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Abstract  The success of time series data mining applications, such as query by 
content, clustering, and classification, is greatly determined by the performance 
of the algorithm used for the determination of similarity between two time series. 
The previous research on time series matching has mainly focused on whole 
sequence matching and to limited extent on sequence-to-subsequence match-
ing. Relatively, very little work has been done on subsequence-to-subsequence 
matching, where two time series are considered similar if they contain similar 
subsequences or patterns in the same time order. This paper presents an effec-
tive approach capable of handling whole sequence, sequence-to-subsequence and 
subsequence-to-subsequence matching. The proposed approach derives its strength 
from the novel two stage segmentation algorithm, which facilitates the alignment 
of the two time series by retaining perceptually important points of the two time 
series as break points.

Keywords  Data mining  ·  Dimensionality reduction  ·  Piecewise linear represen-
tation  ·  Time series representation

1 � Introduction

Many areas of science, engineering and business are generating, archiving 
and processing vast amounts of time series data. Mathematically, a time series 
T = {T[1], T[2], …, T[n]} is a sequence of n real numbers in the increasing order 
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of time, where each value has a time stamp. The ability to match two time series, 
T1 of length m, and T2 of length n, to determine their similarity, is a fundamen-
tal and critical step in most time series data mining applications including query 
by content, clustering and classification [1]. Time series T1 and T2 may differ in 
length, time scale, amplitude scale, time shift, and amplitude shift. There may be 
considerable distortion due to time warp and noise, and the elements of T1 and T2 
may not align. In such cases, the matching should be established on general shapes 
and local trends of T1 and T2. There are three time series matching scenarios.

1.	 Sequence-to-sequence matching
2.	 Sequence-to-subsequence matching
3.	 Subsequence-to-subsequence matching

The subsequence-to-subsequence matching, which is the task of establishing simi-
larity based on sufficiently long similar subsequences of T1 and T2, has received 
very little attention and remains an open research problem. In the simplest case, 
where T1 and T2 are of the same time scale and basic Euclidean distance is used as 
the similarity measure, the order of computation for subsequence to subsequence 
matching is O(n3m). As time series are high dimension data, the computation of 
dissimilarity between two time series in their raw form is very expensive. The situ-
ation becomes even worse, if the data points of the two time series do not align.

This paper presents an approach capable of handling sequence-to-sequence, 
sequence-to-subsequence, and subsequence-to-subsequence matching effectively 
and efficiently. A segmentation algorithm that selects perceptually important points 
as primary break points, a time series alignment algorithm that suggests sequence-
to-sequence, sequence-to-subsequence, or subsequence-to-subsequence based on 
the relational analysis of primary break points, and a hierarchical representation 
that supports coarse-fine matching are the primary contribution of this paper.

The remainder of this paper is organized five sections. Section 2 reviews briefly 
the related work. The HPLA based time series matching approach is described in 
Sect. 3. The approach consists of three major steps: Identification of perceptually 
important primary breakpoints, alignment of the two time series to identify pairs 
of corresponding candidate matching segments, and matching of segments in each 
suggested pair using their HPLA representations. The experimental results using a 
variety of time series data are analyzed and discussed in Sect. 4. Finally, the con-
clusion is given in Sect. 5.

2 � Related Work

Several distance measures have been developed for the computation of the dis-
similarity between T1 and T2 [2]. These distance measured are grouped into 4 
categories: lock-step, elastic, edit and threshold based distance measures. The 
computationally efficient lock-step distances are not capable of handling even 
the slightest misalignment between T1 and T2. The elastic measures, such as 
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Dynamic Time Warping (DTW), allow time series to be stretched or compressed 
as needed to achieve good matching [3]. As time series are high dimension data 
and DTW uses dynamic programming requiring O(mn) time, matching time series 
in their raw form is computationally expensive. Researchers have embraced two 
approaches for improving computational efficiency. They have developed tech-
niques to speed-up DTW and other time series matching algorithms, and to repre-
sent time series compactly while preserving salient attributes.

Sakoe and Chiba [4] improved the efficiency of the DTW algorithm by defining 
a warp window, and by comparing each data point of T2 (query sequence) with 
only the data points of T1 (sequence in the data base) that are inside the warp win-
dow. The Fast Time Series Evaluation algorithm (FTSE) maps data points of T1 
into a grid based on their values. The data point of T1 that matches T2[i] is deter-
mined by comparing T2[i] with only the data points of T1 that reside in the same 
grid cell as T2[i] [5]. The Embedding-Based Subsequence Matching (EBSM) 
algorithm converts each subsequence of T1 into a k-dimensional vector, where the 
ith component of the vector is the DTW distance between the subsequence and 
the ith embedding sequence. Thus, each time series T1 in the database becomes 
a sequence of vectors. The query sequence T2 is also converted to a vector using 
the same embedding sequences, and vector matching techniques are used for 
retrieval. The experimental results in [6] indicate one to two orders of magnitude 
faster retrieval than the brute force method. Though time series are converted to 
sequence of vectors offline, the approach generates a large number of vectors with 
high computational cost. Many widely used methods including DTW are natural 
for only sequence-to-sequence matching. There are variants of DTW algorithm, 
which are developed for sequence-to-subsequence matching [7]. Some methods, 
in order to handle this problem, cut the long time series into non-overlapping short 
segments, and match each segment with the query sequence [8]. Such approaches 
cannot retrieve any subsequence other than the stored segments. Faloutsos et  al. 
[9] use a sliding window of size w to convert each time series in the database to a 
trail in a low-dimensional feature space. The window is placed at all possible posi-
tion, features are extracted for the subsequence inside the window and used to map 
the subsequence to a point in the feature space. The trail is partitioned into sub-
trails, and each sub-trail is enclosed in a minimum bounding rectangle for index-
ing purpose. Similarly, the query sequence T2 is mapped to the feature space to 
determine the sequences for retrieval.

The second approach obtains compact representations of the two time series, 
and matches them in the representation space. During the past two decades, sev-
eral representations, such as Discrete Fourier Transform (DFT) [10], Discrete 
Wavelet Transform (DWT) [10], Singular Value Decomposition (SVD) [11], 
Piecewise Aggregation Approximation (PAA) [12], Adaptive Piecewise Constant 
Approximation (APCA) [13], Piecewise Linear Approximation (PLA) [14], 
Piecewise Polynomial Approximation (PPA) [16], Symbolic Representations 
(SAX) [15], etc. have been developed.

It is important to note that most of the time series matching research is 
in the context of query by content, where the focus is on whole sequence or 
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sequence-to-subsequence matching. The indexing centered algorithms and 
representations are not very beneficial to many other applications of time series 
matching. The speed-up techniques beneficial to indexing, for example, are not 
beneficial to clustering, where pairwise comparison of all time series in the dataset 
is needed. It is fair to say that, relatively, very little work has been done on subse-
quence-to-subsequence matching of time series.

Any representation that is suitable for subsequence-to-subsequence matching 
must segment and represent the matching subsequences in the two time series sim-
ilarly, even if the two time series differ in translation, time and amplitude scale. 
Ideally, the segmentation should ensure a one-to-one mapping of segments of 
the two matching subsequences, and the corresponding segments must be simi-
lar. One approach is to partition time series at perceptually important points, and 
build the representation for each segment independently. The local maxima and 
minima, and points at which the slope changes abruptly may be taken as the per-
ceptually important points. Bettaiah and Ranganath [17] have clearly shown that 
the segmentation algorithm used for the generation of PAA, APCA, PLA, and 
SAX representations do not segment the two time series to meet the stated require-
ment. Thus, they are not able to support subsequence-to-subsequence matching 
[19]. The DFT being a global transform is also not able to handle subsequence-
to-subsequence matching [17]. The PLA representation has the potential to sup-
port the development of algorithms for all matching scenarios if each time series 
is segmented into identifiable segments by placing breakpoints at the perceptually 
important local maxima and minima [18]. However, well-known and frequently 
used segmentation methods (sliding window, top-down and bottom-up) do not 
guarantee the identification of PIPs as breakpoints.

3 � The HPLA Based Time Series Matching Approach

An efficient and effective approach for subsequence-to-subsequence matching is 
given in this section. The approach consists of three major steps: Identification 
of perceptually important primary breakpoints, alignment of the two time series 
to identify pairs of corresponding candidate matching segments, and matching of 
segments in each suggested pair using their HPLA representations.

3.1 � Identification of Perceptually Important  
Primary Breakpoints

Usually, a time series has many local maxima and minima due to the presence of 
noise. The goal is to develop an algorithm that ignores minor fluctuations and identi-
fies prominent peaks and valleys that define the general shape of the time series. The 
following algorithm selects such prominent peaks and valleys as primary breakpoints.
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The algorithm first identifies every maximum (minimum) with a raise (fall) 
greater than the average raise (average fall) as an initial perceptually impor-
tant maximum (minimum), and stores its value in Prominent_MaxMin_I. 
The time index of each entry in Prominent_MaxMin_I is recorded in 
Prominent_MaxMinIndex_I. The adja-cent elements of Prominent_MaxMin_I are 
examined to obtain Prominent_MaxMin_F, the final list of perceptually important 
points.

3.2 � Time Series Alignment Algorithm

Let, {p1, p2, p3, …, pN} be the set of breakpoints of T1 identified by Determine_
Primary_BeakPoints. Let, A be the (N ×  N ×  N) relational array, where aijk is a 
r-dimensional vector that specifies the relationship between pi, pj, and pk. In this paper, 
a 2-dimensional vector aijk =

[(

tj − ti
)

/
(

tk − tj
) (

T1
[

tj
]

−T1[ti]
)

/(T1[tk]−T1[tj])
]
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is used to specify the relationship among pi, pj, and pk. Note, aijk is computed for all  
(i, j, k), where 1 ≤ i ≤ (N − 2), i + 1 ≤ j ≤ (N − 1), and j + 1 ≤ k ≤ N. Similarly, B 
is a (M × M × M) relational array, where blmn specifies the relationship among ql, qm, 
and qn, and is computed as [(tm − tl)/(tn − tm) (T2[tm]− T2[tl])/(T2[tn]− T2[tm])].  
Note that A and B are invariant to translation, time scale, amplitude shift, and ampli-
tude scale. The primary breakpoint mapping matrix C is computed by matching ele-
ments of A and B as follows.

The contents of matrix C suggest possible correspondences between the break-
points of T1 and T2. For example, a high value of cil suggests that pi in T1 is very 
likely to correspond to ql in T2. If cjm is zero or close to zero then pj is unlikely 
to correspond to qm. The algorithm Align_Primary_BreakPoints identifies likely 
correspondences between the primary breakpoints of T1 and T2 by analyzing C. 
The following example illustrates the use of the above algorithm for aligning two 
time series.

The two time series T1 and T2 to be aligned are given in Figs. 1 and 2, respec-
tively. The time scale of T1 and the time scale of T2 differ by a factor of 2, and 
the subsequence T1[100:524] is identical to T2 in shape. In other words, T1 and 
T2 differ in translation, time scale and length. The algorithm Determine_Primary_
BreakPoints partitions time series T1 into 6  primary segments by identifying 
7 primary breakpoints (including end points) labeled p1 through p7. The primary 
breakpoints of T1 are {(1, 0), (52, 0.1735), (191, −0.1979), (263, 0.2072), (431, 
0.16), (504, 0.211), (635, −0.1375)}. The five 2-dimensional arrays that make 
7 × 7 × 7 relational array A are shown in Fig. 3.
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The time series T2 is partitioned into 5  primary segments and the 6  primary 
break-points are labeled q1 through q7. The primary breakpoints of T2 are {(1, 
−0.0023), (45, −0.1969), (82, 0.2061), (167,−0.1622), (203, 0.2112), (213, 
0.075)}. The four 2-dimensional arrays that make 6 × 6 × 6 relational array B are 
shown in Fig. 4.

The vector aijk is taken as a match to blmn if corresponding values are within 
15 % of each other. That means ε1 is set to 0.15. The 6 × 7 breakpoint mapping 
matrix C, where rows represent break points of T2 (q1 through q6), and columns 

Fig. 1   The time series T1 of length 635 with 7 primary breakpoints

Fig. 2   The time series T2 
of length 212 with 6 primary 
breakpoints
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represent breakpoints of T1 (p1 through p7) is given Fig.  5a. If the tolerance is 
increased to 20 % (ε1 = 0.2), the C matrix changes as shown in Fig. 5b.

In both cases, it is clear that breakpoints p3, p4, p5, and p6 align with q2, q3, q4, 
and q5, respectively. Once again, with only one external input (tolerance ε1), even 
when the two time series differ in scale and translation, the algorithm automati-
cally suggested subsequence-to-subsequence matching, and correctly identified 
likely correspondence between the primary breakpoints of T1 and T2. The pairs 

Fig. 3   The relational array for the time series in Fig. 1

Fig. 4   The relational array for the time series in Fig. 2
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of corresponding candidate matching segments suggested by Align_Primary_
Breakpoints for further matching are (p3p4, q2q3), (p4p5, q3q4), (p5p6, q4q5).

3.3 � Matching of Segments Using the HPLA Representations

The alignment algorithm gives a list of pairs of segments to be matched to deter-
mine the similarity between the two given time series. It does not consider the 
shape of segments in the decision making process. In order to ascertain that the 
suggested pairs of segments indeed match, further processing is necessary. 
Depending on the application, one of the following two approaches may be taken.

1.	 Euclidean distance or DTW may be used to compute the similarity between the 
corresponding segments identified by the alignment algorithm. This method is 
suitable if the application requires the comparison of a specific time series with 
many time series in a dataset. As each time series in the dataset participates 
only in one comparison, there is no incentive to develop compact representa-
tions of segments for the purpose of matching.

2.	 The Hierarchical Piecewise Linear Approximation (HPLA), which supports 
coarse-fine matching of time series, may be used for the determination of 
similarity between two segments. In HPLA, any segment between adjacent 
primary breakpoints is called a primary segment. Each primary segment is par-
titioned recursively into two segments at the optimal point (secondary break-
point) until the desired level of representation accuracy is achieved. A binary 
tree is used for recording the segmentation hierarchy of each primary segment 
(subsequence). The structure of the binary tree is simple. Each non-leaf node 
represents a subsequence T[i:j], its left child represents T[i:p], and right child 
represents T[p:j], where p is the optimal break point that splits T[i:j] into two 
sub-segments. Each non-leaf node includes a feature vector, components of 
which relate attributes of the two sub-segments represented by its two child 
nodes. The components of the feature vector are (p−i)/(j−p) and (T[p]−T[i])/
(T[j]−T[p]). The root node represents the subsequence by two line segments. 
The two non-leaf nodes in level-1 represent the subsequence by 4 line seg-
ments, and so on. The representation accuracy increases with the increasing 
level. Each leaf node specifies the starting point of the segment represented 
by the node. The HPLA representation of a time series is the time ordered 
sequence of binary trees of its primary segments.

Fig. 5   Breakpoint mapping 
matrices for tolerances of 10 
and 20 %
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The two segments in each suggested pair of candidate segments are matched by 
matching their binary trees. Two primary segments are considered similar if the 
feature vectors of the corresponding nodes of their binary trees are similar. The 
time series T1 and T2 are considered similar, if a sufficiently long continuous 
sequence of binary trees in the HPLA representation of T1 matches a sequence of 
binary trees in the HPLA representation of T2.

Therefore, for the example being considered, the six primary segments p3p4, 
p4p5, and p5p6 of T1, and their corresponding segments q2q3, q3q4, and q4q5 
of T2 are further segmented to obtain their HPLA representations. As the compo-
nents of the feature vectors of the corresponding non-leaf nodes of the correspond-
ing segments are within 15 % of each other, the segments in all three suggested 
pairs are taken as similar. Therefore, T1 and T2 are taken as similar time series.

4 � Experimental Results

Two datasets from UCR (Mallat and OliveOil) [20] and Pseudo Periodic Synthetic 
Time Series from UC Irvine archive (http://kdd.ics.uci.edu) are used as base 
time series to create a search set and a query set of time series. The three base 
time series are shown in Fig.  6. From each base time series, several translated, 
time scaled, amplitude scaled, and amplitude shifted versions are created. Some 
of these are corrupted with random Gaussian noise. Finally, the created time 
series are partitioned into two sets, a search set of 212 time series and query set of 
40 time series. The search set includes 84 time series created from Mallat, 44 time 
series created from OliveOil, and 84  time series created from Pseudo Synthetic 
data. The query set includes 16  time series created from Mallat, 8 time series 
created from OliveOil, and 16 time series created from Pseudo Synthetic data. 
The data is carefully chosen to include several cases of sequence-to-sequence, 
sequence-to-subsequence, and sub-sequence-to-subsequence matching scenarios.

4.1 � Matching Approach and Simulation Results

Each query time series Q in {Q1, Q2, …, Q40}, is matched with all 212 time series 
in the search set S = {T1, T2, …, T212}, and time series similar to the query time 
series are identified. Ideally, the matching algorithm should identify all time series 
in the search set that are created from the same base time series as the query time 
series, and others should not be selected. The details of the two stage matching 
approach used are given below.

1.	 As the 2 × 1 feature vectors used in the HPLA representation are invariant to 
amplitude scale and amplitude shift, the time series are not normalized. In fact, 
normalization is meaningful only in the case of whole sequence matching for 

http://kdd.ics.uci.edu
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Fig. 6   The three time series used for the creation of the search and query sets. a Mallat time 
series of length 1,024. b OliveOil time series of length 570. c Pseudo Synthetic time series of 
length 3,313
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representations that are not invariant to amplitude shift and amplitude scale. As 
the mean and standard deviation of a time series and its sub-series are usually 
not equal, the normalization is more likely to hurt the matching process than 
help when the similarity is based on sequence-to-subsequence or subsequence-
to-subsequence matching. The optional smoothing step is also not used.

2.	 For each time series T in S, primary breakpoints are identified using the algo-
rithm Determine_Primary_Breakpoints.

3.	 Each primary segment is partitioned recursively at the optimal point to obtain 
its binary tree representation [19]. For the sake of uniformity, each primary 
segment is represented by a complete binary tree with 8 leaf nodes (4 levels). 
The feature vector of each non-leaf node is computed.

Each query time series Q in the query set is matched with each T in S in two stages 
as described below.

Stage 1: Selection of candidate time series from the search set

The goal is to select a candidate subset of S for further matching in Stage 2. 
Ideally, the candidate set should include all time series in S that are similar to Q 
and none of the time series that are not similar to Q. In reality, the set will include 
a few time series not similar to Q (false positives) and not include a few time 
series similar to Q (false negatives).

In order to determine the candidate set, the primary breakpoints and the HPLA 
representation of Q are determined first. Algorithm Align_TimeSeries is used to 
obtain the list of pairs of potential matching primary breakpoints, which suggest 
pairs of candidate segments from Q and T for further matching. The value of the 
parameter ε1 used for comparing the corresponding elements of the relational 
arrays of T and Q is set at 0.15. If more than 50 % of the primary breakpoints of 
Q align with the primary breakpoints of T in the same time order, T is selected for 
further matching in Stage 2. Otherwise, T is not a candidate for further matching.

Stage 2: Filtering the false positives

The goal is to filter as many false positives as possible by matching the HPLA rep-
resentations of Q and each T. The two segments (one of Q and one of T) in each 
suggested pair are matched by comparing their HPLA representations to determine 
if they are similar. The matching of the two binary trees begins with the match-
ing of the feature vectors stored in their root nodes. If the two feature vectors are 
not similar, the two segments are considered as dissimilar. If the two feature vec-
tors are similar, the matching is continued using non-leaf nodes in the next level. 
This process terminates when all corresponding non-leaf nodes are exhausted. The 
user may limit matching to root nodes, or consider the non-leaf nodes in other lev-
els, depending on the level of accuracy desired. The time series T is considered 
similar to Q, if 75 % of the suggested segment pairs of T and Q are found similar. 
The simulation results, evaluated and discussed in the next section are tabulated in 
Table 1. Because of space constraints, results for 12 out of 40 query time series are 
shown.
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4.2 � Evaluation of Simulation Results

The two metrics, recall and precision, commonly used for evaluating the perfor-
mance of database retrieval methods are used for the evaluation of the perfor-
mance of the HPLA based time series matching approach. Recall is defined as the 
ratio of the number of truly matching time series retrieved to the total number of 
matching time series in the search set. The value of recall is in the range [0, 1], 
where higher value indicates better performance. A recall value of 1 indicates that 
all matching time series in the database are retrieved without any false negatives. 
Precision is defined as the ratio of the truly matching time series retrieved to the 
total number of time series retrieved from the search set. The value of precision is 
also in the range [0, 1]. A value of 1 indicates that there are no false positives.

Pruning power is another frequently used metric which specifies the number of 
time series considered for matching. For the current situation, as an HPLA based 
indexing method is not developed, the number of time series ruled as non-matching 
by Align_TimeSeries may be used as a measure of the pruning power. In this paper, 
pruning power is defined as the ratio of the number of time series selected for match-
ing by Align_TimeSeries minus the number of time series similar to Q in S to the 
total number of time series in S minus the number of time series similar to Q in S.

The simulation results in Table 1 (shown only for 12 query time series), which 
lists number of false positives, number of false negatives, recall, precision, and 
pruning power are very impressive. The important observations about the HPLA 
based matching approach, and results are discussed below.

1.	 Each time series in the query set is similar to a subset of time series in the search set. 
The similarity may be based on sequence-to-sequence, sequence-to-subsequence or 

Table 1   Simulation results of the HPLA representation based time series matching

Query  
time  
series

Number of  
candidates  
from  
stage 1

Number  
of time  
series  
selected  
in stage 2

Number  
of false  
positives

Number  
of false  
negatives

Recall Precision Pruning  
Power

Q1 95 85 3 2 0.9761 0.9647 0.0859

Q2 101 84 0 0 1 1 0.1328

Q3 90 84 2 2 0.9761 0.9761 0.0468

Q4 92 84 0 0 1 1 0.0625

Q17 49 44 0 0 1 1 0.0297

Q18 51 44 0 0 1 1 0.0416

Q19 50 44 0 0 1 1 0.0357

Q20 48 46 2 0 1 0.9565 0.0238

Q25 94 85 1 0 1 0.98 0.0781

Q26 90 84 0 0 1 1 0.0468

Q27 89 85 1 0 1 0.98 0.0390

Q28 88 84 0 0 1 1 0.0312
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subsequence-to-subsequence matching. The matching scenario that establishes sim-
ilarity between query and search time series is not known in advance. For example, 
consider Q2 of length 512, which is created from Mallat of length 1,024 by adding 
1.85 to each time scaled (factor of 2) value. In the search set there are 23 time series 
similar to Q2 based on whole sequence matching, 31 time series similar to Q2 based 
on sequence-to-subsequence matching, and 30 time series similar to Q2 based on 
sub-sequence-to-subsequence matching. A total of 84 time series in S are similar to 
Q2, and the remaining 128 time series in S are not similar. In Stage 1, the algorithm 
Align_TimeSeries has identified the correct matching scenario for Q2, and for all 
other 39 query sequences.

2.	 The analysis of relative positions of primary breakpoints is able to prune most 
of the non-matching time series in S from further consideration. For example, 
in the worst case, 101 candidates are selected by Align_TimeSeries for further 
matching with Q2 in Stage 2. As there are 84 time series in S that are similar 
to Q2, even in the worst case, only 17 additional time series are selected for 
matching in Stage 2. On the average, for the Mallat query set, only 90 time 
series are selected as candidates for matching in Stage 2, giving an average 
pruning power of 0.0469 ((90 − 84)/(212 − 84)). The average pruning powers 
are also given for OliveOil and Pseudo Synthetic query sets in Table 2.

3.	 The segment by segment matching of the HPLA representations of Q and T has 
filtered most of the false positives selected in Stage 1. For example, 101 candi-
dates selected by Align_TimeSeries for further matching in Stage 2 include all 
84 time series that are similar to Q2, and 17 time series that are not similar to 
Q2 (false positives). The HPLA based matching in Stage 2 filters all the false 
positives, and retains all 84 time series that are similar to Q2. The ability of the 
method in eliminating or significantly reducing the number of false positives is 
consistently good for all 40 cases.

4.	 The effectiveness of the HPLA based time series matching is obvious from 
high recall and precision values, which are close to the ideal value of 1. The 
low values of pruning power (close to the ideal value of 0) indicate the poten-
tial for building an efficient HPLA based indexing approach. The average recall 
and precision for the three groups of query sequences (Mallat, OliveOil, and 
Pseudo Synthetic) are given in Table 2.

5.	 The approach requires the specification of only two tolerance parameters ε1 and 
ε2. The value of ε1 directly affects the number of false negatives and false posi-
tives in Stage 1. As ε1 increases, the number of false positives increases and the 

Table 2   The average pruning power, recall and precision for Mallat, OliveOil, and Pseudo Synthetic 
query sets

Query set Average pruning power Average recall Average precision

Mallat 0.0469 0.9925 0.9921

OliveOil 0.0394 0.9943 0.9836

Pseudo Synthetic 0.0423 0.9937 0.9925
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number of false negatives decreases. In order to avoid the risk of losing matching 
time series in Stage 1, the value of ε1 should be relatively high. Similarly, the 
value of ε2 also affects the number of false positives and false negatives in Stage 2.  
As the value of ε2 increases, the number of false positives increases and the 
number of false negatives decreases.

5 � Conclusion

In summary, the HPLA based time series approach described in this paper handles 
all three matching scenarios uniformly by identifying the appropriate scenario to 
be used through the analysis of the relative positions of the perceptually impor-
tant primary breakpoints in query and search sequences. There is no need for the 
user to specify the type of matching scenario needed. The approach identifies the 
matching scenario automatically, and also prunes most of the non-matching time 
series in the search set from further consideration. The HPLA based matching 
algorithm filters most of the false positive, and achieves high precision and recall. 
The approach is invariant to time and amplitude translation and scale differences 
between the two time series matched, and requires the specification of two simple 
tolerance parameters as external input.
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