100 tons.

A CPRHS is composed by three sub-systems: the cask envelope (container that
enclosures the in-vessel components and the RH tools to be transported), the Cask
Transfer System (CTS), which acts as a mobile robot and the pallet (interface between
the cask and the CTS equipped with an handling platform to support the cask load and
to help on docking procedures). When underneath the pallet, the CTS transports the
entire CPRHS, but it can also move independently of the pallet and cask. The CTS has
arhombic like configuration provided by two drivable and steerable wheels, identified
as “F’ront and “R”ear wheels, as illustrated in Fig. 6. Given th