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Abstract The rate of scientific discovery depends on the speed at which  accurate 
results and analysis can be obtained. The use of parallel co-processors such as 
Graphical Processing Units (GPUs) is becoming more and more important in 
meeting this demand as improvements in serial data processing speed become 
increasingly difficult to sustain. However, parallel data processing requires more 
complex programming compared to serial processing. Here we present our meth-
ods for parallelising two pieces of scientific software, leveraging multiple GPUs to 
achieve up to thirty times speed up.
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1  Introduction

Some of the strategic drivers for software development in computational science 
and engineering are outlined by EPSRC [1]. In particular, the focus “development 
of novel code, the development of new functionality for existing codes and the 
development and re-engineering of existing codes. Strategic drivers are: develop-
ing code for emerging hardware architectures; developing researchers with key 
software engineering skills and software sustainability” [2] is pertinent to code 
used in HPC. We consider this strategy one of the key drivers in the context of 
software sustainability [3], and an important challenge in the development of sci-
entific and engineering software.

In our research we have focused on improving the efficiency and scalability of 
existing software. The examples here have been designed to address the challenges 
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in processing large radio telescope data (SETI), and optical inferometry data used 
in surface measurements. The existing codes were re-engineered to support differ-
ent GPU architecture, and enable scaling to larger GPU systems. In doing this we 
are addressing some ‘software for the future’ issues, taking into account the new 
hardware trends in GPUs deployment for HPC software.

Using GPUs in addition to more traditional High Performance Computing 
Resources to perform complex tasks or process large volumes of data has become 
increasingly common in supercomputing centres over the recent years. This trend 
can be seen by looking at the Top500 (A ranking of the worlds top scoring super-
computing sites [4]) over the past few years.

3D graphics rendering typically executes a single instruction at a time for every 
pixel to be rendered, and calculations for a single pixel are independent from those 
for other pixels [5]. This has resulted in graphics processors becoming largely paral-
lel devices with hundreds of stream cores on a single device, capable of performing 
an instruction on a constant stream of data at high speed. Driven by the lucrative 
video games industry, GPUs are not only outpacing CPUs in terms of the rate of 
technological improvement, but also have much lower cost and power demands 
per core [6]. Owing to their original intended use in graphics processing, a funda-
mentally data parallel problem, GPUs can provide a significant speed boost to tasks 
which exhibit high data parallelism. Many fields of scientific research use soft-
ware that fits these criteria, and GPUs are seeing increased use in this area [7–9].  
In response to this new GPU architectures have been designed specifically for gen-
eral purpose processing, such as Nvidias TESLA series, shown in Fig. 1.

To explore the potential for speed up in scientific applications, two existing 
software cases have been examined for sections appropriate for parallelisation. 

Fig. 1  Detail of the TESLA graphics and computing GPU architecture. Terminology: SM stream-
ing multiprocessor; SP streaming processor; Tex texture, ROP raster operation processor [10]
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These examples were rewritten to allow them to execute on a GPU cluster, the 
deployment of which is detailed in [11].

2  GPU Programming Models

In order to make general purpose processing on GPUs more accessible, there have 
been numerous models and libraries developed. Currently, the most mature of 
these are OpenCL and CUDA. Both models use the concept of kernels to contain 
parts of program structure which interact with compute devices, but differ in hard-
ware support and scope.

OpenCL is an open source parallel programming standard, with notable con-
tributors such as Apple, ARM, AMD, Samsung and Nvidia. It allows programs to 
take advantage of a very diverse array of processing devices such as GPUs, CPUs, 
DSPs, and FPGAs. The standard provides mechanisms for hardware vendors to 
add mechanisms for access to hardware specific features, which serves to increase 
its flexibility [12].

CUDA is developed by Nvidia for its own series of GeForce, Quadro and Tesla 
processors. It is flexible in its scalability and will run on an arbitrary number of 
processors without the need to recompile. This relieves the programmer of the bur-
den of requiring specific knowledge of the hardware, which today can have vastly 
different clock speeds, RAM and numbers of cores depending on the model [13]. 
As CUDA functions are called from standard C or C++ it makes GPU program-
ming much more accessible than has previously been possible. An example of the 
required effort to produce CUDA compatible code can be seen in listings 1 and 2. 
The CUDA programming model was used in our case study to accelerate process-
ing of radio astronomy data produced by SETI, as well as increasing the through-
put of wavelength scanning interferometry data analysis.

3  Accelerated Processing of Radio Telescope Data

The Search for Extra-terrestrial Intelligence (SETI) employs various methods 
in their attempt to discover evidence of technology based signals generated by 
civilizations outside of our own solar system. To this end vast amounts of radio 
telescope data must be analysed. The data is explored with signal processing tech-
niques or image based techniques, such as SETILive, where images of this data 
are observed by the public who try to detect patterns in this data. Sonification is 
a process where data is transformed to sound [15]. SonicSETI is a project where 
radio astronomy data produced by SETI [16] is converted into sound (or sonified) 
so that the public can listen to this data to detect anomalous sounds.

However, processing this data is somewhat time consuming, taking almost 12 h 
to process an 8 GB set of data. The solution to this problem is to use GPU acceler-
ated FFT libraries, such as the one provided by Nvidia [17].
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The original software, written in JAVA, reads data from a file then determines 
how many FFTs to perform, before processing the data and saving to a new file. 
The time taken to process each data set was deemed unacceptable, at around 12 h 
per 8 GB dataset. The first effort towards acceleration was to replace the FFT 
function with calls to a CUDA accelerated FFT function, CUFFT. In the JAVA 
code this was done via JCUDA, a java wrapper for various cuda functions, demon-
strating that GPU acceleration is accessible from a variety of languages.

To further increase acceleration, it was deemed necessary to rewrite the soft-
ware in C++, in order to have more complete access to various CUDA functions. 
Shown in Listing 3 is a section the final C++ CUDA code which shows the host 
to device memory copy and using CUFFT to perform FFT on the device.
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3.1  Evaluation of Results

The graph in Fig. 2 compares the performance of the software, in Java, Java modi-
fied to use JCUDA, C++, and C++ with CUDA. Running regular FFT code 
compared to the GPU accelerated CUFFT library.

The program was rewritten using MPI, to allow it to take advantage of mul-
tiple GPUs. Figure 3 shows the run time of the FFT part of each C++ method; 
this is the part which has been implemented on the GPU so gives the best indica-
tion of acceleration. While restructuring the code to take advantage of both GPUs, 
the way in which data was copied to the GPU was changed to better utilise the 
memory on-board the device. Previously, enough data for a single FFT was copied 
to the device before being executed and copied back. In the MPI version, enough 
data is sent to fill the GPU memory before executing a batch of FFTs. This change 
reduced copy operations from 680 to 34.

An interesting finding was that Java performance was poorer than C even with-
out GPU acceleration. It was determined that this was the result of slower disk 
access and the fact that JAVA uses big endian memory organization, so byte order 
has to be swapped before sending to GPU.
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As this approach uses MPI, it would be relatively simple to scale this to any num-
ber of GPUs, the only mitigating factor being that network overhead would increase 
for every additional node, eventually making the addition of more nodes impractical.

4  Accelerated Surface Measurement with Environmental 
Noise Compensation

Optical interferometry is a widely used surface metrology technique. Wavelength 
scanning interferometry developments have been made that allow the process 
to be immune to environmental noise using phase compensation. However this 
 compensation as well as data analysis processes limit performance, and hamper 

Fig. 2  Run time of each method

Fig. 3  Run time of the parallel/FFT part of each method
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efforts to inspect this data as the measurement takes place. The paper [18] details 
a method which uses CUDA to accelerate this process with a single GPU. Using 
a Multi-GPU system such as VEGA [11] this process can be accelerated further to 
allow a greater number of frames to be processed without a significant increase in 
process time.

The original CUDA program loads a set of bitmap frames, and the noise 
cancellation is calibrated by loading a matrix which has been processed by 
MATLAB. After calibration the data is processed using Nvidias CUFFT GPU 
accelerated parallel FFT algorithm, and all data is saved to disk. By using an MPI 
based method to submit to 2 GPUs, two sets of frames can be processed in par-
allel effectively doubling throughput, or alternatively one set can be divided in 
two to reduce processing time and increase the efficiency of in-process analysis. 
As with the sonification study, the program is split into a master process and a 
worker process—which must be able to run an arbitrary number of times, while 
the master co-ordinates. As there are 2 GPUs in our system we run 3 processes—
one master and two workers. Figure 4 shows the main function of the program, 
Fig. 5 describes the MPI program which allows the CUDA program to executed 
on multiple GPUs.

Fig. 4  Program flow for the original CUDA code
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4.1  Evaluation of Results

The graph in Fig. 6 compares total runtime for a single GPU versus two. When 
running on one GPU 256 frames are processed, when running on 2 GPUs 512 
frames are processed. It can be seen that running on 2 GPUs adds an overhead of 
approximately 400 ms, however Fig. 7 shows that running on 2 GPUs significantly 
reduces the per-frame processing time, being 1.9 times faster.

Fig. 6  Total run time

Fig. 7  Processing time per frame
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While only 2 GPUs were used in this case, our system has a capacity for 16. It 
can be speculated, given the results already gained, what the potential speed-up 
would be if 16 GPUs were used. Given that a single GPU processes 256 frames 
in 9,902 ms, and the addition of a second GPU adds a 400 ms overhead, it is not 
unreasonable to suggest that 16 GPUs may be able to process 4,096 frames in 
around 14 s (when including inevitable network overhead)—an 11 fold increase in 
throughput over processing on a single GPU, and a 5 fold increase over 2 GPUs. 
As the software already utilises MPI, were the hardware available the software 
could run at this scale without modification. The law of diminishing returns will 
apply here however, as network overhead increases with the number of processes 
it would be come less beneficial to keep adding more GPUs. Using these assump-
tions we can predict system performance, as shown in Fig. 8, which illustrates 
that as we add more GPUs the relative benefit is less every time. This is where 
it is important to consider speed versus efficiency. Using the methods outlined in 
[19] we can identify that the efficiency of the software, based on these projections, 
peaks at 5 GPUs, after which the improvements tend towards zero. Hence, while 
speed up does continue to increase after this point, the resources required to do 
this might be best used for other tasks.

5  Conclusion and Further Work

In this chapter we have presented our work in parallelising existing codes for pro-
cessing radio telescope and surface metrology data. Writing sustainable code for 
modern, multi-core, multiprocessor systems still presents a challenge. Existing 
programming environments for parallel and distributed platforms do not provide 

Fig. 8  Projected per-frame runtime on multiple GPUs
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software developers with the tools necessary to test programs for the newest most 
powerful hardware.

Using the examples detailed here, and by utilising our own GPU cluster, we 
have shown that speed-up of up to 30 times is possible even on a modest GPU sys-
tem. This will enable scientists and researchers to process complex problems and 
large volumes of data in near real-time.

To further explore the challenges of parallelisation we will investigate how 
these software examples scale onto much larger systems by running them on 
EMERALD, the UKs largest GPU cluster at Rutherford Appleton Laboratory [20].

In order to address the energy efficiency of our code, and software sustainabil-
ity with respect to energy efficiency, we will build on our current research pro-
ject funded by the innovate UK (technology strategy board) in Energy-Efficient 
computing [21]. Our focus will be on energy efficient data structures and algo-
rithms for GPU technology. The resulting software will be evaluated and will be 
optimised under energy efficiency constraints creating more efficient software for 
affordable and sustainable high performance computing.
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