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Abstract. In this work we consider the regularization of vectorial data such as
color images. Based on the observation that edge alignment across image chan-
nels is a desirable prior for multichannel image restoration, we propose a novel
scheme of minimizing the rank of the image Jacobian and extend this idea to
second derivatives in the framework of total generalized variation. We compare
the proposed convex and nonconvex relaxations of the rank function based on
the Schatten-q norm to previous color image regularizers and show in our nu-
merical experiments that they have several desirable properties. In particular, the
nonconvex relaxations lead to better preservation of discontinuities. The efficient
minimization of energies involving nonconvex and nonsmooth regularizers is still
an important open question. We extend a recently proposed primal-dual splitting
approach for nonconvex optimization and show that it can be effectively used
to minimize such energies. Furthermore, we propose a novel algorithm for ef-
ficiently evaluating the proximal mapping of the �q norm appearing during op-
timization. We experimentally verify convergence of the proposed optimization
method and show that it performs comparably to sequential convex programming.

1 Introduction

Developing effective image regularization priors is of central importance for variational
image reconstruction methods and inverse problems. The total variation (TV ) pio-
neered as a discontinuity-preserving regularizer [1], and still ranges among the most
popular and versatile regularizers [2]. Since the classical total variation was proposed
for grayscale images, a lot of recent research has focused on extending the TV to color
images. Among these works are straightforward extensions of using TV regularization
on each color channel separately [3], using a global coupling of the color channels by
penalizing the �2 norm of the total variations of the channels [4], as well as using the
Frobenius norm of the derivative matrix at each pixel [5,6]. Additionally, it has been
proposed to incorporate a change of color space [7], as well as to couple the color
channels with an �∞ norm [8].

Based on the class of methods presented by Sapiro and Ringach [5], the authors of
[9] proposed the penalization of the Schatten-∞ norm of the derivative matrix at each
pixel, i.e. the penalization of the largest singular value of the Jacobian. One approach we
are particularly interested in was also motivated by [5]: The authors of [10] suggested
to penalize the Schatten-1 norm, also known as the nuclear norm, of the Jacobian at
each pixel, i.e. they suggested to penalize

TVN(u) := ‖∇u‖N,1 :=

∫
Ω

∥∥∥∥
(
∂xu1(x, y) ∂xu2(x, y) ∂xu3(x, y)
∂yu1(x, y) ∂yu2(x, y) ∂yu3(x, y)

)∥∥∥∥
N

dx dy,

(1)
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Fig. 1. We propose a novel regularizer based on the nonconvex relaxation of the rank norm
(TVNq ). The above comparison shows that the nonconvex regularizers (for values of q < 1,
here q = 0.5) outperform the convex ones, as they are able to better preserve discontinuities. The
proposed regularizer has significantly less color artefacts at discontinuities as it favors coherent
jumps of the color channels.

for an image u : Ω → R
3, where ‖·‖N denotes the nuclear norm. Since the nuclear

norm of the derivative is a convex relaxation for minimizing the rank of a matrix, we
can interpret this approach as the rank minimization of the Jacobian. Note that the
Jacobian being of rank one means that all gradient vectors are linearly dependent and
thus point in the same (or opposite) direction. The latter is an interesting regularization
property which has been exploited in other contexts such as nonlinear diffusion [11]
or color Bregman iteration [12]. In this paper we propose a novel rank minimization
of the derivative matrix through nonconvex relaxation by considering the penalization
with the Schatten-q norm for 0 < q < 1.

Another motivation for such nonconvex relaxations comes from studies on the statis-
tics of natural images. Filter responses are more faithfully represented by heavy-tailed
distributions giving rise to nonconvex regularizers [13,14]. This led to the work of Kr-
ishnan et al. [14], who demonstrated that standard TV denoising and deblurring results
can indeed be improved by replacing the usual �1 norm of the gradient with the non-
convex �q norm for q < 1.

While penalizing the nuclear norm instead of the Frobenius norm of the Jacobian
yields an improvement as shown by Lefkimmiatis et al. [10], and replacing the usual
TV-�1 norm by a TV-�q norm with q < 1 yields another improvement [14], we will
demonstrate that combining both ideas by replacing the nuclear norm with a Schatten-q
norm for q < 1 leads to a regularization method superior to both previously mentioned
approaches, as illustrated in Fig. 1.

One well known property of total variation regularization is the preference of piece-
wise constant images which can lead to so called staircasing effects. To avoid these
artifacts, higher order methods such as the total generalized variation (TGV) have been
proposed [15]. The TGV α

2 model on a grayscale image u : Ω → R can be interpreted
as a particular type of infimal convolution written as

TGV(u) = inf
∇u=v+z

α‖v‖2,1 + (1 − α)‖∇z‖2,1 (2)

where ‖v‖2,1 =
∫
Ω

√
v1(x)2 + v2(x)2 dx and α ∈ [0, 1] is a weighting parameter

between first and second order penalization. Extensions for the TGV model include
replacing the ‖ ·‖2,1 norms by nonconvex ‖ ·‖q2,q penalty functions on grayscale images
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[16], as well as extending the TGV model to color images by considering the Frobenius
norms of the derivative matrices arising from having different color channels [17].

In this paper we propose a novel extension of the TGV approach to color images by
considering the nuclear norm of the derivative matrices. We will demonstrate in the nu-
merical results that our convex nuclear norm TGV approach outperforms the Frobenius
norm TGV for color image denoising. Moreover, we show that, again, replacing the
nuclear norm by a Schatten q-norm with q < 1 can improve the denoising performance
even further.

The minimization of the resulting nonsmooth and nonconvex energy is a challeng-
ing task. We will use a recent reformulation of the primal-dual hybrid gradient method
[18,19,20], which makes it applicable to nonconvex energies [21]. Although a full con-
vergence theory has not yet been established, we demonstrate that one obtains a very
efficient numerical scheme for finding low energies, comparably to methods which rely
on sequential convex programming such as [16].

The rest of this paper is organized as follows. In the next section we will further
motivate the idea of penalizing the Schatten-q norm of the derivative matrices in the
TV as well as in the TGV case in greater detail. Section 3 discusses the numerical
method for minimizing the proposed energies in detail. Particular emphasis is put on
the efficient evaluation of the proximity operators of the �q seminorms for q < 1. The
numerical results in Section 4 demonstrate the superior behavior of derivative matrix
rank minimization in the TV as well as in the TGV case and demonstrate the advantages
of the nonconvex regularizations. Finally, we draw conclusions and point out directions
of future research in Section 5.

2 TV and TGV Rank Minimization Approaches

In this section we will give more details on the idea and motivation for considering
certain Schatten-q norms for q < 1. We define the Schatten-q “norm” as

‖A‖Nq := (σq
1 + · · ·+ σq

n)
1/q

, (3)

where σi denotes the i-th singular value of A. Note that as a special case we obtain the
rank function for q = 0 (using the convention 00 = 1) and the nuclear norm for q = 1.

As pointed out in the introduction, the nuclear norm TV penalty (1) can be interpreted
as a convex relaxation for encouraging a low rank of the Jacobian at each pixel. Our
proposed Schatten-q norm approximates the rank minimization, i.e. the penalty of the
number of nonzero singular values, more closely.

TVNq (u) :=

∫
Ω

∥∥∥∥
(
∂xu1(x, y) ∂xu2(x, y) ∂xu3(x, y)
∂yu1(x, y) ∂yu2(x, y) ∂yu3(x, y)

)∥∥∥∥
q

Nq

dx dy, (4)

But why does it make sense to minimize the rank of this matrix? Note that the deriva-
tive matrix has at most rank two. A reduction of the rank could lead to a rank zero,
which has the simple interpretation of all derivatives being zero, i.e. none of the chan-
nels changing. We therefore still expect the regularization to prefer piecewise constant
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Fig. 2. Illustration of a point with gradient matrix of rank two a) and two different matrices with
rank one in b) and c). A Jacobian of rank zero would correspond to a locally constant region.

images. A derivative matrix with rank one on the other hand has the interpretation that
all gradient vectors are linearly dependent and hence parallel (or antiparallel).

This is illustrated in Fig. 2, where on the left we show a rank two Jacobian and on
the right two different rank one Jacobians. Note that the gradients always point in the
normal direction to the level lines of each channel, such that the lines in Fig. 2 can be
interpreted as particular level lines of the channels. The alignment of the normal lines
in all channels seems to be a reasonable regularity assumption for natural images and
leads to a reduction of color artifacts as we will see in the numerical results on color
image denoising. As illustrated in the right image in Fig. 2, a derivative matrix with two
derivative vectors being zero and one derivative vector being arbitrary also has rank one
such that color edges are not necessarily forced to be aligned as in the middle image.
We expect that the data term decides whether a full alignment as in the middle or a
pointwise alignment as in the right image of Fig. 2 are to be preferred, such that we
avoid overregularization or the introduction of artificial edges.

Furthermore, we propose to extent the idea of rank penalization of the derivatives to
the TGV framework by minimizing

TGVNq (u) := inf
∇u=v+z

α

∫
Ω

∥∥∥∥
(
v1,1(x, y) v1,2(x, y) v1,3(x, y)
v2,1(x, y) v2,2(x, y) v2,3(x, y)

)∥∥∥∥
q

Nq

dx dy

+ (1− α)

∫
Ω

∥∥∥∥∥∥∥∥

⎛
⎜⎜⎝

∂xz1,1(x, y) ∂xz1,2(x, y) ∂xz1,3(x, y)
∂xz2,1(x, y) ∂xz2,2(x, y) ∂xz2,3(x, y)
∂yz1,1(x, y) ∂yz1,2(x, y) ∂yz1,3(x, y)
∂yz2,1(x, y) ∂yz2,2(x, y) ∂yz2,3(x, y)

⎞
⎟⎟⎠

∥∥∥∥∥∥∥∥

q

Nq

dx dy. (5)

The above penalization can be motivated as follows. The Jacobian ∇u of an image is
optimally divided into two parts. The first part corresponds to v where the Schatten-q
norm of v is penalized. Thus, the interpretation of v is similar to the plain TV case
discussed above: This part of the gradient of u should point in the same direction for
all color channels. The second part of the functional penalizes the derivatives of z in
the Schatten-q norm and might be more difficult to interpret at first sight. The variable
z contains parts of the Jacobian of u. For interpretation purposes let us assume that
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z = ∇u. Then each column of the matrix in the second term of (5) is exactly the
Hessian of one of the color channels. In this sense, the second term tries to align parts
of the Hessian matrices of the color channels and therefore is the natural extension
of aligning the first derivatives. Having the interpretation of a Hessian in mind, one
could also motivate our approach by considering an image u whose color channels are
twice continuously differentiable. In this case a second order Taylor expansion could
describe the local behavior of each channel. Particularly, for color channels with parallel
Hessians the second order behavior or the curvature of all color channels is the same
up to a scaling and thus extends the coupling of different color channels from the first
derivatives in the TV case to the second derivatives in the TGV case.

3 Application to Inverse Problems in Image Processing

We now consider inverse problems involving the proposed regularizers, given an input
image f : Ω → R

k with k channels on a d-dimensional discretized domain Ω. For
regularization of piecewise constant images we have the following variational problem

min
u

λ

2
‖u− f‖2 +R(u), (6)

where R(u) is either TV q
F (u) = ‖∇u‖q2,q =

∫
Ω‖∇u(x)‖q2 dx or TVNq (u) as defined

in (4). For inverse problems involving piecewise affine and natural images we propose

min
u,v

λ

2
‖u− f‖2 +R(u, v), (7)

where R(u, v) is TGV q
F (u, v) = α‖∇u−v‖q2,q+(1−α)‖∇2v‖q2,q or TGVNq (u, v) as

defined in (5). Since for q < 1 the regularizers are nonconvex and nonsmooth, their ef-
ficient numerical optimization is a challenging problem. In the next section we propose
a minimization algorithm for energies involving the proposed regularizers.

3.1 Splitting Methods in the Nonconvex Setting

Let us first introduce the proximal mapping associated with a proper, lower-semi-
continuous function f : X → R ∪ {∞}:

proxτ,f (y) := argmin
x

f(x) +
1

2τ
‖x− y‖2. (8)

Note that if f is nonconvex, this mapping is not necessarily single-valued.
It has recently been shown experimentally that primal-dual splitting methods for

convex optimization are also often applicable in the nonconvex setting [21,22]. Here
we show how to generalize the recent approach [21] to our setting. In general, we aim
to minimize cost functions of the form

min
u

G(u) + F (g) subject to Ku = g, (9)

where G is convex, F possibly nonconvex and K a linear operator. The algorithm stud-
ied in [21,23] is given as
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gn+1 ∈ proxσ−1,F

(
Kūn + σ−1qn

)
,

qn+1 = qn + σ
(
Kūn − gn+1

)
,

un+1 = proxτ,G
(
un − τKT qn

)
,

ūn+1 = un+1 + θ(un+1 − un),

(10)

and reduces to the primal-dual hybrid gradient method (cf. [20]) for convex F . Inter-
estingly, this update scheme can also be interpreted as gradient descent in the primal
variables u and g and gradient ascent in the dual variable q on the following Lagrangian
saddle-point formulation of (9):

max
q

min
u, g

G(u) + F (g) + 〈q,Ku− g〉. (PD)

Since for nonconvex F it is generally not possible to interchange min and max, this
is not the same as the primal-dual saddle point problem involving the Fenchel dual
F ∗ from [2]. As observed in [23], a necessary condition on the dual step size for the
algorithm to converge for semiconvexity F , i.e. for F with the property that F (u) +
ω
2 ‖u‖2 is convex, seems to be σ ≥ 2ω.

Adaptive Step-Size Scheme. As the �q seminorms are neither semiconvex nor dif-
ferentiable for q < 1 one possibility would be to approximate it by a regularized or
smoothed variant. However, this turns out to be difficult for the nonconvex relaxations
of the rank function.

Instead we opt to employ a variable step size scheme where the dual step size ap-
proaches infinity (σ → ∞) as suggested in [21]:

θn = 1/
√
1 + 2γτn, σn+1 = σn/θn, τn+1 = τnθn, (11)

with τ0σ0‖K‖2 < 1. Here γ is an additional parameter which is usually chosen accord-
ing to the strong convexity constant of G, e.g. γ = λ for G(u) = λ

2 ‖u − f‖2. In the
case of TGV regularization, the function G is not strongly convex due to the additional
primal variable. We still pick γ = λ as a heuristical choice, as it works well in practice.

A similar approach is suggested by Storath et al. [22] for minimizing the Potts
model, based on the direct application of the Alternating Direction Method of Multipli-
ers (ADMM) to the nonconvex �0 regularizer while having a similar step size scheme
where the penalty parameter in the ADMM method approaches infinity. Here, the adap-
tive step size scheme for the above primal-dual algorithm comes with an immediate
interpretation in the convex setting for strongly convex G.

As the adaptive step size scheme yields σn → ∞, the following interpretation is
interesting. By considering the optimality conditions of the iterates produced by Algo-
rithm (10) we see that the inclusion qn ∈ ∂F (gn) holds in every iteration (cf. [23]).

For differentiable F the subdifferential is a singleton and we can thus eliminate the
variable q, and retrieve a formulation in terms of primal variables:

gn+1 ∈ proxσ−1
n ,F

(
Kūn + σ−1

n ∇F (gn)
)
,

un+1 = proxτn,G
(
un − τnK

T∇F (gn)
)
,

ūn+1 = un+1 + θn(u
n+1 − un).

(12)
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As σn → ∞ the proximity operator in the update in g becomes the identity and it can be
seen that we approach the forward-backward splitting algorithm in the limit, applied to
the primal problem (9) with an additional inertial term on u. This relation is interesting
as convergence of forward-backward methods in the nonconvex setting is theoretically
proven [24].

In order to apply Algorithm (10) to the problems at hand we require the efficient
evaluation of the proximal mappings coming from the nonconvex regularizers, which is
a nonconvex optimization problem itself.

3.2 Evaluation of the ‖·‖q
2,q Proximal Mapping

First we note that the due to the separability, the proximal mappings reduce to pointwise
evaluations of ‖·‖q2. We will focus on the former case first. Given g0 ∈ R

d×k, we will
consider the efficient minimization of the following proximal mapping for 0 ≤ q < 1:

proxτ,‖·‖q
2
(g0) = argmin

g∈Rd×k

‖g − g0‖22
2τ

+ ‖g‖q2. (13)

The case q = 0. An important special case is q = 0, which corresponds to Potts
regularization. In this case the minimization (13) can actually be solved explicitly via
hard thresholding:

proxτ,‖·‖0
2
(g0) =

{
0 if ‖g0‖2 ≤ √

2τ,

g0 otherwise.
(14)

For the general case 0 < q < 1, we first note that the evaluation of the proximal operator
(13) can be reduced to a scalar problem.

Proposition 1. Given g0 ∈ R
d×k, τ > 0, q ∈ (0, 1) and λ > 0, the solution of the

proximal operator

proxτ,‖·‖q
2
(g0) = argmin

g∈Rd×k

‖g − g0‖22
2τ

+ ‖g‖q2

has the form ĝ = tg0 for some real t ≥ 0.

Proof. A proof is given in the appendix of [25].

Solving the Scalar Problem. Since we now know that the optimal solution is a scalar
multiple of g0 we substitute g = tg0 in (13) and arrive at the following problem

argmin
t≥0

(t− 1)2

2
+ αtq =: argmin

t≥0
f(t) (15)

for α = τ‖g0‖q−2
2 ≥ 0. Thus, evaluating the proximal operator (13) reduces to solving

the above problem (15) for t ≥ 0.
The minimization problem (15) can be solved in closed form for certain values of

q such as 1/2 or 3/4 as described in [14]. In the following, we provide a more concise
analytic solution for the special case 1/2 and an efficient algorithm based on Newton’s
method for the general case.
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Fig. 3. The function (15) for three different values of α and q = 0.5. From left to right: α ≈
0.41 < 2

√
6

9
, α = 2

√
6

9
≈ 0.54, α = 4

3
√

3
≈ 0.77. It can be seen that the desired stationary point

is also the global minimum for α < 2
√

6
9

(left). In the equality case, the value at the stationary
point is the same as the boundary value (center). For α > 4

3
√

3
the function is increasing (right).

Concise Closed Form Solution for q = 1/2. Setting the derivative of the cost function
(15) to 0 and substituting t = s2 we arrive at the cubic equation

s3 − s+
α

2
= 0. (16)

Following the work of [26] we arrive at the following closed form expression for the
root which corresponds to the minimum of (15):

ŝ =
2√
3
sin

(1
3

(
arccos

(3√3

4
α
)
+

π

2

))
. (17)

Interestingly this solution based on trigonometric expressions is quite a bit shorter than
the one proposed in [14]. As shown in Fig. 3, we see that for some values of α the value
at the boundary is the optimal value. This is precisely for all α satisfying the condition

α >
2
√
6

9
. (18)

If (18) is satisfied we simply set t̂ = 0, otherwise we find the root ŝ of (16) that cor-
responds to the local minimum using formula (17) and set t̂ = ŝ 2. As seen in Fig. 3,
for α > 4

3
√
3

, the function is increasing and does not have a stationary point. This
corresponds to the case where the root in (17) is not real anymore.

Newton’s method for general 0 < q < 1. For general values of q, we solve the scalar
�q problem (15) using Newton’s method. For all α satisfying the condition

α >
1

2− q

(
2
1− q

2− q

)1−q

(19)

the boundary value is lower than the value at the local minimum as shown for q = 0.5
in Fig. 3, so we set t̂ = 0 if (19) is satisfied and otherwise we use Newton’s method. For
that we note that for α = 0 the optimal point is at t̂ = 1, and for α > 0 we have t̂ < 1.
So we pick the starting point for Newton’s method t0 = 1. We perform the iteration

tk+1 = tk − f ′(tk)/f ′′(tk) (20)
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Algorithm 1. Newton’s method for solving the nonconvex �q proximal operator.

Input: Parameters g0 ∈ R
d×k, τ > 0 and q ∈ (0, 1), machine precision ε > 0

Output: Minimizer ĝ ∈ R
d×k of (13)

if ‖g0‖2 > 0 then
α = τ‖g0‖q−2

2

if α satisfies (19) then
̂t = 0

else
// Solve for optimum using Newton’s method.
t0 = 1
for k ≥ 1 until f ′(tk)/f ′′(tk) < ε do

tk = tk−1 − f ′(tk)/f ′′(tk)
̂t = tk

ĝ = ̂t g0
else

ĝ = 0 // In the case g0 = 0 we can just set ĝ = 0.

where f ′ and f ′′ denote the first and second derivatives of f . It can be shown that the
derivative f ′ is convex and increasing on the closed interval

[
t̂, 1

]
, so Newton’s method

always converges to the minimum. The final algorithm to evaluate the proximal operator
(13) for 0 < q < 1 is given as Algorithm 1.

3.3 Evaluation of the ‖·‖q
Nq Proximal Mapping

Similar to the previous section, due to the separability we are only interested in the
pointwise evaluation of ‖·‖qNq

. Given g0 ∈ R
d×k we wish to evaluate the proximal

mapping

proxτ,‖·‖q
Nq

(g0) = argmin
g∈Rd×k

‖g‖qNq
+

1

2τ
‖g − g0‖22. (21)

In order to do so, we start with the singular value decomposition of the input argument
g0 = UΣg0V

T and substitute that into (21):

argmin
g∈Rd×k

‖g‖qNq
+

1

2τ
‖g − UΣg0V

T ‖22. (22)

Since the functions ‖·‖qNq
and ‖·‖2 are unitarily invariant, the optimization problem can

be reduced to the following:

argmin
Σ∈Rd×k

‖Σ‖qNq
+

1

2τ
‖Σ −Σg0‖22, (23)

where Σ ∈ R
d×k is a diagonal matrix. We can restrict the optimization problem (23) to

diagonal matrices due to a result by Mirsky [27, Theorem 5].
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Input Image λ = 0.4, q = 1 λ = 0.57, q = 0.8 λ = 0.9, q = 0.4 λ = 1.48, q = 0

Noisy (σ = 0.5)
PSNR=6.0

TV q
F , q = 0.2,
λ = 1

a) PSNR=14.3

TV q
F , q = 0.2,
λ = 1.6

b) PSNR=16.5

TV q
F , q = 0.8,
λ = 1.1

c) PSNR=18.4
Original

Fig. 4. Effect of the parameter q illustrated on a color image and a denoising example. Values of
q < 1 lead to piecewise constant results and smaller values of q lead to higher contrast between
the regions. In the second row we show the effect of the parameter q for image denoising. a), b)
While smaller values of q lead to sharp boundaries and clearer regions, large noise outliers are
not being removed since big jumps get penalized less. c) For such high noise levels we found
values around q ≈ 0.8 to give the highest PSNR values as it describes a good trade-off.

As this minimization problem is seperable, we can compute the �q proximal mapping
for each singular value in Σg0 . Given the solutions Σ̂ to the previous problem (23), the
final solution ĝ ∈ R

d×k is recovered as

ĝ = UΣ̂V T = g0V Σ+
g0Σ̂V T , (24)

where Σ+
g0 denotes the pseudoinverse of Σg0 . Note that it is not required to calculate a

full singular value decomposition of g0, but just the eigenvalue decomposition of gT0 g0
to obtain V . In case of TGVNq , this is an eigenvalue decomposition of a 3× 3 matrix 1.

4 Numerical Experiments

For all experiments we initialized the primal and dual variables (u, g and q) with zero.

4.1 Effect of the Parameter q in the TV q
F Model

In Fig. 4 we show the effect of the parameter q on a natural image for the TV q
F model.

Values of q < 1 lead to piecewise constant approximations and for smaller values of

1 Efficient evaluation:
http://www.mpi-hd.mpg.de/personalhomes/globes/3x3/

http://www.mpi-hd.mpg.de/personalhomes/globes/3x3/
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Fig. 5. Denoising of a piecewise constant image and natural images with TV q (q = 0.5) and
TGV q regularization (q = 0.75) using the proposed primal-dual algorithm. We chose α = 1/3
for all the TGV experiments and the data fidelity parameters were optimized for maximal PSNR.

q we observe higher contrast between the regions. That is because for smaller values
of q, bigger jumps are penalized less and less until for q = 0 all jumps are penalized
equally. Note that the proposed algorithm produces consistent results in a sense that
smaller values of q systematically lead to a higher contrast between the regions.

In the second row in Fig. 4 we illustrate how the denoising performance of the algo-
rithm depends on the parameter q. While smaller values of q lead to desirable sharper
boundaries and higher contrast, strong noise outliers do not get removed anymore due
to the lower penalization of large jumps. Finding the correct value of q means finding a
good trade off and values of q ≈ 0.8 lead to the highest PSNR for this particular noise
level.

4.2 Denoising of Piecewise Constant Images with TVq Regularization

In the first row of Fig. 5 and in Fig. 1 the denoising performance of the different regular-
izers on a piecewise constant image is shown. We chose q = 0.5 and the hyperparameter
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Fig. 6. Experimental convergence of the proposed algorithm on the 256 × 256 RGB lena image
for TV q

F and TGV q
F regularization and different data fidelities λ. We observe convergence for

both the normalized energy (En −E∗)/(E0 −E∗) and the normalized energy En/E0. Similar
convergence results are to be expected for the TVNq and TGVNq cases.

λ was chosen in order to obtain the highest PSNR values. It can be seen that the nuclear
norm reduces color artifacts at the jumps significantly and the use of nonconvex norms
leads to less contrast loss and yields sharper discontinuities. Combining both aspects
yields the overall highest PSNR and an improvement of 2 − 3 PSNR values over the
baseline approach [6] in Fig. 1 and Fig. 5.

4.3 Denoising of Natural Images with TGV q Regularization

In the second and third row of Fig.5 we show the result of the proposed algorithm
applied to the TGV -denoising functional for the different variants of TGV regulariza-
tion. The data fidelity parameter λ was tuned for maximal PSNR. Again we see that
nonconvex TGV q yields sharper discontinuities and higher PSNR values while the use
of the nuclear norm reduces color artefacts. The combination yields an improvement of
at least 1/2 PSNR over [17] in the experiments in Fig. 5.

4.4 Convergence of the Energy

As the theoretical convergence of the algorithm is still an important open question we
validated the convergence of the algorithm experimentally by precomputing a u∗ =

u105 as an approximation to the converged solution. It can be seen in Fig. 6 that the
normalized energies (E(un)−E(u∗))/(E(u0)−E(u∗)) and E(un)/E(u0) converge.
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Fig. 7. We show the energy decrease over iterations (total inner iterations for the iterative
reweighted �1 algorithm) for the TV q

F (left) and TGV q
F (right) denoising examples in Fig. 1

and Fig. 5. Our proposed direct algorithm minimizes the energy functional comparably to the
state-of-the-art iterative reweighted �1 algorithm [16].

We compare the energy decrease of the proposed method over iterations to iterative
reweighted �1 (IRL1) optimization [16], and show the results in Fig. 7. For the iterative
reweighting method we chose the smoothing parameter ε = 10−6 as a regularization
parameter to make the �q function Lipschitz continuous. The inner convex optimization
problem is solved using the same primal-dual algorithm (but of course in the convex set-
ting) and uses the same termination criterion for the inner iterations as detailed in [16].
We see that the direct application of the primal-dual method in the nonconvex setting
performs overall comparably to the state-of-the-art iterative reweighted �1 method.

5 Conclusion

We proposed novel regularizers for vector valued images based on convex and non-
convex relaxations of a rank minimization prior. Numerous experiments on piecewise
constant and natural images show that the proposed regularizers yield overall state-of-
the-art performance.

Furthermore, to deal with the nonconvex and nonsmooth optimization problem an
efficient optimization method for solving related inverse problems was presented. We
have shown how to efficiently find globally optimal solutions to the arising nonconvex
proximal mapping. Our numerical experiments indicated that the direct application of
a primal-dual splitting method in the nonconvex setting performs comparably to se-
quential convex programming methods. For future work we mainly wish to study the
convergence properties of convex splitting methods in the nonconvex setting.
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