
Event-Driven Multi-agent Simulation

Ruth Meyer(B)

Centre for Policy Modelling, Manchester Metropolitan University, Oxford Road,
Manchester M15 6BH, UK

r.meyer@mmu.ac.uk

Abstract. Most agent-based models today apply a time-driven app-
roach, i.e. simulation time is advanced in equidistant steps. This time
advance method is considerably easier to implement than the more flex-
ible and efficient event-driven approach.

Applying the event-driven approach requires that (a) the durations
for agent and environment actions are determined before they terminate,
(b) each agent is able to instantly react to changes in its environment,
and (c) the update of the state of the environment can be kept efficient
despite updating agents asynchronously.

The simulation toolkit famos fulfils these requirements, extending
an existing discrete-event simulator. The toolkit also supports a flexible
representation of space and the movement of agents in that space. These
are areas where existing toolkits for agent-based modelling show short-
comings, despite the fact that a majority of multi-agent models explicitly
model space and allow for mobile agents.

Keywords: Event-driven time advance · Discrete event simulation ·
Agent-based simulation · Spatially explicit agent-based model

1 Introduction

The last ten years have seen a surge in agent-based simulation models. Sev-
eral disciplines have since adopted the multi-agent approach as a new para-
digm for undertaking research; amongst them the social sciences [11], economics
[36], geography [15] and ecology [14]. Across disciplines, agent-based models
are applied to investigate complex systems [10]. One of the main reasons for this
expansion is the availability of software toolkits, which support agent-based mod-
elling and simulation well enough to make the approach attractive for domain
experts in a variety of application areas [33].

Agent-based simulation views the system to be modelled as a multi-agent
system, i.e. as consisting of autonomous agents interacting in and with an envi-
ronment. To build an agent-based model a modeller has to specify both the
structure of the model and its dynamic behaviour over time. Simulation toolkits
therefore need to provide constructs to implement a set of agents, their relation-
ships, which influence their interactions, and their joint environment, which may
be spatially explicit and contain dynamic processes in addition to the agents.
c© Springer International Publishing Switzerland 2015
F. Grimaldo and E. Norling (Eds.): MABS 2014, LNAI 9002, pp. 3–16, 2015.
DOI: 10.1007/978-3-319-14627-0 1



4 R. Meyer

For the description of the dynamic behaviour the actions of agents and,
if necessary, the environment have to be related to simulation time. There are
several ways to do this. Most widely used is the time-driven approach [26], which
divides simulation time into regular intervals (time steps) and updates all agents
synchronously at every time step. The modeller needs to identify the agents’
actions and specify the order in which they are to be executed at each time
step (see e.g. [14], p. 111). Another approach is the event-driven time advance,
which combines irregular time intervals with an asynchronous update of agents
(see Sect. 2).

The predominance of the time-driven approach can be explained from both
its ease of implementation with regard to the simulation infrastructure – no ded-
icated scheduler and event list are necessary – and its simplification of modelling
the agents’ behaviour, since all actions implicitly obtain a duration (≤ Δt, the
length of the fixed time step) and a modeller only has to specify the order of
actions occurring during the same time step. Tutorials for existing software toolk-
its and introductory textbooks consolidate the use of the time-driven approach
in their example models (see e.g. [13,23,25,27,28]).

Moreover, an analysis of existing toolkits for agent-based simulation shows
that toolkits that allow for an event-driven time advance like Repast [29], Swarm
[27] or James II [16] offer little or no support for the implementation of agents
and environment, whereas toolkits with such functionality like NetLogo [41],
SeSam [18] or Jason [7] tend to constrain model execution to the time-driven
approach. This indicates that “there is a gap in the current design space for a
toolkit which both provides/prescribes some structure for implementing agents
but also provides a full Discrete Event scheduling implementation for the model’s
execution” ([37], p. 85).

Thus, agent-based models using an event-driven approach are still rare
(examples are [38] and [22]), even though this approach has been tried and
tested for decades in traditional discrete-event simulation (see e.g. [2,21]).

In the following, we first discuss the advantages of an event-driven time
advance (Sect. 2) before introducing a toolkit for multi-agent simulation that
applies this approach (Sect. 3). Two example models, a re-implementation of
Schelling’s famous segregation model (Sect. 4) and the model of a city courier
service (Sect. 5), demonstrate key features of this toolkit. The paper finishes with
a discussion (Sect. 6) and conclusion (Sect. 7).

2 The Case for Event-Driven Time Advance

In the event-driven approach simulation time advances from one event to the
next. Each event models a change in the system, e.g. an agent receiving a message
or arriving at a particular location in space. The intervals between events can be
of any length as they are determined by the processes occurring in the system.
The state of the system is assumed constant between events.

There are several reasons to adopt an event-driven time advance in agent-
based models. Firstly, this approach is more efficient than the time-driven app-
roach, since it regards only those points in time when changes actually occur



Event-Driven Multi-agent Simulation 5

and skips inactive phases of the system. In addition, only entities affected by
the current event have to be updated. Secondly, it is more accurate as it allows
events to occur at the correct time whereas the time-driven approach “collects”
all events occurring within one time step and treats them as if they are happen-
ing at the same time, i.e. the end of the fixed time interval. Thirdly, this leads to
it being more flexible, since it can accommodate a heterogeneous discretisation
of time (e.g. periods of time with many events happening close together inter-
spersed with periods where only a few events occur) as well as agents operating
on different time scales.

While for many systems a time-driven simulation is well suited or at least ade-
quate, other systems require a correct mapping of events to points in simulation
time. Examples can be found in different application domains, from competition
over particular habitats in ecology (e.g. [14], p. 112) to chemical reactions ([3], p.
26ff) to financial markets ([6,8,17]). A time-driven approach would either falsify
results due to treating consecutive events as happening simultaneously if the
fixed time interval Δt is too big, or would be very inefficient because Δt has
to be chosen as the smallest interval between two events. The latter introduces
the additional problem that this interval is often not known beforehand so that
several simulation runs are required to determine it. Since a time-driven app-
roach can easily be mapped to an event-driven approach, the event-driven time
advance allows for the simulation of a more comprehensive class of models.

In addition, it can be argued that the fixed clock rate and synchronous agent
update of the time-driven approach defies the concept of autonomy that underlies
the definition of agents in multi-agent systems: “Forcing all agents of the MAS
to act in lock step does not fit with autonomy of agents” ([40], p. 177). An event-
driven approach is more suitable as it does not a priori impose synchronisation
on agents ([4], p. 269). Social processes in particular are rarely synchronous,
which is why it is equally rarely appropriate to model them by updating agents
synchronously once per time step ([1], p. 41).

3 A Framework for Event-Driven Multi-agent Simulations

The Framework for Agent-oriented Modelling and Simulation (famos1)
combines multi-agent simulation with an event-driven time advance and an
explicit representation of space. A comparison with existing agent-based simu-
lation toolkits poses the question how necessary a new toolkit could be. Several
ABMS toolkits contain a discrete-event scheduler within their features; the most
widely used are Swarm [27], Mason [24] and Repast [29] or Repast Simphony
[28]. Using the event-driven approach in agent-based models is therefore possible.
We would like to argue though, that it is not sufficient to provide the necessary
simulation infrastructure. Its use also has to be adequately supported and here
current simulation toolkits are lacking.

On the one hand, their documentation focusses on how to implement time-
driven models (see e.g. [27], p. 3; [23], p. 16f; [28], p. 18ff). On the other hand,
1 Available at http://famos.sourceforge.net.

http://famos.sourceforge.net


6 R. Meyer

the constructs they provide to model agent behaviour, environment including
space, and interactions between agents and environment have not been adapted
to the requirements of an event-driven time advance. These requirements include

1. determining the duration of actions so that the respective termination event
can be scheduled in time;

2. enabling each agent to instantly react to changes in its environment, even
though it is technically passive during time-consuming phases;

3. ensuring an efficient update of the environment state (which may include the
current positions of mobile agents) despite updating agents asynchronously.

The toolkit famos presented in this paper addresses these requirements.
It supports event-driven multi-agent simulation appropriately by not only pro-
viding the necessary simulation infrastructure but also dedicated constructs for
modelling agent behaviour and spatially explicit environments that have been
adapted for use with an event-driven time advance.

3.1 Modelling Time

To avoid re-inventing the wheel, famos builds on an existing discrete-event simu-
lation framework and extends it with multi-agent simulation features. desmo-j2

([31], ch. 10) is an open-source software development framework for discrete-
event simulation and supports two of the classical world views: event scheduling
and process interaction. In addition to directly re-using desmo-j’s simulation
infrastructure (scheduler, event list, simulation clock), agent-based models in
famos can use entities and event routines or simulation processes to model any
dynamic behaviour of the environment that is not related to agents, e.g. renew-
able resources.

The requirements imposed by the event-driven time advance are addressed
as follows:

1. The durations of model-independent actions like sensing the environment,
manipulation of objects in the environment, sending messages or moving in
space, which famos provides, are determined automatically. In the current
version of the framework, all actions are assumed to be instantaneous except
for movement. The duration of a move is calculated from the current speed of
the agent and the distance covered, which in turn is calculated by the space
model. For model-specific actions that are not provided by famos a modeller
may use the stochastic distributions of the underlying simulation framework
desmo-j to determine durations.

2. To guarantee that each agent can instantly react to changes in its environment
famos lets the environment send all agents that are affected by the change
a special notification signal, i.e. those agents in whose area of perception
(defined by an agent-specific sensor range) the change occurred. This signal
causes an agent to automatically be scheduled for re-activation so that it can
interrupt its current, simulation-time consuming action and decide itself if
and how it wants to react to the change.

2 Available at http://desmoj.sourceforge.net.

http://desmoj.sourceforge.net


Event-Driven Multi-agent Simulation 7

3. Discrete-event simulation links all state changes to instantaneous events with
no changes happening between events. Time-consuming actions have to be
mapped to a series of events (at least start and end); their effect usually hap-
pens at the end event. In famos this only poses a problem for the movement
of agents as the current positions of mobile agents may become too inexact
when they are updated at the end of a longer movement process. To be able to
keep positions of mobile agents exact enough while avoiding an update of the
environment every time before an agent might access it, longer movements
across several cells or nodes are divided into small steps that are regarded
as atomic transactions. An atomic step is defined as the movement between
adjacent cells in a grid or adjacent nodes in a graph. The change of position is
visible in the environment whenever an agent has crossed the border between
two grid cells or has passed the first half of the edge between two nodes. Its
event time is calculated automatically. The moving agent is re-activated after
each step by receiving a notification from the environment, which enables it
to review its situation and adapt its movement accordingly if need be.

This adaptation of movement to the requirements of the event-driven app-
roach is encapsulated in a particular Movement component. Its method move()
provides agents with the ability to move in space by automatically calculating the
duration of the move and scheduling a respective re-activation event. The com-
ponent can be adapted to model-specific needs by choosing or implementing a
particular movement strategy, which is in charge of determining the next position
to move to. Pre-defined strategies are walking randomly (RandomWalk), follow-
ing a gradient (GradientTrace), moving in a given direction (MoveInDirection)
and following a planned route (MoveAlongPath).

This support of an agent’s movement exceeds the functionality of comparable
simulation toolkits, where a modeller has to combine primitive commands (delete
at current position, add at new position, update agent coordinates) to achieve a
change of position ([32], p. 614).

3.2 Modelling Space

The flexible, discrete space representation is another of famos’s fortes. It com-
bines the prevalent grids of agent-based models with directed graphs by using the
fact that each tessellation possesses a dual graph. This relation between tessella-
tions and graphs may be self-evident but is rarely used explicitly.3 An exception
are Voronoi diagrams, whose dual graphs are known as Delaunay Triangulations
(see e.g. [5]). While the former can be used to solve nearest neighbour problems,
the latter are applied e.g. in Geographic Information Systems as digital elevation
models.

famos’s space representation regards space as made up of discrete space
elements connected by neighbourhood relationships. These neighbourhood links
influence an agent’s perception and movement by determining which elements
3 Another example is David O’Sullivan’s combination of graphs with irregular cellular

automata to model spatial processes in cities [30].



8 R. Meyer

are accessible from the agent’s current position. A directed graph is used to store
the spatial structure by mapping space elements to nodes and neighbourhood
relationships to directed edges. This mapping can be done automatically so that
there is no additional effort required for the modeller. In the current version
of famos this is implemented for regular grids with square/rectangular cells
(RectangularGrid) or hexagonal cells (HexagonalGrid) and irregular grids,
which are defined as a set of points. From these, both the Voronoi diagram
(IrregularGrid2D) and the dual graph are calculated.

Access to the space model is routed solely through the environment, which
acts as a façade (according to the design pattern of the same name [12]) providing
agents with an interface not only to the space but also to the communication
infrastructure and organisational groups.

3.3 Modelling Agents

famos abstracts from a particular agent architecture and adopts a modular app-
roach. An agent possesses a number of abilities (communication, access to the
environment, movement), which may be extended as needed, and an interchange-
able behaviour component. In adaptation to the event-driven time advance, each
agent has its own internal “event” list, which stores external signals (notifica-
tions from the environment, messages from other agents) and internal signals
(generated by the agent itself) in chronological order. The agent automatically
schedules itself for re-activation for the time of the most imminent next signal.
On re-activation all imminent signals are passed to the behaviour component for
processing.

At the moment four such components are implemented, offering different
methods to model an agent’s behaviour. The simplest is a variant of event-
oriented modelling (SimpleBehaviour), in which the agent’s reaction to signals
can be specified by implementing the process() method. Proactive behaviour
can be achieved by scheduling internal signals for certain points in time with
the agent-internal methods scheduleIn() or scheduleAt(). This component is
ideally suited to model large populations of reactive agents and is used in the
example model described in the next section. The component implementing a
variant of the process interaction world view (ProcessBehaviour) is particularly
suited to model proactive behaviour, which is only occasionally interrupted by
events. The rule-based component (RuleEngine) integrates the rule engine Jess4

to allow for declarative behaviour modelling. The most comprehensive compo-
nent (StateMachine) facilitates the use of state diagrams to model an agent’s
behaviour. These can be specified using a graphical editor and then automati-
cally parsed into executable code.

4 Example 1: Schelling’s Segregation Model

To test and demonstrate some of famos’s key features the well-known segrega-
tion model described by Thomas Schelling [34] was chosen to be re-implemented.
4 http://www.jessrules.com/jess.

http://www.jessrules.com/jess


Event-Driven Multi-agent Simulation 9

Though simple, this agent-based model nevertheless allows us to showcase both
the advantages of the event-driven approach and the flexible space model.

In the model two types of agents live on a square grid neighbourhood. Each
agent is content with its position if at least 3 of its 8 neighbours are of the same
type (tolerance threshold 0.375). If this is not the case, it will move to a free
position on the grid. While Schelling originally defined the new position to be the
closest free cell where the agent would be content, in computer implementations
of the model this is usually replaced by choosing a random free cell.

The version implemented in famos follows this approach. Since the agents
solely react on the state of their local environment their behaviour can easily
be modelled with famos’s simplest behaviour component, the event-oriented
SimpleBehaviour. Here, the modeller has to specify an agent’s reaction to
incoming signals (events). In the case of the segregation model, these are noti-
fications from the environment whenever a change occurred within the agent’s
sensor range, i.e. another agent moved in or out of the neighbourhood, or the
agent itself arrived at a new position. An agent’s reaction consists of checking
if it is still content with its position and – if that is not the case – moving to a
randomly chosen new position.

The action of choosing a position and moving there is delegated to frame-
work classes. famos provides several movement strategies (see Sect. 3.2) that
can either be used as is or extended by a modeller to adapt to their pur-
poses. To enable agents to pick a random new position anywhere on the grid
instead of just in their direct neighbourhood the existing RandomWalk strategy
was sub-classed to include all free cells into the selection process. This new
SegregationStrategy class was then plugged into one of the standard move-
ment components of famos. Since the model abstracts from the duration of the
actual movement in that a move to a neighbouring cell is treated the same as a
“jump” to the other end of the grid, the ConstantTimeMovement provides the
right functionality here. Inside the behaviour specification, the modeller now just
needs to call the move() method to make an agent select and then move to a
new position.

Figure 1 shows the results of simulation runs with each of the three different
grid spaces famos provides. The left column pictures the situation at the start
of a run, with the agents randomly scattered across the space, whereas the right
column contains the situation at the end of the respective run. The runs differ
only in the chosen representation of space, the other parameters have been kept
the same across all runs. Each grid consists of 400 cells and is populated with
140 blue and 140 green agents, whose tolerance threshold is set to the original
value of 0.375. The duration for a move to a new position is set to 1.0 units of
simulation time.

5 Example 2: City Courier Service Model

A more complex example, which demonstrates famos’s comprehensive support
for the movement of agents in space and its adaptation to the event-driven time



10 R. Meyer

Fig. 1. Screenshots of the segregation model in famos from simulation runs with the
three different grids RectangularGrid (top), HexagonalGrid and IrregularGrid2D

(bottom). The left column shows the situation at the start, the right column at the
end of a simulation run.



Event-Driven Multi-agent Simulation 11

advance, is the model of a city courier service [19,20]. The courier service in
question consists of a fleet of bike and car couriers, who deliver orders throughout
the city. They decide themselves which orders to take and plan their own route.
A central office receives orders from clients and passes them on to the couriers via
radio using a variant of the contract net protocol [35], which gives idle couriers
priority and allows for special requests of clients.

The courier service system is naturally driven by events: Arrival, placement,
pick up and delivery of orders as well as start and end of work of couriers.
A model needs to map the occurrence of these events in real time correctly
to simulated time to avoid falsifying results. The model also needs an explicit
representation of space since the current positions of the couriers influence their
decision making and thus the system dynamics.

Using famos such a model can be implemented with relatively little effort.
The main task for a modeller is to specify the behaviour of the agents (office
and couriers), while the agents’ environment (space, communication and organ-
isation structures) can be realised with the predefined components of famos.
Since famos uses a directed graph as the underlying space model, the detailed
road network of the city of Hamburg, consisting of more than 17,000 nodes and
48,000 edges, can be represented without problems (see Fig. 2). Edge attributes
modelling road types influence speed and route choice of couriers in relation to
their vehicle (bike or car). famos’s movement component is parameterised with
a model-specific rating function, which determines the duration of a move along
an edge depending on the courier’s vehicle and the edge’s attributes. This is the
only model-specific adaptation of the framework’s black box classes necessary
for the courier model.

The behaviour of office and couriers is complex enough to warrant mod-
elling on a higher level than the simple reactive or proactive components Simple
Behaviour and ProcessBehaviour provide. The fact that both individual behav-
iour and interaction of office and couriers are mainly controlled by events like
arrival or delivery of an order suggests the use of the StateMachine component.
The implementation of executable state diagrams in famos is compliant with the
UML semantics and supports hierarchical states, orthogonal regions, inter-level
transitions and internal transitions, i.e. reactions to events that do not involve a
state change. This makes it possible to model the part of a courier’s behaviour
regarding communication with the office as independent from the aspect of order
processing. Only the deliberative aspects of courier behaviour (deciding which
orders to take on and in which order to process them) are not yet supported by
components in famos and have to be implemented directly in the underlying
programming language Java.

Figure 2 shows the screenshot of a simulation run with the courier service
model, using empirical data from existing courier service companies amounting
to 200 couriers and 2200 orders per day.

6 Discussion

The segregation model shows typical features of a discrete event system and is
therefore well suited for the event-driven multi-agent simulation that this paper



12 R. Meyer

Fig. 2. Screenshot of the courier service model in famos. Courier agents are coloured
according to vehicle (red: car, green: bike) and current load (light: idle, dark: at least
one order) (Color figure online).

proposes. After the initialisation phase, where all agents have to check if they are
satisfied with their position, another check is only required if the local state of the
environment has changed. All changes in this model are due to either an agent
moving away from a position or an agent arriving at a new position. With a con-
stant duration for each move this results in a quasi-time-driven simulation – but
without the need to synchronously update all agents at each time “step”.

Since famos has agents receive a signal whenever a change occurs within
their area of perception or they arrive at a new position, an event-driven control
can be consistently implemented for the segregation model. A modeller just
has to specify the appropriate reaction to this signal – checking if the agent is
still content and possibly moving to a new position – in the agent’s behaviour
description.

The flexible space model allows to simulate the segregation model with differ-
ent grids without having to adapt the description of the agent’s behaviour. This is
due to the explicit representation of locations as Position objects, which results
in providing a layer of abstraction between the agents and the space model. In
addition, using a directed graph as the underlying space representation allows
for the uniform application of all movement strategies to different space mod-
els. Thus, the agents’ access to their spatial environment is independent of a
particular space model.



Event-Driven Multi-agent Simulation 13

The courier service model is an example of a much more complex system
that is also driven by events: The arrival of an order at the central office triggers
the allocation process whose successful termination – awarding of an order to a
courier – in turn triggers the pick-up and delivery process. Event-driven multi-
agent simulation as proposed in this paper allows for a natural modelling of this
system.

The empirical data available for the courier service model includes exact
times for external events, i.e. those events that affect the system boundaries:
arrival of orders and start and end of work of couriers. Depending on these
events, the times of all other events arise from the simulation of the system.
An event-driven time advance makes it possible to maintain the accuracy set
by the empirical data – given that the duration of all relevant activities can be
determined exactly enough. The courier service model applies the assumption
that uniform, state-independent activities like the order-related actions of the
office (receiving an order, announcing an order via radio, awarding an order to a
courier) on average always take the same time; thus they are assigned a constant
duration.

In contrast, the travel times of couriers and their response time to order
announcements depend on the current state of the system and therefore have
to be determined during the simulation. While the calculation of travel times
can simply be delegated to the framework famos due to its high-level support
of movement in space, the determination of how quickly a courier responds to
an order announcement via radio has to be done without framework support.
In the model, it is approximated by a courier’s interest in the order, which is
calculated from the potential profit and the courier’s current workload. The
interest is assumed to be inversely proportional to the courier’s reaction time,
i.e. the higher the interest, the sooner the courier will offer to take the order.

7 Conclusion and Outlook

Systems that are inherently driven by events can be found in such diverse appli-
cation domains as ecology (e.g. [14], p. 112), chemistry (e.g. [3], p. 26ff), financial
markets (e.g. [6]) and the courier service described in Sect. 5. If correct timing
of events is important for a system’s behaviour event-driven time advance is
necessary to adequately model such systems. The toolkit famos and its appli-
cation in the segregation model and the courier service model demonstrate that
event-driven multi-agent simulation is feasible when appropriately supported.
This means that not only are the technical requirements met by providing a
suitable simulation infrastructure, but also that support is offered at the level
of the agents and the environment. Particular focus lay on developing a flexi-
ble representation of space and comprehensively supporting movement in space
because the majority of agent-based models use an explicit space model with
mobile agents [9] and the movement needs to be adapted to the event-driven
approach.



14 R. Meyer

Many aspects of famos have so far been implemented only provisionally.
This pertains in particular to the support of data analysis and validation, for
which only the minimum requirements like recording simulation output data and
providing visualisations during a simulation run are met. Further components to
specify cognitive or deliberate agent behaviour are desirable. In addition, com-
bining several, task-specific behaviour components, which could be exchanged
at run-time, would allow for adaptive agents.

References

1. Axtell, R.: Effects of interaction topology and activation regime in several multi-
agent systems. In: Moss, S., Davidsson, P. (eds.) MABS 2000. LNCS (LNAI), vol.
1979, pp. 33–48. Springer, Heidelberg (2001)

2. Banks, J., Carson, J.S., Nelson, B.L., Nicol, D.: Discrete-Event System Simulation,
3rd edn. Prentice Hall, Upper Saddle River (2000)

3. Barnes, D.J., Chu, D.: Introduction to Modeling for Biosciences. Springer, London
(2010)

4. Baveco, J.M., Lingeman, R.: An object-oriented tool for individual-oriented simu-
lation: host-parasitoid system application. Ecol. Model. 61, 267–286 (1992)

5. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational
Geometry: Algorithms and Applications. Springer, Heidelberg (1997)

6. Boer, K., Kaymak, U., Spiering, J.: From discrete-time models to continuous-time,
asynchronous models of financial markets. Comput. Intell. 23(2), 142–161 (2007)

7. Bordini, R.H., Hübner, J.F.: Agent-based simulation using BDI programming in
Jason. In: Uhrmacher and Weyns [39], pp. 451–476

8. Daniel, G.: Asynchronous Simulations of a Limit Order Book. Dissertation, Uni-
versity of Manchester, Faculty of Science and Engineering (2006)

9. Davidsson, P., Holmgren, J., Kyhlbäck, H., Mengistu, D., Persson, M.: Applications
of agent based simulation. In: Antunes, L., Takadama, K. (eds.) MABS 2006. LNCS
(LNAI), vol. 4442, pp. 15–27. Springer, Heidelberg (2007)

10. Edmonds, B., Meyer, R. (eds.): Simulating Social Complexity: A Handbook. Under-
standing Complex Systems. Springer, Berlin (2013)

11. Epstein, J.M.: Generative Social Science: Studies in Agent-Based Computational
Modeling. Princeton University Press, Princeton (2007)

12. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.M.: Design Patterns - Elements
of Reusable Object-Oriented Software. Addison-Wesley, Reading (1994)

13. Gilbert, N., Troitzsch, K.G.: Simulation for the Social Scientist, 2nd edn. Open
University Press, Maidenhead (2005)

14. Grimm, V., Railsback, S.F.: Individual-Based Modeling and Ecology. Princeton
series in theoretical and computational biology. Princeton University Press, Prince-
ton (2005)

15. Heppenstall, A.J., Crooks, A.T., See, L.M., Batty, M. (eds.): Agent-Based Models
of Geographical Systems. Springer, Dordrecht (2012)

16. Himmelspach, J., Uhrmacher, A.M.: Plug’n simulate. In: Proceedings of the 40th
Annual Simulation Symposium (ANSS-40 2007), Norfolk, VA, 26–28 March 2007,
pp. 137–143. IEEE Computer Society (2007)

17. Jacobs, B.I., Levy, K.N., Markovitz, H.M.: Financial market simulation in the 21st
century. J. Portfolio Manage. (30th Anniversary Issue) 30, 142–151 (2004)



Event-Driven Multi-agent Simulation 15

18. Klügl, F., Herrler, R., Fehler, M.: Sesam: implementation of agent-based simulation
using visual programming. In: Nakashima, H., Wellman, M.P., Weiss, G., Stone,
P. (eds.) Proceedings of the 5th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2006), Hakodate, Japan, 8–12 May 2006,
pp. 1439–1440. ACM (2006)

19. Knaak, N., Meyer, R., Page, B.: Agent-based simulation of sustainable logistic
strategies for large city courier services. In: Proceedings of EnviroInfo 2003, 17th
International Conference Informatics for Environmental Protection, Cottbus, pp.
318–325, September 2003

20. Knaak, N., Meyer, R., Page, B.: Logistic strategies for sustainable city courier
services - an agent-based simulation approach. In: Proceedings of HMS 2004, 8th
International Workshop on Harbour, Maritime & Multimodal Logistics Modelling
and Simulation, Rio de Janeiro, September 2004

21. Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis, 3rd edn. McGraw-
Hill, Boston (2000)

22. Lawson, B.G., Park, S.: Asynchronous time evolution in an artificial society model.
J. Artif. Soc. Soc. Simul. 3(1) (2000). http://jasss.soc.surrey.ac.uk/3/1/2.html

23. Luke, S.: Multiagent simulation and the MASON library. Manual version 17,
Department of Computer Science, George Mason University, Fairfax, VA, May
2013, http://cs.gmu.edu/∼eclab/projects/mason/manual.pdf

24. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: a multi-
agent simulation environment. Simulation 82(7), 517–527 (2005)

25. Macal, C.M., North, M.J.: Agent-based modeling and simulation: Abms examples.
In: Mason, S.J., Hill, R.R., Mönch, L., Rose, O., Jefferson, T., Fowler, J.W. (eds.)
Proceedings of the 2008 Winter Simulation Conference, pp. 101–112 (2008)

26. Michel, F., Ferber, J., Drogoul, A.: Multi-agent systems and simulation: a survey
from the agents community’s perspective. In: Uhrmacher and Weyns [39], pp. 3–52

27. Minar, N., Burkhart, R., Langton, C.G., Askenazi, M.: The swarm simulation sys-
tem: a toolkit for building multi-agent simulations. Working Paper 96-06-042, Santa
Fe Institute (1996), http://www.santafe.edu/media/workingpapers/96-06-042.pdf

28. North, M.J., Collier, N.T., Ozik, J., Tatara, E.R., Macal, C.M., Bragen, M.,
Sydelko, P.: Complex adaptive systems modeling with Repast Simphony. Complex
Adapt. Syst. Model. 1, 3 (2013). http://www.casmodeling.com/content/1/1/3

29. North, M.J., Collier, N.T., Vos, J.R.: Experiences creating three implementations
of the Repast agent modeling toolkit. ACM Trans. Model. Comput. Simul. 16(1),
1–25 (2006)

30. O’Sullivan, D.: Graph-based Cellular Automaton Models of Urban Spatial
Processes. Dissertation, Centre of Advanced Spatial Analysis, University of London
(2000)

31. Page, B., Kreutzer, W.: The Java Simulation Handbook: Simulating Discrete Event
Systems with UML and Java. Shaker, Aachen (2005)

32. Railsback, S.F., Lytinen, S.L., Jackson, S.K.: Agent-based simulation platforms:
review and development recommendations. Simulation 82(9), 609–623 (2006)

33. Samuelson, D.A., Macal, C.M.: Agent-based simulation comes of age. Oper.
Res./Manage. Sci. Today 33(4), 34 (2006)

34. Schelling, T.C.: Micromotives and Macrobehavior. Norton, New York (1978)
35. Smith, R.G.: The contract net protocol: high level communication and control in

a distributed problem solver. IEEE Trans. Comput. C–29(12), 1104–1113 (1980)
36. Tesfatsion, L.: Agent-based computational economics: growing economies from the

bottom up. Artif. Life 8(1), 55–82 (2002)

http://jasss.soc.surrey.ac.uk/3/1/2.html
http://cs.gmu.edu/~eclab/projects/mason/manual.pdf
http://www.santafe.edu/media/workingpapers/96-06-042.pdf
http://www.casmodeling.com/content/1/1/3


16 R. Meyer

37. Theodoropoulos, G., Minson, R., Ewald, R., Lees, M.: Simulation engines for multi-
agent systems. In: Uhrmacher and Weyns [39], pp. 77–108

38. Troitzsch, K.: A multi-agent model of bilingualism in a small population. In:
Coelho, H., Espinasse, B. (eds.) 5th Workshop on Agent-Based Simulation, pp.
38–43. SCS Publishing House, Erlangen (2004)

39. Uhrmacher, A.M., Weyns, D. (eds.): Multi-Agent Systems: Simulation and Appli-
cations. CRC Press/Taylor and Francis, Boca Raton (2009)

40. Weyns, D., Holvoet, T.: Model for situated multi-agent-systems with regional
synchronization. In: Jardim-Goncalves, R., Cha, J., Steiger-Garcao, A. (eds.)
Enhanced Interoperable Systems: Proceedings of the 10th International Confer-
ence on Concurrent Engineering (ISPE CE 2003), Madeira, Portugal, 26–30 July,
pp. 177–188 (2003)

41. Wilensky, U.: Netlogo. Center for Connected Learning and Computer-Based Mod-
eling, Northwestern University, Evanston (1999). http://ccl.northwestern.edu/
netlogo/

http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/

	Event-Driven Multi-agent Simulation
	1 Introduction
	2 The Case for Event-Driven Time Advance
	3 A Framework for Event-Driven Multi-agent Simulations
	3.1 Modelling Time
	3.2 Modelling Space
	3.3 Modelling Agents

	4 Example 1: Schelling's Segregation Model
	5 Example 2: City Courier Service Model
	6 Discussion
	7 Conclusion and Outlook
	References


