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Abstract. In this work, we study the problems of computing spatially
continuous cuts, which has many important applications of image pro-
cessing and computer vision. We focus on the convex relaxed formula-
tions and investigate the corresponding flow-maximization based dual
formulations. We propose a series of novel continuous max-flow models
based on evaluating different constraints of flow excess, where the classi-
cal pre-flow and pseudo-flow models over graphs are re-discovered in the
continuous setting and re-interpreted in a new variational manner. We
propose a new generalized proximal method, which is based on a specific
entropic distance function, to compute the maximum flow. This leads to
new algorithms exploring flow-maximization and message-passing simul-
taneously. We show the proposed algorithms are superior to state of art
methods in terms of efficiency.

1 Introduction

Many problems in image processing and computer vision can be modeled and
formulated by the theory of Markov Random Fields (MRF) over graphs, in terms
of computing a maximum a posteriori probability (MAP) estimate, see [23] for
reference. Graph-cuts and message-passing, e.g. [5,4,30,31,19] are two main cat-
egories of efficient algorithms for the combinatorial optimization problem. How-
ever, graph-based methods suffer from visible grid bias, and reducing such bias
requires either adding more neighbors locally or considering high-order cliques,
which inevitably leads to a more intensive computation and memory cost.

On the other hand, variational methods can be applied to solve the same class
of optimization problems in the spatially continuous setting, while avoiding the
metrication errors generated by combinatorial algorithms. In particular, convex
relaxation methods [21,7,15,34,24,9,2,20] were recently developed by relaxing
the discrete constraint to some convex set, which leads great advantages both in
theory and numerics: the convex optimization theory is well-established, efficient
and reliable solvers are available with provable convergence properties, and also
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easy to handle large-scale computation and speed up by GPUs. In this regard,
the proximal method plays the central element to build up a wide range of
efficient first-order methods, see e.g. [11,10] for references.

1.1 Contributions

In this work, we propose a series of max-flow dual formulations, to compute
minimum cuts in the continuous setting. In contrast to previous work on contin-
uous max-flow [33,1], we formulate the flow excess constraints in different ways,
which directly lead to new generalized proximal algorithms, where the Bregman
divergence acts as the distance measurement for updating the labeling func-
tion. We propose primal-dual algorithmic schemes which combine both a flow-
maximizing step and message-passing step in one unified numerical framework.
This reveals close connections between the proposed flow-maximization meth-
ods and the classical methods, where ’cuts’ over the graphs can be computed by
maximizing flows or propagating messages. Finally, we compare the proposed al-
gorithms with state-of-art continuous optimization methods: the Split-Bregman
algorithm [15], the primal-dual algorithm [10] and the max-flow algorithm in [33]
through experiments.

2 Revisit: Max-flow and Full-Flow Representation

Many discrete optimization problems in image processing and computer vision
can be formulated as finding the minimum cut over appropriate graphs, as first
observed by Greig et. al. [16]. The two most efficient combinatorial algorithms for
computing the minimum cut solve the dual max-flow problem over the graph,
and are called the Ford Fulkerson algorithm [13] and push-relabel algorithm
[14]. More recently, continuous max-flow algorithms [33] have been proposed
that are able to solve isotropic versions of the min-cut / max flow problem by
convex optimization techniques. Both the continuous max-flow algorithm in [33]
and the Ford Fulkerson algorithm solve a full-flow representation of the max-
flow problem, in contrast to the pseudo-flow representation in the push-relabel
algorithm and the algorithms in this paper.

2.1 Discrete Min-cut and Max-flow Models

A graph G is a pair (V , E) consisting of a vertex set V and an edge set E ⊂ V×V .
We let C(v, w) ≥ 0 denote the cost / weight / capacity on edge (v, w) and use the
convention C(v, w) = 0 if there is no edge (v, w). In the min-cut and max-flow
problems, there are two special vertices in addition to V , a source vertix s and
a sink vetrex t. The min-cut problem is to find a partition of V ∪ s ∪ t into two
sets Vs and Vt, such that s ∈ Vs and t ∈ Vt with smallest cost possible, i.e. to
solve

min
Vs,Vt

∑

v∈Vs,w∈Vt

C(v, w), s.t. s ∈ Vs, t ∈ Vt, Vs ∪ Vt = V, Vs ∩ Vt = ∅ (1)
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It is well known that the min-cut problem (1) is dual to the maximum flow
problem over the same graph. We let ps(v) denote the flow on the edge (s, v)
and Cs(v) denote its capacity C(s, v). Similarly, pt(v) and Ct(v) are the flow and
capacity on (v, t) and p(v, w) the flow on (v, w). The maximum flow problem can
be formulated as follows

max
ps

∑

v∈V
ps(v) (2)

s.t. |p(v, w)| ≤ C(v, w) ps(v) ≤ Cs(v) pt(v) ≤ Ct(v) ∀v, w ∈ V (3)
∑

(w,v) : w∈V

p((w, v)) − ps(v) + pt(v) = 0 ∀v ∈ V (4)

where the objective (2) is to push the maximum amount of flow from the source
to the sink under flow capacity constraints (3). Additionally, the flow conserva-
tion constraint (4) should hold, which states that the total amount of incoming
flow should be balanced by the amount of outgoing flow at each vertex.

The classical Ford-Fulkerson algorithm [13] solves the max-flow problem (2)
by successively pushing flow from s to t along non-saturated paths, while main-
taining the flow conservation constraint (4) each iteration. In this paper, we also
call (2) subject to (3) and (4), the full-flow representation of max-flow.

2.2 Continuous Min-cut and Max-flow Models

In the spatially continuous setting, the min-cut problem (1), especially for image
segmentation, can be similarly formulated in terms of finding the two segments
S,Ω\S ⊂ Ω such that

min
S

∫

S

Cs(x) dx +

∫

Ω\S
Ct dx+

∫

∂S

C(s) ds , (5)

where Cs(x) and Ct(x) are pointwise costs for assigning any x to the foreground
S and background Ω\S respectively. As proposed by [21,7], this problem can be
solved globally and exactly by solving the continuous min-cut as follows

min
u(x)∈[0,1]

E(u) =

∫

Ω

(1 − u)Cs dx+

∫

Ω

uCt dx+

∫

Ω

C(x) |∇u|2 dx , (6)

which results in a convex optimization problem. Further studies can be found in
[22,15] etc.

Continuous Max-flow: Full-Flow Representation. An interesting study
on the continuous min-cut model (6) was proposed in [32,33], which built up the
duality connection between (6) to the so-called continuous max-flow model. It
directly presents the analogue to the well-known duality beetween max-flow and
min-cut [12] discussed above.

As the discrete graph configuration shown above, given the continuous image
domain Ω and two terminals, link the source s and the sink t to each pixel x ∈ Ω



18 E. Bae, X.-C. Tai, and J. Yuan

respectively; define three flow fields around the pixel x: ps(x) ∈ R directed from
the source s to x, pt(x) ∈ R directed from x to the sink t and the spatial flow
field p(x) ∈ R

2 around x within the image plain.
By the above spatially continuous setting, the continuous max-flow model

tries to maximize the total flow passing from the source s:

max
ps,pt,p

∫

Ω

ps dx (7)

subject to the three flow capacity constraints:

ps(x) ≤ Cs(x) , pt(x) ≤ Ct(x) , |p(x)|2 ≤ C(x) , ∀x ∈ Ω . (8)

and the flow conservation condition:

pt(x) − ps(x) + div p(x) = 0 , ∀x ∈ Ω . (9)

The authors [32,33] proved that the continuous max-flow model (7) is equivalent
to the continuous min-cut problem (6) in terms of primal and dual, where the
labeling function u(x) just works as a multiplier to the linear flow conservation
condition (9). To see this, the equivalent primal-dual model

min
u

max
ps,pt,p

∫

Ω

ps dx + 〈u, pt − ps + div p〉 , (10)

subject to the flow capacity constraints (8) was considered. The flow conservation
condition (9) played a central role in constructing the duality between the max-
flow and min-cut models: (7) and (6).

We call (7) the full-flow representation of the continuous max-flow model
in this paper. In the following sections, we will discuss the other two continu-
ous max-flow models which are distinct from the full-flow representation model
(7). We will see that different continuous max-flow models can be constructed
through variants of flow preservation (9), while the full-flow representation model
(7) just corresponds to the balance of in-flow and out-flow.

To compute a solution to (6) or (7), discretization of the domain Ω is neces-
sary. One fundamental difference to the discrete max-flow and min-cut models
is the rotationally invariant 2-norm in (6) and (8), which corresponds to the
Euclidean perimeter in (5). In this paper we assume a general discretized image
domain and differential operators when deriving the duality theory, but we keep
the continuous notation∇, div,

∫
to ease readability. To derive rigorous existence

proofs for infinite dimensional spaces is quite involved and out of the scope of
this conference paper.

3 Continuous Max-flow Models Represented by Pre-flows
and Pseudo-flows

In this section, we propose and study two other continuous max-flow models in
terms of the representations of pre-flows and pseudo-flows. Both models are dual
to the continuous min-cut model (6).
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3.1 Continuous Max-flow: Pre-flow Representation

Now we partially optimize the max-flow model (7) by maximizing over the source
flow ps(x) ≤ Cs(x). By simple computation, we can prove that

Proposition 1. The continuous max-flow model (7) is equivalent to the follow-
ing flow-maximization problem:

max
pt,p

∫

Ω

pt dx (11)

s.t. Cs(x)− div p(x)− pt(x) ≥ 0 , ∀x ∈ Ω (12)

pt(x) ≤ Ct(x) , |p(x)| ≤ C(x) , ∀x ∈ Ω. (13)

Proof. We first observe that the max-flow model (7) can be equivalently formu-
lated as

max
pt,p

∫

Ω

pt dx (14)

s.t. ps(x) + div p(x)− pt(x) = 0 , ∀x ∈ Ω (15)

ps(x) ≤ Cs(x) , pt(x) ≤ Ct(x) , |p(x)| ≤ C(x) , ∀x ∈ Ω. (16)

This just comes from the fact that the total source flow
∫
ps dx equals to the total

sink flow
∫
pt dx, due to the flow balance condition (9). Changing the positive

direction of flows ps and pt in (7), we then have (14).
Therefore, by the same procedures as in [32], optimizing (14) over the con-

straint ps(x) ≤ Cs(x), we see that (14) can be equivalently expressed as

min
u≥0

max
pt,p

∫

Ω

pt dx + 〈u,Cs + div p− pt〉 (17)

s.t. pt(x) ≤ Ct(x) , |p(x)| ≤ C(x) ∀x ∈ Ω.

where u is a Lagrange multiplier for Cs +div p− pt ≥ 0. Clearly, (17) is just the
primal-dual formulation of (11). Hence, we have:

(7) ⇐⇒ (14) ⇐⇒ (17) ⇐⇒ (11) .

The equivalence between (7) and (11) is proved.

Obviously, (11) gives another continuous max-flow model which tries to maxi-
mize the total flow streaming out to the sink t while keeping the maximum source
flow ps(x) = Cs(x). We see that the excess of flows at each pixel is no longer
constrained to vanish, but to be non-negative (12), i.e. the flow conservation
condition (9) is not kept.

Moreover, we will show that (11) results in a novel max-flow algorithm, in
the continuous context, which has similar steps as the well-known push-relabel
algorithm proposed in [14]. With this perspective, the constraint (12) recovers
the pre-flow condition. We call (11) the pre-flow representation of the continuous
max-flow model. In view of (17), we have that
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Proposition 2. The pre-flow based max-flow model (11) is dual to the contin-
uous min-cut problem (6), and also equivalent to its primal-dual model

min
u≥0

max
pt,p

∫

Ω

pt dx + 〈u,Cs + div p− pt〉 (18)

s.t. pt(x) ≤ Ct(x) , |p(x)| ≤ C(x) ∀x ∈ Ω.

The proof follows by (17).

3.2 Continuous Max-flow: Pseudo-flow Representation

By maximizing the continuous max-flow model (7) over the flows ps(x) ≤ Cs(x)
and pt(x) ≤ Ct(x) simultaneously, we have that

Proposition 3. The continuous max-flow model (7) is equivalent to the follow-
ing flow-maximization problem:

max
|p(x)|≤C(x)

∫

Ω

min(0, Ct + div p− Cs) dx , (19)

The flow excess at each point (Ct + div p − Cs)(x) �= 0 is neither balanced nor
non-negative, i.e. the pseudo-flow condition. Problem (19) is also related to the
dual formulation of multi-region partitions proposed in [2].

Proof. Following the same steps in [32], optimizing the continuous max-flow
model (7) over ps(x) ≤ Cs(x) and pt(x) ≤ Ct(x) results in

min
u(x)∈[0,1]

max
|p(x)| ≤C(x)

∫

Ω

u (Ct + div p− Cs) dx (20)

The min and max operators are interchangeable, by the minimax theorem.
Then, by minimizing the above functional over u(x) ∈ [0, 1] at each pixel x ∈ Ω,
we obtain the optimization problem (19).

The formulation (19) emphasizes: first, the flow excess at each pixel x is neither
balanced nor non-negative (pre-flow condition); actually, the flow excess can be
either positive or negative; second, the object is to find the spatial flow field p(x)
which maximizes the total negative flow excess, i.e. (Ct + div p − Cs)(x) ≤ 0.
Observe that we find the third equivalent max-flow model in terms of the pseudo-
flow condition, proposed in [17]. In this regard, we call (19) the pseudo-flow
representation of the continuous max-flow model. In the following sections, we
propose a new algorithm associated to the peudo-flow based max-flow model
(19).

4 Entropic Proximal Max-flow Algorithms

In this section, we consider the generalized proximal method to solve the newly
proposed continuous max-flow models: (11) and (19) which are dual to the con-
tinuous min-cut problem (6). We will see that such proximal method based on
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the generalized entropic distance functions leads to the generalized augmented
Lagrangian method [28,18], and builds up a class of novel continuous max-flow
algorithms which explores flow-maximization joint with message-passing simul-
taneously.

We first introduce the entropic proximal method using the generalized Breg-
man distance as its mapping kernel. Then we build up the new entropic-proximal
based algorithms to the proposed continuous max-flow models (11) and (19). We
also discuss their essential links to the push-relabel and pseudoflow algorithms
over graphs.

4.1 Proximal Methods with Bregman Distance

Given the closed proper convex function f(x), the proximal mapping of any
point z is defined by [26]:

proxf (z) = (I + λ∂f)−1(z) = argmin
x

{ 1

2λ
‖x− z‖2 + f(x)

}
. (21)

Then the classical proximal method [8] to minimize the function f(x) can for-
mulated as computing a sequence of proximal mappings iteratively:

xk+1 = (I + λ∂f)−1(xk) = argmin
x

{ 1

2λk

∥∥x− xk
∥∥2 + f(x)

}
. (22)

Convergence properties of the proximal method was studied in [27]. Its close
connections to the augmented Lagrangian method were demonstrated in [25,28]
by computing the iterative proximal mappings of the dual sequence.

The proximal method is one of important elements to design most the efficient
first-order primal-dual algorithms [10]. One of its interesting extensions is to
incorporate the generalized Bregman distance or divergence functions Dg(x, y)
[6] as the proximity measurement, which results in the entropic proximal method:

xk+1 = argmin
x

{
Dg(x, x

k) + f(x)
}

(23)

where
Dg(x, y) = g(x)− g(y)− 〈∂g, x− y〉 , (24)

g(x) is a differentiable and strictly convex function.
Clearly, the Bregman distance (24) provides a quite general conception on

the proximity measurement: for example, the function g(x) = 1
2 ‖·‖2 just gives

the common squared Euclidean distance 1
2 ‖x− y‖2; the entropy function for the

vector x := (x1, . . . , xn) ∈ (R+)n

g(x) =
∑

i

(xi log xi − xi)

results in the generalizedKullback-Leibler divergence of two vectors x, y ∈ (R+)n

such that

Dg(x, y) =

n∑

i=1

(
xi log(xi/yi)− xi + yi

)
, (25)

see also [3] for the definition of more Bregman distances.
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Generalized Augmented Lagrangian Method. [28] showed the entropic
proximal method (23) over the dual sequence just amounts to the generalized
augmented Lagrangian method, which incorporates the classical augmented La-
grangian method as its special case with the quadratic Euclidean distance.

Now we consider the generalized optimization problem associated to the con-
tinuous max-flow models:

min
u∈Cu

max
p∈Cp

L(p, u) = f(p) + 〈u,G(p)〉 (26)

where Cu and Cp are the constraint sets on u and p respectively.
Let the dual function D(u) be

D(u) := max
p∈Cp

L(p, u) .

As in [28], the entropic proximal method (23) to the dual function D(u) gives
the generalized augmented Lagrangian method

uk+1 = arg min
u∈Cu

{
cDg(u, u

k) +D(u)
}

where c is some positive constant. Therefore, we have the corresponding aug-
mented Lagrangian function as follows:

Lc(p, v) = min
u∈Cu

{
L(p, u) + cDg(u, v)

}
.

The generalized augmented Lagrangian method contains the following two
steps at each iteration:

pk+1 = arg max
p∈Cp

Lck(p, u
k) , (27)

uk+1 = arg min
u∈Cu

〈
u,G(pk+1)

〉
+ ckDg(u, u

k) . (28)

It is important to notice that the function Lc(x, v) is the smoothed approxi-
mation to L(x, u), hence better properties in numerics. In particular, when the
quadratic L2-norm is used as the distance function, then the classical augmented
Lagrangian method is recovered.

In the following part, we propose and discuss a class of new continuous max-
flow algorithms based on the entropic proximal method, especially the general-
ized augmented Lagrangian method. We will also show its close connections to
the existing max-flow algorithms over graphs.

4.2 Entropic Proximal Max-flow Algorithm to (11)

For the pre-flow represented max-flow model (11), its corresponding primal-dual
model (18) gives the common Lagrangian function:

max
pt,p

min
u(x)≥0

L(pt, p, u) :=

∫

Ω

pt dx + 〈u,Cs + div p− pt〉 (29)

s.t. pt(x) ≤ Ct(x) , |p(x)| ≤ C(x) ∀x ∈ Ω.
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In this work, we consider the Kullback-Leibler distance (25) as the proximal
function, i.e.

D(u, v) =

∫

Ω

{
u(x) log(u(x)/v(x)) − u(x) + v(x)

}
dx .

This results in the augmented Lagrangian function

Lc(pt, p, v) = min
u(x)≥0

L(pt, p, u) + cD(u, v) (30)

From the first order optimality condition, we obtain the explicit expression for
the minimizer u = v exp

[− (Cs + div p− pt)/c
]
for v ≥ 0, which leads to

Lc(pt, p, v) =

∫

Ω

{
pt − c

[
v exp

{− Cs + div p− pt
c

}
+ 1

]}
dx , v ≥ 0. (31)

In view of the step (27) of the generalized augmented Lagrangian method, the
augmented Lagrangian function (30) can then be expressed, in terms of uk at
each iteration, as:

Lc(pt, p, u
k) =

∫

Ω

{
pt − c

[
uk exp

{− Cs + div p− pt
c

}
+ 1

]}
dx dx , uk ≥ 0.

By means of (30), we have the new continuous max-flow algorithm corresponding
to the pre-flow model (11):

Algorithm 4. Initialize u0(x) ∈ (0, 1) ∀x ∈ Ω, p0t , p
0. For k=0,1,... until con-

vergence, perform the following two steps (flow maximization and message pass-
ing):

– Maximize over the flows pt and p by

pk+1
t := arg max

pt(x)≤Ct(x)
Lc(pt, p

k, uk) ; (32)

pk+1 := arg max
|p(x)|≤C(x)

Lc(p
k
t , p, u

k) ; (33)

where the step (32) can be solved explicitly through simple variational com-
putation and the step (33) can be solved iteratively, as shown below.

– Update the message function u by

uk+1 := uk exp
{− Cs + div pk+1 − pk+1

t

c

}
(34)

For the flow-maximization step (32), it’s easy to solve the given maximization
problem explicitly by

pk+1
t = min

{
Cs + div pk − c log uk, Ct

}
, (35)
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since ∂Lc(pt,p
k,uk)

∂pt
= 0 if pt = Cs + div pk − c log uk.

For the flow-maximization step (33), we apply one iteration of the projected-
gradient method

pk+1 = Proj| · |≤C(x)

{
pk + γ∇

(
uk exp

{− Cs + div pk − pkt
c

})}
, (36)

where γ > 0 is the step-size.

4.3 Entropic Proximal Max-flow Algorithm to (19)

Likewise, for the pseudo-flow represented max-flow model (19), its corresponding
primal-dual formulation (20) expresses the common Lagrangian function

min
u(x)∈[0,1]

max
|p(x)| ≤C(x)

L(p, u) :=

∫

Ω

u (Ct + div p− Cs) dx .

Consider the function u(x) ∈ [0, 1], we apply the following Bregman distance
as the proximal function

D(u, v) =

∫

Ω

{
u log(

u

v
) + (1 − u) log(

1− u

1− v
)
}
dx .

The resulting augmented Lagrangian function is

Lc(p, v) = min
u(x)∈[0,1]

L(p, u) + cD(u, v) (37)

= −c

∫

Ω

log
{
(1− v) + v exp

(− Ct + div p− Cs

c

)}
dx , (38)

where c > 0 works as the step-size.
Considering exp(0/c) = 1, it is easy to see that

Lc(p, v) = −c

∫

Ω

log
{
(1− v) exp(

0

c
) + v exp

(− Ct + div p− Cs

c

)}
dx .

As c → 0+, we have the limit function [29]

lim
c→0+

Lc(p, v) =

∫

Ω

c min(0, Ct + div p− Cs) dx

which is just the original pseudo-flow represented max-flow model (19). To this
end, we see that the augmented Lagrangian function (37) just works as the
smoothed version of the energy function (19).

Following the step (27) of the generalized augmented Lagrangian method, the
augmented Lagrangian function (37) can then be expressed, in terms of uk at
each iteration, as:

Lc(p, u
k) = −c

∫

Ω

log
{
(1− uk) + uk exp

(− Ct + div p− Cs

c

)}
dx .

By means of (30), we have the new continuous max-flow algorithm to its
pseudo-flow represented model (19):
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Algorithm 5. Initialize u0(x) ∈ (0, 1) ∀x ∈ Ω, p0t , p
0. For k=0,1,... until con-

vergence, perform the following two steps (flow maximization and message pass-
ing):

– Maximize over the flows p by

pk+1 := arg max
|p(x)|≤C(x)

Lc(p, u
k) ; (39)

which can be solved approximately by one iteration of projected gradient.

– Update the message function u by

uk+1 :=
uk exp(−Gk+1/c)

1− uk + uk exp(−Gk+1/c)
, (40)

where for ∀x ∈ Ω

Gk+1(x) = (Ct + div pk+1 − Cs)(x) .

Algorithm 5 is similar to the smoothing dual algorithm proposed in [2] for mul-
tiphase partition problems. One crucial difference is that algorithm 5 solves the
problem exactly without any smoothing approximation.

(a) (b) (c) (d)

Fig. 1. Segmentation with data term (41): (b) result on image (a) with C(x) = α = 0.5,
c1 = 0.15 and c2 = 0.6; (d) result on image (c) with C(x) = α = 0.25, c1 = 0.16 and
c2 = 0.5

5 Experiments

This section validates the convergence of the algorithms 4 and 5 on some image
segmentation examples and comparisons are given to the previous max-flow al-
gorithm [33], the Split-Bregman algorithm [15] and the primal-dual algorithm
[10]. They are regarded as the state of the art algorithms for solving the convex
partition problem. We choose the fidelity term

Cs(x) = |I(x) − c1|2, Ct(x) = |I(x)− c2|2, (41)
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where I is the input image and c1 and c2 are two scalar gray values approximating
the mean image intensities within each region. Results are shown in Figure 1.
Figure 2 shows plots of the relative energy error

|E(uk)− E(u∗)|
E(u∗)

where E is the energy (6), uk is the solution at iteration k and u∗ is the ground
truth solution computed by 100000 iterations for each method. It can be observed
that the two new variants of the max-flow algorithm converge at a similar rate
as the old max-flow algorithm on example figure 1 (a), while on figure 1 (c)
algorithm 5 is faster and algorithm 5 is slower. In both images all the max-
flow algorithms converge considerably faster that the Split-Bregman and primal-
dual algorithm. We speculate the reason for the faster convergence is that the
max-flow algorithms avoids the projection step for incorporating the constraint
u(x) ∈ [0, 1], ∀x ∈ Ω. The CPU times are

(a) (b)

Fig. 2. Convergence of relative energy error |E(uk)−E(u∗)|
E(u∗) for iterations k = 1, ..., 800:

(a) image 1(a); (b) image 1(c). The function u∗ is the ground truth solutions computed
by 100000 iterations of each method. Red is the new max-flow algorithm 5, magneta
is new max-flow algorithm 4, blue is the old max-flow algorithm [33], green is Split-
Bregman [15] and black is the primal-dual algorithm [10].

6 Conclusions

In this paper, we propose a series of novel flow-maximization models dual to the
continuous min-cut problem by formulating the flow excess conditions in differ-
ent ways. In theory, the proposed dual formulations discover and re-interpret
the conventional pre-flow and pseudo-flow models over discrete graphs in the
spatially continuous setting under a new variational perspective. In addition,
the new dual formulations, i.e. the continuous max-flow models, directly lead
to new generalized proximal dual optimization based algorithms, which embed
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both flow maximization and message-passing in a single algorithmic framework.
Moreover, we show the proposed algorithms numerically outperform the state-
of-art methods by experiments.
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image labeling by simplex-constrained total variation. In: Tai, X.-C., Mørken, K.,
Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 150–162. Springer,
Heidelberg (2009)

21. Nikolova, M., Esedoglu, S., Chan, T.F.: Algorithms for finding global minimizers of
image segmentation and denoising models. SIAM J. App. Math. 66(5), 1632–1648
(2006)

22. Olsson, C., Byröd, M., Overgaard, N.C., Kahl, F.: Extending continuous cuts:
Anisotropic metrics and expansion moves. In: ICCV, pp. 405–412 (2009)

23. Paragios, N., Chen, Y., Faugeras, O.: Handbook of Mathematical Models in Com-
puter Vision. Springer-Verlag New York, Inc., Secaucus (2005)

24. Pock, T., Schoenemann, T., Graber, G., Bischof, H., Cremers, D.: A convex formu-
lation of continuous multi-label problems. In: Forsyth, D., Torr, P., Zisserman, A.
(eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 792–805. Springer, Heidelberg
(2008)

25. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point
algorithm in convex programming. Math. Oper. Res. 1(2), 97–116 (1976)

26. Rockafellar, R.T.: Convex analysis. Princeton Mathematical Series, vol. 28. Prince-
ton University Press, Princeton (1970)

27. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J.
Control Optimization 14(5), 877–898 (1976)

28. Teboulle, M.: Entropic proximal mappings with applications to nonlinear program-
ming. Math. Oper. Res. 17(3), 670–690 (1992)

29. Teboulle, M.: A unified continuous optimization framework for center-based clus-
tering methods. J. Mach. Learn. Res. 8, 65–102 (2007)

30. Wainwright, M., Jaakkola, T., Willsky, A.: Map estimation via agreement on (hy-
per)trees: Message-passing and linear programming approaches. IEEE Transactions
on Information Theory 51, 3697–3717 (2002)

31. Wainwright, M.J., Jaakkola, T., Willsky, A.S.: Map estimation via agreement on
trees: message-passing and linear programming. IEEE Transactions on Information
Theory 51(11), 3697–3717 (2005)

32. Yuan, J., Bae, E., Tai, X.C.: A study on continuous max-flow and min-cut ap-
proaches. In: CVPR, USA, San Francisco (2010)

33. Yuan, J., Bae, E., Tai, X.-C., Boykov, Y.: A spatially continuous max-flow and min-
cut framework for binary labeling problems. Numerische Mathematik 126, 559–587
(2013)

34. Zach, C., Gallup, D., Frahm, J.-M., Niethammer, M.: Fast global labeling for real-
time stereo using multiple plane sweeps. In: VMV 2008 (2008)


	Maximizing Flows with Message-Passing: Computing Spatially Continuous Min-Cuts
	1
Introduction
	1.1
Contributions

	2
Revisit: Max-flow and Full-Flow Representation
	2.1
Discrete Min-cut and Max-flow Models
	2.2
Continuous Min-cut and Max-flow Models

	3
Continuous Max-flow Models Represented by Pre-flows and Pseudo-flows
	3.1
Continuous Max-flow: Pre-flow Representation
	3.2
Continuous Max-flow: Pseudo-flow Representation

	4
Entropic Proximal Max-flow Algorithms
	4.1
Proximal Methods with Bregman Distance
	4.2
Entropic Proximal Max-flow Algorithm to (11)
	4.3
Entropic Proximal Max-flow Algorithm to (19)

	5
Experiments
	6
Conclusions
	References




