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Abstract. In this paper, we extend the spatial agent-based prediction
market proposed by Yu and Chen at MABS 2011 into a spatial model in
which agents choose their community (neighbors) by following Schelling’s
proximity model. This extended model generalizes the spatial configura-
tion of the original model and enables us to examine the validity of the
Hayek hypothesis when the information distribution is determined by
clusters of agents with heterogeneous identities. Specifically, we examine
the role of the toleration capacity, the key parameter in the Schelling
model, which generates the clusters of agents with different sizes, and
the role of exploration capacity which determines how well an agent is
informed about his local surroundings. We find that after taking into
account market activity and price volatility, both the toleration capacity
and exploration capacity have a positive effect on the prediction accu-
racy and enhance information polling and the information aggregation of
markets. The results obtained in this agent-based simulation, therefore,
add a qualification to the well-known Hayek hypothesis and point to the
significance of individuals in information aggregation.

1 Motivation and Introduction

How accurately the prediction market can predict, up to the present, is basi-
cally an empirical issue. However, empirical studies per se cannot articulate why
sometimes the market for some events performed extremely well and sometimes
it did not [2]. While there are a number of studies trying to identify the factors
contributing to its successes or failures, the explanations supporting the found
causal links remain very verbal and informal, and a rigorous mechanism has
not been explicitly spelled out. This is partially due to the limited analytical
tractability of the prediction markets which operate in practice. In this article,
we argue that, the spatial configuration, i.e., the distribution of information over
agents, situated in different places, can matter for the prediction accuracy of the
prediction markets. However, since the usual analytical model cannot effectively
deal with these geographical variables, an agent-based spatial model of predic-
tion markets is proposed to address the geographical significance. To begin with
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this line of research, our model is tailored to the future events related to political
elections only, normally known as the political futures. In other words, we shall
show how geographical factors can be part of the functioning of the prediction
accuracy of the political futures markets.

The rest of the paper is organized as follows. Section 2 introduces our pro-
posed spatial agent-based prediction markets and the two essential ingredients
in the model, namely, toleration capacity and exploration capacity. Section 3 dis-
cusses the design of our simulation and shows the simulation results. Section 4
gives the concluding remarks.

2 The Model

2.1 The Market

Network-Based Formation of Expectations and Reservation Prices.
Our first step is to make the social network explicit (Sect. 2.2). Through the
given social network, agents disseminate and acquire the information and form
their expectations of the future election outcomes, upon which their decisions
on bids and asks are based. We assume that, to form an expectation regarding
the election outcome, all agents use the sample average as the estimate, and
the sample available for each agent is identical to the set of all his connecting
agents (to be defined later). In other words, by using the sample proportion of
the connecting agents supporting each political candidate, the agent forms his
expectations about the share of the vote of each candidate. This estimated share
becomes the reservation price held by the agents. To make this point precise,
let p̂i,j be the subjective estimation of agent i regarding the share of the votes
attributed to candidate j, and bi,j be the reservation price that agent i holds for
the futures related to the vote share of candidate j. Then

bi,j = p̂i,j =
#{k : k ∈ Ni ∩ Vj}

#Ni
, i = 1, 2, ..., N, j = 1, ...,m, (1)

where Ni is the set of agent i’s connecting agents (to be defined later), and Vj is
the set of voters who support candidate j. By (1), if the estimated share of the
votes of Candidate A is 60 %, then the reservation price of the future contract
for the share of votes of Candidate A is 60 cents. With this reservation price,
the agent would not accept any bids which are lower than 60 or any asks which
are higher than 60.

Bidding and Asking Strategy. In fact, following most agent-based prediction
markets [5,9], we assume that all agents are zero-intelligent agents (the entropy-
maximizing agent) in the sense that the agent will bid or ask randomly with
the constraint of making no expected loss [1,4]. Therefore, his bid pb,i,j will be
uniformly sampled from the interval between the floor, which is zero cents, and
the reservation price bi,j , and his ask pa,i,j will be uniformly sampled from the
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Fig. 1. The flowchart of the order-book driven prediction market

interval between his reservation price and the ceiling, which is one dollar, as
shown in Eq. (2).

pb,i,j ∼ U [0, bi,j ], pa,i,j ∼ U [bi,j , 1], i = 1, 2, ..., N, j = 1, 2, ...,m. (2)

Trading Mechanism. The trading mechanism adopted to run the market is
continuous double-auction, the one frequently used in experimental economics to
test the Hayek hypothesis [7]. As shown in Fig. 1, our agent-based prediction mar-
ket starts from a random draw of the agents. Each agent shall be drawn exactly
once; in other words, the draw proceeds in a sampling-without-replacement man-
ner. When agent i is drawn, he will be randomly placed into one of the m markets
and will be equally likely to be assigned either a buyer position or a seller posi-
tion. He will then submit a bid if he is a buyer and submit an ask if he is a seller.
His bid or ask will be placed in the order book. A match happens if either his
bid (pb,i,j) is greater than the remaining lowest ask (bestpa) in the order book or
his ask (pa,i,j) is lower than the remaining highest bid (bestpb). The transaction
price will then be determined as bestpa if the former applies or as bestpb if the
latter applies.

2.2 Geographical Distribution of Agents

The social networks considered in this paper are generated from the Schelling
segregation model [6], in which the location of agents is determined by their
toleration capacity for agents with different political identities. In other words,
we replace the ethnic heterogeneity of agents in the original Schelling model with
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Fig. 2. Geographical distribution of voters and their political identity. Both panels
are the converged configurations using v1 = 45.63 % (green), v2 = 51.60 % (blue),
v3 = 2.77 % (orange), N = 13, 454, and G (number of grids) = 193 × 193. The black
grids denote the unoccupied cells, and the colored grids denote the occupied cells. The
number of occupied cells and the number of unoccupied cells are determined in such
a way that the resultant population density is close to 36 % (see Table 1). The two
panels differ in terms of the toleration capacity: on the left, s = 0.75, and, on the right,
s = 0.25. (Color figure online)

their political identity (j = 1, 2, ...,m). Agents tend to reside in the place which
is surrounded by neighbors with the same political identity. Their toleration of
neighbors with different political identities is characterized by the parameter,
toleration capacity (s). If the ratio of neighbors with different political identities
is larger than this threshold s, they tend to move to a close place which their
toleration capacity can handle. This migration process will be iterated until
it converges to a fixed configuration. We then use the resultant configuration
to represent the geographical distribution of residents with different political
identities.

Apart from the toleration capacity, an additional parameter of Schelling’s
segregation model is the demographical structure characterized by the percent-
age of agents of various political identities. Denote them by vj (j = 1, 2, ...,m).

vj =
#(Vj)

N
, j = 1, 2, ...,m, (3)

where N is the total number of agents.
Figure 2 demonstrates a geographical distribution of political identities. In

this specific example, there are a total of 13,454 agents, distributed on a checker-
board with 193×193 grids, i.e., with a population density of 36.12 %, and m = 3
(three candidates or three political parties): v1 = 45.63%, v2 = 51.60%, and
v3 = 2.77%. Agents with the three political identities are denoted by the green
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Fig. 3. The von Neumann Neighborhood with a radius of 2 (left) and 5 (right). The
above figures show the von Neumann neighborhood of agent i, as pointed to by an
arrow. The left panel is a neighborhood with a radius of 2, whereas the right panel is
a neighborhood with a radius of 5. (Color figure online)

(j = 1), blue (j = 2), and the orange color (j = 3), respectively.1 What is
demonstrated in Fig. 2 are, therefore, two of the converged configurations of
agents who followed the Schelling rule of migration. The one on the left is the
one corresponding to a toleration capacity of 0.75, and the one on the right is
the one corresponding to a toleration capacity of 0.25.

2.3 Exploration Capacity

For each agent, his information supplier, i.e., his set of connecting agents, is
determined by a von Neumann neighborhood with a given radius (r). This is
shown in Fig. 3. As shown in Eq. (1), agents are assumed to know the political
identities of all of their connecting agents in the neighborhood (agents in the
gray area), and they use this sample (local information) to estimate the share of
the votes for each candidate. The radius, r, can be interpreted as the information
exploration capacity of the agent. The larger the radius the larger the sample,
and hence the less biased and the better the estimation. In this article, we assume
that agents are homogeneous with respect to this capacity but would like to
examine how this parameter may affect the emergent market performance.

2.4 Programming with NetLogo

The above-mentioned spatial agent-based prediction market is programmed with
NetLogo 5.0.3 and is available from the OpenABM website2. Figure 4 shows a
familiar NetLogo display of running this program.
1 These parameter values are based on the 2012 Presidential Election in Taiwan. Based

on the 2012 Presidential election outcome, the DPP candidate (colored in green) won
a share of 45.63 % of the vote, the KMT candidate (colored in blue) won a share of
51.60 %, and the PFP candidate (colored in orange) won a share of 2.77 %.

2 http://www.openabm.org/model/3764/.

http://www.openabm.org/model/3764/
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Fig. 4. Display of the NetLogo program (Color figure online).

In Fig. 4, the upper left panel (panel A) gives the user-supplied control para-
meters: N = 13, 454, v1 = 40.55% (green), v2 = 51.60% (blue), v3 = 7.85%
(orange), s = 0.50 (50 %) and r = 5. The diagram shown in the right mid-
dle panel (panel B) is the converged configuration using the Schelling rule with
s = 0.5. With a radius of 5, we can have the price expectations (reservation
prices) of all three futures for all agents, i.e., bi,j (i = 1, ..., 13454, and j = 1, 2, 3).
What is shown in the right upper panel (panel C) of the figure are the three his-
tograms of the reservation prices corresponding to the green, blue and orange
party, respectively. The basic statistics, including the mean, the median and the
standard deviation, are shown in the very bottom of the figure (panel D). There
we can see that the mean and median for the green candidate are 0.4163 and
0.4155, which is a one-point upward bias away from the true value of 0.4055.
In addition, for the blue candidate, these two statistics are 0.5008 and 0.5025,
which is a one-point downward bias away from the true value of 0.5160. Maybe
the worst case is the market for the orange candidate. The two corresponding
statistics are 0.1335 and 0.1315, almost two times larger than the true value
of 0.0785. Our research question is then, to what extent, this specific network
topology may affect the accuracy of the prediction market or the political futures
market in our case.

From the histogram, we can further derive the aggregate willingness to buy
(when the price is below the reservation price)

QD
j (p) = #{i : bi,j > p}, (4)

and the aggregate willingness to sell (when the price is above the reservation
price)
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QS
j (p) = #{i : bi,j < p} (5)

i.e., the demand curve (QD
j ) and the supply curve (QS

j ).
The demand and supply curves of the three markets are shown in the lower

middle and right panels (panel D). Then through the random draws of the agents
and their reservation price, the order book for each market is formed, and the
corresponding transaction price is generated as the time series shown in the lower
left panel of the figure.

3 Simulation

3.1 Simulation Design

The main focus of this paper is to understand how the information aggregation
can be affected by how it is distributed through the two control parameters,
namely, toleration capacity (s) and exploration capacity (r). In fact, we believe
that these two parameters, to some extent, characterize the quality of voters,
their cultural backgrounds, sociability, and openness. None of these attributes
has been mentioned in the original article of the Hayek hypothesis [3]. Presum-
ably, they are all irrelevant or insignificant. This paper is purported to revisit
this hypothesis from a cultural and social-psychological aspect.

Given this focus, most parameters should be held constant throughout the
simulation, and include N , m, d, and G (Table 1). Nonetheless, to make the choice
of these parameters not entirely arbitrary and to clothe them with some empir-
ical flavor, we use the real data from Taiwan to suggest some reasonable values
of these parameters. According to the 2010 demographic census data in Taiwan,
the number of qualified voters in the 2012 presidential election was 13,453,305.
By scaling down the number of people by 1,000 times, there are 13,454 agents.
Hence, N is set to 13,454. In addition, by considering the population density of
Taiwan, d is set to 36.12 %, which implies that we need to have a grid size of
193 × 193.3 Hence, G is also determined. As to the number of candidates, in the
most recent Presidential election in Taiwan, held in the year 2012, there were
three major political parties and hence three major candidates. Hence, m is set
to 3. This finishes the description of constant parameters in Table 1.

The rest of the prediction market is characterized by four major parameters,
s, r, v1, and v3. We first give a range for each of these parameters; each design can
be regarded as a three-tuple randomly selected from this range. For s, we consider
a range from a low toleration capacity (0.26) to a high toleration capacity (0.75),
with an increment of 0.01. The exploration capacity (r), it starts with a minimum
of 2, and ends with a maximum of 6. Finally, for vi, considering the practice of
Taiwan politics, we fix the share of the votes for the small party, i.e., 3 %, and
3 Taiwan’s population density is around 630 people per square kilometer. If we only

consider the number of qualified voters, and not the entire population size, then
the population density is approximately 372 per square kilometer. By assuming that
one square kilometer is roughly equal to 32 × 32 grids, we can then figure out the
required d (36.12 %) and the number of grids (193 × 193).
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Table 1. Tableau of control parameters

Parameter Description Value

m The number of candidates 3

s Containing capacity 0.25, 0.26, ..., 0.75

r Exploration capacity (Radius) 2, 3, ..., 6

v1 Vote share of Green candidate 18, 19, ..., 47

v2 Vote share of Blue candidate 100 - v1 - 3

v3 Vote share of Orange candidate 3

N Number of agents 13,454

d Population density 36.12 %

G Grid size 193 × 193

R Simulation runs 50

then allow the other two major parties to vary in opposite directions. Again,
from an empirical consideration, the range of v1 is set from 18 to 47, and then
v2 takes the rest. We then randomly generate 1,000 designs, and each design is
run 50 times. To sum up, we have

Designk ≡ {sk, rk, v1,k}, k = 1, 2, ..., 1000, (6)

where
sk ∼ U [0.26, 0.75], rk ∼ U [2, 3, 4, 5, 6], v1,k ∼ U [19, 47]. (7)

The random design described above allows us to have enough observations to
examine the effect of these two parameters on the emergent market performance.

3.2 Basic Results

Table 2 shows that the results for each design look like. Notice that we do not
present all of them; otherwise, the table would be 1,000 rows long, since we
have a total of 1,000 designs. Each row starts with parameters characterizing
the design, namely, s, r, v1, v2, and v3, followed by the key summary statistics of
each design, including the mean price, trading volume, and volatility (standard
deviation of the price) of each future. Since each design has been run 50 times,
all these statistics are the averages taken over 50 runs. For the mean price, we
first take the average of the price series for each run (Eq. 9), and take the average
of the average over these 50 runs (Eq. 8).

p̄j =
∑50

l=1 p̄j,l

50
, j = 1, 2, 3, l = 1, 2, ..., 50, (8)

where

p̄j,l =

∑Tj,l

tj,l=1 pj,l(tj,l)

Tj,l
, j = 1, 2, 3, l = 1, 2, ..., 50, (9)
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Table 2. Simulation input and output table

s r v1 v2 v3 p̄1 p̄2 p̄3 V ol1 V ol2 V ol3 σ1 σ2 σ3

0.26 2 34 63 3 30.66 66.38 2.95 736.0 762.0 111.9 0.1208 0.1289 0.0217

0.26 2 39 58 3 36.42 60.71 2.87 794.8 814.3 109.2 0.1336 0.1389 0.0204

0.26 2 41 56 3 38.97 58.19 2.84 806.5 832.9 109.9 0.1367 0.1426 0.0201

0.26 2 46 51 3 45.54 51.61 2.85 842.6 845.6 111.9 0.1423 0.1449 0.0196

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

0.75 6 42 55 3 41.25 51.88 6.87 236.2 238.4 147.3 0.0369 0.0428 0.0131

0.75 6 44 53 3 42.95 50.19 6.86 235.5 234.4 152.0 0.0378 0.0417 0.0134

0.75 6 45 52 3 43.70 49.43 6.87 232.3 238.4 150.2 0.0386 0.0416 0.0132

and Tj,l are the transaction times of future j in the lth run.
These three figures, p̄j (j = 1, 2, 3) are shown in the first three columns of the

right panel of Table 2.4 The next three columns, V olj (j = 1, 2, 3) are the average
of the trading volume over the 50 runs, and likewise for the price volatility.

σj =
∑50

i=1 σj,l

50
, j = 1, 2, 3; l = 1, 2, ..., 50, (12)

where σj,l is the standard deviation of the price of the jth future in the lth run.
Table 2, therefore, provides us the basic input (the left panel) and output (the
right panel) correspondence which allows us to address further the effect of the
two key parameters, s and r, on the prediction accuracy.

Based on Table 2, we shall start with a simple linear regression.

Y = f(s, r) + ε = β0 + β1s + β2r + ε. (13)

The dependent variable Y is the prediction accuracy based on the chosen
error functions. In this paper, we shall use p̄j as the key predictor of vj and
consider the following four error measures frequently used in the literature.
4 We assume that the non-arbitrage condition is always satisfied, i.e.,

3∑

j=1

p̄j,l × 100 = 100, ∀l (10)

However, if the above equality is violated, then we shall rescale our mean price as
follows,

p̄adj
j,l =

p̄j,l∑3
j=1 p̄j,l

× 100, (11)

and use the re-scaled price p̄adj
j,l to replace p̄j,l in Eq. (8).
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1. Mean Absolute Percentage Error (MAPE)

Y1 = MAPE =

∑m
j=1 | p̄j − vj | /vj

m
(14)

2. Root Mean Square Error (RMSE):

Y2 = RMSE =

√∑m
j=1(p̄j − vi)2

m
(15)

3. Mean Square Error (MSE)

Y3 = MSE =

∑m
j=1(p̄j − vj)2

m
(16)

4. Euclidian Distance (ED)

Y4 = ED =

√
√
√
√

m∑

j=1

(p̄j − vj)2 (17)

The results of the prediction errors over these four error measures are pro-
vided in Table 3. Again, this is a simplified modification by only showing the
first few and the last few rows. A complete table has 1,000 rows. This table then
serves as the basis for running the linear regression (13).

The first regression result is shown in Table 4 (the upper panel). There we
find that both s and r have a negative effect on the prediction accuracy, i.e.,
β1 > 0 and β2 > 0, and the result is consistent regardless of the measure being
employed. This result is somewhat counter intuitive, since one might initially
have thought that increasing either the toleration capacity (s) or the exploration
capacity (r) can make individual agents more informative, which in turn may
help the information aggregation in the later stage. Nevertheless, this is not the
case which we have here, but why? One possible explanation is that when both
s and r become larger, depending on the vj , agents are not just better informed,
but also more homogeneous in their expectations and reservation prices, which
may cause transactions more difficult to happen and make the market less liquid.
One such famous example is Tirole’s zero-trading theorem [8], i.e., in an extreme
case where agents are all perfectly informed, there will be no trade in the market;
in other words, the market can predict nothing at all in this situation.

3.3 Homogeneity Effect

To see this homogeneity effect, Fig. 5 shows the average trading volume under
different vote shares with respect to these two capacities. Three features imme-
diately stand out.

First, there are hump-shaped curves in each sub-diagram with respect to a
given exploration capacity (the left panel) or with respect to a given toleration
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Table 3. Prediction accuracy

s r v1 v2 v3 MAPE RMSE MSE ED

0.26 2 34 63 3 0.0558 2.7434 7.5260 4.7516

0.26 2 39 58 3 0.0522 2.1605 4.6678 3.7421

0.26 2 41 56 3 0.0472 1.7278 2.9853 2.9926

0.26 2 46 51 3 0.0238 0.4468 0.1996 0.7739

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

0.75 6 42 55 3 0.4544 2.9006 8.4134 5.0239

0.75 6 44 53 3 0.4551 2.8261 7.9870 4.8950

0.75 6 45 52 3 0.4557 2.7824 7.7415 4.8192

capacity (the right panel) indicating that the trading volume increases when
competition between the major political parties is keen, i.e., the share of the
vote of the two major candidates is close.

Second, however, the hump-shaped curve has a tendency to shift down with
the increase in each of the two capacities. Since the higher the capacities, the
more homogeneous is the information received by the agent, the pattern of the
shifting-down hump-shared curves indicates that the trading volume goes down
with the degree of homogeneity.

Third, the curvature of the hump-shaped curve also decreases with the incr-
ease in the toleration capacity (the left panel) or the increase in the exploration
capacity (the right panel). For example, when these capacities are higher, such
as up to 70 % (for s) or up to 6 (for r), the hump is flattened out. This indicates
that the effect of the uncertainty, measured by the closeness of the two major
candidates in their share of the vote, no longer affects the trading volume when
voters are homogeneously well-informed. This is not surprising: when voters are
homogeneously well-informed, market uncertainty perceived by voters is reduced
and hence even a neck-to-neck competition has little effect on the trading volume.
To sum up, our analysis above shows that, in addition to the vote share or market
uncertainty, the two capacities also affect the trading volume, and they affect it
in a downward direction.

The same analysis is further carried out for the price volatility. Figure 6
shows the effect of the two capacities on the average price volatility (Eq. 12).
Qualitatively speaking, the result is the same. All three features with regard
to the effect of the two capacities remain for the case of the price volatilities.
The trading volume (the thickness of the market) with the price volatility is the
indicator of a functioning market where information is aggregated and revealed.
However, when the degree of homogeneity of traders is high, these functions are
adversely affected.
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Fig. 5. Trading volume, exploration capacity, and toleration capacity. The five sub-
diagrams in the left panel are drawn in the way by fixing the exploration capacity
(r) and examining the effect of the toleration capacity (s) on the trading volume. To
see the difference, different values of s are colored differently. The five sub-diagams in
the right panel are drawn in the way by fixing the toleration capacity (s) and then
examining the effect of the exploration capacity on the trading volume. Again, to see
the difference, different values of r are colored differently.

3.4 Conditional Regression

Given the homogeneity effect, it would be desirable to control some market char-
acteristics while running the regression against s and r. Therefore, we propose
a second linear regression which takes into account the market characteristics.
Two usual market characteristics considered in the literature are the trading
volume (V ol) and the price volatility (σ). Following this convention, we propose
the second linear regression (18).

Y = β0 + β1s + β2r +
5∑

i=3

βiV oli−2 +
8∑

i=6

βiσi−5 + ε, (18)

where V oli (i = 1, 2, 3) is the trading volume of the ith futures, and σi (i = 1, 2, 3)
is the price volatility of the corresponding futures.
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Fig. 6. Price volatility, exploration capacity, and toleration capacity. The five sub-
diagrams in the left panel are drawn in the way by fixing the exploration capacity (r)
and examining the effect of the toleration capacity (s) on the price volatility. To see
the difference, different values of s are colored differently. The five sub-diagrams in
the right panel are drawn in the way by fixing the toleration capacity (s) and then
examining the effect of the exploration capacity on the price volatility. Again, to see
the difference, different values of r are colored differently.

Since, as we have seen in Sect. 3.3, the trading volume and the price volatility
have already been “polluted” by the two capacities (Figs. 5 and 6), in economet-
rics, this is what is familiarly known as an endogeneity problem. To take care of
the endogeneity problem, what we do here is then, first, to run the two auxiliary
regressions, one on the trading volume and one on the price volatility, against
the two capacities, then, second, to take the residuals as the “cleaned” (filtered)
trading volume and volatility. We then use them as independent variables in the
market performance regression (18).

The regression results of regression (18) are shown in the lower panel of
Table 4. The results show that the inclusion of the market characteristics can
improve the coefficient of determination (R2). This result is not difficult to under-
stand. Given the geographical complexity and variability of the two-dimensional
lattice, controlling both s and r does not automatically imply the control of the
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Table 4. Regression results with market characteristics

Regression results without market characteristics

β0 β1 β2 R̄2

MAPE −0.034 0.0032 0.073 0.4

0.0776 0.0000 0.0000

RMSE 0.2987 0.0312 0.4177 0.27

0.0826 0.0000 0.0000

MSE −7.086 0.2525 2.2298 0.21

0.0000 0.0000 0.0000

ED 0.5174 0.054 0.7235 0.27

0.0826 0.0000 0.0000

Regression results with market characteristics

β0 β1 β2 β3 β4 β5 β6 β7 β8 R̄2

MAPE 2.668 −0.013 −0.171 0.001 −0.002 0.003 −3.066 4.566 7.222 0.98

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

RMSE 17.724 −0.078 −1.304 0.035 −0.040 0.012 −171.418 179.218 88.613 0.81

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

MSE 114.085 −0.526 −10.081 0.309 −0.351 0.061 −1473.720 1649.300 790.791 0.78

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ED 30.700 −0.136 −2.259 0.061 −0.069 0.021 −296.905 310.415 153.482 0.81

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

The two panels above show the regression results of regression Eqs. (13) and (18),
respectively. The former does not include the market characteristics as the indepen-
dent variables, whereas the latter does. The two regressions were run using different
dependent variables (performance criteria). The first column gives the dependent
variable used in the respective regression. The results for each regression and each
dependent variable are given in the following columns in two rows. The first row
gives the estimate of the corresponding coefficient (β̂i), and the second row gives the
p-value of the respective estimate. The adjusted coefficient of determination, R̄2, is
given in the last column.

geographical and other resultant specifications on which the market performance
also depends. It has already been shown in regression (13) that s and r can only
have limited explanatory power. For most performance criteria, R̄2 is not even
up to 30 % (see Table 4, the upper panel). Therefore, once after incorporating
these specificities through other variables, such as the trading volume and the
price volatility, a large proportion of the unexplained behavior has now been
incorporated (see the significant increase in R̄2 from the lower panel of the same
table). We find that after controlling the market characteristics the two capaci-
ties can indeed help enhance prediction accuracy. After incorporating the trading
volume and the price volatility, β1 and β2 are both negative for all four accu-
racy criteria. In other words, conditional on the same trading volume and the
price volatility, the higher the toleration capacity or the higher the exploration
capacity, the better that the prediction market can predict.



Spatial Modeling of Agent-Based Prediction Markets: Role of Individuals 211

4 Concluding Remarks

In this article, we address the issue of whether the better informed agent can
help prediction markets in a spatial context. The better informed agents are
characterized by their larger toleration capacity (sociability) and exploration
capacity. The result is that under unconditional regression neither of them shows
this enhancement, whereas, after controlling some market characteristics, the
conditional regression shows their significance. Hence, in this sense, our paper
shows that the quality of individuals does have a positive effect on information
aggregation and on the formation of the wisdom of crowds.

The work can be extended in several directions. First, the network used here
is a spatial network. In this digital age, given the significance of social groups
in social media, it would be desirable to include a social network as part of
the framework, and to study the effect of social network topologies. Second, the
behavioral setting of the traders is very simple, i.e., the device of zero intel-
ligence. It would be interesting to consider other behavioral settings involving
cognition or learning, such as reinforcement learning or rule-based models. These
extensions allow traders to base their decisions upon the information revealed in
the order book. Third, the prediction market can be designed with other trading
mechanisms, such as the call auction. It would be interesting to know whether
these different trading mechanisms matter.
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