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material herein can be of interest to the readers.

This work is way overdue as I had in mind finishing it by the middle of last year
(2014). My sincere apologies to the publishers for postponing the delivery of this
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am thankful to Professor Dr.-Ing. Andreas Öchsner, Editor-in-Chief of the Springer
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Once more the continuous support from our research funding agencies in Brazil,
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Nomenclature

Latin Characters

Ai Interface total area between the fluid and solid
cF Forchheimer coefficient
cp Fluid specific heat
C‘ Volumetric molar concentration
cp Specific heat
D‘ Diffusion coefficient
Ddisp Mass dispersion
Ddisp;t Turbulent mass dispersion
Dt Turbulent mass flux
Da Darcy number, Da ¼ K

�
H2

D Square rods of lateral size
g Gravity acceleration vector
hi Interfacial convective heat transfer coefficient
H Channel height, Periodic cell height
I Unit tensor
J‘ Mass diffusion coefficient
K Permeability
kf Fluid thermal conductivity
ks Solid thermal conductivity
Kdisp Dispersion tensor
Kf ;s Thermal conductivity tensor in fluid phase
Ks;f Thermal conductivity tensor in solid phase
Kt Turbulence conductivity tensor
Kdisp;t Turbulent dispersion tensor
k (1) Thermal conductivity; (2) Turbulent kinetic energy per unit mass,

k ¼ u0 � u0�2
hkii Intrinsic (fluid) average of k
keff Effective thermal conductivity

xv



L Channel length
‘ Chemical species
m‘ Mass fraction of component ‘
M‘ Molar weight of component ‘
Nu Nusselt number Nu ¼ hiD

kf

P Pressure
P� P� ¼ P�Pmin

Pmax�Pmin
, Nondimensional Pressure

Pr Pr ¼ m=a, Prandtl number
Prt Turbulent Prandtl number
PeD Peclet number based on D and the macroscopically uniform velocity
hpii Intrinsic (fluid) average of pressure p
p Thermodynamic pressure
qw Integral wall heat flux
q/w Integral wall heat flux will porous layer
ReD Reynolds number based on D and the macroscopically uniform velocity
Re Reynolds number based on the jet width, Re ¼ q m0 B=l
Su Source term
Sct Turbulent Schmidt number
T Temperature
Tms Bulk temperature of the solid phase
Tmf Bulk temperature of the fluid phase
u Local instantaneous velocity
uB Bulk velocity
�uD Darcy velocity vector (volume-time average of u)
u‘ Velocity of species ‘
huii Intrinsic (fluid) average of u
x, y Cartesian coordinates
X X ¼ x=H, Dimensionless longitudinal coordinate
Y Y ¼ y=H, Dimensionless transversal coordinate

Greek Characters

b Thermal expansion coefficient
bC Salute expansion coefficient
b/ Macroscopic thermal expansion coefficient
bC/

Macroscopic salute expansion coefficient
DV Representative elementary volume
DVf Fluid volume inside DV
l Fluid Dynamic viscosity
lt Eddy viscosity
lt/ Macroscopic eddy viscosity
m Fluid kinematic viscosity

xvi Nomenclature



q Bulk density of fluid or mixture
q‘ Mass density of species ‘
h hðs;f Þ ¼ Tw�T

Tw�Tinlet s ; fð Þ
, Dimensionless local temperature

H Hðs;f Þ ¼
Tmðs;f Þ�Tinletf
Tinlets�Tinletf

, Dimensionless bulk temperature

/ / ¼ DVf =DV , Porosity
a Fluid thermal diffusivity
q Density
m Kinematic viscosity
σtϕ Macroscopic turbulent Prandtl number
e Dissipation rate of k
eh ii Intrinsic (fluid) average of e

Special Characters, Subscripts and Superscripts

u General variable
huii Intrinsic average
w Wall
o Inlet conditions
huiv Volume average
iu Spatial deviation
ϕ Macroscopic
β Buoyancy
B Bulk
C Concentration
D Particle or rod diameter
hi Interfacial heat transfer coefficient
i Intrinsic (fluid) average
v Volume (fluid + solid) average
s,f Solid, fluid
t Turbulent
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Overview

Often thermal equipment characterized by a solid permeable structure and a moving
working fluid are used in advanced materials manufacturing and in energy
production processes. The advantages of having a clearer picture of how distinct
temperatures of each phase behave is beneficial to the design and optimization of
engineering equipment. Or say, the ability to more accurately analyze transport
processes in such devices can be of advantage in developing a more efficient and
reliable thermal machinery, including gasifiers for biomass or coal, direct reduced
iron (DRI) equipment for steel production, porous burners for household heating,
hydrogen production reactors, moving bed based devices, and nuclear reactor core,
to mention a few applications.

More specifically, this volume presents, in a self-contained fashion and orga-
nized way, a series of studies on flow and heat transfer in porous media, in which
distinct energy balances are considered for the porous matrix and for the permeating
fluid. Detailed mathematical modeling is presented considering both volume and
time averaging operators simultaneously applied to the local instantaneous gov-
erning equations. Besides presenting a correlation for interstitial heat transfer
between phases, examples of systems involving combustion in the gaseous phase,
moving bed, and double-diffusion mechanism are analyzed here. Numerical results
are then presented for each case. In the end, this book contains the description of a
tool that might benefit engineers in developing and designing more efficient thermal
equipment.

xxv



Chapter 1
Heterogeneous Media

1.1 Introduction

This book presents, in a self-contained fashion, a series of studies on flow and heat
transfer in porous media, in which distinct energy balances are considered for the
porous matrix and for the permeating fluid. Detailed mathematical modeling is
presented considering both volume and time averaging operators simultaneously
applied to the governing equations. System involving combustion in the gaseous
phase, moving bed and double-diffusion mechanism are also here presented by. On
the overall, this book contains the description of a tool that might be interesting to
engineers in developing more efficient thermal equipment such as gasifiers
(Fig. 1.1a), porous household combustors (Fig. 1.1b) and reactors for production of
a hydrogen reach (Fig. 1.1c).

Accordingly, for analyzing heat transfer in porous media there are two
approached to follow. One can assume thermal equilibrium between the solid
matrix and the working fluid (Local Thermal Equilibrium Model—LTE), or else,
one can analyze each phase with an independent energy balance equation (Local
Thermal Non-equilibrium Model—LTNE). Figure 1.2a illustrates the idea of a
Representative elementary volume (R.E.V.), over which volume average are
obtained. If the averaging process is taken over the fluid phase, then one can obtain
an average temperature hTf ii where the superscript “i” denotes the intrinsic average
over the volume occupied by phase “i”. The same reasoning applies for the solid
temperature leading to hTsii, where the superscript “i” in this case would refer to the
volume occupied by the solid matter. On the other hand, if properties values also
present a fluctuation with time, the employment of statistical tools can be used to
find time-mean values over an interval of time Δt (Fig. 1.2b). In this case, an
overbar commonly used in the literature to represent time averaging would result in
h�Tf ii and h�Tsii (see for example [1] for details). In the literature, thermal equilib-
rium is assumed when h�Tf ii � h�Tsii � h�Tii, or say, when the time-volume average
value for temperature on each phase does not differ substantially from the other.

© The Author(s) 2016
M.J.S. de Lemos, Thermal Non-Equilibrium in Heterogeneous Media,
SpringerBriefs in Computational Mechanics,
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Fig. 1.1 Applications of heterogeneous media modeling: a Gasifiers. b Porous Combustors.
c Hydrogen reactors
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However, the hypothesis of local thermal equilibrium (LTE) demands several
constraints that have been considered by a number of authors [2–7]. For instance,
the LTE hypothesis is no longer valid when the particles or pores are not small
enough, when the thermal properties differ widely, or when convective transport is
not important. Also, most recent papers on the effects of local thermal
non-equilibrium deal with unsteady situations [8, 9], which are here not considered.

VΔ

i
A

Tf fluid

Ts solid
x2

x1

x3

x

ϕiiϕ
i′ϕ
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Fig. 1.2 Averaging operators: a Volume average over a representative elementary volume (R.E.
V.). b Time averaging over an interval of time Δt (see [15] )
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Further, when there is a significant heat generation in any of the phases, the system
will rapidly depart from the local thermal equilibrium condition [10]. For such
extreme conditions, the one-energy equation model (LTE) is inadequate to correctly
describe both the transients associated with the quench front penetrating the hot dry
porous layer, as well as regions where dry out occurs.

As mentioned, when the assumption of local thermal equilibrium fails, one
possible solution is to develop separate transport equations for each phase [11–13]
and this leads to macroscopic models, which are referred to in the literature as
LTNE closures. For heat transport through a porous medium, a LTNE model
involves the derivation of energy equation for both the solid and the fluid, which, in
turn, requires additional information on the interfacial heat transfer coefficient
between the fluid phase and the solid phase [14, 15]. For that, the use of LTNE
models is, overall, more involving [16].

Important applications on the LTNE model are found in analyses of advanced
materiais manufacturing and in renewable energy productions processes, such as in
modern steel production and biomass gasification in fixed and moving bed con-
figurations. With respect to pelletization of iron ore, Parisi and Laborde [17] and
Negri et al. [18] presented a study about the direct reduction of iron oxide in a
countercurrent reactor in a moving bed. Also within this context, Valipour et al.
[19] developed a mathematical model to simulate grain kinetics and thermal
behavior of a pellet of porous iron oxide. Their study considered chemical reactions
with a mixture of hydrogen, carbon monoxide, carbon dioxide and water vapor.
Further, Valipour et al. [20] presented a mathematical model to simulate the mul-
tiple heterogeneous reactions in a moving bed of porous pellets on a reactor.
Valipour et al. [21] described a model to predict flow in a cylindrical reactor in
which pellets of iron ore went through a gas mixture.

In advanced manufacturing, Henda and Falcioni [22] described the thermal
performance of a pre-heater that consists of a moving bed of pellets of nickel in
concurrent flow with a gas, using both one and two equations energy models.

Further, biomass pelletization and preparation for energy production may be
considered as a system having a moving porous bed. Examples are given by Ryu
et al. [23], Boman et al. [24] and Shimizu et al. [25], who presented mathematical
models of the gasification a system using a moving bed in the burning of biomass.
Already Kayal and Chakravarty [26], Rogel et al. [27] and Nussbaumer et al. [28]
investigated technologies to cope with the problem of pollutant emission during of
combustion and co-combustion of biomass. Other basic studies on reactive flow in
fluidized beds can be found in the literature [29–31].

For thermal analysis of non-reacting systems, Nakayama et al. [32] presented the
exact solution of different energy equations, for solid and fluid phases, for cases of
engineering interest. They included in their study heat transfer analyses for
one-dimensional porous plate with internal heat generation and thermally devel-
oping unidirectional flow through a semi-infinite porous medium. Such two-energy
equation model has been investigated by a number of authors and is based on the
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idea that under certain conditions the two phases, namely the solid and the fluid,
cannot have their temperatures considered to be equal and, as such, they need be
evaluated using distinct transport equations [33–35].

1.2 Outline of This Book

In this book, a macroscopic model for heat transfer in porous media is proposed in
Chap. 2. For closing the model, we present a correlation for interstitial heat transfer
obtained after integrating distributed numerical values in a unit cell, which here
represents an infinite porous medium. Then, we consider the plug flow of an
incompressible fluid in a two-dimensional channel fitted with porous material.
Several cases are investigated in Chap. 2, including heat transfer through a fixed
porous bed (Fig. 1.3a). In this configuration, the solid phase remains still while the
working fluid is pumped through the permeable medium.
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Fig. 1.3 Flow configurations. Two-dimensional channel flow: a Fixed bed. b Relative velocity.
c Parallel flow. d Counter Flow. One-dimensional combustors: e Boundary conditions
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Also include in this book are cases where the movement of the solid phase in
relation to that of the fluid is considered, as will be seen in Chap. 3. The additional
drag forces on the mean flow and extra term on the turbulent kinetic energy equation
with depend on the relative velocity between the two phases (Fig. 1.3b). When both
the fluid and solid move in the same direction, such configuration is here recalled
“parallel flow” (Fig. 1.3c) whereas for the case when both phases move against each
other such configuration is here named “counter flow” (Fig. 1.3d).

An important extension of the general model detailed in [1] is presented in
Chap. 4, where exothermic chemical reactions are considered in the fluid phase.
Such numerical results allow for the determination of temperature levels for the
so-called “filtration combustion” systems. A schematic of systems envolving
chemical reaction is presented in Fig. 1.3e.

Finally, double-diffusion effects are included and discussed in Chap. 5, which
considers the change in the weight of a mixture by both the temperature drive
(lighter hotter fluid) or mass drive (lighter of heavier mixture component).
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Chapter 2
Modeling of Thermal Non-equilibrium

2.1 Introduction

Convection heat transfer in porous media has been extensively investigated due to
its many important engineering applications. The wide applications available have
led to numerous investigations in this area. Such applications can be found in solar
receiver devices, building thermal insulation, heat exchangers, energy storage units,
etc. From the point of view of the energy equation there are two different models,
local thermal equilibrium model and two energy approach. The first model assumes
that the solid temperature is equal to the fluid temperature, thus local thermal
equilibrium between the fluid and the solid-phases is achieved at any location in the
porous media. This model simplifies theoretical and numerical research, but the
assumption of local thermal equilibrium between the fluid and the solid is inade-
quate for a number of problems [1, 2]. In recent years more attention has been paid
to the local thermal non-equilibrium model and its use has increased in theoretical
and numerical research for convection heat transfer processes in porous media [3,
4]. Saito and de Lemos [5] considered local thermal non-equilibrium and obtained
the interfacial heat transfer coefficient for laminar flow using a single unit cell with
local instantaneous transport equations.

This chapter details the proposition of a new correlation for obtaining the
interfacial heat transfer coefficient for turbulent flow in a packed bed. The bed is
modeled as an infinite staggered array of square rods and the range of Reynolds
number, based on the size of the rod, is extended up to 107. In-line rod arrangement
is here not considered as the objective of this work is first to consolidate results for
staggered arrays. Future investigations shall consider different array arrangements
as well as distinct rod shapes, such as elliptical and circular rods.

The next sessions details the basic mathematical model, including the mean and
turbulent fields for turbulent flows. Although the discussion of turbulent motion in
porous media isn’t present in this work the definition and concept to calculating the
interfacial heat transfer coefficient for macroscopic flows are presented.

© The Author(s) 2016
M.J.S. de Lemos, Thermal Non-Equilibrium in Heterogeneous Media,
SpringerBriefs in Computational Mechanics,
DOI 10.1007/978-3-319-14666-9_2
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2.2 Governing Equations

2.2.1 Local Instantaneous Transport Equations

Microscopic transport equations or local time-averaged transport equations for
incompressible fluid flow in a rigid homogeneous porous medium have been already
presented in the literature and for that, they are here just presented [6]. The governing
equations for the flow and energy for an incompressible fluid are given by:

Continuity:r � u ¼ 0: ð2:1Þ

Momentum: q
@u
@t

þr � uuð Þ
� �

¼ �rpþ lr2u: ð2:2Þ

Energy-Fluid Phase: qcp
� �

f

@Tf
@t

þr � uTf
� �� �

¼ r � kfrTf
� �þ Sf : ð2:3Þ

Energy-Solid Phase Porous Matrixð Þ : qcp
� �

s

@Ts
@t

¼ r � ksrTsð Þ þ Ss: ð2:4Þ

where the subscripts f and s refer to fluid and solid phases, respectively. Here, T is
the temperature kf is the fluid thermal conductivity, ks is the solid thermal con-
ductivity, cp is the specific heat and S is the heat generation term. If there is no heat
generation either in the solid or in the fluid, one has further Sf ¼ Ss ¼ 0.

For turbulent flows, the standard time averaged transport equations can be
written as:

Continuity: r � �u ¼ 0: ð2:5Þ

Momentum: qf r � �u�uð Þ½ � ¼ �r�pþr � l r�uþ r�uð ÞT� 	� qu0u0

 �

: ð2:6Þ

where the low and high Reynolds k � e model is used to obtain the eddy viscosity,
lt, whose equations for the turbulent kinetic energy per unit mass and for its
dissipation rate read:

Turbulent kinetic energy per unit mass:

qf r � �ukð Þ½ � ¼ r � lþ lt
rk

� 
rk

� �
� qu0u0 : r�u� qe ð2:7Þ

Turbulent kinetic energy per unit mass dissipation rate:

qf r � �ueð Þ½ � ¼ r � lþ lt
re

� 
re

� �
þ c1 �qu0u0 : r�u

� �� c2f2qe
� 	 e

k
ð2:8Þ
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Reynolds stresses and the Eddy viscosity is given by, respectively:

�qu0u0 ¼ lt r�uþ r�uð ÞT� 	� 2
3
qkI ð2:9Þ

lt ¼ qclfl
k2

e
ð2:10Þ

where, q is the fluid density, p is the pressure, l represents the fluid viscosity.
In the above equation set rk , re, c1, c2, and cl are dimensionless constants

whereas f2 and fl are damping functions of the low Re k � e turbulence models is
justified by the fact that the turbulent flow in porous media occurs for Reynolds
number relatively low. To account for the low Reynolds effects, the following
damping functions were adopted.

fl ¼ 1� exp �ðmeÞ0:25y
14m

" #( )2

1þ 5

ðk2=meÞ0:75 exp � ðk2�meÞ
200

� 2
" #( )

ð2:11Þ

f2 ¼ 1� exp �ðmeÞ0:25y
3:1m

" #( )2

1� 0:3 exp � ðk2�meÞ
6:5

� 2
" #( )

ð2:12Þ

where y is the coordinate normal to the wall. The turbulent model constants are
given as follows,

cl ¼ 0:09, c1 ¼ 1:5, c2 ¼ 1:9, rk ¼ 1:4, re ¼ 1:3.
For the high Re model the standard constants of Launder and Spalding [7] were

emplyed.
Also, the time averaged energy equations become:

Energy-Fluid Phase: qcp
� �

f r � �u�Tf
� �� 	 ¼ r � kfr�Tf

� �� qcp
� �

fr � u0T 0
f

� �
:

ð2:13Þ

Energy-Solid Phase Porous Matrixð Þ:r � ksr�Tsð Þ þ Ss ¼ 0: ð2:14Þ

2.2.2 Double-Decomposition of Variables

Macroscopic transport equations for turbulent flow in a porous medium are
obtained through the simultaneous application of time and volume average oper-
ators over a generic fluid property u. Such concepts are defined as [8–10].
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�u ¼ 1
Dt

Z tþDt

t
udt; with u ¼ �uþ u0 ð2:15Þ

for time splitting, as used in Eqs. (2.14)–(2.22), and

huii ¼ 1
DVf

Z
DVf

udV ; huiv ¼ /huii; / ¼ DVf

DV
; with u ¼ huii þ iu

ð2:16Þ

for volume splitting, where DVf is the volume of the fluid contained in a
Representative Elementary Volume DV (REV, see Fig. 1.2a). Intrinsic average
(fluid-based) and volume average (fluid-plus-soid-based) are represented, respec-
tively, by h ii and h iv. The double decomposition idea, introduced and fully
described in [8–10], combines Eqs. (2.15) and (2.16) and can be summarized as:

huii ¼ h�uii; i�u ¼ iu; hu0ii ¼ huii0 ð2:17Þ

and,

u0 ¼ hu0ii þ iu0
iu ¼ iuþ iu0

�
where iu0 ¼ u0 � hu0ii ¼ iu� iu ð2:18Þ

therefore, the general vector quantity u can be expressed by either,

u ¼ huii þ huii0 þ iuþ iu0 ð2:19Þ

or

u ¼ h�uii þ i�uþ hu0ii þ iu0: ð2:20Þ

The term iu0 can be viewed as either the temporal fluctuation of the spatial
deviation or the spatial deviation of the temporal fluctuation of the quantity u.

2.2.3 Macroscopic Flow Equations

When the average operators (2.15) and (2.16) are simultaneously applied over
Eqs. (2.1) and (2.2), macroscopic equations for turbulent flow are obtained. Volume
integration is performed over a Representative Elementary Volume (REV) [11, 12],
resulting in,

12 2 Modeling of Thermal Non-equilibrium
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Continuity:r � �uD ¼ 0: ð2:21Þ

where, �uD ¼ /h�uii and h�uii identifies the intrinsic average of the time-averaged
velocity vector �u.

Momentum:

q
@�uD
@t

þr � �uD�uD
/

� � �
¼�rð/h�piiÞ þ lr2�uD �r � ðq/hu0u0iiÞ

� l/
K

�uD þ cF/q j�uDj�uDffiffiffiffi
K

p
� � ð2:22Þ

where the last two terms in Eq. (2.2) represent the Darcy and Forchheimer or form
drags. The symbol K is the porous medium permeability, cF is the form drag or
Forchheimer coefficient, h�pii is the intrinsic average pressure of the fluid and / is
the porosity of the porous medium.

The macroscopic Reynolds stress, �q/hu0u0ii, appearing in Eq. (2.22) is given
as,

�q/hu0u0ii ¼ ltu2h�Div �
2
3
/qhkiiI ð2:23Þ

where,

h�Div ¼ 1
2

rð/h�uiiÞ þ ½rð/h�uiiÞ�T� 	 ð2:24Þ

is the macroscopic deformation tensor, hkii ¼ hu0 � u0ii�2 is the macroscopic tur-
bulent kinetic energy, and lt/ , is the turbulent viscosity, which is modeled in [9]
similarly to the case of clear flow, in the form,

lt/ ¼ qcl
hkii2

heii ð2:25Þ

The intrinsic turbulent kinetic energy per unit mass and its dissipation rate are
governed by the following equations,

q
@

@t
/hkii� �þr � �uDhkii

� �� �
¼r � lþ lt/

rk

� 
r /hkii� �� �

� qhu0u0ii : r�uD

þ ckq
/hkii j�uDjffiffiffiffi

K
p � q/heii

ð2:26Þ
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q
@

@t
/heii� �þr � �uDheii

� �� �
¼r � lþ lt/

re

� 
r /heii� �� �

þ c1 �qhu0u0ii : r�uD
� � heii

hkii

þ c2ckq
/heii j�uDjffiffiffiffi

K
p � c2q/

heii2

hkii
ð2:27Þ

where, rk ¼ 1, re ¼ 1:3, c1 ¼ 1:44, c2 ¼ 1:92, cl ¼ 0:09 and ck ¼ 0:28 are
non-dimensional constants [8–10].

2.2.4 Macroscopic Energy Equations

Similarly, macroscopic energy equations are obtained for both fluid and solid
phases by applying time and volume average operators to Eqs. (2.3) and (2.4). As in
the flow case, volume integration is performed over a Representative Elementary
Volume (REV), resulting in,

q cp
� �

f

@ /hTf ii
@ t

þr � / h�uiihTf ii þ hi�uiTf ii|fflfflffl{zfflfflffl}
thermal disperson

þ hu0ii0f ii|fflfflfflffl{zfflfflfflffl}
turbulent heat flux

þ hiu0 iT 0
f ii|fflfflfflffl{zfflfflfflffl}

turbulent thermal dispersion

0
BBB@

1
CCCA

8>>><
>>>:

9>>>=
>>>;

2
6664

3
7775

¼ r � kfr / hTf ii
� �þ 1

DV

Z
Ai

ni kf Tf dA

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
conduction

þ 1
Z
Ai

ni � kfrTf dA

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
interfacial heat transfer

ð2:28Þ

where the expansion,

hu0T 0
f ii ¼ hðhu0ii þ iu0Þ ðhT 0

f ii þ iT 0Þii ¼ hu0iihT 0
f ii þ hiu0iT 0

f ii ð2:29Þ

has been used in light of the double decomposition concept given by Eqs. (2.17)–
(2.20) [8]. For the solid phase, one has,
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qcp
� �

s

@ 1� /ð ÞhTsii
@ t

( )
¼r � ksr 1� /ð ÞhTsii

� 	� 1
DV

Z
Ai

niksTsdA

8<
:

9=
;|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

conduction

� 1
DV

Z
Ai

ni � ksrTsdA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
interfacial heat transfer

ð2:30Þ

In (2.28) and (2.30), hTsii and hTf ii denote the intrinsic average temperature of
solid and fluid phases, respectively, Ai is the interfacial area within the REV and ni
is the unit vector normal to the fluid-solid interface, pointing from the fluid towards
the solid phase. Equations (2.28) and (2.30) are the macroscopic energy equations
for the fluid and the porous matrix (solid), respectively.

In order to use Eqs. (2.28) and (2.30), the underscored terms have to be modeled
in some way as a function of the intrinsically averaged temperature of solid phase
and fluid, hTsii and hTf ii. To accomplish this, a gradient type diffusion model is
used for all the terms, in the form,

Turbulent heat flux: � qcp
� �

f / hu0iihT 0
f ii

� �
¼ Kt � rh�Tf ii: ð2:31Þ

Thermal dispersion: � qcp
� �

f / hi�uiTf ii
� � ¼ Kdisp � rh�Tf ii: ð2:32Þ

Turbulent thermal dispersion: � qcp
� �

f / hiu0iT 0
f ii

� �
¼ Kdisp;t � rh�Tf ii: ð2:33Þ

Local conduction:

r � 1
DV

Z
Ai

nikf Tf dA

2
64

3
75 ¼ Kf ;s � rh�Tsii

�r � 1
DV

Z
Ai

niksTs dA

2
64

3
75 ¼ Ks;f � rh�Tf ii

8>>>>>>>><
>>>>>>>>:

: ð2:34Þ

where ni in (2.34), as mentioned, is the unit vector pointing outwards of the fluid
phase. In this work, for simplicity, one assumes that for turbulent flow the overall
thermal resistance between the two phases is controlled by the interfacial film
coefficient rather than by the thermal resistance within each phase. As such, the
coefficients Kf ;s;Ks;f are here neglected for the sake of simplicity. More informa-
tion on such quantities is given below.

The heat transferred between the two phases can be modeled by means of a film
coefficient hi such that,
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hiai hTsii � hTf ii
� � ¼ 1

DV

Z
Ai

ni � kfrTf dA ¼ 1
DV

Z
Ai

ni � ksrTs dA: ð2:35Þ

where ai ¼ Ai=DV is the surface area per unit volume. Using the above shown
expressions, Eqs. (2.28) and (2.30) can be written as:

qcp
� �

f/
n o @hTii

@t
þ qcp
� �

fr � uDhTf ii
� � ¼ r � Keff ;f � rhTf ii


 �
þ hiai hTsii � hTf ii

� �
; ð2:36Þ

1� /ð Þ qcp
� �

s

n o @hTsii
@t

¼ r � Keff ; s � rhTsii

 �� hiai hTsii � hTf ii

� �
; ð2:37Þ

where, Keff ;f and Keff ;s are the effective conductivity tensor for fluid and solid,
respectively, given by:

Keff ;f ¼ ½/kf �IþKf ;s þKt þKdisp þKdisp;t; ð2:38Þ

Keff ;s ¼ ½ð1� /Þks�IþKs;f ; ð2:39Þ

and I is the unit tensor.
In order to be able to apply Eq. (2.36), it is necessary to determine the dispersion

and conductivity tensors in Eq. (2.38), i.e., Kf ;s, Kt, Kdisp and Kdisp;t. Following
Kuwahara et al. [13] and Quintard et al. [3], Kf ;s and Kdisp, are obtained by making
use of a unit cell subjected to periodic boundary conditions, where (2.32) are (2.34)
are numerically resolved. Further, dispersion tensor components are then obtained
directly from the microscopic results, for a unit cell, and reads for PeD � 10 [13]:

Kdisp
� �

yy

kf
¼ 0:052 1� /ð Þ0:5PeD; for transverse dispersion; ð2:40Þ

Kdisp
� �

xx

kf
¼ 2:1

PeD
1� /ð Þ0:1 ; for longitudinal dispersion; ð2:41Þ

Also, starting out from the time averaged energy equation, coupled with the
microscopic modeling for the turbulent heat flux through the microscopic Eddy
diffusivity, one can write:

� qcp
� �

fu
0T 0

f ¼ qcp
� �

f

mt
rT

r�Tf ð2:42Þ
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where rT is the turbulent Prandtl number which is taken here as a constant.
Applying the volume average to the resulting Eq. (2.42) one obtains the macro-
scopic turbulent heat flux modeled as,

� qcp
� �

f hu0T 0
f ii ¼ qcp

� �
f

mt/
rT

rh�Tf ii ð2:43Þ

where we have adopted the symbol mtu to express the macroscopic version of the
Eddy viscosity, lt/ ¼ qf mt/ .

Equation (2.43) represents the sum of the turbulent heat flux and the turbulent
thermal dispersion terms. As such, the turbulent heat flux and turbulent thermal
dispersion components of the conductivity tensor in Eq. (2.38), Kt and Kdisp;t,
which can not be determined from such a microscopic calculation, are here modeled
through the Eddy diffusivity concept, as:

Kt þKdisp;t ¼ /ðqcpÞf
mt/
rT

I ð2:44Þ

where rT ¼ 0:9 is the macroscopic turbulent Prandtl number for the fluid energy
equation.

2.2.5 Correlations for Interfacial Heat Transfer, hi

Wakao et al. [14] proposed a correlation for hi for closely packed bed and compared
results with their experimental data. This correlation reads,

hiD
kf

¼ 2þ 1:1Re0:6D Pr1=3: ð2:45Þ

Kuwahara et al. [15] also obtained the interfacial convective heat transfer
coefficient for laminar flow, as follows,

hiD
kf

¼ 1þ 4ð1� /Þ
/

� 
þ 1

2
ð1� /Þ1=2 ReD Pr1=3; valid for 0:2\/\0:9; ð2:46Þ

Equation (2.46) is based on porosity dependency and is valid for packed beds of
particle diameter D.

As will be seen below, in this work an additional correlation will be presented,
which will be valid for both laminar and turbulent flows.
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2.3 Periodic Cell

Nakayama et al. [16] and Kuwahara et al. [15] modeled a porous medium in terms
of obstacles arranged in a regular pattern and solved the set of the local governing
equations exploiting periodic boundary conditions. As such, consider a macro-
scopically uniform flow through an infinite number of square rods of lateral size D,
placed in a staggered arrangement and maintained at constant temperature Tw. The
periodic cell or representative elementary volume, DV , is schematically showed in
Fig. 2.1a and has dimensions 2H × H. Computations within this cell were carried
out using a non-uniform grid, as shown in Fig. 2.1b, to ensure that the results were
grid independent. The Reynolds number ReD ¼ q�uDD=l was varied from 104 to
107 and the porosity was determined as / ¼ 1� ðD=HÞ2.

2.3.1 Numerical Method and Boundary Conditions

The numerical method utilized to discretize the flow and energy equations in the
unit cell is the Finite Control Volume approach. The SIMPLE method of Patankar
[17] was used for solving Eqs. (2.1)–(2.4) and for handling the velocity- pressure
coupling. Convergence was monitored in terms of the normalized residue for each
variable. The maximum residue allowed for convergence check was set to 10−9,
being the variables normalized by appropriate reference values.

For periodic fully developed flow in the cell of Fig. 2.1b, the velocity at exit
(x=H ¼ 2) must be identical to that at the inlet (x=H ¼ 0). Temperature profiles,
however, are only identical at both cell exit and inlet if presented in terms of an
appropriate non-dimensional variable. The situation is analogous to the case of
forced convection in a channel with isothermal walls. Due to the periodicity of the
model a single structural unit, as depicted in Fig. 2.1b, may be taken as a calculation
domain. The equations used for turbulent flow in the unit cell are Eqs. (2.5)–(2.14).

Thus, boundary conditions and periodic constraints are given by:
On the solid walls (Low Re):

�u ¼ 0; k ¼ 0; e ¼ m
@2k
@y2

; �T ¼ �Tw; ð2:47Þ

On the solid walls (high Re):

�u
us

¼ 1
j
ln yþEð Þ; k ¼ u2s

c1=2l

; e ¼ c3=4l k3=2w

j yw
; qw ¼

qcp
� �

f c
1=4
l k1=2w

�T � Twð Þ
Prt
j ln yþw

� �þ cQ Prð Þ� �
ð2:48Þ
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where, us ¼ sw
q

� �1=2
, yþw ¼ ywus

m , cQ ¼ 12:5Pr2=3 þ 2:12 ln Prð Þ � 5:3 for Pr[ 0:5

where, Pr and Prt are Prandtl and turbulent Prandtl number, respectively, qw is wall
heat flux, us is wall-friction velocity, yw is the coordinate normal to wall, j is
constant for turbulent flow past smooth impermeable walls or von Kármán’s con-
stant and E is an integration constant that depends on the roughness of the wall. For
smooth walls with constant shear stress E = 9.

H 

2H 

y 
x 

D 

D/2 

(a)

(b)

Fig. 2.1 Infinite medium: a Physical model and coordinate system, b Non uniform computational
grid
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On the symmetry planes:

@�u
@y

¼ @�v
@y

¼ @k
@y

¼ @e
@y

¼ 0; ð2:49Þ

where �u and �v are components of �u.
On the periodic boundaries:

�ujinlet¼ �ujoutlet; �vjinlet¼ �vjoutlet; kjinlet¼ kjoutlet; ejinlet¼ ejoutlet; ð2:50Þ

h inletj ¼ h outletj ,
�T � �Tw

�TB xð Þ � �Tw

����
inlet

¼
�T � �Tw

�TB xð Þ � �Tw

����
outlet

; ð2:51Þ

The bulk mean temperature of the fluid is given by:

�TB xð Þ ¼
R
�u�TdyR
�udy

ð2:52Þ

Computations are based on the Darcy velocity, the length of structural unit H
and the temperature difference �TB xð Þ � �Twð Þ, as references scales.

2.3.2 Film Coefficient Hi

Determination of hi is here obtained by calculating, for the unit cell of Fig. 2.1b, an
expression given as,

hi ¼ Qtotal

AiDTml
ð2:53Þ

where Ai ¼ 8Dx 1. The overall heat transferred in the cell, Qtotal, is giving by,

Qtotal ¼ ðH � DÞq�uBcp �TBjoutlet��TBjinlet
� �

; ð2:54Þ

The bulk mean velocity of the fluid is given by:

�uB xð Þ ¼
R
�udyR
dy

ð2:55Þ

and the logarithm mean temperature difference, DTml is,

DTml ¼
�Tw � �TBjoutlet
� �� �Tw � �TBjinlet

� �
ln½ð�Tw � �TBjoutletÞð�Tw � �TBjinletÞ�

ð2:56Þ
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Equation (2.54) represents an overall heat balance on the entire cell and asso-
ciates the heat transferred to the fluid to a suitable temperature difference DTml. As
mentioned earlier, Eqs. (2.1)–(2.4) were numerically solved in the unit cell until
conditions Eqs. (2.50) and (2.51) were satisfied.

2.3.3 A Correlation for Interstitial Heat Transfer

Figure 2.2a show distributions of pressure, isotherms and turbulence kinetic energy
in a microscopic porous structure, obtained at ReD¼ 105 for cases of / ¼ 0:65.
Pressure increases at the front face of the square rod and drastically decreases
around the corner, as can be seen from the pressure contours shown in Fig. 2.2a.

Temperature distribution is shown in Fig. 2.2b. Colder fluid impinges on the rod
left side yielding strong temperature gradients on that face. Downstream the
obstacles, fluid recirculation smooths temperature gradients and deforms isotherms
within the mixing region. When the Reynolds number is sufficiently high (not
shown here), thermal boundary layers cover the rod surfaces indicating that con-
vective heat transfer overwhelms thermal diffusion. Figure 2.2c presents levels of
turbulence kinetic energy, which are higher around the rod corners where a strong
shear layer is formed. Further downstream the rods in the weak region, steep
velocity gradients appear due to flow deceleration, increasing there also the local
level of k.

Once fully developed flow and temperature fields are achieved, for the fully
developed condition (x[ 6H), bulk temperatures were calculated according to
Eq. (2.52), at both inlet and outlet positions. They were then used to calculate hi
using Eqs. (2.53)–(2.56). Results for hi are plotted in Fig. 2.3a for ReD up to 107.
Also plotted in this figure are results computed with correlation (2.46) by Kuwahara
et al. [15] using ϕ = 0.65. The figure seems to indicate that both computations show
a reasonable agreement for laminar results. In addition, numerical results for tur-
bulent flow using Low and High Re models are also presented in this figure.

Figure 2.3b shows numerical results for the interfacial convective heat transfer
coefficient for various porosities (/ ¼ 0:44, / ¼ 0:65 and / ¼ 0:90). Results for hi
are plotted for ReD up to 107. In order to obtain a correlation for hi in the turbulent
regime, all curves were first collapsed after plotting them in terms of ReD=/, as
showed in Fig. 2.4a. Furthermore, the least square technique was applied in order to
determine the best correlation, which lead to a minimum overall error. Thus, the
following expression is here proposed:

hiD
kf

¼ 0:08
ReD
/

� 0:8

Pr1=3; for 1:0� 104\
ReD
/

\2:0� 107;

valid for 0:2\/\0:9;

ð2:57Þ
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Fig. 2.2 Results for periodic cell: a Nondimensional pressure field for ReD = 105 and / ¼ 0.65,
b Isotherms for Pr ¼ 1; ReD = 105 and / ¼ 0.65, c Turbulence kinetic energy for ReD = 105 and
/ ¼ 0.65
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Equation (2.57), which gives the heat transfer coefficient for turbulent flow, is
compared with numerical results obtained with Low and High Re models. Such
comparison is presented in Fig. 2.4b, which also shows computations using cor-
relations given by Eqs. (2.45) and (2.46) by Wakao et al. [14] and Zhukauskas [18],
respectively. The agreement between the present correlation, other correlations in
the literature and the numerical simulations stimulates further investigation on this
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Fig. 2.3 Results for unit cell: a Effect of ReD on hi for Pr ¼ 1 and / ¼ 0.65, b Effect of porosity
on hi for Pr ¼ 1
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subject, contributing towards the building of a more general expression for the
interfacial heat transfer coefficient for porous media. Table 2.1 compares Eq. (2.57)
with other correlations in the literature.
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Fig. 2.4 Comparison of the numerical results for unit cell: aWith proposed correlation Eq. (2.57),
b With various correlations for / ¼ 0.65
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2.4 Laminar Flow in a Channel

This section presents numerical results with the macroscopic model above. The
problem considered here is flow through a two-dimensional channel completely
filled with a fixed porous substrate, as shown in Fig. 1.3a. Boundary conditions and
periodic constraints for turbulent flows in porous media are similar to those applied
to clear channel flow.

2.4.1 Non-dimensional Parameters

The longitudinal Nusselt number is calculated for both the fluid and solid phases
and is defined as [19],

Fluid phase Nusselt number:Nuf ¼ � 2H
Tw � Tmf

@hTf ii
@y

 !
; ð2:58Þ

Solid phase Nusselt number:Nus ¼ � 2H
Tw � Tms

@hTsii
@y

 !
; ð2:59Þ

where Tmf and Tms are the average temperature of the fluid and the solid phase,
respectively, and are defined as follows;

Tmf ¼
R
uTf dy
uBH

; uB ¼
R
udy
H

; Tms ¼
R
Tsdy
H

; ð2:60Þ

The solid phase Nusselt number, Nus, was proposed by [19] and refers to a
non-dimensional temperature gradient for the solid phase at the wall. This concept
has also been applied in reference [20] for laminar flows.

Table 2.1 Correlations for heat transfer coefficient and fluid-to-solid specific area ai

References Correlation Equations ai Flow
regime

Wakao et al.
[14]

hiD
kf

¼ 2þ 1:1Re0:6D Pr1=3 (2.45) 6 1�/ð Þ
D

Laminar

Kuwahara et al.
[15]

hiD
kf

¼ 1þ 4ð1�/Þ
/

� �
þ 1

2 ð1� /Þ1=2ReDPr1=3 (2.46) 4 1�/ð Þ
D

Laminar

Proposed
correlation

hiD
kf

¼ 0:08 ReD
/

� �0:8
Pr1=3

(2.57) 4 1�/ð Þ
D

Turbulent
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Non-dimensional local and cross-section averaged temperatures, for both phases,
are defined as,

hðs;f Þ ¼
Tw � Tðs;f Þ

Tw � Tinlet s ; fð Þ
ð2:61Þ

Hðs;f Þ ¼
Tmðs;f Þ � Tinletf
Tinlets � Tinletf

; ð2:62Þ

2.4.2 Numerical Method and Boundary Conditions

As before, the numerical method used to discretize the flow and energy equations
was the Control Volume approach and the SIMPLE method of Patankar [17] was
applied to relax the systems of algebraic equations. For convergence, the normal-
ized residue was set to be lower than 10−9. Boundary conditions are given by:

On the solid walls: huii ¼ 0; hTsii ¼ hTf ii ¼ Tw; ð2:63Þ

On the entrance: uD ¼ uinlet; hTsii ¼ hTf ii ¼ Tinlet; ð2:64Þ

2.4.3 Local Nusselt Numbers

The effect of the Reynolds number is shown in Fig. 2.5 compared with similar
computations by Alazmi and Vafai [19]. The Reynolds number is found to have a
substantial effect on the development length for Nu along the channel. Figure 2.5c
seems to indicate that for lower Reynolds number, the thermal equilibrium con-
dition is achieved faster than for higher Reynolds number cases. Both solid and
fluid temperatures reach an equilibrium value along X, decreasing the Nu difference
along the channel.

Figure 2.6 shows the effect of porosity on Nusselt for both phases. It is observed
from Fig. 2.6a, b that the lower the porosity, the smaller the differences between the
present results and those by Alazmi and Vafai [19]. For thermally developed flow
and low porosity, both sets of results are closer to each other. Also, the higher the
porosity, the higher the Nu number. High porosity condition means a lower inter-
facial area ai, reducing the exchange of energy between phases, leading ultimately
to higher values of Nu. Figure 2.6c presents similar results in each phase for the
entrance region of parallel plates.

The particle diameter, D, is directly related to the interfacial area ai and appears
in the expressions for hi. Low values for D are associated with high interfacial areas
and high interfacial film coefficients. As such, for the same porosity smaller particle
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diameters promote thermal equilibrium between phases by increasing the area of
contact between the solid and the fluid. On the other hand, larger particle diameters
tend to impair thermal equilibrium between phases, as seen in Fig. 2.7a, b.
Figure 2.7c shows the difference between each phase for distinct values of D and
shows that thermal equilibrium is reached faster for smaller particle diameters. Also
shown is that the larger particle diameters impair thermal equilibrium, affecting
temperature distributions and leading to lower Nu numbers for both phases.

Figure 2.8 shows the effect of thermal conductivity ratio on Nu. As seen in
Fig. 2.8a, b, a lower conductivity ratio enhances thermal equilibrium by reducing
temperature differences between phases. Figure 2.8c presents a comparison of
Nusselt numbers indicating that for a high conductivity ratio, impairment on the
exchange of energy between phases affects local temperature values, ultimately
reducing corresponding Nusselt numbers.

Finally, Fig. 2.9 shows a comparison of present results and those by Wakao et al.
[14] and Kuwahara et al. [15] correlations in addition to results by Alazmi and
Vafai [19]. It is clearly seen from Fig. 2.9 that a reasonable agreement is found
between the predictions, except for the Kuwahara correlation [15] for the fluid
phase Nusselt number, which is slightly higher. This discrepancy could be
explained due to the fact that predictions by Alazmi and Vafai [19] were obtained
with Wakao correlation [14], which is calculated considering ai based on circular
rods instead of square rods.

2.5 Turbulent Flow in a Channel

Results below were obtained after extensive testing on grid size independence and
search for optimal relaxation parameters. Due to lack of space here, the interest
reader is referred to previous work where such studies are presented in detail [20–
22].

Also, for turbulent flow (ReD ¼ 5� 104), a sensitive analysis on the value of hi
is performed in order to evaluate the correctness of code programming. Figure 2.10
shows results for the cross-section averaged temperatures for both the solid and
fluid phases. As in the case of laminar flow, a nominal value for hi in employed in
Fig. 2.10b and compared with artificially increased (Fig. 2.10a) and reduced
(Fig. 2.10c) values of the interfacial film coefficient. Also for turbulent flow, shorter
(Fig. 2.10a) and larger (Fig. 2.10c) developing lengths correspond to higher and
lower values for hi, respectively, indicating that physically realistic results for
temperatures are obtained.

Next, the effect of introducing Kdisp in the calculations for turbulent flow is
presented is Figure Fig. 2.11, for the conditions Da ¼ 10�4, ReD ¼ 5� 104,
D=H ¼ 1:03� 10�1, ks=kf ¼ 25 and / ¼ 0:6. The differences between the solid
and fluid phase temperature profiles are greater when thermal dispersion is
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incorporated in the macroscopic model, particularly in the near wall region
(Y\0:1), which embraces the boundary layer that is much thinner than for laminar
flows cases. Therefore, here also the role of the additional mechanism of dispersion
is to promote diffusion across the cross section of the channel, leading to flatter
h�Tf ii profiles and larger temperature differences from corresponding local values of
h�Tsii. Effects of Reynolds number, ReD, porosity, /, non-dimensional particle
diameter, D=L, and solid-to-fluid thermal conductivity, ks=kf , on temperature
behavior are shown next.

Figure 2.12 shows the effect of the Reynolds number and boundary condition on
Nu. One can note in the figure that an increase in ReD results in an increase in
Nusselt, for all cases, as expected. For high values of ReD, Nuf and Nus are closer to
each other when compared with similar computations for ReD ¼ 105 (Fig. 2.12b).
Figure 2.12c shows a comparison of all cases and indicates that Nuf attains higher
values than Nus, along the flow direction.

In Fig. 2.13a, b the effect of porosity ϕ on Nu is presented. An increase in
porosity causes the solid phase Nusselt number to decrease whereas Nuf in aug-
mented, for both boundary condition types. Increase in this difference for low
porosity medium could be explained by noting that a higher ϕ gives a lower hi,
according to Eq. (2.57), as well as a lower ai, as seen in Table 2.1. Their product,
hiai, is proportional to the heat transfer between phases, as shown by the two energy
Eqs. (2.36) and (2.37). Consequently, a high porosity medium will have the
intensity of energy transfer between phases reduced, reflecting in the temperature
fields and, ultimately, on the calculated Nu values.
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Fig. 2.13 Effect of ϕ on Nu for turbulent flow, Da ¼ 10�4;ReD ¼ 5� 104;D=L ¼ 1:03� 10�2;
ks=kf ¼ 25; a / ¼ 0:3, b / ¼ 0:6, c Both /
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Figure 2.14 shows the effect of the non-dimensional particle diameter D=L on
Nusselt, for a fixed porosity. In general, an increase in the particle diameter D=L
results in an increase in Nusselt, for both phases and both boundary condition types
(Fig. 2.14a, b). When porosity is constant and the thermal dispersion effects are
omitted, the particle diameter only affects hi and ai [see Eq. (2.57) and Table 2.1].
A reduced value for D=L with a constant ϕ increases the interstitial area, promoting
the exchange of energy between phases, leading to a reduction of the temperature
gradients in the wall region, which ultimately reflects on the Nu values.
Figure 2.14c compiles such findings and shows for turbulent flow, small differences
on Nu prevail in spite of the boundary condition type used.

Effects of the ratio ks=kf is presented in Fig. 2.15. All computations made so far
were obtained with ks=kf ¼ 25 and when one compares Fig. 2.15a, b, one can note
that the lower such ratio, the closer are the values for the Nusselt numbers,
regardless of the boundary condition used. When the fluid and the solid conduct
heat at rates of the same order, their temperatures levels do not differ much, with
reflection on the proximity of corresponding Nusselt numbers. Further, differences
between the Nusselt numbers for qw ¼ const: and Tw ¼ const: are reduced for the
solid, when ks=kf is large, and increased for the fluid, for small values of ks=kf
(Fig. 2.15c).

2.6 Chapter Summary

A computational procedure for determining the convective coefficient of heat
exchange between the porous substrate and the working fluid for a porous medium
was detailed. As a preliminary result, macroscopically uniform laminar and tur-
bulent flow through a periodic cell of isothermal square rods was computed, con-
sidering periodical velocity and temperature fields. Quantitative agreement was
obtained when comparing laminar results herein with simulations by Kuwahara
et al. [15]. For turbulent flows, Low and High Reynolds turbulence models were
employed in order to obtain the interfacial heat transfer coefficient. A correlation
was then proposed for such coefficient. Further work will be carried out in order to
simulate fully turbulent flow and heat transfer in a porous medium formed by arrays
of elliptic, cylindrical and transverse elliptic rods, displaced in in-line as well as
staggered arrangements. Ultimately, it is expected that a more general correlation
for hi be obtained to be used in conjunction with macroscopic two-energy equation
models.

Also, fully developed forced convection in a porous channel bounded by parallel
plates based on a two-energy equation model is analyzed. Details are presented for
determining the temperature profile and Nusselt number for laminar flows in a
porous medium. Results simulate the effects of Re, ϕ, D and ks=kf on Nu. High Re,
low porosities, low particle diameters and low thermal conductivity ratios promote
thermal equilibrium between phases, eventually leading to higher values of Nu for
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both the fluid and the solid. Further work will be carried out in order to simulate
fully turbulent flow and heat transfer in a porous medium with the macroscopic
two-energy equation model.

Further, this chapter also investigated the behavior of a two-energy equation
model to simulate flow and heat transfer in a porous bed. Effects of thermal dis-
persion, Reynolds number, particle diameter, porosity and solid-to-fluid thermal
conductivity ratio were investigated. The following conclusions were observed:

(1) For laminar flow, the thermal dispersion mechanism promotes energy
exchange in the fluid phase, leading to larger local temperature differences
when the solid and the fluid temperature are compared along the channel
cross-section, particularly at the entry region,

(2) For turbulent flow, the effect of including the thermal dispersion mechanism is
concentrated in the region close to the wall, within the boundary layer, where
such temperature differences are pronounced,

(3) Increase in Re number causes values for Nu of both phases to increase and to
approach each other,

(4) An increase in porosity causes the solid phase Nusselt number to decrease
whereas Nuf in augmented, for both boundary condition types. A high
porosity medium will have the intensity of energy transfer between phases
reduced, reflecting in the temperature fields and, ultimately, on the calculated
Nu values.

(5) A reduced value for D=L with a constant porosity increases the interstitial area,
promoting the exchange of energy between phases, leading to a reduction of
the temperature gradients in the wall region. In general, an increase in the
particle diameter results in an increase in Nusselt, for both phases and both
boundary conditions.

(6) The thermal conductivity ratio ks=kf causes the most effect on Nusselt num-
bers, and the grater the ratio, the most wider apart are Nus and Nuf , with a
reduction of Nusselt for the solid phase.
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Chapter 3
Moving Systems

3.1 Introduction

There is an increasing interest in the use of moving bed technology for chemical
compound separation, recuperation of petrochemical processes, drying of grains
and seeds and removal of organic matter in affluents, to mention a few applications.
The advantages of using a moving bed configuration are low investment, low
energy consumption, low maintenance and improvement process performance.
Accordingly, granular moving bed configurations are present in a number of
engineering systems, including those involving iron ore preparation for steel pro-
duction, for manufacturing of advanced materials and, more recently, for biomass
use in environment-friendly energy production equipment. Before proceeding, one
should mention that although most applications in industry are concerned with
turbulent flow through permeable beds, here only the laminar flow regime is
investigated. By that, one can established a consistent line of study in order to
analyze turbulent flows with appropriate models in the future.

3.2 Macroscopic Laminar Model for Fixed
and Moving Beds

The equations to follow are available in the open literature and for that their
derivation are not repeated here [1]. The geometry considered in this work is
schematically shown in Fig. 1.3c. Results for counter-flow depicted in Fig. 1.3b are
not shown here. In Fig. 1.3d, a moving permeable bed with constant velocity travels
along the reactor depicted in the figures. Incoming fluid and solid phase have
different temperatures at inlet.
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3.2.1 Fixed Bed

A macroscopic form of the governing equations is obtained by taking the volu-
metric average of the entire equation set. In this development, the porous medium is
considered to be rigid, fixed and saturated by the incompressible fluid. As men-
tioned, derivation of this equation set is already available in the literature [1] so that
details need not to be repeated here. Nevertheless, for the sake of completeness, the
final laminar incompressible form of the equations is here presented:

Continuity:

r � uD ¼ 0 ð3:1Þ

Momentum:

q
@uD
@t

þr � ðuDuD
/

Þ
� �

¼ �rð/h�piiÞþ lr2uD � l/
K

uD þ cF/q juDjuDffiffiffiffi
K

p
� �

ð3:2Þ

where the last two terms in Eq. (3.2) represent the Darcy and Forchheimer
contributions.

3.2.2 Moving Bed

For a moving bed, only cases where the solid phase velocity is kept constant will be
considered here, or say, we consider here a moving bed that crosses a fixed control
volume in addition to a flowing fluid, which is not necessarily moving with a
velocity aligned with the solid phase velocity. The steps below show first some
basic definitions prior to presenting a proposal for a set of transport equations for
analyzing such systems.

A general form for a volume-average of any property u, distributed within a
phase c that occupy volume DVc, can be written as [2–4],

huic ¼ 1
DVc

Z

DVc

u dVc ð3:3Þ

In the general case, the volume ratio occupied by phase c will be /c ¼ DVc=DV .
If there are two phases, a solid c ¼ s and a fluid phase c ¼ f , volume average

can be established on both regions. Also,

/s ¼ DVs=DV ¼ 1� DVf =DV ¼ 1� / f ð3:4Þ

and for simplicity of notation one can drop the superscript “f” to get
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/s ¼ 1� / ð3:5Þ

As such, calling the instantaneous local velocities for the solid and fluid phases,
us and u, respectively, one can obtain the average for the solid velocity, within the
solid phase, as follows,

huis ¼ 1
DVs

Z

DVs

us dVs ð3:6Þ

with, in turn, can be related to an average velocity referent to the entire REV as,

uS ¼ DVs

DV

z}|{
ð1�/Þ

1
DVs

Z

DVs

us dVs

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
huis

ð3:7Þ

A further approximation herein is that the porous bed is kept rigid and moves
with a steady average velocity us.

Both velocities can then be written as,

uD ¼ /huii and us ¼ ð1� /Þhuis ¼ const ð3:8Þ

A relative velocity is then defined as,

urel ¼ uD � uS ð3:9Þ

Assuming that the relative movement between the two phases is macroscopically
described by Eq. (3.9), the momentum equation reads,

q
@uD
@t

þr � ðuDuD
/

Þ
� �

¼ �rð/h�piiÞþ lr2uD � l/
K

urel þ cF/q jureljurelffiffiffiffi
K

p
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
relative drag

;

ð3:10Þ

3.3 Turbulence Model for Flow Equations

As mentioned, the equations to follow are available in the open literature [1]. For
turbulent flow, the geometry considered is also schematically shown in Fig. 1.3a.
A moving porous bed co-flows with a permeating fluid and both, the solid matrix as
well as the working fluid, move in the same west-to-east direction. The channel
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shown in the figure has length and height given by L and H, respectively. For the
sake of completeness, equations for turbulent flow for both fixed and moving
medium are presented below.

3.3.1 Fixed Bed

A macroscopic form of the governing equations is obtained by taking the volu-
metric average of the entire equation set. In this development, the porous medium is
considered to be rigid, fixed and saturated by the incompressible fluid. The final
forms of the equations considered here for turbulent flow are [1]:

Continuity:

r � �uD ¼ 0 ð3:11Þ

Momentum:

q r � ð�uD �uD
/

Þ
� �

¼ �rð/h�piiÞþ lr2�uD þr � ð�q/hu0u0iiÞ

� l/
K

�uD þ cF/q j�uDj�uDffiffiffiffi
K

p
� �

; ð3:12Þ

Turbulent kinetic energy:

qr � �uDhkii
� � ¼ r � lþ lt/

rk

� 	
r /hkii� �� �

þPi þGi � q/heii ð3:13Þ

Dissipation rate of turbulence kinetic energy:

qr: �uDheii
� � ¼ r � lþ lt/

re

� 	
r /heii� �� �

þ c1P
i heii
hkii þ c2

heii
hkii Gi � q/heii� �

ð3:14Þ

where �uD is the time-averaged Darcy velocity vector, �uD ¼ /h�uii, / is the porosity,
q is the density of the fluid, p is the pressure, l is the fluid dynamic viscosity, K is
the medium permeability, cF is the Forchheimer coefficient, lt/ is the macroscopic

turbulent viscosity, rk and re are constants, hkii is the intrinsic (fluid) average of k
and heii is the intrinsic dissipation rate of hkii, e ¼ lru0 : ðru0ÞT

.
q. In Eq. (3.14),

c1 and c2 are constants, Pi ¼ �qhu0u0ii : r�uD is the production rate of hkii due to
gradients of �uD and Gi ¼ ckq/ hkii j�uDj


 ffiffiffiffi
K

p
is the generation rate of the intrinsic

average of k due to the action of the porous matrix (see [1] for details):
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3.3.2 Moving Bed

As before, only cases where the solid phase velocity is given a constant will be
considered. Further, for turbulent flows the phase velocities read,

�uD ¼ /h�uii; uS ¼ ð1� /Þhuis ¼ const: ð3:15Þ

with a relative velocity,

�urel ¼ �uD � uS ð3:16Þ

In addition, a relative Reynolds number based on �urel and D can be defined as:

ReD ¼ q �urelj jD
l

ð3:17Þ

Further, if one uses the Darcy velocity and the overall reactor size H, one has a
different definition for Reynolds given by,

Re ¼ q �uDj jH
l

ð3:18Þ

Incorporating now in Eq. (3.12) a model for the Macroscopic Reynolds Stresses
�q/hu0u0ii, and assuming that a relative movement between the two phases is
described by Eq. (3.16), the momentum equation reads (see [1, 5] for details),

q r � �uD�uD
/

� 	� �
�r � lþ lt/

� �
r�uD þðr�uDÞT
 �n o

¼� rð/h�piiÞ � l/
K

�urel þ cF/q �urelj j�urelffiffiffiffi
K

p
: ð3:19Þ

where lt/ is the macroscopic eddy viscosity given by

lt/ ¼ qcl fl
hkii2

heii ; ð3:20Þ

cl is dimensionless constant and fl is a damping function, which differs from unit if
a Low-Reynolds turbulence model is applied. More on damping functions and
model constants will be shown below. Thus, to obtain the eddy viscosity, lt/ , we
used here the Low and High Reynolds number k – e models, whose equations for
the turbulent kinetic energy and its dissipation rate, incorporating now a relative
movement between the two phases �urelj j, are given next [5].
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A transport equation for hkii can be written as,

q r � ð�uDhkiiÞ
 � ¼r � ðlþ lt/

rk
Þrð/hkiiÞ

� �
� qhu0u0ii

: r�uD þ ck q
/hkii j�ureljffiffiffiffi

K
p

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Gi

�q/heii ð3:21Þ

where rk and ck are dimensionless constants and the generation rate due to the
porous substrate, Gi, which was included in Eq. (3.13), now depends on �urelj j and
reads,

Gi ¼ ckq/ hkii j�urelj
. ffiffiffiffi

K
p

ð3:22Þ

A corresponding transport equation for heii, incorporating also the relative
velocity �urelj j, can be written as,

q
@

@t
ð/heiiÞþr � ð�uDheiiÞ

� �
¼r � ðlþ lt/

re
Þrð/heiiÞ

� �
þ c1 ð�qhu0u0ii : r�uDÞ hei

i

hkii

þ c2 ckq
/ heii j�ureljffiffiffiffi

K
p � c2 f2q/

heii2

hkii ð3:23Þ

where re, c1 and c2 are constants and f2 is a damping function.

3.4 Thermal Transport

3.4.1 Two-Energy Equation Model

As for the flow, the macroscopic equations to heat transport in porous media are
obtained by applying the average volume to microscopic equations. The mathe-
matical model used to describe the heat transfer between the solid and fluid in a unit
of moving bed is based on the two-energy equations model, which can be written as:

q cp
� �

f /
n o @hTf ii

@ t
þ q cp

� �
f r � uDhTf ii

� �

¼ r � Keff ;f � rhTf ii
� � þ hiai hTsii � hTf ii

� � ð3:24Þ

1� /ð Þ q cp
� �

s

n o @hTsii
@ t

þ q cp
� �

s r � uShTsii
� �

¼r � Keff ;s � rhTsii
� �� hiai hTsii � hTf ii

� � ð3:25Þ
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where, Keff ;f and Keff ;s are the effective conductivity tensors for fluid and solid,
respectively, given by:

Keff ;f ¼ ½/ kf � I þ Kf ;s þ Kdisp ð3:26Þ

Keff ;s ¼ ½ð1� /Þ ks� I þ Ks;f ð3:27Þ

where I is the unit tensor and Kdisp, Kf ;s and Ks;f are coefficients defined as,

Thermal dispersion : �ðq cpÞf ð/ hiuiTf ii Þ ¼ Kdisp � rhTf ii ð3:28Þ

Local conduction :

r � 1
DV

Z

Ai

ni kf Tf dA

2

64

3

75 ¼ Kf ;s � rhTsii

�r � 1
DV

Z

Ai

ni ksTs dA

2

64

3

75 ¼ Ks;f � rhTf ii

8
>>>>>>>><

>>>>>>>>:

ð3:29Þ

where ni in (3.29) as already noted, is the unit vector pointing outwards of the fluid
phase. In this work, for simplicity, one assumes that the overall thermal resistance
between the two phases is controlled by the interfacial film coefficient, which
considers the boundary layer at the solid-fluid interface, rather than by the thermal
resistance within the solid and the fluid phases. Such an assumption might be more
valid for turbulent flows, but here it is also employed for laminar cases in the
absence of better information. As such, the local conduction coefficients Kf ;s;Ks;f

are here neglected for the sake of simplicity. Additional information on the models
in Eqs. (3.26) and (3.27) can be found in [6].

Non-dimensional temperatures for the solid and fluid are defined as:

hs;f ¼
Ts;f
� �i�Tmin

Tmax � Tmin
ð3:30Þ

where the subscripts s; f stands for the solid and fluid phases, respectively, and
“max” and “min” refers to both temperature maximum and minimum of either
phase.

3.4 Thermal Transport 49



3.4.2 Interfacial Heat Transfer Coefficient

The heat transferred between the two phases was modeled by means of a film
coefficient hi, or interstitial heat transfer coefficient, present in Eqs. (3.24) and
(3.25), such that,

hiai Tsh ii� Tf
� �i� �

¼ 1
rV

Z

Ai

ni � kfrTf dA ¼ 1
DV

Z

Ai

ni � ksrTs dA ð3:31Þ

where Ai is the interfacial area between the two phases and ai is the interfacial area
per unit volume or ai ¼ Ai=rV . The high values of ai make them attractive for
transferring thermal energy via conduction through the solid followed by convec-
tion to a fluid stream.

Wakao et al. [7] obtained a heuristic correlation for a closely packed bed of
particle diameter D and compared their results with experimental data. This cor-
relation for the interfacial heat transfer coefficient is given by,

hiD
kf

¼ 2þ 1:1Re0:6D Pr1=3; for/[ 0:9 ð3:32Þ

Further, a numerical correlation for the interfacial convective heat transfer
coefficient was proposed by Kuwahara et al. [8] for a laminar flow as,

hiD
kf

¼ 1þ 4ð1� /Þ
/

� 	
þ 1

2
ð1� /Þ1=2ReDPr1=3; valid for 0:2\/\ 0:9:

ð3:33Þ

Results in Eq. (3.33) depend on the porosity and are valid for packed beds of
particle diameter D. In addition, Saito and de Lemos (2005) [9] also obtained the
interfacial heat transfer coefficient for laminar flows through an infinite square rod
array using the same methodology as Kuwahara et al. (2001) [8].

The interstitial heat transfer coefficient hi is calculated by correlations Eq. (3.33)
for laminar flow and Eq. (2.57) for turbulent flow (see also Chap. 2 and Table 2.1).
However, since the relative movement between phases is seen as the promoter of
convective heat transport from the fluid to the solid, or vice versa, a relative
Reynolds number defined as,

ReD ¼ q urelj jD
l

ð3:34Þ

is used in the correlations Eqs. (2.57) and (3.33) instead of a Reynolds number
based on the absolute velocity of the fluid phase. Accordingly, when the solid phase
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velocity approaches the fluid velocity, the only mechanism for transferring heat
between phases is conduction.

3.4.3 Wall Treatment and Boundary Conditions

In this work, two forms of the k − ε model are employed, namely the High
Reynolds and Low Reynolds number turbulence models. For the High Reynolds
turbulence model, a macroscopic form of the standard k – ε closure was used
(Launder and Spalding (1974) [10]) whereas for the Low Reynolds number model
constants and damping functions of Abe et al. (1992) [11] were applied. All model
constants and damping functions for both turbulence models are compiled in
Table 3.1.

Boundary conditions are given by:
On the solid walls:

huii ¼ 0; qw ¼ 0 ð3:35Þ

On the entrance:

uD ¼ uinlet; hTf ii ¼ T f
inlet; hTsii ¼ Ts

inlet: ð3:36Þ

On the solid walls (Low Reynolds turbulence model):

�u ¼ 0; k ¼ 0; e ¼ m
@2k
@y2

ð3:37Þ

Table 3.1 Damping functions and constants for high and low Reynolds turbulence models

High Reynolds
model proposed
by Launder and
Spalding (1974)
[10]

Low Reynolds model proposed by Abe et al. (1992) [11]

fl 1.0
1� exp � ðmeÞ0:25y

14m

h in o2
1þ 5

ðk2=meÞ0:75 exp � ðk2=meÞ
200

� �2
� �� �

f2 1.0
1� exp � ðmeÞ0:25y

3:1m

h in o2
1� 0:3 exp � ðk2=meÞ

6:5

� �2
� �� �

rk 1.0 1.4

re 1.33 1.3

c1 1.44 1.5

c2 1.92 1.9
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On the solid walls (High Reynolds turbulence model):

�u
us

¼ 1
j
lnðyþEÞ; k ¼ u2s

c1=2l

; e ¼ c3=4l k3=2w

jyw
ð3:38Þ

with; us ¼ sw
q

� �1=2
; yþw ¼ ywus

m ; where us is wall-friction velocity, yw is the

non-dimensional coordinate normal to wall, j is the von Kármán constant, and E is
a constant that depends on the roughness of the wall. For smooth walls, E = 9.

On the entrance:

�uD ¼ uinlet ð3:39Þ

At exit, zero diffusion flux is considered for all variables.

3.5 Results for Laminar Parallel Flow

The problem under investigation is a laminar flow through a channel completely
filled with a moving layer of a porous material, as depicted in Fig. 1.3a. The
channel shown in Fig. 1.3a has length and height given by L and H, respectively. As
mentioned previously, the geometry of Fig. 1.3a was numerically investigated using
the control-volume method of Fig. 1.3b. The porous matrix moves with constant
velocity us. Here, validation of the presented simulations considered a fixed solid
matrix, i.e., uS=uD ¼ 0, for which an analytical solution is available in the literature
[11]. Additional results follow taking into consideration uS=uD [ 0. All runs for
moving bed cases are detailed in Table 3.2. Also, the fluid and solid phases are
given different temperatures at the inlet.

3.5.1 Effect of Reynolds Number, ReD

Figure 3.1a shows values for the longitudinal non-dimensional temperature profiles
as a function of ReD. The Reynolds number was calculated based on relative
velocity urel and for a slip ratio uS=uD ¼ 0:5. As such, for increasing ReD while
keeping uS=uD constant, both the fluid and the solid phases had to increase
according to the relationship for concurrent flow,
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ReD ¼ q urel D
l

¼ q uDD
l

ð1� uS
uD

Þ ¼ Re ð1� uS
uD

Þ ð3:40Þ

Back to Fig. 3.1, one can see that the cold fluid is heated up as it permeates the
hot porous structure. Also, because the magnitude of both velocities increase for a
higher ReD, one can see that the axial length needed for reaching the equilibrium
value is increased as ReD increases.
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Fig. 3.1 Non-dimensional
temperatures for ks=kf ¼ 25,
/ ¼ 0:9, Da ¼ 3:371� 10�3,
ðqcpÞs=ðqcpÞf ¼ 1:5; a as a
function of ReD, us=uD ¼ 0:5,
b as a function of us=uD
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3.5.2 Effect of Slip Ratio, us=uD

Figure 3.1b shows temperature profiles for a moving bed, as a function of us=uD. It
is observed that the higher the value of us=uD, the greater is the temperature
difference between fluid and solid phases. The stronger axial convection due to a
higher us brings more solid phase energy into the reactor, leading to high values of
the solid temperature along the axial direction. In addition, increasing us=uD for the
same fluid velocity leads to a raise in the equilibrium temperature as more thermal
energy is brought into the system. When the solid velocity approaches that of the
fluid, the velocity of the solid phase becomes large, leading to a longer equilibrium
length. Further, decreasing the relative velocity between phases as us increases
reduces the interstitial heat transfer rate and, consequently, exchange of heat
between phases becomes mostly governed by conduction, which further contributes
towards a longer axial length for thermal equilibrium to be established.

3.5.3 Effect of Darcy Number, Da

Figure 3.2a presents the effect of particle diameter D on the axial temperature
profiles. For a give particle diameter, permeability is given according to the Ergun
equation by (see [9]):

K ¼ D2/2

144 1� /ð Þ2 ð3:41Þ

leading to a Darcy number Da ¼ K=H2 where H is the height of channel. The
Reynolds number and the porosity are kept constant for all curves. It is observed in
Fig. 3.2 that for a small permeability, as a result of a decrease of particle diameter
while keeping the porosity constant, a larger interfacial heat transfer area promotes
heat transfer between phases and reduces the length necessary for thermal equi-
librium to be reached.

3.5.4 Effect of Porosity, /

Figure 3.2b shows the effect of porosity on the longitudinal temperature distribu-
tion. The Reynolds number ReD, the velocity ratio between the solid and fluid
phases uS=uD ¼ 0:5 and the ratio of thermal capacity ðqcpÞs=ðqcpÞf ¼ 1:5 are kept
constant for all curves. For a small porosity, a larger interfacial heat transfer area
promotes heat transfer between phases and reduces the length necessary for thermal
equilibrium to be reach. Also, for a fixed Reynolds number based on uD ¼ /huii,
an increase in porosity corresponds to a reduction in the fluid velocity huii, which
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further reduces the cooling effect by reducing the interfacial heat transfer coefficient
hi between phases. Consequently, the product hiai will be decreased as porosity /
increases, which indicates damping of convective transfer through the interfacial
area.

3.5.5 Effect of Thermal Capacity Ratio ðqcpÞs=ðqcpÞf

Figure 3.3 shows the effect of the thermal capacity ratio on dimensionless tem-
perature distribution along the axial direction. The density and specific heat of the
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Fig. 3.2 Non-dimensional
temperatures for us=uD ¼ 0:5,
ðqcpÞs=ðqcpÞf ¼ 1:5,
ks=kf ¼ 25; a as a function of
Da, / ¼ 0:9, b as a function
of /, ReD ¼ 62:5
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fluid are kept constant given by q ¼ 0:4345 kg/m3 and ðcpÞf ¼ 1986:8 J/kgK
respectively. It is observed in Fig. 3.3 that increasing the thermal capacity of the
solid ðqcpÞs, the equilibrium temperature tends to approach the inlet of the solid, or
say, for higher values of ðqcpÞs more energy exchange is needed to vary the
temperature of the solid by a certain amount.

3.5.6 Effect of Thermal Conductivity Ratio ks=kf

Figure 3.4a shows the effect of ks=kf on longitudinal non-dimensional temperatures.
It is noted that the higher the ratio ks=kf , the longer is the length needed for thermal
development since heat is transported only by conduction within the solid, which
causes its temperature distribution to be more connected to the inlet temperature. In
addition, a longer developing length and a higher equilibrium temperature are
obtained as ks=kf increases.

With increasing ks=kf for us=uD ¼ 0:1 (Fig. 3.4b), also here we can note higher
solid temperatures along the reactor as well higher equilibrium temperatures of the
system. Enhancing convection of the solid also raises the equilibrium temperature
(see Fig. 3.4b), which can be better seen when comparing corresponding final
equilibrium values for ks=kf ¼ 1 in Figs. 3.4a and 3.6b. On the other hand, by
decreasing the thermal conductivity ratio, also here a shorter axial length is needed
for the equilibrium temperature to be reached.

Further increasing the slip ratio to us=uD ¼ 0:4 (Fig. 3.4c), one can see that the
axial convection strength of the solid for ks=kf ¼ 1, when compared to the similar
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Fig. 3.3 Non-dimensional temperatures as a function of ðqcpÞs=ðqcpÞf , us=uD ¼ 0:5; ks=kf ¼ 25;
u ¼ 0:9; Da ¼ 1:498� 10�3; ReD ¼ 25
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cases in Fig. 3.6a, b, yield the most significant changes in raising the equilibrium
temperature. For example, nondimensional equilibrium temperatures rise from
around 0.02 for us=uD ¼ 0 and ks=kf ¼ 1 (Fig. 3.4a) to more than 0.35 for us=uD ¼
0:4 and the same thermal conductivity ratio equal to unity (Fig. 3.4a).

Therefore, when comparing the two mechanisms, namely advection and con-
duction of the solid phase, higher ratios ks=kf have less impact on raising the
equilibrium temperature than the increase in the velocity ratio us=uD.

3.6 Results for Turbulent Parallel Flow

As mentioned, this chapter presents results for both laminar and turbulent flow in a
channel containing a moving porous bed as shown in Fig. 1.3a. Data for all runs are
detailed in Tables 3.3 and 3.4.

3.6.1 Effect of Reynolds Number, ReD

The Reynolds number ReD was calculated based on relative velocity �urel for high
and low Reynolds models. It is noticed that when Darcy velocity �uD increases while
keeping the same porosity and slip ratio, there is an increase in the relative velocity
�urel (see Tables 3.3 and 3.4). Accordingly, Fig. 3.5a, b shows that when the relative
velocity increases, a greater amount of mean mechanical energy is converted into
turbulence, regardless of the turbulence model used. Or say, as the relative fluid
velocity increases past the solid obstacles, the amount of fluid disturbance is
increased leading to an increase in the final level of hkii. That can be seen by
inspecting the generation term Gi ¼ ckq/ hkii j�urelj


 ffiffiffiffi
K

p
that is proportional to �urel.

3.6.2 Effect of Slip Ratio, us=uD

Figure 3.6a, b indicate the damping of turbulence as the solid velocity approaches
that of the flowing fluid. As the relative velocity �urel decreases, the amount of
disturbances in the flow is reduced, implying then in a reduction of the final level of
hkii, according to Gi for both High and Low Reynolds number models.
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3.6.3 Effect of Darcy Number, Da

Figure 3.7 shows the distribution of turbulence kinetic energy with variation of
Darcy number. It is notice that as Darcy number increases, the intensity of the
turbulence kinetic energy inside of the porous layer decreases, mainly next to the
entrance, staying constant along the channel after x/L = 0.15 for High (Fig. 3.7a)
and Low Reynolds (Fig. 3.7b) models.
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Fig. 3.5 Non-dimensional turbulent kinetic energy as a function of ReD, with us=uD ¼ 0:5,
/ ¼ 0:6: a High Reynolds model and b low Reynolds model
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3.6.4 Effect of Porosity, /

Figure 3.8 shows values for non-dimensional turbulent kinetic energy along the
channel as a function of porosity / and for both turbulence models here employed.
The Reynolds number, ReD, and the velocity ratio between the solid and fluid
phases, us=uD ¼ 0:5, are kept constant for all curves in the figure.
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ReD � 103

64 3 Moving Systems



For a fixed Reynolds number based on �uD ¼ /h�uii, a decrease in porosity
corresponds to an increase in the intrinsic fluid velocity h�uii, reflecting a greater
conversion of mean mechanical kinetic energy into turbulence. It is also observed
that as the porosity gets lower, while keeping both velocities constant, the per-
meability K decreases leading to an increase in the final level of hkii according to Gi

(see Eq. (3.22)), which is, as seen, the generation rate of hkii due the porous
substrate.
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3.7 Chapter Summary

For laminar flows, this chapter investigated the behavior of a two-energy equation
model to simulate flow and heat transfer in a moving porous bed. Numerical
solutions for laminar flow in a moving porous bed were obtained for different
Reynolds number ReD, slip ratio us=uD, Darcy number Da, porosity /, ratio of
thermal capacity ðqcpÞs=ðqcpÞf and of ratio of thermal conductivity ks=kf , ranging
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Fig. 3.8 Non-dimensional turbulent kinetic energy as a function of /, with us=uD ¼ 0:5: a High
Reynolds model, ReD ¼ 5� 104; b low Reynolds model ReD ¼ 2:5� 103
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the slip ratio us=uD. Governing equations were discretized and numerically solved.
The following conclusions were observed:

(1) For low values of ReD, us=uD, Da, /, ðqcpÞs=ðqcpÞf and ks=kf , thermal
equilibrium between phases require smaller axial lengths,

(2) Increasing the speed of the solid relative to a fixed fluid speed enhances the
solid convection strength through the reactor as well as reduces the transport
of energy between the phases, leading, ultimately, to an increase in the axial
length necessary for thermal equilibrium to occur. The results presented here
have a wide application to analysis and optimization of engineering processes
in which a moving bed configuration could be identified.

Further, for turbulent flows, the behavior of turbulent kinetic energy in a con-
current moving porous bed was also presented. Numerical solutions for turbulent
flow were obtained for different Reynolds number, ReD, slip ratio, us=uD, Darcy
number, Da and porosity /. Governing equations were discretized and numerically
solved.

It is observed, according with the results obtained, that for high values of ReD,
higher final levels of hkii are simulated, as expected. The same effect occur for
lower values of slip ratio us=�uD, Darcy number Da and porosity /, or say, for
smaller values of these parameters, higher levels of hkii are computed. Results
herein might be useful to the design and analysis of a number of engineering
processes of practical interest.
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Chapter 4
Combustion Systems

4.1 Introduction

Modeling of flows in inert porous media has attracted the attention of scientists and
engineers worldwide and in the last decade a number of outstanding books,
handbooks and edited books have been written on the subject [1–5].

In addition to thermo-mechanical models, including new research work aimed at
biological applications [6] flows with chemical reactions in inert porous media have
been also investigated extensively due to their many engineering applications and
the demand for high efficiency power-producing devices. The growing use of
efficient radiant burners can be encountered in the power and process industries and,
as such, proper mathematical models of flow, heat, and mass transfer in porous
media under combustion can benefit from the development of such engineering
equipment.

In this chapter, an overview of recent development in modeling and simulating
reactive flow in porous material will be presented.

4.2 Porous Burners

The advantages of having a combustion process inside an inert porous matrix are
today well documented in the literature [7–14] including recent reviews about
combustion of gases [15] and liquids [16] in such burners. Hsu et al. [17] points out
some of its benefits, including higher burning speed and volumetric energy release
rates, greater combustion stability and the ability to burn gases with low energy
content. Driven by this motivation, the effects on porous ceramic inserts have been
investigated in Peard et al. [18], among others.

Turbulence modeling of combustion within inert porous media has been con-
ducted by Lim and Matthews [19] on the basis of an extension of the standard
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k-ε model of Jones and Launder [20]. Work on direct simulation of turbulence in
premixed flames, in cases when the porous dimension is of the order of the flame
thickness, also has been reported in Sahraoui and Kaviany [21].

Further, nonreactive turbulent flow in porous media has been the subject of
several studies [22–24], including many applications such as flow though porous
baffles [25], channels with porous inserts [26] and buoyant flows [27]. In such work,
intra-pore turbulence is accounted for in all transport equations, but only nonreactive
flows have been investigated. Other important contributions in modeling inert flows
in porous media can be found in the high-impact and outstanding competing model
of turbulence developed by Kuznetsov et al. [28] and Kuznetsov [29].

Motivated by the foregoing, this chapter extends previous work on turbulence
modeling in porous media to include now predictions of combusting flows.
Computations are carried out for inert porous material considering one- and
two-dimensional turbulent flows with one- and two-temperature approaches. In
addition, four different thermo-mechanical models are compared here, namely
Laminar Flow, Laminar Flow with Radiation Transport, Turbulent Flow and
Turbulent Flow with Radiation Transport. As such, this contribution compares the
effects of radiation and turbulence in smoothing temperature distributions within
porous burners. The material in this chapter reviews the work in de Lemos [30, 31]
and Coutinho and de Lemos [32] in a consolidated fashion, in addition to presenting
additional information in regard to this topic.

4.3 Macroscopic Flow

The thermo-mechanical model employed here is based on the
“double-decomposition” concept detailed in de Lemos [33] and Saito and de Lemos
[34, 35]. Transport equations are volume-averaged according to the Volume
Averaging Theorem [36–38] in addition of using time decomposition of flow
variables followed by standard time-averaging procedure for treating turbulence. As
the entire equation set is already fully available in the open literature, these equa-
tions will be reproduced here, and details about their derivations can be obtained in
the aforementioned references. Essentially, in all the above mentioned studies, the
flow variables are decomposed in a volume mean and a deviation (classical porous
media analysis) in addition to being decomposed in a time mean and a fluctuation
(classical turbulent flow treatment).

4.3.1 Macroscopic Continuity Equation

As previously stated, most of the equations to be shown in this chapter are fully
detailed in existing open literature, so only their final modeled forms will be
repeated.
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The continuity of fluid mass reads.

r � qf �uD ¼ 0 ð4:1Þ

Equation (4.1) represents the macroscopic continuity equation for the flowing gas
and its density, qf , is allowed to vary as temperate rises.

4.3.2 Macroscopic Momentum Equation

The momentum equation for macroscopic turbulent flow reads as follows [33]:

r � qf
�uD �uD
/

� �
¼�r / h�pii� �þ lr2�uD þr � �qf/hu0u0ii

� �

� l/
K

�uD þ cF/qf j�uDj�uDffiffiffiffi
K

p
� �

ð4:2Þ

where the last two terms in Eq. (4.2) represent the Darcy and Forchheimer con-
tributions, respectively. The symbol K is the porous medium permeability, cF ¼
0:55 is the form drag coefficient, hpii is the intrinsic (fluid phase averaged) pressure,
l is the fluid viscosity and / is the porosity of the porous medium.

4.3.3 Turbulence Modeling

Turbulence is handled via a macroscopic k � e model, given by:

r � qf �uDhkii
� � ¼r � lþ lt/

rk

� �
r /hkii� �� �

� qf u0u0
	 
i

: r�uD þ ckqf
/hkii �uDj jffiffiffiffi

K
p � qf/heii

ð4:3Þ

r � qf �uDheii
� � ¼r � lþ ltu

re

� �
r /heii� �� �

þ c1 �qhu0 u0ii : r�uD
� � heii

hkii

þ c2ckqf
/heii �uDj jffiffiffiffi

K
p � c2q/

heii2

hkii ð4:4Þ

Assuming that a model for the Macroscopic Reynolds Stresses �qf/hu0u0ii can
be given by
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�qf/hu0u0ii ¼ lt/2h�Div �
2
3
/qf hkiiI ð4:5Þ

with

h�Div ¼ 1
2

r /h�uii� �þ r /h�uii� �� �Th i
; ð4:6Þ

the momentum Eq. (4.2) finally reads [33],

r � qf
�uD �uD
/

� �
�r � lþ lt/

 �
r�uD þ r�uDð ÞT� �n o

¼ �r /h�pii� � � l/
K

�uD þ cF/qf j�uDj�uDffiffiffiffi
K

p
� �

ð4:7Þ

where,

lt/ ¼ qf cl
hkii2

heii ð4:8Þ

Note that in Eq. (4.7) a modified pressure is used, which includes the last term in
Eq. (4.5). Dealing with combustion processes, it is important to emphasize that the
fluid density qf is allowed to vary within the computational domain, as mentioned
above.

4.4 Heat Transfer

There are two possibilities to handle energy transport across the porous burner. In
the simplified model, also named “One-Temperature Model”, we assume the
so-called local thermal equilibrium hypothesis (LTE), in which the solid tempera-
ture is numerically equal to that of the flowing gas. When the solid and the gas
temperatures differ by a considerable amount, the “Two-Temperature Model” based
on the local non-thermal equilibrium hypothesis (LTNE) applies. In the latter case,
distinct energy balances are set for each phase. Transport equations for both models
are discussed in the following sections.

4.4.1 Local Thermal Non-equilibrium Model (LTNE)

In cases where average temperatures in distinct phases are substantially different,
macroscopic energy equations are obtained for both the fluid and solid phases by
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also applying time- and volume-average operators to the instantaneous local
equations [35]. As in the flow case, volume integration is performed over a
Representative Elementary Volume or REV. After including the heat released due
to the combustion reaction, one gets the following:

Gas Phase : r � ðqf cpf �uDhTf iiÞ ¼ r � Keff ; f � rhTf ii
� �

þ hiai hTpii � hTf ii
� �þ /DH Sfu; ð4:9Þ

Solid Phase : 0 ¼ r � Keff ;p � rhTpii
� �� hiai hTpii � hTf ii

� �
; ð4:10Þ

where hTf ii and hTpii are the gas and solid temperatures, respectively, ai ¼ Ai=DV
is the interfacial area per unit volume, hi is the film coefficient for interfacial
transport, DH is the heat of combustion [J/kg] and Sfu is the rate of fuel con-
sumption [kg/m2s; discussed later in this chapter]. Tensors Keff ; f and Keff ;p are the
effective conductivity tensors for the fluid and solid phases, respectively, given by,

Keff ; f ¼ /kf
z}|{conduction

8<
:

9=
;Iþ Kf ;p|{z}

local conduction

þ Kdisp|ffl{zffl}
dispersion

þKt þKdisp;t|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
turbulence

ð4:11Þ

Keff ;s ¼ ð1� /Þ ½kp
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{conduction

þ 16rðhTpiiÞ3
3br

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{radiation

�

8>>><
>>>:

9>>>=
>>>;
Iþ Kp; f|{z}

local conduction

ð4:12Þ

where k is the thermal conductivity for either phase, br is the extinction coefficient
[1/m], σ is the Stephan-Boltzmann constant and I is the unit tensor. All mechanisms
contributing to heat transfer within the medium, together with turbulence and
radiation, are included here to compare their effect on temperature distribution.
Further, such distinct contributions of various mechanisms are the outcome of the
application of gradient type diffusion models, in the following forms (see [35] for
more details):

Turbulent heat flux:� q cp
� �

f / hu0iihT 0
f ii

 �
¼ Kt � rh�Tf ii: ð4:13Þ

Thermal dispersion:� q cp
� �

f / hi�uiTf ii
� � ¼ Kdisp � rh�Tf ii: ð4:14Þ

Turbulent thermal dispersion:� q cp
� �

f / hiu0 iT 0
f ii

 �
¼ Kdisp;t � rh�Tf ii: ð4:15Þ
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Local conduction:

1
DV

Z
Ai

ni kf Tf dA ¼ Kf ;p � rh�Tf ii

� 1
DV

Z
Ai

ni kpTp dA ¼ Kp;f � rh�Tpii

8>>>>><
>>>>>:

ð4:16Þ

In Eqs. (4.9) and (4.10) the heat transferred between the two phases was mod-
eled by means of a interfacial convective heat transfer coefficient hi, as presented
above. A numerical correlation for it was proposed by Kuwahara et al. [39] for
laminar flow as,

hiD
kf

¼ 1þ 4ð1� /Þ
/

� �
þ 1
2
ð1� /Þ1=2ReD Pr1=3 valid for 0:2\/\0:9 ð4:17Þ

For turbulent flow, the following expression was proposed in Saito and de Lemos
[35],

hiD
kf

¼ 0:08
ReD
/

� �0:8

Pr1=3; for 1:0 x 104\
ReD
/

\2:0 x 107; valid for 0:2\/\0:9;

ð4:18Þ

4.5 Combustion Modeling

In this work, the gas phase is assumed to be composed by a premixture of air and
gaseous fuel that undergoes combustion while flowing through the solid. For
analyzing such a system, the equation set (4.1) to (2.57) is complemented with a
transport equation for the fuel and a kinetics model for the burning process [30].

4.5.1 Mass Transport for Fuel

Transport equation for the fuel is,

r � ðqf �uDh�mfuiiÞ ¼ r � qfDeff � rð/h�mfuiiÞ � / Sfu ð4:19Þ

where h�mfuii is the mass fraction for the fuel. The effective mass transport tensor,
Deff , is defined as:
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Deff ¼ Ddisp|ffl{zffl}
dispersion

þ Ddiff

zffl}|ffl{diffusion

þDt þ Ddisp;t|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
turbulence

¼ Ddisp þ 1
qf

l/
Sc‘

þ lt/
Sc‘;t

� �
I

¼ Ddisp þ 1
qf

l/;eff
Sc‘;eff

� �
I ð4:20Þ

where Sc‘ and Sc‘;t are the laminar and turbulent Schmidt numbers for species ‘,
respectively, and “eff” denotes an effective value. The dispersion tensor is defined
such that,

�qf/ hi�u i �mfuii ¼ qf Ddisp � rð/ h�mfuiiÞ ð4:21Þ

4.5.2 Chemical Reaction

The chemical exothermic reaction is assumed to be instantaneous and to occur in a
single, kinetic-controlled step, which, for combustion of a mixture of air and
methane, is given by the following chemical reaction [8, 40];

CH4 þ 2ð1þWÞðO2 þ 3:76N2Þ ! CO2 þ 2H2Oþ 2WO2 þ 7:52ð1þWÞN2

ð4:22Þ

For N-heptane, a similar equation reads as follows [41],

C7H16 þ 11ð1þWÞðO2 þ 3:76N2Þ ! 7CO2 þ 8H2Oþ 11WO2

þ 41:36ð1þWÞN2 ð4:23Þ

And for Octane, we get,

C8H18 þ 12:5ð1þWÞðO2 þ 3:76N2Þ ! 8CO2 þ 9H2Oþ 12:5WO2

þ 47ð1þWÞN2 ð4:24Þ

where W is the excess air in the reactant stream at the inlet of the porous foam. For
the stoichiometric ratio, W ¼ 0. In all of these equations, the reaction is then
assumed to be kinetically controlled and occurring infinitely fast. A general
expression for them can be derived as,

CnH2m þ ðnþ m
2
Þð1þWÞðO2 þ 3:76N2Þ !

nCO2 þ mH2Oþ ðnþ m
2
ÞWO2 þ ðnþ m

2
Þ3:76ð1þWÞN2

ð4:25Þ
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where the coefficients n and m can be found in Table 4.1. Here, Eq. (4.25) is
assumed to hold for the particular examples given in Table 4.1.

The local instantaneous rate of fuel consumption over the total volume (fluid
plus solid) was determined by one-step Arrhenius reaction [42, 43] given by,

Sfu ¼ qaf A hmb
fuiihmc

oxii e�E=R h�Tf ii ð4:26Þ

where mfu and mox are the local instantaneous mass fractions for the fuel and
oxidant, respectively, the coefficients a, b, c depend on the particular reaction [42],
A is the pre-exponential factor and E is the activation energy, where numerical
values for these parameters depend on the fuel considered [43]. For simplicity in
presenting the ideas in this chapter, we assume here that a ¼ 2; b ¼ c ¼ 1, which
corresponds to the burning of a mixture of methane and air [8, 30, 40].

Density qf in these equations is determined from the perfect gas equation for a
mixture of perfect gases:

qf ¼
Po

RTf
P‘
1

m‘

M‘

ð4:27Þ

where Po is the absolute pressure, R is the universal gas constant [8.134 J/(mol.K)]
and M‘ is the molecular weight of species ‘.

4.6 Heat Release

4.6.1 Double-Decomposition of Variables

Macroscopic transport equations for turbulent flow in a porous medium are
obtained through the simultaneous application of time and volume average oper-
ators over a generic fluid property u. Such concepts are defined as follows [36–38].

huii ¼ 1
DVf

Z
DVf

udV ; huiv ¼ /huii; / ¼ DVf

DV
; wihu ¼ huii þ iu ð4:28Þ

�u ¼ 1
Dt

Z tþDt

t
u dt; withu ¼ �uþ u0 ð4:29Þ

where DVf is the volume of the fluid contained in a REV DV , and intrinsic average
and volume average are represented, respectively, by h ii and h iv. Also, due to the
definition of average we get,
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u0 ¼ 0 ð4:30Þ

and

hiuii ¼ 0 ð4:31Þ

The double decomposition idea, fully described in de Lemos [33], combines
Eqs. (4.28) and (4.29) and can be summarized as:

huii ¼ h�uii; i�u ¼ iu; hu0ii ¼ huii0 ð4:32Þ

and,

u0 ¼ hu0ii þ iu0

iu ¼ iuþ iu0

)
where iu0 ¼ u0 � hu0ii ¼ iu� iu ð4:33Þ

Therefore, the quantity u can be expressed by either,

u ¼ huii þ huii0 þ iuþ iu0 ð4:34Þ

or

u ¼ h�uii þ i�uþ hu0ii þ iu0: ð4:35Þ

The term iu0 can be viewed as either the temporal fluctuation of the spatial
deviation or the spatial deviation of the temporal fluctuation of the quantity u.

4.6.2 Macroscopic Fuel Consumption

To derive macroscopic equations for the simple combustion model presented ear-
lier, we can take Eq. (4.26) with a ¼ 2; b ¼ c ¼ 1 and note that the rate of fuel
consumption is dictated by the product of two local instantaneous values, mfu and
mox, which represent local instantaneous mass fractions for the fuel and oxygen,
respectively. Now, if we apply to each one of them the decomposition (4.34), or its
equivalent (4.35), we get,

Table 4.1 Coefficients in the
general combustion Eq. (4.25)

Gas n m (n + m/2) (n + m/2) × 3.76

Methane 1 2 2 7.52

N-heptane 7 8 11 41.36

Octane 8 9 12.5 47
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mfu ¼ h�mfuii þ i �mfu þ hm0
fuii þ im0

fu ð4:36Þ

mox ¼ h�moxii þ i �mox þ hm0
oxii þ im0

ox ð4:37Þ

For the sake of simplicity and manipulation, looking at only the product of the mass
fractions ðmfumoxÞ in Eq. (4.26) and applying the decompositions Eqs. (4.36) and
(4.37), we get,

mfu mox ¼ �mfu
	 
i

�moxh ii þ i �mfu �moxh ii þ m0
fu

D Ei
�moxh ii þ im0

fu �moxh ii

þ �mfu
	 
i i �mox þ i �mfu

i �mox þ m0
fu

D Ei
i �mox þ im0

fu
i �mox

þ �mfu
	 
i

m0
ox

	 
i þ i �mfu m0
ox

	 
i þ m0
fu

D Ei
m0

ox

	 
iþim0
fu m0

ox

	 
i
þ �mfu
	 
i im0

ox þ i �mfu
im0

ox þ m0
fu

D Ei
im0

ox þ im0
fu

im0
ox ð4:38Þ

Applying the volume-average operator Eq. (4.28) to the instantaneous local
product Eq. (4.38), we get,

mfu mox
	 
i ¼ �mfu

	 
i
�moxh ii

D Ei
þ i �mfu �moxh ii	 
iþ m0

fu

D Ei
�moxh ii

� �i

þ im0
fu �moxh ii

D Ei

þ �mfu
	 
i i �mox

D Ei
þ i �mfu

i �mox
	 
iþ m0

fu

D Ei
i �mox

� �i

þ im0
fu

i �mox

D Ei

þ �mfu
	 
i

m0
ox

	 
iD Ei
þ i �mfu m0

ox

	 
iD Ei
þ m0

fu

D Ei
m0

ox

	 
i� �i

þ im0
fu m0

ox

	 
iD Ei

þ �mfu
	 
i im0

ox

D Ei
þ i �mfu

im0
ox

	 
iþ m0
fu

D Ei
im0

ox

� �i

þ im0
fu

im0
ox

D Ei

ð4:39Þ

Now, looking back at Eq. (4.31), all terms containing only one deviation factor in
Eq. (4.39) will vanish, such that,

(4.40)

The following equation is left as,
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mfu mox
	 
i ¼ �mfu

	 
i
�moxh iiþ m0

fu

D Ei
�moxh iiþ i �mfu

i �mox
	 
iþ im0

fu
i �mox

D Ei

þ �mfu
	 
i

m0
ox

	 
iþ m0
fu

D Ei
m0

ox

	 
iþ i �mfu
im0

ox

	 
iþ im0
fu

im0
ox

D Ei
ð4:41Þ

Another way to write Eq. (4.41), using the equivalences shown in Eq. (4.32), is

hmfu moxii ¼ hmfuii hmoxii þ hmfuii
0 hmoxii þ himfu

imox ii þ him0
fu

imoxii

þ hmfuii hmoxii
0 þ hmfuii

0 hmoxii
0 þ himfu

im0
ox ii þ him0

fu
im0

oxii ð4:42Þ

If we now apply the time-averaging operator over Eq. (4.42) and note that, due
to Eq. (4.30), all terms containing only one time fluctuation factor vanish, such that,

(4.43)

we get the following time-and-volume averaged expression after dropping all null
values,

hmfumoxii ¼ hmfuii hmoxii þ himfu
imox ii þ hmfuii0 hmoxii0 þ him0

fu
im0

oxii ð4:44Þ

Again, we can make use of an alternative representation for the same terms in
Eq. (4.44) when looking at equivalences (4.32). We then get,

hmfu moxii ¼ h�mfuii h�moxii þ hi �mfu
i �moxii þ hm0

fuii hm0
oxii þ him0

fu
im0

oxii ð4:45Þ

Including the full decomposition Eq. (4.45) back into the expression for Sfu,
Eq. (4.26), we get,

hSfuii ¼ q2f A hmfu moxii e�E=R h�Tii

¼ q2f A h�mfuii h�moxii|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
I

þhi �mfu
i �moxii|fflfflfflfflfflffl{zfflfflfflfflfflffl}
II

þhm0
fuii hm0

oxii|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
III

þhim0
fu
im0

oxii|fflfflfflfflfflffl{zfflfflfflfflfflffl}
IV

0
B@

1
CA e�E=R h�Tii

ð4:46Þ

The four term on the rhs of Eq. (4.46), multiplied by the parameter

q2f A e�E=R h�Tii , can be interpreted physically as follows:
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I. Reaction rate due to volume-and-time averaged values of fuel and oxidant
mass fractions. This is the standard rate of reaction commonly employed in the
literature [8, 40, 41].

II. Dispersive reaction rate due to deviation of mean time-mean fuel and oxidant
mass fractions. This rate occurs even is the flow in laminar and is due to fact
that both mass fractions present a deviation value about their volume-averaged
values.

III. Turbulent reaction rate due to time-fluctuation of volume-averaged values
of fuel and oxidant mass flow rates, and represents additional fuel consump-
tion rate because, inside a REV, the volume-averaged mass fraction of both
oxygen and fuel fluctuate with time, giving rise to a non-null time correlation.

IV. Turbulent dispersive reaction rate due to simultaneous time fluctuations and
volume deviations of both values of fuel and oxidant mass flow rates.

In light of Eq. (4.33), terms III and IV in Eq. (4.46), can be recombined to form,

hm0
fuii hm0

oxii þ him0
fu

im0
oxii ¼ hm0

fu m
0
oxii ð4:47Þ

giving,

Stfu;/ ¼ q2f Ahm0
fu m

0
oxii e�E=R h�Tii ð4:48Þ

which can be seen as the overall effect of turbulence on the fuel consumption rate.
Likewise, the dispersive component reads,

Sdispfu;/ ¼ q2f Ahi �mfu
i �moxii e�E=R h�Tii ð4:49Þ

and for the first term in Eq. (4.46),

Sfu;/ ¼ q2f Ah�mfuii h�moxii e�E=R h�Tii ð4:50Þ

finally giving,

hSfuii ¼ Sfu;/ þ Sdispfu;/ þ Stfu;/ ð4:51Þ

The models for Eqs. (4.48) and (4.49) and evaluation of their relative values
when compared to Eq. (4.46) remains an open question and shall be the subject of
further investigation. They might be related to physically controlled mechanisms
associated with the full reaction rate Eq. (4.46).
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4.7 Numerical Results

4.7.1 Simulation Details and Boundary Conditions

The two-temperature model given in Sect. 4.4.1 was applied. Figure 1.3e illustrates
the case here analyzed with corresponding boundary conditions. The finite–volume
technique was employed to discretize the transport equations and the resulting
algebraic equation set was relaxed using the well-known segregated method
SIMPLE [45]. Further, the flame front position was the sole outcome of the solution
process and no artificial numerical set-up was implemented for holding the flame at
some particular location.

For simulations using the geometry in Fig. 1.3e, the parameters and boundary
conditions here used are those of the burner developed by Pereira [46]. Simulations
assumed given temperatures (solid and gas) and fuel mass fraction at inlet
(x ¼ 0 cm). At exit (x ¼ 8 cm ), for the solid temperature, a balance between the
energy conducted to the exit of the burner and the radiation leaving the porous
material to the environment was applied. Further, an initial length of 2 cm was
considered to be made of a material that prevents flash back of the flame, which is
commonly referred to in the literature as “flame trap” [44]. Ignition, is existing, was
then calculated for x[ 2 cm.

4.7.2 Grid Independence Study

The computational grid was generated with a concentration of points close to the
beginning of the combustion section where steep temperature and species gradients
were expected to appear. Two grids were employed with 120 and 240 nodes in the
x direction, respectively. Figure 4.1 shows temperature profiles calculated with both
mentioned grids and indicates that no detectable differences exists between the two
sets of results. For this reason, all simulations in this work make use of the 120 node
stretched grid.

4.7.3 One Dimensional Combustor

Figure 4.2 shows results for temperature of both the burning gas and solid porous
matrix. Results can correctly predict the increase of the gas temperature when the
excess ratio is reduced or the inlet mass flow rate is increased.

Figure 4.3a also shows the effect of excess air Ψ on the gas temperature, Tf , and
solid temperature, Tp. Temperature levels for the stoichiometric case and for W ¼
0:8 gave numerical values close to those from Kuo [42]. Likewise, mass fraction
behavior of species CH4, CO2 (Fig. 4.3b) and H2O, O2 (Fig. 4.3c) follow closely
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those reported by Kuo [42], for the one-equation simple combustion model here
presented. Excess air reduces the final mass fraction of CO2 and water and raises the
amount of oxygen not participating in the combustion reaction. These results are the
outcome of the single step reaction (Sect. 4.5.2) that links the consumption and
production rates of individual constituents of the mixture.

Figure 4.4 shows the dependence of temperature levels on inlet velocities Uin.
As axial flow in increased, one can note a slight reduction of peak values of
temperatures, followed by the movement of the flame towards the exit of the burner.

Although the movement of the flame front is in accordance with simulations by
Trimis and Durst [44], here a reduction on the maximum values of temperatures
was calculated here, which disagrees with that study’s findings, where the tem-
perature rises as the inlet mass flow rate is increased. One possible explanation for
this contrary behavior is that there are a number of distinct parameters and
assumptions in both calculations sets, here and in Trimis and Durst [44], spanning
from mathematical to numerical modeling hypotheses, which might affect the final
results.

Four different thermo-mechanical models are compared now: namely, Laminar,
Laminar with Radiation Transport, Turbulent and Turbulent with Radiation
Transport. The Radiation model is included by considering the radiation transport
term in the Tp-Eq. (4.12). Turbulence modeling is handled by resolving the k � e
model, Eqs. (4.3) and (4.4), in addition to solving for the macroscopic turbulent
eddy viscosity lt/ , Eq. (4.8). In all models, combustion is simulated via a unique
simple closure, which is presented by Eqs. (4.22) and (4.26).

Numerical simulations obtained with different models are presented in Fig. 4.5
for two values of Uin. Figure 4.5a shows that for a low value of Uin, the flame
(shown by solid lines) stabilizes close to the beginning of the burning section
(x ¼ 2 cm), independent of the mathematical model applied. Solid temperatures are
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influenced by radiation transport, which tends to smooth out temperature differ-
ences within the solid matrix, enhancing, as such, the regenerative advantage of
porous burners (shown by dashed lines). Regeneration is achieved by preheating the
gas prior to the combustion zone. In fact, the use of a turbulence model in con-
junction with radiation transport gives the higher temperature peak of the gas
temperature at the flame position. Increasing the inlet mass flow rate (Fig. 4.5b), the
flame is pushed towards the burners exit, regardless of the model used. Here also
radiation transport substantially affects the solid temperature distribution, but
definitive conclusions on the appropriateness of each model can be reached only
after careful comparison to experimental measurements. This shall be the subject of
future research efforts.

Further, four different thermo-mechanical models are now compared, namely
Laminar, Laminar with Radiation Transport, Turbulent, Turbulent with Radiation
Transport. Radiation model is included by considering the radiation transport term
in the Tp-Eq. (4.12). Turbulence modeling is handled by resolving the k � e model
(Eqs. 4.3–4.4) in addition to solving for the macroscopic turbulent eddy viscosity
ltu , Eq. (4.8). In all models, combustion is simulated via a unique simple closure,
which is presented by Eqs. (4.22) and (4.26).

4.8 Chapter Summary

This chapter presented one-dimensional simulations for a mixture of air and
methane burning in a porous material. The LTNE models was applied and four
different thermo-mechanical models were compared along with a unique simple
closure for combustion. The Results indicate that a substantially different temper-
ature distribution pattern is obtained depending on the model used. For high excess
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air or gas velocity, the flame front moves towards the exit of the burner. Results
herein motivates further research work on the subject of reactive turbulent flow in
porous burners and should be seen as a preliminary step towards reliable simulation
of real porous combustors.
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Chapter 5
Double Diffusion

5.1 Introduction

Analyses of double-diffusive phenomena in free convection in permeable media has
many environmental and industrial applications, such as in oil and gas extraction,
movement of gas concentration into the ground, contaminant dispersion in soils,
grain storage and drying, petrochemical processes, electrochemical processes, to
mention a few [1–9]. In some specific applications, the voids are large enough and
the fluid mixture may become turbulent. In such instances, difficulties arise in the
proper mathematical modeling of the transport processes under both temperature
and concentration gradients.

Usually, modeling of macroscopic transport for incompressible flows in rigid
porous media has been based on the volume-average methodology for either heat or
mass transfer [10–14]. If fluctuations in time are also of concern due the existence
of turbulence in the intra-pore space, a variety of mathematical models have been
published in the literature in the last decade. One of such views, which entails
simultaneous application of both time and volume averaging operators to all gov-
erning equations, has been organized and published in a book [15] that describes, in
detail, an idea known in the literature as the double-decomposition concept (see
Chap. 3 in [15] for details).

In an earlier work [16], double-diffusive effects in porous media have been
treated considering thermal equilibrium between the porous matrix and the per-
meating fluid. Or say, in [16] the fluid temperate was assumed to be the same of that
of the solid when analyzing double-diffusive mechanisms. Later [17], buoyancy-
free flows were investigated with the so-called Two-Energy-Equation Model, or
2EEM for short, which is based on the Local Thermal Non-equilibrium Hypothesis
(LTNE) meaning that the average temperature of the fluid is not equal to the
average temperature of the solid matrix. However, in [17] no double-diffusion was
considered.
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Therefore, the purpose of this contribution is to extend the work of [16] on
turbulent double-diffusion using only one energy equation, assuming now the
thermal non-equilibrium hypotheses of [17], which requires an independent energy
balance for each phase. As such, the expectation herein is that, by combining now
such two models that were developed on separate, a larger number of physical
processes can now be more realistically tackled.

5.2 Mass Transport

The steady-state local (microscopic) instantaneous transport equations for an
incompressible binary fluid mixture with constant properties flowing in an inert
heterogeneous medium are given in details elsewhere and for that, they will be just
repeated here. They read:

Within the fluid:

Continuity r � u ¼ 0 ð5:1Þ

Momentum qr � ðuuÞ ¼ �rpþ lr2uþ q g ð5:2Þ

Energy-Fluid Phase : ðqcpÞf r � ðuTf Þ
� � ¼ r � ðkfrTf Þþ Sf ð5:3Þ

Mass concentration : qr � ð um‘ þ J‘ Þ¼qR‘ ð5:4Þ

Within the solid:

Energy-Solid Phase PorousMatrixð Þ : 0 ¼ r � ðksrTsÞ þ Ss ð5:5Þ

where u is the mass-averaged velocity of the mixture, u ¼ P
‘

m‘u‘; u‘ is the

velocity of species ‘ ; m‘ is the mass fraction of component ‘, defined as m‘ ¼
q‘=q; q‘ is the mass density of species ‘ (mass of ‘ over total mixture volume), q is
the bulk density of the mixture (q ¼ P

‘

q‘), p is the pressure, l is the fluid mixture

viscosity, g is the gravity acceleration vector, cp is the specific heat, the subscripts
f and s refer to fluid and solid phases, respectively, Tf and Ts are the fluid and solid
temperature, kf and ks are the fluid and solid thermal conductivities, cp is the
specific heat and S is the heat generation term. If there is no heat generation either in
the solid or in the fluid, one has further Sf ¼ Ss ¼ 0. The generation rate of
species ‘ per unit of mixture mass is given in (5.4) by R‘. Also, as pointed out in
[16], an alternative way of writing the mass transport equation is using the volu-
metric molar concentration C‘ (mol of ‘ over total mixture volume), the molar
weight M‘ (g/mol of ‘) and the molar generation/destruction rate R�

‘ (mol of ‘/total
mixture volume), giving:
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M‘r � ð uC‘ þ J‘ Þ¼M‘R
�
‘ ð5:6Þ

Further, the mass diffusion flux J‘ (mass of ‘ per unit area per unit time) in (5.4)
or (5.6) is due to the velocity slip of species ‘,

J ¼ q‘ðu‘ � uÞ ¼ �q‘D‘rm‘ ¼ �M‘D‘rC‘ ð5:7Þ

where D‘ is the diffusion coefficient of species ‘ into the mixture. The second
equality in Eq. (5.7) is known as Fick’s Law, which is a constitutive equation
strictly valid for binary mixtures under the absence of any additional driving
mechanisms for mass transfer [10]. Therefore, no Soret or Dufour effects are here
considered.Rearranging (5.6) for an inert species, dividing it by M‘ and dropping
the index ‘ for a simple binary mixture, one has,

r � ð uCÞ¼r � ðDrCÞ ð5:8Þ

If one considers that the density in the last term of (5.2) varies with fluid
temperature and concentration, for natural convection flow, the Boussinesq
hypothesis reads, after renaming this density qT ,

qT ffi q ½1� bðTf � Tref Þ � bCðC � Cref Þ� ð5:9Þ

where the subscript ref indicates a reference value and b and bC are the thermal and
salute expansion coefficients, respectively, defined by,

b ¼ � 1
q
@q
@Tf

����
p;C

; bC ¼ � 1
q
@q
@C

����
p;Tf

ð5:10Þ

Here, it is interesting to point out that in [15] the temperature used in Eq. (5.9)
was the same of that of the solid, T ¼ Tf ¼ Ts. Further, it is important to note that,
as it is going to be shown below, after volume averaging Eqs. (5.3) and (2.4), Tf is
going to be related to Ts due to the exchange of heat between the two phases across
the interstitial area. Also, Eq. (5.9) is an approximation of Eq. (5.10) and shows
how density varies with the fluid temperature and mass concentration in the body
force term of the momentum equation.

Substituting now (5.9) into (5.2), one has,

qr � ðuuÞ ¼ �rpþ lr2uþ q g ½1� b ðTf � Tref Þ � b ðC � Cref Þ� ð5:11Þ

Thus, the momentum equation becomes after some rearrangement,

qr � ðuuÞ ¼ �ðrpÞ� þ lr2u� q g½ðbðTf � Tref Þþ bCðC � Cref Þ � ð5:12Þ

where ðrpÞ� ¼ rp� q g is a modified pressure gradient.
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5.3 Averaging Operators

For the sake of completeness, although the information below has been given in detail
above and in a number of articles and books, including [15] for example, it is con-
venient to recall the definition of time average and volume average in this chapter.

The time average of a general quantity u is defined as:

�u ¼ 1
Dt

Z tþDt

t
u dt ð5:13Þ

where the time interval Dt is small compared to the fluctuations of the average
value, �u, but large enough to capture turbulent fluctuations of u. Time decompo-
sition can then be written as,

u ¼ �uþu0 ð5:14Þ

with u0 ¼ 0. Here, u0 is the time fluctuation of u around its average �u.
Further, the volume average of φ taken over a Representative Elementary

Volume (REV) in a porous medium can be written as [18–20]:

huiv ¼ 1
DV

Z
DV

u dV ð5:15Þ

The value huiv is defined for any point x surrounded by a REV of size DV . This
average is related to the intrinsic average for the fluid phase as:

huiv ¼ / huii ð5:16Þ

where / ¼ DVf
�
DV is the medium porosity and DVf is the volume occupied by the

fluid in a REV. Furthermore, one can write:

u ¼ huii þ iu ð5:17Þ

with hiuii ¼ 0. In Eq. (5.17), iu is the spatial deviation of u with respect to the
intrinsic average huii.

Further, the local volume average theorem can be expressed as [17–19]:

hruiv ¼ rð/huiiÞþ 1
DV

Z
Ai

niudS

hr � uiv ¼ r � ð/huiiÞþ 1
DV

Z
Ai

ni � u dS

h@u
@t

iv ¼ @

@t
ð/huiiÞ � 1

DV

Z
Ai

ni � ðuiuÞdS

ð5:18Þ
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where ni is the unit vector normal to the fluid-solid interface, pointing from the fluid
towards the solid phase, Ai is the fluid-solid interface area within the REV. It is
important to emphasize that Ai should not be confused with the surface area sur-
rounding volume DV . In [15] it is shown that for a rigid, homogeneous porous
medium saturated with an incompressible fluid, the following relationships apply:

huii ¼ h�uii
�u ¼ iu

hu0ii ¼ huii0
ð5:19Þ

Therefore, a general quantity / can be expressed by either,

u ¼ huii þhuii0 þ iuþ iu0 ð5:20Þ

or

u ¼ h�uii þ i�uþhu0ii þ iu0 ð5:21Þ

Expressions (5.20) and (5.21) encompass what is recalled in the literature as the
“double decomposition” concept where i/0 can be understood as either the time
fluctuation of the spatial deviation or the spatial deviation of the time fluctuation.
Also, hiu0ii ¼ iu0 ¼ 0.

5.4 Time Averaging for Buoyant Flows

In order to apply the time average operator to Eqs. (2.4), (5.1), (5.3), (5.8) and (5.
12), one considers,

u ¼ �uþ u0; Tf ¼ �Tf þ T 0
f ; Ts ¼ �Ts þ T 0

s; C ¼ �CþC0; p ¼ �pþ p0 ð5:22Þ

Substituting (5.22) into the governing equations and considering constant
properties for both the fluid and the solid,

r � �u ¼ 0 ð5:23Þ

qr � ð�u�uÞ ¼ �ðr �pÞ� þ lr2�uþr � ð�q u0u0Þ � q g ½b ð�Tf � Tref Þþ bCð�C
� Cref Þ�

ð5:24Þ

ðqcpÞfr � ð�uTf Þ ¼ r � ðkr�Tf Þþr � ð�q cpu0T 0
f Þ ð5:25Þ
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0 ¼ r � ksr�Tsð Þ: ð5:26Þ

r � ð �u �CÞ¼ � r � ðDr�CÞþr � ð� u0 C0Þ ð5:27Þ

For clear fluid, the use of the eddy-diffusivity concept for expressing the stress–
strain rate relationship for the Reynolds stress appearing in (5.24) gives,

�qu0u0 ¼ lt2D� 2
3
qk I ð5:28Þ

where D ¼ ½r�uþðr�uÞT �=2 is the mean deformation tensor, k ¼ u0 � u0�2 is the
turbulent kinetic energy per unit mass, lt is the turbulent viscosity and I is the unity
tensor. Similarly, for the turbulent heat flux on the r.h.s. of (5.25) and (5.27) the
eddy diffusivity concept reads,

� q cp u0 T 0
f ¼ cp

lt
Prt

r �Tf ; � qu0 C0 ¼ lt
Sct

r �C ð5:29Þ

where prt and Sct are known as the turbulent Prandtl and Schmidt numbers,
respectively.

Further, a transport equation for the turbulent kinetic energy is obtained by
multiplying first, by u0, the difference between the instantaneous and the time-
averaged momentum equations. Thus, applying further the time average operator to
the resulting product, one has,

qr � ð�ukÞ ¼ �qr � u0
p0

q
þ q

� �� 	
þ lr2kþPþGT þGC � qe ð5:30Þ

where P ¼ �qu0u0 : r�u is the generation rate of k due to gradients of the mean
velocity and

GT ¼ �q b g � u0T 0
f ¼ b

lt
Prt

g � r �Tf ð5:31Þ

GC ¼ �qbC g � u0C0 ¼ bC
lt
Sct

g � r �C ð5:32Þ

are the thermal and concentration generation rates of k due to temperature and
concentration fluctuations, respectively. Also, q ¼ u0 � u0=2 and, on the right of
Eqs. (5.31) and (5.32), the models in (5.29) have been applied.

94 5 Double Diffusion



5.5 Volume Averaging

5.5.1 Mean Continuity Equation

This section presents first equations for buoyancy free flows. When the average
operators (5.13)–(5.15) are simultaneously applied over Eqs. (2.1) and (2.2),
macroscopic equations for turbulent flow are obtained. Volume integration is per-
formed over a Representative Elementary Volume (REV) shown in resulting in,

r � �uD ¼ 0: ð5:33Þ

where, �uD ¼ /h�uii and h�uii identifies the intrinsic (liquid) average of the
time-averaged velocity vector �u.

For non-buoyant flows, macroscopic equations considering turbulence have
been already derived in detail for momentum, heat, and mass transfer [15] and for
this reason their derivation need not to be repeated here. They read:

5.5.2 Mean Momentum Transport

qr � �uD �uD
/

� �
¼ �rð/h�piiÞþ lr2�uD þr � ð�q/hu0u0iiÞ

� l/
K

�uD þ cF/q j�uDj�uDffiffiffiffi
K

p
� 	

ð5:34Þ

�q/hu0u0ii ¼ lt/2h�Div �
2
3
/qhkiiI ð5:35Þ

h�Div ¼ 1
2
frð/h�uiiÞþ ½rð/h�uiiÞ�Tg ð5:36Þ

hkii ¼ hu0 � u0ii�2
lt/ ¼ q cl fl

hkii2
heii ð5:37Þ

where cl is a constant, fl is damping function to be presented.
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5.5.3 Macroscopic Turbulence Field

The intrinsic turbulent kinetic energy per unit mass and its dissipation rate are
governed by the following equations,

q
@

@t
/hkii� �þr � �uDhkii

� �� 	
¼ r � lþ lt/

rk

� �
r /hkii� �� 	

� qhu0u0ii : r�uD

þ ckq
/h kii j�uDjffiffiffiffi

K
p � q/heii

ð5:38Þ

q
@

@t
/heii� �þr � �uDheii

� �� 	
¼ r � lþ lt/

re

� �
r /heii� �� 	

þ c1 �qhu0u0ii : r�uD
� � heii

hkii

þ c2 ckq
/ heii j�uDjffiffiffiffi

K
p � c2f2q/

heii2
hkii

ð5:39Þ

where the c´s are constants and f2 is a another damping function. Usually, two
forms of the k-ε model are employed, namely the High Reynolds (Launder and
Spalding [20]) and Low Reynolds number (Abe et al. [21]) turbulence models. The
constants and formulae used as damping functions were showed in Table 3.1.

5.6 Two-Energy Equation Model (2EEM)

Similarly, macroscopic energy equations are obtained for both fluid and solid
phases by applying time and volume average operators to Eqs. (2.3) and (2.4). As in
the flow case, volume integration is performed over a Representative Elementary
Volume (REV), resulting in,

q cp
� �

f r � / h�uiihTf ii þ hi�uiTf ii|fflfflffl{zfflfflffl}
thermal disperson

þ hu0iihT 0
f ii|fflfflfflfflffl{zfflfflfflfflffl}

turbulent heat
flux

þ hiu0 iT 0
f ii|fflfflfflffl{zfflfflfflffl}

turbulent thermal
disperson

0
BBBB@

1
CCCCA

8>>>><
>>>>:

9>>>>=
>>>>;

¼
r � kfr / hTf ii

� �þ 1
DV

Z
Ai

ni kf Tf dA

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
conduction

þ 1
DV

Z
Ai

ni � kfrTf dA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
interfacial heat transfer

ð5:40Þ
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where the expansion,

hu0T 0
f ii ¼ hðhu0ii þ iu0Þ ðhT 0

f ii þ iT 0Þii ¼ hu0iihT 0
f ii þh iu0 iT 0

f ii ð5:41Þ

has been used in light of the double decomposition concept given by Eq. (5.19)–(4.
35) (see [15] for details). For the solid phase, one has,

0 ¼ r � ksr 1� /ð Þ hTsii
� � � 1

DV

Z
Ai

ni ksTs dA

8<
:

9=
;

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
conduction

� 1
DV

Z
Ai

ni � ksrTs dA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
interfacial heat transfer

ð5:42Þ

In (5.40) and (5.42), hTsii and hTf ii denote the intrinsic time-average tempera-
ture of solid and fluid phases, respectively. These equations are the macroscopic
energy balances for the fluid and the porous matrix (solid), respectively.

Also, in order to use Eqs. (5.40) and (5.42), the underscored terms have to be
modeled as a function of hTsii and hTf ii. To accomplish this, a gradient type
diffusion model is used for all terms not involving the interfacial heat transfer, in the
form,

Turbulent heat flux:

� q cp
� �

f / hu0iihT 0
f ii

� �
¼ Kt � rh�Tf ii ð5:43Þ

Thermal dispersion:

� q cp
� �

f / hi�uiTf ii
� � ¼ Kdisp � rh�Tf ii ð5:44Þ

Turbulent thermal dispersion:

� q cp
� �

f / hiu0 iT 0
f ii

� �
¼ Kdisp;t � rh�Tf ii ð5:45Þ

Local conduction:

r � 1
DV

Z
Ai

ni kf Tf dA

2
64

3
75 ¼ Kf ;s � rh�Tsii

�r � 1
DV

Z
Ai

ni ksTs dA

2
64

3
75 ¼ Ks;f � rh�Tf ii

ð5:46Þ
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Finally, Eqs. (5.40) and (5.42) can be rewritten using the concept of overall
effective conduction in the form,

q cp
� �

f r � uDhTf ii
� � ¼ r � Keff ;f � rhTf ii

� �þ 1
rV

Z
Ai

ni � kfrTf dA ð5:47Þ

0 ¼ r � Keff ;s � rhTsii
� � � 1

DV

Z
Ai

ni � ksrTs dA ð5:48Þ

where

Keff ;f ¼ ½/ kf � I þ Kf ;s þ Kt þ Kdisp þ Kdisp;t ð5:49Þ

Keff ;s ¼ ½ð1� /Þ ks� I þ Ks;f ð5:50Þ

The turbulent heat flux and turbulent thermal dispersion terms, Kt and Kdisp;t, are
here modeled through the Eddy diffusivity concept as [17]:

Kt þ Kdisp;t ¼ / ð q cp Þf
mt/
Prt/

I ð5:51Þ

where Prt/ is the macroscopic turbulent Prandtl number for the fluid energy
equation.

5.6.1 Interfacial Heat Transfer, hi

In Eqs. (5.40) and (5.42) the heat transferred between the two phases can be
modeled by means of a film coefficient hi such that,

hiai Tsh ii� Tf
� �i� �

¼ 1
rV

Z
Ai

ni � kfrTf dA ¼ 1
DV

Z
Ai

ni � ksrTs dA ð5:52Þ

where ai ¼ Ai=rV is the interfacial area per unit volume. In porous media, the high
values of ai make them attractive for transferring thermal energy via conduction
through the solid followed by convection to a fluid stream.

q cp
� �

f r � uDhTf ii
� � ¼ r � Keff ;f � rhTf ii

� �þ hiai hTsii � hTf ii
� �

; ð5:53Þ

0 ¼ r � Keff ;s � rhTsii
� �� hiai hTsii � hTf ii

� �
; ð5:54Þ
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Wakao et al. [23] proposed a correlation for hi for closely packed bed and
compared results with their experimental data. This correlation reads,

hiD
kf

¼ 2þ 1:1Re0:6D Pr1=3 ð5:55Þ

Kuwahara et al. [24] also obtained the interfacial convective heat transfer
coefficient for laminar flow, as follows,

hiD
kf

¼ 1þ 4ð1� /Þ
/

� �
þ 1

2
ð1� /Þ1=2ReD Pr1=3; valid for 0:2\/\0:9; ð5:56Þ

Equation (5.56) is based on porosity dependency and is valid for packed beds of
particle diameter D.

Following this same methodology, in which the porous medium is considered an
infinite number of solid square rods, Saito and de Lemos [16] proposed a corre-
lation for obtaining the interfacial heat transfer coefficient for turbulent flow as,

hiD
kf

¼ 0:08
ReD
/

� �0:8

Pr1=3; for 1:0x104\
ReD
/

\2:0x107; valid for 0:2\/\0:9;

ð5:57Þ

Earlier, Table 2.1 had shown already the three abovementioned variant corre-
lations for the fluid to solid heat transfer coefficient, hi, and the specific surface area
of the porous medium, ai, which appears in both energy equations. In Table 2.1 Eq.
(5.57) was presented as the proposed correlation obtained in Chap. 2 and described
in detail by Saito and de Lemos [17].

5.7 Mass Transport

r � ð�uDh�CiiÞ¼r � Deff � rð/h�CiiÞ ð5:58Þ

Deff ¼ Ddisp þDdiff þDt þDdisp;t ð5:59Þ

Ddiff ¼ hDiiI ¼ 1
q

l/
Sc

I ð5:60Þ

Dt þDdisp;t ¼ 1
q

lt/
Sct/

I ð5:61Þ

where Sct/ is a macroscopic turbulent Schmidt number.
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Coefficients Ddisp;Dt and Ddisp; t in (5.58) appear due to the nonlinearity of the
convection term. They come from the modeling of the following mechanisms:

Mass dispersion:

�hi�u i �Cii ¼ Ddisp � rh�Cii ð5:62Þ

Turbulent Mass Flux:

�hu0iihC0ii ¼ �huii0 hCii0 ¼ Dt � rh�Cii ð5:63Þ

Turbulent Mass Dispersion;

�hiu0 iC0ii ¼ Ddisp;t � rh�Cii ð5:64Þ

Here also mechanisms (5.63) and (5.64) are added up as [15];

�hu0C0ii ¼ 1
q

lt/
Sct/

rh�Cii ¼ hDtii rh�Cii ¼ ðDt þDdisp;tÞ � rh�Cii ð5:65Þ

5.8 Double-Diffusion Effects with a 2EEM Model

5.8.1 Mean Flow

Focusing now attention to buoyancy effects only, application of the volume average
procedure to the last term of (5.24) leads to,

hq g ½bð�Tf � Tref Þþ bCð�C � Cref Þ�iv ¼ DVf

DV
1

DVf

Z
DVf

q g ½bð�Tf � Tref Þþ bCð�C � Cref Þ� dV

ð5:66Þ

Expanding the left hand side of (5.66) in light of (5.17), the buoyancy term
becomes,

hq g ½b ð�Tf � Tref Þþ bC ð�C � Cref Þ�iv

¼ q g/½ b/ðhTf ii � Tref Þþ bC/
ðhCii � Cref Þ�

þ q gb/ hiTf ii|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼0

þ q gbC/ hiCii|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
¼0

ð5:67Þ

where the third and forth terms on the r.h.s. are null since hiuii ¼ 0
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. Here, coefficients b/ and bC/
are the macroscopic thermal and salute expansion

coefficients, respectively. Assuming that gravity is constant over the REV,
expressions for them based on (5.67) are given as,

b/ ¼ hqbðTf � Tref Þiv
q/ðhTf ii � Tref Þ

; bC/
¼ hq bCðC � Cref Þiv

q/ðhCii � Cref Þ
ð5:68Þ

Including (5.67) into (5.34), the macroscopic time-mean Navier-Stokes
(NS) equation for an incompressible fluid with constant properties is given as,

qr � �uD �uD
/

� �
¼�rð/h�piiÞþ lr2�uD þr � ð�q/hu0u0iiÞ

� q g/½b/ ðhTf ii � Tref Þþ bC/
ðhCii � Cref Þ�

� l/
K

�uD þ cF/q j�uDj�uDffiffiffiffi
K

p
� 	 ð5:69Þ

where the superscript * on the pressure gradient that would appear in Eq. (5.69) by
the volume-average of Eq. (5.24), has been dropped.

As pointed out by [15], it is interesting to comment on role of coefficients b/ and
bC/ on the overall mixture density value. Here, only fluids that became less dense
with increasing temperature are considered. However, two situation might occurs
when increasing h�Cii, namely the mixture might became less dense with the
addition of a lighter solute, or else, a denser fluid may result by mixing a heavier
component to it. Implications of that on the stability of the entire fluid system were
discussed in [15] were more details can be found.

5.8.2 Turbulent Field

As mentioned, this work extends and combines earlier developments for turbulent
double-diffusion using the thermal equilibrium model [16] with the hypothesis of
thermal non-equilibrium [17]. For clear fluid, the buoyancy contribution to the
k equation is given by Eqs. (5.31) and (5.32).

Volume averaging Eq. (5.31) in reference [16] has resulted in the term,

hGTiv ¼ Gi
b ¼ h�qb g � u0T 0

f iv ¼ �qbk/ / g � h u0T 0
f ii ¼ bk//

lt/
Prt/

g � r h�Tf ii

ð5:70Þ

where the model in Eq. (5.29) has been applied. Equation (5.70) represents an
additional macroscopic generation/destruction rate of kh ii due to temperature
variation in porous media, where bk/ is a macroscopic coefficient given by
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bk/ ¼ hb u0T 0
f iv

/ h u0T 0
f ii. In reference [15], coefficients b (Eq. 5.10), b/ (Eq. 5.68) and bk/

(Eq. 5.70) were all assumed to be equal, for simplicity. Also, in [15] the temper-
ature used in Eq. (5.70) was the same regardless of the phase. Here, however, it is
the gradient of the intrinsic fluid temperature hTf ii that is considered to promote the
driving mechanism to generate/destroy turbulence.

In order to add the effect of concentration variation within the fluid, one applies
the volume average operator to (5.32) such that,

hGCiv ¼ Gi
bC

¼ h�qbC g � u0C0iv ¼ �qbkC/
/ g � h u0C0ii ð5:71Þ

where the coefficient bkC/
, for a constant value of g within the REV, is given by

bkC/
¼ hbCu0C0iv

/ h u0C0ii , which, in turn, is not necessarily equal to bC/
given by (5.68).

However, for the sake of simplicity and in the absence of better information, one
can use a similar argument as in reference [15] and make use of the assumption
bC ¼ bC/

¼ bkC/
. Further, expanding the r.h.s. of (5.71) in light of (5.17) and

(5.19), one has

�qbkC/
/ g � hu0C0ii ¼ �qbkC/

/ g � h ðhu0ii þ iu0Þð hC0ii þ iC0Þ ii

¼ �q bkC/
/ g � h hu0iihC0ii ii þhiu0 iC0ii þhhu0ii iC0ii þh iu0hC0iiii

� �

¼ �q bkC/
/ g � huii0 hCii0|fflfflfflfflffl{zfflfflfflfflffl}

I

þ hiu0 iC0ii|fflfflfflffl{zfflfflfflffl}
II

þ hu0ii hiC0ii|fflfflfflfflfflffl{zfflfflfflfflfflffl}
¼0

þ hiu0ii hC0ii|fflfflfflfflfflffl{zfflfflfflfflfflffl}
¼0

0
@

1
A

ð5:72Þ

The last two terms on the right of (5.72) are null since hiC0ii ¼ 0 and
hiu0ii ¼ 0. In addition, the following physical significance can be inferred to the
two remaining terms, which were fully commented upon in [15] and for that they
will be just listed:

I. Generation/destruction rate of turbulence energy due to macroscopic concen-
tration fluctuations,

II. Generation/destruction rate due to turbulent concentration dispersion.

A model for (5.72) is still needed in order to solve an equation for hkii , which is
a necessary information when computing lt/ using (5.37). Consequently, terms I

and II above have to be modeled as a function of average concentration, h�Cii . To
accomplish this, a gradient type diffusion model is used, in the form,
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Buoyancy generation of hkii due to turbulent salute fluctuations:

�qbkC/
/ g � huii0 hCii0 ¼ qbkC/

/ g � ðDt � rh�CiiÞ ð5:73Þ

Buoyancy generation of hkii due to turbulent salute dispersion:

�q bkC/
/ g � hiu0 iC0ii ¼ qbkC/

/ g � ðDdisp;t � rh�CiiÞ ð5:74Þ

The buoyancy concentration coefficients seem above, namely Dt and Ddisp;t,
were used before in (5.63) and (5.64), respectively. Note that the terms given by
Eqs. (5.73) and (5.74) arise only if the flow is turbulent and if buoyancy is of
importance.

Using then (5.65) the macroscopic buoyancy generation of k due to concen-
tration fluctuations can be modeled as,

Gi
bC

¼ �q bkC/
/ g � h u0C0ii

¼ qbkC/
/ g � ½ðDt þDdisp;tÞ � r hCii� ¼ bkC/

/
lt/
Sct/

g � r h�Cii ð5:75Þ

where lt/ , Sct/ and the two coefficients Dt and Ddisp;t have been defined before.

Final transport equations for hkii ¼ hu0 � u0ii�2 and heii ¼ lhru0 : ru0ð ÞTii
.
q,

in their so-called High Reynolds number form can now include the buoyancy
generation terms due to temperature and concentration fluctuations as,

qr � ð�uDhkiiÞ ¼ r � lþ lt/
rk

� �
rð/hkiiÞ

� 	
þPi þGi þGi

b þGi
bC

� q/heii

ð5:76Þ

qr � �uDheii
� � ¼ r � lþ lt/

re

� �
r /heii� �� 	

þ heii
hkii c1Pi þ c2Gi þ c1c3ðGi

b þGi
bC
Þ � c2q/heii

h i
ð5:77Þ

where, rk = 1, re = 1.3, c1 = 1.44, c2 = 1.92, cl = 0.09 and ck = 0.28 are
non-dimensional constants (see [15]). The production terms have the following
physical significance

1. Pi ¼ �qhu0u0ii : r�uD is the production rate of hkii due to gradients of �uD;

2. Gi ¼ ckq
/ hkii j �uDjffiffiffi

K
p is the generation rate of the intrinsic average of hkii due to the

action of the porous matrix;
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3. Gi
b ¼ bk//

lt/
Prt/

g � r h�Tf ii is the generation of hkii due to mean temperature

variation within the fluid, and

4. Gi
bC

¼ bkC/
/

lt/
Sct/

g � r h�Cii is the generation of hkii due to concentration

gradients.

5.9 Chapter Summary

In this work, equations were derived for turbulent double-diffusive natural con-
vection in porous media. Derivations were carried out under the light of the double
decomposition concept [15]. Extra terms appearing in the equations needed to be
modeled in terms of �uD, h�Tf i and h�Ci. Here, two different models were combined in
order to broaden the ability to analyze more complex flow systems. The first model
dealt with characterizing turbulent double-diffusive mechanism but was limited to
situations were the so-called thermal equilibrium between phases applied [15]. In
addition, the second description of turbulent flow in porous media made no con-
sideration about buoyancy effects but was able to handle situations where the
difference in both the fluid and the solid material was considerable [16]. By
combining the two models in one single mathematical characterization, the work
herein aims at extending the tool described in detail in [15] to solve an ever-broader
range of practical problems in engineering.
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Chapter 6
Final Remarks

This book presented, in a self-contained fashion, a series of studies on flow and heat
transfer in porous media, in which distinct energy balances are considered for the
porous matrix and for the permeating fluid. Detailed mathematical modeling was
presented considering both volume and time averaging operators simultaneously
applied to the governing equations [1–3]. System involving combustion in the
gaseous phase [4–6], moving beds [7, 8] and double-diffusion mechanism [9] are
analyzed. Numerical results where presented for each case.

A correlation for interstitial heat transfer was obtained by resolving flow and
heat transfer at the pore scale. After numerically integrating the distributed results in
a unit cell, a macroscopic model considering the Local Thermal Non-Equilibrium
hypotheses (LTNE) was presented.

Future work may take into consideration practical numerical results using the
combination of a two energy equation model including double diffusion effects,
which was presented only in theory in Chap. 5. By that, a more complete and more
general model would be available contributing to solution of a broader range of
problems, in a more realistic fashion, including simulation of modern equipment for
gasification of renewable fuels and for advanced materials production. In the end,
this book contains the description of a tool that might benefit engineers in devel-
oping and designing more efficient thermal equipment.
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