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Abstract  The emergence and increasing importance of digital society increased 
the role of software applications in smart environments. Associated with these 
paradigms are a multitude of applications that generate and require analysis of 
massive volumes of diverse, heterogeneous, complex, and distributed data. The 
problem of partitioning images into homogenous regions or semantic entities is 
a basic problem for identifying relevant objects. There is a wide range of com-
putational vision problems for 2D images that could use of segmented images. 
However the problems of 3D image segmentation and grouping remain great 
challenges for computer vision. Visual segmentation is related to some semantic 
concepts because certain parts of a scene are pre-attentively distinctive and have a 
greater significance than other parts. Many approaches aim to create large regions 
using simple homogeneity criteria based only on color or texture. However, 3D 
applications for such approaches are limited as they often fail to create mean-
ingful partitions due to the computation complexity. We are introducing new 
algorithm for spatial segmentation based on Virtual Tree-Hexagonal Structure 
constructed on the image voxels. Then the paper depicts a Spatial Segmentation 
Algorithm. Spatial Segmentation Algorithm contains many other algorithms but 
only Color-based segmentation algorithm is presented based on the limited space 
of paper. Then the paper describes the Computational Complexity Analysis of the 
Color-Based Spatial Segmentation Algorithm.
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1 � Introduction

The emergence and increasing importance of digital society, cyber-physical systems, 
and semantic, pervasive, and mobile computing are expanding the role of software and 
applications in smart or intelligence environments. Associated with these paradigms 
are instruments, sensors, and a multitude of applications that generate and require 
analysis of massive volumes of diverse, heterogeneous, complex, and distributed data.

The problem of partitioning images into homogenous regions or semantic enti-
ties is a basic problem for identifying relevant objects. There is a wide range of 
computational vision problems for planar images that could use of segmented 
images. However the problems of volumetric image segmentation and group-
ing remain great challenges for computer vision. For instance intermediate-level 
vision problems motion estimation and tracking require determination of salient 
objects from frames. The major concept used in graph-based volumetric segmenta-
tion method is the concept of homogeneity of volumes and thus the edge weights 
are based on color distance.

Visual segmentation is related to some semantic concepts because certain 
parts of a scene are pre-attentively distinctive and have a greater significance than 
other parts. Many approaches aim to create large regions using simple homoge-
neity criteria based only on color or texture. However, spatial applications for 
such approaches are limited as they often fail to create meaningful partitions due 
to either the complexity of the scene or difficult lighting conditions. Higher-level 
problems such as object recognition and image indexing can also make use of seg-
mentation results in matching, to address problems such as figure-ground separa-
tion and recognition by parts. In both intermediate level and higher-level vision 
problems, contour detection of objects in real images is a fundamental problem.

For example, salient objects are defined as visually distinguishable image com-
pounds that can characterize visual properties of corresponding object classes and 
they have been proposed as an effective middle-level representation of image content. 
An important approach for salient object detection is segmentation for planar and 
volumetric images, and developing an accurate image segmentation technique which 
partitions image into salient visual objects is an important step toward salient object 
detection. As a consequence we consider that a volumetric segmentation method can 
detect visual objects from images if it can detect at least the most objects.

We are introducing new method for volumetric segmentation based on Virtual 
Tree-Hexagonal Structure constructed on the image voxels. We develop a visual 
feature-based method which uses a spatial graph constructed on cells of prisms 
with tree-hexagonal structure containing less than half of the image voxels in 
order to determine a forest of spanning trees for connected component represent-
ing visual objects. Thus the volumetric image segmentation is treated as a spatial 
graph partitioning problem.
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We determine the spatial segmentation of a color image in two distinct steps: a 
pre-segmentation step when only color information is used in order to determine 
an initial volumetric segmentation, and a syntactic-based segmentation step when 
we define a predicate for determining the set of nodes of connected components 
based both on the color distance and geometric properties of volumes representing 
visual objects.

The novelty of our contribution concerns: (a) the virtual cells of prisms with 
tree- hexagonal structure used in the unified framework for volumetric image 
segmentation, (b) the using of maximum spanning trees for determining the set 
of nodes representing the connected components in the pre-segmentation step, (c) 
a method to determine the thresholds used both in the pre-segmentation and in 
the spatial segmentation step, and (d) an automatic stopping criterion used in the 
volumetric segmentation step.

In addition our volumetric segmentation algorithm produces good results from 
both from the perspective perceptual grouping, and from the perspective of deter-
mining homogeneous in the input images. We refer the term of perceptual group-
ing as a general expectation for volumetric segmentation algorithms to produce 
perceptually coherent segmentation of volumes at a level comparable to humans.

Of course into Volumetric Segmentation Method there are many other algo-
rithms but only Color-based segmentation algorithm and Syntactic segmentation 
algorithm are designed based on the space of paper. Based on number of the tree-
edges of the input spatial graph G = (V, E) of the color-based algorithm, and the 
number of the vertices of input graph we say and prove that the time of Volumetric 
Segmentation Algorithm is linear.

Our previous works for digital planar images are related to other works in the 
sense of pair-wise comparison of region similarity. The key to the whole algorithm 
of volumetric segmentation is the honeycomb cells. We present the original and 
efficient algorithm of volumetric segmentation methods and honeycomb used is 
the first run into Segmentation Volumetric Method.

1.1 � Related Work

In this section we briefly consider some of the related works that are most relevant 
related to our approach.

Someone determined the normalized weight of an edge by using the smallest 
weight incident on the vertices touching that edge [1]. Other methods for planar 
images [2, 3] use adaptive criterion that depends on local properties rather than 
global ones. In contrast with the simple graph-based methods, cut-criterion meth-
ods capture the non-local cuts in a graph are designed to minimize the similar-
ity between pixels that are being split [4, 5]. The normalized cut criterion [5] 
takes into consideration self similarity of regions. An alternative to the graph 
cut approach is to look for cycles in a graph embedded in the image plane. In  
[6, 7] the quality of each cycle is normalized in a way that is closely related to the 
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normalized cuts approaches. Other approaches to digital planar image segmenta-
tion consist of splitting and merging regions according to how well each region 
fulfills some uniformity criterion. Such methods [8] use a measure of uniformity 
of a region. In contrast [2, 3] use a pair-wise region comparison rather than apply-
ing a uniformity criterion to each individual region. Complex organizing phenom-
ena can emerge from simple computation on these local cues [9]. A number of 
approaches to segmentation are based on finding compact regions in some feature 
space [10]. Recent techniques for planar digital images using feature space regions 
[11, 12] first transform the data by smoothing it in a way that preserves boundaries 
between regions. We use different measures for internal contrast of a connected 
component and for external contrast between two connected components than the 
measures used in [13].

Our previous works [11, 14–16] are related to the works in [2, 3] in the sense of 
pair-wise comparison of region similarity. In these papers we extend our previous 
work by adding a new step in the spatial segmentation algorithm that allows us to 
determine regions closer to it.

The internal contrast of a component C represents the maximum weight of 
edges connecting vertices from C, and the external contrast between two com-
ponents represents the maximum weight of edges connecting vertices from these 
two components. These measures are in our opinion closer to the human percep-
tion. We use maximum spanning tree instead of minimum spanning tree in the 
pre-segmentation step in order to manage external contrast between connected 
components.

2 � Constructing a Virtual Tree-Hexagonal Structure

The low-level system for spatial image segmentation and boundary extraction of 
visual objects described in this section can be designed to be integrated in a gen-
eral framework of indexing and semantic image processing. The framework uses 
color and geometric features of image volumes in order to: (a) determine visual 
objects and their spatial surface, and also (b) to extract specific color and geo-
metric information from these objects to be further used into a higher-level image 
processing system.

The pre-processing module is used mainly to blur the initial RGB spatial image 
in order to reduce the image noise by applying a spatial Gaussian kernel [17]. 
Then the segmentation module creates virtual cells of prisms with tree-hexagonal 
structure defined on the set of the image voxels of the input spatial image and a 
spatial grid graph having tree-hexagons as cells of vertices. In order to allow a 
unitary processing for the multi-level system at this level we store, for each deter-
mined component C, the set of the tree-hexagons contained in the region associ-
ated to C and the set of tree-hexagons located at the boundary of the component. 
In addition for each component the dominant color of the region is extracted. 
This color will be further used in the post-processing module if any. The surface 
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extraction module determines for each segment of the image its boundary. The 
boundaries of the de determined visual objects are closed surfaces represented by 
a sequence of adjacent tree-hexagons. At this level a linked list of voxels repre-
senting the surface is added to each determined component. The post-processing 
module (if any) extracts representative information for the above determined vis-
ual objects and their surfaces in order to create an efficient index for a semantic 
image processing system.

A volumetric image processing task contains mainly three important compo-
nents: acquisition, processing and visualization. After the acquisition stage an 
image is sampled at each point on a three dimensional grid storing intensity or 
color information and implicit location information for each sample. We do not use 
a hexagonal lattice model because of the additional actions involving the double 
conversion between square and tree-hexagonal voxels. However we intent to use 
some of the advantages of the tree-hexagonal grid such as uniform connectivity. 
This implies that there will be less ambiguity in defining spatial surface and vol-
umes [18]. As a consequence we construct a virtual tree-hexagonal structure over 
the voxels of an input image, as presented in Fig. 1. This virtual tree-hexagonal grid 
is not a tree-hexagonal lattice because the constructed hexagons are not regular.

Let I be an initial volumetric image having the dimension h ×  w ×  z (e.g. a 
matrix having h rows, w columns and z deep of matrix voxels). In order to construct 
a tree-hexagonal grid on these voxels we retain an eventually smaller image with:

(1)

h′ = h− (h− 1) mod 2,

w′ = w− w mod 4,

z′ = z.

Fig. 1   Virtual tree-hexagonal structure constructed on the image voxels
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In the reduced image at most the last line of voxels and at most the last three 
columns and deep of matrix of voxels are lost, assuming that for the initial 
image h  >  3 and w  >  4 and z ≥  1, that is a convenient restriction for input 
images.

Each tree-hexagon from the tree-hexagonal grid contains 16 voxels: such 12 
voxels from the frontier and four interior frontiers of voxels. Because tree-hexa-
gons voxels from an image have integer values as coordinates we select always 
the left up voxel from the four interior voxels to represent with approximation the 
gravity center of the tree-hexagon, denoted by the pseudo-gravity center.

We use a simple scheme of addressing for the tree-hexagons of the tree-hexag-
onal grid that encodes the spatial location of the pseudo-gravity centers of the tree-
hexagons as presented in Fig. 1.

Let h × w × z the three dimension of the initial volumetric image verifying the 
previous restriction. Given the coordinates 〈l, c, d〉 of a voxel p from the input volu-
metric image, we use the linearized function,

in order to determine an unique index for the voxel.
It is easy to verify that the function ip defined by the Eq.  2 is bijective. Its 

inverse function is given by:

where:

Relations 4, 5, and 6 allow us to uniquely determine the coordinates of the voxel 
representing the pseudo-gravity center of a tree-hexagon specified by its index (its 
address). In addition these relations allow us to determine the sequence of coordi-
nates of all sixteen voxels contained into a tree-hexagon with an address k.

The sub-sequence ps of the voxels representing the pseudo-gravity center and 
the function ip defined by the relation 2 allow to determine the sequence of the 
tree-hexagons that is used by the segmentation and surface detection algorithms. 
After the processing step the Relations 3, 4, 5, and 6 allow to up-date the voxels of 
the spatial initial spatial image for the visualization step.

Each tree-hexagon represents an elementary item and the entire virtual tree-
hexagonal structure represents a spatial grid graph, G = (V, E), where each tree-
hexagon H in this structure has a corresponding vertex v ∈ V. The set E of edges 
is constructed by connecting tree-hexagons that are neighbors in a 8-connected 
sense. The vertices of this graph correspond to the pseudo-gravity centers of the 

(2)iph,w,z(l, c, d) = (l − 1)× w× z + (c− 1)× z + d,

(3)ip−1
h,w,z(k) = �l, c, d�,

(4)l = k/(w× z),

(5)c = (k − (l − 1)× w× z)/z,

(6)d = k − (l − 1)× w× z + (c− 1)× z.
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hexagons from the tree-hexagonal grid and the edges are straight lines connecting 
the pseudo-gravity centers of the neighboring hexagons, as presented in Fig. 2.

There are two main advantages when using tree-hexagons instead of all voxels 
as elementary piece of information:

•	 The amount of memory space associated to the graph vertices is reduced. 
Denoting by np the number of voxels of the initial spatial image, the number of 
the resulted tree-hexagons is always less than np/8, and thus the cardinal of both 
sets V and E is significantly reduced;

•	 The algorithms for determining the visual objects and their surfaces are much 
faster and simpler in this case.

We associate to each tree-hexagon H from V two important attributes representing 
its dominant color and the coordinates of its pseudo-gravity center, denoted by 
c(h) and g(h). The dominant color of a tree-hexagon is denoted by c(h) and it rep-
resents the color of the voxel of the tree-hexagon which has the minimum sum of 
color distance to the other twenty voxels. Each tree-hexagon H in the tree-hexago-
nal grid is thus represented by a single point, g(h), having the color c(h). By using 
the values g(h) and c(h) for each tree-hexagon information related to all voxels 
from the initial image is taken into consideration by the spatial segmentation 
algorithm.

Fig. 2   The grid graph constructed on the pseudo-gravity centers of the tree-hexagonal grid



146 D.D. Burdescu et al.

3 � Volumetric Segmentation Algorithm

Let V = {h1, …, h|V|} be the set of tree-hexagons constructed on the spatial image 
voxels as presented in previous section and G =  (V, E) be the undirected spatial 
grid-graph, with E containing pairs of honey-beans cell (tree-hexagons) that are 
neighbors in a 8-connected sense. The weight of each edge e = (hi, hj) is denoted 
by w(e), or similarly by w(hi, hj), and it represents the dissimilarity between neigh-
boring elements hi and hj in a some feature space. Components of an image repre-
sent compact volumes containing voxels with similar properties. Thus the set V of 
vertices of the graph G is partitioned into disjoint sets, each subset representing a 
distinct visual object of the initial image.

As in other graph-based approaches [15] for planar images we use the notion of 
segmentation of the set V. A segmentation, S, of V is a partition of V such that each 
component C ∈ S corresponds to a connected component in a spanning sub-graph 
GS = (V, ES) of G, with ES ⊆ E.

The set of edges E − ES that are eliminated connect vertices from distinct com-
ponents. The common boundary between two connected components C′, C″ ∈ S 
represents the set of edges connecting vertices from the two components:

The set of edges E − ES represents the boundary between all components in S. 
This set is denoted by bound(S) and it is defined as follows:

In order to simplify notations throughout the paper we use Ci to denote the com-
ponent of a segmentation S that contains the vertex hi ∈ V.

We use the notions of segmentation too fine and too coarse as defined in [2] 
that attempt to formalize the human perception of salient visual objects from an 
image. A segmentation S is too fine if there is some pair of components C′, C″ ∈ S 
for which there is no evidence for a boundary between them. A segmentation S is 
too coarse when there exists a proper refinement of S that is not too fine. The key 
element in this definition is the evidence for a boundary between two components.

The goal of a segmentation method is to determine a proper segmentation, 
which represent visual objects from a volumetric image.

Definition 1  Let G = (V ,E) be the undirected spatial graph constructed on 
the tree-hexagonal structure of an image, with V = {h1, . . . , h|V |}. A proper 
segmentation of V, is a partition S of V such that there exists a sequence 
�Si, Si+1, . . . , Sf−1, Sf � of segmentations of V for which:

•	 S = Sf is the final segmentation and Si is the initial segmentation,
•	 Sj is a proper refinement of Sj+1 (i.e., Sj ⊂ Sj+1) for each j = i, . . . , f − 1,
•	 segmentation Sj is too fine, for each j = i, . . . , f − 1,
•	 any segmentation Sl such that Sf ⊂ Sl, is too coarse,
•	 segmentation Sf is neither too coarse nor too fine.

(7)cb(C′,C′′) = {(hi, hj) ∈ E|hi ∈ C′, hj ∈ C′′}.

(8)
bound(S) =

⋃

C′,C′′∈S

cb(C′,C′′).
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In the above definition Sa is a refinement of Sb in the sense of partitions, i.e. 
every set in Sa is a subset of one of the sets in Sb. We say that Sa is a proper refine-
ment of Sb if Sa is a refinement of Sb and Sa ≠ Sb. In the case of a proper refine-
ment, Sa is obtained by splitting one or more components from Sb, or similarly, Sb 
is obtained by merging one or more components from Sa. Let C′, C″ ∊ Sa be two 
components obtained by splitting a component C ∈ Sb. In this case C′ and C″ have 
a common boundary, cb(C′,C′′) �= ∅.

Our segmentation algorithm starts with the most refined segmentation, 
S0 = {{h1}, . . . , {h|V |}} and it constructs a sequence of segmentations until a proper 
segmentation is achieved. Each segmentation Sj is obtained from the segmentation 
Sj−1 by merging two or more connected components for there is no evidence for a 
boundary between them. For each component of a segmentation a spanning tree is 
constructed and thus for each segmentation we use an associated spanning forest.

The evidence for a boundary between two components is determined taking 
into consideration some features in some model of the image. When starting, for 
a certain number of segmentations the only considered feature is the color of the 
volumes associated to the components and in this case we use a color-based region 
model. When the components became complex and contain too much tree-hexa-
gons, the color model is not sufficient and geometric features together with color 
information are considered. In this case we use a syntactic based with a color-
based region model for volumes. In addition syntactic features bring supplemen-
tary information for merging similar volumes in order determine salient objects.

For the sake of simplicity we will denote this region model as syntactic-based 
region model.

As a consequence, we split the sequence of all segmentations,

in two different subsequences, each subsequence having a different region model,

where Si represents the color-based segmentation sequence, and Sf represents the 
syntactic-based segmentation sequence.

The final segmentation St in the color-based model is also the initial segmenta-
tion in the syntactic-based region model.

For each sequence of segmentations we develop a different algorithm. 
Moreover we use a different type of spanning tree in each case: a maximum span-
ning tree in the case of the color-based segmentation, and a minimum spanning 
tree in the case of the syntactic-based segmentation. More precisely our method 
determines two sequences of forests of spanning trees,

each sequence of forests being associated to a sequence of segmentations.

(9)Sif = �S0, S1, . . . , Sk−1, Sk�,

(10)
Si = �S0, S1, . . . , St−1, St�,

Sf = �St , St+1, . . . , Sk−1, Sk�,

(11)
Fi = �F0,F1, . . . ,Ft−1,Ft�,

Ff = �Ft′ ,Ft′+1, . . . ,Fk′−1,Fk′ �,
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The first forest from Fi contains only the vertices of the initial graph, 
F0  =  (V,  ∅), and at each step some edges from E are added to the forest 
Fl = (V, El) to obtain the next forest, Fl+1 = (V, El+1). The forests from Fi contain 
maximum spanning trees and they are determined by using a modified version of 
Kruskal’s algorithm [19], where at each step the heaviest edge (u, v) that leaves the 
tree associated to u is added to the set of edges of the current forest.

The second subsequence of forests that correspond to the subsequence of seg-
mentations Sf contains forests of minimum spanning trees and they are deter-
mined by using a modified form of Boruvka’s algorithm. This sequence uses as 
input a new graph, G′ = (V′, E′), which is extracted from the last forest, Ft, of the 
sequence Fi. Each vertex v from the set V corresponds to a component Cv from the 
segmentation St (i.e. to a region determined by the previous algorithm). At each 
step the set of new edges added to the current forest are determined by each tree T 
contained in the forest that locates the lightest edge leaving T. The first forest from 
Ff contains only the vertices of the graph G′, Ft′ = (V ′, ∅).

In this section we focus on the definition of a logical predicate that allow us 
to determine if two neighboring volumes represented by two components, Cl′ and 
Cl′′, from a segmentation Sl can be merged into a single component Cl+1 of the 
segmentation Sl+1.

Two components, Cl′ and Cl′′, represent neighboring (adjacent) volumes if they 
have a common spatial surface:

We use a different predicate for each region model, color based and syntactic-
based respectively.

where the weights for the different color channels, wR, wG, and wB verify the con-
dition wR + wG + wB = 1. Based on the theoretical and experimental results on 
spectral and real world data sets, Gijsenij et  al. [20] is concluded that the PED 
distance with weight-coefficients (wR = 0.26, wG = 0.70, wB = 0.04) correlates 
significantly higher than all other distance measures including the angular error 
and Euclidean distance.

In the color model volumes are modeled by a vector in the RGB color space. This 
vector is the mean color value of the dominant color of tree-hexagons belonging to 
the regions.

The evidence for a spatial surface between two volumes is based on the differ-
ence between the internal contrast of volumes and the external contrast between 
them [2, 16]. Both notions of internal contrast and external contrast between two 
volumes are based on the dissimilarity between two colors.

Let hi and hj representing two vertices in the graph G  =  (V,  E), and let 
wcol(hi,  hj) representing the color dissimilarity between neighboring elements hi 
and hj, determined as follows:

(12)
adj(Cl′ ,Cl′′) = true, if cb(Cl′ ,Cl′′) �= ∅,

adj(Cl′ ,Cl′′) = false, if cb(Cl′ ,Cl′′) = ∅.

(13)PED(e, u) =
√
wR(Re − Ru)2 + wG(Ge − Gu)2 + wB(Be − Bu)2,
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where PED(e,  u) represents the perceptual Euclidean distance with weight-
coefficients between colors e and u, as defined by Eq.  13, and c(h) represents 
the mean color vector associated with the tree-hexagon h. In the color-based 
segmentation, the weight of an edge (hi,  hj) represents the color dissimilarity, 
w(hi, hj) = wcol(hi, hj).

Let Sl be a segmentation of the set V. We define the internal contrast or internal 
variation of a component C ∈ Sl to be the maximum weight of the edges connect-
ing vertices from C:

The internal contrast of a component C containing only one tree-hexagon is zero: 
IntVar(C) = 0, if|C| = 1.

The external contrast or external variation between two components, C′, C″ ∈ S 
is the maximum weight of the edges connecting the two components:

We chosen the definition of the external contrast between two components to be 
the maximum weight edge connecting the two components and not to be the mini-
mum weight, as in [2] because: (a) it is closer to the human perception (in the 
sense of the perception of the maximum color dissimilarity), and (b) the contrast 
is uniformly defined (as maximum color dissimilarity) in the two cases of internal 
and external contrast.

The maximum internal contrast between two components, C′, C″ ∈ S is defined 
as follows:

The comparison predicate between two neighboring components C′ and C″  
(i.e., adj(C′, C″) = true) determines if there is an evidence for a boundary between 
C′ and C″ and it is defined as follows:

with the the adaptive threshold τ(C′,C′′) is given by

where |C| denotes the size of the component C (i.e. the number of the tree-hex-
agons contained in C) and the threshold τ is a global adaptive value defined by 
using a statistical model.

The predicate diffcol can be used to define the notion of segmentation too fine 
and too coarse in the color-based region model.

(14)
wcol(hi, hj) = PED(c(hi), c(hj)), if (hi, hj) ∈ E,

wcol(hi, hj) = ∞, otherwise,

(15)IntVar(C) = max(hi ,hj)∈C(w(hi, hj)).

(16)ExtVar(C′,C′′) = max(hi ,hj)∈cb(C′,C′′)(w(hi, hj)).

(17)IntVar(C′,C′′) = max(IntVar(C′), IntVar(C′′)).

(18)
diffcol(C

′,C′′) = true, if ExtVar(C′,C′′) > IntVar(C′,C′′)+ τ(C′,C′′)

diffcol(C
′,C′′) = false, if ExtVar(C′,C′′) = IntVar(C′,C′′)+ τ(C′,C′′),

(19)τ(C′,C′′) = τ/(min(|C′|, |C′′|),
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Definition 2  Let G =  (V,  E) be the undirected spatial graph constructed on the 
tree-hexagonal structure of a volumetric image and S a color-based segmentation of 
V. The segmentation S is too fine in the color-based region model if there is a pair 
of components C′, C″ ∈ S for which adj(C′, C″) = true ∧ diffcol(C′, C″) = false.

Definition 3  Let G =  (V, E) be the undirected spatial graph constructed on the 
tree-hexagonal structure of a volumetric image and S a segmentation of V. The 
segmentation S is too coarse if exists a proper refinement of S that is not too fine.

There are many existing systems for arranging and describing colors, such 
as RGB, YUV, HSV, LUV, CIELAV, Munsell system, etc. We decided to use the 
RGB color space because it is efficient and no conversion is required. Although 
it also suffers from the non-uniformity problem where the same distance between 
two color points within the color space may be perceptually quite different in dif-
ferent parts of the space, within a certain color threshold it is still definable in 
terms of color consistency. We use the perceptual Euclidean distance with weight-
coefficients (PED) as the distance between two colors.

Let G =  (V,  E) be the initial graph constructed on the tree-hexagonal struc-
ture of a volumetric image. The proposed segmentation algorithm will produce a 
proper segmentation of V according to the Definition 1. The sequence of segmen-
tations, Sif, as defined by Eq. 9, and its associated sequence of forests of spanning 
trees, Fif, as defined by Eq. 11, will be iteratively generated as follows:

•	 The color-based sequence of segmentations, Si, as defined by Eq.  10, and its 
associated sequence of forests, Fi, as defined by Eq. 11, will be generated by 
using the color-based region model and a maximum spanning tree construction 
method based on a modified form of the Kruskal’s algorithm.

•	 The syntactic-based sequence of segmentations, Sf, as defined by Eq.  10, and 
its associated sequence of forests, Ff, as defined by Eq. 11, will be generated 
by using the syntactic-based model and a minimum spanning tree construction 
method based on a modified form of the Boruvka’s algorithm.

The general form of the segmentation procedure is presented in Algorithm 1
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The input parameters represent the image resulted after the pre-processing oper-
ation: the array P of the spatial image voxels structured in l lines, c columns and d 
depths. The output parameters of the segmentation procedure will be used by the 
surface extraction procedure: the tree-hexagonal grid stored in the array of tree-
hexagons H, and the array Comp representing the set of determined components 
associated to the salient objects in the input spatial image.

The color-based segmentation and the syntactic-based segmentation are determined 
by the procedures CREATECOLORPARTITION and CREATESYNTACTICPARTITION 
respectively.

The color-based and syntactic-based segmentation algorithms use the tree- 
hexagonal structure H created by the function CREATEHEXAGONALSTRUCTURE 
over the voxels of the initial spatial image, and the initial triangular grid 
graph G created by the function CREATEINITIALGRAPH. Because the syn-
tactic-based segmentation algorithm uses a graph contraction procedure, 
CREATESYNTACTICPARTITION uses a different graph, G, extracted by the proce-
dure EXTRACTGRAPH after the color-based segmentation finishes.

Both algorithms for determining the color-based and syntactic based segmenta-
tion use and modify a global variable (denoted by CC) with two important roles:

•	 to store relevant information concerning the growing forest of spanning trees 
during the segmentation (maximum spanning trees in the case of the color-
based segmentation, and minimum spanning trees in the case of syntactic based 
segmentation),

•	 to store relevant information associated to components in a segmentation in 
order to extract the final components because each tree in the forest represent 
in fact a component in each segmentation S in the segmentation sequence deter-
mined by the algorithm.

In addition, this variable is used to maintain a fast disjoint set-structure in order 
to reduce the running time of the color based segmentation algorithm. The vari-
able CC is an array having the same dimension as the array of hexagons H, which 
contains as elements objects of the class Tree with the following associated fields:

The field isRoot is a boolean value specifying if the corresponding tree-hexagon 
index is the root of a tree representing a component, and the field parent represents 
the index of the tree-hexagon which is the parent of the current tree-hexagon. The 
rest of fields are used only if the field isRoot is true. The field compIndex is the 
index of the associated component.

The field surface is a list of indices of the tree-hexagons belonging to the asso-
ciated component, while the field frontier is a list of indices of the tree-hexagons 
belonging to the frontier of the associated component. The field color is the mean 
color of the tree- hexagon colors of the associated component.

(isRoot, parent, compIndex, frontier, surface, color)
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The procedure EXTRACTFINALCOMPONENTS determines for each deter-
mined component C of Comp, the set sa(C) of tree-hexagons belonging to the 
component, the set sp(C) of tree-hexagons belonging to the frontier, and the 
dominant color c(C) of the component.

4 � Color-Based Segmentation Algorithm

Let G =  (V,  E) be the undirected spatial graph constructed on the tree-hexago-
nal structure of a volumetric input image. The proposed color-based segmentation 
algorithm will produce a proper segmentation of V according to the Definition 
1, where the notion of segmentation too fine is given by the Definition 2. The 
sequence of segmentations, �S0, S1, . . . , St−1, St�, and its associated sequence 
of growing forests, �F0,F1, . . . ,Ft−1,Ft�, will be iteratively generated, based on 
a maximum spanning tree construction method. We use a modified form of the 
Kruskal’s algorithm presented in Algorithm 2, where the trees generated at each 
step represent the connected components of volumetric segmentation.

The input parameters of the color-based segmentation algorithm are the initial 
graph G and the array H of the tree-hexagons from the tree-hexagonal grid. The 
output parameter is the list Bound of edges representing the boundary of the final 
spatial segmentation.

The global parameter threshold τ is determinate by using Algorithm 1. 
This value is used at the line 18 of Algorithm 2, where the expression τ(ti,  tj) is 
given by the Relation 19, where ti and tj representing the components Cti and Ctj 
respectively.

Because we use maximum spanning trees instead of minimum spanning trees 
the list of the edges E(G) is sorted in non-increasing edge weight. The forest of 
spanning trees is initialized in such a way each element of the forest contains 
exactly one tree-hexagon.

The expression τ(ti, tj) = τ/(min(|Cti |, |Ctj |) at the line 18 of Algorithm 2 is 
very important at the beginning of the algorithm because initially the components 
considered contains only one tree-hexagon and in this case

In order to consider an edge (hi,  hj) to belonging to the non-boundary class of 
edges and in consequence to merge the components Cti and Ctj corresponding to hi 
and hj respectively, it is necessary that w(hi, hj) < τ.

When the components grow and both components Cti and Ctj contain more than 
one tree-hexagon, the external variation between Cti and Ctj decreases, and in this 
case the decision for merging or non-merging Cti and Ctj is affected more by their 
size than by the global threshold τ.

For each segmentation Sl determined by Algorithm 2 and for each connected 
component C of the corresponding spanning graph Gl there is a unique maximum 
spanning tree, Fl(C), that maximize the sum of edge weights for this component.

IntVar(Cti ,Ctj ) = 0 ∧ τ (min(|Cti |, |Ctj |) = τ .
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The forest of all maximum spanning trees associated to the segmentation Sl is

and algorithm makes greedy decisions about which edges to add to Fl.
Every time when an edge is added to the maximum spanning tree a union of 

the two partial spanning trees containing the two vertices of the edge is made. In 
this way the sequence of the edges contained in the forest Fl of spanning trees is 
implicit determined at the line 13 of Algorithm 2.

Conversely for each spatial tree T from the forest Fl, the set of all vertices of 
the initial graph contained in the tree T is denoted by Set(T) and it represents the 
connected component of Sl associated to maximum spanning tree T:

The functions MAKESET, FINDSET and UNION used by the segmentation algo-
rithm implement the classical MAKESET, FIND−SET and UNION operations for 

(20)
Fl =

⋃

C∈Sl

Fl(C),

(21)T = Fl(Set(T)).
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disjoint set data structures with union by rank and path compression [19]. In addi-
tion the function call, UNION(ti,  tj,  w(hi,  hj)), performs the following operation, 
assuming that ti is the root of the new spanning tree resulted by combining the 
spanning trees represented by ti and tj:

•	 determining CC[ti].surface as the concatenation of the lists CC[ti].surface and 
CC[tj].surface,

•	 determining CC[ti].frontier as a list of indices of tree-hexagons belonging to the 
frontier of the new component {Cti ∪ Ctj },

•	 determining CC[ti].color as the value (nici + njcj)/(ni + nj), where 
ci = CC[ti].color, and ni represents the number of elements in the tree CC[ti].

Let n be of the input the number of the vertices of the input spatial graph 
G = (V, E) of the color-based volumetric segmentation algorithm, n = |V|.

The computational complexity of the color-based segmentation algorithm is 
given by T(CREATECOLORPARTITION) = O(n * log (n)).

5 � Syntactic-Based Volumetric Segmentation Algorithm

Let G = (V, E) be the undirected spatial graph constructed on the tree-hexagonal 
structure of a volumetric image. The global parameter threshold is determinate by 
using Algorithm 1. In order to determine a good final segmentation and to discover 
the objects from the input image, the syntactic based sequence of volumetric seg-
mentations, Sf, as defined by Eq. 10, can decomposed into several subsequences, 
each subsequence being determined by a modified form of the Boruvka’s 
algorithm.

Let i1 < i2 < · · · < ix < ix+1 be a sequence of indices, with i1 = t and ix+1 = k, 
that allows a decomposition of the sequence Sf as follows:

As presented in Algorithm 3 the procedure CREATESYNTACTICPARTITION 
implements the syntactic based volumetric segmentation, while the function 
GENERATEPARTITION is used to generate the subsequences of segmentations, 
Sf1 , . . . , Sfx, each subsequence of the form,

being determined by the function GENERATEPARTITION at the jth call. The last 
segmentation of the subsequence Sfj generate by GENERATEPARTITION is also 
the input sequence of the (j + 1)th call of GENERATEPARTITION. The first input 

(22)

Sf = �Si1 , Si1+1, . . . , Si2−1, Si2 ,

Si2+1, Si2+2, . . . , Si3 ,

. . .

Six+1, Six+2, . . . , Six+1�.

(23)Sfj = �Sij , Sij+1, . . . , Sij+1−1, Sij+1�,
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segmentation Si1 is the final segmentation St of the color based segmentation algo-
rithm. The function DETERMINEWEIGHTS determines the set A of weights.

More formally, the jth call of the function GENERATEPARTITION, for which 
the output parameter newPart has the value true, is associated to the non-empty 
subsequence Sfj of volumetric segmentations and it generates a sequence of graphs,

and a sequence of associated forests of minimum spanning trees,

such that the last forest is empty, F
ij
ij+1

= ∅. For each graph G
ij
l
 from the sequence 

Gij, F
ij
l
 represents the forest of minimum spanning trees of G

ij
l
, and G

ij
l+1

 is the con-
traction of G

ij
l
 over all the edges that appear in F

ij
l
, as presented in Algorithm 3.

Because the last graph, G
ij
ij+1

, of the sequence Gij cannot be further con-

tracted the dissimilarity vectors of functions associated to the edge weights, 
d(C(vi), C(vj)), are not modified, and thus the edge weights, w(vi, vj), as defined by 
the function GRAPHEXTRACTION are not modified. In order to restart the pro-
cess for determining the new subsequence,

the first graph, G
ij+1

ij+1
 of the sequence Gij+1 differs from the last graph, G

ij
ij+1

, of 

the sequence Gij by modifying only the weighted vector k ∈ K. The function 

MODIFYWEIGHTS of Algorithm 3 realizes this modification and recalculates the 
new global weighted threshold. In this case the values for the weighted vector k 

(24)Gij = �G
ij
ij
,G

ij
ij+1, . . . ,G

ij
ij+1−1,G

ij
ij+1

�,

(25)Fij = �F
ij
ij
,F

ij
ij+1, . . . ,F

ij
ij+1−1,F

ij
ij+1

�,

(26)Sfj+1
= �Sij+1 , Sij+1+1, . . . , Sij+2�,
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are sequential determined in the lexicographic order, generated by the procedure 
NEXTKVECTOR.

The function MODIFYWEIGHTS realizes this modification and recalculates the 
new global weighted threshold. In this case the values for the weighted vector k 
are sequential determined in the lexicographic order, generated by the procedure 
NEXTKVECTOR.

This constraint is necessary in order to realize a stopping criterion for the algo-
rithm: the last graph cannot be modified and for all distinct values of the weighted 
vectors k ∈ K and thus another partition cannot be determined. Each time when 
GENERATEPARTITION generates a non-empty sequence of segmentations, 
the output parameter newPart became true and the first vector of the set K is 
generated.

When GENERATEPARTITION generates an empty sequence of segmentations, 
newPart is false and the next vector in lexicographic order is generated by the pro-
cedure NEXTKVECTOR.

When sequentially for all distinct weighted vectors k ∈ K (e.g. |A|4 distinct vec-
tors, with the set A specified by the Relation 23) generated in lexicographic order 
the function GENERATEPARTITION generates a empty sequence of segmenta-
tions, the procedure CREATESYNTACTICPARTITION finishes.

Between the last graph, G
ij
ij+1

, of the sequence Gij and the first graph, G
ij+1

ij+1
 of the 

sequence Gij+1, there is a sequence of graphs that differ only by the edge weights,

such that Ĝ
ij
1 = G

ij
ij
 and Ĝ

ij

n̂ij
= G

ij+1

ij+1
. This sequence is obtained when the function 

GENERATEPARTITION generates an empty sequence of segmentations, with 

n̂ij ≤ |A|4.

6 � Computational Complexity Analysis of the Color-Based 
Spatial Segmentation Algorithm

Let m = |E| be the number of the tree-edges of the input spatial graph G = (V, E) 
of the color-based algorithm, and n = |V| the number of the vertices of G. The run-
ning time of the color-based spatial segmentation Algorithm 2 can be factored into 
four parts:

•	 The running time required to determinate the threshold τ, denoted by t0 (line 4), 
where t0 = O(m) from relation

(27)Ĝij = �Ĝ
ij
1 , Ĝ

ij
2 , . . . , Ĝ

ij

n̂ij
�,

T(CREATEHEXAGONALSTRUCTURE) = O(n),
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	 because O(n)  =  O(np) (the assertion that the number of the resulted tree- 
hexagons is always less than np/8)

•	 The running time required to initialize the array CC at the lines 4–6, denoted by t1,

•	 The running time required to sort the edges into non-increasing order of weights 
at the line 9, denoted by t2.

•	 The running time of the main part of the algorithm at the lines 12–27, denoted 
by t3.

Because m ≤ 3n− 6 it follows that O(m) = O(n), and thus the running time t0 is

The running time required to sort the edges into non-increasing order of weights 
can be done in O(m  log  m) by using one of several sorting methods (e.g., the 
Quicksort method). It follows that O(m logm) = O(n log n), and thus the running 
time t2 is

In the following we will discuss the running time t3. The running time of the func-
tion UNION at the line 18 can be also factored into two parts:

•	 the running time for the operations concerning disjoint-set data structures, 
denoted by ts3,

•	 the running time of the additional operations for determining the values for the 
fields of the Tree objects when merging two components, denoted by t3l.

As a consequence the running time t3 can be written as

where ts3 is the part of t3 by considering only the operations for disjoint-set data 
structures in the union function, and t3l is the part of t3 by considering only the 
additional operations in UNION.

Because the function FINDSET performs standard operations on disjoint-set 
data structures and the operation at the line 17 is done in constant time it follows 
that

where α(n) is a very slowly growing function, the inverse of the extremely 
quickly-growing Ackermann function A(n, n) [19]. Because we have m = 3n – 6, 
and because

(28)t1 = O(n).

(29)t0 = O(n).

(30)t2 = O(n log n).

(31)t3 = ts3 + tl3,

(32)ts3 = O(m ∗ α(n)),

(33)a(n, n) = O(log∗ n),
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where

it follows that

The running time tl3 for determining the values for the fields of the Tree objects 
when merging two components is factored as follows:

•	 the running time for determining the values for the fields isRoot, parent,  
compIndex, surface, and color, denoted by tc, is tc =  O(m), because at each 
iteration determining these values can be done in constant time,

•	 the running time for determining the value of the field frontier, denoted by tf.

In order to determine tf, let sp(C′) and sp(C″) be the two lists of tree-hexagons 
belonging to the frontier of the two components, C′ and C″, that are merged by 
the union function, and let tf(C) be the running time for determining the frontier 
of the merged component, C. Determining the value of the field frontier associated 
to the merged component require the traversal of the shortest list from the pair of 
lists sp(C′) and sp(C″). Because for every component C the number of the tree-
hexagons contained in the region associated to C is less than the number of tree-
hexagons from its frontier, the running time tf(C) verify the following condition:

where |C| represents the number of the tree-hexagons contained in the region asso-
ciated to C. For the sake of simplicity we assume that n = 2k for a some integer k. 
In the worst case the final segmentation St contains only one component, St = �Ct�,  
with |Ct| = n, and at each merge operation, the two merged components have the 
same frontier length

Thus the worst scenario is in the case when all pairs of merged components 
have the same frontier length and the same area: first are merged all components 
containing one hexagon, then are merged all components containing two tree- 
hexagons, etc. It follows that the running time for determining all the values  
frontier verify the following relation:

where for each term, 2i−1 n
2i

, the factor n
2i

 represents the number of the tree-hexagons 

associated to a component, and 2i−1 represents the number of components with the 
same area. Because

it follows that tf =
n log n
2 log 2

, and, in conclusion, tf = O(n log n).

(34)log∗ n = min
i≥0

(log(i) n, 1).

(35)ts3 = O(n log∗ n).

(36)tf (C) = |C|/2,

(37)min(|sp(C′)|, |sp(C′′)|) = |sp(C′)| = |sp(C′′)|.

(38)tf =
n

2
+ 2

n

22
+ 22

n

23
+ · · · + 2k−1 n

2k
,

n

2
+ 2

n

22
+ 22

n

23
+ · · · + 2k−1 n

2k
= k

n

2
=

n log n

2 log 2
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Because G is a spatial graph and m ≤ 3n − 6 it follows that tc = O(m) = O(n) 
and thus the running time tl3 is determined as

and from the relations 31, 35 and 39 it follows that

Finally from the relations  28, 30 and 40 it follows the overall running time of 
Algorithm 2 is

7 � Conclusions

Image segmentation plays a crucial role in effective understanding of digital 
images, planar or volumetric images. Past few decades saw hundreds of research 
contributions in this field. However, the research on the existence of general pur-
pose segmentation algorithm that suits for variety of applications is still very 
much active. Among the many approaches in performing image segmentation, 
graph based approach is gaining popularity primarily due to its ability in reflect-
ing global image properties. The current research in graph based methods orients 
towards producing approximate solution (or sub-optimal solution) for such graph 
matching problem to reduce processing time. Also, use of a priori information that 
include shape, topology and appearance model of the category of images to be 
segmented is getting more popularity [21].

The problems of volumetric image segmentation and grouping remain great 
challenges for computer vision. The problem of all segmentation methods is a 
well-studied one in literature and there are a wide variety of approaches that are 
used [6]. Different approaches are suited to different types of input images and 
the quality of output of a particular algorithm is difficult to measure quantitatively 
due to the fact that there may be many ‘correct’ segmentation method for a single 
image [13]. We plan to use a larger image database to confirm the quality of the 
obtained results, and do the evaluation with additional low level cues as well as 
different statistical measures.

Here, a graph-based theoretic framework is considered by modeling image seg-
mentation as a graph partitioning and optimization problem using input spatial 
graph.

We are introducing new algorithm for volumetric segmentation based on Virtual 
Tree-Hexagonal Structure constructed on the image voxels [22, 23]. We have pre-
sented the original and efficient algorithm of volumetric segmentation methods and 
honeycomb cells used is the first run in volumetric segmentation algorithm. Then 
we can use the graph facilities and their related algorithms and computational com-
plexity can be viewed as slow as the fundamental graph algorithms. The key to the 
whole algorithms of volumetric segmentation method is the honeycomb cells.

(39)tl3 = O(n log n),

(40)t3 = O(n log n).

(41)T(CREATECOLORPARTITION) = O(n log n).
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The major concept used in graph-based volumetric segmentation method 
is the concept of homogeneity of volumes and thus the edge weights are based 
on color distance. Our original algorithms for Color-based Segmentation and 
Syntactic-based Segmentation are linear. The proposed volumetric graph-based 
segmentation method is divided into two different steps: (a) a segmentation step 
that produces a maximum spatial spanning tree of the connected components of 
the tree-grid spatial graph constructed on the tree-hexagonal structure of the volu-
metric input image, and (b) the final volumetric segmentation step that produces 
a minimum spatial spanning tree of the connected components, representing the 
visual objects, by using dynamic weights based on the geometric features of the 
volumes.

Then the paper describes the Computational Complexity Analysis of the Color-
Based Spatial Segmentation Algorithm.

Enhancement and generalization of this method is possible in several fur-
ther directions. First, it could be modified to handle open curves for the purpose 
of medical diagnosis. Second, research direction is the using of composed shape 
indexing for both semantic and geometric image reasoning. Incorporation of the 
fuzzy set theory into graph based frameworks can achieve enhanced segmentation 
performances.
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