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Abstract  Currently, cancer prevails as a prime health matter worldwide. Selecting 
the appropriate biomarkers for early cancer detection might improve patient care 
and have often driven revolutions in medicine. Statistics and machine learning 
techniques have been broadly investigated for biomarker identification, especially 
feature selection where researchers try to identify the most distinguishing genes 
that can achieve better predictive performance of cancer subtypes. The robust-
ness of the selected signature remains a crucial goal in personalized medicine. 
Ensemble and parallel feature selection are promising techniques to overcome this 
problem in which they have seen an increasing use in biomarker discovery. We 
focus in this chapter on the principal aspects of using ensemble feature selection in 
biomarker discovery. Furthermore, we propose a massively parallel meta-ensem-
ble of filters (MPME-FS) to select a robust and parsimonious subset of genes. 
Two types of filters (ReliefF and Information Gain) are investigated in this study. 
The performances of the proposed approach in terms of robustness, classification 
power and the biological meaning of the selected signatures on five publicly avail-
able cancer datasets are explored. The results attest that the MPME-FS approach 
can effectively identify a small subset of biomarkers and improve both robustness 
and classification accuracy.
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1 � Introduction

Over the last two decades, the general rate of deaths to new cancer cases persists 
as high as 49 % overall. Thus, current bioinformatics efforts are focusing on bio-
marker discovery which is the key element of personalized medicine, where the 
genetic constitution is used to guide therapeutic approaches [1]. Therefore, the dis-
covery of more effective cancer biomarkers is urgently needed, since the develop-
ment and the effective use of biomarkers in clinical practice will certainly lead to 
tailor treatments for the disease in an individual [2].

The application of omics high-throughput technologies for cancer biomarker 
discovery is being rapidly expanded in current biomedical research, including 
DNA microarrays, Next Generation Sequencing (NGS) and MicroRNAs which are 
able to capture a substantial fraction of a cell state [3]. These technologies allow 
monitoring the expression levels of thousands of genes simultaneously in healthy 
and diseased cells, as well as are essential to biomarker discovery.

Gene expression data can effectively help to differentiate between cancer sub-
types and then serve as an effective tool for diagnostic purposes in clinical practice. 
However, the identification of the smallest possible set of genes that could be used as 
biomarkers is a crucial problem in bioinformatics and personalized medicine. These 
genes must be the most informative for cancer prediction through supervised classi-
fication models [4]. The identification is generally referred to as a feature selection 
problem which is desirable to provide the features that contribute most to both classifi-
cation and prediction [5]. It is a vital preprocessing step in data mining tasks, to reduce 
the effect of noise and improve the quality of data processing as well as considered to 
be one of current challenges in statistical machine learning for high-dimensional data.

A major challenge in the analysis of gene expression data is due to their sizes: a 
very small number of samples, of the order of tens, versus thousands of genes associ-
ated to all samples. This is commonly known as the “curse-of-dimensionality” which 
is also characterized by a large number of irrelevant, redundant and noisy genes that 
mislead or impede diagnosis efficiency [6]. Thus, only a fraction of genes contains 
useful biological interpretations and further gives a high accuracy for cancer diagnosis. 
Another challenge concerns the biological variations in real clinical tests which require 
the development of more stable feature selection methods [7]. In other words, selection 
of informative genes and an appropriate assessment of robustness, classification accu-
racy and biological meaning of the results are the most important matters in this field.

Ensemble-based learning is a robust and popular technique, due to the immense 
success of many ensemble methods in bioinformatics applications. It has the broad 
advantage of overcoming the curse-of-dimensionality in gene expression data, 
thereby offer higher accuracy and stability than conventional feature selection 
algorithm can achieve. Therefore, the use of ensemble methods to feature selec-
tion problem has been one of the recent growing trends. It consists of performing 
multiple diverse selectors with different subsamples, and then aggregates their results 
using a consensus function to obtain a final best subset of biomarkers [8]. Another 
benefit of applying ensemble feature selection, that it is naturally susceptible to paral-
lelism, as well as we can easily undertake their parameters in parallel. The parallel 
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implementation of ensemble methods can certainly speedup the computational time 
of the selection and allow solving large-scale problems by involving multiprocessors 
to execute the different parts of the ensemble in parallel [9].

This chapter will focus on the different aspects of the application of ensem-
ble feature selection methods to biomarker discovery from gene expression data. 
Furthermore, we propose a massively parallel meta-ensemble based feature selec-
tion method that can select robust and accurate biomarkers from DNA-microarrays 
datasets and can be generalized to several genomics studies. Two types of filter-
based feature selection algorithms are investigated in this study: ReliefF and 
Information Gain. We also discuss the results in terms of robustness, classification 
power and the biological meaning of the selected signatures.

2 � Application of Ensemble Feature Selection  
to Biomarker Discovery

In analogy with ensemble methods in supervised machine learning which com-
bine multiple learned models to achieve high classification accuracy such as bag-
ging and boosting [10]. Ensemble feature selection has received much attention 
recently. We mainly present here the different aspects to be considered in ensem-
ble-based feature selection for biomarker discovery in which can help research-
ers to classify any method of them. The main critical problems in this category 
of methods are both the construction of diverse local selectors and the consensus 
function used to combine the different subsets of features [7, 11]. Therefore, the 
first aspect to be examined is the diversity design within the ensemble. This crite-
rion divides ensemble feature selection methods into three classes:

•	 Ensemble based on data diversity: where we run the same selector with different 
subsamples generated from the original dataset [12, 13].

•	 Ensemble based on functional diversity: where different selectors are performed 
on the whole set of data (without sampling) [14].

•	 Ensemble based on data and functional diversity: here both data and functional 
diversity are combined in which multiple feature selection algorithms are per-
formed on different subsamples.

Another aspect to be considered in ensemble feature selection methods is the 
representation used by the different selectors, since the notation of the results is 
not the same in all feature selection algorithms. This has a great impact on the 
consensus function to be used to aggregate the results [12]. Typically, we can 
observe three types of representations:

•	 Feature subset representation: subset containing only selected features (gener-
ally with different size)

•	 Feature ranking representation: subset of ranked features (a threshold is necessary 
for the selection)

•	 Feature weighting representation: a subset of pairs feature/weight which can 
easily converted to feature ranking representation.
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Recent studies have focused on ensemble methods using wrapper-based selectors 
[15, 16]. It prompts us to consider the dependence of the selectors to any classifier 
as an important aspect in ensemble feature selection methods. This criterion influ-
ences the quality of solutions within the ensemble and the overall computational 
cost of the selection, as well as it divides ensemble feature selection methods into:

•	 Filter/ranking-based ensembles: they are simple, fast and independent of any 
classifier [14].

•	 Wrapper-based ensembles: they are very computationally intensive and have 
the risk of over-fitting due to high dimensionality of data as well as include the 
interaction between feature subset search and the mining algorithm. Moreover, 
they have the ability to take into account feature dependencies [17].

•	 Embedded-based ensembles: they use internal information of the classifier to 
perform selection and show a better computational complexity than wrapper 
methods [13].

•	 Hybrid-based ensembles: they are a combination of filter and wrapper methods 
which use the ranking information obtained using filters to guide the search in 
the optimization algorithms used by wrapper methods [16].

3 � Massively Parallel Meta-Ensemble Feature Selection

Feature selection is an important preprocessing step in many machine learning 
applications including bioinformatics and computational biology, where it is 
generally used to find the smallest subset of features that extremely increases 
the performance of the classification model. In this section, we focus on ensem-
ble of ensembles learning techniques which work by aggregating the outcomes 
of different ensembles into a final agreed decision through one or more consen-
sus functions. The main objective is to attempt high performance of computer-
aided diagnosis (CAD), by selecting a few genes with high predictive power and 
high sensibility to variations in real clinical tests. The selected biomarkers will 
be directly used by the CAD system for cancer diagnosis or others predictive 
goals.

For this purposes, a new parallel framework of feature selection is explored 
(see Fig.  1). In analogy with meta-ensemble models for supervised learning 
[10], the proposed approach is designed as an ensemble of ensembles of differ-
ent selectors which perform selection in parallel through various ensembles and 
two consensus functions. In the following, we introduce our parallel framework 
for biomarker discovery in detail. We first, formulate both problem and representa-
tion of our solution under the proposed framework and then the general framework 
is explored including the parallel construction of the ranked lists as well as the 
related consensus functions.

Accordingly, biomarker discovery from gene expression is the problem of 
selecting subset of representative biomarkers from a large dataset. Given a set X of 
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K features with K very large, the problem consists in finding out the minimal subset 
X∗
s ⊂ X that contains the more relevant yet non redundant features. Ensemble fea-

ture selection is a promising technique for addressing these complex structures of 
data and alleviates the problems of small sample size and high dimensionality [18].

The use of an ensemble of ensembles of filters leads to several subsets. Let 
us denote by Xi

sj the subset j of selected features using filter i. Therefore, two 
matters need to be addressed. The first one is related to the importance of each 
feature and the second one is related to the way subsets are aggregated to lead 
to the final subset of features. In order to properly deal with these two issues, we 
propose a two stage approach that uses ranking and consensus functions. At a 
first step various subsets of ranked lists of features are constructed using several 
filters then aggregation of these subsets is performed at two levels to form ensem-
bles and then the meta-ensemble. More formally, the output of the first step can 
be represented as:

f kij  represents the rank of the feature k in the ensemble j using filter i. Its relevance 
is given by the weight wk

ij. The global weight of feature k within the ensemble j is 
denoted as wk

j . Three subsets of pairs of features and their weights are needed.

•	 The first is Lbestj that represents the local best features in each ensemble.

•	 This subset is the result of an aggregation process over Xi=1...N
sj  subsets.

(1)Xi
sj =

{(

f kij ,w
k
ij

)

where i, j = 1 . . . (N ,M) and k = 1 . . .K
}

(2)Lbestj =
{(

k,wk
j

)

where j = 1 . . .M and k = 1 . . .K
}
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Fig. 1   Parallel model of the MPME-FS
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•	 The second is Gbest. It represents the global best features over the meta-ensemble. 
It is the result of an aggregation process over Lbestj.

•	 The third is Fbest = X∗
s ⊂ X. It represents the final selected features given by 

MPME-FS method.

3.1 � General Framework of MPME-FS  
for Biomarker Discovery

The general framework of MPME-FS consists of multiple ensembles of filters per-
formed in parallel each of which employs a robust consensus function to select the 
best subset within each ensemble. The next step is to aggregate the outcome of all 
ensembles using a second consensus function and finally select features with higher 
scores given by all filters from all ensembles as shown in Fig. 1. The selection pro-
cesses starts by the construction of M sub-samples Si = 1…M from the whole data-
set. Then, the parallel selection is initiated in all the M ensembles. At this stage, 
each ensemble j constructs N ranked lists Xi

sj by using filter i. To achieve the goal of 
both functional and data diversity when constructing the Xi

sj lists, we have used data 
partitioning with overlap allowing creating a reduced dataset to each filteri.

Data perturbation involves generating subsamples by removing instances from 
the original datasets randomly. Knowing that, the overlap represents the percent-
age of samples belonging to the original dataset [11]. Subsequently, a consen-
sus function within each ensemble is applied in order to aggregate these ranked 
lists Xi

sj and finally obtain the local best features in the ensemble j (Lbestj)  
(see Fig. 2). Note that the construction of the ranked lists within each ensemble 
can be performed in parallel and through different filters (Information Gain, Gain 
ratio, Fisher Ratio, Symmetric uncertainty, ReliefF).

The following step consists of the aggregation of all local best features over 
the meta-ensemble, to construct the global best subset (Gbest) of features using 
the consensus function 2 alongside with the accumulation of scores associated 

Fig. 2   Ensemble feature 
selection
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to these features. Finally, we select the best ranked features which constitute the 
subset Fbest, from the subset Gbest ranked based on features’ global weights

3.2 � Consensus Functions

Recent work in biomarker identification has seen an increasing use of ensemble 
based feature selection due to their power to give higher accuracy and stability 
than a single algorithm can achieve. It can also dealing with small sample size 
and complex data structures. The key idea in ensemble methods is how to com-
bine subsets of different selectors to lead to the final subset of features. This 
problem has received considerable attention in recent years [19]. Aggregation 
methods depend on the representation of the outcome of selectors which can be 
divided in three types: feature subset, feature ranking and feature weighting-score 
[11]. Based on these representations there exist many consensus functions, some 
of them include weighted voting, mean aggregation and threshold based aggrega-
tion for both rank and weighting-score representations, and counting the most fre-
quently selected features for feature subset representation [12, 20].

Certainly, choosing the appropriate consensus function is a difficult task in 
ensemble methods. In our work, we use two consensus functions; the first one in 
the ensembles level and the second function is in the meta-ensemble level. Both 
are based on features ranking and their global weights which lead to a more robust 
and parsimonious final selection.

The first consensus function aggregates the ranked lists created by filters in the 
same ensemble. This function is inspired from both counting the most frequently 
selected features and weighted voting aggregation functions, but with hard selec-
tion by using the intersection over the entire ranked lists. For the intersection pur-
pose, we use a threshold denoted by TS1 in order to select only features belonging 
to TS1 first ranked ones. Afterward, the weights of all selected features over the 
entire ensemble j denoted by wk

i,j are accumulated in order to obtain the global 
weights of selected features wk

j  over all ensembles [18]. More formally, the con-
sensus function 1 can be described as follows:

By this way, we obtain the set Lbestj containing pairs of the best selected features 
with their global weights in the ensemble j {

(

k, wk
j

)

}. This latter will be the input 

of the second consensus function in the meta-ensemble level, to construct the sub-
set Gbest which contribute to the final selection.

The second consensus function consists primarily of aggregation the M subsets 
(Lbestj) generated in the parallel previous step. The Gbest subset represents pairs 
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of features and their accumulated weights belonging to the union of the M local 
best subsets of features, which can be calculated as follows:

Finally, we select the best TS2 ranked features from Gbest that represent the 
final selected features to be validated in the validation step. The pseudo-code of 
the whole process can be summarized as follows:


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
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




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Gbest =
��

k, bwk
��

=
M
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j=1

Lbestj

where bwk =
M
�

j=1

wk
j
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4 � Experiments and Discussions

In the following sections, the analysis of classification performances, robustness 
and biological interpretation of the MPME-FS method on large feature and small 
sample size microarrays are presented. First, the data sets and the experimental 
settings used in this analysis are briefly described. Second, we analyze the clas-
sification performances in terms of accuracy, sensitivity and specificity using dif-
ferent classifiers. After that, we study the robustness of the selected signatures. 
Finally, we perform a biological interpretation of the selected genes.

4.1 � Datasets and Experiment Setting

All experiments were conducted using MATLAB®’s Parallel Computing Toolbox 
(PCT). The proposed MPME-FS was evaluated by means of five publicly available 
DNA microarray datasets which can be divided into binary and multiclass types. 
The binary datasets are the most prominent and can separate healthy patients from 
cancer patients, while multiclass datasets are used to differentiate the various types 
of cancers based on gene expressions. Therefore, the datasets were collected from 
both Kent Ridge bio-medical data repository1 and Gene Expression Model 
Selector, from Vanderbilt University2. The main datasets characteristics are shown 
in Table 1.

To assess the performances of our parallel meta-ensemble feature selection 
method, we use in the experiments two well-known and successful filters: infor-
mation gain and ReliefF. Based on an empirical evaluation using different set-
tings of the proposed method, the best parameters setting of MPME-FS which is 
adopted in this study is depicted in Table 2.

4.2 � Classification Accuracy Analysis

The first experiment is devoted to assess the performance of the MPME-FS in 
terms of accuracy, sensitivity, specificity and the number of selected biomarkers 
using 10-fold cross validation technique. The latter is a common choice in the 
specialized literature [21], which splits the whole set of data into many subsets to 
evaluate the goodness of the selected signature.

To achieve high level evaluation of the classification ability of the selected 
genes, we first use different classifiers separately (SVM, KNN, ANN). Then we 
have employed an ensemble of different classifiers (SVM, KNN and ANN) with 

1  http://levis.tongji.edu.cn/gzli/data/mirror-kentridge.html.
2  http://www.gems-system.org.

http://levis.tongji.edu.cn/gzli/data/mirror-kentridge.html
http://www.gems-system.org
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majority voting as consensus function. Accordingly, the results indicated in Fig. 3 
represent the average accuracies of MPME-FS given by SVM, KNN, ANN and the 
ensemble of classifiers described above. For comparison reasons, we have used in 
this experiment both Information Gain and ReliefF filters to perform selection by 
the proposed approach. Form this figure we observe that the MPME-FS performs 
better using information Gain filter than ReliefF filter in the five datasets.

A second observation which can be made is that the ensemble of classifier gives 
higher accuracy than single classifiers in almost cases that are not surprising since 
it combines the efforts of the three classifiers. Furthermore, Fig. 4 shows boxplots 
of MPME-FS using SVM classifier over thirty runs for both Information Gain and 
ReliefF (Fig.  4a, b successively). As desired, the performance variance between 
runs reaches an almost completely stable result through the two filters (among 
0.001 and 0.04).

We also provide in Table  3 the average performance of MPME-FS using the 
different classifiers of both information Gain and ReliefF filters. In the last column 

Table 1   Characteristics  
of the different datasets  
used for evaluation

Dataset #Features #Classes #Samples

Ovarian 15,154 2 253

Leukemia 7,129 2 72

DLBCL 5,469 2 77

Colon 2,000 2 62

SRBCT 2,308 4 83

Table 2   MPME-FS 
parameters setting

Filters InfoGain, ReliefF

Ensemble size 10

Meta-ensemble size 100

TS1 150

TS2 30

Overlap 80

K value in ReliefF 10

Fig.  3   Average 10 cross-validation classification accuracy using: SVM, KNN, ANN and an 
ensemble of different classifiers over the five datasets
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the number of selected biomarkers on the five datasets is shown. We observe that 
both sensitivity and specificity of our selection are convergent among the different 
classifiers. The previous experiments were performed on 30 independent runs to 
have statistically meaningful conclusions as our approach is stochastic.

4.3 � Robustness Analysis

We explore and discuss in the present study the robustness of the selected signa-
ture by the MPME-FS approach. Therefore, we assess the similarity between the 
outputs of different independent executions of our method. The global stability is 

Fig. 4   Boxplots of MPME-FS method on colon, leukemia, DLBCL, SRBCT and ovarian data-
sets across 30 runs. a Informain gain filter and b ReliefF filter

Table 3   Average classification results in terms of sensitivity (sensi), specificity (speci) and the number 
of selected biomarkers (# genes) of MPME-FS using both information gain and ReliefF filters over the 
five datasets

SVM KNN ANN Ensemble  
of classifiers

# 
genes

Sensi Speci Sensi Speci Sensi Speci Sensi Speci

InfoGain Colon 0.875 0.804 0.925 0.907 0.871 0.831 0.914 0.909 30

Leukemia 0.957 1 0.978 0.96 0.934 0.92 0.953 1 31

DLBCL 0.965 1 0.827 1 0.924 0.63 0.952 1 27

SRBCT 1 0.94 0.896 1 0.89 0.92 1 0.963 32

Ovarian 0.998 1 0.993 0.967 1 0.978 1 0.988 39

Average 0.959 0.948 0.923 0.966 0.923 0.855 0.963 0.972 31

ReliefF Colon 0.875 0.81 0.925 0.863 0.9 0.818 0.89 0.863 31

Leukemia 0.878 0.96 1 0.84 0.872 0.88 1 0.96 33

DLBCL 0.931 0.947 0.965 0.947 0.948 0.842 0.948 0.947 27

SRBCT 0.931 0.944 0.965 1 0.931 0.925 0.965 0.981 33

Ovarian 1 1 1 0.978 1 0.978 1 0.989 41

Average 0.923 0.932 0.971 0.925 0.9302 0.888 0.960 0.948 33
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defined as the average over all pairwise similarity comparisons between the differ-
ent feature selectors as follows [12]:

where fi represents the outcome of the feature selection method applied to subsam-
plei (1 ≤  i ≤ 20), and S(f

i
, fj) represents a similarity measure between fi and fj. 

Mainly, for feature subsets selection (as in our case), we use the Jaccard index (JI) 
which can be calculated as follows:

A set of experiment assess the overall stability of the selected signature on the 
five datasets using both Information Gain and ReliefF filters which is shown in the 
Fig. 5a. Results in term of Jaccard index show that the MPME-FS performed using 
information gain is generally more robust over the most datasets. To provide a bet-
ter robustness analysis, we assess the effect of data perturbation rate when creating 
subsamples on the stability of the signature. In this experiment we use Information 
Gain as filter over the five datasets of which the results can be seen in Fig.  5b, 
which indicates that the robustness decreases as the perturbation rate is decreased.

4.4 � Biological Interpretation of the Results

In this section, we address biological analysis of the selected biomarkers. We 
focus in this experiment on the analysis of the selected biomarkers from Colon 
and Leukemia datasets which are widely studied in the literature. Accordingly, 
Tables 4 and 5 list and describe the top thirty ranked genes over 30 independent 

(3)Stot =
2
∑k

i=1

∑k
j=i + 1 S(fi, fj)

k(k − 1)

(4)S(fi, fj) =

∣

∣fi ∩ fj
∣

∣

∣

∣fi ∪ fj
∣

∣

Fig. 5   Average robustness results of the MPME-FS in term of Jaccard index over 20 independ-
ent runs on the five datasets. a Information Gain filter versus ReliefF filter b Jaccard index versus 
perturbation rate of subsampling between the independent runs (80, 90 and 100 %)
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Table 4   Description of the top thirty selected genes from colon dataset, with a complete frequency 
level (freq = 30) over 30 independent runs

Gene index Accession number Gene description

66 T71025 3′ UTR 1 84103 Human (HUMAN)

1423 J02854 Gene 1 “MYOSIN REGULATORY LIGHT CHAIN 2, SMOOTH 
MUSCLE ISOFORM (HUMAN); contains element TAR1 repetitive 
element”

1414 R64115 3′ UTR 2a 139618 ADENOSYLHOMOCYSTEINASE (Homo 
sapiens)

137 D25217 Gene 1 “Human mRNA (KIAA0027) for ORF, partial cds”

138 M26697 Gene 1 “Human nucleolar protein (B23) mRNA, complete cds”

241 M36981 Gene 1 “Human putative NDP kinase (nm23-H2S) mRNA,  
complete cds”

245 M76378 Gene 1 “Human cysteine-rich protein (CRP) gene, exons 5 and 6”

249 M63391 Gene 1 “Human desmin gene, complete cds”

267 M76378 Gene 1 “Human cysteine-rich protein (CRP) gene, exons 5 and 6”

1843 H06524 3′ UTR 1 44386 “GELSOLIN PRECURSOR, PLASMA 
(HUMAN)”

286 H64489 3′ UTR 2a 238846 LEUKOCYTE ANTIGEN CD37 (Homo 
sapiens)

365 X14958 Gene 1 Human hmgI mRNA for high mobility group protein Y

377 Z50753 Gene 1 H.sapiens mRNA for GCAP-II/uroguanylin precursor

1960 D59253 Gene 1 Human mRNA for NCBP interacting protein 1

493 R87126 3′ UTR 2a 197371 “MYOSIN HEAVY CHAIN, NONMUSCLE 
(Gallus gallus)”

513 M22382 Gene 1 MITOCHONDRIAL MATRIX PROTEIN P1 
PRECURSOR (HUMAN)

625 X12671 Gene 1 Human gene for heterogeneous nuclear ribonucleoprotein 
(hnRNP) core protein A1

739 X12369 Gene 1 “TROPOMYOSIN ALPHA CHAIN, SMOOTH MUSCLE 
(HUMAN)”

897 H43887 3′ UTR 2a 183264 COMPLEMENT FACTOR D PRECURSOR 
(Homo sapiens)

765 M76378 Gene 1 “Human cysteine-rich protein (CRP) gene, exons 5 and 6”

780 H40095 3′ UTR 1 175181 MACROPHAGE MIGRATION INHIBITORY 
FACTOR (HUMAN)

812 Z49269 Gene 1 H.sapiens gene for chemokine HCC-1

964 T86473 3′ UTR 1 114645 NUCLEOSIDE DIPHOSPHATE KINASE  
A (HUMAN)

1042 R36977 3′ UTR 1 26045 P03001 TRANSCRIPTION FACTOR IIIA

1411 H77597 3′ UTR 1 214162 H.sapiens mRNA for metallothionein 
(HUMAN)

1494 X86693 Gene 1 H.sapiens mRNA for hevin like protein

1582 X63629 Gene 1 H.sapiens mRNA for p cadherin

1635 M36634 Gene 1 “Human vasoactive intestinal peptide (VIP) mRNA, 
complete cds”

1771 J05032 Gene 1 “Human aspartyl-tRNA synthetase alpha-2 subunit  
mRNA, complete cds”

1263 T40454 3′ UTR 2a 60221 ANTIGENIC SURFACE DETERMINANT 
PROTEIN OA3 PRECURSOR (Homo sapiens)
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runs which have a complete frequency level (freq = 30) from Colon and Leukemia 
datasets successively. Furthermore, the selected genes are considered informa-
tive in most well-known methods in the literature. Specially, in Leukemia dataset 
which has been widely studied in this area.

As a result, genes selected from Leukemia dataset listed in boldface in Table 5, 
were also selected among the top 25 most relevant genes by Wu et  al. [4] and 

Table  5   Description of the top thirty selected genes from Leukemia dataset, with a complete 
frequency level (freq = 30) over 30 independent runs

Gene index Accession number Gene description

758 D88270_at GB DEF = (lambda) DNA for immunoglobin light chain

760 D88422_at CYSTATIN A

1144 J05243_at SPTAN1 Spectrin, alpha, nan-erythrocytic 1 
(alpha-fodrin)

1630 L47738_at Inducible protein mRNA

1685 M11722_at Terminal transferase mRNA

1834 M23197_at CD33 CD33 antigen (differentiation antigen)

1882 M27891_at CST3 Cystatin C (amyloid angiopathy and cerebral 
hemorrhage)

1902 M29474_at Recombination activating protein (RAG-1) gene

2121 M63138_at CTSD Cathepsin D (lysosomal aspartyl protease)

2128 M63379_at CLU Clusterin (complement lysis inhibitor; testosterone-
repressed prostate message 2; apolipoprotein J)

2288 M76559_at Neuronal DHP-sensitive, voltage-dependent, calcium 
channel alpha-2b subunit mRNA

2354 M92287_at CCND3 Cyclin D3

2363 M93056_at LEUKOCYTE ELASTASE INHIBITOR

2402 M96326_rna1_at Azurocidin gene

2642 U05259_rna1_at MB-1 gene

3252 U46499_at GLUTATHIONE S-TRANSFERASE, MICROSOMAL

4107 X07743_at PLECKSTRIN

4196 X17042_at PRG1 Proteoglycan 1, secretory granule

4328 X59417_at PROTEASOME IOTA CHAIN

4366 X61587_at ARHG Ras homolog gene family, member G (rho G)

4377 U46499_at GLUTATHIONE S-TRANSFERASE, MICROSOMAL

4847 X95735_at Zyxin

5171 Z49194_at OBF-1 mRNA for octamer binding factor 1

5501 Z15115_at TOP2B Topoisomerase (DNA) II beta (180kD)

6041 L09209_s_at APLP2 Amyloid beta (A4) precursor-like protein 2

6281 M31211_s_at MYL1 Myosin light chain (alkali)

6855 M31523_at TCF3 Transcription factor 3 (E2A immunoglobulin 
enhancer binding factors E12/E47)

1909 M29696_at IL7R Interleukin 7 receptor

1953 M33195_at Fc-epsilon-receptor gamma-chain mRNA

2335 M89957_at IGB Immunoglobulin-associated beta (B29)
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they are considered useful to discriminate between the two class label AML and 
ALL. Moreover, eight out of these thirty top genes selected by our method, i.e., 
M23197_at, M27891_at, U05259_rna1_at, U46499_at, X95735_at, L09209_s_
at, M31523_at and M89957_at were deemed as relevant by Zhu et  al. [21]. The 
selected genes can now be validated by biologists through clinical trials. We 
expect these discoveries may offer useful information for biologists and medical 
experts.

5 � Conclusion

In summary, we considered in this chapter the application of ensemble feature 
selection methods to biomarker identification. Indeed, the most reviewed ensem-
ble feature selection methods attest that this technique is a promising direction 
for more stable and accurate selection in cancer gene identification. We have 
also proposed a massively parallel approach based on meta-ensemble of filters 
for biomarker discovery from high dimensional data. The MPME-FS is different 
from other ensemble feature selection methods since it performs a parallel selec-
tion in two steps: the first one within each ensemble by the aggregation of results 
of different selectors, the second step is the aggregation of the outcomes of all 
ensembles using a second consensus function. The final selected biomarkers are 
employed to construct a classification model that will be used as an effective tool 
to handle patients and diagnose cancer subclasses.

In addition, the proposed MPME-FS is very fast and is computationally effi-
cient as it is massively parallel and no learning algorithm is used in the selection 
process. Instead, we have employed filter model which is usually exploited when 
the number of features becomes very large especially for high dimensional data. 
Clearly, the MPME-FS can be performed using any ranking based feature selec-
tion algorithm and applied to any feature selection problem.

The experiments over five DNA microarrays datasets revealed that good results 
can be achieved through MPME-FS in terms of classification performance and 
robustness. Biological analysis of the results shows that MPME-FS provides the 
selection of highly informative genes which have biological meanings and are also 
selected by the other approaches.
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