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Abstract Reservoir simulation provides information about the behaviour of 
a reservoir in various production and injection conditions. Reservoir simula-
tor is used to predict the future behaviour and performance of a reservoir field. 
However, the heterogeneity of reservoir and uncertainty in the reservoir field cause 
some obstacles in selecting the best calculation of oil, water and gas components 
that lead to the production system in oil and gas. This paper presents a dynamic 
well Surrogate Reservoir Model (SRM) to predict reservoir bottom-hole flowing 
pressure by varying the production rate constraint of a well. The proposed SRM 
adopted Radial Basis Neural Network to predict the bottom-hole flowing pressure 
of well based on the output data extracted from a numerical simulation model in 
a considerable amount of time with production constraint values. It is found that 
the dynamic SRM is capable to generate the promising results in a shorter time as 
compared to the conventional reservoir model.

1  Introduction

Multiphase flow in oil and gas field generally refers to simultaneous flow of more 
than one fluid in a reservoir [1] and it is commonly encountered as the flow of oil-
gas-water is the reservoir. The physics involved in multiphase flow is very intricate 
due to the interaction between different fluids [2] and it is generally experienced 
during the production of oil and gas field. This indicates that oil and gas field is 
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getting more complicated and challenging, having one or more reservoirs and 
many numbers of injection and production wells in its geological structure. The 
complexity of a reservoir leads the system to a dynamic nature and the recovery 
process changes from natural depletion to water-flooding as well as switches to 
an enhanced oil recovery process [3]. In order to deal with this complexity, large 
amount of researches has been done and performed with the introduction of mech-
anistic models [4] to predict the fluids and gas flow by changing their pressure and 
temperature value etc. This phenomena also leads to many numerical simulation 
models that are used as potential candidates to estimate the accurate flow charac-
teristics of oil, gas and water in the production system [2]. Numerical simulation 
models that are used to simulate the behavior of production system in multiphase 
flow reservoir requires considerable amount of time on some parallel computer 
processing units. On the other hand, surrogate reservoir model (SRM) can also be 
considered as a potential solution to address this necessity. SRM can be used to 
predict the results of a reservoir, such as pressure, production rate and gas-oil ratio 
in less amount of time as compared to the other numerical simulation models. The 
objective of this paper is to develop a dynamic well SRM to predict the bottom-
hole flowing pressure (BHFP) of a well based on production rate constraints that 
mines the output data from reservoir model. In real scenario the BHFP of a well 
always changes based on time period. This is because sometimes the reservoir and 
petroleum engineers prescribe (fix) the value of a well BHFP for some specific 
years and they do not want to put the well BHFP for those years into considera-
tion. In order to cater for this kind of common scenarios, dynamic well SRM is 
proposed in this paper. Dynamic well SRM has the capability of producing the 
results of BHFP for all or specific years.

The structure of this paper is as follows: Sect. 2 explains the related work 
of SRM in oil and gas fields, Sect. 3 details the development of the proposed 
dynamic well SRM, while Sect. 4 shows a case study which is under considera-
tion of this research and Sect. 5 spells out the results and discussion, followed by a 
conclusion in Sect. 6 of this paper.

2  Related Work

In 1999, the first surrogate reservoir model (SRM) was developed for hydraulic 
fracturing simulator in oil and gas. It was able to reproduce the results of hydrau-
lic fracturing simulator called FracPro in less amount of time using artificial 
intelligence technique [5]. In later years, other attempts of SRM can be found in 
literature articles. For instance, SRM was able to calculate the porosity and per-
meability distribution in a heterogeneous and multiphase reservoir by matching 
the static and dynamic data that are available [6]. The surrogate model was also 
developed for Steam Assisted Gravity Drainage process in heterogeneous and mul-
tiphase petroleum reservoir [7]. Based on the previous work on surrogate model, 
another SRM was built for a giant oil in the Middle East, in that development 
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full field simulation model was taken, which includes millions of grid blocks and 
more than 165 wells in its geological structure. The SRM was able to replicate the 
results of full field simulation model based on time complexity [5, 8, 9]. Besides 
that, SRM was also developed for uncertainty analysis of coalbed methane (CBM) 
production to optimize the performance of reservoir [10]. In the same year, well 
SRM was developed to examine against the two-and-a-half year production of a 
reservoir. The SRM was used to accurately predict the simultaneous cumulative oil 
production and water cut for every well at each given time [11]. Pertaining to that 
work, SRM was also built for CBM reservoir to predict the cumulative production, 
that includes thirteen well to produce fifteen years production [12]. In subsequent 
years, well based SRM was developed for a reservoir that includes both natural 
and hydraulic fractures. SRM has been used to optimize the recovery process and 
predict the cumulative oil production [13, 14]. On the other hand, SRM was also 
used to predict the pressure and CO2 distribution throughout the reservoir with 
good accuracy [15]. Recently, well based SRM was developed to generate a pro-
duction rate as a function of time for all wells over the next 25 years with promis-
ing accuracy [16].

The success of SRM development is due to the state of the art technology in 
Artificial Intelligence, such as Artificial Neural Network (ANN). And the use of 
the ANN has been increasing in oil and gas industry over the past few years to 
solve many complex and highly non-linear problems [17]. ANN is considered as 
a non-linear tool and are good at predicting the complex and nonlinear system 
behavior. ANN is also used to solve many different kinds of problems related to 
reservoir engineering, such as, reservoir characterization [18], permeability pre-
diction [19, 20], prediction of bottom-hole flowing pressure in vertical multiphase 
flow [21, 22], predicting the water inflow performance in solution gas drive [23]. 
In the past few years, some of the ANN study has been done on the history match-
ing process [24] and the application of surrogate reservoir modeling [9, 25]. The 
benefit of ANN over other conventional techniques such as, response surface and 
reduced models in reservoir engineering, is its ability to perform complex and 
highly non-linear task accurately and rapidly. In most of the previous work related 
SRM, researchers have adopted backpropagation neural network (BPNN) in con-
structing the reservoir model. However, in the study of BPNN, there is a problem 
of trapping in local minima during training time because one needs to specify the 
number of hidden neurons in the network. In most of the time, the network will 
not reach at the global minima to find the minimum error value. However, another 
type of ANN which is known as radial basis neural network (RBNN), in which 
the non-existence of local minima problem will not occur because the number of 
hidden neurons increases automatically until the error value reaches its minimum 
value, which is considered as more objective based.

In this paper, we propose to adopt RBNN after comparisons were done on the 
performance of BPNN and RBNN, to construct the dynamic well SRM based on 
production rate constraint which defer from the previous developed SRM. The 
developed dynamic well SRM may cater the changes with respect to each time 
step on the specific task. Dynamic well SRM is considered as a complex task to be 
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implemented because it generates the reservoir response based on the time com-
plexity which may vary in an inconsistent pattern. Dynamic well SRM is used to 
calculate the results of BHFP by prescribing the production rate value at all or 
some specific time steps.

3  Dynamic Well Surrogate Reservoir Model

Dynamic well surrogate reservoir model (SRM) is the collection of reservoir well 
constraints such as, well bottom-hole flowing pressure (BHFP, pwf) and production 
rate, which changes with respect to the time span. In most of the real scenarios, the 
BHFP of a well always changes based on time period and sometimes reservoir and 
petroleum engineers have already known the value of a well BHFP for some specific 
years and hence they do not need to calculate the well BHFP for those specific years 
but only consider those unknown period of time. In order to predict BHFP for such 
a scenario, dynamic well SRM can be used to predict BHFP for all or specific years. 
In this paper, a dynamic well bottom-hole flowing pressure with prescribed produc-
tion rate is developed. Equation 1 represents the BHFP value of a well using the 
BOAST simulator and well SRM with production rate is used to replicate the result 
of BHFP using Eq. 1. In the equation, pwf represents the bottom-hole flowing pres-
sure of well, Qo represents the production rate, PI represents a productivity index of 
the reservoir’s ability to transfer fluid to the well, �o shows mobility of the oil phase, 
Bo explains the volume factor of oil phase and p represents reservoir pressure.

Figure 1 represents the steps involved to build the surrogate reservoir model 
(SRM) for this paper. The first step to build the SRM requires data collection. In 
this paper, we use Black Oil Simulation Tool (BOAST) to build a spatio-temporal 
database and generate the output responses based on the input values which are 
tuned to the BOAST simulator.

BOAST is developed and provided by the Department of Energy (DOE) United 
States in 1982 as an open source package. It is considered as an implicit pressure-
explicit saturation (IMPES) simulator [26], which finds the pressure distribution 
for a given time step first then calculates the saturation distribution for same time 
step. It is a three dimensional (X, Y, Z) and three phase (oil-gas-water) simulator 
for modeling the multiphase flow in porous channel and used in oil and gas field to 
simulate different scenarios. For example, primary (natural) depletion, secondary 
depletion in which pressure is maintained by water injection and tertiary depletion 
is considered as enhanced oil recovery such as gas injection is used to maintain the 
pressure. The well model in BOAST has the flexibility to change the operational 
constraints such as production rate specifications or well flowing pressure value on 
the well behavior and performance, and the user is permitted to add or replicates 
the wells during the simulation time [27].

(1)pwf = p+
Bo

PI · �o
Qo
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The spatio-temporal database represents the characteristics and behavior of the 
reservoir with its input-output parameters, which is considered as the training data 
sets for SRM. It is developed using the static and dynamic data, such as, porosity, 
permeability, pressure and production value at any time the reservoir.

Before the training starts in RBNN, all the training datasets can be divided into 
two matrices. One is assumed to be input data sets and another is considered as the 
output data sets. The input and output data sets are normalized in a specific range. 
In this research, a standard normalization function such as tangent sigmoid func-
tion is used to confine all the input and output data sets within the specific range 
of −1 and 1 before the training starts [28, 29]. The mathematical representation of 
this function is given in Eq. 2:

During the training of RBNN, the training data set is always divided in three 
phases: training, validation and testing. The training data is used during the train-
ing of the neural network where as validation data is also used during the training 
process, but it is not used to train the neural network rather it is used to check the 
network learning during the training. Both training and validation data that used 
during the training time is considered as non-blind data [16].

(2)y =
e2x − 1

e2x + 1

Fig. 1  Basic flow chart to build surrogate reservoir model



284 P.Q. Memon et al.

3.1  Radial Basis Neural Network

Radial Basis Neural Network (RBNN) is used to develop a network with good 
generalization capabilities having a less number of hidden neurons in its struc-
ture [30]. A RBNN is considered as the special type of the ANN because it only 
requires one hidden layer in its architecture and it allows the input space to be 
represented in a new space with different hidden layer neurons. During the train-
ing process of RBNN, it behaves as a linear model because all the hidden neurons 
center and computations are fixed. The RBNN hidden layer neurons perform non-
linear transformations and maps all the inputs into new input space satisfactory. 
The output layer is considered as linear transformer, which is applied to new input 
space so that only weights of hidden neurons can be adjusted. The performance 
of the RBNN can be determined by adjusting the centers (widths) of the hidden 
neurons and there is no specific formula available to select the width of the radial 
basis function (RBF). But one should select the width of the RBF larger than the 
distance between two adjacent inputs and smaller than the distance all over the 
input space in order to get good generalization [31]. RBNN has been used in wide 
range of applications, such as, system prediction, pattern recognition, system 
approximation, signal processing and system equalization, system identification, 
speech recognition and adaptive control, etc. [32]. And it has been used to solve 
the problems of oil and gas field, i.e. gas-oil ratio (GOR) of reservoir, seismic, 
electromagnetic, resistivity, [33], well log data inversion [34], prediction of log 
properties from the seismic attributes of the reservoir [35] as well as the nonlinear 
relationship between the reservoir property and seismic attributes [36].

The growth and general architecture of the RBNN has been influenced 
by the RBF. Figure 2 represents the general architecture of the RBNN. In 
Fig. 2, x = [x1, x2, . . . , xm] represents the input vectors of the network and 
y = [y1, y2, . . . , yn] represents the final net output of the network and in hidden 
layer there are a number of neurons. Inside each hidden neurons there is a RBF 
[37], the RBNN inputs are directly connected to the each basis function that gener-
ates an output Φi as shown in the Eq. 3, which depends upon the input vectors.

where, x represents the input data points of network, u is the center of the radial 
basis function (u = 0), σ represents the radius of the RBF (σ > 0). Once the hid-
den neuron is calculated based on radius of RBF. Then it is passed to the output 
layer, where the sum of the product between the hidden layer neuron and weight 
vector is computed to produce final network output yn.

(3)φi = exp

[

−
(� x − u �)T (� x − u �)

σ 2

]

(4)yn =

M
∑

m=1

wi · φi
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Once the model is developed using the training, it is ready to be tested with 
testing data, that the network never uses during the training process. This testing 
data is used to check the predictive capability of constructing a network [38]. If 
the network generalized this testing data with good accuracy, it means that the net-
work has a capability to predict the output of new data with good approximation 
and this network is considered as a validated network model to serve the SRM.

4  Case Study

The base case study, which is considered in this paper has been taken from the 
Society of Petroleum Engineering (SPE) [39] to build the dynamic well SRM with 
production rate constraints. Figure 3 represents the grid view and configuration of 
the reservoir which is under consideration. In the figure, each grid block consists 
of 1,000 ft and the reservoir consists of 10× 10 grid block in x and y directions. 
The total area occupied by the reservoir is considered as 100,000,000 ft2. Figure 4 
reveals the diagonal cross section model of the reservoir properties.

The reservoir model is based on the three layers labeled as LAYER 1, LAYER 
2 and LAYER 3. The 8,325 ft is considered as the top value of the model, while H, 
FT represents the depth of the reservoir, which varies as 20, 30, 50 ft in LAYER 1, 
LAYER 2 and LAYER 3 respectively. Φ represents the porosity value of the res-
ervoir, which is assumed to be homogeneous in whole reservoir. It represents the 
tiny spaces in the rock that hold oil or gas and is measured of total rock which is 
taken up by pore space [40]. Kx, Ky and Kz represents the permeability value of 

1

1x
1y

2

2x

2y

mx i ny

Wi

Fig. 2  Radial basis neural network with m-dimensional inputs and n-dimensional outputs
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reservoir in x, y and z direction respectively. The value of permeability is considered 
as homogeneous in x and y direction, but heterogeneous with respect to z direction. 
Permeability is considered as the ability of a reservoir to pass the fluid from the 

Fig. 3  Grid configuration and problem specification to build well SRM [39]

Fig. 4  Diagonal cross section of reservoir grid model [39]
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rocks’ pores and permeability of each rock depends on the nature of the reservoir. 
Sw and So from Fig. 4 represents the initial water and oil saturation of the reservoir 
before the production come out from the reservoir. The value of initial water and oil 
saturation is considered as constant in the whole reservoir, that are 0.12 and 0.88 
respectively. There is a one gas injection well in LAYER 1 at this first grid block of 
the reservoir with injection rate of 100,000 MMscf/D. While there is another well 
which is known as the production well of the reservoir and it is perforated in the 
LAYER 3 at the opposite corner of the gas injection well. The production well can 
produce a maximum production rate of 20,000 STB/D and minimum production 
rate of 1,000 STB/D. The minimum bottom-hole flowing pressure of production 
well is 1,000 psi. The middle layer is considered as empty because there is no oil, 
gas and water in this layer. The aquifer value of the reservoir is zero, therefore there 
is no flow at the boundaries of the reservoir grid system. Whereas the reservoir has 
an initial pressure of 4,800 psia and temperature is considered as 200 °K. This paper 
contains the porosity, permeability and production rate as the key input parameters 
to build the dynamic well SRM for multiphase flow simulation. Table 1 represents 
the base case study values and their range, which are considered to build the data-
base for the proposed study. The mean value of input parameters such as porosity 
and permeability range is the same as the value of the base case study.

5  Results and Discussion

This section explains the results of the developed dynamic well SRM for bottom-
hole flowing pressure (BHFP) with reservoir characteristics such as, porosity, 
permeability and production rate constraint values as input parameters. 100 train-
ing cases were generated from BOAST and 5-fold cross validated was conducted 

Table 1  Reservoir 
characteristics used to build 
database for dynamic well 
SRM

Input parameters Range

Porosity in Layer 1 (%) 2–4

Porosity in Layer 2 (%) 2–4

Porosity in Layer 3 (%) 2–4

Permeability in Layer 1 X direction (md) 470–530

Permeability in Layer 1 Y direction (md) 470–530

Permeability in Layer 1 Z direction (md) 70–130

Permeability in Layer 2 X direction (md) 40–60

Permeability in Layer 2 Y direction (md) 40–60

Permeability in Layer 2 Z direction (md) 30–45

Permeability in Layer 3 X direction (md) 170–230

Permeability in Layer 3 Y direction (md) 170–230

Permeability in Layer 3 Z direction (md) 15.83–25.83

Production rate (STB/D) 4,000–7,000
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towards the developed BPNN and RBNN. Table 2 shows the average results from 
the 5-fold cross validation training data. The statistical results such as root mean 
square error (RMSE), mean absolute percentage error (MAPE), standard deviation 
(σ) and accuracy were presented in the table. It is shown that RBNN performs bet-
ter with 96 % accuracy as compared with BPNN only can achieve 87 % accuracy.

Once the training is conducted to build a static well SRM, 15 series of test cases 
were generated randomly to test the dynamic well SRM. Table 3 show the results of 
dynamic well SRM. The error values such as RMSE, MAPE and accuracy are calcu-
lated to measure the error between the target and predicted output. It again shows that 
RBNN outperforms BPNN with slight better accuracy of 65 %, however, there is quite 
a huge gap between on the error rates between the two techniques as shown in the table, 
albeit RBFF still performs better than the other. The time that the BOAST simulator 
takes to calculate one simulation run (test case) is about 1 min and for 15 simulation 
runs, it took a total of 15 min on the Intel (R) Core (TM) i5-3470 CPU @ 3.2 GHz 
CPU, whereas SRM using ANN only took a maximum of 1 s to compute the results for 
the all simulation runs (15 test cases) on the same CPU with a good approximation.

Once the dynamic well SRM is built according to the specified condition such 
as with production rate constraint. Then it is used to test developed SRM accord-
ing to the end user requirement. To test the dynamic well SRM by changing the 
production rate constraint of a well at any time. Table 4 represents the arbitrary 
test cases values to test the dynamic well SRM by switching the constraint values.

Case 1 from Table 4 is used to predict the results of bottom-hole flowing pres-
sure (BHFP) using BPNN and RBNN approaches. Figure 5 represents the results 
of dynamic well SRM by giving the production rate constraint value as input 
parameter to calculate the BHFP for year 1, 2, 4, 6, 8, 9 and 10. And for year 3, 
5, 7 the BHFP value is already prescribed. However, RBNN and BOAST results 
matches with each other by accuracy of 63 %. Whereas, BPNN and BOAST 
results matches with each other by accuracy of 47 %.

Case 2 from Table 4 is used to produce the results of BHFP for year 1, 2, 5, 6, 9 
and 10 by giving the value production rate as input parameter using dynamic well 
SRM, but for year 3, 4, 7 and 8 the BHFP is already prescribed as shown in the 
Fig. 6. However, RBNN and BOAST matches with each other by accuracy of 98.9 % 
and BPNN and BOAST results matches with each other by accuracy of 97.8 %.

Table 2  Quantitative measurements of 5-fold cross validation from 100 training cases using 
BPNN and RBNN

Model RMSE MAPE σ Accuracy (%)

BPNN 0.2283 3.5767 0.0135 87

RBNN 0.2059 3.2271 0.0136 96

Table 3  Quantitative error 
measurement of 15 testing 
cases using RBNN

Algorithm RMSE MAPE Accuracy (%)

BPNN 2786.4 695.5 63

RBNN 7.9 14.66 64.5

Best result is indicated in bold

Best result is indicated in bold
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Table 4  Reservoir 
characteristics used to build 
well SRM with production 
rate constraint

Input parameters Case 1 Case 2

Porosity in Layer 1 (%) 4 4

Porosity in Layer 2 (%) 4 3

Porosity in Layer 3 (%) 2 3

Permeability in Layer 1 X direction (md) 511 524

Permeability in Layer 1 Y direction (md) 511 519

Permeability in Layer 1 Z direction (md) 114 72

Permeability in Layer 2 X direction (md) 42 43

Permeability in Layer 2 Y direction (md) 57 42

Permeability in Layer 2 Z direction (md) 37 31

Permeability in Layer 3 X direction (md) 185 206

Permeability in Layer 3 Y direction (md) 218 177

Permeability in Layer 3 Z direction (md) 20 23

Production rate (STB/D) 5,546 5,854

Fig. 5  Testing results of well SRM with production rate (Case 1)

Fig. 6  Testing results of well SRM with production rate (Case 2)
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From the stated cases, case 1 represents a case performed at the lower tile 
whereas case 2 shows a case with performance at the higher tile.

6  Conclusion

In this paper, results of dynamic well SRM with production rate constraint have 
been presented with two different types of ANN, i.e. RBNN and BPNN. From the 
case study conducted, RBNN outperforms BPNN in building the dynamic SRM. 
Also, two statistical error measurements have been conducted to see the absolute 
error of target and predicted output of the trained network. The study have car-
ried with both BPNN and RBNN to build the SRM in order to predict the future 
results in less amount of time. It is also obvious dynamic well SRM has a capabil-
ity of fast and accurate replication of numerical simulation models results at dif-
ferent time steps. The future work and challenge will involve complex reservoir 
with larger numbers of grid blocks in its geological structure with many number of 
injection and production wells to optimize the production of reservoir.
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