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Preface

Energy minimization has become an important paradigm for solving many chal-
lenging problems within computer vision and pattern recognition over the past
few decades. Mathematical models that describe the desired solution as the min-
imizer of an energy potential arise through different schools of thought, includ-
ing statistical approaches in the form of Markov random fields and geometrical
approaches in the form of variational models or equivalent partial differential
equations. Besides the challenge of formulating appropriate energy minimiza-
tion models, a significant research topic is the design of computational methods
for reliably and efficiently obtaining solutions of minimal energy.

This book contains 36 original research articles that cover the whole spectrum
of energy minimization in computer vision and pattern recognition, including
design and analysis of mathematical models and design of discrete and con-
tinuous optimization algorithms. Application areas include image segmentation
and tracking, image restoration and inpainting, multiview reconstruction, shape
optimization, and texture and color analysis. The articles have been carefully
selected through a thorough double-blind peer-review process.

Furthermore, we were delighted that three internationally recognized ex-
perts in the fields of computer vision, pattern recognition, and optimization,
namely, Andrea Bertozzi (UCLA), Ron Kimmel (Technion-IIT), and Long Quan
(HKUST), agreed to further enrich the conference with inspiring keynote
lectures.

We would like to express our gratitude to those who made this event possible
and contributed to its success. In particular, our Program Committee of top
international experts in the field provided excellent reviews. The administrative
and financial support from the Hong Kong University of Science and Technology
(HKUST), especially from HKUST Jockey Club Institute for Advanced Study
(IAS), was crucial for the success of this event. We are grateful to Linus See
(HKUST), Eric Lin (HKUST) and Shing Yu Leung (HKUST) for providing very
helpful local administrative support. It is our belief that this conference helped
to advance the field of energy minimization methods and to further establish the
mathematical foundations of computer vision and pattern recognition.

November 2014 Xue-Cheng Tai
Egil Bae

Tony F. Chan
Marius Lysaker
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Convex Envelopes for Low Rank Approximation

Viktor Larsson and Carl Olsson

Centre for Mathematical Sciences
Lund University, Sweden

Abstract. In this paper we consider the classical problem of finding a
low rank approximation of a given matrix. In a least squares sense a
closed form solution is available via factorization. However, with addi-
tional constraints, or in the presence of missing data, the problem be-
comes much more difficult. In this paper we show how to efficiently com-
pute the convex envelopes of a class of rank minimization formulations.
This opens up the possibility of adding additional convex constraints and
functions to the minimization problem resulting in strong convex relax-
ations. We evaluate the framework on both real and synthetic data sets
and demonstrate state-of-the-art performance.1

1 Introduction

The assumption that measurements consist of noisy observations from a low
rank matrix has been proven useful in applications such as non-rigid and artic-
ulated structure from motion [1,2,3], photometric stereo [4] and optical flow [5].
The interpretation of the low rank assumption is that the observed data can
be written as a linear combination of a few basis elements. The factorization
approach, introduced to vision in [6], offers a simple way of determining both
coefficients and basis elements. If the measurement matrix M is complete then
the best approximation, in a least squares sense, can be computed in closed form
[7] using the singular value decomposition (SVD). The main drawback is that
the computation of a factorization requires a complete measurement matrix. In
structure from motion this means that every point has to be visible in every
image, something that rarely occurs in practice due to occlusions and track-
ing failures. In case there are missing entries and/or outliers the optimization
problem is substantially more difficult.

The issue of outliers has received a lot of attention lately. In [8,9] the more
robust L1-norm is considered. These methods build on the so called Wiberg
algorithm [10] which jointly optimizes a product UV T of two fixed size U and V
matrices. As a consequence the quality of the result is dependent on initialization.
Another approach [11,3,12] tackles the problem of missing data by replacing the
rank constraint with the weaker but convex nuclear norm penalty and solves

min
X

μ‖X‖∗ + ‖W � (X −M)‖2F , (1)

1 This work has been funded by the Swedish Research Council (grant no. 2012-4213)
and the Crafoord Foundation.

X.-C. Tai et al. (Eds.): EMMCVPR 2015, LNCS 8932, pp. 1–14, 2015.
c© Springer International Publishing Switzerland 2015



2 V. Larsson and C. Olsson

where Wij = 0 if the entry is missing and 1 otherwise. This approach is convex
and therefore independent of initialization. In addition it can be shown that if
the locations of the missing entries are random the approach gives the best low
rank approximation [11]. The typical patterns of missing data in structure from
motion still pose a problem for these approaches.

The motivation for using the nuclear norm in (1) is that it is the convex
envelope of the rank function on the set {X ;σmax(X) ≤ 1}. The constraint
σmax(X) ≤ 1 is however artificial and not present in (1). In [13] it is shown that
the so called localized rank function

f(X) = μ rank(X) + ‖X −X0‖2F , (2)

has the convex envelope

f∗∗(X) =

n∑
i=1

(
μ− [

√
μ− σi(X)]

2
+

)
+ ‖X −X0‖2F . (3)

Note that the regularizer in (3) itself is not convex. The second term, enables a
proportionally smaller penalty for large singular values, without losing convexity,
giving a tighter convex envelope in the neighborhood of X0. In fact, in contrast
to the nuclear norm heuristic, minimizing (3) gives the same result as solving
(2) with SVD. The advantage of using (3) is that it is convex and therefore can
be combined with other convex constraints and functions. In [13] the missing
data problem is solved by minimizing (3) on complete sub-blocks and enforcing
agreement on the overlaps via linear constraints.

The formulation in [13] consists of a trade-of between matrix rank and data
fit. In many cases it is of interest to search for a matrix of known fixed rank.
For example for rigid structure from motion the measurement matrix is known
to be of rank 4 (or 3 if the translation can be eliminated) [6]. In such cases
the approach of solving (3) on sub-blocks requires determining an appropriate
weight μ for each sub-block that gives the correct rank. In this paper we show
that we can incorporate such knowledge by replacing (2) with

fg(X) = g(rank(X)) + ‖X −X0‖2. (4)

In particular we are interested in the case where

g(rank(X)) = μmax(r0, rank(X)), (5)

but our theory applies to a larger class of problems as well. The only requirement
that we make is that g is a non-decreasing convex function.

The reason for considering (5) is that in case we know the rank of the sought
matrix we can simply let μ be large thus avoiding iteration over the parameters
which is done in [13]. Consequently our approach is essentially parameter free.
The max term also effectively reduces bias towards low rank solutions like the
zero solution that are often uninteresting, giving a tighter convex relaxation.
Our main contribution is the computation of the convex envelope of (4) and its
proximal operator. While the formulation does not admit closed form solutions
we give simple and fast algorithms for evaluations. In addition we present a way
of strengthening the convex envelopes using a trust-region formulation.
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Notation. Throughout the paper we use σi(X), i = 1, ..., n to denote the ith
singular value of a matrix X . Here n denotes the number of singular values and
for notational convenience we will also define σ0(X) =∞ and σn+1(X) = 0. The
vector of all singular values is denoted σ(X). With some abuse of notation we
write the SVD ofX as U diag(σ(X))V T . For ease of notation we do not explicitly
indicate the dependence of U and V on X . The scalar product is defined as
〈X,Y 〉 = tr(XTY ), where tr is the trace function, and the Frobenius norm
‖X‖F =

√
〈X,X〉 =

√∑n
i=1 σ

2
i (X). Truncation at zero is denoted [a]+, that is,

[a]+ = 0 if a < 0 and a otherwise.

2 The Convex Envelope

In this section we compute the envelope of (4). We will assume that the function
g can be written

g(k) =

{
g0 if k = 0

g0 +
∑k

i=1 gi otherwise
, (6)

where the sequence gi is non-negative and non-decreasing for 1 ≤ i ≤ n. It is easy
to see that this is possible if g is convex and non decreasing on R. Furthermore,
we will assume that g0 = 0 since subtracting a constant from the objective
function does not affect the minimizers (and only subtracts a constant from the
convex envelope).

We will follow the approach of [13] which computes the bi-conjugate of (2) to
find the convex envelope. In contrast to (2), we will not be able to find a closed
form solution for the convex envelope of (4). Instead our approach will be to
isolate a small set of singular value configurations that can possibly maximize
the conjugate function. By numerically searching this solution set we are able to
efficiently evaluate the convex envelope and compute its proximal operator.

2.1 The Conjugate Function

The convex envelope can be found by computing the second Fenchel conjugate
f∗∗
g = (f∗

g )
∗, where f∗

g is defined as

f∗
g (Y ) = sup

X
〈X,Y 〉 − fg(X). (7)

The calculations for the first conjugate roughly follows those of [13] and we only
give the result here. We get that the first conjugate is given by

f∗
g (Y ) = −

n∑
i=1

min

(
gi, σ

2
i

(
X0 +

Y

2

))
− 1

2
‖X0‖2F +

∥∥∥∥X0 +
Y

2

∥∥∥∥2
F

. (8)

2.2 Evaluation of the Bi-conjugate

By completing squares and changing variables we get the bi-conjugate

f∗∗
g (X) = Rg(X) + ‖X −X0‖2F , (9)
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where

Rg(X) = max
Z

(
n∑

i=1

min
(
gi, σ

2
i (Z)

)
− ‖Z −X‖2F

)
. (10)

The next step in determining the convex envelope is to find the maximizing Z
in (10). We first note that using von Neumann’s trace theorem we can reduce
the problem to a search over the singular values of Z. The norm term fulfills

−‖Z −X‖2F ≤ −‖Z‖2F + 2

n∑
i=1

σi(Z)σi(X)− ‖X‖2F , (11)

with equality if Z and X have the same U and V in their singular value decom-
positions. Since the sum in (10) does not depend on U or V the optimal Z has
to be of the form Z = U diag(σ(Z))V T if X = U diag(σ(X))V T . This reduces
the maximization in (10) to

max
σ(Z)

(
n∑

i=1

min
(
gi, σ

2
i (Z)

)
−

n∑
i=1

(σi(Z)− σi(X))2

)
. (12)

Note that the elements of σ(Z) have to fulfill σ1(Z) ≥ σ2(Z) ≥ ... ≥ σn(Z) since
these are singular values.

Properties of the Optimal σ(Z). To limit the search space for maximization
over σ(Z) we will next derive some properties of the maximizer. Considering each
singular value σk(Z) separately they should solve a program of the type

maxs min(gk, s
2)− (s− σk(X))2 (13)

s.t. σk+1(Z) ≤ s ≤ σk−1(Z) (14)

Note that for k = 1 there is no upper bound on s and for k = n there is no positive
lower bound since we use the convention that σ0(Z) =∞ and σn+1(Z) = 0. We
first consider the unconstrained objective function. This function is the point
wise minimum of the two concave functions gk− (s−σk(X))2 (for s ≥ √gk) and
s2 − (s − σk(X))2 = 2sσk(X) − σ2

k(X). The function is concave and attains its
optimum in s = σk(X) if σk(X) ≥ √gk and in s =

√
gk otherwise (see Figure 1).

In case σk(X) = 0 the optimum is not unique. For simplicity we will assume that
σk(X) > 0 in what follows. The solution we create will still be valid if σk(X) = 0
but might not be unique. Let sk be the individual unconstrained optimizers of
(13), i.e.

sk = max(
√
gk, σk(X)). (15)

Note that this sequence is decreasing when σk(X) is larger than
√
gk. We choose

k0 such that sk0 is the smallest value in the sequence sk.
We now consider the constrained problem (13)-(14). Since σk+1(Z) ≤ σk−1(Z)

we see that the optimization over σk(Z) can be limited to three choices

σk(Z) =

⎧⎨⎩
sk if σk+1(Z) ≤ sk ≤ σk−1(Z)

σk−1(Z) if σk−1(Z) < sk
σk+1(Z) if sk < σk+1(Z)

. (16)
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Fig. 1. The objective function in (13) for σk(X) ≤ √
gk and σk(X) ≥ √

gk

Lemma 1. If Z is an optimal solution to (12) then there is a k ≤ k0 such that

σi(Z) = si, if i < k, (17)

σi(Z) = σk(Z), if k ≤ i ≤ k0. (18)

Proof. Using induction we first prove the recursion

σi(Z) = max(si, σi+1(Z)) for i ≤ k0. (19)

For i = 1 we see from (16) that s1 is the optimal choice if s1 > σ2(Z) oth-
erwise σ2(Z) is optimal. Therefore σ1(Z) = max(s1, σ2(Z)). Next assume that
σi−1(Z) = max(si−1, σi(Z)) for some i ≤ k0. Then

σi−1(Z) ≥ si−1 ≥ si, (20)

therefore we can ignore the second case in (16), which proves the recursion (19).
To prove the lemma assume σk(Z) 
= sk for some k ≤ k0. From (19) it follows

that
σk(Z) = σk+1(Z) > sk. (21)

But sk is decreasing for k ≤ k0 which implies that σk+1(Z) > sk+1. By repeating
the argument it follows that

σk(Z) = σk+1(Z) = σk+2(Z) = ... = σk0 (Z). (22)

��

Lemma 2. If Z is an optimal solution to (12) then

σi(Z) = σi+1(Z), if i ≥ k0. (23)

Proof. Consider σi(Z) for some i ≥ k0. If σi(Z) > si it must have been bounded
from below in (16), i.e. σi(Z) = σi+1(Z). If instead σi(Z) ≤ si we have σi+1(Z) ≤
σi(Z) ≤ si ≤ si+1. Then similarly σi+1(Z) is bounded from above in (16) which
implies σi+1(Z) = σi(Z).

��
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Algorithm. We now summarize the properties derived in the previous section
into an algorithm. Since we do not know which value the k of Lemma 1 will
take the algorithm essentially consists of looping over k and testing the obtained
solutions for feasibility. Furthermore the operations in each iteration are fast so
that in practice the search for k is dominated by other steps such as computation
of the singular value decomposition of X .

From the previous section it follows that the optimal solutions σ(Z) must
have the form

σi(Z) =

{
σi(X) i ≤ k

s i > k
, (24)

for some k ≤ k0 and s ≤ σk(X). We can find the optimal k and s by considering
the following optimization problem

max
k≤k0

max
s

k∑
i=1

gi +

n∑
i=k+1

min(s2, gi)−
n∑

i=k+1

(s− σi(X))2. (25)

For a fixed k < k0 it follows from Lemma 1 that s∗ = σk+1(Z) must satisfy

σk+1(X) ≤ σk+1(Z) ≤ σk(Z) = σk(X). (26)

Thus for each k < k0 we only need to consider s in the interval [σk+1(X), σk(X)].
Since gi are increasing we can further divide this interval into subintervals. We let
Il = [

√
gkl
,
√
gkl+1], where

√
gkl

, l = 1, ...,m−1 is the subsequence with terms in
the (open) interval (σk+1(X), σk(X)). Furthermore, we let I0 = [σk+1(X),

√
gk1 ]

and Im = [
√
gkm , σk(X)]. Note that on each of these subintervals the objective

function can be written as a concave quadratic function

fk
l (s) =

∑
gi≤gkl

gi +
∑

gi>gkl

s2 −
n∑

i=k+1

(s− σi(X))2, s ∈ Il (27)

We can therefore rewrite the inner optimization in (25) as the piecewise
smooth problem

max
0≤l≤m

max
s∈Il

fk
l (s). (28)

The optimum must lie at either a feasible stationary point of fk
l or at one of

the boundaries of Il for some l. To find the optimal s we can simply enumerate
all the possibilities and choose the maximizing one. Since each

√
gi only lies in

one of the intervals [σk+1(X), σk(X)] we only need to consider each gi once.
This makes the number of possible solutions depend linearly on the number of
singular values.

The steps of the method are summarized in Algorithm 1.
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Data: X, g
Result: σ(Z∗)
for k = 0 : k0 do

Compute s∗ and l∗ from (28);

if fk
l∗(s

∗) > fopt then
σi(Z

∗) := σi(X), ∀i < k;
σi(Z

∗) := s∗, ∀i ≥ k;

fopt := fk
l∗(s

∗);
end

end

Algorithm 1: Finding maximizing Z for (10)

2.3 The Proximal Operator of f∗∗
g

In order to optimize the convex envelope f∗∗
g (X) efficiently we need to be able

to compute its proximal operator

proxf∗∗
g
(M) = argmin

X
f∗∗
g (X) + ρ‖X −M‖2F . (29)

The approach we will take is similar to how we evaluate f∗∗
g (X) itself but will

require looping over two variables instead of one. The key observation is that
switching the order of the minimization overX with maximization over Z enables
us to characterize optimal solutions similarly to Section 2.2. 2 We therefore solve

max
Z

min
X

n∑
i=1

min(gi, σ
2
i (Z))− ‖X − Z‖2F + ‖X −X0‖2F + ρ‖X −M‖2F . (30)

The inner minimization in X is a simple least squares problem. By completing
squares one sees that the optimal X is given by

X = M +
X0 − Z

ρ
. (31)

Inserting into (30) we get after some manipulations

max
Z

n∑
i=1

min(gi, σ
2
i (Z))−

ρ+ 1

ρ
‖Z − Y ‖2F + C, (32)

where C is a constant that does not depend on Z and

Y =
X0 + ρM

1 + ρ
. (33)

2 If ρ > 0 the objective function is closed, proper convex-concave, continuous and
the optimization can be restricted to a compact set. Switching optimization order is
therefore justified by the existence of a saddle point, see [14].
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Therefore we see that the singular value σk(Z) must solve the problem

maxs min(gi, s
2)− ρ+ 1

ρ
(s− σk(Y ))2 (34)

s.t. σk+1(Z) ≤ s ≤ σk−1(Z). (35)

The objective function (34) is the pointwise minimum of the two quadratic
strictly (assuming ρ > 0) concave functions,

q1(s) = gi −
ρ+ 1

ρ
(s− σk(Y ))2, q2(s) = s2 − ρ+ 1

ρ
(s− σk(Y ))2. (36)

The objective function is equal to q1(s) for s ≥ √gk and q2(s) otherwise. The
functions q1 and q2 attain their maximum values at s = σk(Y ) and s = (ρ +
1)σk(Y ) respectively. Note that since (ρ+1)σk(Y ) > σk(Y ) at most one of these
can be feasible. It can also happen that neither is feasible, i.e. σk(Y ) ≤ √gk ≤
(ρ+1)σk(Y ). In this case the optimal s =

√
gk. Figure 2 illustrates the shape of

the objective function in the three possible cases.
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gkσk(Y ) (ρ+ 1)σk(Y )
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Fig. 2. The objective function in (34) for left: (ρ + 1)σk(Y ) ≤ √
gk, middle: σk(Y ) ≤√

gk and (ρ+ 1)σk(Y ) ≥ √
gk and right: σk(Y ) ≥ √

gk

Let sk be the individual unconstrained maximizers of (34), i.e.

sk =

⎧⎨⎩
σk(Y ) if σk(Y ) ≥ √gk√

gk if σk(Y ) ≤ √gk ≤ (ρ+ 1)σk(Y )
(ρ+ 1)σk(Y ) if (1 + ρ)σk(Y ) ≤ √gk

. (37)

Lemma 3. If Z is optimal in (32) then there is k1 and k2 such that

σi(Z) = si, if i < k1 (38)

σi(Z) = s∗, if k1 ≤ i ≤ k2 (39)

σi(Z) = si, if i > k2, (40)

where s∗ solves

maxs

k2∑
i=k1

min(gi, s
2)− ρ+ 1

ρ
(s− σi(Y ))2 (41)

s.t. σk2+1(Z) ≤ s ≤ σk1−1(Z). (42)
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Proof. By construction there will exist p, q ∈ N with p ≤ q such that si is;
decreasing for 1 ≤ i ≤ p, increasing for p ≤ i ≤ q and decreasing for q ≤ i ≤ n.
For 1 ≤ i ≤ q we are in the same situation as in Lemma 1 and Lemma 2 with
k0 = p.

Consider now instead i ≥ q. We will show that

σi(Z) = min(si, σi−1(Z)) for i ≥ q. (43)

It is clear from (16) that this holds for i = n. We continue using induction by
assuming σi+1(Z) = min(si+1, σi(Z)) holds. Then

σi+1(Z) ≤ si+1 ≤ si, (44)

since si are decreasing for i ≥ q. This means that for σi(Z) we can ignore the
third case in (16). Thus it follows that σi(Z) = min(si, σi−1(Z)). So (43) holds
for all i ≥ q.

Now assume that for some i ≥ q we have σi(Z) 
= si. By (43) we must have
that

σi(Z) = σi−1(Z) < si ≤ si−1. (45)

By repeating the argument we get

σi(Z) = σi−1(Z) = σi−2(Z) = ... = σq(Z), (46)

and the result follows. ��

Algorithm. The properties listed in Lemma 3 allows us to find the optimal Z
by searching over the two parameters k1 and k2. The goal is to find all sequences
σi(Z) of the type given in the lemma and determine which one gives the best
objective value. For fixed k1 and k2 the problem in (41) is a piecewise smooth
problem similar to (13) which we can solve in the same way by considering
the feasible stationary points as well as the boundaries. Note that for feasible
solutions we must have 1 ≤ k1 ≤ p and q ≤ k2 ≤ n. We outline the steps in
Algorithm 2.

3 Block Decomposition with ADMM

Next we consider the problem of missing data. The approach we take here follows
[13] and we only give a very brief account of it here for completeness. The idea
is to try to enforce low rank of sub-blocks of the matrix where no measurements
are missing using our convex relaxation. We seek to minimize the non-convex
function

f(X) =

K∑
i=1

g(rank(Pi(X)) + ‖Pi(X)− Pi(M)‖2F , (47)

by replacing it with the convex relaxation

fR(X) =

K∑
i=1

Rg(Pi(X)) + ‖Pi(X)− Pi(M)‖2F . (48)
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Data: X0, ρ, μ,M
Result: Set of possible solutions S
S := ∅ ;
Define p, q as in proof of Lemma 3;
if si is decreasing with i then

S := {si};
return;

else
for k1 = 1 : p do

for k2 = q : n do
Compute s∗ from (41) and form σ(Z) as in Lemma 3;
if σi(Z) is decreasing with i then

S := S ∪ {σ(Z)};
end

end

end

end

Algorithm 2: Finding maximizing Z for the proximal operator (32)

Here the operator Pi extracts elements corresponding to sub-block i. We do
not explicitly penalize the rank of X , but instead accomplish this via the rank
penalization of the sub-matrices.

To optimize (48) we use ADMM [15]. For each block Pi(X) we introduce a
separate set of variables Xi and enforce consistency via the linear constraints
Xi − Pi(X) = 0. We formulate an augmented Lagrangian of (48) as

K∑
i=1

(
Rg(Xi) + ‖Xi − Pi(M)‖2F + ρ‖Xi − Pi(X) + Λi‖2F − ρ‖Λi‖2F

)
. (49)

At each iteration t of ADMM we solve the subproblems

Xt+1
i = argmin

Xi

Rg(Xi) + ‖Xi − Pi(M)‖2F + ρ‖Xi − Pi(X
t) + Λt

i‖2F , (50)

for i = 1, ...,K and

Xt+1 = argmin
X

K∑
i=1

ρ‖Xt+1
i − Pi(X) + Λt

i‖2F . (51)

Here Λt
i, i = 1, ...,K are the scaled dual variables whose updates at iteration

t are given by Λt+1
i = Λt

i + Xt+1
i − Pi(X

t+1). The first problem (50) can be
solved using the proximal operator derived in the previous section. The second
subproblem (51) is a separable least squares problem with closed form solution.

3.1 Extending the Solution

To extend the solution beyond the blocks we employ a nullspace matching scheme
which has previously been used in [16] and [17]. The goal is find a rank r fac-
torization of the full solution X = UV T given the solution on the blocks. Each



Convex Envelopes for Low Rank Approximation 11

block Pk(X) can be factorized as Pk(X) = UkV
T
k . Then Pk(U) 3 must lie in the

column space of Uk or equivalently it must be orthogonal to the complement,
i.e. (U⊥

k )TPk(U) = 0. We can also write this as

AkU = [ 0 (U⊥
k )T 0 ] U = 0. (52)

Collecting these into matrix, AU = 0, we can find U by minimizing ||AU ||. Since
the scale of U is arbitrary we can consider this as a homogeneous least squares
problem which can be solved using SVD. For known U we can simply find V by
minimizing ||W � (M − UV T )||.

4 Stronger Relaxations Using a Trust Region Formulation

In case of very large noise levels the regularizer Rg may not be strong enough
to enforce low rank of the solution. In this section we present an approach to
strengthen it by restricting the algorithm to a local search close to a current
solution estimate Xk. We consider minimization of

g(rank(X)) + ‖X −X0‖2F + λ‖X −Xk‖2F (53)

The third term can be thought of as a restriction of the step-length of X to
a region where our convex relaxation is accurate. By completing squares the
expression above can be written

(1 + λ)

(
1

1 + λ
g(rank(X)) +

∥∥∥∥X − X0 + λXk

1 + λ

∥∥∥∥2
F

+ C

)
, (54)

where C is a constant that depends on λ,X0 and Xk. Therefore we find that the
convex envelope of (53) is

(1 + λ)R g
1+λ

(X) + ‖X −X0‖2F + λ‖X −Xk‖2F . (55)

It can be shown that the term (1+λ)R g
1+λ

(X)→ g(rank(X)) when λ→∞, that

is, we have point wise convergence. Figure 3 shows a one-dimensional version of
(1 + λ)R g

1+λ
with g(k) = k for varying λ.

Our trust region approach consists of two steps. First we minimize (55) with
respect to X . Then we update Xk and repeat the process. Note that at any fix
point X = Xk we have a (possibly local) solution to

min
X

(1 + λ)R g
1+λ

(X) + ‖X −X0‖2F . (56)

In practice we make the Xk update at each step in the ADMM algorithm in-
stead of running the ADMM until convergence before updating Xk. This greatly
increases speed of convergence.

3 Here Pk(U) denotes the rows corresponding to block k.
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Fig. 3. The regularizer r(σ) = 1− [1−
√
1 + λσ]2+ for different λ

5 Implementation and Experiments

In the experiments we focus our attention to the function g(k) = μmax(r0, k).
This choice allows us to penalizes a rank higher than r0 while not being biased
towards lower rank solutions.

5.1 Comparison to [13]

We first compare the performance of the envelope of [13] and our convex re-
laxation (CR) in the block decomposition approach (48). We consider the same
three image sequences (book, hand and banner) which was used in [13]. Since
we are looking for fixed rank solutions we simply choose our weight μ to be suf-
ficiently large. This makes the approach essentially parameter free. In contrast
[13] iterates over weights to find a correct rank solution. The difficulty of find-
ing the optimal parameters is heavily depending on the amount of noise in the
data. For problems with noisy data and many large blocks (such as the banner
sequence) this may be computationally infeasible. We also compare to the trust
region based iterative method (TR) described in section 4.

Figure 4 displays the singular values of a single block in the solutions for
the three image sequences. Note the logarithmic scale. The methods perform
very similarly for the book and hand sequence. This is due to these sequences
having low levels of noise and the problem instance being small enough for it to
be feasible to iteratively find a good μ. The reconstruction error for the three
sequences can be seen in Table 1.

Table 1. The errors ||W � (X −M)||F after extending the solution beyond the blocks
as described in Section 3.1 (which ensures the correct rank)

[13] CR TR

book 1.2731 1.2733 1.2678
hand 0.91386 0.9141 0.91508
banner 3950.2 3373.2 3373.2
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Fig. 4. Singular values for a single block in the book, hand and banner sequence. The
vertical blue line indicates the desired rank.

5.2 Comparison to Non-convex Methods

Next we compare the performance of the proposed method to three state-of-the-
art non-convex methods; OptSpace [18], Truncated Nuclear Norm Regularization
[19] and Damped Wiberg-L2 [20].

The measurement matrix was chosen as M = UV T + N where U, V ∈
R100×5, N ∈ R100×100 and Uij , Vij ∼ N (0, 1) and Nij ∼ N (0, σ). If σ is small
then M will be approximately rank 5. The observation matrix W consisted of
overlapping blocks along the diagonal and had 72% missing data. To the left in
Figure 5 we can see the average of ||W � (X −M)||F over 100 instances. The
performance of the proposed method and Damped Wiberg-L2 is very similar on
this data. To illustrate the benefit of the proposed method we also performed
an experiment on another family of instances generated by replacing the fifth
column of V by 1031. This essentially makesM have one very dominant singular
value which is common in applications. The averaged result for these instances
can be seen to the right in Figure 5.
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Fig. 5. Comparison with non-convex methods. Left: Initial experiment. (Note that the
errors for our approach and DWiberg-L2 are very similar). Right: Experiment with
adjusted row-mean.
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Abstract. In this work, we study the problems of computing spatially
continuous cuts, which has many important applications of image pro-
cessing and computer vision. We focus on the convex relaxed formula-
tions and investigate the corresponding flow-maximization based dual
formulations. We propose a series of novel continuous max-flow models
based on evaluating different constraints of flow excess, where the classi-
cal pre-flow and pseudo-flow models over graphs are re-discovered in the
continuous setting and re-interpreted in a new variational manner. We
propose a new generalized proximal method, which is based on a specific
entropic distance function, to compute the maximum flow. This leads to
new algorithms exploring flow-maximization and message-passing simul-
taneously. We show the proposed algorithms are superior to state of art
methods in terms of efficiency.

1 Introduction

Many problems in image processing and computer vision can be modeled and
formulated by the theory of Markov Random Fields (MRF) over graphs, in terms
of computing a maximum a posteriori probability (MAP) estimate, see [23] for
reference. Graph-cuts and message-passing, e.g. [5,4,30,31,19] are two main cat-
egories of efficient algorithms for the combinatorial optimization problem. How-
ever, graph-based methods suffer from visible grid bias, and reducing such bias
requires either adding more neighbors locally or considering high-order cliques,
which inevitably leads to a more intensive computation and memory cost.

On the other hand, variational methods can be applied to solve the same class
of optimization problems in the spatially continuous setting, while avoiding the
metrication errors generated by combinatorial algorithms. In particular, convex
relaxation methods [21,7,15,34,24,9,2,20] were recently developed by relaxing
the discrete constraint to some convex set, which leads great advantages both in
theory and numerics: the convex optimization theory is well-established, efficient
and reliable solvers are available with provable convergence properties, and also
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easy to handle large-scale computation and speed up by GPUs. In this regard,
the proximal method plays the central element to build up a wide range of
efficient first-order methods, see e.g. [11,10] for references.

1.1 Contributions

In this work, we propose a series of max-flow dual formulations, to compute
minimum cuts in the continuous setting. In contrast to previous work on contin-
uous max-flow [33,1], we formulate the flow excess constraints in different ways,
which directly lead to new generalized proximal algorithms, where the Bregman
divergence acts as the distance measurement for updating the labeling func-
tion. We propose primal-dual algorithmic schemes which combine both a flow-
maximizing step and message-passing step in one unified numerical framework.
This reveals close connections between the proposed flow-maximization meth-
ods and the classical methods, where ’cuts’ over the graphs can be computed by
maximizing flows or propagating messages. Finally, we compare the proposed al-
gorithms with state-of-art continuous optimization methods: the Split-Bregman
algorithm [15], the primal-dual algorithm [10] and the max-flow algorithm in [33]
through experiments.

2 Revisit: Max-flow and Full-Flow Representation

Many discrete optimization problems in image processing and computer vision
can be formulated as finding the minimum cut over appropriate graphs, as first
observed by Greig et. al. [16]. The two most efficient combinatorial algorithms for
computing the minimum cut solve the dual max-flow problem over the graph,
and are called the Ford Fulkerson algorithm [13] and push-relabel algorithm
[14]. More recently, continuous max-flow algorithms [33] have been proposed
that are able to solve isotropic versions of the min-cut / max flow problem by
convex optimization techniques. Both the continuous max-flow algorithm in [33]
and the Ford Fulkerson algorithm solve a full-flow representation of the max-
flow problem, in contrast to the pseudo-flow representation in the push-relabel
algorithm and the algorithms in this paper.

2.1 Discrete Min-cut and Max-flow Models

A graph G is a pair (V , E) consisting of a vertex set V and an edge set E ⊂ V×V .
We let C(v, w) ≥ 0 denote the cost / weight / capacity on edge (v, w) and use the
convention C(v, w) = 0 if there is no edge (v, w). In the min-cut and max-flow
problems, there are two special vertices in addition to V , a source vertix s and
a sink vetrex t. The min-cut problem is to find a partition of V ∪ s ∪ t into two
sets Vs and Vt, such that s ∈ Vs and t ∈ Vt with smallest cost possible, i.e. to
solve

min
Vs,Vt

∑
v∈Vs,w∈Vt

C(v, w), s.t. s ∈ Vs, t ∈ Vt, Vs ∪ Vt = V, Vs ∩ Vt = ∅ (1)
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It is well known that the min-cut problem (1) is dual to the maximum flow
problem over the same graph. We let ps(v) denote the flow on the edge (s, v)
and Cs(v) denote its capacity C(s, v). Similarly, pt(v) and Ct(v) are the flow and
capacity on (v, t) and p(v, w) the flow on (v, w). The maximum flow problem can
be formulated as follows

max
ps

∑
v∈V

ps(v) (2)

s.t. |p(v, w)| ≤ C(v, w) ps(v) ≤ Cs(v) pt(v) ≤ Ct(v) ∀v, w ∈ V (3)∑
(w,v) : w∈V

p((w, v)) − ps(v) + pt(v) = 0 ∀v ∈ V (4)

where the objective (2) is to push the maximum amount of flow from the source
to the sink under flow capacity constraints (3). Additionally, the flow conserva-
tion constraint (4) should hold, which states that the total amount of incoming
flow should be balanced by the amount of outgoing flow at each vertex.

The classical Ford-Fulkerson algorithm [13] solves the max-flow problem (2)
by successively pushing flow from s to t along non-saturated paths, while main-
taining the flow conservation constraint (4) each iteration. In this paper, we also
call (2) subject to (3) and (4), the full-flow representation of max-flow.

2.2 Continuous Min-cut and Max-flow Models

In the spatially continuous setting, the min-cut problem (1), especially for image
segmentation, can be similarly formulated in terms of finding the two segments
S,Ω\S ⊂ Ω such that

min
S

∫
S

Cs(x) dx +

∫
Ω\S

Ct dx+

∫
∂S

C(s) ds , (5)

where Cs(x) and Ct(x) are pointwise costs for assigning any x to the foreground
S and background Ω\S respectively. As proposed by [21,7], this problem can be
solved globally and exactly by solving the continuous min-cut as follows

min
u(x)∈[0,1]

E(u) =

∫
Ω

(1 − u)Cs dx+

∫
Ω

uCt dx+

∫
Ω

C(x) |∇u|2 dx , (6)

which results in a convex optimization problem. Further studies can be found in
[22,15] etc.

Continuous Max-flow: Full-Flow Representation. An interesting study
on the continuous min-cut model (6) was proposed in [32,33], which built up the
duality connection between (6) to the so-called continuous max-flow model. It
directly presents the analogue to the well-known duality beetween max-flow and
min-cut [12] discussed above.

As the discrete graph configuration shown above, given the continuous image
domain Ω and two terminals, link the source s and the sink t to each pixel x ∈ Ω
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respectively; define three flow fields around the pixel x: ps(x) ∈ R directed from
the source s to x, pt(x) ∈ R directed from x to the sink t and the spatial flow
field p(x) ∈ R2 around x within the image plain.

By the above spatially continuous setting, the continuous max-flow model
tries to maximize the total flow passing from the source s:

max
ps,pt,p

∫
Ω

ps dx (7)

subject to the three flow capacity constraints:

ps(x) ≤ Cs(x) , pt(x) ≤ Ct(x) , |p(x)|2 ≤ C(x) , ∀x ∈ Ω . (8)

and the flow conservation condition:

pt(x) − ps(x) + div p(x) = 0 , ∀x ∈ Ω . (9)

The authors [32,33] proved that the continuous max-flow model (7) is equivalent
to the continuous min-cut problem (6) in terms of primal and dual, where the
labeling function u(x) just works as a multiplier to the linear flow conservation
condition (9). To see this, the equivalent primal-dual model

min
u

max
ps,pt,p

∫
Ω

ps dx + 〈u, pt − ps + div p〉 , (10)

subject to the flow capacity constraints (8) was considered. The flow conservation
condition (9) played a central role in constructing the duality between the max-
flow and min-cut models: (7) and (6).

We call (7) the full-flow representation of the continuous max-flow model
in this paper. In the following sections, we will discuss the other two continu-
ous max-flow models which are distinct from the full-flow representation model
(7). We will see that different continuous max-flow models can be constructed
through variants of flow preservation (9), while the full-flow representation model
(7) just corresponds to the balance of in-flow and out-flow.

To compute a solution to (6) or (7), discretization of the domain Ω is neces-
sary. One fundamental difference to the discrete max-flow and min-cut models
is the rotationally invariant 2-norm in (6) and (8), which corresponds to the
Euclidean perimeter in (5). In this paper we assume a general discretized image
domain and differential operators when deriving the duality theory, but we keep
the continuous notation∇, div,

∫
to ease readability. To derive rigorous existence

proofs for infinite dimensional spaces is quite involved and out of the scope of
this conference paper.

3 Continuous Max-flow Models Represented by Pre-flows
and Pseudo-flows

In this section, we propose and study two other continuous max-flow models in
terms of the representations of pre-flows and pseudo-flows. Both models are dual
to the continuous min-cut model (6).
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3.1 Continuous Max-flow: Pre-flow Representation

Now we partially optimize the max-flow model (7) by maximizing over the source
flow ps(x) ≤ Cs(x). By simple computation, we can prove that

Proposition 1. The continuous max-flow model (7) is equivalent to the follow-
ing flow-maximization problem:

max
pt,p

∫
Ω

pt dx (11)

s.t. Cs(x)− div p(x)− pt(x) ≥ 0 , ∀x ∈ Ω (12)

pt(x) ≤ Ct(x) , |p(x)| ≤ C(x) , ∀x ∈ Ω. (13)

Proof. We first observe that the max-flow model (7) can be equivalently formu-
lated as

max
pt,p

∫
Ω

pt dx (14)

s.t. ps(x) + div p(x)− pt(x) = 0 , ∀x ∈ Ω (15)

ps(x) ≤ Cs(x) , pt(x) ≤ Ct(x) , |p(x)| ≤ C(x) , ∀x ∈ Ω. (16)

This just comes from the fact that the total source flow
∫
ps dx equals to the total

sink flow
∫
pt dx, due to the flow balance condition (9). Changing the positive

direction of flows ps and pt in (7), we then have (14).
Therefore, by the same procedures as in [32], optimizing (14) over the con-

straint ps(x) ≤ Cs(x), we see that (14) can be equivalently expressed as

min
u≥0

max
pt,p

∫
Ω

pt dx + 〈u,Cs + div p− pt〉 (17)

s.t. pt(x) ≤ Ct(x) , |p(x)| ≤ C(x) ∀x ∈ Ω.

where u is a Lagrange multiplier for Cs +div p− pt ≥ 0. Clearly, (17) is just the
primal-dual formulation of (11). Hence, we have:

(7) ⇐⇒ (14) ⇐⇒ (17) ⇐⇒ (11) .

The equivalence between (7) and (11) is proved.

Obviously, (11) gives another continuous max-flow model which tries to maxi-
mize the total flow streaming out to the sink t while keeping the maximum source
flow ps(x) = Cs(x). We see that the excess of flows at each pixel is no longer
constrained to vanish, but to be non-negative (12), i.e. the flow conservation
condition (9) is not kept.

Moreover, we will show that (11) results in a novel max-flow algorithm, in
the continuous context, which has similar steps as the well-known push-relabel
algorithm proposed in [14]. With this perspective, the constraint (12) recovers
the pre-flow condition. We call (11) the pre-flow representation of the continuous
max-flow model. In view of (17), we have that
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Proposition 2. The pre-flow based max-flow model (11) is dual to the contin-
uous min-cut problem (6), and also equivalent to its primal-dual model

min
u≥0

max
pt,p

∫
Ω

pt dx + 〈u,Cs + div p− pt〉 (18)

s.t. pt(x) ≤ Ct(x) , |p(x)| ≤ C(x) ∀x ∈ Ω.

The proof follows by (17).

3.2 Continuous Max-flow: Pseudo-flow Representation

By maximizing the continuous max-flow model (7) over the flows ps(x) ≤ Cs(x)
and pt(x) ≤ Ct(x) simultaneously, we have that

Proposition 3. The continuous max-flow model (7) is equivalent to the follow-
ing flow-maximization problem:

max
|p(x)|≤C(x)

∫
Ω

min(0, Ct + div p− Cs) dx , (19)

The flow excess at each point (Ct + div p − Cs)(x) 
= 0 is neither balanced nor
non-negative, i.e. the pseudo-flow condition. Problem (19) is also related to the
dual formulation of multi-region partitions proposed in [2].

Proof. Following the same steps in [32], optimizing the continuous max-flow
model (7) over ps(x) ≤ Cs(x) and pt(x) ≤ Ct(x) results in

min
u(x)∈[0,1]

max
|p(x)| ≤C(x)

∫
Ω

u (Ct + div p− Cs) dx (20)

The min and max operators are interchangeable, by the minimax theorem.
Then, by minimizing the above functional over u(x) ∈ [0, 1] at each pixel x ∈ Ω,
we obtain the optimization problem (19).

The formulation (19) emphasizes: first, the flow excess at each pixel x is neither
balanced nor non-negative (pre-flow condition); actually, the flow excess can be
either positive or negative; second, the object is to find the spatial flow field p(x)
which maximizes the total negative flow excess, i.e. (Ct + div p − Cs)(x) ≤ 0.
Observe that we find the third equivalent max-flow model in terms of the pseudo-
flow condition, proposed in [17]. In this regard, we call (19) the pseudo-flow
representation of the continuous max-flow model. In the following sections, we
propose a new algorithm associated to the peudo-flow based max-flow model
(19).

4 Entropic Proximal Max-flow Algorithms

In this section, we consider the generalized proximal method to solve the newly
proposed continuous max-flow models: (11) and (19) which are dual to the con-
tinuous min-cut problem (6). We will see that such proximal method based on
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the generalized entropic distance functions leads to the generalized augmented
Lagrangian method [28,18], and builds up a class of novel continuous max-flow
algorithms which explores flow-maximization joint with message-passing simul-
taneously.

We first introduce the entropic proximal method using the generalized Breg-
man distance as its mapping kernel. Then we build up the new entropic-proximal
based algorithms to the proposed continuous max-flow models (11) and (19). We
also discuss their essential links to the push-relabel and pseudoflow algorithms
over graphs.

4.1 Proximal Methods with Bregman Distance

Given the closed proper convex function f(x), the proximal mapping of any
point z is defined by [26]:

proxf (z) = (I + λ∂f)−1(z) = argmin
x

{ 1

2λ
‖x− z‖2 + f(x)

}
. (21)

Then the classical proximal method [8] to minimize the function f(x) can for-
mulated as computing a sequence of proximal mappings iteratively:

xk+1 = (I + λ∂f)−1(xk) = argmin
x

{ 1

2λk

∥∥x− xk
∥∥2 + f(x)

}
. (22)

Convergence properties of the proximal method was studied in [27]. Its close
connections to the augmented Lagrangian method were demonstrated in [25,28]
by computing the iterative proximal mappings of the dual sequence.

The proximal method is one of important elements to design most the efficient
first-order primal-dual algorithms [10]. One of its interesting extensions is to
incorporate the generalized Bregman distance or divergence functions Dg(x, y)
[6] as the proximity measurement, which results in the entropic proximal method:

xk+1 = argmin
x

{
Dg(x, x

k) + f(x)
}

(23)

where
Dg(x, y) = g(x)− g(y)− 〈∂g, x− y〉 , (24)

g(x) is a differentiable and strictly convex function.
Clearly, the Bregman distance (24) provides a quite general conception on

the proximity measurement: for example, the function g(x) = 1
2 ‖·‖

2 just gives

the common squared Euclidean distance 1
2 ‖x− y‖2; the entropy function for the

vector x := (x1, . . . , xn) ∈ (R+)n

g(x) =
∑
i

(xi log xi − xi)

results in the generalizedKullback-Leibler divergence of two vectors x, y ∈ (R+)n

such that

Dg(x, y) =

n∑
i=1

(
xi log(xi/yi)− xi + yi

)
, (25)

see also [3] for the definition of more Bregman distances.
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Generalized Augmented Lagrangian Method. [28] showed the entropic
proximal method (23) over the dual sequence just amounts to the generalized
augmented Lagrangian method, which incorporates the classical augmented La-
grangian method as its special case with the quadratic Euclidean distance.

Now we consider the generalized optimization problem associated to the con-
tinuous max-flow models:

min
u∈Cu

max
p∈Cp

L(p, u) = f(p) + 〈u,G(p)〉 (26)

where Cu and Cp are the constraint sets on u and p respectively.
Let the dual function D(u) be

D(u) := max
p∈Cp

L(p, u) .

As in [28], the entropic proximal method (23) to the dual function D(u) gives
the generalized augmented Lagrangian method

uk+1 = arg min
u∈Cu

{
cDg(u, u

k) +D(u)
}

where c is some positive constant. Therefore, we have the corresponding aug-
mented Lagrangian function as follows:

Lc(p, v) = min
u∈Cu

{
L(p, u) + cDg(u, v)

}
.

The generalized augmented Lagrangian method contains the following two
steps at each iteration:

pk+1 = arg max
p∈Cp

Lck(p, u
k) , (27)

uk+1 = arg min
u∈Cu

〈
u,G(pk+1)

〉
+ ckDg(u, u

k) . (28)

It is important to notice that the function Lc(x, v) is the smoothed approxi-
mation to L(x, u), hence better properties in numerics. In particular, when the
quadratic L2-norm is used as the distance function, then the classical augmented
Lagrangian method is recovered.

In the following part, we propose and discuss a class of new continuous max-
flow algorithms based on the entropic proximal method, especially the general-
ized augmented Lagrangian method. We will also show its close connections to
the existing max-flow algorithms over graphs.

4.2 Entropic Proximal Max-flow Algorithm to (11)

For the pre-flow represented max-flow model (11), its corresponding primal-dual
model (18) gives the common Lagrangian function:

max
pt,p

min
u(x)≥0

L(pt, p, u) :=

∫
Ω

pt dx + 〈u,Cs + div p− pt〉 (29)

s.t. pt(x) ≤ Ct(x) , |p(x)| ≤ C(x) ∀x ∈ Ω.
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In this work, we consider the Kullback-Leibler distance (25) as the proximal
function, i.e.

D(u, v) =

∫
Ω

{
u(x) log(u(x)/v(x)) − u(x) + v(x)

}
dx .

This results in the augmented Lagrangian function

Lc(pt, p, v) = min
u(x)≥0

L(pt, p, u) + cD(u, v) (30)

From the first order optimality condition, we obtain the explicit expression for
the minimizer u = v exp

[
− (Cs + div p− pt)/c

]
for v ≥ 0, which leads to

Lc(pt, p, v) =

∫
Ω

{
pt − c

[
v exp

{
− Cs + div p− pt

c

}
+ 1

]}
dx , v ≥ 0. (31)

In view of the step (27) of the generalized augmented Lagrangian method, the
augmented Lagrangian function (30) can then be expressed, in terms of uk at
each iteration, as:

Lc(pt, p, u
k) =

∫
Ω

{
pt − c

[
uk exp

{
− Cs + div p− pt

c

}
+ 1

]}
dx dx , uk ≥ 0.

By means of (30), we have the new continuous max-flow algorithm corresponding
to the pre-flow model (11):

Algorithm 4. Initialize u0(x) ∈ (0, 1) ∀x ∈ Ω, p0t , p
0. For k=0,1,... until con-

vergence, perform the following two steps (flow maximization and message pass-
ing):

– Maximize over the flows pt and p by

pk+1
t := arg max

pt(x)≤Ct(x)
Lc(pt, p

k, uk) ; (32)

pk+1 := arg max
|p(x)|≤C(x)

Lc(p
k
t , p, u

k) ; (33)

where the step (32) can be solved explicitly through simple variational com-
putation and the step (33) can be solved iteratively, as shown below.

– Update the message function u by

uk+1 := uk exp
{
− Cs + div pk+1 − pk+1

t

c

}
(34)

For the flow-maximization step (32), it’s easy to solve the given maximization
problem explicitly by

pk+1
t = min

{
Cs + div pk − c log uk, Ct

}
, (35)
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since ∂Lc(pt,p
k,uk)

∂pt
= 0 if pt = Cs + div pk − c log uk.

For the flow-maximization step (33), we apply one iteration of the projected-
gradient method

pk+1 = Proj| · |≤C(x)

{
pk + γ∇

(
uk exp

{
− Cs + div pk − pkt

c

})}
, (36)

where γ > 0 is the step-size.

4.3 Entropic Proximal Max-flow Algorithm to (19)

Likewise, for the pseudo-flow represented max-flow model (19), its corresponding
primal-dual formulation (20) expresses the common Lagrangian function

min
u(x)∈[0,1]

max
|p(x)| ≤C(x)

L(p, u) :=

∫
Ω

u (Ct + div p− Cs) dx .

Consider the function u(x) ∈ [0, 1], we apply the following Bregman distance
as the proximal function

D(u, v) =

∫
Ω

{
u log(

u

v
) + (1 − u) log(

1− u

1− v
)
}
dx .

The resulting augmented Lagrangian function is

Lc(p, v) = min
u(x)∈[0,1]

L(p, u) + cD(u, v) (37)

= −c
∫
Ω

log
{
(1− v) + v exp

(
− Ct + div p− Cs

c

)}
dx , (38)

where c > 0 works as the step-size.
Considering exp(0/c) = 1, it is easy to see that

Lc(p, v) = −c
∫
Ω

log
{
(1− v) exp(

0

c
) + v exp

(
− Ct + div p− Cs

c

)}
dx .

As c→ 0+, we have the limit function [29]

lim
c→0+

Lc(p, v) =

∫
Ω

c min(0, Ct + div p− Cs) dx

which is just the original pseudo-flow represented max-flow model (19). To this
end, we see that the augmented Lagrangian function (37) just works as the
smoothed version of the energy function (19).

Following the step (27) of the generalized augmented Lagrangian method, the
augmented Lagrangian function (37) can then be expressed, in terms of uk at
each iteration, as:

Lc(p, u
k) = −c

∫
Ω

log
{
(1− uk) + uk exp

(
− Ct + div p− Cs

c

)}
dx .

By means of (30), we have the new continuous max-flow algorithm to its
pseudo-flow represented model (19):
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Algorithm 5. Initialize u0(x) ∈ (0, 1) ∀x ∈ Ω, p0t , p
0. For k=0,1,... until con-

vergence, perform the following two steps (flow maximization and message pass-
ing):

– Maximize over the flows p by

pk+1 := arg max
|p(x)|≤C(x)

Lc(p, u
k) ; (39)

which can be solved approximately by one iteration of projected gradient.

– Update the message function u by

uk+1 :=
uk exp(−Gk+1/c)

1− uk + uk exp(−Gk+1/c)
, (40)

where for ∀x ∈ Ω

Gk+1(x) = (Ct + div pk+1 − Cs)(x) .

Algorithm 5 is similar to the smoothing dual algorithm proposed in [2] for mul-
tiphase partition problems. One crucial difference is that algorithm 5 solves the
problem exactly without any smoothing approximation.

(a) (b) (c) (d)

Fig. 1. Segmentation with data term (41): (b) result on image (a) with C(x) = α = 0.5,
c1 = 0.15 and c2 = 0.6; (d) result on image (c) with C(x) = α = 0.25, c1 = 0.16 and
c2 = 0.5

5 Experiments

This section validates the convergence of the algorithms 4 and 5 on some image
segmentation examples and comparisons are given to the previous max-flow al-
gorithm [33], the Split-Bregman algorithm [15] and the primal-dual algorithm
[10]. They are regarded as the state of the art algorithms for solving the convex
partition problem. We choose the fidelity term

Cs(x) = |I(x) − c1|2, Ct(x) = |I(x)− c2|2, (41)
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where I is the input image and c1 and c2 are two scalar gray values approximating
the mean image intensities within each region. Results are shown in Figure 1.
Figure 2 shows plots of the relative energy error

|E(uk)− E(u∗)|
E(u∗)

where E is the energy (6), uk is the solution at iteration k and u∗ is the ground
truth solution computed by 100000 iterations for each method. It can be observed
that the two new variants of the max-flow algorithm converge at a similar rate
as the old max-flow algorithm on example figure 1 (a), while on figure 1 (c)
algorithm 5 is faster and algorithm 5 is slower. In both images all the max-
flow algorithms converge considerably faster that the Split-Bregman and primal-
dual algorithm. We speculate the reason for the faster convergence is that the
max-flow algorithms avoids the projection step for incorporating the constraint
u(x) ∈ [0, 1], ∀x ∈ Ω. The CPU times are

(a) (b)

Fig. 2. Convergence of relative energy error |E(uk)−E(u∗)|
E(u∗) for iterations k = 1, ..., 800:

(a) image 1(a); (b) image 1(c). The function u∗ is the ground truth solutions computed
by 100000 iterations of each method. Red is the new max-flow algorithm 5, magneta
is new max-flow algorithm 4, blue is the old max-flow algorithm [33], green is Split-
Bregman [15] and black is the primal-dual algorithm [10].

6 Conclusions

In this paper, we propose a series of novel flow-maximization models dual to the
continuous min-cut problem by formulating the flow excess conditions in differ-
ent ways. In theory, the proposed dual formulations discover and re-interpret
the conventional pre-flow and pseudo-flow models over discrete graphs in the
spatially continuous setting under a new variational perspective. In addition,
the new dual formulations, i.e. the continuous max-flow models, directly lead
to new generalized proximal dual optimization based algorithms, which embed
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both flow maximization and message-passing in a single algorithmic framework.
Moreover, we show the proposed algorithms numerically outperform the state-
of-art methods by experiments.
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Abstract. Direct linear programming (LP) solution to binary sub-modular MRF
energy has recently been promoted because i) the solution is identical to the so-
lution by graph cuts, ii) LP is naturally parallelizable and iii) it is flexible in in-
corporation of constraints. Nevertheless, the conventional LP relaxation for MRF
incurs a large number of auxiliary variables and constraints, resulting in expensive
consumption in memory and computation. In this work, we propose to approxi-
mate the solution of the conventional LP at a significantly smaller complexity by
solving a novel compact LP model. We further establish a tightenable approxima-
tion bound between our LP model and the conventional LP model. Our LP model
is obtained by linearizing a novel l1-norm energy derived from the Cholesky fac-
torization of the quadratic form of the MRF energy, and it contains significantly
fewer variables and constraints compared to the conventional LP relaxation. We
also show that our model is closely related to the total-variation minimization
problem, and it can therefore preserve the discontinuities in the labels. The latter
property is very desirable in most of the imaging and vision applications. In the
experiments, our method achieves similarly satisfactory results compared to the
conventional LP, yet it requires significantly smaller computation cost.

1 Introduction

Markov Random Field (MRF) has become one of the most popular models for funda-
mental computer vision tasks. In an MRF model, an MRF energy is minimized in order
to find an optimal solution to the task. Minimizing general MRF energies is NP-hard
[1], while certain types of the MRF energies can be minimized efficiently and exactly
by using, for example, graph cuts [2].

Conventional LP Relaxation. Recently, Bhusnurmath and Taylor [6] promoted the
direct continuous linear programming (LP) solution to the binary sub-modular MRF.
The LP model was obtained by linearizing the l1-norm pairwise potential in the bi-
nary sub-modular MRF using auxiliary variables. Bhusnurmath and Taylor proved that
the solution to the continuous LP model is identical to the graph-cuts solution given the
same binary MRF energy. Their work was motivated by the fact that LP algorithms, e.g.
the interior point method, can be easily parallelized. This is natural, since the interior
point method is based on elementary matrix operations. The GPU version of all com-
mon matrix operations can easily be found in many toolboxes, such as MATLAB and
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Input Conventional QP [3,4] Our LP
LP [5]

Fig. 1. Conventional LP is computationally demanding but it preserves discontinuity of the labels
at the true boundary. QP [3,4] has much lower computational complexity but often produces over-
smooth labels at the boundary. Our method provides a solution sharper at object boundary at an
affordable computational cost.

CULA1. On the contrary, the parallel implementation of graph cuts is very challenging,
on which consensus has not yet been reached [7,8]. Furthermore, incorporating linear
constraints into an LP model is straightforward, while this is not the case for graph cuts.
Lempitsky et al. [9] also showed linear constraints can be useful to segmentation.

Motivations. As reported in [5,6], the conventional LP relaxation contains a large
number of auxiliary variables and constraints, which would cause large consumption
in memory and computation. Consequently, the computation upon shared with multiple
computing units may still remain expensive.

In contrast to the LP model, the computational complexity of the quadratic program-
ming (QP) relaxation for the binary sub-modular MRF energy proposed in [3,4] is much
smaller than that required by the conventional LP model. This is largely because no aux-
iliary variables or constraints are required in the model. However, the QP model may
produce over-smooth ambiguous labels at the desired discontinuities in the solution.
For instance in object segmentation in images, this may cause incorrect segmentation.
As shown in Fig. 1, the solution by conventional LP is clean and more desirable than
that from QP.

Our Contributions. To gain high quality solution similar to that from LP, at a compu-
tational cost similar to that of QP models, we propose a novel LP relaxation for binary
sub-modular MRF to leverage both the compactness of the QP relaxation and the edge
preservability of LP relaxation. Our LP relaxation is obtained by linearizing a novel l1-
norm minimization problem that is derived from the Cholesky factorization of the QP
relaxation model. We further establish a tightenable approximation bound between our
LP relaxation and the conventional LP relaxation. The complexity of the resultant al-
gorithm for solving the proposed LP problem is of the same order of the corresponding
QP model, and it is significantly smaller than that of the conventional LP. In addition,
the derived novel l1-norm minimization is strongly related to the total-variation min-
imization problem according to our theoretical analysis. Thus, it is able to preserve
discontinuities in labels.

1 http://www.culatools.com/

http://www.culatools.com/
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2 Background

2.1 The Binary Submodular MRF Model in Computer Vision

In the generic MRF model for the labeling problems in computer vision, the labels in
the image are formulated as an Markov random field, and the corresponding distribution
is in the form of Gibbs distribution according to the HammersleyClifford theorem. The
labeling task is therefore cast into an Maximum a posterior (MAP) problem. Due to the
Gibbs distribution form, the MAP problem becomes an energy minimization problem,
and the energy is often written in the following standard form:

E(x) =
∑
p∈P

Dp(xp) +
∑

{p,q}∈N
Vpq(xp, xq),

where x is a label vector corresponding to all elements in the image, Dp(·) is known as
the unary term, or data fidelity term, and Vpq(·, ·) is a pairwise potential.

Due to the fundamental works by Boykov, Olga and Zabih [2] and Komogorov and
Zabih [10], it is well-known that the above energy, especially for binary label, can be
solved exactly by graph cuts, as long as E is submodular. One of the most successful
applications of this formulation is object segmentation [11].

More recently, approximate solution to general MRF models attracts much attention
from the energy minimization community [12,13]. We argue that a more generalizable
approach for solving the binary submodular problem can make approximations to gen-
eral problems easier.

2.2 Conventional LP Relaxation for Binary Submodular MRF

In the binary submodular MRF energy, the unary term is often formulated as a term
linear in the label vector. The complexity of the optimization for the MRF model only
lies in the pairwise potential. The pairwise potential can be written as:

Vpq(xp, xq) = wpq|xp − xq|o, (1)

where p and q are the indices of image elements, E is a neighborhood system and o is
either 1 or 2 in this paper. We will elaborate on the choice of the value of o in this paper.
In the context of segmentation, wpq can be defined as wpq = 1

1+{‖Ip−Iq‖2} + c, where
Ip, Iq are the image values at the p- and q-th pixel/superpixel in the image. The first
component in wpq encourages discontinuous labeling at image edges, and the constant
c that imposes smoothness to the resultant boundary. The constant weight in the latter
part is related to the curve-shortening flow in the active contour models [14,15].

It has been pointed out that when o = 1, the minimization of the binary submodular
MRF energy with the above pairwise potential term in Eq. (1) is equivalent to an l1-
norm minimization problem in [6].

Formally, we may rewrite the total pairwise potential as∑
{p,q}∈E

wpq |xp − xq| =
∑
i,j

we
ij |xi − xj | = ‖diag(we)Dx‖l1 , (2)
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where we
ij = wpq if i = p, j = q, and we

ij = 0 if {i, j} /∈ E , [diag(we)]N
2×N2

is the
diagonal matrix composed of we, where we is the vectorized {we

ij} . D is an incidence
matrix defined as follow:

[D]N
2×N

ij =

{
1, if j = (i mod N)
−1, if (i mod N, j) ∈ E (3)

The LP model of the full MRF energy can be rewritten as follows:

min
x

vTx+ 1Ty

s.t. − y ≤ diag(we)Dx ≤ y

0 ≤ x ≤ 1, 0 ≤ y.

(4)

where v is the weights in unary term, and the variable xpq is an auxiliary variable
induced by the linearization process. It is further shown in [5] and [6] that the l1-norm
minimization problem can be solved by LP, and it is proven in [6] that the solution to
the LP problem in [6] converges to either 0 or 1 without any external prodding.

A drawback of this LP formulation is that it requires a large number of auxiliary
variables and constraints. Suppose that there are N elements to be labeled, then there
can be as many as N +N ×N variables and N +2N ×N linear constraints, which is
the worst case. The computational complexity of LP is known as O(n3) [16] where n
is the number of variables, and when n is fixed the complexity is O(m) [17] where m
is the number of constraints. As a result, the computational complexity for solving the
above LP problem is O(N6), and the computational cost can be high, which has been
witnessed in [5].

2.3 Comparing l1-Norm Minimization with l2-Norm Minimization

Two decades ago, it was observed that the minimization of square of image gradients
will result in blurry edges. This leads to the invention of the celebrated ROF total-
variation minimization model for denoising [18]. It has already been pointed out that
the l1-norm minimization in our context corresponds to total variation minimization
[19]. Likewise, the l2-norm minimization corresponds to the problem of minimization
of square of gradients in the context of denoising.

In segmentation, the solution from l2-norm minimization may also become over-
smooth and therefore ambiguous at the boundaries. This can affect the accuracy of
boundary locating in the segmentation, as shown in Fig. 1. Accordingly, we also expect
the solution of our model to contain sharp discontinuities, and the l1-norm minimization
seems promising.

3 A Compact LP Relaxation for Binary Submodular MRF

3.1 Deriving a Compact LP Relaxation via Cholesky Factorization of l2-Norm

Since the conventional l1-norm minimization is computationally expensive, we propose
to seek alternatives to it. In the following, we will show that a new l1-norm, which is
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induced by factorizing the l2-norm form of the boundary term in Eq.(1), can lead to a
more compact LP problem with significantly less computational complexity compared
to the original LP problem.

First, we rewrite the l2-norm in quadratic form:∑
i,j

we
ij

2(xi − xj)
2 = xTW̃x (5)

where W̃ = diag(w̄) + diag(ŵ)− 2W, w̄i =
∑

j w
e
ij , ŵj =

∑
iw

e
ij and W = [we

ij ].
The full derivation of the above is included in the Appendix.

A quadratic continuous optimization problem is NP-hard if the matrix in the quadratic
term is non-definite, i.e. the optimization is non-convex. In fact, having even single neg-
ative eigenvalue leads to NP-hard problem [20]. Regarding the convexity of the formu-
lation, we have the following proposition.

Proposition 1. The matrix W̃ in Eq.(5) is positive semi-definite.

The proof is included in the Appendix. Since W̃ is positive semi-definite, the formula-
tion is convex. It is also possible to ensure the matrix to be positive definite by adding
a small positive value to the diagonals. In addition to the well-posedness of this for-
mulation, we show that positive definiteness of the matrix W̃ allows the problem to be
linearized.

Our linear relaxation is based on the following facts:

xTW̃x = xTUTUx = ‖Ux‖2l2 ,

where U is an upper triangular matrix of the same dimension of W̃ and W̃ = UTU
is known as the Cholesky factorization/decomposition. The squared matrix U is unique
for symmetric positive definite matrix W̃. The Cholesky factorization of it generally
uses n3/3 FLOPs, where n is the rank of the matrix, and it is instantaneous for very
large matrix on modern processors.

We observe that the matrix [diag(we)D] operating on x in the conventional l1-norm
can also be thought of as being factorized from the matrix W̃. To see this, we can
rewrite Eq. (1) as follows:

‖diag(we)Dx‖2l2 = xT [diag(we)D]T [diag(we)D]x = xTW̃x.

This motivates us to have the following new reformulation of the pairwise potential
as:

E2
l+1
(x) = ‖Ux‖l1 (6)

Here, we call the above norm to be minimized as the Cholesky l1-norm.
A major difference between the conventional l1-norm and our Cholesky l1-norm is

that the linear operator U has much smaller dimension than [diag(w)D], giving rise to
a LP relaxation with significantly fewer variables and constraints.

min
x,δ+

vTx+ 1Tδ+

s. t. : − δ+ � Ux � δ+

0 ≤ xi ≤ 1, δ+i ≥ 0,

(7)
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where the first term is the same as in Eq. (4) and δ+ is an additional vector of auxiliary
variables used for the linear relaxation and its dimension is N , as the same as x. Essen-
tially, Eq.(7) tries to reduce the bounding values of Ux. The above LP is obtained by
applying the equivalence between l1-norm minimization and linear programming.

Compared with the conventional LP model in Eq.(4), our model in Eq.(7) has a
significantly smaller number of variables and constraints. Specifically, for the image
containing N superpixels, there are N + N × N variables and N + 2N × N linear
constraints for the worst case in the original model [6,5], whereas there are only 2N
variables and 2N linear constraints in our model. The complexity of our model is there-
fore O(N3) which is the same as QP according to Eq.(5). The number of variables and
constraints does not change when increasing the number of edges in the graph. We will
compare the performance of the two formulations experimentally. The matrices were
all set to sparse mode in the implementation.

3.2 Mathematical Relationship between l1-Norm and Cholesky l1-Norm

In this subsection, we are particularly interested in how tightly the proposed Cholesky
l1-norm can be related to the conventional l1-norm energy, and we are interested in the
interested in the relationship between the Cholesky l+1 -norm and total variation.

Let us consider the reduced QR factorization of the rectangular matrix [diag(w)D]

in the l1-norm boundary term, i.e. [diag(w)D] = QN2×NRN×N , where Q is an or-
thogonal matrix, such that QTQ = IN×N , and R is an upper triangular matrix. The
following fact will relate our Cholesky l1 relaxation to the original l1-norm minimiza-
tion.

Theorem 1. The upper triangular matrix U in the Cholesky l1-norm minimization
model in Eq.(6) is identical to the upper triangular matrix R in the QR factorization of
[diag(w)D] in the l1-norm minimization model in Eq.(2)

The proof of this theorem is presented in the Appendix. This theorem implies several
additional relationships between the l1-norm and the Cholesky l1-norm.

Corollary 1. Ux = QTQUx = QT [diag(w)Dx].

The above equality implies that the Cholesky l1-norm is the l1-norm of the linearly
transformed weighted gradients, and the transformation matrix is Q. The weighted vari-
ations in x are projected on the subspace of Q before calculating the total. Hence, we
may also view our Cholesky l1-norm as a total subspace-variation. This observation
implies that the quasi-total variation minimization may share the discontinuity preserv-
ability of the total variation minimization.

Besides, Theorem 1 offers us a stronger relationship between the two formulations
in terms of a tight equivalence-of-norm bound.

Theorem 2. The difference between Cholesky l1-norm and l1-norm satisfies the follow-
ing inequalities:

(‖diag(w)Dx‖/‖Q‖) ≤ ‖Ux‖ ≤ ‖QT‖‖diag(w)Dx‖

where the norms are all l1-norm, and they are either the l1-norm of vector or the induced
l1-norm of matrix.
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The proof of this theorem is included in the appendix.

Remarks. From the above, we can observe that the difference between the Cholesky l1-
norm and the l1-norm is determined by ‖Q‖l1 and ‖QT ‖l1 which are variable and hope-
fully reducible by selecting a proper W̃ at the beginning. For example, the weight ma-
trix W̃ may be chosen such that its unique Cholesky factorQ gives ‖Q‖l1 ≈ ‖QT‖l1 ≈
1, without any loss of accuracy in modeling. This means the above bound is tightenable
in principle. This result encourages us to further explore the useful subspaces in the
Cholesky l1-norm to approximate the total variation norm.

4 Experiments

In the experiment, we will evaluate our method in the context of interactive object
segmentation, in which the unary term encodes the seeding information [11] and the
pairwise potential is defined as under Eq. (1). We compare our method with the original
graph cuts (GC) [2], the l1-norm minimization via LP [5,6], and the l2-norm minimiza-
tion by QP [3,4].

4.1 Experimental Settings

Data and Performance Measure. To evaluate the performance gain in terms of compu-
tation. We perform the conventional LP and our proposed LP on GPU for synthetic data.
In this experiment, we randomly generate the model parameters and apply the interior
point method to solving the LP.

To evaluate the effectiveness of our method, we evaluate on a clownfish dataset and
the Oxford interactive segmentation benchmark dataset [21]. Ground truth results and
user input seeds on objects and backgrounds are provided in both datasets. The perfor-
mances of the methods measured by the overlapping ratio between the labeled region

and the ground truth object region: Γ =
size

(
Result Region∩True Region

)
size

(
Result Region∪True Region

) .
Implementation Issues. We adopt superpixelization [22] as a preprocessing to reduce
the computational cost. The number of superpixels is around 800 for all test images. We
choose the average color of each superpixel to represent the superpixel. We implement
all the methods in MATLAB. We used the linprog function and quadprog func-
tion. We use default option settings of the functions. The graph cuts is based on Michael
Rubinstein’s implementation2. There are some parameters in the model for segmenta-
tion. We used c = 0.00001, λ = 10 in all the experiments. The threshold value for
converting the continuous labels to binary labels is empirically chosen as 0.08. We also
experiment on the effect of differnt threshold values. We perform the experiments on a
PC with Intel Core i5-450M (2.4GHz) processor and 4GB memory.

2 http://www.mathworks.com/matlabcentral/fileexchange/21310-
maxflow

http://www.mathworks.com/matlabcentral/fileexchange/21310-maxflow
http://www.mathworks.com/matlabcentral/fileexchange/21310-maxflow
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4.2 Results

The Clownfish Dataset. We first present and analyze the experimental results for the
clownfish dataset which contains 62 images. See Fig. 2 for example segmentation re-
sults and input seeds. In addition to the manually drawn background seeds, we include
the points at the image border as the background seeds in this experiment. As expected,
we can see that the results of the conventional LP is very similar to those by graph cuts.
A characteristic of them is that they suffer from the small-cut problem. In contrast, QP
may produce larger regions due to the possible diffusion of labels at the boundaries.
Thus, the resultant regions can be larger than the desired region. Our method compro-
mises the two types of methods and the overall results may outperform the others, e.g.,
when LP suffers from small-cut problem and/or QP suffers from large-cut problem. We
also visualize the continuous labels of conventional LP, QP and our method in Fig. 3.
The solutions of LP are binary without thresholding, and the solutions of QP can be
over-smooth. The boundaries in the solutions of our LP are clearer than QP, and the so-
lutions are smoother than LP. Quantitative segmentation results of the clownfish dataset
are shown in Fig. 4. The results show that QP slightly outperforms the conventional LP
on this dataset, and our method slightly outperforms the others. From Table. 1, we can
see that the computational cost of our compact LP model is comparable to QP and re-
quires significantly less computational expenses compared to conventional LP. We also
note that there is some minor difference between the results by graph cuts and those by
conventional LP. We conjecture that the difference is a result of early termination of the
interior point method for solving the LP.
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Fig. 2. Example results of the seed-initialized interactive segmentation on clownfish dataset. The
results are shown as extracted image regions against the ground truth shape contours in purple.

The Oxford Dataset. We mainly evaluate our method on the Oxford dataset which con-
tains 151 images. The user input seeds provided in this dataset are generally insufficient
for producing a satisfactory segmentation. We adopt the robotuser [21] to simulate the
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Fig. 3. Example labels of segmentation results in Fig. 2

Fig. 4. Quantitative results on clownfish dataset

additional user interactions. By increasing the number of interactions, the segmentation
results can finally become satisfactory. The maximum number of user interactions is
set to 20 in our experiments. See Fig. 6 for example results. We can observe that GC
and LP performs quite alike, while QP may produce larger regions. In most of the sit-
uations our methods produce more accurate segmentation results than QP. We present
the solutions of QP and our method before thresholding in Fig. 7. The LP produces
binary labels as expected, the QP produces smooth labels near the object boundaries
and our method produces piecewise smooth labels with relatively clear discontinuities
at the boundaries. The quantitative results are shown as red boxes in Fig. 8(a).

To quantitatively reveal the effect of the discontinuity preservability of our method,
we further consider the robustness of the segmentation to threshold values. We hy-
pothesize that the continuous labels with clear discontinuities at the boundaries will be
robust to different threshold values. Therefore, we generate a vector of 100 threshold
values equally spaced in [0, 1] for the evaluation. We apply all these threshold values to
the continuous labels of QP and our method. Surprisingly, we observe that our method
overwhelmingly outperforms the QP for almost all the threshold values in the sense of
average overlapping ratio. See Fig. 8(b) for the plots of mean performance with standard
deviation.

Computational Costs. We propose to compare the computational costs for solving con-
ventional LP and our method using the same implementation of interior point method
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Fig. 5. Comparison of computational times on GPU. As a reference, in [6], the average computa-
tion time was 0.66 sec. for GC on CPU and the 0.76 sec. for LP on GPU.

on CPU and GPU. The GPU implementation is realized by simply using gpuarray
in MATLAB. We used small number of variables because MATLAB does not support
sparse matrix in GPU.The results are shown in Fig. 5. From the plot we can observe
that the computational cost of our method is almost unchanged but slightly oscillating
when increasing the number of variables.

The statistics of the computational costs for our experiment on Oxford dataset are
shown in Table 1. Very recently, a fast optimization approach has been proposed for
solving a similar segmentation model [23]. However, the computational cost of their
approach for 760 superpixels is 23.7 sec. on a machine with 2.7GHz Intel CPU.

Table 1. Comparison of computational costs

CPU-LP[6,5] CPU-QP [3,4] CPU-Our method
Worst-case complexity O(N6) O(N3) O(N3)

Average time (s) 72.35 1.13 12.9

5 Conclusion and Future Work

In this paper, we proposed a novel LP relaxation for the binary sub-modular MRF
model. Our LP relaxation contains significantly fewer variables and constraints com-
pared to the conventional LP. We also showed that our l1-norm minimization is tightly
related to the total variation minimization through mathematical analysis. Experimen-
tal results show that our method is significantly faster than the conventional LP, and it
uniformly outperforms QP when converting the continuous labels to binary labels. Our
model may be of use to other MRF models, e.g. the TV-MRF [24], as well as many
applications, such as shape estimation [25,26,27].
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Fig. 6. Comparison of segmentation performance on Oxford dataset. The upper images in each
row show the input images overlaid with input seeds. The lower images in each rows show ex-
tracted image regions against the ground truth shape contours in purple.
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Fig. 7. Continuous labels before thresholding from LP, QP and our method on example inputs in
Fig. 6.

(a) (b)

Fig. 8. Quantitative results of the experiments on Oxford dataset. a) Comparison of segmentation
accuracy. b) Comparison of QP and our LP for all threshold values.

A Appendix

A.1 Derivation of Eq. (5)

∑
ij

we
ij

2(x2
i + x2

j − 2xixj) =
∑
i

x2
i

∑
j

we
ij +

∑
j

x2
j

∑
i

we
ij − 2

∑
ij

we
ijxixj

=
∑
i

x2
i w̄i +

∑
j

x2
j ŵj − 2

∑
ij

we
ijxixj = xTW̃x

where W̃ = diag(w̄) + diag(ŵ)− 2W, W = [we
ij ].

A.2 Proof of Proposition 1

Proof. The definition of W̃ is as follows.

W̃ = diag(w̄) + diag(ŵ)− 2W
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where w̄j =
∑

k wjl =
∑

k wlj′ = ŵj′ , if j = j′. In short diag(w̄) = diag(ŵ). Note
that wjj′ = 0 for j = j′. Hence, we have the following.

W̃jj′ =

{
2w̄j , for j = j′

−2wjj′ , otherwise

Therefore, matrix W̃ is a symmetric diagonal dominant matrix, and the diagonal ele-
ments are nonnegative. Such matrix is a positive semi-definite matrix. ��

A.3 Proof of Theorem 1

Proof. Substituting [diag(w)D] = QN2×NRN×N into Eq. (2), we obtain the follow-
ing form of the boundary term.

Bl1(x) = ‖QRx‖l1

where we applied the QR factorization. The l2 relaxation of this form will lead to

Bl2(x) =
(
xTRTQTQRx

)1/2
=

(
xTRTRx

)1/2
= ‖Rx‖l2

The corresponding l+1 -norm minimization is therefore the following

Bl+1
(x) = ‖Rx‖l1 = ‖QRx‖l1

Note that the Cholesky decomposition is unique and R is upper-triangular. We can
conclude that U = R. ��

A.4 Proof of Theorem 2

Proof. We prove the left hand side first.

‖diag(we)Dx‖l1 = ‖QUx‖l1 ≤ ‖Q‖l1‖Ux‖l1

⇔ 1

‖Q‖l1
‖diag(we)Dx‖l1 ≤ ‖Ux‖l1

where we have replaced R with U. The right hand side is likewise.

‖Ux‖l1 = ‖QTQUx‖l1 ≤ ‖QT ‖l1‖QUx‖l1 = ‖QT‖l1‖diag(we)Dx‖l1 ,

which completes the proof. ��
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Abstract. The continuation method is a popular heuristic in computer
vision for nonconvex optimization. The idea is to start from a simpli-
fied problem and gradually deform it to the actual task while tracking
the solution. It was first used in computer vision under the name of
graduated nonconvexity. Since then, it has been utilized explicitly or im-
plicitly in various applications. In fact, state-of-the-art optical flow and
shape estimation rely on a form of continuation. Despite its empirical
success, there is little theoretical understanding of this method. This
work provides some novel insights into this technique. Specifically, there
are many ways to choose the initial problem and many ways to progres-
sively deform it to the original task. However, here we show that when
this process is constructed by Gaussian smoothing, it is optimal in a
specific sense. In fact, we prove that Gaussian smoothing emerges from
the best affine approximation to Vese’s nonlinear PDE. The latter PDE
evolves any function to its convex envelope, hence providing the optimal
convexification.

Keywords: Continuation Method, Diffusion Equation, Nonconvex Op-
timization, Vese’s PDE.

1 Introduction

Minimization of nonconvex energy functions arises frequently in computer vision.
Examples include image segmentation [49], image alignment [67], image comple-
tion [46], dictionary learning [44], part-based models [25], and optical flow [62].
Unfortunately, a severe limitation of nonconvex problems is that finding their
global minimum is generally intractable.

Some possible options for handling nonconvex tasks include1 local optimization
methods (e.g. gradient descent), convex surrogates, and the continuation method.
Each of these ideas has its ownmerit and is preferred in certain settings. For exam-
ple, local methods are useful when most local minima produce reasonably good
solutions; otherwise the algorithm may get stuck in poor local minima. Convex
surrogates are helpful when the nonconvexity of the task is mild, so that little
structure is lost by the convex approximation. For example, it has been observed

1 In this paper we only discuss deterministic schemes.
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that for face recognition problem, the nonconvex sparsity encouraging �0 norm
can be replaced by the convex �1 and yet produce impressive result [69]. Recently
[23] proposed an a surrogate construction with bounded discrepancy between the
solution of the convexified and original task.

The third idea is to utilize the continuation method. It solves a sequence of
subproblems, starting from a convex (hence easy) task and progressively chang-
ing it to the actual problem while tracing the solution. Such complexity pro-
gression is in contrast to convex surrogates that produce a one-shot relaxation.
Here, the solution of each subproblem guides solving the next one. This approach
is often useful when the nonconvexity of the problem is so severe that convex
surrogates cannot provide any meaningful approximation.

In this paper, we focus on optimization by the continuation method. The idea
has been known to the computer vision community for at least three decades.
This dates back to the works of Terzopoulos [63], Blake and Zisserman [6], and
Yuille [72,73,74,75,76]. Since then, this technique has been used with growing
interest to solve some difficult optimization problems. In particular, it is a key
component in several state-of-the-art solutions for computer vision and machine
learning problems as we discuss in Section 2.

Despite its long history and empirical success, there is little understanding
about the fundamental aspects of this method. For example, it is known that the
continuation method cannot always find the global minimizer of all nonconvex
tasks. In fact, the quality of the solution attained by this approach heavily
depends on the choice of the subproblems. However, there are endless choices for
the initial convex problem, and endless ways to progressively change it to the
original nonconvex task. Obviously, some of these choices should work better
than the others. However, to date, there is no known principle for preferring one
construction versus another.

For example, a possible way to construct the subproblem sequence is by
Gaussian smoothing [50,47]. The idea is to convolve the original nonconvex
function with an isotropic Gaussian kernel at various bandwidth values. This
generates a sequence of functions varying from a highly smoothed (large band-
width) to the actual nonconvex function (zero bandwidth). In fact, it can be
proved that under certain conditions, enough smoothing can lead to a convex
function [43]. The convexity implies that finding the minimizer of the smoothed
function is easy. This minimizer is used to initialize the next subproblem, with
slightly smaller bandwidth. The process repeats until reaching the last subprob-
lem, which is the actual task. Since this type of progression goes from low-
frequency toward fully detailed, it is also called coarse-to-fine optimization.

In this paper, we provide original insights into the choice of subproblems for
the continuationmethod. Specifically, we prove that constructing the subproblems
by Gaussian smoothing of the nonconvex function is optimal in a specific sense.
Recall that the continuation method starts from an already convex objective and
progressivelymaps it to the actual nonconvex function. Among infinite choices for
the initial convex task, the convex envelope of the nonconvex problem is (in many
senses) the best choice. Unfortunately, the convex envelope of an arbitrary function
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is nontrivial and generally expensive to compute. Vese has shown that the convex
envelope of a function can be generatedby an evolutionaryPDE [66]. However, this
PDE does not have an analytical solution. Our contribution is to prove that the
best affine approximation to Vese’s PDE results in the heat equation. The solution
of the latter is known; it is the Gaussian convolution of the nonconvex function.
Hence, Gaussian smoothing is the outcome of the best affine approximation of the
(nonlinear) convex envelope generating PDE.

2 Related Works

Here we review some remarkable works that rely on the concept of optimization
by the continuation method.

In computer vision, the early works around this concept were Blake and
Zisserman’s Graduated Non-Convexity (GNC) [6] as well as works by Terzopou-
los’ [63], both on surface reconstruction problems. Shortly afterward, Geiger and
Girosi [29] as well as Yuille [72] used similar concepts from a statistical physics
viewpoint. The latter method is known as Mean Field Annealing (MFA). Moti-
vated by problems in stereo and template matching, Yuille popularized MFA in
a series of works [30,72,73,74,75,76]. MFA is a deterministic variant of simulated
annealing2, where the stochastic behavior is approximated by the mean state.
This model starts from high temperature (smoother energy and hence fewer
extrema) and gradually cools down toward the desired optimization task.

Since then, the concept of optimization by the continuation method has been
successfully utilized in various vision applications such as image segmentation
[9], shape matching [64], image deblurring [8], image denoising [54,51], template
matching [22], pixel correspondence [40], active contours [18], Hough transform
[39], edge detection [78], early vision [5], robot navigation [52], and image mat-
ting [53]. In fact, many computer vision methods that rely on multiscale image
representation within the optimization loop are implicitly performing the con-
tinuation method, e.g. for image alignment [47].

The growing interest in this method within computer vision community has
made it one of the most popular solutions for the contemporary nonconvex min-
imization problems. Just within the past few years, it has been utilized for low-
rank matrix recovery [45], error correction [48], super resolution [19], photometric
stereo [70], image segmentation [35], face alignment [57], 3D surface estimation
[1], motion estimation in videos [61], optical flow [10,62], shape and illumination
recovery [2], and dense correspondence of images [36]. The last three are in fact
state of the art solutions for their associated problems.

Independently, the machine learning community has been using similar ideas
for optimization. Notably, Rose popularized the method of Deterministic An-
nealing (DA) for clustering problems [55]. This method starts from the max-
imum entropy solution (the simple task), and gradually reduces the entropy

2 There is some conceptual similarity between simulated annealing (SA) and some of
the continuation methods. However, SA is an MCMC method and is known for its
very slow convergence. The continuation methods studied here are deterministic and
converge much faster [7,40].
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to only leave the actual objective function. Variants of DA have been recently
used for learning occluding objects [20], object tracking [33], image deblurring
[41], clustering boolean data [26], graph clustering [56], unsupervised language
learning [60]. Chapelle has utilized continuation in various applications such
as semi-supervised learning [12,13,59], semi-supervised structured output [21],
multiple instance learning [28], and ranking [14]. Bengio argues that some recent
breakthroughs in the training of deep architectures [34,24], has been made by
algorithms that use some form of continuation for learning [4].

Other examples that utilize continuation for optimization are clustering [32],
graph matching [31,77,42], multiple instance learning [37], language modeling
[3], manifold sampling [58], and �0 norm minimization [65]. One of the most
interesting applications, however, has been recently introduced by [16,17]. The
goal is to find optimal parameters in computer programs. The authors define
a smoothing operator acting on programs to construct smooth interpretations.
They then seek the optimal parameters by starting from highly smoothed in-
terpretations and gradually reducing the smoothing level. The idea is further
extended to smoothing the space of proofs and seeking the optimal proof to a
problem by the continuation method [15].

Throughout this paper, we use x for scalars, x for vectors,X for matrices, and
X for sets. Here ‖x‖means ‖x‖2 and�means equality by definition.When a func-
tion is denoted as g(x; t), the gradient ∇, Hessian ∇2 and Laplacian Δ operators
are only applied to the vector x and not t. The convolution operator is denoted
by . The isotropic Gaussian kernel with standard deviation σ is shown by kσ,

kσ(x) �
1

(
√
2πσ)dim(x)

e−
‖x‖2
2σ2 .

3 Optimization by Continuation

Given an (possible nonconvex) objective function f : X → R, where X = Rn.
Consider an embedding of f into a family of functions g : X × T , where T �
[0,∞), with the following properties. First, g(x, 0) = f(x). Second, when t→∞,
then g(x, t) is strictly convex and has a unique minimizer (denoted by x∞).
Third, g(x, t) is continuously differentiable in x and t. Such embedding g is
sometimes called a homotopy, as it continuously transforms one function to
another.

Define the curve x(t) for t ≥ 0 as one with the following properties. First,
limt→∞ x(t) = x∞. Second, ∀t ≥ 0 ; ∇g

(
x(t), t

)
= 0. Third, x(t) is contin-

uous in t. This curve simply sweeps a specific stationary path of g originated
at x∞, as the parameter t progresses backward (See Figure 1). In general, such
curve neither needs to exist, nor needs to be unique. However, with some addi-
tional assumptions on g, it is possible to guarantee existence and uniqueness of
x(t), e.g. by Theorem 3 of [71].
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Fig. 1. Plots show g versus x for each fixed time t. The marble indicates the location
for x(t).

Algorithm 1. Algorithm for Optimization by the Continuation Method

1: Input: f : X → R, Sequence t0 > t1 > · · · > tm = 0.
2: x0 = global minimizer of g(x; t0).
3: for k = 1 to m do
4: xk = Local minimizer of g(x; tk), initialized at xk−1.
5: end for
6: Output: xm

In practice, the continuation method is realized as follows. First, x∞ is either
derived analytically3 or approximated numerically as argminx g(x; t) for large
enough t. The latter can use standard convex optimization tools as g(x; t) ap-
proaches a convex function in x for large t. Then, the stationary path x(t) is
numerically tracked until t = 0 (See Algorithm 1). As discussed in Section 2,
for a wide range of applications, the continuation solution x(0) often provides a
good local minimizer of f(x), if not the global minimizer.

4 Motivation for Gaussian Homotopy

There are some limited number of studies on very specific problems which guar-
antee the continuation method can discover the global minimum of the problem.
An example of this kind is the work by Yuille and Kosowsky [38] on assignment
problem. However, in general, there is no guarantee for the continuation method
to reach the global minimizer of f(x).

In fact, the quality of the solution attained by the continuation method de-
pends on the choice of the homotopy map g(x; t). It is therefore crucial to choose

3 For functions whose tails vanish fast enough, this point is simply the center of mass
of the function [43].
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g(x; t) in the most sensible way. Currently, there is no pointer in the literature
to justify one homotopy versus others. For example, Fua and Leclerc [27] use
g(x, t) = f(x) + txTAx, where A � O. Blake and Zisserman [6] utilize a task-
tailored polynomial map. Methods based on deterministic annealing use negative
entropy g(x, t) = f(x) + txT log(x) (applicable only to nonnegative variables
x) [55,56]. Nielson [50] and Mobahi [47] use Gaussian homotopy by convolving
f with the Gaussian kernel, i.e. g( . , t) = f  kt. When Gaussian homotopy is
used for optimization, it is sometimes called coarse-to-fine optimization4 .

In this section, we claim that Gaussian homotopy is optimal in a specific sense;
it solves the best affine approximation (around the origin of the function space,
i.e. the function f(x) = 0) to a nonlinear PDE that generates convex envelopes.
We will postpone the proof to the next section.

By definition, a homotopy for optimizing f(x) = g(x; 0) must continuously
convexify it to g(x,∞). Among all convex choices g(x,∞), the convex envelope
is the optimal convexifier of f in many senses. For example, it provides the best
(largest) possible convex underestimator of the f . Furthermore, geometrically,
the convex envelope is precisely the function whose epigraph coincides with the
convex hull of the epigraph of f .

The convex envelope, however, is often unknown itself and its computation
is generally very expensive. Interestingly, Vese [66] has characterized an elegant
PDE that if its initial condition is set to f(x), it evolves toward the convex
envelope of f and reaches there in the limit t → ∞. More precisely, this is a
nonlinear PDE that evolves a function v(x; t) for v : X × T as the following,

∂

∂t
v =

√
1 + ‖∇v‖2 min{0, λmin(∇

2v)} , s.t. v( . ; 0) = f( . ) , (1)

where λmin(∇2v) is the smallest (sign considered) eigenvalue of the Hessian of
v. Intuitively, this PDE acts like a conditional diffusion process. At any evolution
moment t, v(x; t) is spatially diffused at points x where v(x; t) is nonconvex and
is left as is at points x where v(x; t) is convex (nonconvexity and convexity of
v here are w.r.t. to the variable x). Consequently, throughout the evolution,
nonconvex structures diminish by diffusion while convex structures sustain.

Vese’s PDE involves the nonsmooth function min, which complicates its treat-
ment for the purpose of this paper5. Hence, we introduce the modified Vese’s
PDE by replacing min with a smooth approximation,

∂

∂t
u =

√
1 + ‖∇u‖2m

(
λ(∇2u)

)
, s.t. u( . ; 0) = f( . ) (2)

m
(
λ
)
�

∑n
k=1 λke

−λk
δ

1 +
∑n

k=1 e
−λk

δ

,

4 This is because moving from large to small t reveals coarse to fine structure of the
optimization landscape.

5 The difficulty arises later in Section 5, where we need to differentiate the r.h.s. of
(1), but min is not differentiable.
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t 0 1/8 3/8 9/8 27/8

Original

Modified

Linearized

Fig. 2. Evolution of the function x4+2x3−12x2−2x by Vese’s original PDE (1) (top),
versus its modified (middle) and linearized (3) (bottom) forms. Since the difference
between the original and modified version of Vese’s PDE is very subtle, in the middle
row the modified solution (magenta) is superimposed on the original solution (blue).
The modified version uses δ = 10 to make the the two visually distinct (with δ = 1
these plots already become indistinguishable). While all three evolutions convexify the
initial function, the original and modified Vese’s equations respectively generate the
perfect and close approximate to the convex envelope.

where δ > 0, and λ � (λ1, . . . , λn) is a n×1 vector. Observe that limδ→0+ m(λ)
= min{0, λ1, . . . , λn}. Hence, we can construct an arbitrarily close approximation
to min{0, λ1, . . . λn} by choosing a small enough δ > 0. Although Vese’s PDE
and its modified form are not identical, from practical viewpoint their difference
is often negligible (See Figure 2, the top and middle rows). Hence, we proceed
with the modified Vese’s PDE for our analysis in Section 5, solely for technical
reasons.

Neither the original nor the modified versions of Vese’s PDE can be solved
analytically due to their highly nonlinear nature. However, in Section 5 we will
prove that the best affine approximation of the modified Vese’s operator around
the origin of the function space (i.e. the function f(x) = 0) is the Laplace
operator, hence the following approximation (See Figure 2 for an illustrative
example),

∂

∂t
û =

1

n+ 1
Δû , û( . ; 0) = f( . ) . (3)

The resulted PDE (3) is essentially the heat equation [68] on the domain
X = Rn with the initial condition û(x, 0) = f(x). The solution of the heat
equation in (3) is known to have the following form,

û(x; t) = (
n+ 1

4πt
)

n
2 [f(.)  e−

‖ . ‖2 (n+1)
4t ] (x) .
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The function û can be reparameterized in its scale parameter via σ2 = 2t
n+1 .

This only changes the speed of progression, which is not crucial for our conclusion
here. Hence, the homotopy can be expressed as the convolution of f with the
Gaussian kernel kσ as below,

ĥ(x;σ) = [f  kσ] (x) .

This approximation buys us a significant benefit in practice, for the following
reason. While the nonlinear operator appearing in the original PDE (1) or its
modified version (2) does not allow for a closed form solution, the linear PDE (3)
makes this possible, provided that the integral for the Gaussian convolution of f
in (4) has a closed form expression. The latter is true for some important classes
of functions including polynomials and Gaussian bumps. Both of these classes
are rich enough to represent almost any function, respectively through Taylor
series and Gaussian Radial-Basis-Functions (RBF). For example, [47] uses these
function spaces in order to formulate the image alignment problem and then
solves it by Gaussian homotopy continuation.

Note that unlike Vese’s equation that always evolves the nonconvex function
to a convex one (in fact, to its convex envelope), heat equation does not nec-
essarily produce a convex function. However, it does so for functions that on
average (across all points) are convex6. There exist sufficient conditions7 on the
nonconvex functions to guarantee their convexity after enough smoothing [43].

5 Affine Approximation of Modified Vese’s Operator

Here we prove our earlier claim that the best affine approximation to the modified
Vese’s PDE around the origin of function space (i.e. the function f(x) = 0) leads
to the Laplace operator. We first need a few definitions. In the sequel, let H be
the space of twice differentiable functions h : X → R, where X � Rn. We
consider linear and nonlinear operators that have the form H → H and denote
them by L and N respectively. We say an operator is linear if and only if it
obeys ∀h1 ∈ H , h2 ∈ H , a ∈ R , b ∈ R ; L {ah1 + bh2} = aL {h1} + bL {h2}.

Definition 1 (Affine Operator). An affine operator is the form L{h} + c
where L is a linear operator in h and c is constant in h.

Definition 2 (Modified Vese’s Operator). The modified Vese’s operator is
defined as the operator acting on the function h ∈ H to return

√
1 + ‖∇h‖2m

(
λ(∇2h)

)
,

where m
(
λ
)
�

∑n
k=1 λke

−λk
δ

1+
∑

n
k=1 e−

λk
δ

.

6 For example, in univariate functions f(x), the Gaussian smoothed function is
g(x;σ) � [f � kσ](x) and hence g′′(x;σ) � [f ′′ � kσ](x). When σ → ∞, convolu-
tion with kσ(x) acts an averaging operator. Hence if

∫
X f ′′(x) dx > 0, i.e. f is on

average convex, then ∀x ; g′′(x;σ) > 0 (i.e. g(x;σ) is convex everywhere) a large
enough σ.

7 For example, if the tails vanish fast enough and the −∞ <
∫
X f(x) dx < 0, the it is

guaranteed that for a large enough σ, g(x; σ) is convex. See [43] for details.
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Definition 3 (Best Affine Approximation of a Nonlinear Operator).
Consider a h ∈ H and suppose it is resulted by perturbing some function h∗ ∈ H
by the function εφ, that is,

h = h∗ + εφ , (4)

where φ ∈ H and ε ∈ R. Suppose N {h∗ + εφ} is differentiable in ε around
ε = 0 so that its first order expansion w.r.t. ε obeys N {h} = N {h∗ + εφ} =
N {h∗}+ε( d

dεN {h∗+εφ})|ε=0+o(ε). The “best affine approximation” to N {h}
around the fixed function h∗ is defined as discarding the term o(ε) from the above,
so that,

copt � N {h∗} , Lopt{h} � ε(
d

dε
N {h∗ + εφ})|ε=0 . (5)

Theorem 1. The best affine approximation of the modified Vese’s operator, act-
ing on functions close to the zero function (h∗(x) = 0) and with bounded zeroth,
first and second order derivatives, is equal to 1

n+1 Δ.

Proof. The nonlinear operator of interest here is the modified Vese’s operator,

N {h} �
√
1 + ‖∇h‖2m

(
λ(∇2h)

)
. (6)

Observe that for this operator,N {h∗+εφ} is differentiable in ε. Since h∗(x) =
0, (5) implies that copt = N (0) = 0. Note that we exploited the fact that φ,

∇φ and λ(∇2φ) are bounded at any x ∈ X so that by ε = 0 one can conclude
h = εφ = 0, ‖∇h‖2 = ε2‖∇φ‖2 = 0, and λ(∇2h) = ελ(∇2φ) = 0.

We now focus on computing Lopt{h} using (5), which amounts to finding,

ε
( d
dε

√
1 + ‖∇εφ‖2m(λ(∇2εφ))

)
|ε=0

. (7)

We proceed by first computing
(

d
dε

√
1 + ε2‖∇φ‖2m(ελ(∇2φ))

)
|ε=0

. By chain

rule, this is equivalent to,

( d
dε

√
1 + ε2‖∇φ‖2

)
|ε=0

(
m(ελ(∇2φ))

)
|ε=0

+
( d
dε
m(ελ(∇2φ))

)
|ε=0

(√
1 + ε2‖∇φ‖2

)
|ε=0

.

Since ∇φ and λ(∇2φ) are assumed to be bounded, at ε = 0, the above ex-
pression can be written as( d

dε

√
1 + ε2‖∇φ‖2

)
|ε=0

m(0) +
( d
dε
m(ελ(∇2φ))

)
|ε=0

√
1 + 0 . (8)

Hence the above sum simplifies to
(

d
dεm(ελ(∇2φ))

)
|ε=0

. Applying chain rule

again, this becomes
(
∇m(ελ(∇2φ))

)
| ε=0

•
(

d
dε ελ(∇2φ)

)
| ε=0

, where • denotes

the inner product between two n × 1 vectors. Evaluating it at ε = 0 yields
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∇m(0) • λ(∇2φ). Since ∇m(0) = 1
n+11, where 1 is a n×1 vector with all entries

equal to 1, the expression becomes 1
n+1 1 • λ(∇2φ). However, 1 • λ(∇2φ) is sim-

ply the sum of the eigenvalues, thus it is Trace(∇2φ). Finally, since Trace(∇2φ) is
sum of the diagonals of the Hessian matrix for φ, it is equivalent to the Laplacian
Δφ. In summary, we just derived that,

( d
dε

√
1 + ε2‖∇φ‖2m(ελ(∇2φ))

)
|ε=0

=
1

n+ 1
Δφ , (9)

Going back to the definition of Lopt{h} in (7), it follows that,

Lopt{h} � ε
( d
dε

√
1 + ‖∇εφ‖2m(λ(∇2εφ))

)
|ε=0

(10)

= ε
1

n+ 1
Δφ . (11)

We now manipulate ε 1
n+1 Δφ. Moving ε inside, it can be equivalently be

written as 1
n+1 Δ(ε φ). However, by (4), ε φ is just the definition of h−h∗. Using

that fact that h∗ = 0, we obtain,

Lopt{h} =
1

n+ 1
Δh . (12)

��

6 Discussion and Future Works

This work provided new insights into the optimization by homotopy continuation.
We showed that constructing the homotopy by Gaussian convolution is optimal in
a specific sense. That is, the Gaussian homotopy is the result of the best affine ap-
proximation to the modified Vese’s PDE. Vese’s PDE is interesting for homotopy
construction because it evolves the nonconvex function to its convex envelope. The
convex envelope provides optimal convexification for nonconvex functions. How-
ever, Vese’s PDE does not have any closed form solution due to its nonlinearity,
hence cannot be used in practice. In contrast, Gaussian smoothing can be com-
puted in closed form for a large family of functions, including those represented
by polynomials or Gaussian radial basis functions.

Recall that the optimality of the Gaussian homotopy is proved here in a
certain setting; when the modified Vese’s PDE is linearized around the origin of
the function space h∗(x) = 0. Such linearization severely degrades the fidelity
of the approximation. An important question is whether linearity or working
around the origin could be relaxed without losing the advantage of closed form
solution to the PDE. Such exntension is a clear direction for future studies.

A possibility might be exploiting the conditional diffusion property of Vese’s
PDE. Remember this PDE only diffuses nonconvex regions throughout the evo-
lution, and is insensitive to convex regions. If the nonconvex and convex parts
of an objective function could be separated, applying Gaussian smoothing only
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to the nonconvex part might produce a better approximation to Vese’s PDE,
as opposed to smoothing the entire objective function. This is obviously a non-
linear evolution because it requires a switching behavior between convex and
nonconvex regions.

Another direction for improving the approximation quality is to manipulate
the objective function. For example, transforming the objective function f(x)
to − exp(−M f(x)), where M > 0 is a large constant, does not alter the global
minimizers. However, the latter form may lead to a better agreement between the
linearized and original PDE, when used as their initial condition. The intuition is
that, the transformed function is very close to zero almost everywhere (recall that
our linearization is around h∗(x) = 0). Smoothing the exponentially transformed
function is also pursued by [23], but for one-shot convexification. Note that the
exponential transform followed by the diffusion process is related to the Burgers’
PDE [11]. This connection might be of value, but does not completely answer all
questions. That is because while the solution of Burgers’ equation has a known
form, it involves Gaussian convolution of exp(−M f(x)), which may not have
an analytical form for interesting choices of f(x), e.g. polynomials. This integral
also arises in [23] and is approximated by sampling based methods.
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Vadim Zharnitsky (UIUC) for discussions, and grateful to William T. Freeman
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Abstract. An important subclass of the min-sum labeling problem (also known
as discrete energy minimization or valued constraint satisfaction) is the pairwise
min-sum problem with arbitrary unary costs and attractive Potts pairwise costs
(also known as the uniform metric labeling problem). In analogy with our recent
result, we show that solving the LP relaxation of the Potts min-sum problem is not
significantly easier than that of the general min-sum problem and thus, in turn, the
general linear program. This suggests that trying to find an efficient algorithm to
solve the LP relaxation of the Potts min-sum problem has a fundamental limita-
tion. Our constructions apply also to integral solutions, yielding novel reductions
of the (non-relaxed) general min-sum problem to the Potts min-sum problem.

Keywords: Markov random field, discrete energy minimization, valued constraint
satisfaction, linear programming relaxation, uniform metric labeling problem,
Potts model.

1 Introduction

The min-sum (labeling) problem, also known as discrete energy minimization [15,5] or
valued constraint satisfaction [16], has numerous applications in machine learning and
computer vision and other fields, in particular as MAP inference in graphical models
[17]. The problem has a natural LP relaxation [13,18,7,3,17], which underlies many
algorithms to approximately solve the problem (see [5] and references therein). It is
therefore of great practical importance to have efficient algorithms to solve this LP. Un-
fortunately, the simplex and interior point methods solving general LP are prohibitively
inefficient for large-scale vision instances.

It is known that the LP relaxation of the pairwise min-sum problem with 2 labels
reduces in linear time to max-flow [1,11]. Therefore, this problem can be solved very
efficiently because the worst-case complexity of best known algorithms for max-flow
is much better than for the general LP (though both are in the P complexity class).
Our recent paper [10] showed that solving the LP relaxation of the pairwise min-sum
problem with 3 or more labels (with some costs possibly infinite) is as hard as solving
the general LP, precisely, the latter reduces to the former in linear time. This suggests
that trying to find a very efficient algorithm to solve the LP relaxation may be futile.

This negative result raises the question whether there are any other useful subclasses
of the min-sum problem for which the LP relaxation is significantly easier than the
general linear program and therefore there is hope for efficient algorithms. In this paper,
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we show that this is unlikely for the class of pairwise min-sum problems with attractive
Potts costs, which is also known as the uniform metric labeling problem [2,6,3,4].

We present two efficient reductions of the general pairwise min-sum problem to the
Potts min-sum problem that preserve the LP relaxation. The first one (§4, §5) reduces
the general min-sum problem with some costs possibly infinite to the Potts min-sum
problem with 3 labels (the complexity of this reduction is given by Theorems 5 and 8).
Combined with [10], this implies that solving the general system of linear inequalities
reduces in linear time to the LP relaxation of the Potts min-sum problem with 3 labels
(Corollary 6, our most surprising result) and that the general linear program reduces
in better than quadratic time to the LP relaxation of the Potts min-sum problem with
3 labels (Corollary 9). The second one (§6) reduces the general min-sum problem with
k labels and finite costs to the Potts min-sum problem with k labels (Theorem 11). The
output costs in this reduction are typically much smaller than in the first reduction.

Though these results are somewhat weaker than for the general min-sum problem
[10], they are far from obvious. They show that finding an efficient algorithm to solve
the LP relaxation of the Potts min-sum problem is unlikely because this might mean
improving the complexity of the best known algorithms for the general LP. An example
of an algorithm specialized to the LP relaxation of the Potts min-sum problem is [9].

Our reductions straightforwardly apply also to the original non-relaxed min-sum
problems, thus we obtain as side-results novel reductions from the general min-sum
problem to the Potts one (Theorems 4, 7, and 10). These results can be seen analogi-
cal to, e.g., the construction [12] which reduces the general pairwise min-sum problem
with finite costs to the pairwise min-sum problem with 2 labels.

2 Min-sum Problem and Its LP Relaxation

We denote Q = Q ∪ {∞} and Z = Z ∪ {∞}. Let (V,E) be a connected undirected
graph, with objects V and object pairs E ⊆

(
V
2

)
. Let K be a finite set of labels. Let

gu: K → Q and guv: K × K → Q be unary and pairwise cost functions, where we
adopt that guv(k, �) = gvu(�, k). The pairwise min-sum problem is defined as

min
k∈KV

( ∑
v∈V

gu(ku) +
∑

{u,v}∈E

guv(ku, kv)
)
. (1)

All the costs gu(k) and guv(k, �) together will be understood as a vector g ∈ Q
I

with
I = (V ×K) ∪ { {(u, k), (v, �)} | {u, v} ∈ E; k, � ∈ K }.

The local marginal polytope [17] is the set Λ of vectors μ ∈ RI
+ satisfying∑

k∈K

μu(k) = 1, u ∈ V (2a)∑
�∈K

μuv(k, �) = μu(k), u ∈ V, v ∈ Nu, k ∈ K (2b)

where Nu = { v | {u, v} ∈ E } are the neighbors of object u and we again adopt that
μuv(k, �) = μvu(�, k). The numbers μu(k), μuv(k, �) are known as pseudomarginals
[17]. Figure 1 illustrates the meaning of constraints (2) for one object pair.
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a

v

u b c

p q
r

Fig. 1. Two objects forming an object pair {u, v} ∈ E. Objects
u ∈ V are depicted as boxes, labels (u, k) as nodes, and label pairs
{(u, k), (v, �)} as edges. Note the meaning of constraints (2): for unary
pseudomarginals a, b, c and pairwise pseudomarginals p, q, r, (2b) en-
forces a = p+ q + r and (2a) enforces a+ b+ c = 1.

The LP relaxation of problem (1) reads

min{ g�μ | μ ∈ Λ } (3)

where, if some costs (components of g) are infinite, we define 0 · ∞ = 0 in the scalar
product g�μ. If μ ∈ {0, 1}I then (3) solves (1) exactly.

Reparameterizations of a vector g ∈ Q
I

is a vector g′ ∈ Q
I

given by

g′u(k) = gu(k)−
∑
v∈Nu

ϕuv(k) (4a)

g′uv(k, �) = guv(k, �) + ϕuv(k) + ϕvu(�) (4b)

where ϕ = (ϕuv(k) ∈ R : u ∈ V, v ∈ Nu, k ∈ K). We have g�μ = g′�μ
for every ϕ and every μ satisfying (2), thus reparameterizations preserve the objective
of (1) and its LP relaxation. Consider a lower bound

L(g) =
∑
u∈V

min
k∈K

gu(k) +
∑

{u,v}∈E

min
k,�∈K

guv(k, �) (5)

on the true optimal value (1). The dual to the LP (3) can be expressed [18] as maximiz-
ing the lower bound over reparameterizations, i.e., maximizing L(g′) over ϕ.

If the pairwise cost functions guv in (1) are metric while the unary cost functions gu
remains arbitrary, the problem (1) has been called the metric labeling problem [2,6,3,4].
Its special case is the uniform metric or the attractive Potts interaction

guv(k, �) = huv[[k 
= �]] (6)

where huv ≥ 0 and [[k 
= �]] equals 1 if k 
= � and 0 otherwise. We will refer to
problem (1) with pairwise costs (6) as the Potts min-sum problem.

3 Summary of Results

This section gives the overview of our contributions in this paper, after formulating
previous closely related results that we obtained in [10].

As is usual in computational complexity, we will use the notions of problem (a set
of instances), instance, and reduction. We start this section by defining the following
problems, by specifying their instances (inputs) and solutions (outputs). Rather than
more common decision problems, which map strings over an alphabet to the answers
{yes, no}, we formulate our problems as function problems, which map strings over an
alphabet to strings over an alphabet.
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Problem: MINSUM(Y ) where Y ⊆ Q
Instance: (V,E,K,g) where g ∈ Y I . (Thus, Y specifies the set of values the costs

can take. E.g., in MINSUM(Z) the costs can take values fromZ rather than from Q.)
Solution: If the optimal value of problem (1) is finite, it returns an optimal argument

k ∈ KV . Otherwise, it answers ’infeasible’.

Problem: MINSUM(Y )-LP
Instance: (V,E,K,g) where g ∈ Y I and Y ⊆ Q.
Solution: If the LP (3) is feasible, it returns an optimal argument μ ∈ [0, 1]I . If (3) is

infeasible, it answers ’infeasible’.

Problem: POTTS

Instance: (V,E,K,g) where g ∈ QI and pairwise costs in g have the form (6).
Solution: An optimal argument k ∈ KV of problem (1).

Problem: POTTS-LP
Instance: (V,E,K,g) where g ∈ QI and pairwise costs in g have the form (6).
Solution: An optimal argument μ ∈ [0, 1]I of problem (3).

Problem: LININEQ

Instance: (A,b) where A ∈ Zm×n, b ∈ Zm.
Solution: If the system {Ax = b, x ≥ 0 } has a solution, it returns its arbitrary

solution. Otherwise, it answers ’infeasible’.

Problem: LINPROG

Instance: (A,b, c) where A ∈ Zm×n, b ∈ Zm, c ∈ Zn.
Solution: If the linear programmin{ c�x | Ax = b, x ≥ 0 } is feasible and bounded,

it returns a solution x ∈ Qn. If the program is infeasible, it answers ’infeasible’. If
the program is unbounded, it answers ’unbounded’.

Instance Sizes. In general, the size of a problem instance is the length of the (binary)
string needed to encode it. We will use 〈x〉 to denote the size of a number x ∈ Z.
Using one bit for the sign, storing x takes 〈x〉 = �log2(|x| + 1)�+ 1 bits. For a vector
x = (x1, . . . , xn) ∈ Zn, we define its size to be 〈x〉 =

∑n
i=1〈xi〉. We will use this

definition of size for vectors g and c.
For A and b we use a slightly different definition of size. The pair (A,b) can be

seen as the extended matrix Ā = [A |b] ∈ Zm×(n+1). Encoding Ā by storing all its
entries (including zeros) would take L =

∑m
i=1

∑n+1
j=1 〈aij〉 bits. This would describe

the dense encoding of Ā. However, we define

〈Ā〉 =
m∑
i=1

n+1∑
j=1

�log2(|āij |+ 1)�. (7)

As zero entries āij = 0 do not contribute to 〈Ā〉, this describes a sparse encoding of Ā.
Note that 〈Ā〉 ≤ L, therefore (7) covers both sparse and dense encoding because Ā
will always describe input (never output) instances of our reductions. Indeed, for every
f : N→ N, if the complexity of a reduction is O(f(〈Ā〉)) then it is also O(f(L)).
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For convenience, we defined the instance of POTTS and POTTS-LP the same way as
for MINSUM(Y )-LP and MINSUM(Y ), namely by the tuple (V,E,K,g) with g ∈ QI .
However, the components of g are not independent since they satisfy (6). This must be
taken into account when computing 〈g〉 for POTTS and POTTS-LP.

Existing Results. The results obtained in [10] can be formulated as follows.

Theorem 1. LINPROG reduces in linear time to MINSUM(Z)-LP with 3 labels.

Theorem 2. LINPROG reduces in quadratic time to MINSUM(Z)-LP with 3 labels.

Theorem 3. LININEQ reduces in linear time to MINSUM({0,∞})-LP with 3 labels.

Theorem 3 is not explicitly stated in [10]. It holds because LININEQ is LINPROG

with c = 0, in which case the output min-sum problem has costs in {0,∞} [10, §5].

Contributions. Our contributions in this paper are two reductions of the general min-
sum problem to the Potts min-sum problem that preserve both the optimum of (1) and
the optimum of its LP relaxation (3). These reductions lead to the following results.

Theorem 4. MINSUM({0,∞}) reduces in linear time to POTTS with 3 labels.

Theorem 5. MINSUM({0,∞})-LP reduces in linear time to POTTS-LP with 3 labels.

Corollary 6. LININEQ reduces in linear time to POTTS-LP with 3 labels.

Proof. Combine Theorem 3 and Theorem 5. ��

Theorem 7. MINSUM(Z) with p object pairs, k labels and size L reduces in time
O(pk2L) to POTTS with 3 labels.

Theorem 8. MINSUM(Z)-LP with p object pairs, k labels and size L reduces in time
O(pk2L) to POTTS-LP with 3 labels.

Corollary 9. LINPROG reduces in quadratic time to POTTS-LP with 3 labels.

Proof. By Theorem 8, MINSUM(Z)-LP reduces in quadratic time to POTTS-LP with
3 labels, because pk2 = O(L) and so O(pk2L) ⊆ O(L2). This is combined with
Theorem 1. ��

Theorem 10. MINSUM(Z) with k labels and size L reduces in timeO(k2L) to POTTS

with k labels.

Theorem 11. MINSUM(Z)-LP with k labels and size L reduces in time O(k2L) to
POTTS-LP with k labels.

In §4 we will describe our first reduction for input costs in {0,∞} and thereby prove
Theorems 4 and 5. In §5 we generalize this to arbitrary costs, proving thus Theorems 7
and 8. In §6, we describe our second reduction and prove Theorems 10 and 11.
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4 Encoding a Local Marginal Polytope

Consider the polyhedron

P = {x ∈ Rn | Ax = b, x ≥ 0 } (8)

where A ∈ {−1, 0, 1}m×n and b ∈ {0, 1}m satisfy the following conditions:

(P1) P ⊆ [0, 1]n.
(P2) Each row of the matrix [−A |b ] contains exactly one positive number.
(P3) Each row of A contains at most d non-zeros.
(P4) A has in total O(n) non-zeros.

Every local marginal polytope with k labels and p object pairs has this form, where
m = O(kp), n = O(k2p), d = k + 1. Moreover, MINSUM({0,∞})-LP is equivalent
to the problem that decides whether P is non-empty and if so, it finds an x ∈ P .

In this section, we prove Theorems 4 and 5 by constructing, from the input poly-
tope (8), the output Potts min-sum problem. More precisely, we construct a reparame-
terized Potts min-sum problem (V,E,K,g), whose costs will satisfy

gu(k) = 0, ∀u ∈ V, ∀k ∈ K (9a)

guv(k, �) = 2[[k 
= �]] + ϕuv(k) + ϕvu(�), ∀{u, v} ∈ E; ∀k, � ∈ K (9b)

min
k,�∈K

guv(k, �) = 0, ∀{u, v} ∈ E (9c)

Note that (9) implies L(g) = 0. By complementary slackness, any μ ∈ Λ and any g of
the form (9) are simultaneously optimal to (3) and its dual if and only if

guv(k, �)μuv(k, �) = 0, ∀{u, v} ∈ E; ∀k, � ∈ K. (10)

Moreover, the output min-sum problem will be designed such that if P 
= ∅ then g is
dual-optimal, i.e., min{ g�μ | μ ∈ Λ } = L(g) = 0.

We will depict min-sum problems by diagrams, as in Figure 1. In addition, we adopt
the following conventions: non-zero values of ϕuv(k) are written next to node (u, k) on
the side of object v ∈ Nu, and an edge {(u, k), (v, �)} is visible if guv(k, �) = 0 and
invisible if guv(k, �) > 0. Assuming P 
= ∅, (10) thus says that μ ∈ Λ is optimal to (3)
if and only if pairwise pseudomarginals are zero on invisible edges.

4.1 Elementary Constructions

Similarly as in [10], we will construct the output min-sum problem by gluing certain
smaller problems, each of them encoding a simple operation. We refer to these small
problems as elementary constructions. Each elementary construction is a standalone
min-sum problem whose costs g satisfy (9) and are optimal to the dual LP.

We will use the following elementary constructions (see Figure 2):

– SWAP encodes a swap of two unary pseudomarginals, one of them zero. More pre-
cisely, the LP relaxation (3) of this min-sum problem achieves its optimal value
(zero) if and only if the unary pseudomarginals linked by visible edges are equal
and the unary pseudomarginals in the crossed-out labels are zero.
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Fig. 2. Elementary constructions

– PERMUTE applies SWAP several times to arbitrarily permute all the three unary
pseudomarginals, one of them zero. The figure shows one possible permutation.

– COPY copies all the three unary pseudomarginals, one of them zero, from one ob-
ject to another object.

– UNIT enforces the value of a unary pseudomarginal to be 1. The other two unary
pseudomarginals are necessarily zero.

– ADDSINGLE adds two unary pseudomarginals in a single object and copies the re-
sult in another object. The third (possibly nonzero) unary pseudomarginal is copied.

– ADD adds two unary pseudomarginals in two different objects. This is done by
gluing three ADDSINGLE constructions.

For each elementary constructions (considered as a standalone min-sum problem),
the LP relaxation is tight, i.e., the optimal values of (3) and (1) coincide.

4.2 The Encoding Algorithm

Using the elementary constructions, we now describe the algorithm to construct the
output min-sum problem (V,E,K,g) from the polytopeP . First, we rewrite the system
Ax = b by moving negative terms to the right-hand side as

a+i1x1 + · · ·+ a+inxn = a−i1x1 + · · ·+ a−inxn + bi, i = 1, . . . ,m (11)

where a+ij , a
−
ij ∈ {0, 1} and aij = a+ij − a−ij . Note that condition (P2) says that the RHS

of (11) has exactly one non-zero term. This in turn ensures that both sides of (11) are
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not greater than 1 for every x ∈ P , thus all intermediate results are representable by
pseudomarginals. We denote the labels as K = {1, 2, 3}.

The algorithm is initialized by setting V = {1, . . . , n} and E = ∅. Each variable xj
in (8) will be represented by unary pseudomarginal μj(1). Then each equation (11) is
encoded one after another. The i-th equation is encoded as follows:

1. Construct a unary pseudomarginal with the value equal to the LHS of (11). This is
done by repeatedly applying ADD, possibly permuting labels by PERMUTE.

2. Construct a unary pseudomarginal with value equal to the RHS of (11). Recall that
the RHS of (11) has exactly one non-zero term. If a−ij = 1 for some j and bi = 0,
we already have the desired pseudomarginal, namely μj(1). If aij = 0 for all j and
bi = 1, we prepare a pseudomarginal with value bi = 1 using UNIT.

3. Enforce equality of both sides of (11) using COPY, permuting labels when neces-
sary by PERMUTE.

Figure 3 shows the constructed min-sum problem for an example polytope P . By
construction, the output min-sum problem has the following properties:

– If P 
= ∅ then min{ g�μ | μ ∈ Λ } = 0. For every μ optimal to this problem, we
have x = (μ1(1), . . . , μn(1)) ∈ P .

– If P ∩ {0, 1}n 
= ∅ then min{ g�μ | μ ∈ Λ ∩ {0, 1}I } = 0. For every μ optimal
to this problem, we have x = (μ1(1), . . . , μn(1)) ∈ P ∩ {0, 1}n.

– If P = ∅ then min{ g�μ | μ ∈ Λ } > 0.

This proves Theorems 4 and 5, up to complexity.

4.3 Complexity of Encoding

Let us count the number of objects and object pairs in the output min-sum problem.
Since for each elementary construction we have |E| = O(|V |) and the output prob-
lem is constructed by gluing elementary constructions, we have |E| = O(|V |). The
variables x1, . . . , xn are represented by n objects. Each equation (11) is represented by
O(d) objects. It follows from conditions (P3) and (P4) that n = O(dm). Thus, the total
number of objects is O(n + dm) = O(n). The time complexity of the algorithm is
proportional to |V |, thus it is also O(n).

5 Encoding a Min-sum Problem

In this section, we show that any (integer) linear optimization over polyhedron (8),

min{ c�x | x ∈ P ∩ {0, 1}n }, (12a)

min{ c�x | x ∈ P }, (12b)

can be efficiently reduced to the Potts min-sum problem with 3 labels. Since every local
marginal polytope has the form (8), this will prove Theorems 7 and 8.
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Fig. 3. The constructed reparameterized Potts min-sum problem that encodes the polytope P =
{ (x, y, z) ∈ [0, 1]3 | x+ y = 1, y + z = x }. The labels representing variables x, y, z have the
variables written in them in white. The messages ϕuv(k) are not shown, they are like in Figure 2.

The input of the reduction is a triplet (A,b, c), where (A,b) = Ā describes P . The
output is a min-sum problem (V,E,K,g), constructed as follows. First we construct
min-sum problem (V,E,K,g′) according to §4.2. Then we set g ∈ ZI as

gj(k) =

{
cj if k = 1 and j ≤ n

0 otherwise
(13a)

gij(k, �) = Mg′ij(k, �) (13b)

where M ∈ N is a big enough number (derived below) to ensure that every optimal
μ ∈ [0, 1]I and every integer optimal μ ∈ {0, 1}I to the output problem satisfies (10).

We first derive M for the simpler case, the ILP (12a). It suffices to set

M = Cu − C� + 1 (14)

where

C� =
n∑

j=1

min{0, cj}, Cu =
n∑

j=1

max{0, cj} (15)

is a lower and upper bound, respectively, on the optimal value of (12a).
Let us prove that every optimal solution μ of (12a) satisfies (10). The smallest non-

zero pairwise cost g′uv(k, �) is 1, thus the smallest non-zero guv(k, �) is M . Assume
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that for some {u, v} ∈ E and k, � ∈ K we have guv(k, �) > 0 and μuv(k, �) = 1. Then
g�μ ≥M + C� > Cu, which is a contradiction.

Let us derive the complexity of the reduction. We have 〈M〉 = O(〈c〉), because we
must consider the worst case when the sizes of c1, . . . , cn are very unequally distributed,
e.g., 〈c1〉 = O(〈c〉). Each unary cost gu(k) is a sum of at most |V | values not greater
than 2M , hence 〈gu(k)〉 = O(〈c〉+ log |V |) = O(〈c〉). Thus the description length of
the output problem is1 O(n〈c〉). This concludes the proof of Theorem 7.

We now derive M for the more difficult case, the LP (12b). We first need a lemma.

Lemma 12. Let (x1, . . . , xn) be a vertex of the polytope P defined by (8). For every
j = 1, . . . , n we have xj = 0 or xj ≥ (d+ 1)−m/2.

Proof. The proof is analogical to that of [10, Lemma 7].

At least one optimal solution to (12b) is attained at a vertex of P . The coordinates
of a vertex are fractions, however, by Lemma 12, each non-zero coordinate is not less
than (d+ 1)−m/2. This means it suffices to choose

M = (Cu − C�)(d+ 1)m/2 + 1. (16)

In the worst case, 〈M〉 = O(〈c〉 + m log d) = O(〈c〉). This proves the claimed
complexity O(n〈c〉) and thus concludes the proof of Theorem 8. Note that while the
number (16) is much larger then (14), asymptotically they have the same bit size.

6 Direct Encoding of a Min-sum Problem

The reduction described in §5 involves large output costs (14) and (16), which makes it
impractical and affects its theoretical complexity. Here we present a more direct reduc-
tion, which does not produce large output costs but applies only to finite input costs. By
that, we prove Theorems 10 and 11.

We construct a reparameterized Potts min-sum problem (V ′, E′,K,g′) that encodes
an input min-sum problem (V,E,K,g). Note that both problems have the same label
set. Each object u ∈ V of the input problem is represented by one object of the output
problem, so that V ⊆ V ′. Precisely, the unary pseudomarginals of the input problem
are represented by unary pseudomarginals in objects V in the output problem, which
automatically enforces normalization constraints (2a). Similarly, the unary costs of the
input problem are copied to unary costs in objects V of the output problem.

Each object pair {u, v}∈E of the input problem is replaced by the following con-
struction (see Figure 4). For each input label pair {(u, k), (v, �)} we introduce a new
object {(u, k), (v, �)} into V ′. One selected label in object {(u, k), (v, �)} ∈ V ′ of the
output problem represents the label pair {(u, k), (v, �)} of the input problem, such that

1 The derived complexity can be improved if some additional knowledge is available. First, we
may obtain better bounds on the optimal value of (12a) than (15). E.g., if a feasible solution x
to (12a) can be obtained cheaply, it yields an upper bound c�x ≤ Cu. Second, 〈M〉 = O(〈c〉)
holds in the unfavorable case when the distribution of the sizes 〈ci〉 is very non-uniform. Under
some additional assumptions on c, this worst-case bound can be made much smaller. Assume,
e.g., that 〈ci〉 ≤ 2〈c〉/n for every i. Then M ≤ n22〈c〉/n and 〈M〉 = O(〈c〉/n + log n).
Thus the description length of the output problem would be only O(〈c〉+ n log n).
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Fig. 4. Objects added to V ′ for one input object pair {u, v} ∈ E and |K| = 3. For brevity,
μuv(k, �) is denoted by zk�.

a

a

b
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z12z11 z13{(u, 1), (v, 3)}{(u, 1), (v, 2)}{(u, 1), (v, 1)}

Fig. 5. The ADDK elementary construction, enforcing z11 + z12 + z13 = x1. Note that a =
z11 + z12 and b = a+ z13. For brevity, μu(k) is denoted by xk.

the unary pseudomarginal of this label represents the pseudomarginal μuv(k, �) of the
input problem and the unary cost of this label equals the input cost guv(k, �).

Each marginalization constraint (2b) is encoded by the ADDK construction, shown
in Figure 5 for |K| = 3 labels. It is built from several constructions ADDSINGLE and
ADD. For brevity, we denote μu(k) and μuv(k, �) by xk and zk�, respectively. The LP
relaxation of ADDK attains zero optimal value if and only if zk1+ zk2+ zk3 = xk , i.e.,
if and only if the marginalization constraint is satisfied.

Let f(zk1, zk2, zk3, xk) denote the optimal value of the LP relaxation of ADDK sub-
ject to the constraint that the unary pseudomarginals zk1, zk2, zk3, xk are fixed. As we
said, if zk1 + zk2 + zk3 = xk then f(zk1, zk2, zk3, xk) = 0. Otherwise, one can show2

that there is a small constant C ∈ N such that

Cf(zk1, zk2, zk3, xk) ≥ |zk1 + zk2 + zk3 − xk|. (17)

2 We omit the proof, which is long. For illustration, we state the similar claim for the ADDSIN-
GLE construction (see Figure 2). Denoting by f(a, b, c) the optimal value of the LP relaxation
of ADDSINGLE subject to fixed a, b, c, it is easy to show that f(a, b, c) ≥ |a+ b− c|.
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It is straightforward to generalize the ADDK construction to |K| ≥ 3, e.g., by using
more objects and adding |K| − 3 dummy labels to each object. Then we can write (17)
as Ruv(k) ≥ |ruv(k)| where

ruv(k) =
∑
�∈K

μuv(k, �)− μu(k). (18)

Let us multiply all pairwise costs in each ADDK construction by CMuv , where
Muv ∈ N. Then the LP relaxation of the output min-sum problem can be written as

min
{
g�μ+

∑
u∈V

∑
v∈Nu

∑
k∈K

MuvRuv(k)
∣∣∣ μ ∈ RI

+, μ satisfies (2a)
}
. (19)

The numbers Muv (u ∈ V , v ∈ Nu) must be big enough to ensure that for every μ
optimal to (19) all the residuals ruv(k) vanish. It suffices to set

Muv = Mvu =
⌈
1
2 max
k,�∈K

guv(k, �)
⌉
+ 1. (20)

To prove this, observe that if unary pseudomarginals μu are fixed, one can optimize
over pairwise pseudomarginals μuv separately for each {u, v} ∈ E. The rest follows
from Proposition 13.

Proposition 13. Consider a single pair {u, v} ∈ E. Let functions μu, μv: K → R+

satisfy (2a). Let guv:K ×K → R+. Every optimal μuv in the problem

min
μuv : K×K→[0,1]

( ∑
k,�∈K

guv(k, �)μuv(k, �) +
∑
k∈K

Muv(|ruv(k)|+ |rvu(k)|)
)

(21)

satisfies ruv(k) = rvu(k) = 0 for all k ∈ K .

Proof. Suppose that some of the numbers ruv(·), rvu(·) are non-zero. We will show that
then μ cannot be optimal to (21). Since

∑
k ruv(k) =

∑
� rvu(�), at least one of the

following cases must occur. For each case, we show that by changing μuv (but keeping
them feasible) the objective of (21) can be decreased:

1. ruv(k) > 0 for some k, ruv(k′) < 0 for some k′, ruv(�) = 0 for all �:
Pick any � such that μuv(k, �) > 0. Because ruv(k) > 0 and ruv(�) = 0, we have
μuv(k

′, �) < 1. Decrease μuv(k, �) by a small δ > 0 and increase μuv(k
′, �) by the

same δ. This changes the objective by guv(k′, �)δ − guv(k, �)δ − 2Muvδ < 0.

2. ruv(k) < 0 for some k, rvu(�) < 0 for some �:
Because ruv(k) < 0, we have μuv(k, �) < 1. Increase μuv(k, �) by a small δ > 0.
This changes the objective by guv(k, �)δ − 2Muvδ < 0.

3. ruv(k) > 0 for some k, rvu(�) > 0 for some �, μuv(k, �) > 0:
Decrease μuv(k, �) by a small δ > 0. This decreases the objective by 2Muvδ +
guv(k, �)δ.

4. ruv(k) > 0 for some k, rvu(�) > 0 for some �, μuv(k, �) = 0:
Pick any k′ and �′ such that μuv(k, �

′) > 0 and μuv(k
′, �) > 0. Such k′ and �′ exist

because ruv(k) > 0 and rvu(�) > 0. Then proceed as follows:
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– If μuv(k
′, �′) = 1 then ruv(k′) > 0 and rvu(l′) > 0. Proceed as in case 3.

– If μuv(k
′, �′) < 1, decrease μuv(k, �

′) by a small δ > 0, decrease μuv(k
′, �)

by δ, and increase μuv(k
′, �′) by δ. This changes the objective by−guv(k, �′)δ−

guv(k
′, �)δ + guv(k

′, �′)δ − 2Muvδ < 0. ��

6.1 Complexity of the Reduction

Let us derive the complexity of the reduction. Clearly, |V ′| = O(|V | + |K|2|E|) and
|E′| = O(|K|2|E|). The cumulative size of all numbers Muv ({u, v} ∈ E) is O(〈g〉).
Each value Muv appears as the Potts pairwise cost in O(|K|2) object pairs, thus all the
Potts pairwise costs are described by a vector of size O(|K|2〈g〉). The cumulative size
of the unary costs in g′ is bounded by the sum of sizes of all messages. Every Muv

induces O(|K|2) messages, each of them having the absolute value at most 2Muv. It
means all the messages are described by a vector of sizeO(|K|2〈g〉), which proves the
output has the sizeO(|K|2〈g〉). Note that the numbers (20) are (possibly much) smaller
than (14) and (16). If |K| is fixed, the complexity of the reduction is linear.

7 Conclusion

Our results (Corollaries 6 and 9, Theorem 11) suggest that solving the LP relaxation
of the pairwise min-sum problem with attractive Potts costs cannot be expected much
easier than solving the LP relaxation of the general min-sum problem.

This statement may sound misleading in case of reduction with higher than linear
complexity, because in that case efficiency of solving the LP relaxation of the Potts min-
sum problem does not fully translate to efficiency of solving the general LP. However,
our argument is more subtle: if a new principle were invented to solve the LP relaxation
of Potts min-sum problems (e.g., similar to network flow algorithms), it would mean
this principle is applicable to an arbitrary LP. Since there are only few principles to
solve general LPs in polynomial time, this is unlikely.

In particular, message passing algorithms do not solve the LP relaxation of a gen-
eral min-sum problem exactly, but find only a local (with respect to block-coordinate
updates) dual optimum. It would be desirable to modify these algorithms to alleviate
this drawback. One might hope this might be easier for Potts min-sum than for general
min-sum. However, inventing a message passing algorithm that avoids local optima for
Potts min-sum problems would mean it can solve general LPs.

Besides the results for the LP relaxation, we obtained similar reductions for the non-
relaxed problems (Theorems 4, 7, 10). These may have practical impact in the case of
exact (e.g., branch-and-bound) solvers, which can be tuned only for Potts problems.
Unfortunately, they may not be useful for approximate solvers (such as primal move-
making algorithms [2]) or solvers obtaining persistency [8,14], because the reductions
may not preserve approximation ratio or persistency.
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Abstract. The continuation method is a popular heuristic in computer
vision for nonconvex optimization. The idea is to start from a simplified
problem and gradually deform it to the actual problem while tracking
the solution. There are many choices for how to map the nonconvex ob-
jective to some convex task. One popular principle for such construction
is Gaussian smoothing of the objective function. This involves an inte-
gration which may be expensive to compute numerically. We argue that
often simple tricks at the problem formulation plus some mild approxi-
mations can make the resulted task amenable to closed form integral.

Keywords: Continuation Method, Diffusion Equation, Nonconvex Op-
timization, Graduated Nonconvexity.

1 Introduction

Nonconvex optimization tasks are ubiquitous in computer vision [25,32,21,13,23].
However, solving such problems (to global optimality) is generally intractable.
Hence, often the nonconvex problem is either relaxed to a convex task [28,15],
or heuristic optimization methods are utilized [7,5,29,8,24]. Each of these two
methods has its own pros and cons. The global optimum of the convex relaxed
task can be found efficiently. However, some aspects of the original problem may
be lost because of the relaxation, which sometimes could be crucial. On the
other hand, heuristic methods are not guaranteed to find the global optimum.
In return, they directly target solving the nonconvex task. Hence, they sometimes
can offer good local minima if not the global one.

A long standing deterministic heuristic for handling nonconvex tasks in com-
puter vision is Blake and Zisserman’s Graduated Non-Convexity (GNC) [6]. The
idea, introduced about three decades ago, is to start from a convex problem.
The latter is then progressively deformed to the actual objective while tracking
the solution along the way. Around the same time, Terzopoulos used similar
ideas for surface interpolation problems [30]. Outside of computer vision field,
GNC technique is known under a broader class of optimization by homotopy
continuation method [33].

The idea of optimization by continuation has been utilized in several interest-
ing works. For example, Brox’s thesis on image segmentation relies on this tech-
nique for optimization [7]. Black and Rangarajan used continuation for analyzing
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spatial discontinuities and applied it to several problems in early vision [5]. In
fact, coarse-to-fine image representation which is widely used in computer vision
is related to the continuation method [24]. Note that state-of-the-art solutions
for optical flow [29,8] and shape estimation [1] rely on multiscale representation
to avoid poor local minima.

There is also a growing interest in using similar optimization methods within
machine learning community. Some example applications include semi-supervised
kernel machines [27], multiple instance learning [14,18], semi-supervised struc-
tured output [11], and language modeling [2]. It has also been suggested that
recent training algorithms for deep architectures [17,12], which have made a
breakthrough, in fact approximate continuation methods [3].

There is an infinite number of ways to progressively deform the nonconvex
objective to some convex task. One possible principle is by Gaussian smoothing
of the objective function [26,24]. In fact, we have recently shown that Gaus-
sian smoothing has optimality for homotopy construction in a certain sense [22].
The Gaussian smoothing method convolves the nonconvex objective with an
isotropic Gaussian kernel. This results in a collection of functions ranging from a
highly smoothed to the actual nonconvex function, depending on the bandwidth
parameter of the Gaussian. The continuation method processes this collection
successive, starting the smoothed function and ending at the actual nonconvex
function. Since going from high to low bandwidth reveals more details of the ob-
jective function, optimization by Gaussian homotopy continuation is also called
coarse-to-fine optimization.

From practical viewpoint, the key challenge for using Gaussian homotopy is
computing the convolution integral. In fact, using this approach makes sense only
if this integral can be computed analytically1. This may seem disappointing at
first for several reasons. First, the integrands that lead to a closed form inte-
gration are often rare and must have a very simple and nice form. In addition,
some applications involve objective functions defined over discrete variables, for
which Gaussian convolution is not well-defined.

Despite these challenges, we argue that sometimes simple tricks at the problem
formulation and some mild approximations can make the resulted task amenable
to closed form integral. To be concrete, we demonstrate this within two example
tasks2. The first one focuses on handling discrete valued variables in a combina-
torial setting. The example application is establishing correspondence between
a pair of point clouds. The second example shows the use indicator functions
as well as robust loss functions within an image denoising setup. For both ap-
plications, we show that the objective becomes convex after enough smoothing.

1 The dimension of the integration domain is the number optimization variables. The
numerical computation of this integral can be as expensive as exhaustive search of
the domain for finding the global optimum.

2 Both applications are formulated in their simplest form to allow focusing on the
homotopy construction task. We do not aim at beating state of the art in such a
simple setup, but rather produce comparable results against common alternatives.
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In addition, we demonstrate that the minimizer of the convexified (i.e. highly
smoothed) problem can be expressed in closed form.

Although the paper investigates two example applications, the underlying
ideas may be generalized to some other tasks. Specifically, the energy function
in both applications consist of polynomials and Gaussian functions . Both of
these forms are amenable to closed form Gaussian convolution. Hence, Gaussian
smoothing can be analytically computed for any energy function that can be
constructed from these components. Note that these two components are very
rich. For example, in the alignment example we will show that discrete variables
can be replaced by continuous through simple polynomial penalties. Further-
more, in the denoising example, we will show that indicator functions and some
robust loss functions can be expressed by a Gaussian form.

Throughout this paper, we use x for scalars, x for vectors, X for matrices,
and X for sets. Here ‖x‖ means ‖x‖2 and ∇ means ∇x, and � means equality
by definition. The convolution operator is denoted by . The isotropic Gaussian
kernel with standard deviation σ is shown by kσ,

kσ(x) �
1

(
√
2πσ)n

e−
‖x‖2
2σ2 .

2 Discrete Valued Variables

In this section we show how simple tricks at the problem formulation level can
handle discrete valued variables. We use 3D point cloud alignment as the example
task.

2.1 Formulation

Given two sets of points P = {pi}mi=1 and Q = {qj}nj=1, where each point is in

Rd and d = 3 for 3D point clouds. Consider the affine transformation Ap + b,
where A is d × d and b is d × 1. We define the optimal affine alignment as the
following,

(A∗, b∗, c∗) = arg min
A,b,c

m∑
i=1

n∑
j=1

(ci,j‖Api + b− qj‖)2 (1)

s.t. ∀ j
m∑
i=1

ci,j = 1, , ∀ i∀ j ci,j ∈ {0, 1} .

The binary variables ci,j determine the correspondence among the point pairs
in P and Q. We arranged the elements ci,j into vector of size mn denoted by c.
Without loss of generality, we assume that the point set P is uncorrelated and
has zero mean, with the largest variance being one as below,

1

m

m∑
i=1

pi = 0 ,
1

m

m∑
i=1

pip
T
i = diag([1 , λ2 , λ3]) , (2)
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where 1 ≥ λ2 ≥ λ3 > 0. If P does not have this property, we can easily process
the points to get them this way 3, as explained in the following. Suppose the
original point sets are named P◦ and Q◦. Let the spectral decomposition of P◦

be as below,

1

m

m∑
i=1

(p◦
i − p̄◦)(p◦

i − p̄◦)T = V diag(d)V T , (3)

where p̄◦ = 1
m

∑m
i=1 p

◦
i , d is the vector of eigenvalues and V is a matrix with

columns being eigenvectors of the covariance of P◦. Then we define the sets P
and Q by applying the shift p̄◦, rotation V , and scaling 1/max(d) to the initial
sets P◦ and Q◦ as shown below,

∀p◦
i ∈ P◦,pi �

1

max(d)
V T (p◦

i − p̄◦)V (4)

∀q◦
j ∈ Q◦, qj �

1

max(d)
V T (q◦

j − p̄◦)V . (5)

It is easy to check that the transformed set P now has the assumed proper-
ties. Thus, we can apply the proposed affine alignment algorithm. Suppose the
algorithm returns affine parameters A and b in the sense that it best trans-
forms the set P to the set Q via Ap + b. We can easily use this solution to
relate the original sets P◦ and Q◦ via A◦p◦ + b◦, where A◦ = V AV T and
b◦ = (I −A◦)p̄◦ +max(d)V bV T .

2.2 Smoothing

In order to apply Gaussian smoothing, the optimization must be in continuous
variables and unconstrained. To achieve the first property, we express the discrete
constraint ci,j ∈ {0, 1} equivalently by the continuous equality constraint of form
ci,j(1− ci,j) = 0. Thus, the optimization task becomes as the following,

(A∗, b∗, c∗) = arg min
A,b,c

∑
i,j

(ci,j‖Api + b− qj‖)2 (6)

s.t. −1 +
m∑
i=1

ci,j = 0 , ci,j(1− ci,j) = 0.

To satisfy the second property, we approximate the problem by replacing
equality constraints h(c) = 0 by the objective penalty h2(c). Thus, the approx-
imate objective function becomes as the following,

3 If the point set is degenerate, i.e. its covariance matrix has some eigenvalues equal
to zero, then we cannot have P in the desired form. In that case, the null space of
the data can be removed to obtain a lower dimensional representation for the points.
Everything else in the paper remains the same for the new set, as there is nothing
special in our analysis to force d = 3.
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f(A, b, c) � ε

mn

( m∑
i=1

n∑
j=1

c2i,j‖Api + b− qj‖2
)

+
1

mn

( n∑
j=1

(1−
m∑
i=1

ci,j)
2 +

m∑
i=1

n∑
j=1

c2i,j(1− ci,j)
2
)
, (7)

where ε > 0 is a small number. We can now convolve the objective function
with the Gaussian kernel kσ

(
vec(A, b, c)

)
, where vec concatenates all variables

into a long vector as below,
Due to diagonal form of the covariance, we first compute convolution w.r.t.

variables {ci,j}, and then convolve the result with variables vec(A, b). Convolu-
tion in variables {ci,j} is easily computed as follows,

g1(A, b, c;σ) � [f � k( . ;σ2)] (c)

=
ε

mn

m∑
i=1

n∑
j=1

(c2i,j + σ2)
(
‖Api + b− qj‖

2
)

+
1

mn

n∑
j=1

(1−
m∑
i=1

ci,j)
2 +

1

mn

m∑
i=1

n∑
j=1

(ci,j − 1)2c2i,j + 6σ2(ci,j −
1

2
)2 .

We now apply the convolution w.r.t. θ � vec(A, b), and denote the affine
transform by as τ

(
p; θ

)
� Ap+ b.

g(θ, c;σ) �
[
g1( . , c;σ)  k( . ;σ

2)
]
(θ)

=
ε

mn

(m,n∑
i,j

(ci,j + σ2)

∫
R3

‖r − qj‖2kσ√1+‖pi‖2(τ (pi, θ)− r) dr
)
(8)

+
1

mn

n∑
j=1

(1−
m∑
i=1

ci,j)
2 +

1

mn

m,n∑
i,j

(ci,j − 1)2c2i,j + 6σ2(ci,j −
1

2
)2

=
ε

mn

m,n∑
i,j

(c2i,j + σ2)
(
‖Api + b− qj‖2 + 3σ2(1 + ‖pi‖2)

)
+

1

mn

( n∑
j=1

(1−
m∑
i=1

ci,j)
2 +

m,n∑
i,j

(ci,j − 1)2c2i,j + 6σ2(ci,j −
1

2
)2
)
. (9)

where (8) uses the transformation kernel for the affine map [24]. This kernel
allows writing the high dimensional convolution w.r.t. θ equivalently by a d-
dimensional integral transform, where here d = 3.

2.3 Asymptotic Minimizer

It is easy to check that, as σ → ∞, the Hessian of the objective converges to
a matrix with zero off-diagonals and positive diagonals (hence asymptotically
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convex). In addition, zero crossing the gradient when σ → ∞ leads to the fol-
lowing asymptotic minimizer,

A∗ = (
1

mn

m∑
i=1

n∑
j=1

qjp
T
i ) diag([1 ,

1

λ2
,
1

λ3
])

b∗ =
1

n

n∑
j=1

qj , c∗i,j =
1

2 + ε (1 + ‖pi‖2)
. (10)

2.4 Continuation Updates

The continuation process moves from the stationary point attained at the previ-
ous smoothing level σ to the (possibly local) minimum of the current objective
function formed by a smaller σ, i.e. reduced smoothing. For each fixed σ, the
stationary point of the problem is obtained by looping over gradient descent
with the line search until convergence. The sequence for σ is generated by start-
ing from σ0 = 2 and updating it by σk+1 = 0.9σk, until the value of σ falls
below 0.01. A great advantage of the low-order polynomial formulation of the
alignment task is that, we can compute the optimal line search in closed form as
explained below. The gradient of g(A, b, c;σ) in (9) can be expressed as follows,

∂g

∂A
= 2ε

m∑
i=1

n∑
j=1

c2i,j

( (
Api + b− qj )p

T
i

)
, (11)

∂g

∂b
= 2ε

m∑
i=1

n∑
j=1

c2i,j

(
Api + b− qj

)
. (12)

∂g

∂ci,j
= ε

(
‖Api + b− qj‖2 + 3σ2(1 + ‖pi‖2)

)
− 2 + 2

m∑
k=1

ck,j

+ 2
(
ci,j(ci,j − 1)(2ci,j − 1) + 6σ2(ci,j −

1

2
)
)
. (13)

Define the updated solution as A+ � A+α ∂g
∂A , b+ � b+α∂g

∂b , and c+ � c+

α∂g
∂c . The optimal step size α can be obtained by zero crossing d

dαg(A
+, b+, c+;σ).

By collecting different exponents of α, the latter can be written as below,

d

dα
g(A+, b+, c+;σ) = t3α

3 + t2α
2 + t1α+ t0 , (14)
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where t0, t1, t2, and t3 are constants introduced for brevity4.
It is obvious that (14) is a cubic equation with the following closed-form roots

for choices of w ∈ {−2, 1 + i
√
3, 1− i

√
3} .

α = − 1

6t3

(
2t2 + w(

T1 +
√
T 2
1 − T2

2
)

1
3 + w∗(

T1 −
√
T 2
1 − T2

2
)

1
3

)
,

where w∗ is the complex conjugate of w, and the auxiliary variables T1 and
T2 are defined as follows,

T1 � 2t32 − 9t1t2t3 + 27t0t
2
3 , T2 � 4(t22 − 3t1t3)

3 .

Obviously, we only consider the real roots of the above equation. We can
evaluate g(A+, b+, c+;σ) at all the real roots (at most three) and choose the
one that attains the smallest value of g(A+, b+, c+;σ).

Algorithm 1 shows the procedure for affine alignment by Gaussian smoothing
and path following.

2.5 Results

In this section, we present that result obtained by Algorithm 1. We use Iterative
Closest Point (ICP) algorithm [4] as a baseline result. The idea of ICP is to
alternate between creating a correspondence between pair of points (of the two
clouds) and refining the geometric transformation between the corresponding

4 The constants t0, t1, t2, and t3 have the following form,

t0 �
∑
i,j

2
∂g

∂ci,j
(2ci,j − 1)

(
(ci,j − 1)ci,j + 3σ2)

+3εσ2 ∂g

∂ci,j
(1 + ‖pi‖

2) + ε
∂g

∂ci,j
‖Api + b− qj‖

2

+2ci,jε(Api + b− qj)
T (

∂g

∂A
pi +

∂g

∂b
) + 2

n∑
j=1

((

m∑
i=1

∂g

∂ci,j
)(−1 +

m∑
i=1

ci,j))

t1 �
∑
i,j

2(
∂g

∂ci,j
)2
(
1 + 6ci,j(ci,j − 1) + 6σ2

)
+2εci,j‖

∂g

∂A
pi +

∂g

∂b
‖2 + 2

n∑
j=1

(

m∑
i=1

∂g

∂ci,j
)2

+4ε
∂g

∂ci,j
(Api + b− qj)

T (
∂g

∂A
pi +

∂g

∂b
)

t2 �
∑
i,j

3
∂g

∂ci,j

(
2(

∂g

∂ci,j
)2(2ci,j − 1) + ε‖ ∂g

∂A
pi +

∂g

∂b
‖2
)

t3 �
∑
i,j

4(
∂g

∂ci,j
)4 .
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Algorithm 1. Point Cloud Alignment by Gaussian Homotopy Continuation

1. Input: Point clouds P (as eq. (2)) and Q, a small ε > 0, a sequence σ1 > σ2 >
· · · > σN > 0.

2. A = ( 1
mn

∑m
i=1

∑n
j=1 qjp

T
i ) diag([1 ,

1
λ2

, 1
λ3

])

3. b = 1
n

∑n
j=1 qj

4. ci,j = 1
2+ε (1+‖pi‖2)

5. for k = 1 → N do
6. repeat
7. A = A+ α ∂g

∂A
.

8. b = b+ α ∂g
∂b

.

9. c = c+ α ∂g
∂c

10. until Convergence
11. end for
12. Output: (A, b, c)

points. Both algorithms share the same initialization, which is the asymptotic
minimizer of the alignment objective presented in (10). For the continuation
algorithm, we set ε = 0.01.

We use some of the 3D objects provided by Stanford’s dataset [9,19,31], each
of which comprises a set P . We then create Q by rotating points in P by n
degrees along all three x, y and z axes, where n varies between 30 degrees to 90
degrees, in steps of 15 degrees. This way, for each P , we derive a set of problems
{Qn} that are increasingly more challenging as n grows.

Figures 1 and 2 indicate that ICP gets stuck is poor local minima more often
than the continuation method, before reaching a reasonable alignment.

Fig. 1. The point set Q for each 3D object

3 Indicator Function and Robust Loss

In this section we show how indicator function and a robust loss function (trun-
cated quadratic) can be approximated in a way that become amenable to closed
form integration. This is shown through an example task for image denoising.
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30 45 60 75 90

Fig. 2. Each object occupies there successive rows, where each row has the following
role. (Top) Input P , which is a rotated version of Q. (Middle) Transformed P to match
Q using ICP. (Bottom) Transformed P to match Q using proposed method.
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3.1 Formulation

Given an image matrix V whose entries are affected additively by independent
Gaussian noise. The resulted noisy image is denoted by Ṽ . The noise has zero
mean and unknown variance. Suppose the original image has a piecewise constant
structure5. The denoising problem can be formulated as the following,

U∗ = argmin
U

∑
i,j

λ (ui,j − ṽi,j)
2 + I‖∇ui,j‖�=0, (15)

where I is an indicator function that is one if its argument is true and zero
otherwise. This regularization resembles the �0 norm of gradient’s magnitude
map. Here ∇ui,j is the finite difference approximation of the gradient at the

entry ui,j , i.e. ‖∇ui,j‖2 � (ui+1,j − ui,j)
2 + (ui,j+1 − ui,j)

2. The parameter λ
balances between fidelity and regularization.

Observe that an indicator function Ix �=0 can be also expressed as 1 − limε→0

e−
x2

2ε2 . For practical applications, 1 − e−
x2

2ε2 with a small enough ε provides a
reasonable approximation to the limit case (Figure 3-Left). The advantage of
this particular approximation for the indicator function is this it allows for a
closed-form Gaussian convolution. Using that, the objective can be written as
below,

f(U) =
∑
i,j

λ (ui,j − ṽi,j)
2 + 1− e−

‖∇ui,j‖2
2ε2

=
∑
i,j

λ (ui,j − ṽi,j)
2 + 1− e−

(ui+1,j−ui,j)
2+(ui,j+1−ui,j)

2

2ε2 .

Note that the Gaussian function, which a larger choice of ε, can also provide
a good approximation for the truncated quadratic form (Figure 3-Right). This
approximation maintains the key property of robust loss functions, which is
having flat tails. In the following, however, we continue with the simple (non-
robust) quadratic loss.

3.2 Smoothing

Convolving this objective with Gaussian kernels in variables ui,j and dropping
constant terms leads to the following,

g(U , σ) =
∑
i,j

λ (ui,j − ṽi,j)
2

−ce−
ε2‖∇ui,j‖2+2σ2(u2

i,j+u2
i,j+1+u2

i+1,j−ui,j+1ui+1,j−ui,j(ui,j+1+ui+1,j))

2(σ2+ε2)(3σ2+ε2) ,

where c is a constant factor.
5 That is the case for most shape images.



Coarse-to-Fine Minimization of Some Common Nonconvexities 81

Fig. 3. Using the function e
− x2

2ε2 to approximate indicator function (Left) by ε = 0.005
and (robust) truncated quadratic loss (Right) by ε = 1/2. Both cases are plotted in
the range x ∈ [−4, 4].

3.3 Asymptotic Minimizer

As σ → ∞, the regularization term vanishes and only the convex quadratic
term remains. Hence, this problem is asymptotically convex, and its asymptotic
minimizer is simply the solution of the convex quadratic part, which is ui,j = ṽi,j .

3.4 Continuation

The sequence for σ is generated by starting from σ0 = 2 and updating it by
σk+1 = 0.9σk, until the value of σ falls below 0.01. Sensitivity parameter ε
is set to 2

255 , which means 2 intensity levels out of 255 possible levels in an
8-bit representation. For each value of σ, gradient descent loop is performed
until convergence. The loop starts by initializing the solution obtained from
the previous value of σ. The exponential form appearing in this application
prevents finding the optimal line search in closed form. Thus, here we use the
plain gradient descent.

3.5 Results

The method is applied to an example shape image degraded by Gaussian noise.
The intensity values of the image range between zero and one, and the standard
deviation of the noise is 0.5, which is quite severe. We apply four other methods
to these data for comparison. Specifically, we use isotropic and anisotropic total
variation [16] using publicly available code6, BM3D denoising package7 [10],
and KMeans clustering [20] shipped with Matlab. Total variation essentially
penalizes the �1 norm of the gradient’s magnitude. Note that �1 norm is the
convex envelope for the �0 norm, hence the best possible convex approximation
of the actual problem.

For BM3D, we provide the algorithm with the true value of noise variance,
which is to the advantage of this method. The total variation method, like ours,

6 We used Matlab code published by Benjamin Tremoulheac.
7 Authors of this package have made their code publicly available. We used version
2.0 of this package.
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Fig. 4. Plots of PSNR value versus algorithm’s parameter. Left: BM3D (horizontal axis
shows multipliers of noise standard deviation, e.g. 2 means twice the value of the stan-
dard deviation). Right: Total Variation (the parameter balances between regularization
and fidelity).

depends on a λ parameter that balances fidelity versus regularization. These
parameters were carefully searched for each method to obtain maximally possible
PSNR value (Figure 4). To ensure KMeans’s solution has not been unlucky with
initialization, it is run 100 times, and only the one with the lowest cost function
is reported here.

The output of each method and their associated PSNR values are shown in
Figure 5.

Input Noisy KMeans ATV ITV BM3D Homotopy

9.36 9.16 14.34 14.30 15.26 22.96

Fig. 5. Denoising a shape image using different methods. The best PSNR attained by
each method is show below its image.

4 Conclusion

In this work we argue that the convolution integral associated with the Gaussian
homotopy continuation can be computed in closed form for some interesting
scenarios. Such closed form expression is of great importance and it makes the
Gaussian homotopy method useful in practice. We explored this idea within two
simple scenarios that involve difficult combinatorial nonconvexities.
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Coarse-to-Fine Minimization of Some Common Nonconvexities 83

References

1. Barron, J.T., Malik, J.: Color constancy, intrinsic images, and shape estimation.
In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV
2012, Part IV. LNCS, vol. 7575, pp. 57–70. Springer, Heidelberg (2012)

2. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: In-
ternational Conference on Machine Learning, ICML (2009)

3. Bengio, Y.: Learning Deep Architectures for AI. Now Publishers Inc. (2009)

4. Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans.
Pattern Anal. Mach. Intell. 14(2) (1992)

5. Black, M.J., Rangarajan, A.: On the unification of line processes, outlier rejection,
and robust statistics with applications in early vision. International Journal of
Computer Vision 19(1), 57–91 (1996)

6. Blake, A., Zisserman, A.: Visual Reconstruction. MIT Press (1987)

7. Brox, T.: From pixels to regions: partial differential equations in image analysis.
Ph.D. thesis, Faculty of Mathematics and Computer Science, Saarland University,
Germany (April 2005)

8. Brox, T., Malik, J.: Large displacement optical flow: Descriptor matching in varia-
tional motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 500–513
(2011)

9. Curless, B., Levoy, M.: A volumetric method for building complex models from
range images. In: Proceedings of the 23rd Annual Conference on Computer Graph-
ics and Interactive Techniques, SIGGRAPH 1996, pp. 303–312. ACM, New York
(1996)

10. Dabov, F., Katkovnik, E.: Image Denoising by Sparse 3-D Transform-Domain Col-
laborative Filtering. IEEE Transactions on Image Processing 16(8), 2080–2095
(2007)

11. Dhillon, P.S., Keerthi, S.S., Bellare, K., Chapelle, O., Sundararajan, S.: Determin-
istic annealing for semi-supervised structured output learning. In: AISTATS 2012,
vol. 15 (2012)

12. Erhan, D., Manzagol, P.A., Bengio, Y., Bengio, S., Vincent, P.: The difficulty of
training deep architectures and the effect of unsupervised pre-training. In: AIS-
TATS, pp. 153–160 (2009)

13. Felzenszwalb, P.F., Girshick, R.B., McAllester, D.A., Ramanan, D.: Object detec-
tion with discriminatively trained part-based models. IEEE Trans. Pattern Anal.
Mach. Intell. 32(9), 1627–1645 (2010)

14. Gehler, P., Chapelle, O.: Deterministic annealing for multiple-instance learning.
In: AISTATS 2007, Microtome, Brookline, MA, USA, pp. 123–130 (March 2007)

15. Goldluecke, B., Strekalovskiy, E., Cremers, D.: Tight convex relaxations for vector-
valued labeling. SIAM J. Imaging Sciences 6(3), 1626–1664 (2013)

16. Goldstein, T., Osher, S.: The split bregman method for l1-regularized problems.
SIAM J. Imaging Sciences 2(2), 323–343 (2009)

17. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief
networks. Neural Computation 18(7), 1527–1554 (2006)

18. Kim, M., Torre, F.D.: Gaussian processes multiple instance learning pp. 535–542
(2010)

19. Krishnamurthy, V., Levoy, M.: Fitting smooth surfaces to dense polygon meshes.
In: SIGGRAPH, pp. 313–324 (1996)



84 H. Mobahi and J.W. Fisher III

20. MacQueen, J.B.: Some methods for classification and analysis of multivariate ob-
servations. In: Cam, L.M.L., Neyman, J. (eds.) Proc. of the fifth Berkeley Sympo-
sium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University
of California Press (1967)

21. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning for sparse
coding. In: Danyluk, A.P., Bottou, L., Littman, M.L. (eds.) ICML. ACM Interna-
tional Conference Proceeding Series, vol. 382, p. 87. ACM (2009)

22. Mobahi, H., Fisher III, J.W.: On the link between gaussian homotopy continuation
and convex envelopes. In: Tai, X.-C., Bae, E., Chan, T.F., Lysaker, M. (eds.)
EMMCVPR 2015. LNCS, vol. 8932, pp. 43–56. Springer, Heidelberg (2015)

23. Mobahi, H., Rao, S., Ma, Y.: Data-driven image completion by image patch sub-
spaces. In: Picture Coding Symposium (2009)

24. Mobahi, H., Ma, Y., Zitnick, L.: Seeing through the Blur. In: Proceedings of CVPR
2012 (2012)

25. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and
associated variational problems. Comm. Pure Appl. Math. 42(5), 577–685 (1989)

26. Nielsen, M.: Graduated non-convexity by smoothness focusing. In: Proceedings of
the British Machine Vision Conference, p. 60. BMVA Press (1993)

27. Sindhwani, V., Keerthi, S.S., Chapelle, O.: Deterministic annealing for semi-
supervised kernel machines. In: ICML 2006, pp. 841–848. ACM, New York (2006)

28. Strekalovskiy, E., Chambolle, A., Cremers, D.: Convex relaxation of vectorial prob-
lems with coupled regularization. SIAM J. Imaging Sciences 7(1), 294–336 (2014)

29. Sun, D., Roth, S., Black, M.J.: Secrets of optical flow estimation and their princi-
ples. In: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp.
2432–2439. IEEE (June 2010)

30. Terzopoulos, D.: The computation of visible-surface representations. IEEE Trans.
Pattern Anal. Mach. Intell. 10(4), 417–438 (1988)

31. Turk, G., Levoy, M.: Zippered polygon meshes from range images. In: Proceedings
of the 21st Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH 1994, pp. 311–318. ACM, New York (1994)

32. Vural, E., Frossard, P.: Analysis of descent-based image registration. SIAM J. Imag-
ing Sciences 6(4), 2310–2349 (2013)

33. Watson, L.T.: Theory of globally convergent probability-one homotopies for non-
linear programming. SIAM Journal on Optimization, 761–780 (2001)



Why Does Non-binary Mask Optimisation Work

for Diffusion-Based Image Compression?

Laurent Hoeltgen and Joachim Weickert

Mathematical Image Analysis Group,
Faculty of Mathematics and Computer Science, Campus E1.7

Saarland University, 66041 Saarbrücken, Germany
{hoeltgen,weickert}@mia.uni-saarland.de

Abstract. Finding optimal data for inpainting is a key problem for
image-compression with partial differential equations. Not only the loca-
tion of important pixels but also their values should be optimal to max-
imise the quality gain. The position of important data is usually encoded
in a binary mask. Recent studies have shown that allowing non-binary
masks may lead to tremendous speedups but comes at the expense of
higher storage costs and yields prohibitive memory requirements for the
design of competitive image compression codecs. We show that a recently
suggested heuristic to eliminate the additional storage costs of the non-
binary mask has a strong theoretical foundation in finite dimension. Bin-
ary and non-binary masks are equivalent in the sense that they can both
give the same reconstruction error if the binary mask is supplemented
with optimal data which does not increase the memory footprint. Fur-
ther, we suggest two fast numerical schemes to obtain this optimised data.
This provides a significant building block in the conception of efficient
data compression schemes with partial differential equations.

Keywords: Laplace Interpolation, Inpainting, Convex Optimisation.

1 Introduction

A major challenge in data analysis is the reconstruction of a function, for ex-
ample a 1D signal or an image, from a few data points. In image processing this
interpolation problem is called inpainting [1, 2]. Often one has no influence on the
given data and thus improvements can only be made by introducing more power-
ful reconstruction models. In some interesting applications however, one has the
freedom to choose the data used for the reconstruction. For instance, in recent
approaches related to image compression [3–12] the authors selected suitable
interpolation data for reconstructions via partial differential equations (PDEs).
Köstler et al. demonstrated in [13] that PDEs can also be used to compress video
sequences. Let us emphasise that finding good data sets for interpolation is by
no means a simple task. Choosing for example 5% of the pixels from a 256× 256
pixel large image offers more than 105000 possible combinations.

Besides a good selection for the position of the interpolation data, one can
also consider an optimisation of corresponding data values in the co-domain.

X.-C. Tai et al. (Eds.): EMMCVPR 2015, LNCS 8932, pp. 85–98, 2015.
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Schmaltz et al. [6] used direct searching strategies to find good tonal values
for the reconstruction of their nonlinear diffusion process. Mainberger et al. [8]
presented a solid mathematical foundation of tonal optimisation and emphasised
the benefits of a good spatial and tonal data selection. Since their inpainting was
based on the Laplace equation, the optimal grey values could be found by solving
a least squares approach. A related optimal control based model to find good
inpainting masks was considered by Hoeltgen et al. [10]. This model, however,
uses a regularised formulation that does not require the mask to be binary. It
reduces an unfeasible combinatorial problem to a series of convex optimisation
problems that can be solved in an highly efficient way. Similar models were also
discussed in [11] by Chen et al., whereas Ochs et al. suggested fast numerics in
[14, 15]. The approaches of Mainberger et al. [8], Hoeltgen et al. [10], and Chen
et al. [11] achieve a similar high level of reconstruction quality. The benefits of
the control based approach of Hoeltgen et al. [10] over the Mainberger method
[8] is its significantly lower runtime. Unfortunately, storing non-binary masks is
expensive in terms of memory requirements, especially in the context of image
compression. As a remedy, Hoeltgen et al. [10] suggested a heuristic to reduce
the storage requirements. They proposed to binarise the mask and to apply the
tonal optimisation of Mainberger et al. [8] as a postprocessing step. Interestingly
this heuristic yielded a intriguing phenomenon: The error with optimal mask
values and original data were almost identical to the errors with binary masks
and optimised grey values.

Our Contribution. The goal of our paper is to show that the similarity in
the error measures discovered in [10] is no coincidence. We show that in a finite
dimensional setting the reconstruction error with an optimal non-binary mask
and original image data is always identical to the error with a binary mask
combined with tonal optimisation. Thus, we provide a mathematically sound
foundation for the development of a image compression codec based on the
Laplace equation. Furthermore, we also propose two highly efficient algorithms
to handle the latter tonal value optimisation on the CPU and the GPU.

Structure of the Paper. Our paper is organised as follows. In Section 2 we
briefly introduce the underlying inpainting scheme as well as the related optim-
isation tasks that will be analysed in this paper. Section 3 shows the main result
of this work, namely the equivalence between the optimisation problems from the
first section. Next, Section 4 demonstrates two new numerical schemes that allow
a fast and efficient optimisation on both the CPU and GPU. Finally, the paper is
closed in Section 5 with a summary and an outlook on future challenges.

2 Inpainting with Homogeneous Diffusion

Inpainting with homogeneous diffusion (sometimes also called Laplace interpol-
ation) is a rather simple reconstruction method that is well suited for highly
scattered data in arbitrary dimensional settings. It can be modelled as follows.
Let f : Ω → IR be a smooth function on some bounded domain Ω ⊂ IRn
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with a sufficiently regular boundary ∂Ω. Throughout this work, we will restrict
ourselves to the case n = 2 (grey value images) even though many of the results
hold for arbitrary n � 1. Moreover, let us assume that there exists a closed
nonempty set of known data ΩK � Ω that will be interpolated by the underly-
ing diffusion process. Homogeneous diffusion inpainting considers the following
partial differential equation with mixed boundary conditions.

−Δu = 0,

u = f,

∂nu = 0,

on Ω \ΩK

on ∂ΩK

on ∂Ω \ ∂ΩK

(1)

where ∂nu denotes the derivative of u in the outer normal direction. We assume
that both boundary sets ∂ΩK and ∂Ω \ ∂ΩK are nonempty. Equations of this
type are commonly referred to as mixed boundary value problems and sometimes
also as Zaremba’s problem named after Stanislaw Zaremba who studied such
equations already in 1910 [16]. The existence and uniqueness of solutions has
been extensively studied during the last century. Showing that (1) is indeed
solvable is by no means a trivial feat. We refer to [17] for an extensive study of
linear elliptic partial differential equations. A particularly easy case is the 1-D
setting, where the solution can obviously be expressed using piecewise linear
splines interpolating data on ∂ΩK .

Following [8], we introduce the confidence function c : Ω → IR which states
whether a point is known or not. It is defined by

c (x) :=

{
1 for x ∈ ΩK ,

0 for x ∈ Ω \ΩK .
(2)

The confidence function lets us rewrite (1) as a more compact functional equation
of the form

c (x) (u (x)− f (x))− (1− c (x))Δu (x) = 0, on Ω

∂nu (x) = 0, on ∂Ω \ ∂ΩK .
(3)

As shown in [5, 8], the choice of c has a substantial influence on the solution.
For most parts of this text we will prefer the formulation (3), as it is more
comfortable to work with. Further, this formulation also makes sense when c is
not binary-valued but takes arbitrary values. This observation was also exploited
in [10] where the authors complemented (3) by a convex energy to obtain a sparse
set of optimal values for c.

A discrete framework corresponding to (3) is easily obtained by a straightfor-
ward discretisation of the functions c, u and f on a regular grid of size n1 × n2

and by placing the corresponding entries in vectors c, u and f respectively. If A
represents the symmetric N ×N matrix (N being the total numbers of pixels on



88 L. Hoeltgen and J. Weickert

our grid, e.g. N = n1n2) of the discrete Laplace operator Δ with homogeneous
Neumann boundary conditions on ∂Ω \ ∂ΩK we obtain

diag (c) (u− f ) + (I − diag (c)) (−A)u = 0 (4)

where I is the identity matrix, diag (c) is a diagonal matrix with the sampled
values from c as its entries on the main diagonal. By a simple reordering of the
terms, (4) can be rewritten as the following linear system,(

diag (c) +

(
I − diag (c)

)
(−A)

)
u = diag (c) f (5)

If the vector c contains as its entries only the values 0 or 1 and if it is not the
zero vector, then it has been shown in [7] that this linear system of equations
has a unique solution and that it can be solved efficiently by using bidirectional
multigrid methods. Further, Mainberger et al. demonstrated in [8] that a careful
tuning of the data f can lead to large quality gains in the reconstruction, e.g.
one seeks data g such that solutions of(

diag (c) +

(
I − diag (c)

)
(−A)

)
u = diag (c) g (6)

are as close to our desired output f as possible. Related investigations can also be
found in [18], where the authors present subdivision strategies that exploit non-
linear PDEs. If the underlying diffusion process is based on a linear operator,
then the optimisation can be formulated as a linear least squares problem by
considering

g = argmin
x∈IRN

⎧⎨⎩1

2

∥∥∥∥∥
(
diag (c) +

(
I − diag (c)

)
(−A)

)−1

diag (c)x− f

∥∥∥∥∥
2

2

⎫⎬⎭ (7)

We refer to [8] for the original presentation of this model. In the context of
nonlinear diffusion it is not possible to consider such a convex optimisation
problem. Schmaltz et al. suggested in [6] to use clever searching strategies in
this case.

To alleviate the upcoming discussion we introduce two definitions related to
the just mentioned linear system needed for the reconstruction and the least
squares problem required for the optimisation. We call inpainting matrix the
following N ×N matrix

B (c) := diag(c) + (I − diag(c)) (−A) .

Further, if we have a mask c to our avail for which the inpainting matrix is
invertible, then we call the following N ×N matrix reconstruction matrix

M(c) := B−1(c) diag(c) .
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The exact requirements for the existence of B−1(c) will be covered in future
work. For the moment we simply assume that this matrix exists. Using these
definitions, we can rewrite the linear system (5) as

B (c)u = diag(c)f ⇔ u = M(c)f (8)

and the grey value optimisation problem from (7) takes the form

g = argmin
x∈IRN

{
1

2
‖M(c)x− f‖22

}
(9)

In order to quantify the quality of the results obtained from the inpainting
we introduce the reconstruction error which simply measures the �2 distance
between the reconstruction and the initially specified data. We denote it by

E (c, g) :=
1

2
‖M(c) g − f‖22 (10)

Note that the reconstruction error is simply a rescaled variant of the popular
mean square error frequently used for error measures. We will use the recon-
struction error as it is more directly related to the optimisation problem to be
analysed in this paper.

3 Optimisation in the Co-domain

Let us introduce some further notations and definitions relevant for the forth-
coming paragraphs. For the sake of simplicity we assume that all N pixels in
our image have been labelled by a single index. Thus, the individual pixel loc-
ations are given by the set J := {1, . . . , N}. Further, we assume that the mask
positions have been fixed beforehand and cannot be altered anymore. Also we
require that the mask is not empty. We denote the set of mask positions by
K ⊆ J . Clearly, it follows that ci = 0 for all i ∈ J \K. For i ∈ K we are left with
three possibilities. Either we fix the mask value ci for all i ∈ K and manipulate
the pixel value gi to improve the reconstruction, or we fix gi and optimise the
value of ci. Lastly we could also try to optimise both gi and ci for all i ∈ K. In
this paper we are interested in the first two special cases. Setting ci = 1 for all
i ∈ K and optimising g yields the tonal optimisation problem described in [8].
Fixing g = f and optimising c is related to the strategies from [10], even though
the approach there did not require the support of c to be specified beforehand.
The question arises which of these two frameworks yields the smaller error. Both
methods can only influence the reconstruction at locations indicated by the set
K. Both optimisation strategies can be reduced to a system of |K| equations al-
though these are only linear if we optimise g. In order to analyse these problems
let us denote by c the following mask:

ci :=

{
1, i ∈ K
0, i 
∈ K

(11)
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Then we can reformulate the two previously described settings as the following
optimisation problems.

g = argmin
x∈IRN

{E (c,x)} and c̃ = argmin
ci,i∈K

{E (c,f)} (12)

Let us emphasise, that the optimisation is always to be understood as uncon-
strained. We do not restrict the range of values that the mask or the data takes.
The necessary conditions for a minimum of E with respect to g (resp. c) are
given by

∂

∂gi
E (c, g) = 0, ∀i ∈ J resp.

∂

∂ci
E (c,f) = 0, ∀i ∈ K (13)

In order to analyse the potential benefits of optimising the mask values or the
grey values we need analytic representations of the gradient of E with respect
to each of its variables. To this end we adapt a result from Ochs et al. [14]
(Lemma 9). There, the authors stated it for the case x = f . We refer to the
original work for the proof.

Proposition 1 (Gradients of the Reconstruction Error). The gradients
of the reconstruction error with respect to its two arguments are given by

∇cE (c,x) = diag
(
x− (I +A)M (c)x

)
B−�(c)

(
M(c)x− f

)
, (14)

∇xE (c,x) = M�(c) (M(c)x− f) . (15)

Note that both gradients of E have a certain similarity. If we denote

T := B−�(c)
(
B−1(c) diag(c)x− f

)
, (16)

then we have

∇cE (c,x) = diag
(
x− (I +A)B−1 (c) diag(c)x

)
T , (17)

∇xE (c,x) = diag(c)T . (18)

Assume now that for fixed mask positions K we have found the optimal mask
values c̃ for the reconstruction with respect to the original data f . This means
we have (∇cE (c,f)

∣∣
c=c̃

)
i
= 0 ∀i ∈ K . (19)

Inserting the expression from (14) into (19) yields(
diag

(
f − (I +A)M (c̃)f

)
B−�(c̃)

(
M (c̃)f − f

))
i

= 0 ∀i ∈ K . (20)

The previous equation is a product between a diagonal matrix and a vector. This
comes down to a componentwise multiplication between the diagonal entries of
the matrix and the vectors entries. Therefore, at least one of the two following
equations must hold:

(f − (I +A)M (c̃)f)i∈K = 0 , (21)(
B−�(c̃) (M (c̃)f − f)

)
i∈K

= 0 . (22)
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Our goal is to show that the second equation actually always holds for all i ∈ K.
If for a certain entry i ∈ K, the first equation equation differs from 0, then the
second one must be 0. Thus, we only need to show that the first equation can
never hold. To his end, note that u := M(c̃)f solves by definition the equation

diag (c̃) (u− f)− (I − diag (c̃))Au = 0 (23)

and that (21) is equivalent to

diag(c̃) (f − (I +A)M (c̃)f ) = 0 . (24)

From (23) it follows that

diag(c̃) (u− f +Au) = Au . (25)

Plugging (25) into (24) yields the requirement −Au = 0. Thus, if (21) would
hold, then the reconstruction u = M (c̃)f would also solve Au = 0. This would
contradict our assumption that the inpainting mask c̃ is nonempty. Therefore,
(21) can never hold.

Similarly as for (24), we note that (22) can be extended to all indices i ∈ K
by multiplying it from the left with diag(c̃). This gives us

diag(c̃)B−� (c̃) (M (c̃)f − f) = 0

which implies that
∇xE (c̃,x)

∣∣
x=f

= 0 . (26)

The previous equation implies that if we have found optimal mask values, then
all necessary optimality conditions with respect to the mask values and with
respect to the data values are fulfilled.

Conversely, we could also set ci = 1 for all i ∈ K to obtain a mask c and
optimise the grey values for reconstruction. This yields the requirement

∇xE (c,x) = 0

⇔ diag(c)B−� (c)
(
B−1 (c) diag(c)x− f

)
= 0,

⇔
(
B−� (c)

(
B−1 (c) diag(c)x− f

))
i
= 0, ∀i ∈ K (27)

Assume that we are in possession of optimal data g for given c such that (27)
holds. In combination with (16), it follows then that we have(∇cE(c, g)

∣∣
c=c

)
i
= 0 ∀i ∈ K

Thus, if we have a binary mask to our avail with optimised tonal values, then it
follows again that all necessary optimality conditions are fulfilled. We summarise
the previous results in the following theorem.

Theorem 1 (Fulfilment of Optimality Conditions). Non-binary optimisa-
tion of the mask values while keeping the grey values fixed at the original data
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yields a pair of data that fulfils all necessary optimality conditions for minim-
ising the error of the reconstruction. Similarly, fixing a binary sparsity pattern
for the inpainting mask and optimising the grey values also returns a pair of
data that fulfils all necessary optimality conditions for minimising the error of
the reconstruction.

Ultimately we would like to show that the reconstruction error is the same
regardless of whether we optimise the mask c and keep the data fixed or whether
we optimise the data and enforce a binary inpainting mask. In order to show this,
we need to prove that

E (c̃,f) = E (c, g) . (28)

To this end let an optimal mask c̃, such that E (c̃,f ) is minimal, be given and
assume that there exists a vector g such that the reconstruction is the same with
the binary mask c̄ corresponding to c̃. Thus, we have

M(c) g = M(c̃)f . (29)

By applying the definition of M(c) we obtain the following analytic expression
for g:

g = diag(c)B(c)M(c̃) f (30)

For a given mask c̃ the right-hand side can always be computed provided that
B−1(c̃) exists. In order to show that grey value optimisation comes with no loss
compared to mask optimisation we have to show that the pair (c, g) from (30)
satisfies the normal equations (15). Thus, we have to show that

M�(c) (M (c) g − f) = 0 (31)

An essential observation in the verification of (31) is that c and c̃ have the
same sparsity pattern, i.e. ci = 1 ⇔ c̃i 
= 0 and ci = 0 ⇔ c̃i = 0. This
implies that for the kernels we obtain ker (diag(c)) = ker (diag(c̃)) and thus
ker (M (c)) = ker (M (c̃)), too. Further, we note that for any linear operator K

from IRn to IRn we have ker
(
K�) = ran (K)

⊥
, where ran denotes the range of

the operator. Combining this identity with the first isomorphism theorem yields

ker
(
M� (c)

)
= (ran (M (c)))

⊥  (IRn/ ker (M (c)))
⊥

= (IRn/ ker (M (c̃)))
⊥  (ran (M (c̃)))

⊥
= ker

(
M�(c̃)

) (32)

The importance of this identity will become clear in a moment. By assumption,
c̃ was chosen optimal. This implies ∇cE (c̃,f) = 0. Because of Theorem 1 it
follows that ∇xE (c̃,f) = 0 is also true. Expanding this equation and using (29)
gives us

M�(c̃) (M (c) g − f ) = 0 . (33)

Two possibilities exist. Either M (c) g−f = 0 in which case (31) holds trivially,
or 0 
= M (c) g − f ∈ ker

(
M� (c̃)

)
. From (32) it follows that M (c) g − f ∈

ker
(
M� (c)

)
and thus (31) is fulfilled, too. We conclude that our vector g con-

tains the optimal grey values for a binary mask. We summarise our findings in
the following theorem.
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Theorem 2 (Equivalence between Tonal and Spatial Optimisation).
Let c̃ be a solution of

min
ci,i∈K

{E (c,f)} (34)

and assume that B−1 (c̃) exists. Then the vector g given by (30) solves

min
x
{E (c,x)} (35)

where c is the binary mask corresponding to c̃ and E (c̃,f) = E (c, g), i.e. the
reconstruction error is the same in each case.

We note that the preceding theory also gives us an analytic expression for the
optimal grey values in (30) in terms of optimal mask values.

4 Fast and Efficient Tonal Optimisation

In the previous section we have shown that a tonal optimisation comes with no loss
compared to non-binary mask optimisation. Nevertheless, finding the best mask
values is a tedious non-convex optimisation task whereas the grey value optimisa-
tion problem is a convex least squares problem. The latter family of problems is
well studied and many highly efficient strategies exist. In this section we present
two fast methods that allow an efficient computation of the perfect tonal values
without having to resort to (30) and optimal mask values. Let us remark that our
cost function E (c, ·) is convex but not strictly convex. Indeed the reconstruction
matrix M (c) is only invertible if ci = 1 for all i. Further, it is easy to see that
usually there exist infinitely many minimisers of E (c, ·). If g is a minimiser, than
we can arbitrarily change any entry i of g where ci = 0.

In the following we present two strategies. The first one is well suited for imple-
mentations on a CPU, whereas the second one exploits the massive parallelism
provided by modern GPUs.

4.1 LSQR Approach

The venerable LSQR algorithm [19, 20] is a highly efficient method to solve
general least squares problems of the form

argmin
x∈IRn

{‖Kx− b‖2} (36)

with a large, sparse and unsymmetric matrixK. The underlying iterative process
applies the bidiagonalisation process of Golub and Kahan [21] and decreases the
norm of the residual in each step. Although the algorithm generates a sequence
of iterates that has the same properties as those from standard conjugate gradi-
ent methods it tends to behave much better in numerically ill-posed situations.
Further, it is easy to implement, and it only requires the matrix K for comput-
ing matrix vector products of the form Ku and K�v for various vectors u and
v. In presence of routines capable of computing these products efficiently, it is
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not even necessary to know the matrix explicitly. This fact makes the algorithm
attractive for solving (12). The adaptation is straightforward. It suffices to to
set K = M (c) in (36). For our setting we have

y = M (c)x ⇔ B (c)y = diag(c)x ,

y = M�(c)x ⇔ B�(c)z = x, y = diag(c)z .
(37)

The linear systems B (c)y = diag(c)x and B�(c)z = x can be solved in
a highly efficient manner with either the multigrid methods from [7] or the
multifrontal sparse LU decomposition from [22–24]. For the sparse LU solver
the decomposition of the matrix B (c) needs only be done once during the first
iteration of the LSQR algorithm. Forthcoming iterations can then be computed
at almost no additional cost. This yields an extremely fast strategy. The complete
algorithm is depicted in Algorithm 1.

Algorithm 1: Tonal optimisation with the LSQR Algorithm.

Input : Reconstruction matrix M (c), data f , number of iteration N
Output : Solution of the least squares problem (12) xN

Initialise : ū1 = b, β1 = ‖ū1‖, u1 = β−1
1 ū1, v̄1 = M�(c)u1, α1 = ‖v̄1‖,

v1 = α−1
1 v̄1, w1 = v1, x0 = 0, φ̄1 = β1, ρ̄1 = α1

1 for k from 1 to N do
2 ūk+1 = M (c) vk − αkuk, βk+1 = ‖ūk+1‖, uk+1 = β−1

k+1ūk+1

3 v̄k+1 = M (c)�uk+1 − βk+1vk, αk+1 = ‖v̄k+1‖, vk+1 = α−1
k+1v̄k+1

4 ρk =
√

ρ̄2k + β2
k+1, ck = ρ̄k/ρk, sk = βk+1/ρk

5 θk+1 = skαk+1, ρ̄k+1 = −ckαk+1, φk = ckφ̄k, φ̄k+1 = skφ̄k

6 xk+1 = xk−1 + (φk/ρk)wk

7 wk+1 = vk+1 − (θk+1/ρk)wk

8 end

4.2 Primal Dual Method

Alternatively to the LSQR algorithm, we may also apply primal dual approaches
that have enjoyed an increasing popularity in the previous years, especially in
the domain of image processing. Starting from (12) we rewrite the optimisation
problem by introducing a dummy variable d and enforce that d coincides with
our reconstruction M (c)x. Using the indicator function ι{0} defined as

ι{0}(x) :=

{
0, x = 0

∞, x 
= 0
(38)

we can reformulate our task in the following way:

argmin
x,d∈IRN

{
1

2
‖d− f‖22 + ι{0} (d−M (c)x)

}
. (39)
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Note that d = M(c)x if and only if B(c)d = diag(c)x. Thus, (39) is equivalent
to

argmin
x,d∈IRN

{
1

2
‖d− f‖22 + ι{0} (B(c)d− diag(c)x)

}
. (40)

The benefit of the latter equation is that we have eliminated the inverse B−1 (c)
by introducingB (c) at another position. Equation (40) can be efficiently handled
with the algorithm presented in [25]. Applying the primal dual method from [25]
only requires the evaluation of B (c)u and B� (c)v for vectors u and v. Since
the matrix B (c) is structured and extremely sparse, these computations can
be handled in an efficient manner, leading to a high performing grey value op-
timisation strategy. A straightforward application of Algorithm 1 from [25] with

G (x) := 1
2 ‖x− f‖2 and F (x) = ι{0} (x) gives us the simple iterative strategy

shown in Algorithm 2.

Algorithm 2: Tonal optimisation with primal dual methods.

Input :N the number of iterations.
Output : Vectors xN+1 and dN+1 solving (40)
Initialise : τ , σ > 0 such that στ‖

(
B (c) − diag(c)

)
‖22 < 1, θ ∈ [0, 1],

u0, c0, y0 arbitrary, û0 = u0 and ĉ0 = c0

1 for k from 1 to N do

2 yk+1 = yk + σ
(
B (c) d̂

k − diag(c) x̂k
)

3 dk+1 = (1 + τ )−1
(
dk − τ

(
B (c)�yk+1 − f

))
4 xk+1 = xk + τ diag(c)yk+1

5 d̂
k+1

= dk+1 + θ
(
dk+1 − dk

)
6 x̂k+1 = xk+1 + θ

(
xk+1 − xk

)
7 end

This algorithm is better suited for parallel implementations than Algorithm 1
since almost all operations are pointwise and do not depend on each other. Fur-
ther it does not have to solve any linear systems of equations. Let us also remark
that additional optimisations like preconditioning strategies, as presented in [26],
could further improve the performance of Algorithm 2.

4.3 Performance Comparison

We compare the performance with respect to speed of our LSQR solver, the
primal dual solver and the stochastic tonal optimisation method from [8]. The
algorithms were implemented in Fortran and C and all the tests were done on
a standard desktop PC with an Intel Xeon processor (3.2GHz) and 24GB of
memory. We also used a Nvidia GeForce GTX 460 for the GPU experiments.
The runtimes are depicted in Table 1. The represented timings are the averages
of three runs for each test case. We used different sizes of the trui test image
(see Figure 1). Due to spatial constraints we only give results for a single im-
age. The performance for other images are analogous. For each image size we
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Table 1. Speed comparison between the different algorithms for tonal optimisation on
the CPU and GPU. The approach of Mainberger et al. from [8] performs worst on every
image size and its runtime increases much faster for larger images than for the other
two algorithms. The LSQR approach has the best runtimes on the CPU whereas the
primal dual method excels on the GPU. The runtime for computing the mask positions
is not included as it is the same for every method.

Image Size
Runtime CPU (seconds) Runtime GPU

Method from [8] Algorithm 1 Algorithm 2 Algorithm 2

32× 32 7.99 0.44 1.37 1.04
48× 48 32.57 1.23 2.90 1.35
64× 64 156.33 2.69 5.82 1.28
80× 80 360.42 4.63 8.50 1.47
96× 96 783.87 7.72 14.89 2.30

112× 112 1633.82 12.02 35.86 2.60
128× 128 3116.70 18.73 52.57 3.33
256× 256 95832.64 113.07 260.26 9.02

Figure 1. Data used for the experimental setup with a corresponding reconstruction.
Left: original (256 × 256), Center: binary mask, Right: reconstruction after tonal op-
timisation.

computed a binary inpainting mask using the optimal control framework from
[10]. All masks have a density within the range of 5.0 ± 0.1%. We used the
algorithm from [8] as a reference method and compared how our algorithms per-
form in terms of speed. All algorithms converged towards the same solution. The
method from [8] uses a multigrid solver for the computation of the inpainting
echos. It stopped when the error between two iterates dropped below 10−3. Al-
gorithm 1 stopped when the increment in the solution dropped in norm below
10−10 whereas Algorithm 2 halted its execution when the update in any variable
was smaller than 10−15 in norm. These tolerances were chosen such that the
resulting images always had the same reconstruction error.

The exceptional performance of the LSQR algorithm stems from the fact that
it reached a convergent state within 10 to 30 iterations which implies that it
requires less than 100 inpaintings, whereas the method from [8] has to compute
an inpainting for every mask pixel during each iteration. While Algorithm 1 is
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well suited for CPU implementations, the fact that most of the computations in
Algorithm 2 can be done in parallel and that no linear systems must be solved
render this algorithm attractive for GPUs.

5 Summary and Conclusions

We have shown an equivalence result for inpainting with the Laplace equation
when the data positions are fixed: Grey value optimisation with binary masks
is equivalent to non-binary mask optimisation. This finding justifies the post-
processing step proposed in [10] where the optimal mask values were exchanged
with optimal data values. Our results show that this strategy comes with no loss
in the reconstruction quality. Further, it significantly reduces the amount of data
to be stored for compression purposes and marks a significant step towards a
fast PDE based data compression codec. Finally, we have suggested two efficient
algorithms to solve the tonal optimisation problem on the CPU and on the GPU.

It remains an open question whether a combined and simultaneous optimisa-
tion of the mask and the interpolation data can yield an even better reconstruc-
tion. The analysis of this problem as well as the development of a competitive
image compression codec will be the subject of future work.

References

1. Masnou, S., Morel, J.M.: Level lines based disocclusion. In: Proc. of the Interna-
tional Conference on Image Processing, vol. 3, pp. 259–263. IEEE (1998)

2. Bertalmı́o, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In:
Proc. SIGGRAPH, pp. 417–424. ACM Press/Addison-Wesley Publishing Company,
New Orleans, LI (2000)
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C. (eds.) VLSM 2005. LNCS, vol. 3752, pp. 37–48. Springer, Heidelberg (2005)

4. Liu, D., Sun, X., Wu, F., Li, S., Zhang, Y.Q.: Image compression with edge-based
inpainting. IEEE Transactions on Circuits, Systems and Video Technology 7(10),
1273–1286 (2007)

5. Belhachmi, Z., Bucur, D., Burgeth, B., Weickert, J.: How to choose interpolation
data in images. SIAM Journal on Applied Mathematics 70(1), 333–352 (2009)

6. Schmaltz, C., Weickert, J., Bruhn, A.: Beating the quality of JPEG 2000 with
anisotropic diffusion. In: Denzler, J., Notni, G., Süße, H. (eds.) DAGM 2009. LNCS,
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l’Académie des Sciences de Cracovie, 313–344 (1910)

17. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order.
Springer (2001)
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Abstract. Image priors are of great importance in image restoration
tasks. These problems can be addressed by decomposing the degraded
image into overlapping patches, treating the patches individually and
averaging them back together. Recently, the Expected Patch Log Like-
lihood (EPLL) method has been introduced, arguing that the chosen
model should be enforced on the final reconstructed image patches. In
the context of a Gaussian Mixture Model (GMM), this idea has been
shown to lead to state-of-the-art results in image denoising and deblur-
ing. In this paper we combine the EPLL with a sparse-representation
prior. Our derivation leads to a close yet extended variant of the popular
K-SVD image denoising algorithm, where in order to effectively maxi-
mize the EPLL the denoising process should be iterated. This concept
lies at the core of the K-SVD formulation, but has not been addressed
before due the need to set different denoising thresholds in the successive
sparse coding stages. We present a method that intrinsically determines
these thresholds in order to improve the image estimate. Our results
show a notable improvement over K-SVD in image denoising and inpaint-
ing, achieving comparable performance to that of EPLL with GMM in
denoising.

Keywords: K-SVD, EPLL, MAP, Sparse Representations, Image
Restoration.

1 Introduction

Inverse problems in image processing consist of recovering an original image that
has been degraded. Denoising, debluring and inpaiting are specific and common
such examples. Put formally, these problems attempt to recover an underlying
image x given the measurement y such that

y = Ax+ n, (1)

where A is a known linear operator and n represents measurement noise, as-
sumed to be independent and normally distributed. In dealing with this problem,
it is common to work with image priors as regularizers and develop a Maximum
a Posteriori (MAP) estimator for the unknown image x̂. This can be formulated
as an optimization problem where we look for an estimate which is close enough
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to the measured image while being likely under this prior. Most state of the
art methods employ, either implicitly of explicitly, some prior knowledge of this
form [6,10,8,4].

Learning specifics priors from real data has shown to enable better perfor-
mance under this approach [7,12]. However, this learning process is computa-
tionally hard and it is usually restricted to small dimensions, which leads nat-
urally to the modeling of small image patches [1,15]. Such methods attempt to
address the image restoration problem by breaking the image into small overlap-
ping patches, solving their MAP estimate, and tiling the results back together
by averaging them [6,4,3]. While this is a common and practical strategy, it is
also known to cause visible texture-like artifacts in the final image. Recently,
Zoran and Weiss [16] proposed a general framework based on the simple yet ap-
pealing idea that the resulting final patches should be likely under some specific
prior, and not the intermediate ones. Their approach is based on maximizing
the Expected Patch Log Likelihood (EPLL) which yields the average likelihood
of a patch on the final image under some prior. This idea is general in the sense
that it can be applied to any patch-based prior for which a MAP estimator can
be formulated. In particular, the authors in [16] employed the classic Gaussian
Mixture Model prior achieving state of the art results in image denoising and
deblurring.

The concept of sparsity is a recurring idea in most state of the art restoration
methods; namely, a natural signal or image patch can be well represented by
a linear combination of a few atoms from a dictionary [2,8]. This leads to the
natural question, could we use the EPLL framework with a sparsity-inspired
prior? If so, how is this related to existing methods that explicitly target this
problem and what is there to gain from this approach? In this paper we explore
and formally address these questions, showing that indeed benefit can be found
in employing EPLL with a patch sparsity-based prior.

2 Expected Patch Log Likelihood

We begin by briefly reviewing the EPLL framework as described in [16]. Given
an image x, the Expected Patch Log Likelihood under some prior p is defined as

EPLLp(x) =
∑
i

log p(Pix), (2)

where Pi extracts the i
th patch from x. Therefore, given the corruption model

in Eq. (1) we can propose to minimize the following cost function:

fp(x|y) =
λ

2
||Ax− y||22 − EPLLp(x), (3)

where the first term represents the log likelihood of the image. To get around
the hard optimization of this function, the authors in [16] propose to use a Half
Quadratic Splitting strategy by defining auxiliary patches {zi} for each patch
Pix, and then minimizing

cp,β(x, {zi}|y) =
λ

2
||Ax− y||22 +

∑
i

β

2
||Pix− zi||22 − log p(zi) (4)
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iteratively, while increasing the value of β. Note that for β → ∞, zi → Pix,
so this parameter controls the distance between the auxiliary patches and the
patches of the image x. For a fixed value of β, the cost function is again broken
into a two step inner minimization: first fix {zi} and solve for x by

x =
λATy + β

∑
i P

T
i z

i

λATA+ β
∑

iP
T
i Pi

.1 (5)

Then, fix x and solve for {zi} by solving the MAP estimate for each patch under
the prior in consideration. This process should be repeated 4-5 times, before
increasing β and repeating the whole process again. Each time, the patches are
taken from the image estimate at each iteration.

Within the EPLL scheme, the choice of β is crucial. In [16] the authors set this
parameter manually to be 1

σ2 [1, 4, 8, 16, 32, . . . ], where σ is the noise standard
deviation. In the same work it is also suggested that β could be determined
as β = 1

σ2 , where σ is estimated in every iteration by an off-the-shelf white
Gaussian noise estimator.

3 EPLL with a Sparse Prior

In the original formulation, Zoran and Weiss propose to use a Gaussian Mixture
Model (GMM) prior which is learnt off-line from a large number of examples. In
their case, the MAP estimator for each patch is simply given by the Wiener filter
solution for the Gaussian component with the highest conditional weight [16].
However, the EPLL approach is a generic framework for potentially any patch-
based prior. We now turn to explore the formulation of an equivalent problem
with a sparsity inducing prior.

3.1 Cost Function Formulation

Consider the signal z = Dα, where D is a redundant dictionary of size n ×m
(n < m), and the vector α is sparse; i.e., ||α||0 ! n, where the l0 pseudo-norm
|| · ||0 basically counts the non zero elements in α. Assuming that this is the
model we impose on our patches zi, Eq. (4) becomes

cμ,β(x, {αi}|y) =
λ

2
||Ax− y||22 +

∑
i

β

2
||Dαi −Pix||22 + μi||αi||0. (6)

In this case, μi reflects the trade-off between the accuracy of the representation
and the sparsity of αi. For the case β = 1, this last expression corresponds exactly
to the formulation of the K-SVD denoising algorithm in [6], where A = I. In
this work, Elad and Aharon proposed to use a block-coordinate minimization

1 Note that this an abuse of notation as the denominator is a diagonal matrix to be
inverted.
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that starts by fixing x = y, and then seeking the optimal αi solving the MAP
estimator for each patch:

α̂i = argmin
α

μi||αi||0 + ||Dαi −Pix||22. (7)

Though this problem is NP-hard in general, its solution can be well approximated
by greedy or pursuit algorithms [5]. In particular, the Orthogonal Matching
Pursuit (OMP) [14] can be used with the noise energy as an error threshold
to yield an approximation of the solution to Problem (7), and we employ this
method in our work due to its simplicity and efficienty [13]. This way, μi is
handled implicitly by replacing the second term by a constraint of the form

min
α
||α||0 subject to ||Dα−Pix||22 ≤ ncσ2, (8)

where c is a constant factor set to 1.15 in [6]. Given the estimated sparse vectors
{α̂i}, the algorithm proceeds by updating for the unknown image x which results
in an equivalent expression to that in Eq. (5) - for a specific value of β. When
denoising is done locally (training the dictionary on the corrupted patches) the
dictionary gets updated together with the sparse vectors by using a K-SVD step.
This adaptive method that trains the dictionary on the noisy image itself has
proven to be better than using a dictionary trained offline.

The initial claim in [6] is that the above block-coordinate minimization should
be iterated. In practice, however, repeating this process is problematic since after
updating x, the noise level has changed and it is spatially varying. Therefore,
the sparse coding stage has no known thresholds to employ. Thus, the algorithm
in [6] does not iterate after updating x.

Increasing β, as practised in [16], forces the distance ||Dαi − Pix||2 to be
smaller. Therefore, iterating the above algorithm for increasing values of β is
equivalent to iterating the process described for the K-SVD with smaller thresh-
olds. As we see, the algorithm proposed in [6] applies only the first iteration
of the EPLL scheme with a sparse-enforcing prior, therefore losing important
denoising potential. A synthetic example is shown in Fig. 1, where we compare
the algorithms in [6] and [16] with the method proposed in this paper.

We now turn to address the matter of the threshold design for later stages of
the K-SVD in order to practice the EPLL concept in an effective way.

3.2 Sparse Coding Thresholds

Consider the threshold in the sparse coding stage, at each iteration k, to be ν2k .
Naturally, in the first iteration of the process that aims to minimize Eq. (6) we
set this threshold to be exactly the noise energy σ2 for all patches; i.e. ν21 = σ2.
In the following iterations, however, instead of trying to estimate the remaining
noise with an off-the-shelf algorithm, we propose an intrinsic alternative by using
the information we already have about each patch.
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Original Image Noisy Image. PSNR = 18.59 dB K−SVD. PSNR = 34.45 dB EPLL + KSVD. PSNR = 42.26 dB EPLL + GMM. PSNR = 37.72 dB

Fig. 1. Denoising of a synthetic image (σ = 30). A similar demonstration was presented
in [16], showing the benefits of the EPLL framework under a GMM approach. Note
the texture-like resulting artifacts in the result by K-SVD. This problems is notably
reduced by the EPLL with a Sparse Prior, the method we present in this work. We
include for comparison the result by [16]. The evolution of the Peak Signal to Noise
Ratios are depicted in Fig 4.

Consider the general problem of estimating the remaining noise after applying
K-SVD on the noisy image; i.e., the first iteration of our method. From a global
perspective, the estimated image can be expressed as

x̂ =

(
λAT +

∑
iP

T
i DSiD

+
Si
Pi

)
λATA+

∑
i P

T
i Pi

y, (9)

where Si denotes the support of the sparse vector α̂i chosen in the OMP, and
DSi is the set of the corresponding atoms in the dictionary. Leaving aside the
selection of the support of each sparse vector, we can represent this operation
by a linear operator as

x̂ = L(x + n). (10)

Assuming for a moment that x̂ ≈ Lx, we could express the remaining noise as
nr = Ln, from which we could obtain the full covariance matrix as Cov(nr) =
σ2LLT . Then, we could either take into consideration the full covariance ma-
trix, or make the simplifying assumption of white noise by considering just the
diagonal of Cov(nr). Though appealing, this approach does not work in practice
because ||x̂−Lx||2 is considerably large, and thus the estimate of the remaining
noise is considerably low. Also, note that L is a band matrix of size N2 × N2,
where N is the number of pixels, and so the estimation of its covariance matrix
is computationally intractable for practical purposes.

We thus turn to a similar but local alternative that will enable a practi-
cal solution. Each patch consists of the true underlying vector z0i and a noise
component vi, zi = z0i + vi. Given the chosen support Si, ẑi is obtained as a
projection onto the span of the selected atoms:

ẑi = DSiD
+
Si
zi = DSiD

+
Si

(z0i + vi) . (11)

Assuming now that z0i ≈ DSiD
+
Si
z0i (if the correct support of the signal was

chosen by the OMP), the contribution of the noise to the patch estimate would be
given by v̂r

i = DSiD
+
Si
vi. This is an analogue assumption to that made for Eq.

(10), but now for each patch instead of the global image. This way, considering
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Fig. 2. Left: plot of the diagonal of the covariance matrix Cov(nr) after the first
iteration of denoising the image Lena (σ = 20). Center: the corresponding plot of
the estimated Rk in Eq. (13), and right: the corresponding average of the standard
deviation per patch of the true error image.

the covariance matrix of the remaining noise Cov(v̂r
i ), the mean squared error

estimate at the ith patch and iteration k will be given by 1
n tr{Cov(v̂r

i )}, leading to

(
σ̂k
i

)2
= |Si|

ν2k
n
. (12)

Therefore, the estimate of the remaining noise in each patch is simply propor-
tional to the number of atoms used for that patch. Note that the remaining noise
is no longer white after the back projection step, but we make this assumption
in order to simplify further derivations.

Generalizing this patch analysis to the entire image, we can estimate the
average remaining noise in the image x by performing an estimate in the spirit
of Eq. (5), tilling back and averaging the local estimates as

Rk =
λν2kI+

∑
iP

T
i 1

(
σ̂k
i

)2
λν2kI+

∑
i P

T
i Pi

= Φ
(
(σ̂k

i )
2
)
, (13)

where the operator Φ(·) relocates the local estimates σ̂k
i with the corresponding

weighting. This way, Rk stands for an estimation of the energy of the remain-
ing noise pixel-wise, equivalent -but not equal- to the diagonal of Cov(nr). An
example is shown in Fig. 2 for the popular image Lena. We see that Rk pro-
vides a fair estimate of the information in the diagonal of the full covariance
matrix of the remaining noise Cov(nr), and that it is closer to the average of
the standard deviation per patch of the true error image. The reader should also
note that computing Rk is considerably cheaper than the computation of the
operator in (10), since we only compute the local covariance matrices and their
weighted average, and the matrix in the denominator of Eq. (13) is a diagonal
one. Therefore we use Rk to derive the threshold for the next iteration.

From this point two possibilities arise: use Rk to evaluate a local patch-
based noise energy, eventually denoising each patch with a different threshold,
or finding a new global and common threshold for all the patches. Adopting the
first alternative was found not to yield significant improvements in our results.
Thus, in the following we adopt the second global alternative.
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Fig. 3. PSNR evolution of the EPLL scheme with a sparse-representation prior for
denoising the image Lena (σ = 20) and three different threshold settings: a) using a
constant threshold for all the iterations (equal to the initial noise energy σ2); b) using
an oracle threshold by setting it to be the variance of the real error image (having
access to the original image); and c) our threshold setting method.

The reader should bare in mind that the thresholds should tend to zero as
we iterate, corresponding to β →∞. Certainly, this implies that our thresholds
will not reflect the real remaning noise. As an example, in Fig. 3 we present the
evolution of the PSNR by the proposed method for the image Lena for different
thresholds. We see that if the threshold is not changed with the iterations, the
PSNR of the resulting image x decreases after the first iteration. On the other
hand, if we set the threshold to be the variance of the real remaining noise (by
having access to an oracle and the original image), the PSNR initially increases
but eventually decreases since the threshold do not tend to zero. We include for
comparison the results of our threshold-setting method.

This way, in what follows we propose a method that provides decreasing
thresholds and which has been proven to be robust. In the subsequent iterations,
we set the threshold ν2k to be the mode of the values inRk . Furthermore, we have
found that the multiplication by a constant factor δ improves the performance
in our method. To this end, assuming independence between the remaining noise
and the patch estimate, and considering the residual per patch ri = zi − ẑi, we
have that σ̃2

i = σ2−V ar(ri)2. With these estimates we can perform an analogue
of Eq. (13) and obtain its mode, ν̃2. We then define the factor δ = ν̃2/ν2k , and set
the thresholds for the next iteration to be ν2k = δ ·mode(Rk). A full description
of our algorithm is depicted in Algorightm 1.

In the following iterations the assumption about the independence between
the remaining noise and the patch estimate will be very week, and so σ̃2

i will not
be accurate. Thus, δ is determined after the first iteration only and kept fixed
for the subsequent steps, while the estimate ν2k provides decreasing estimates
every time. An example of the obtained ν2k ’s can be seen in Fig. 4.

2 The variance is calculated as V ar(r) = 1
n−1

∑
j (rj − r)2, where r is the mean of r.
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Fig. 4. Left: PSNR evolution by EPLL with a sparsity inducing prior on the synthetic
image in Fig. 1, compared to the original K-SVD algorithm [6] and the EPLL-GMM
of [16]. Right: sequence of thresholds νk determined by the proposed method and the
equivalent 1/

√
β by the method of [16].

4 Results

To gain some insight into the performance of our method and as a motivating
example, in Fig. 1 we present the denoising results on a synthetic image obtained
by the regular K-SVD algorithm, and the one achieved by applying the EPLL
approach with the sparse-enforcing prior. A similar demonstration was presented
in [16], and we include the results of this method as well. The K-SVD denoised
image presents texture artifacts common to patch-based algorithms, while in the
image denoised with our method the final patches are far more likely under the
prior that we try to learn from the image itself.

Fig. 4 depicts the evolution of the PSNR of the denoised image in each iter-
ation for this experiment. Note that given a fixed dictionary, solving the MAP
estimate for each patch with a sparse prior implies applying OMP on each of
them. This corresponds to the EPLL+OMP curve. On the other hand, we could
minimize Eq. (8) w.r.t D as well by applying a K-SVD step, updating the dictio-
nary as well as the sparse vectors; this is the curve depicted as EPLL+K-SVD.
The constant dotted line corresponds to the original K-SVD algorithm. Note
that the result after the first iteration in our method is worse than the one ob-
tained by K-SVD where c = 1.15. Choosing c = 1 in our case, however, enables
further improvement as we proceed maximizing the Expected Patch Log Like-
lihood. Notice also that our method converges in considerable fewer iterations
than the method of [16]. The right side of Fig. 4 shows the evolution of the
thresholds νk used in the successive iterations, as well as the values 1/

√
β used

by EPLL-GMM.
The improvement obtained by training the dictionary in each iteration of our

method is both important and intuitive. It is known that applying K-SVD on a
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Algorithm 1. EPLL with a Sparse Prior, given the noisy image y with a
noise standard deviation of σ and an initial dictionary D0.

Initialization: x = y. D = D0, δ = 1, k = 1, ν2
k = σ2.

for OuterIter = 1 : 3− 4 do

- {Dk+1,xk+1} = argmin
αi,D,x

λ||xk − y||22 +
∑

i ||D
kαi −Pix

k||22 + μi||αi||0, by

K-SVD with error threshold ν2
k;

- get local estimates
(
σ̂k
i

)2
= |Si| ν

2
k
n

, ∀i;

- get global estimate Rk = Φ
(
(σ̂k

i )
2
)
with Eq. (13);

if k = 1 then

- ν2
k+1 = mode(Rk);

- σ̃2
i = σ2 − V ar(ri), ∀i;

- ν̃2 = mode
(
Φ(σ̃2

i )
)
;

- δ = ν̃2/ν2
k+1;

- ν2
k+1 = δ ·mode(Rk);

- k = k + 1;

Output: x,D.

noisy image achieves good denoising results but yields somewhat noisy atoms [6].
By training the dictionary D in the progressively cleaner estimates x we obtain
cleaner and more well defined atoms, which are later used to perform further
denoising. In the top row of Fig. 5 we present 8 atoms trained on a noisy version
of the image Lena after the first iteration, while the lower row shows the same
atoms after 4 iterations.

4.1 Inpaiting

We next present results on image inpainting. In this particular application of
image restoration, the signal is the outcome of a linear operator that deletes
a number of pixels from the original image x, plus the measurement noise. By
considering a sparse prior on the original signal, we can formulate an equivalent
problem to that of Eq. (6), where A is the missing-pixels mask. The correspond-
ing cost function can be minimized in a block coordinate manner, coding for the
unknown sparse representation and updating the dictionary. In this case, how-
ever, the threshold in the OMP has to consider only the energy of existing pixel
in each patch [9]. This again represents the first iteration of the Half Splitting
strategy proposed in [16], and we may perform the next iterations by estimating
the remaining noise as explained above. Furthermore, after the first iteration
our estimate includes values of the missing pixel. We can then make use of the
previous denoising strategy to tackle the next iteration, by having knowledge of
the supports used to inpaint each patch, as it was previously explained.
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Fig. 5. Atoms from a dictionary trained on a noisy version of the image Lena. The top
row corresponds to the atoms after the first iteration of our method (essentially, after
applying K-SVD), while the lower row corresponds to the same atoms after 4 iterations
of the EPLL with a sparsity enforcing prior.

Table 1. Inpaiting results in terms of Peak Signal to Noise Ratio (PSNR) for 25%,
50% and 75% missing pixels for the images peppers (left subcolumns) and Lena (right
subcolumns), with additive white Gaussian noise (σ = 20).

Missing Pixels 25% 50% 75%

K-SVD 29.67 28.81 27.92 27.27 23.64 23.86

EPLL+K-SVD 29.71 28.85 28.18 27.39 23.81 24.07
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Fig. 6. Denoising results averaged over 12 images from the Kodak Dataset with respect
to K-SVD [6] by EPLL with GMM [16] and the method presented here: EPLL with
Sparse Prior, in terms of the Peak Signal to Noise Ratio (PSNR).

Table 1 shows the results on inpainting the popular images peppers and Lena
with 25%, 50% and 75% missing pixels, with additive white Gaussian noise
(σ = 20). As it can be seen, the EPLL scheme leads to a slight improvement
in the K-SVD inpainting results, with increased effect for higher missing pixels
rates. The same concept could be applied to more sophisticated algorithms that
use a sparsity-based prior, such as the state-of-the-art method of [11].
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4.2 Denoising

We conclude this paper by presenting results on denoising of 12 images from the
Kodak database, for different noise levels. We compare here the performance of
the K-SVD denoising algorithm in [6] and our approach of the EPLL framework
with a sparse prior (EPLL-K-SVD, where the dictionary is also updated in each
iteration). In all cases we performed 4 iterations of this method, as this was found
to be a convenient compromise between runtime and performance. For both K-
SVD methods, an initial dictionary with 1024 atoms was trained on overlapping
8 × 8 patches from 9 training images using K-SVD. We include for completion
the results achieved by the EPLL with a Gaussian Mixture Model (GMM) as
the image prior from [16].

In Fig. 6 we present the relative increase in PSNR, averaged over all 12 im-
ages. The EPLL with a Sparse enforcing Prior shows a clear improvement over
the regular K-SVD. Furthermore, the complete implementation of the denoising
algorithm closes the gap between the original K-SVD and EPLL-GMM, having
comparable performance: our method achieves the best results for lower noise
energy while EPLL with GMM is better for higher noise levels. In Fig.7 and Fig.8
we present two examples of denoised images by the three methods. Note how
artifacts are notably reduced in the resulting images processed by our method.

Fig. 7. Denoising results of an image from the Kodak Database corrupted with a noise
standard deviation of σ = 25. Top left: original image. Top right: K-SVD (PSNR =
32.14 dB). Bottom left: EPLL with Sparse Prior (PSNR = 32.42 dB). Bottom Right:
EPLL with GMM (PSNR = 32.25 dB).
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Fig. 8. Denoising results of an image from the Kodak Database, initially corrupted
with additive white Gaussian nose (σ = 25). From left to right: Original Image, K-
SVD (PSNR = 31.42 dB), EPLL with Sparse Prior (PSNR = 31.83 dB), and EPLL
with GMM (PSNR = 31.85 dB).

5 Conclusion

Maximizing the Expected Patch Log Likelihood with a sparse inducing prior
leads naturally to a formulation of which the K-SVD algorithm represents the
first iteration. In its original form, this method performed only one update of
the image due to technical difficulties in assessing the remaining noise level. In
this paper we have shown how to go beyond this first iteration, intrinsically
determining the coding threshold in each step. This work completes the one in
[6], providing the full path to the numerical minimization of the original cost
function and exploiting all the potential of the sparse inducing prior.

Our algorithm shows a clear improvement over K-SVD in all the experiments.
In denoising in particular, EPLL with a sparse prior achieved comparable perfor-
mance to the state of the art method of EPLL with a GMM prior. Interestingly,
both priors yield comparable results when applied within the EPLL framework.
An approach like the one presented here could be employed in other applications
where a MAP estimator for a sparse prior is used for image restoration.
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Abstract. In this work we devise two novel algorithms for blind decon-
volution based on a family of logarithmic image priors. In contrast to
recent approaches, we consider a minimalistic formulation of the blind
deconvolution problem where there are only two energy terms: a least-
squares term for the data fidelity and an image prior based on a lower-
bounded logarithm of the norm of the image gradients. We show that
this energy formulation is sufficient to achieve the state of the art in
blind deconvolution with a good margin over previous methods. Much
of the performance is due to the chosen prior. On the one hand, this
prior is very effective in favoring sparsity of the image gradients. On
the other hand, this prior is non convex. Therefore, solutions that can
deal effectively with local minima of the energy become necessary. We
devise two iterative minimization algorithms that at each iteration solve
convex problems: one obtained via the primal-dual approach and one
via majorization-minimization. While the former is computationally effi-
cient, the latter achieves state-of-the-art performance on a public dataset.

Keywords: blind deconvolution, majorization-minimization, primal-
dual, image prior.

1 Introduction

In the past decade, several high-performing blind deconvolution schemes using
Bayesian principles have been proposed [1, 5, 6, 8, 9, 11, 17, 21–23]. The first
step in the Bayesian framework is to devise a statistical distribution for both the
gradients of the sharp image and the measurement noise or the model error. This
joint distribution is used to pose a maximum a posteriori (MAP) problem, which
yields point estimates for both the sharp image and the blur kernel. Also, one can
marginalize the joint distribution with respect to one of the unknown random
variables (typically, the sharp image) and then solve maximum a posteriori of the
marginalized distribution. However, marginalization is typically computationally
intractable. Thus, a variational Bayes upper bound is used together with sev-
eral approximations such as independence of the random variables and explicit
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simplified models of their distributions [21]. Whether one chooses one approach
or another, the final algorithm is always an alternating minimization scheme.
One iteratively improves the estimates of sharp image, blur kernel and some
additional auxiliary variables [9]. The main differences among these schemes lie
in how the coefficients weighing each term in the energy being minimized are
updated at each iteration. Currently, the general wisdom is probably that the
variational Bayes approach yields a better performance than the more classical
MAP approach on the joint distribution. This belief is also reinforced by ar-
guments showing how classical MAP approaches, such as total variation blind
deconvolution [4], have fundamental shortcomings that would prevent them from
achieving the desired solution [10, 21]. In contrast to those findings, in this paper
we introduce two novel alternating minimization algorithms that can be cast as
classical MAP approaches and that yield state of the art performance. Albeit
only experimentally, one can then conclude that there is no inherent advantage
in using a MAP or a variational Bayes approach. Moreover, other critical limi-
tations of MAP [10] are overcome by using an alternating minimization with a
delayed scaling [14].

As in the vast majority of blind deconvolution algorithms, our approach uses
an image prior that strongly encourages sparsity in the image gradients of the
reconstructed sharp image. We propose to use the logarithm of the norm of the
gradients. While this prior was already introduced in [1] in a variational Bayes
framework, here we use it in a MAP approach. Furthermore, to avoid the trivial
solution (a constant), we introduce a lower-bound in the norm. This bound is es-
sential to the correct functioning of the prior and needs to be carefully balanced
with the data-fidelity term to yield a sparse gradient solution. The other chal-
lenges that we address are the non convexity of the image prior even when blur
is given and the limited computational efficiency of the alternating minimization
scheme. We do so by using two techniques: majorization-minimization [7] and
the primal-dual method [3]. In the first case a tight upper bound of the image
prior is obtained and iteratively updated. This algorithm achieves high accuracy.
In the second case the Legendre-Fenchel transform and the proximal operator
are used to produce iterations that mostly work on independent 1D updates,
and that can therefore be executed in parallel. This algorithm is instead highly
computationally-efficient.

2 Blind Deconvolution

Consider the following model for a blurry image f

f = k ∗ u+ n (1)

where k is the camera blur (or point spread function), u is the sharp image and
n is the sensor noise. In this model, blur does not change across the image. This
assumption does not hold in real scenes with depth variation and/or with general
camera motions. Given both the blurry image f and the blur k, the estimation of
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the sharp image u is a deblurring problem. When instead only the blurry image
f is given, the problem of estimating both the sharp image u and the blur k is
called blind deconvolution.

A widely used framework for solving deblurring or denoising (when k is the
Dirac delta) is to look for a solution to the following minimization problem

u = argmin
u
‖u‖TV + λ‖k ∗ u− f‖22 (2)

where the first term corresponds to the ubiquitous Total Variation (TV) of u
[16], λ > 0 is a regularization constant and the second term corresponds to the
data fitting error. This problem is convex and therefore the global minimum can
be achieved very efficiently. Often, however, one does not know the blur k and is
therefore faced with the more challenging blind deconvolution problem, which is
non convex. Currently, several approaches can successfully obtain high-quality
results [1, 5, 6, 8, 9, 11, 17, 21–23]. A formulation of blind deconvolution inspired
by eq. (2) is

u, k = argmin
u,k

‖u‖TV + λ‖k ∗ u− f‖22

s.t. k � 0, ‖k‖1 = 1, (3)

which has already been proposed in the past [4, 24]. This formulation, however,
suffers from several limitations. Firstly, the global minima of this problem are
the no-blur solutions, where u = f and k = δ, up to translation [10, 14, 21]. Sec-
ondly, this is a non convex problem in both u and k. Thus, the solution obtained
via an iterative method depends on the initialization of the unknowns. Despite
the limitations outlined above, early alternating minimization implementations
[4] for eq. (3) converged to desirable solutions. While many of current algorithms
are derived via variational Bayes arguments or based on edge enhancements and
noise suppression, they eventually result in alternating minimization schemes
each resembling that used to solve eq. (3) [9]. The key differences are the intro-
duction of additional auxiliary variables and the dynamic update of regulariza-
tion parameters. As demonstrated experimentally, any such variation leads to a
quite different performance. Moreover, most recent approaches choose to solve
this problem by working on gradients of the images, or, more in general, filtered
images rather than directly on the intensities of the images. Then, once the blur
k has been estimated, a final deblurring step is performed to obtain the sharp
image u.

In this paper we show that two minimalistic optimization schemes working
directly on the image intensities are sufficient to achieve state of the art per-
formance. This allows us to conclude that any additional modification to the
alternating minimization scheme, including working on filtered images, is not
essential to converge to the desired solution. Before doing so, however, we briefly
review relevant work and clarify differences when compared to our solutions.
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3 Prior Work

As mentioned in the Introduction, most approaches in blind deconvolution can
be described as maximum a posteriori (MAP) approaches. The MAP approach
relies on an explicit definition of the joint probability

p(u, k|f) ∝ p(f |u, k)p(u)p(k), (4)

where p(f |u, k) is a generative model of the noise, p(u) is a prior of the sharp
image and p(k) is a prior of the blur. Commonly used sharp image priors ap-
proximate the heavy-tail distribution of natural image gradients [18] via sparsity-
inducing norm of the gradients of u. The �2 norm of the gradients (isotropic to-
tal variation), or the �1 norm of the derivatives (anisotropic total variation) are
classical choices [4]. In contrast to other sparsity-inducing norms, total variation
(TV)[16] has the desirable property of being convex. However, it also introduces
a loss of contrast in the recovered sharp image [14, 19]. Other methods use
heuristics to encourage sharp gradients [5, 17, 22], or some reweighing strategy
of the norm of the gradients [8, 9]. The latter methods aim at approximating
the l0 “norm” of the gradients, as proposed also by Xu et al. [23]. In this paper
we also encourage sparsity in the gradients. However, we use the logarithm of
TV, which yields a simple energy term while providing a good approximation to
the number of nonzero gradients. Indeed, this prior has already demonstrated
promising results in blind deconvolution [1, 21] and denoising [13].

Despite the widespread use of the above MAP formulation, finding the mode
of the posterior probability of u and k has received many criticisms. Levin et
al. [10] and Perrone and Favaro [14] have shown that a large class of commonly
used image priors favors the blurry image instead of the sharp one. Because of
such limitation, Levin et al. [11] suggested to marginalize over all possible sharp
images u and thus to solve the reduced problem

max
k

p(k|f) = min
k
− log p(k|f) = min

k
− log

∫
u

p(u, f |k)p(k)du. (5)

In general, the integral in problem (5) is intractable. Therefore, typically one
looks for an approximate solution. A common approach is to minimize an upper
bound of − log p(k|f) using a variational Bayes strategy [1, 6, 11, 21]. So far,
this class of methods has shown better performance compared to methods that
directly solve the MAP problem (4).

Despite their apparent superior performance, Wipf and Zhang [21] have shown
that methods that solve (5) using a variational Bayes strategy are equivalent to
a MAP strategy as in (4). They experimentally show that with an �p norm with
p ! 1, MAP approaches are able to favor the right sharp solution. They also
argue that a variational Bayes approach should be preferred because it is more
robust when minimizing a highly non-convex function. The conclusions given by
Wipf and Zhang [21] suggest that minimizing a cost functional as in (4) is not
limited per se, as long as one finds a minimization strategy that carefully avoids
its local minima. In this paper, we propose two non-variational Bayes strategies
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to minimize a functional based on a logarithmic non-convex prior and show that
they can achieve state-of-the-art results.

4 A Logarithmic Image Prior

In this section we introduce our image prior. From a Bayesian perspective, natu-
ral images can be described as having a sparse collection of gradients [18]. Hence,
one could employ sparsity-inducing priors of the image gradients. However, an-
other point of view is that blurring results in the average of shifted and scaled
replicas of the same image gradients. The likelihood that such replicas combine to
cancel each other is statistically insignificant. Vice versa, this averaging is more
likely to multiply the number of gradients by the number of nonzero elements in
the blur. Thus, a different perspective is that, in the context of deblurring, the
role of an image prior is to favor solutions that have as few gradients as possible
regardless of their magnitude. Both points of view lead to the same principle,
i.e., one should choose as prior

Number of non zero elements of (|∇u|) .
= ‖∇u‖0 (6)

where ‖·‖0 denotes the l0 “norm” (the Hamming distance to zero) and ∇u is the
2-D gradient of u. Unfortunately, optimization with this prior is very challenging
and, typically, smoother alternatives such as �p norms ‖∇u‖pp, with 0 < p < 1,
are used. In this work we also consider a prior with a similar behavior and simple
form.

Let us consider the discrete setting. In the 2D discrete case, we have images
with N ×M pixels. The (i, j)-th entry of the blurry image u will be denoted
by ui,j . The first order (discrete) derivatives of u will be denoted by ∇u .

=
[ui+1,j − ui,j ui,j+1 − ui,j ]

T . As image prior we propose using the following
logarithmic prior1

log ‖∇u‖p2,ε
.
=

N∑
i=1

M∑
j=1

log ‖∇ui,j‖p2,ε =
p

2

N,M∑
i=1,j=1

log ‖∇ui,j‖22,ε (7)

with p > 0 and where

‖∇ui,j‖22,ε
.
= (ui+1,j − ui,j)

2 + (ui,j+1 − ui,j)
2 + ε2 (8)

for ε > 0 so that the argument of the logarithm is never 0. The parameter ε
leads to a lower bound for this prior equal to MNp log ε. We can then formulate
our blind deconvolution problem as

u, k = argmin
u,k

λ‖k ∗ u− f‖22 + log ‖∇u‖p2,ε

s.t. k � 0, ‖k‖1 = 1. (9)

1 Although we choose an �2 norm, any �q norm could be used. However, we have found
experimentally that for a wide set of values in q this makes little difference in the
final performance.
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Notice how the role of ε is fundamental. If ε = 0 then the optimal solution will
always be u = 0 for any λ. To understand how ε, λ and p relate, consider the
following limit

lim
ε→0

p

2
+

1

log(1/ε2)
log ‖∇u‖p2,ε =

p

2
‖∇u‖0 (10)

which shows how the log prior approximates the desired l0 “norm”. Now, assume
that 0 < ε ≤ 1 and we substitute λ in problem (9) with −λp log ε. Then, in the
limit for ε→ 0 we are solving

u, k = argmin
u,k

λ‖k ∗ u− f‖22 + ‖∇u‖0

s.t. k � 0, ‖k‖1 = 1. (11)

Finally, to avoid the degenerate constant solution we can compare two cases: one
when u = constant and one when u = f and k = δ. The idea is to make sure
that the cost function favors the no-blur solution over the constant one. We can
therefore plug the two cases in the cost of problem (9) and obtain the following
inequality

log ‖∇f‖p2,ε < λ‖f̄ − f‖22 +
p

2
MN log ε2 (12)

or, alternatively,

log

∥∥∥∥1ε∇f
∥∥∥∥p
2,1

< λ‖f̄ − f‖22. (13)

Then, we use Jensen’s inequality and the fact that the logarithm is a concave
function to obtain an upper bound of the left hand side of eq. (13)

p

2

N,M∑
i=1,j=1

log

[∥∥∥∥1ε∇fi,j
∥∥∥∥2

2,1

]
≤ pMN

2
log

⎡⎣ 1

MN

N,M∑
i=1,j=1

∥∥∥∥1ε∇fi,j
∥∥∥∥2
2,1

⎤⎦ . (14)

Then, if we choose ε such that

ε >

√√√√ 1
MN

∑N,M
i=1,j=1 ‖∇fi,j‖

2
2

e
2λ

pMN ‖f−f̄‖2
2 − 1

(15)

where f̄ is the average value of f , the degenerate constant solution will be
avoided. Also, notice that 2λ

pMN ‖f − f̄‖22 > 0 and 1
MN

∑N,M
i=1,j=1 ‖∇fi,j‖

2
2 > 0

unless f is constant (in this case u constant is a plausible solution and it should
not be avoided). This means that an ε that satisfies eq. (15) always exists.
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Finally, to solve problem (9) we use the alternating minimization scheme

initialize

k1 = k1

iterate t ∈ [1, . . . , T ]

ut+1 =argmin
u
λ‖kt ∗ u− g‖22 + log ‖∇u‖p2,ε

kt+1 =argmin
k
‖k ∗ ut+1 − f‖22

s.t. k � 0, ‖k‖1 = 1.

(16)

While the iteration in the blur k entails solving a convex problem, and we solve
it as in [4], the minimization in the update of the sharp image u is non convex
and requires more attention. To this purpose we introduce two solvers: one based
on a primal-dual approach and another on majorization-minimization.

4.1 A Primal-Dual Solver

Recall the deblurring problem (given the blur kt) in Algorithm (16); here we
rewrite it as

u = argmin
u

N,M∑
i=1,j=1

(
(kt ∗ u)i,j − fi,j

)2
+

1

μ
log ‖∇ui,j‖22,ε (17)

where μ = 2λ/p. By using the primal-dual approach of Chambolle and Pock [3]
we obtain the following minimax problem

u = argmin
u

max
z1,z2

〈kt ∗ u, z1〉 − F ∗
1 (z1) + 〈∇u, z2〉 − F ∗

2 (z2) (18)

where F ∗
1 and F ∗

2 are conjugate functions of F1 and F2 respectively, and we have
defined

F1(x)
.
=

N,M∑
i=1,j=1

(xi,j − fi,j)
2
, F2(ξ)

.
=

1

μ

N,M∑
i=1,j=1

log ‖ξi,j‖22,ε. (19)

The conjugate functions can be computed via the Legendre-Fenchel (LF) trans-
form [15] and are convex by construction. Thus problem (18) is a convex approx-
imation in all variables z1, z2 and u of the original problem (17). Notice that the
convex approximation provided by the primal-dual formulation may not lead to
the minima of the original non convex cost.

Our general primal-dual algorithm to solve problem (18) is

zn+1
1 = proxσF∗

1
(zn1 + σkt ∗ ūn)

zn+1
2 = proxσF∗

2
(zn2 + σ∇ūn)

un+1 = un − τ
(
kt− ∗ zn+1

1 +∇ · zn+1
2

)
ūn+1 = un+1 + θ(un+1 − un)

(20)
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where kt− denotes the mirrored blur kernel kt (along both axes), n is the iteration
index, θ ∈ (0, 1] and τσ‖K‖2 < 1, with τ, σ > 0, where K is the matrix operator
implementing both the blur k and the finite difference operator ∇. Two of the 4
iterations in the above algorithm are defined based on the proximity operator.
The proximity operator proxσF∗

1
is computed via

proxσF∗
1
(z) = z − σproxF1/σ(z/σ)

= z − σ argmin
x

1

2

∥∥∥ z
σ
− x

∥∥∥2
2
+ σF1(x) (21)

=
1

σ + 1
(z − σf) .

The proximity operator proxσF∗
2
is instead computed via

proxσF∗
2
(z) = z − σ argmin

x

1

2

∥∥∥ z
σ
− x

∥∥∥2

2
+ σF2(x). (22)

Since the minimization problem is separable, let us consider the solution obtained
for only one element xi,j and zi,j of the variables x and z respectively. With an
abuse of notation, instead of the element-wise cumbersome notation xi,j and
zi,j we simply refer to x and z in the next equations. We use the representation
x
.
= ρw, where ρ ≥ 0 and ‖w‖2 = ‖z‖2/σ. Then, let ξ = z/σ and we have

argmin
x

1

2
‖ξ − x‖22 + σF2(x) = argmin

ρ,w

ρ2

2

∥∥∥∥ ξρ − w

∥∥∥∥2
2

+
σ

μ
log

(
ρ2
‖z‖22
σ2

+ ε2
)
.

(23)

Notice that the logarithmic term now depends only on ρ. Hence, we can first solve
the minimization problem with respect to w. By simplifying the least squares
term we obtain

arg min
w,‖w‖=‖z‖/σ

ρ2

2

∥∥∥∥ ξρ − w

∥∥∥∥2

2

= arg min
w,‖w‖=‖z‖/σ

‖ξ‖22 /ρ2 + ‖w‖
2
2 − 2〈ξ/ρ, w〉

= arg min
w,‖w‖=‖z‖/σ

‖ξ‖22 /ρ2 + ‖z‖
2
2 /σ

2 − 2〈ξ/ρ, w〉

= arg max
w,‖w‖=‖z‖/σ

〈ξ, w〉 (24)

which immediately yields w = ‖z‖2

σ‖ξ‖2
ξ = z/σ. By substituting the expression of

w back into eq. (23) we finally have

argmin
x

1

2
‖ξ − x‖22 + σF2(x) = ξ · argmin

ρ

1

2
‖ξ − ρz/σ‖22 +

σ

μ
log

(
ρ2
‖z‖22
σ2

+ ε2
)

= ξ · argmin
ρ

μ

2σ
(1− ρ)

2 ‖ξ‖22 + log
(
ρ2‖ξ‖22 + ε2

)
.

(25)
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Table 1. The primal-dual algorithm

initialize

h1 = h1

iterate t ∈ [1, . . . , T ]

iterate n ∈ [1, . . . , N0]

zn+1
1 =

1

σ + 1

(
zn1 + σ(kt ∗ ūn − f)

)
zn+1
2 =

(
1−H

(
zn2 + σ∇ūn

σ
, μ, ε, σ

))
(zn2 + σ∇ūn)

ũn+1 = ũn − τ
(
kt
− ∗ zn+1

1 +∇ · zn+1
2

)
ūn+1 = ũn+1 + θ(ũn+1 − ũn)

end iterate n

ut+1 = ũN0+1

ht+1 = argmin
k

‖k ∗ ut+1 − f‖22

s.t. k � 0, ‖k‖1 = 1

end iterate t

We can define H as the solution of the 1D problem

H(ξ, μ, ε, σ) = argmin
ρ

μ

2σ
(ρ− 1)2‖ξ‖22 + log(ρ2‖ξ‖22 + ε2) (26)

and build it into a lookup table.2 The proximity operator proxσF∗
2
can then be

written as

proxσF∗
2
(z) =

(
1−H

( z
σ
, μ, ε, σ

))
z. (27)

The final algorithm is summarized in Table 1. Notice how several operations are
parallelizable, thus leading to a very efficient implementation.

4.2 A Majorization-Minimization Approach

As a more accurate alternative to the primal-dual algorithm, one could use a
majorization-minimization (MM) approach [7], in a similar manner as proposed
by Candes et al. [2]. In the MM approach one defines an upper bound functional
ψ(u|ut) given the current estimate ut at time t. This upper bound must satisfy
the following properties

ψ(u|ut) ≥
N∑
i=1

M∑
j=1

log ‖∇ui,j‖p2,ε ψ(ut|ut) =
N∑
i=1

M∑
j=1

log ‖∇uti,j‖
p
2,ε. (28)

2 Notice that the 1D problem leads to a third order polynomial equation for which
closed-form solutions are known.
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Table 2. The majorization-minimization algorithm

initialize

h1 = h1

iterate t ∈ [1, . . . , T ]

ut+1 = argmin
u

N,M∑
i=1,j=1

λ
(
(kt ∗ u)i,j − fi,j

)2
+

‖∇ui,j‖p2
‖∇ut

i,j‖
p
2

ht+1 = argmin
k

‖k ∗ ut+1 − f‖22

s.t. k � 0, ‖k‖1 = 1

end iterate t

Then, one can apply the following iterative scheme and provably reach a local
minimum of the original function

ut+1 = argmin
u

N,M∑
i=1,j=1

λ ((k ∗ u)i,j − fi,j)
2
+ ψ(u|ut). (29)

As upper bound we consider using the Taylor expansion of the logarithm around
the t-th estimate of ‖∇u‖p2,ε up to the first term

ψ(u|ut) =
N,M∑

i=1,j=1

log ‖∇uti,j‖
p
2,ε +

‖∇ui,j‖p2,ε − ‖∇uti,j‖
p
2,ε

‖∇uti,j‖
p
2,ε

. (30)

The properties (28) hold because of the concavity of the logarithm function.
Finally, by plugging ψ in eq. (29) we obtain the following update

ut+1 = argmin
u

N,M∑
i=1,j=1

λ ((k ∗ u)i,j − fi,j)
2

(31)

+ log ‖∇uti,j‖
p
2,ε +

‖∇ui,j‖p2,ε − ‖∇uti,j‖
p
2,ε

‖∇uti,j‖
p
2,ε

= argmin
u

N,M∑
i=1,j=1

λ ((k ∗ u)i,j − fi,j)
2
+
‖∇ui,j‖p2,ε
‖∇uti,j‖

p
2,ε

.

so that the majorization-minimization algorithm can be summarized in Table 2.
Notice the similarity with reweighed least squares algorithms when p = 2.

5 Experiments

We evaluated the proposed algorithms on the dataset from Levin et al. [10]. The
dataset is made of 4 images of size 255 × 255 pixels blurred with 8 different
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Fig. 1. Cumulative histogram of SSD ratio results on the dataset [10]
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Fig. 2. Cumulative histogram of SSD results per image of the database [10]
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blurry input ground truth Log-TV MM Log-TV PD [21]

[20] [1] [14] [11] [5]

blurry input ground truth Log-TV MM Log-TV PD [21]

[20] [1] [14] [11] [5]

Fig. 3. Examples of deblurred images from Levin et al. [10] dataset

blurs, and it is provided with ground truth sharp images and blurs. Therefore it
is possible to use metrics that take into account the intrinsic difficulty of each
blur, such as the SSD ratio proposed in [10]. This ratio can be computed by

r =

∑N,M
i=1,j=1(u

ke

i,j − ugi,j)
2∑N,M

i=1,j=1(u
kg

i,j − ugi,j)
2

(32)

where ug is the ground truth sharp image, uk
g

is the image obtained by solv-
ing a non-blind deconvolution problem with the ground truth blur, and uk

e

is
the image obtained by solving a non-blind deconvolution problem with the esti-
mated blur. For each method the same parameters are used for all the 32 blurry
images of the dataset. For all the tests we used the non-blind deconvolution al-
gorithm from Levin et. al. [12], where for each method we carefully selected the
regularization parameter in order to have the best SSD ratio.
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In Fig. 1 we show the cumulative histogram of the SSD ratios for several
methods in the literatures and for our proposed algorithms (Log-TV MM and
Log-TV PD). The MM algorithm achieves error ratio equal to 1 for more than
50% of the images, clearly outperforming the methods from Wipf and Zhang [21]
and Babacan et. al. [1], and, for most error ratios, the method of Sun et al. [20].
Our primal-dual method is on par with high performing variational Bayesian
algorithms such as the one from Levin et. al. [11]. In Fig. 2 we also show the
cumulative histogram of the SSD errors, while in Fig. 3 we show some of the
sharp images obtained on this dataset3.

For our methods we used the same regularization parameter λ = 30000, ε =
0.001, p = 2 and 3500 iterations for each pyramid level. For the primal-dual
algorithm we set N0 = 1, τ = 0.005 and σ = 1

32τ . The parameter values have
been found experimentally. We used a pyramid scheme where the input image
and the blur are down sampled at each level by

√
2, and the parameter λ is

divided by the number 2.1. The number of levels of the pyramid is computed
such that at the top level the blur kernel has a support of 3 pixels. For the
other methods we used the estimates provided by the authors, or we ran their
algorithm using the tuning that gives the best results. The primal-dual method
has the desirable feature of being parallelizable and therefore faster, but at the
cost of being too coarse (due to the convex approximation of the logarithmic
prior), thus unable to achieve the same accuracy of the MM algorithm.

6 Conclusions

In this paper we presented solutions to blind deconvolution based on a loga-
rithmic image prior. The chosen prior is as effective as �p norms with p < 1
on the image gradients, while at the same time leading to simple optimization
schemes despite its non convexity. To solve blind deconvolution with this image
prior we propose a computationally efficient scheme via a primal-dual approach
and a high-accuracy scheme via the majorization-minimization approach. Both
approaches perform well and converge very robustly.
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Abstract. In this work we consider the regularization of vectorial data such as
color images. Based on the observation that edge alignment across image chan-
nels is a desirable prior for multichannel image restoration, we propose a novel
scheme of minimizing the rank of the image Jacobian and extend this idea to
second derivatives in the framework of total generalized variation. We compare
the proposed convex and nonconvex relaxations of the rank function based on
the Schatten-q norm to previous color image regularizers and show in our nu-
merical experiments that they have several desirable properties. In particular, the
nonconvex relaxations lead to better preservation of discontinuities. The efficient
minimization of energies involving nonconvex and nonsmooth regularizers is still
an important open question. We extend a recently proposed primal-dual splitting
approach for nonconvex optimization and show that it can be effectively used
to minimize such energies. Furthermore, we propose a novel algorithm for ef-
ficiently evaluating the proximal mapping of the �q norm appearing during op-
timization. We experimentally verify convergence of the proposed optimization
method and show that it performs comparably to sequential convex programming.

1 Introduction

Developing effective image regularization priors is of central importance for variational
image reconstruction methods and inverse problems. The total variation (TV ) pio-
neered as a discontinuity-preserving regularizer [1], and still ranges among the most
popular and versatile regularizers [2]. Since the classical total variation was proposed
for grayscale images, a lot of recent research has focused on extending the TV to color
images. Among these works are straightforward extensions of using TV regularization
on each color channel separately [3], using a global coupling of the color channels by
penalizing the �2 norm of the total variations of the channels [4], as well as using the
Frobenius norm of the derivative matrix at each pixel [5,6]. Additionally, it has been
proposed to incorporate a change of color space [7], as well as to couple the color
channels with an �∞ norm [8].

Based on the class of methods presented by Sapiro and Ringach [5], the authors of
[9] proposed the penalization of the Schatten-∞ norm of the derivative matrix at each
pixel, i.e. the penalization of the largest singular value of the Jacobian. One approach we
are particularly interested in was also motivated by [5]: The authors of [10] suggested
to penalize the Schatten-1 norm, also known as the nuclear norm, of the Jacobian at
each pixel, i.e. they suggested to penalize

TVN(u) := ‖∇u‖N,1 :=

∫
Ω

∥∥∥∥(∂xu1(x, y) ∂xu2(x, y) ∂xu3(x, y)
∂yu1(x, y) ∂yu2(x, y) ∂yu3(x, y)

)∥∥∥∥
N

dx dy,

(1)

X.-C. Tai et al. (Eds.): EMMCVPR 2015, LNCS 8932, pp. 126–140, 2015.
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Noisy Image
σ = 0.15

TVF [6],
PSNR=26.9

TVN [10],
PSNR=27.9

TV q
F ,

PSNR=28.4
TVNq ,

PSNR=29.8
Original Image

Fig. 1. We propose a novel regularizer based on the nonconvex relaxation of the rank norm
(TVNq ). The above comparison shows that the nonconvex regularizers (for values of q < 1,
here q = 0.5) outperform the convex ones, as they are able to better preserve discontinuities. The
proposed regularizer has significantly less color artefacts at discontinuities as it favors coherent
jumps of the color channels.

for an image u : Ω → R3, where ‖·‖N denotes the nuclear norm. Since the nuclear
norm of the derivative is a convex relaxation for minimizing the rank of a matrix, we
can interpret this approach as the rank minimization of the Jacobian. Note that the
Jacobian being of rank one means that all gradient vectors are linearly dependent and
thus point in the same (or opposite) direction. The latter is an interesting regularization
property which has been exploited in other contexts such as nonlinear diffusion [11]
or color Bregman iteration [12]. In this paper we propose a novel rank minimization
of the derivative matrix through nonconvex relaxation by considering the penalization
with the Schatten-q norm for 0 < q < 1.

Another motivation for such nonconvex relaxations comes from studies on the statis-
tics of natural images. Filter responses are more faithfully represented by heavy-tailed
distributions giving rise to nonconvex regularizers [13,14]. This led to the work of Kr-
ishnan et al. [14], who demonstrated that standard TV denoising and deblurring results
can indeed be improved by replacing the usual �1 norm of the gradient with the non-
convex �q norm for q < 1.

While penalizing the nuclear norm instead of the Frobenius norm of the Jacobian
yields an improvement as shown by Lefkimmiatis et al. [10], and replacing the usual
TV-�1 norm by a TV-�q norm with q < 1 yields another improvement [14], we will
demonstrate that combining both ideas by replacing the nuclear norm with a Schatten-q
norm for q < 1 leads to a regularization method superior to both previously mentioned
approaches, as illustrated in Fig. 1.

One well known property of total variation regularization is the preference of piece-
wise constant images which can lead to so called staircasing effects. To avoid these
artifacts, higher order methods such as the total generalized variation (TGV) have been
proposed [15]. The TGV α

2 model on a grayscale image u : Ω → R can be interpreted
as a particular type of infimal convolution written as

TGV(u) = inf
∇u=v+z

α‖v‖2,1 + (1 − α)‖∇z‖2,1 (2)

where ‖v‖2,1 =
∫
Ω

√
v1(x)2 + v2(x)2 dx and α ∈ [0, 1] is a weighting parameter

between first and second order penalization. Extensions for the TGV model include
replacing the ‖ ·‖2,1 norms by nonconvex ‖ ·‖q2,q penalty functions on grayscale images
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[16], as well as extending the TGV model to color images by considering the Frobenius
norms of the derivative matrices arising from having different color channels [17].

In this paper we propose a novel extension of the TGV approach to color images by
considering the nuclear norm of the derivative matrices. We will demonstrate in the nu-
merical results that our convex nuclear norm TGV approach outperforms the Frobenius
norm TGV for color image denoising. Moreover, we show that, again, replacing the
nuclear norm by a Schatten q-norm with q < 1 can improve the denoising performance
even further.

The minimization of the resulting nonsmooth and nonconvex energy is a challeng-
ing task. We will use a recent reformulation of the primal-dual hybrid gradient method
[18,19,20], which makes it applicable to nonconvex energies [21]. Although a full con-
vergence theory has not yet been established, we demonstrate that one obtains a very
efficient numerical scheme for finding low energies, comparably to methods which rely
on sequential convex programming such as [16].

The rest of this paper is organized as follows. In the next section we will further
motivate the idea of penalizing the Schatten-q norm of the derivative matrices in the
TV as well as in the TGV case in greater detail. Section 3 discusses the numerical
method for minimizing the proposed energies in detail. Particular emphasis is put on
the efficient evaluation of the proximity operators of the �q seminorms for q < 1. The
numerical results in Section 4 demonstrate the superior behavior of derivative matrix
rank minimization in the TV as well as in the TGV case and demonstrate the advantages
of the nonconvex regularizations. Finally, we draw conclusions and point out directions
of future research in Section 5.

2 TV and TGV Rank Minimization Approaches

In this section we will give more details on the idea and motivation for considering
certain Schatten-q norms for q < 1. We define the Schatten-q “norm” as

‖A‖Nq := (σq
1 + · · ·+ σq

n)
1/q

, (3)

where σi denotes the i-th singular value of A. Note that as a special case we obtain the
rank function for q = 0 (using the convention 00 = 1) and the nuclear norm for q = 1.

As pointed out in the introduction, the nuclear norm TV penalty (1) can be interpreted
as a convex relaxation for encouraging a low rank of the Jacobian at each pixel. Our
proposed Schatten-q norm approximates the rank minimization, i.e. the penalty of the
number of nonzero singular values, more closely.

TVNq (u) :=

∫
Ω

∥∥∥∥(∂xu1(x, y) ∂xu2(x, y) ∂xu3(x, y)
∂yu1(x, y) ∂yu2(x, y) ∂yu3(x, y)

)∥∥∥∥q
Nq

dx dy, (4)

But why does it make sense to minimize the rank of this matrix? Note that the deriva-
tive matrix has at most rank two. A reduction of the rank could lead to a rank zero,
which has the simple interpretation of all derivatives being zero, i.e. none of the chan-
nels changing. We therefore still expect the regularization to prefer piecewise constant
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Fig. 2. Illustration of a point with gradient matrix of rank two a) and two different matrices with
rank one in b) and c). A Jacobian of rank zero would correspond to a locally constant region.

images. A derivative matrix with rank one on the other hand has the interpretation that
all gradient vectors are linearly dependent and hence parallel (or antiparallel).

This is illustrated in Fig. 2, where on the left we show a rank two Jacobian and on
the right two different rank one Jacobians. Note that the gradients always point in the
normal direction to the level lines of each channel, such that the lines in Fig. 2 can be
interpreted as particular level lines of the channels. The alignment of the normal lines
in all channels seems to be a reasonable regularity assumption for natural images and
leads to a reduction of color artifacts as we will see in the numerical results on color
image denoising. As illustrated in the right image in Fig. 2, a derivative matrix with two
derivative vectors being zero and one derivative vector being arbitrary also has rank one
such that color edges are not necessarily forced to be aligned as in the middle image.
We expect that the data term decides whether a full alignment as in the middle or a
pointwise alignment as in the right image of Fig. 2 are to be preferred, such that we
avoid overregularization or the introduction of artificial edges.

Furthermore, we propose to extent the idea of rank penalization of the derivatives to
the TGV framework by minimizing

TGVNq (u) := inf
∇u=v+z

α

∫
Ω

∥∥∥∥(v1,1(x, y) v1,2(x, y) v1,3(x, y)
v2,1(x, y) v2,2(x, y) v2,3(x, y)

)∥∥∥∥q
Nq

dx dy

+ (1− α)

∫
Ω

∥∥∥∥∥∥∥∥
⎛⎜⎜⎝
∂xz1,1(x, y) ∂xz1,2(x, y) ∂xz1,3(x, y)
∂xz2,1(x, y) ∂xz2,2(x, y) ∂xz2,3(x, y)
∂yz1,1(x, y) ∂yz1,2(x, y) ∂yz1,3(x, y)
∂yz2,1(x, y) ∂yz2,2(x, y) ∂yz2,3(x, y)

⎞⎟⎟⎠
∥∥∥∥∥∥∥∥
q

Nq

dx dy. (5)

The above penalization can be motivated as follows. The Jacobian ∇u of an image is
optimally divided into two parts. The first part corresponds to v where the Schatten-q
norm of v is penalized. Thus, the interpretation of v is similar to the plain TV case
discussed above: This part of the gradient of u should point in the same direction for
all color channels. The second part of the functional penalizes the derivatives of z in
the Schatten-q norm and might be more difficult to interpret at first sight. The variable
z contains parts of the Jacobian of u. For interpretation purposes let us assume that
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z = ∇u. Then each column of the matrix in the second term of (5) is exactly the
Hessian of one of the color channels. In this sense, the second term tries to align parts
of the Hessian matrices of the color channels and therefore is the natural extension
of aligning the first derivatives. Having the interpretation of a Hessian in mind, one
could also motivate our approach by considering an image u whose color channels are
twice continuously differentiable. In this case a second order Taylor expansion could
describe the local behavior of each channel. Particularly, for color channels with parallel
Hessians the second order behavior or the curvature of all color channels is the same
up to a scaling and thus extends the coupling of different color channels from the first
derivatives in the TV case to the second derivatives in the TGV case.

3 Application to Inverse Problems in Image Processing

We now consider inverse problems involving the proposed regularizers, given an input
image f : Ω → Rk with k channels on a d-dimensional discretized domain Ω. For
regularization of piecewise constant images we have the following variational problem

min
u

λ

2
‖u− f‖2 +R(u), (6)

where R(u) is either TV q
F (u) = ‖∇u‖q2,q =

∫
Ω‖∇u(x)‖

q
2 dx or TVNq (u) as defined

in (4). For inverse problems involving piecewise affine and natural images we propose

min
u,v

λ

2
‖u− f‖2 +R(u, v), (7)

whereR(u, v) is TGV q
F (u, v) = α‖∇u−v‖q2,q+(1−α)‖∇2v‖q2,q or TGVNq (u, v) as

defined in (5). Since for q < 1 the regularizers are nonconvex and nonsmooth, their ef-
ficient numerical optimization is a challenging problem. In the next section we propose
a minimization algorithm for energies involving the proposed regularizers.

3.1 Splitting Methods in the Nonconvex Setting

Let us first introduce the proximal mapping associated with a proper, lower-semi-
continuous function f : X → R ∪ {∞}:

proxτ,f (y) := argmin
x

f(x) +
1

2τ
‖x− y‖2. (8)

Note that if f is nonconvex, this mapping is not necessarily single-valued.
It has recently been shown experimentally that primal-dual splitting methods for

convex optimization are also often applicable in the nonconvex setting [21,22]. Here
we show how to generalize the recent approach [21] to our setting. In general, we aim
to minimize cost functions of the form

min
u

G(u) + F (g) subject to Ku = g, (9)

where G is convex, F possibly nonconvex and K a linear operator. The algorithm stud-
ied in [21,23] is given as
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gn+1 ∈ proxσ−1,F

(
Kūn + σ−1qn

)
,

qn+1 = qn + σ
(
Kūn − gn+1

)
,

un+1 = proxτ,G
(
un − τKT qn

)
,

ūn+1 = un+1 + θ(un+1 − un),

(10)

and reduces to the primal-dual hybrid gradient method (cf. [20]) for convex F . Inter-
estingly, this update scheme can also be interpreted as gradient descent in the primal
variables u and g and gradient ascent in the dual variable q on the following Lagrangian
saddle-point formulation of (9):

max
q

min
u, g

G(u) + F (g) + 〈q,Ku− g〉. (PD)

Since for nonconvex F it is generally not possible to interchange min and max, this
is not the same as the primal-dual saddle point problem involving the Fenchel dual
F ∗ from [2]. As observed in [23], a necessary condition on the dual step size for the
algorithm to converge for semiconvexity F , i.e. for F with the property that F (u) +
ω
2 ‖u‖2 is convex, seems to be σ ≥ 2ω.

Adaptive Step-Size Scheme. As the �q seminorms are neither semiconvex nor dif-
ferentiable for q < 1 one possibility would be to approximate it by a regularized or
smoothed variant. However, this turns out to be difficult for the nonconvex relaxations
of the rank function.

Instead we opt to employ a variable step size scheme where the dual step size ap-
proaches infinity (σ →∞) as suggested in [21]:

θn = 1/
√
1 + 2γτn, σn+1 = σn/θn, τn+1 = τnθn, (11)

with τ0σ0‖K‖2 < 1. Here γ is an additional parameter which is usually chosen accord-
ing to the strong convexity constant of G, e.g. γ = λ for G(u) = λ

2 ‖u − f‖2. In the
case of TGV regularization, the functionG is not strongly convex due to the additional
primal variable. We still pick γ = λ as a heuristical choice, as it works well in practice.

A similar approach is suggested by Storath et al. [22] for minimizing the Potts
model, based on the direct application of the Alternating Direction Method of Multipli-
ers (ADMM) to the nonconvex �0 regularizer while having a similar step size scheme
where the penalty parameter in the ADMM method approaches infinity. Here, the adap-
tive step size scheme for the above primal-dual algorithm comes with an immediate
interpretation in the convex setting for strongly convexG.

As the adaptive step size scheme yields σn → ∞, the following interpretation is
interesting. By considering the optimality conditions of the iterates produced by Algo-
rithm (10) we see that the inclusion qn ∈ ∂F (gn) holds in every iteration (cf. [23]).

For differentiable F the subdifferential is a singleton and we can thus eliminate the
variable q, and retrieve a formulation in terms of primal variables:

gn+1 ∈ proxσ−1
n ,F

(
Kūn + σ−1

n ∇F (gn)
)
,

un+1 = proxτn,G
(
un − τnK

T∇F (gn)
)
,

ūn+1 = un+1 + θn(u
n+1 − un).

(12)
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As σn →∞ the proximity operator in the update in g becomes the identity and it can be
seen that we approach the forward-backward splitting algorithm in the limit, applied to
the primal problem (9) with an additional inertial term on u. This relation is interesting
as convergence of forward-backward methods in the nonconvex setting is theoretically
proven [24].

In order to apply Algorithm (10) to the problems at hand we require the efficient
evaluation of the proximal mappings coming from the nonconvex regularizers, which is
a nonconvex optimization problem itself.

3.2 Evaluation of the ‖·‖q
2,q Proximal Mapping

First we note that the due to the separability, the proximal mappings reduce to pointwise
evaluations of ‖·‖q2. We will focus on the former case first. Given g0 ∈ Rd×k, we will
consider the efficient minimization of the following proximal mapping for 0 ≤ q < 1:

proxτ,‖·‖q
2
(g0) = argmin

g∈Rd×k

‖g − g0‖22
2τ

+ ‖g‖q2. (13)

The case q = 0. An important special case is q = 0, which corresponds to Potts
regularization. In this case the minimization (13) can actually be solved explicitly via
hard thresholding:

proxτ,‖·‖0
2
(g0) =

{
0 if ‖g0‖2 ≤

√
2τ,

g0 otherwise.
(14)

For the general case 0 < q < 1, we first note that the evaluation of the proximal operator
(13) can be reduced to a scalar problem.

Proposition 1. Given g0 ∈ Rd×k, τ > 0, q ∈ (0, 1) and λ > 0, the solution of the
proximal operator

proxτ,‖·‖q
2
(g0) = argmin

g∈Rd×k

‖g − g0‖22
2τ

+ ‖g‖q2

has the form ĝ = tg0 for some real t ≥ 0.

Proof. A proof is given in the appendix of [25].

Solving the Scalar Problem. Since we now know that the optimal solution is a scalar
multiple of g0 we substitute g = tg0 in (13) and arrive at the following problem

argmin
t≥0

(t− 1)2

2
+ αtq =: argmin

t≥0
f(t) (15)

for α = τ‖g0‖q−2
2 ≥ 0. Thus, evaluating the proximal operator (13) reduces to solving

the above problem (15) for t ≥ 0.
The minimization problem (15) can be solved in closed form for certain values of

q such as 1/2 or 3/4 as described in [14]. In the following, we provide a more concise
analytic solution for the special case 1/2 and an efficient algorithm based on Newton’s
method for the general case.
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Fig. 3. The function (15) for three different values of α and q = 0.5. From left to right: α ≈
0.41 < 2

√
6

9
, α = 2

√
6

9
≈ 0.54, α = 4

3
√

3
≈ 0.77. It can be seen that the desired stationary point

is also the global minimum for α < 2
√

6
9

(left). In the equality case, the value at the stationary
point is the same as the boundary value (center). For α > 4

3
√

3
the function is increasing (right).

Concise Closed Form Solution for q = 1/2. Setting the derivative of the cost function
(15) to 0 and substituting t = s2 we arrive at the cubic equation

s3 − s+
α

2
= 0. (16)

Following the work of [26] we arrive at the following closed form expression for the
root which corresponds to the minimum of (15):

ŝ =
2√
3
sin

(1
3

(
arccos

(3√3

4
α
)
+
π

2

))
. (17)

Interestingly this solution based on trigonometric expressions is quite a bit shorter than
the one proposed in [14]. As shown in Fig. 3, we see that for some values of α the value
at the boundary is the optimal value. This is precisely for all α satisfying the condition

α >
2
√
6

9
. (18)

If (18) is satisfied we simply set t̂ = 0, otherwise we find the root ŝ of (16) that cor-
responds to the local minimum using formula (17) and set t̂ = ŝ 2. As seen in Fig. 3,
for α > 4

3
√
3

, the function is increasing and does not have a stationary point. This
corresponds to the case where the root in (17) is not real anymore.

Newton’s method for general 0 < q < 1. For general values of q, we solve the scalar
�q problem (15) using Newton’s method. For all α satisfying the condition

α >
1

2− q

(
2
1− q

2− q

)1−q

(19)

the boundary value is lower than the value at the local minimum as shown for q = 0.5
in Fig. 3, so we set t̂ = 0 if (19) is satisfied and otherwise we use Newton’s method. For
that we note that for α = 0 the optimal point is at t̂ = 1, and for α > 0 we have t̂ < 1.
So we pick the starting point for Newton’s method t0 = 1. We perform the iteration

tk+1 = tk − f ′(tk)/f
′′(tk) (20)



134 T. Möllenhoff et al.

Algorithm 1. Newton’s method for solving the nonconvex �q proximal operator.

Input: Parameters g0 ∈ Rd×k, τ > 0 and q ∈ (0, 1), machine precision ε > 0
Output: Minimizer ĝ ∈ Rd×k of (13)
if ‖g0‖2 > 0 then

α = τ‖g0‖q−2
2

if α satisfies (19) then

t̂ = 0
else

// Solve for optimum using Newton’s method.
t0 = 1
for k ≥ 1 until f ′(tk)/f ′′(tk) < ε do

tk = tk−1 − f ′(tk)/f ′′(tk)

t̂ = tk

ĝ = t̂ g0
else

ĝ = 0 // In the case g0 = 0 we can just set ĝ = 0.

where f ′ and f ′′ denote the first and second derivatives of f . It can be shown that the
derivative f ′ is convex and increasing on the closed interval

[
t̂, 1

]
, so Newton’s method

always converges to the minimum. The final algorithm to evaluate the proximal operator
(13) for 0 < q < 1 is given as Algorithm 1.

3.3 Evaluation of the ‖·‖q
Nq Proximal Mapping

Similar to the previous section, due to the separability we are only interested in the
pointwise evaluation of ‖·‖qNq

. Given g0 ∈ Rd×k we wish to evaluate the proximal
mapping

proxτ,‖·‖q
Nq

(g0) = argmin
g∈Rd×k

‖g‖qNq
+

1

2τ
‖g − g0‖22. (21)

In order to do so, we start with the singular value decomposition of the input argument
g0 = UΣg0V

T and substitute that into (21):

argmin
g∈Rd×k

‖g‖qNq
+

1

2τ
‖g − UΣg0V

T ‖22. (22)

Since the functions ‖·‖qNq
and ‖·‖2 are unitarily invariant, the optimization problem can

be reduced to the following:

argmin
Σ∈Rd×k

‖Σ‖qNq
+

1

2τ
‖Σ −Σg0‖22, (23)

where Σ ∈ Rd×k is a diagonal matrix. We can restrict the optimization problem (23) to
diagonal matrices due to a result by Mirsky [27, Theorem 5].
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Fig. 4. Effect of the parameter q illustrated on a color image and a denoising example. Values of
q < 1 lead to piecewise constant results and smaller values of q lead to higher contrast between
the regions. In the second row we show the effect of the parameter q for image denoising. a), b)
While smaller values of q lead to sharp boundaries and clearer regions, large noise outliers are
not being removed since big jumps get penalized less. c) For such high noise levels we found
values around q ≈ 0.8 to give the highest PSNR values as it describes a good trade-off.

As this minimization problem is seperable, we can compute the �q proximal mapping
for each singular value in Σg0 . Given the solutions Σ̂ to the previous problem (23), the
final solution ĝ ∈ Rd×k is recovered as

ĝ = UΣ̂V T = g0V Σ
+
g0Σ̂V

T , (24)

where Σ+
g0 denotes the pseudoinverse of Σg0 . Note that it is not required to calculate a

full singular value decomposition of g0, but just the eigenvalue decomposition of gT0 g0
to obtain V . In case of TGVNq , this is an eigenvalue decomposition of a 3× 3 matrix 1.

4 Numerical Experiments

For all experiments we initialized the primal and dual variables (u, g and q) with zero.

4.1 Effect of the Parameter q in the TV q
F Model

In Fig. 4 we show the effect of the parameter q on a natural image for the TV q
F model.

Values of q < 1 lead to piecewise constant approximations and for smaller values of

1 Efficient evaluation:
http://www.mpi-hd.mpg.de/personalhomes/globes/3x3/

http://www.mpi-hd.mpg.de/personalhomes/globes/3x3/
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Fig. 5. Denoising of a piecewise constant image and natural images with TV q (q = 0.5) and
TGV q regularization (q = 0.75) using the proposed primal-dual algorithm. We chose α = 1/3
for all the TGV experiments and the data fidelity parameters were optimized for maximal PSNR.

q we observe higher contrast between the regions. That is because for smaller values
of q, bigger jumps are penalized less and less until for q = 0 all jumps are penalized
equally. Note that the proposed algorithm produces consistent results in a sense that
smaller values of q systematically lead to a higher contrast between the regions.

In the second row in Fig. 4 we illustrate how the denoising performance of the algo-
rithm depends on the parameter q. While smaller values of q lead to desirable sharper
boundaries and higher contrast, strong noise outliers do not get removed anymore due
to the lower penalization of large jumps. Finding the correct value of q means finding a
good trade off and values of q ≈ 0.8 lead to the highest PSNR for this particular noise
level.

4.2 Denoising of Piecewise Constant Images with TVq Regularization

In the first row of Fig. 5 and in Fig. 1 the denoising performance of the different regular-
izers on a piecewise constant image is shown. We chose q = 0.5 and the hyperparameter
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Fig. 6. Experimental convergence of the proposed algorithm on the 256 × 256 RGB lena image
for TV q

F and TGV q
F regularization and different data fidelities λ. We observe convergence for

both the normalized energy (En −E∗)/(E0 −E∗) and the normalized energy En/E0. Similar
convergence results are to be expected for the TVNq and TGVNq cases.

λ was chosen in order to obtain the highest PSNR values. It can be seen that the nuclear
norm reduces color artifacts at the jumps significantly and the use of nonconvex norms
leads to less contrast loss and yields sharper discontinuities. Combining both aspects
yields the overall highest PSNR and an improvement of 2 − 3 PSNR values over the
baseline approach [6] in Fig. 1 and Fig. 5.

4.3 Denoising of Natural Images with TGV q Regularization

In the second and third row of Fig.5 we show the result of the proposed algorithm
applied to the TGV -denoising functional for the different variants of TGV regulariza-
tion. The data fidelity parameter λ was tuned for maximal PSNR. Again we see that
nonconvex TGV q yields sharper discontinuities and higher PSNR values while the use
of the nuclear norm reduces color artefacts. The combination yields an improvement of
at least 1/2 PSNR over [17] in the experiments in Fig. 5.

4.4 Convergence of the Energy

As the theoretical convergence of the algorithm is still an important open question we
validated the convergence of the algorithm experimentally by precomputing a u∗ =

u10
5

as an approximation to the converged solution. It can be seen in Fig. 6 that the
normalized energies (E(un)−E(u∗))/(E(u0)−E(u∗)) andE(un)/E(u0) converge.
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Fig. 7. We show the energy decrease over iterations (total inner iterations for the iterative
reweighted �1 algorithm) for the TV q

F (left) and TGV q
F (right) denoising examples in Fig. 1

and Fig. 5. Our proposed direct algorithm minimizes the energy functional comparably to the
state-of-the-art iterative reweighted �1 algorithm [16].

We compare the energy decrease of the proposed method over iterations to iterative
reweighted �1 (IRL1) optimization [16], and show the results in Fig. 7. For the iterative
reweighting method we chose the smoothing parameter ε = 10−6 as a regularization
parameter to make the �q function Lipschitz continuous. The inner convex optimization
problem is solved using the same primal-dual algorithm (but of course in the convex set-
ting) and uses the same termination criterion for the inner iterations as detailed in [16].
We see that the direct application of the primal-dual method in the nonconvex setting
performs overall comparably to the state-of-the-art iterative reweighted �1 method.

5 Conclusion

We proposed novel regularizers for vector valued images based on convex and non-
convex relaxations of a rank minimization prior. Numerous experiments on piecewise
constant and natural images show that the proposed regularizers yield overall state-of-
the-art performance.

Furthermore, to deal with the nonconvex and nonsmooth optimization problem an
efficient optimization method for solving related inverse problems was presented. We
have shown how to efficiently find globally optimal solutions to the arising nonconvex
proximal mapping. Our numerical experiments indicated that the direct application of
a primal-dual splitting method in the nonconvex setting performs comparably to se-
quential convex programming methods. For future work we mainly wish to study the
convergence properties of convex splitting methods in the nonconvex setting.
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140 T. Möllenhoff et al.

24. Ochs, P., Chen, Y., Brox, T., Pock, T.: iPiano: Inertial Proximal Algorithm for Non-convex
Optimization. SIAM Journal on Imaging Sciences (SIIMS) (Preprint, 2014)

25. Bouaziz, S., Tagliasacchi, A., Pauly, M.: Sparse Iterative Closest Point. Computer Graphics
Forum (Symposium on Geometry Processing) 32(5), 1–11 (2013)

26. McKelvey, J.P.: Simple transcendental expressions for the roots of cubic equations. Amer. J.
Phys. 52(3), 269–270 (1984)

27. Mirsky, L.: Symmetric gauge functions and unitarily invariant norms. Quart. J. Math. Oxford
Ser. (2), 50–59 (1960)



A Novel Framework for Nonlocal Vectorial Total

Variation Based on �p,q,r−norms

Joan Duran1,2, Michael Moeller2, Catalina Sbert1, and Daniel Cremers2

1 Universitat de les Illes Balears, Department of Mathematics and Computer Science,
Cra. de Valldemossa km. 7.5, 07122 Palma, Spain

{joan.duran,catalina.sbert}@uib.es
2 Technische Universität München, Department of Mathematics and
Computer Science, Boltzmannstrasse 3, 85748 Garching, Germany

{cremers,michael.moeller}@in.tum.de

Abstract. In this paper, we propose a novel framework for restoring
color images using nonlocal total variation (NLTV) regularization. We
observe that the discrete local and nonlocal gradient of a color image can
be viewed as a 3D matrix/or tensor with dimensions corresponding to
the spatial extend, the differences to other pixels, and the color channels.
Based on this observation we obtain a new class of NLTV methods by
penalizing the �p,q,r norm of this 3D tensor. Interestingly, this unifies sev-
eral local color total variation (TV) methods in a single framework. We
show in several numerical experiments on image denoising and deblur-
ring that a stronger coupling of different color channels – particularly, a
coupling with the �∞ norm – yields superior reconstruction results.

1 Introduction

Even after over 20 years of research, the total variation (TV) of Rudin, Osher and
Fatemi [24] remains one of the most popular regularizations for image processing
problems and has sparked a tremendous amount of research, e.g. on higher order
TV [2, 8], cartoon texture decompositions [7, 19], the total generalized variation
[4], and several extensions to vector valued data [1, 3, 5].

Motivated by the work on nonlocal algorithms [6, 26–28], Kindermann et al.
[16] and Gilboa et al. [13] interpreted neighborhood filters as regularizations
based on nonlocal functionals. In [14] Gilboa and Osher defined and extended
the TV to the nonlocal total variation (NLTV) for grayscale image denoising.
Thanks to the mathematical similarities between the local TV and the NLTV,
the nonlocal framework was subsequently used for inpanting and super-resolution
[21], image deblurring [18] or compressive sensing [29]. In a recent paper, Duan
et al. [10] introduced the vectorial NLTV for image inpainting by coupling the
channels with the help of the �2 norm.

1.1 The Proposed Framework

The typical approach for the NLTV regularization is to pre-compute weights wi,j

based on the similarity of patches around pixels fi and fj in the data f ∈ RN

X.-C. Tai et al. (Eds.): EMMCVPR 2015, LNCS 8932, pp. 141–154, 2015.
c© Springer International Publishing Switzerland 2015
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(using linear indexing) and then penalize the weighted difference of all pixels in
the image, e.g. for NLTV denoising

û = argmin
u

λ

2
‖u− f‖2 +

∑
i

∑
j

wi,j |ui − uj|, (1)

where λ > 0 is a trade-off parameter.
In the literature that uses nonlocal filtering for color images, f ∈ RN×3,

it is common to first compute the similarity weights wi,j using all three color
channels at the same time, but then solve the NLTV regularized problem (1)
on each channel separately. In this paper, we propose to couple the different
channels of a color image by determining the denoised image û ∈ RN×3 via

û = argmin
u

1

2
‖u− f‖2F + ‖Ku‖p,q,r, (2)

where K is a linear operator such that Ku is a three dimensional tensor whose
first dimension corresponds to the pixels, the second one contains the weighted
differences to other pixels, and the third dimension corresponds to the color
channels. Throughout the paper, we use the colon to denote all elements along
the associated dimension of the data structure. For illustration purposes, let us
give Ku for a color image u with only four pixels. The matrix (Ku):,:,m obtained
by fixing the third dimension to m is⎛⎜⎜⎝

0 w1,2(u1,m − u2,m) w1,3(u1,m − u3,m) w1,4(u1,m − u4,m)
w2,1(u2,m − u1,m) 0 w2,3(u2,m − u3,m) w2,4(u2,m − u4,m)
w3,1(u3,m − u1,m) w3,2(u3,m − u2,m) 0 w3,4(u3,m − u4,m)
w4,1(u4,m − u1,m) w4,3(u4,m − u3,m) w4,3(u4,m − u3,m) 0

⎞⎟⎟⎠ ,

where we used two indices for u, the first one corresponding to a linear indexing
of the pixels and the second one corresponding to the color channels.

The penalty we propose to use in this paper is the �p,q,r norm defined as

‖A‖p,q,r =

⎛⎜⎝∑
i

⎛⎝∑
j

(∑
k

|Ai,j,k|p
)q/p

⎞⎠r/q
⎞⎟⎠

1/r

, (3)

where we use the typical notation of �p norms that any of the indices p, q, or r
being equal to infinity denotes taking the maximum of the absolute values along
the corresponding dimension. The �p,q,r norm first takes the �p norm in the third
matrix dimension, then the �q norm in the second matrix dimension and finally
the �r norm of the remaining vector. Note that although the matrix (Ku):,:,m
is an N × N matrix (with N denoting the number of pixels in the image) for
theoretical purposes, one typically only uses a few nonzero weights in practical
applications. Interestingly, our new framework unifies several definitions for local
TV regularization functionals, i.e. in the case where all weights wi,j are zero
except those corresponding to the right and the lower neighbor of each pixel
(which are equal to one). As we will see in more details in the next section, up
to a rearrangement of matrix dimensions, we can recover the local TV approaches
in [1] by ‖ · ‖2,1,1, in [3] by ‖ · ‖2,1,2, and in [5] by ‖ · ‖2,2,1.
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1.2 Contributions

Our contribution in this paper is to present a generalized framework for nonlocal
(and local) TV regularization of color images based on mixed �p,q,r matrix norms.
Almost all NLTV approaches proposed in the literature filter each channel sep-
arately. In fact, [10] is the only work on coupling color channels we are aware
of. We propose to use more sophisticated coupling schemes that leads to novel
regularization in the nonlocal case. Particularly, the new proposed NLTV−�∞,1,1

model yields superior image reconstruction results.

2 Vectorial Total Variation

2.1 Local Total Variation

In this section we will summarize the approaches that have proposed different
extensions of the local TV to vector valued images, since it motivates our general
framework of penalizing the �p,q,r norms (3) of the gradient not only in the local
but also in the nonlocal case.

The (local) TV regularization [24] for grayscale images is commonly used in
two different forms. Let Ω be an open bounded subset of R2 and let us denote
a pixel by x = (x1, x2) ∈ Ω. The anisotropic TV for an image u : Ω → R
is defined as

∫
Ω

(
|∂x1u(x)| + |∂x2u(x)|

)
dx, whereas the isotropic TV is given

by
∫
Ω

√
(∂x1u(x))

2 + (∂x2u(x))
2 dx, where ∂x1 and ∂x2 denote the derivatives

in the x1– and x2–direction, respectively. More general definitions for functions
of bounded variation can be given by using a dual formulation, however, are
omitted here and throughout the rest of this paper for the sake of simplicity.

For color images u : Ω → RM , where u(x) = (u1(x), . . . , uM (x)) and M
denotes the number of color channels, different TV penalizations have been pro-
posed depending on the coupling of the spatial derivatives as well as on the cou-
pling between color channels. All of the following examples could be formulated
in an isotropic and an anisotropic version, but only the isotropic regularizations
are given as examples. Although the following definitions were given different
names, they can all be summarized in the �p,q,r framework. For color images,
there is the channel independent TV [1]

M∑
m=1

∫
Ω

√
(∂x1um(x))2 + (∂x2um(x))2 dx, (4)

which (in the discrete case) is the penalization of ‖∇u‖2,1,1, and the vectorial
total variation with global coupling [3]√√√√ M∑

m=1

(∫
Ω

√
(∂x1um(x))2 + (∂x2um(x))2 dx

)2

, (5)

i.e. the penalization of ‖∇u‖2,1,2, both with the dimensions of ∇u being ordered
by colors, pixels and derivatives. The local vectorial TV (a special case of [25]
and further studied in [5]) is
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∫
Ω

√√√√ M∑
m=1

(∂x1um(x))2 + (∂x2um(x))2 dx, (6)

which is nothing but the penalization of ‖∇u‖2,2,1. In [20] Miyata and Sakai
recently proposed a vectorial TV regularization that couples different channels
with the supremum norm,∫

Ω

(
max

1≤m≤M
{∂x1um(x)} + max

1≤m≤M
{∂x2um(x)}

)
dx, (7)

which is the same as ‖∇u‖∞,1,1 (with the dimensions ordered by pixels, deriva-
tives and colors) in our notation. We expect the supremum norm to couple the
channels more than an �1 or an �2 norm which is why – different from [20] – we
propose not to apply an additional color transform that decouples the channels.

Further versions of the local total variation in literature are based on penal-
izing singular values of the submatrices one obtains by fixing a pixel location
(cf. [15,17,25]). While these approaches could be incorporated in our framework
by not only allowing �p norms but also Schatten-p norms, we decided not to
include this class of regularizations for the sake of simplicity.

2.2 Nonlocal Neighborhood Filters

All classical TV techniques for image processing describe regularity in terms of
local derivative features so that only relationships between adjacent pixels are
considered. The main assumption underlying TV functionals is that an image
consists of connected smooth regions (objects) surrounded by sharp contours
(edges). Accordingly, TV regularization is optimal to reduce noise and recon-
struct the main geometrical shape (i.e. piecewise constant regions) in an image,
but it fails to preserve fine structures, details and texture because they cannot
be distinguished from noise.

In order to overcome the above drawbacks, the so-called neighborhood filters
extend classical TV to nonlocal regularizations in which any point in an image
can interact directly with any other point in the whole domain. In contrast to
the local case, neighborhood filters use not only the spatial closeness between
points but also closeness of intensity values in the image.

In this setting, a general description of a nonlocal filter for a grayscale image
u at a point x ∈ Ω is given by

NF [u](x) =
1

C(x)

∫
Ω

ωu0 (x, y)u(y) dy, (8)

with u0 being a reference image on which the weight distribution ωu0 is com-
puted, and C(x) =

∫
Ω

ωu0 (x, y) dy being the normalization factor. The value
ωu0 (x, y) represents the similarity of points x and y with respect to an appropri-
ate measure. For image denoising tasks, u0 is usually chosen as the noisy image f .
Generally, nonlocal approaches try to recover both, shapes and textures, within
the same framework by identifying recurring structures in the whole image.
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A special case of (8) is the nonlocal means (NL-means) algorithm by Buades,
Coll and Morel [6], which restores a pixel x ∈ Ω by averaging the intensity
values of all pixels whose neighborhood looks like the neighborhood of x, i.e. by
computing (8) with

ωu0 (x, y) = e−
dρ(u0(x),u0(y))

h2 , (9)

where the distance dρ is defined by

dρ (u0(x), u0(y)) =

∫
Ω

Gρ(t)|u(x+ t)− u(y + t)|2dt. (10)

In this framework, Gρ is a Gaussian kernel and h acts as a filtering parameter
that controls the decay of the weights as a function of the Euclidean distances
between patches. This method takes advantage of the fact that most natural
images are self similar. The weight function ωu0 usually satisfies the conditions
0 < ωu0 ≤ 1 and

∫
Ω ωu0(x, y)dy = 1.

Defining the nonlocal gradient as

∇ωu(x, y) = (u(y)− u(x))
√
ω(x, y), ∀y ∈ Ω, (11)

for a nonnegative (symmetric) weight function ω : Ω × Ω → R and an image
u : Ω → R, it was shown by Gilboa and Osher in [13] that the NL-means
algorithm can also be written in a variational framework. Being able to state
nonlocal regularizations in a variational setting further motivated Gilboa and
Osher to extend the nonlocal filtering model to a definition of the nonlocal total
variation.

2.3 Nonlocal Total Variation

In [14] the quadratic nonlocal variational regularization was extended to the
one-homogeneous nonlocal total variation. For grayscale images, there exist two
variants of the NLTV approach depending on the question if the inner norm is
chosen to be L2(Ω) or L1(Ω), giving rise to∫

Ω

√∫
Ω

(u(y)− u(x))
2
ωu0(x, y) dy dx (12)

which corresponds to the isotropic TV in the local case, and∫
Ω

∫
Ω

|u(x)− u(y)|
√
ωu0(x, y) dy dx, (13)

which is related to the anisotropic TV in the local case.
A problem of nonlocal regularization strategies in inverse problems is the esti-

mation of the weight function. In some image processing problems like denoising
or deconvolution, the weight can be directly estimated from the noisy image.
For many other problems, the observation f cannot be used directly and a first
approximate solution is necessary for the computation of the weights (see [18]
for more details).
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3 Color Image Denoising Using NLTV−�p,q,r

In the literature that uses neighborhood filters for color image denoising, it is
common to first compute the similarity weights using all channels at the same
time, but then solve the NLTV regularized problem

min
ui∈NL-BV(Ω)

∫
Ω

|∇ωui(x)| dx+
λ

2
‖ui − fi‖22,

on each channel separately.
As pointed out in the introduction, our novel idea is to use the fact that the

discretization of the nonlocal gradient or Jacobian ∇ω on a color image u is
nothing but a linear operator K which returns a three dimensional structure
Ku. The three dimensions of Ku correspond to the spatial extend of the im-
age, the weighted differences to all other pixels (which we will refer to as the
nonlocal derivatives), and the color channels. In the local TV case, the weighted
differences to all other pixels reduces to two components, i.e. the x– and the
y–derivative, such that Ku typically is an N × 2 × 3 matrix for color images,
where N is the number of pixels. Motivated by the local TV regularization, we
propose to apply the �p,q,r regularization scheme (3) for coupling the different
dimensions of Ku to the NLTV case as well. Note that the �p,q,r norm is not
invariant to permutation of the dimensions and, thus, it is important to make
clear the order of the dimensions.

For example, similar to the local TV, we can see that the channel-by-channel
regularizations (12) and (13) can be written as �2,1,1 and �1,1,1 respectively, where
for the �2,1,1 case the dimensions are sorted according to pixels, color channels
and derivatives. In [10] it was proposed to couple the dimensions in analogy to
(5), by considering a regularization of the form√√√√ M∑

m=1

(∫
Ω

√∫
Ω

(u(y)− u(x))2ωu0(x, y) dy dx

)2

(14)

such that their approach can be denoted by a nonlocal �2,1,2 regularization in our
framework whenever the dimensions are ordered by channels, pixels and nonlocal
derivatives. Interestingly, [10] is the only work on coupling color channels in an
NLTV approach the authors are aware of. In this paper, we will show that
improvements similar to the onces made by using more sophisticated coupling
schemes for the local TV can be achieved for the NLTV as well.

For discussing the question what kind of matrix norm is the best candidate for
the NLTV regularization we have to understand what kind of properties they try
to impose on the reconstructed image. The �1,1,1 regularization penalizes each
channel independent of the others, which makes it only appropriate when the
channel correlation is insignificant. On the contrary, the �∞,1,1 norm introduces
a strong inter-channel coupling with the help of the supremum norm. In between
the above-mentioned norms, �2,1,1 and �2,2,1 use a channel coupling in terms of
the Euclidean norm. The question whether a strong or a weak coupling leads
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to better results depends on the type of correlation in the data. As we will
see in the numerical results, natural images have a rather strong inter channel
correlation such that we found the �∞ coupling of the color channels to be the
most successful approach, since it worked well for suppressing color artifacts.

4 Numerical Implementation

4.1 Computation of the Weights

For computational purposes, the nonlocal regularization term is limited to inter-
act only between pixels at a certain distance (the so-called search window), i.e.,
the weight function ω(x, y) is zero for all points x and y with ‖x − y‖∞ > K,
for a certain parameter K > 0. More precisely, the similarity weight between x
and y is determined as

ω(x, y) =

⎧⎨⎩
1

C(x)
e−

1
h2

∑
t∈N0

‖u0(x+t)−u0(y+t)‖2

if ‖x− y‖∞ ≤ K,

0 otherwise,

where N0 is a discrete window centered at 0 (the comparison window). The
normalizing factor C(x) is defined by

C(x) =
∑

{y:‖x−y‖∞≤K}
e−

1
h2

∑
t∈N0

‖u0(x+t)−u0(y+t)‖2

.

Therefore, the matrix obtained by fixing a color channel and looking at the
remaining structure in the pixel and nonlocal derivative dimensions is sparse
since only a few weights are nonzero.

Note that the Gaussian kernel Gρ introduced in the mathematical formulation
(9)-(10) was omitted here since according to our numerical experiments it is only
necessary when the size of the comparison window is considerably larger. Due to
the fast decay of the exponential kernel, large Euclidean distances lead to nearly
zero weights, acting as an automatic threshold.

4.2 Minimization Algorithm and Proximity Operators

It is remarkable that all variants of different matrix norms imposed on the (pos-
sibly nonlocal) gradient of the color channels can be solved very efficiently by
using the same splitting technique. In this paper, we use the primal-dual hybrid
gradient method [9, 12, 22, 30] for solving minimization problems of the form

min
u
G(u) + F (Ku),

where G and F are proper convex functionals and K is a linear operator, which
in our case is the nonlocal gradient. The algorithm iteratively computes
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un+1 = proxτG(u
n − τKT qn),

ūn+1 = 2un+1 − un,

gn+1 = prox 1
σF

(
Kūn+1 +

qn

σ

)
,

qn+1 = qn + σ(Kūn+1 − gn+1),

(15)

where τ > 0 and σ > 0 are chosen such that τσ‖K‖2 ≤ 1. The only thing that
changes when varying the regularizer F is the proximity operator, a generaliza-
tion of the projection that is defined as

proxα F (v) = argmin
g

1

2
‖g − v‖22 + αF (g).

The key to obtaining a fast algorithm based on (15) is the fast evaluation of
the proximity operators. In the following we will discuss the implementation of
proxα F (v) for the matrix norms discussed previously.

– �1,1,1: The proximity operator decouples for all pixels such that

(proxα �1,1,1(v))i,j,k = sign(vi,j,k) max(|vi,j,k| − α, 0),

which is known as shrinkage or soft thresholding operator.

– �2,1,1: As for instance known from the isotropic total variation, the �2 norm
leads to the generalized shrinkage formula

(proxα �2,1,1(v))i,j,k =
vi,j,k
‖vi,j,:‖2

max(‖vi,j,:‖2 − α, 0),

where recall that the colon denotes all elements along that dimension.

– �2,2,1: Extending the previous result by one additional dimension is straight-
forward. Therefore, the corresponding proximity operator is simply given by

(proxα �2,2,1(v))i,j,k =
vi,j,k

‖vi,:,:‖2,2
max(‖vi,:,:‖2,2 − α, 0).

– �∞,1,1: Due to the outer �1 norms, the �∞,1,1 problem decouples in the first
and second dimensions. We are left with an �∞ regularized problem at each
component with a dual formulation of the form

1

2

∥∥∥vi,j,:
α

− pi,j,:

∥∥∥2
2

such that ‖pi,j,:‖1 ≤ 1.

The primal variable can be recovered by

(proxα �∞,1,1(v))i,j,k = vi,j,k − αpi,j,k

as one can see by Moreau’s identity (cf. [23]). Several efficient algorithms for
projecting onto the �1 ball exist [11].
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5 Experimental Results

In this section, we present a performance comparison of different NLTV−�p,q,r
regularizations for image denoising and deblurring. In all cases, the dimensions
of the nonlocal gradient are ordered by pixels, weighted differences and colors.

In all our numerical experiments we used the degraded image f for computing
the weight function ω, with a search window of 11× 11 pixels and a comparison
window of 3× 3 pixels.

5.1 Image Denoising

In this section we provide a detailed comparison of the different matrix NLTV
approaches for image denoising. We minimize the energy λ

2 ‖u − f‖2 + F (∇ωu)
using all matrix norms discussed throughout the paper as regularizations. For
the minimization we used the primal-dual hybrid gradient algorithm (15) along
with the proximity operators described in Section 4. We used all images from the
Kodak database1 with values being relative to the intensity range [0, 255], and
artificially added zero mean Gaussian noise with standard deviation 12.75. On
the first image, we ran the minimization for each regularization for ten different
data fidelity parameters λ > 0 and ten different filtering parameters h > 0, and
determined the value at which the highest peak signal to noise ratio (PSNR) is
reached. These optimal parameters were then used to run each of the regular-
ization methods on the other 23 Kodak images.

All PSNR values of the reconstructions using all kinds of regularizations are
shown in Table 1. By and large, all methods led to an improvement between
six and seven PSNR points. We can also see that the strong channel-coupling
�∞,1,1 regularization was superior for 22 out of the 24 images. This indicates
that natural images typically have a high inter-channel correlation. Only on
images number 7 and 12 the �2,1,1 norm gave the best result. As expected, �1,1,1

regularization shows one of the worst performances since it does not couple
the colors. Interestingly, the �2,1,1 has outperformed the �2,2,1 regularization.
Apparently, decoupling the nonlocal derivatives was better suited than coupling
them with an �2 norm for the Kodak data set. Anyway, �2,1,1 regularization
provides results close to the best ones but with the advantage of not requiring a
projection as the infinity norm does and, thus, reducing the computational cost.

Since the PSNR values do not always correlate well with the visually perceived
image quality, Figure 1 shows an example for the optimal results each method
obtained on parts of Kodak image 23 (i.e, we computed the best λ and h values
for this particular image in terms of the PSNR). We can see that the �∞,1,1

result has less color artifacts than the three other methods thanks to a stronger
channel coupling.

By updating the weighting function at each iteration, one would expect to
increase the quality of the results at some computational cost. Hence, we tried
to iterate the NLTV denoising with a recomputation of the weights on the cur-
rent estimated reconstruction. Surprisingly, the results did not improve those

1 See http://r0k.us/graphics/kodak/

http://r0k.us/graphics/kodak/
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Table 1. Comparison of the best PSNR values achieved by each matrix NLTV−�p,q,r

method on each of the 24 Kodak images for denoising

1 2 3 4 5 6 7 8 9 10 11 12

Noisy 26.03 26.13 26.10 26.06 26.14 26.17 26.08 26.15 26.03 26.04 26.13 26.07

�1,1,1 30.57 33.57 35.02 33.50 31.23 31.78 34.38 31.01 34.46 34.20 32.33 34.19

�2,1,1 30.66 33.78 35.69 33.75 31.36 31.88 35.06 31.14 35.03 34.68 32.45 34.51

�2,2,1 30.60 33.67 35.35 33.50 31.21 31.76 34.66 31.07 34.77 34.40 32.32 34.28

�∞,1,1 30.81 33.82 35.73 33.76 31.44 31.99 35.03 31.20 35.05 34.72 32.52 34.50

13 14 15 16 17 18 19 20 21 22 23 24

Noisy 26.11 26.08 26.31 26.04 26.24 26.15 26.07 26.98 26.06 26.06 26.09 26.14

�1,1,1 29.28 31.64 33.88 33.13 33.79 31.41 32.74 34.40 32.21 32.31 35.17 31.78

�2,1,1 29.37 31.70 34.24 33.29 34.18 31.54 32.83 34.74 32.50 32.39 35.93 32.03

�2,2,1 29.30 31.58 34.02 33.10 33.81 31.39 32.78 34.67 32.36 32.27 35.33 31.83

�∞,1,1 29.60 31.77 34.29 33.35 34.20 31.66 32.89 34.78 32.61 32.45 35.94 32.12

displayed in Table 1. This is due to, first, the noise level we used for the experi-
ments that makes the input data a valid image for computing the weights and,
second, because of the weighting function being computed on a more and more
smoothed version of the underlying true image.

In addition to the comparison between all proposed �p,q,r norms, it is interest-
ing to compare the performance of local and nonlocal methods. For this purpose,
Figure 2 displays the optimal results provided by each method on parts of Kodak
image 3. As one expects, the nonlocal regularizations perform better than the
local ones for removing noise and color artifacts while preserving fine structures
and textures. For instance, note that the wood pattern has almost disappeared
in all images provided by local regularizations, which does not happen in such
considerable way in the results obtained with NLTV, although of course, some
information from the true image is lost during the nonlocal filtering process as
well. Interestingly, the gain in image quality by going from an �1,1,1 coupling to
an �∞,1,1 coupling is much bigger for the local TV than for the NLTV.

5.2 Image Deblurring

In general, the variational formulation of deblurring involves the minimization
of the energy λ

2 ‖Au− f‖2 +F (∇ωu), where A is a linear operator modeling the
degradation of u caused by the blur. For the following experiment we focus on
deconvolution, which refers to the case where Au = ϕ ∗ u, and ϕ is a Gaussian
convolution kernel. In this case, the proximity operator of the fidelity term is
given by proxτ G(v) = (I+τA∗A)−1(v+τA∗f). The computation of (I+τA∗A)−1

can be implemented very efficiently using the Fourier theorem based on which
the convolution becomes a multiplication in the Fourier domain.

We used Kodak image 23 and optimized λ and h to yield the highest PSNR
values. The corrupted data was simulated by convolving the ground truth with
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Clean
Noisy

PSNR = 26.09
�1,1,1 norm

PSNR = 35.17

�2,1,1 norm
PSNR = 35.93

�2,2,1 norm
PSNR = 35.33

�∞,1,1 norm
PSNR = 35.94

Fig. 1. Visual comparision of the denoising results obtained by different NLTV−�p,q,r

methods on Kodak image 23

Clean
Noisy

PSNR = 26.10
TV �1,1,1 norm
PSNR = 33.60

TV �∞,1,1 norm
PSNR = 34.88

NLTV �1,1,1 norm
PSNR = 35.41

NLTV �∞,1,1 norm
PSNR = 35.65

Fig. 2. Visual comparison of the denoising results obtained by local and nonlocal TV
with �1,1,1 and �∞,1,1 norms on Kodak image 3
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a Gaussian kernel of standard deviation 1.75 and adding white Gaussian noise of
standard deviation 5. Figure 3 shows the results both visually and in terms of the
PSNR values. Note that in all images the blur has been reduced although some
details appearing in the original image cannot be recovered from the corrupted
data. As in the denoising case, coupling the channels with the help of the �∞

norm leads to a higher PSNR value, although the visual difference between all
restored images is small for this particular case.

Clean
Blurred

PSNR = 28.23
�1,1,1 norm

PSNR = 31.85

�2,1,1 norm
PSNR = 31.81

�2,2,1 norm
PSNR = 31.67

�∞,1,1 norm
PSNR = 31.91

Fig. 3. Visual comparision of the deblurring results obtained by different �p,q,r NLTV
methods on Kodak image 23

6 Conclusions

In this paper we proposed a general framework for local and nonlocal TV regu-
larizations of color images by phrasing it as the penalization with a mixed �p,q,r

matrix norm. For the latter, the gradient of a color image was interpreted as a
three-dimensional tensor using pixels, (local or nonlocal) derivatives and color
channels as the three dimensions. We considered then several �p,q,r norms for
regularizing the gradient matrix, which led to novel regularizations in the non-
local case. We discussed the numerical implementation of our framework with
an efficient primal-dual algorithm and particularly focused on the evaluation of
different �p,q,r proximity operators.

We showed a detailed performance comparison of different matrix NLTV ap-
proaches for denoising, as well as an extension to image deblurring. Based on
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our experiments, we exhibited the superiority of using �∞ inter-channel coupling
for a stronger suppression of color artifacts in natural images. Future work will
mainly concentrate on the development of more �p,q,r norms for vectorial TV
and NLTV regularizations, the study of permutations in the dimensions of the
data structure, a deeper insight on the mathematical properties of these ma-
trix norms, and the extension of our approach to other image reconstruction
problems.
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Abstract. Cyclic data arise in various image and signal processing ap-
plications such as interferometric synthetic aperture radar, electroen-
cephalogram data analysis, and color image restoration in HSV or LCh
spaces. In this paper we introduce a variational inpainting model for
cyclic data which utilizes our definition of absolute cyclic second order
differences. Based on analytical expressions for the proximal mappings of
these differences we propose a cyclic proximal point algorithm (CPPA)
for minimizing the corresponding functional. We choose appropriate cy-
cles to implement this algorithm in an efficient way. We further introduce
a simple strategy to initialize the unknown inpainting region. Numerical
results both for synthetic and real-world data demonstrate the perfor-
mance of our algorithm.

Keywords: Inpainting, variational models with higher order differences,
cyclic data, phase-valued data, cyclic proximal point algorithm.

1 Introduction

Image inpainting is a frequently arising problem in image processing. Examples
are restoring scratches in photographs, removal of superimposed objects, dealing
with areas removed by a user, digital zooming, edge decoding, restoration of de-
fects in audio/video recordings or in seismic data. The term ‘inpainting’ first ap-
peared in [6], but earlier work on disocclusions was already done, e.g., in [13,38].
In this respect also interpolation, approximation, and extrapolation problems
may be viewed as inpainting problems. Inpainting is a very active field of research
which has been tackled by various approaches. For a good overview we refer
to the (tutorial) papers [10,12,17,30]. While exemplar-based and sparsity-based
(dictionary/frame/tensor) methods are in general better suited for filling large
texture areas, diffusion-based and corresponding variational techniques show
good results for natural images. The total variation (TV) regularized model pro-
posed in [45] for denoising was first applied to inpainting in [4,15]. It was later also
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used in combination with other methods, however, the TV regularizer typically
introduces a staircasing effect in the corresponding minimizer. A simple method
to avoid these artifacts consists in the incorporation of second order derivatives
into the model. Indeed, starting with [14] various approaches with higher order
derivatives have been proposed, see, e.g., [9,16,19,31,33,35,40,46,47,48,51]. In this
paper, we address the problem of inpainting cyclic data using a variational model
with second order cyclic differences. In general, manifold-valued data process-
ing has recently gained a lot of interest. Examples are wavelet-type multiscale
transforms for manifold data [29,42,52] and manifold-valued partial differential
equations [18,28]. Also statistical issues on Riemannian manifolds have been
considered [22,23,41], in particular the statistics of circular data [21,32].

Related work. Although very popular for processing images with scalar and
vector-valued data, TV minimization has only very recently been applied to
cyclic structures. From a theoretical point of view TV functionals for manifold-
valued functions have been studied in [26,27]. These papers extend the previous
work [25] on S1-valued functions where, in particular, the existence of minimiz-
ers of certain energies is shown in the space of functions with bounded total
cyclic variation. First order TV minimization for cyclic data in image processing
has been investigated in [49,50]. The authors unwrap the data to the real line
and propose an algorithm based on functional lifting which takes the periodicity
into account. In particular, they also consider cyclic inpainting. An algorithm
for TV minimization on Riemannian manifolds was proposed in [34]. The ap-
proach is based on a reformulation as a multilabel optimization problem with an
infinite number of labels. Using convex relaxation techniques, the resulting hard
optimization problem is approximated which also requires the discretization of
the manifold. Another approach for denoising manifold-valued data via first or-
der TV minimization was given in [53]. The authors propose cyclic and parallel
proximal point algorithms which will also be our method of choice.

Contributions. We propose two models for inpainting of cyclic data using first
and second order absolute cyclic differences. In our preprint [5] we introduced
absolute second order differences for cyclic data in a sound way. We further
deduced analytical expressions for the proximal mappings of these differences.
Here, our first model considers the noise free inpainting situation, whereas the
second one handles simultaneously inpainting and denoising. The variational
formulations allow for the decomposition of the whole functionals into simpler
ones, for each of which the proximal mappings are given explicitly. Thus, the
minimizers can be computed efficiently by a cyclic proximal point method. We
propose a suitable initialization of the inpainting area. We demonstrate by nu-
merical examples the strength of our algorithm. Compared to [49,50] we neither
have to employ Fréchet means nor to discretize the manifold.

Organization. In Sec. 2 we introduce our absolute second order cyclic differences
and provide analytical expressions for their proximal mappings. Then, in Sec. 3,
we introduce our inpainting model and propose a procedure to initialize the
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x2x3x1 x′
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3x′
2 q

−π −π
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Fig. 1. Three points pj , j = 1, 2, 3, on the circle and their possible unwrappings
x1, x2, x3 ∈ [−π, π) with respect to the origin q and other possibilities x′

2, x1, x3 and
x2, x3, x

′
1 that correspond to the same situation on S1. These are taken into account

for d(x;w).

unknown inpainting region. Sec. 4 describes the cyclic proximal point algorithm.
Finally, Sec. 5 contains numerical examples. Conclusions and directions of future
work are given in Sec. 6.

2 Absolute First and Second Order Cyclic Differences
and Their Proximal Mappings

Let S1 := {p21 + p22 = 1 : p = (p1, p2)
T ∈ R2} be the unit circle endowed with

the geodesic distance dS1(p, q) := arccos(〈p, q〉). Given a base point q ∈ S1, the
exponential map expq : R → S1 from the tangent space TqS1  R of S1 at q
onto S1 is defined by

expq(x) = Rxq, Rx :=

(
cosx − sinx
sinx cosx

)
.

This map is 2π-periodic, i.e., expq(x) = expq((x)2π) for any x ∈ R, where (x)2π
denotes the unique point in [−π, π) such that x = 2πk+(x)2π, k ∈ Z. For p, q ∈
S1 with expq(0) = q, there is a unique x ∈ [−π, π) satisfying expq(x) = p. Given
such representants xj ∈ [−π, π) of pj ∈ S1, j = 1, 2 centered at an arbitrary base
point q ∈ S1 the geodesic distance becomes

dS1(p1, p2) = d(x1, x2) = min
k∈Z
|x2 − x1 + 2πk| = |(x2 − x1)2π |

which is of course independent of q. We want to define higher order differences
for points (pj)

d
j=1 ∈ (S1)d using their representants x := (xj)

d
j=1 ∈ [−π, π)d. To

achieve independence of the base point the differences must be shift invariant
modulo 2π, see Fig. 1. Let 1d denote the vector with d entries 1. We define
the absolute cyclic difference of x ∈ [−π, π)d with respect to a difference filter
w ∈ Rd with 〈w, 1d〉 = 0 by

d(x;w) := min
α∈R

〈[x+ α1d]2π, w〉, (1)
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where [x]2π denotes the componentwise application of (t)2π if t 
= (2k + 1)π,
k ∈ Z and [(2k + 1)π]2π = ±π, k ∈ Z. Let

b1 := (−1, 1)T and b2 := (1,−2, 1)T, b1,1 := (−1, 1, 1,−1)T

be a first order (forward) difference filter, and two second order difference filters,
respectively. For w ∈ B := {b1, b2, b1,1} we have shown in our accompanying
preprint [5] that the absolute cyclic differences can be rewritten as

d(x;w) = (〈x,w〉)2π . (2)

Clearly, we have d(x; b1) = d(x1, x2). Interestingly, the definition (1) and (2) do
not coincide, e.g., for third order cyclic differences [5].

Next we are interested in proximal mappings of absolute cyclic differences.
Recall that for a proper, closed, convex function ϕ : RN → (−∞,+∞] and
λ > 0 the proximal mapping proxλϕ : RN → RN is well defined by

proxλϕ(f) := argmin
x∈RN

1

2
‖f − x‖22 + λϕ(x).

We introduce the proximal mapping proxλd(·;w) : (S1)d → (S1)d by

proxλd(·;w)(f) := argmin
x∈[−π,π)d

1

2

d∑
j=1

d(xj , fj)
2 + λd(x;w), λ > 0.

The following theorem determines the proximal mapping analytically for w ∈ B.
In particular, the mapping is single-valued for f ∈ [−π, π)d with |(〈f, w〉)2π | < π
and two-valued for |(〈f, w〉)2π | = π. Note that for w = b1 the second case appears
exactly if f1 and f2 are antipodal points. For a proof we refer to our preprint [5].

Theorem 1. For w ∈ B set s := sgn(〈f, w〉)2π . Let f ∈ [−π, π)d, where d is

adapted to the respective length of w, λ > 0, and m := min
{
λ, |(〈f,w〉)2π|

‖w‖2
2

}
.

i) If |(〈f, w〉)2π | < π, then proxλd(·;w)(f) = (f − smw)2π.
ii) If |(〈f, w〉)2π | = π, then proxλd(·;w)(f) = {(f + smw)2π , (f − smw)2π}.
For handling noisy data we will further need the following proximal mapping:

Theorem 2. For f, g ∈ [−π, π)N we have

proxλd(·,f)(g) := argmin
x

N∑
j=1

(
d(gj , xj)

2 + λd(fj , xj)
2
)

=

(
g + λf

1 + λ
+

λ

1 + λ
2π v

)
2π

,

where d(g, f) :=

N∑
j=1

d(gj , fj) and v = (vj)
N
j=1 ∈ RN is defined by

vj :=

{
0 if |gj − fj| ≤ π,

sgn(gj − fj) if |gj − fj| > π.
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3 Inpainting Models for Cyclic Data

Given an image domain Ω0 = {1, . . . , N} × {1, . . . ,M}, the inpainting region
Ω ⊂ Ω0 is the subset where the pixel values fi,j , (i, j) ∈ Ω are unknown.
The (noiseless) inpainting problem consists of finding a function x on Ω0 from
data f given on Ω̄ = Ω0\Ω such that x is a suitable extension of f to Ω0.
Let d2(x) := d(x; b2) and d1,1(x) := d(x; b1,1). Our functional for inpainting of
noiseless cyclic data reads

argmin
x∈[−π,π)N,M

αTVΩ
1 (x) + β TVΩ

2 (x) + γ TVΩ
1,1(x),

s.t. xi,j = fi,j for all (i, j) ∈ Ω̄,
(3)

where α := (α1, α2, α2, α4), β := (β1, β2) and the restricted first and second
order difference terms given by

αTVΩ
1 (x) = α1

∑
(i,j)

d(xi,j , xi+1,j) + α2

∑
(i,j)}

d(xi,j , xi,j+1)

+
1√
2

(
α3

∑
(i,j)

d(xi,j , xi+1,j+1) + α4

∑
(i,j)

d(xi,j+1, xi+1,j)

)
,

β TVΩ
2 (x) = β1

∑
(i,j)

d2(xi−1,j , xi,j , xi+1,j) + β2
∑
(i,j)

d2(xi,j−1, xi,j , xi,j+1),

and

γ TVΩ
1,1(x) = γ

∑
(i,j)

d1,1(xi,j , xi+1,j , xi,j+1, xi+1,j+1),

where the sums are taken only for those (i, j) for which at last one entry xa,b in
the corresponding differences is contained in Ω. We use the notation TV since
the model of the first order differences resembles an anisotropic TV model.

For the inpainting problem in the presence of noise the requirement of equality
on Ω̄ is replaced by x being an approximation of f :

argmin
x∈[−π,π)N,M

FΩ̄(x; f) + αTV1(x) + β TV2(x) + γ TV1,1(x), (4)

where

FΩ̄(x; f) :=
∑

(i,j)∈Ω̄

d(xi,j , fi,j)
2.

and the first and second order difference terms sum over all indices in Ω0 now.
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Initialization of the inpainting region. Since the inpainting problem does not
posses a unique minimizer the initialization of the inpainting area is crucial. We
present a method which is related to the idea of unknown boundary conditions
used by Almeida and Figueiredo in [1]. It can also be viewed as an implicit
version of the ordering method of pixels by adapted distance functions used by
März in [36,37]. To this end, we initialize xi,j = fi,j for (i, j) ∈ Ω̄. The other ones
are considered as not initialized. We use first, second and mixed order differences
d = d1, d2 and d1,1 and let t ∈ {1, 2, (1, 1)}. Let x := (xk1 , . . . , xkl

)T be a set
of points corresponding to a stencil of such a difference term dt. If ki ∈ Ω,
i ∈ {1, . . . , l}, is the unique index such that xki is not yet initialized, i.e., there is
exactly one unknown point at ki ∈ Ω in x, we can initialize this value as follows.
The minimal value for the absolute cyclic finite difference is 0 = (〈x, bt〉)2π and
this equation provides an initial value for xki . Such a situation of exactly one
unknown index ki always exists at the boundary of the initialized area.

4 Cyclic Proximal Point Algorithm

Since the proximal mappings of our absolute cyclic differences can be efficiently
computed using their analytical expressions in Theorem 1 and Theorem 2, we
suggest to apply a cyclic proximal point algorithm to find a minimizer for the
inpainting problem. Recently, the proximal point algorithm (PPA) on the Eu-
clidean space [44] was extended to Riemannian manifolds of non-positive sec-
tional curvature [20] and also to Hadamard spaces [2]. A cyclic PPA (CPPA) on
the Euclidean space was given in [7,8] and on Hadamard spaces in [3]. Unfortu-
nately, one of the simplest manifolds that is not of Hadamard type is the circle
S1. However, under certain assumptions we were able to prove the convergence
of the CPPA to a minimizer of the denoising problem for cyclic data, see [5].
A similar proof can also be given for the inpainting problem. Indeed, we have
observed convergence of our algorithm in all numerical tests.

In the CPPA the original function J is split into a sum J =
∑c

l=1 Jl and the
proximal mappings of the functions Jl are applied in each iteration cycle, i.e.,

x(k+1) = proxλkJc

(
proxλkJc−1

(
. . .

(
proxλkJ1

(x(k))
)))

.

For J = J1 + J2, where J1, J2 : RN → (−∞,+∞] are proper, closed convex
functions, it is well known that the nested PPA

x(k+1) = proxλJ2

(
proxλJ1

(x(k))
)

converges for any fixed parameter λ > 0 to a fixed point of proxλJ2
◦ proxλJ1

.
Unfortunately this fixed point is not a minimizer of J but of J2 +

λJ1, where
λJ1

denotes the Moreau envelope of J1. Convergence to the correct minimizer can
be achieved by choosing an iteration dependent sequence {λk}k fulfilling

∞∑
k=0

λk =∞, and
∞∑
k=0

λ2k <∞,

see [3,8]. A specific splitting of our inpainting model (3) for the CPPA is given
in the appendix.
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(a) Original image,
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(b) Masked image,
89.8% data lost
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(c) Inpainting result,
α = (1, 1, 0, 0)T,
β = (1, 1)T, γ = 1

Fig. 2. The synthetic SAR data in (a) is reduced by a factor of nine by removing two
thirds of all rows and columns. They are indicated as black pixels in (b), the right
image (c) shows the reconstruction based on first and second order cyclic differences.

5 Numerical Results

For the numerical computations of the following examples, the presented algo-
rithms were implemented in Matlab. The experiments were performed on a
MacBook Pro with an Intel Quad Core i5, 2.6Ghz and 8GB of RAM on OS X
10.9.2.

Interpolation and Approximation. As a first example we consider an synthetic
SAR data sample taken from [24]1, see Fig. 2 (a). We destroy about 89.8% of the
data by removing all but the rows and columns that are not divisible by 3, see
Fig. 2 (b). This is taken as input for the CPPA in order to minimize (3) using
the parameters α = (1, 1, 0, 0)T, β = (1, 1)T and γ = 1. The result is shown
in Fig. 2 (c), where the linear parts are reconstructed perfectly, while the edges
are interpolated and hence suffer from linearization of the original circular edge
path. The runtime is about 80 seconds for the image of size 257×257 pixel when
using k = 700 iterations as a stopping criterion for the CPPA from Sec. 4.

Inpainting for Restoring Image Regions. A main application of inpainting is to
restore destroyed image regions in noiseless images. We use the first model (3)
and consider an example adapted from [40], where a similar image was used to
demonstrate regularization with a second order model for real valued images.
We extend their experiment by including a region with linear increase that is
wrapped twice, cf. Fig. 3 (a). We remove a vertical strip in the middle of both
regions and stripes between the fore- and background. Furthermore for the sec-
ond, linearly increasing region we mask a small band in the middle, cf. Fig. 3 (b).

1 Online available at
ftp://ftp.wiley.com/public/sci_tech_med/phase_unwrapping/data.zip.

ftp://ftp.wiley.com/public/sci_tech_med/phase_unwrapping/data.zip.
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(c) R-valued inpainting
with parameters of (f)
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(d) S1-valued inpainting
α = (2, 2, 2, 2)T
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(e) S1-valued inpainting
β = (1, 1)T, γ = 1
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(f) S1-valued inpainting,
α = (2, 2, 2, 2)T,
β = (1, 1)T, γ = 1

Fig. 3. Inpainting with first and second order differences: (a) from the original image
(b) some parts (black) are lost. (c) A real-valued inpainting fails; (d) a first order
model reconstructs the constant region perfectly; (e) a pure second order model has
linear artifacts; (f) a first and second order model performs best.

We then employ a real valued inpainting using first and second order differ-
ences, cf. Fig. 3 (c). The constant rectangle shows a similar behavior to [40],
where the smoothing at the top and bottom is reduced here. This is due to em-
ployment of both first and second order real valued differences. Most noticeably,
the linearly increasing region is not reconstructed.

The Figs. 3 (d)–(f) illustrate the effects of first and second order absolute
cyclic differences. Fig. 3 (d) uses only the first order model, (e) only the second
order differences. and (f) combines both. The first order absolute cyclic differ-
ences reconstruct the constant region perfectly, but also produce the well known
staircasing in the lower part. The second order cyclic model introduces a smooth
transition between fore- and background. However, it perfectly reconstructs the
linear increase. Combining both the first and second order cyclic models yields a
perfect reconstruction of the linearly increasing region while reducing the smooth
transition, cf. Fig. 3 (f).

As a second reconstruction example we consider the function atan2(y, x) sam-
pled on a regular grid in [− 1

2 ,
1
2 ]

2 having 128 sampling points in each dimension,
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α = 1
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β = 1
4
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Fig. 4. We mask a circular region at the center of (a), see (b). The reconstruction used
in (c) employs only first order cyclic differences and produces staircasing. Combining
first and second order cyclic differences in (d) we obtain a nearly perfect reconstruction.

cf. Fig. 4 (a). We take a circular mask in the center of the image, see Figure 4 (b),
where the mask is shown in black. In this experiment we compare the results
using only first order absolute cyclic differences with a combined approach of
first and second order cyclic model.

When only using first order differences, we obtain a result that again reveals
staircasing, cf. Fig. 4 (c). It prefers x- and y-axis, and both diagonals, which can
be seen by the crosses created in the middle. By also including second order
differences we obtain almost the original image, cf. Fig. 4 (d).

For both examples the computation takes about 43 seconds for first order
differences and 55 seconds for the combined cases, respectively. We used k = 2000
iterations as a stopping criterion for the CPPA from Sec. 4.

Inpainting in the presence of noise. In real world measurements data are of-
ten noisy. If these data are also partially lost, we employ the model (4). As
an example we consider the measurement of elevation using InSAR [11,39]. In
particular, we consider phase valued measured data of Mount Vesuvius [43]2.

2 Online available at https://earth.esa.int/workshops/ers97/program-details/

speeches/rocca-et-al/

https://earth.esa.int/workshops/ers97/program-details/speeches/rocca-et-al/
https://earth.esa.int/workshops/ers97/program-details/speeches/rocca-et-al/
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432× 426 pixels
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(b) Inpainted and denoised version,
where 20% of data was lost

Fig. 5. Real data of Mount Vesuvius. We compare a pure denoising approach in (a)
with a combined inpainting and denoising approach in (b), where 20% of the data was
lost before the inpainting and denoising process.

We compare denoising with simultaneously inpainting and denoising. To this end,
we randomly destroyed 20% of the data items. The results without and with lost
data are shown in Fig. 5 (a) and (b), respectively. For the inpainting version
the parameters used in Fig. 5 (a), α = 1

4 (1, 1, 1, 1)
T, β = 3

4 (1, 1)
T and γ = 3

4 ,
were multiplied by 2. The combined approach of simultaneously inpainting and
denoising introduces a few more artifacts than pure denoising; cf. the middle
and top right area. However, both results are of comparable quality in smooth
regions, e.g., the plateau in the bottom left.

6 Conclusions

We proposed an inpainting model for cyclic data which involves our recently
established second order cyclic differences. Since there are analytical expressions
for the proximal mappings of these differences we suggested a CPP algorithm
together with a strategy for choosing the cycles to compute a minimizer of the
corresponding functionals efficiently. There is large room for improvements and
future work.

We want to apply our second order cyclic differences to other image restoration
tasks such as, e.g., deblurring and investigate other couplings of first and second
order differences. It is possible to generalize our geometrically driven definition
of second order differences to higher dimensional spheres and also to general
manifolds. We want to use such generalization for image processing tasks of
general manifold-valued data.
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Appendix

The proximal mappings from Theorem 1 can be efficiently applied in parallel if
they act on distinct data. This reduces the cycle length c of the CPPA from Sec. 4
tremendously and provides an efficient, parallel implementation. Especially, the
cycle length is independent of the inpainting area Ω or the image domain Ω0

and depends only on the number of dissimilar differences used. We present a
specific splitting in the CPPA of our inpainting model (3) given by

J(x) = αTVΩ
1 (x) + β TVΩ

2 (x) + γ TVΩ
1,1(x)

with the constraints xi,j = fi,j on Ω̄. We write

J =

18∑
l=1

Jl

with summands Jl given by the subsequent explanation. We start with the
αTVΩ

1 (x) termand first consider the horizontal summandα1

∑
(i,j) d(xi,j , xi+1,j).

We split this sum into an even and an odd part J1 and J2, more precisely

α1

∑
(i,j)

d(xi,j , xi+1,j) = J1 + J2,

where

J1 + J2 := α1

∑
(i,j)

d(x2i,j , x2i+1,j) + α1

∑
(i,j)

d(x2i+1,j , x2i+2,j),

with the restriction to the summands as in Sec. 3. This means, that for each item
(i, j) in the sum, the corresponding index of at least one of the arguments x2i,j ,

x2i+1,j is in Ω. For the vertical as well as for the diagonal summands in αTVΩ
1 (x)

we proceed analogously to obtain the splitting functionals J3, . . . , J8.
Next, we consider the β TVΩ

2 (x) term with its first (horizontal) summand
given by β1

∑
(i,j) d2(xi−1,j , xi,j , xi+1,j). We decompose this summand into three

sums J9, J10, J11 given by

J9 = β1
∑
(i,j)

d2(x3i−1,j , x3i,j , x3i+1,j),

J10 = β1
∑
(i,j)

d2(x3i,j , x3i+1,j , x3i+2,j),

J11 = β1
∑
(i,j)

d2(x3i+1,j , x3i+2,j , x3i+3,j),

again, with the restriction to the summands as in Sec. 3. For the vertical sum-
mand in β TVΩ

2 (x) we proceed analogously to obtain J12, . . . , J14.
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It remains to split the term γ TVΩ
1,1(x) into four functionals J15, . . . , J18 as

follows

J15 = γ
∑
(i,j)

d1,1(x2i,2j , x2i+1,2j , x2i,2j+1, x2i+1,2j+1),

J16 = γ
∑
(i,j)

d1,1(x2i+1,2j , x2i+2,2j , x2i+1,2j+1, x2i+2,2j+1),

J17 = γ
∑
(i,j)

d1,1(x2i,2j+1, x2i+1,2j+1, x2i,2j+2, x2i+1,2j+2),

J18 = γ
∑
(i,j)

d1,1(x2i+1,2j+1, x2i+2,2j+1, x2i+1,2j+2, x2i+2,2j+2).

Each summation is again restricted to those terms where at least one index of
an argument of d1,1 is in Ω. For J1, . . . , J18 the corresponding proximal mapping
can be explicitly computed and the cycle length c = 18 is independent of the
cardinality of Ω or Ω0. After application of the proximal mapping of each Ji
we set xi,j = fi,j on Ω̄ to fulfill the respective constraint, which is the same as
performing a projection.
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Abstract. Recent research has shown that inpainting with the Laplace
or biharmonic operator has a high potential for image compression, if the
stored data is optimised and sufficiently sparse. The goal of our paper
is to connect these linear inpainting methods to sparsity concepts. To
understand these relations, we explore the theory of Green’s functions.
In contrast to most work in the mathematical literature, we derive our
Green’s functions in a discrete setting and on a rectangular image do-
main with homogeneous Neumann boundary conditions. These discrete
Green’s functions can be interpreted as columns of the Moore–Penrose
inverse of the discretised differential operator. More importantly, they
serve as atoms in a dictionary that allows a sparse representation of the
inpainting solution. Apart from offering novel theoretical insights, this
representation is also simple to implement and computationally efficient
if the inpainting data is sparse.

Keywords: inpainting, sparsity, discrete Green’s functions, Laplace op-
erator, biharmonic operator.

1 Introduction

Image inpainting with partial differential equations (PDEs) is becoming increas-
ingly important for image compression. For this problem, nonlinear anisotropic
diffusion processes have been introduced by Galić et al. in 2005 [7] and have been
improved later in [8]. In the meantime, a more sophisticated variant is able to out-
perform JPEG2000 [19]. Even with a conceptually simpler linear process based
e.g. on the Laplace equation, one can achieve remarkable results [15,12,17] and
beat the quality of state-of-the-art methods for specific types of images [14,9,13].
Also the biharmonic equation has been reported to yield very good results [8,3].

In the present paper, we want to gain theoretical insights on inpainting meth-
ods with linear selfadjoint differential operators such as the Laplacian or the
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biharmonic operator. In particular, we analyse their relation to a very popu-
lar idea in modern signal and image analysis, namely sparsity. To this end, we
make use of the concept of discrete Green’s functions [1,4]. Green’s functions
are mainly known from the continuous theory of partial differential equations
(PDEs) as a tool to describe the solution of boundary value problems [16]. Most
publications on Green’s functions focus on continuous differential operators. Dig-
ital images, however, reveal a natural discretisation on a regular grid. Moreover,
they are given on a rectangular image domain, and it is fairly common to ex-
tend image processing operators at the boundaries by mirroring. This motivates
us to investigate discrete Green’s functions for linear differential operators on
a rectangular image domain with homogeneous Neumann boundary conditions.
Moreover, we will give an interpretation of the obtained discrete Green’s func-
tions in terms of linear algebra. More precisely, we will elaborate the connection
to the Moore–Penrose inverse of the discretised differential operator.

The discrete Green’s functions that we derive will serve as atoms in a dictio-
nary for inpainting. There is a one-to-one correspondence between each pixel and
its corresponding Green’s function. Hence, if only a sparse set of pixels is kept,
the solution of the discrete inpainting problem can be expressed in a compact
way in terms of their Green’s functions. We will show that this representation
does not only offer novel theoretical insights into the connections between in-
painting and sparsity, but also has algorithmic benefits. The main focus of the
present paper, however, will be on the theoretical aspect.

The outline of our paper is as follows. First we sketch the continuous and
discrete formulations of inpainting with the Laplace and biharmonic equation in
Section 2. In the subsequent section we explain the concept of discrete Green’s
functions and their use for a sparse representation of the solution of the in-
painting problems. Numerical advantages of our Green’s function framework are
discussed in Section 4. Our paper is concluded with a summary in Section 5.

2 Laplace and Biharmonic Inpainting

2.1 Continuous Inpainting Models

Let Ω ⊂ R2 denote a rectangular image domain and f : Ω → R a greyscale
image. If this image is only known at some subset ΩK ⊂ Ω, one can try to fill
in the missing information by solving the Laplace equation

−Δu = 0 on Ω \ΩK (1)

with homogeneous Neumann boundary conditions:

∂nu = 0 on ∂Ω, (2)

where ∂n denotes the derivative normal to the boundaries. Moreover, the known
data set provides Dirichlet boundary conditions:

u = f on ΩK . (3)



Discrete Green’s Functions for Inpainting with Sparse Atoms 171

As an alternative to the Laplace equation, one can also consider higher-order
differential operators leading e.g. to the biharmonic equation:

Δ2u = 0 on Ω \ΩK . (4)

Both models have in common that they use linear selfadjoint differential oper-
ators. These properties will be useful for our later analysis. From a practical
viewpoint they are attractive, since they are parameter-free and give rise to
relatively easy implementations.

2.2 Discrete Inpainting Models

Digital images reveal a discretisation on an equispaced rectangular grid. Thus,
it is natural to use finite difference discretisations of the beforementioned con-
tinuous inpainting processes. We consider a regular two-dimensional grid Γ =
{0, . . . ,M−1} × {0, . . . , N−1} with grid size h. The value of a discrete image
f at a grid point (i, j) ∈ Γ is denoted by fi,j . The subset K ⊂ Γ denotes the
grid points where the discrete inpainting data is known. We call them mask
points. At the locations Γ\K where the data is unknown, we seek the inpainting
solution u by solving a discrete problem of type

(Du)i,j = 0 for (i, j) ∈ Γ\K, (5)

ui,j = fi,j for (i, j) ∈ K. (6)

Here, D can be seen as an inpainting operator. We mainly focus on the following
two choices. On the one hand, we consider D = −L, where L is the discrete
Laplace operator (harmonic operator) on Γ fulfilling homogeneous Neumann
boundary conditions at the image boundaries. For the inner grid points its stencil
notation is given by

The homogeneous Neumann boundary conditions are incorporated by mirroring
the image at the boundaries and by using the above stencil also for the boundary
grid points. The resulting inpainting process is also known as homogeneous dif-
fusion inpainting. In [14], the existence and uniqueness of the discrete inpainting
solution for the Laplace operator has been shown. On the other hand, we will
also consider the biharmonic operator, i.e. D = B := L2.

Typically, the inpainting solution is found by solving the discrete problem
directly. This can be done with iterative methods such as a fast explicit diffusion
(FED) scheme [11] or bidirectional multigrid approaches [14]. In the present
paper we want to study how the solution can be obtained in a noniterative way
by means of discrete Green’s functions.
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2.3 Eigenvalues and Eigenvectors of the Discrete Operators

For our later analysis it is useful to represent the discrete differential operators
−L and B in terms of their eigenvalues and eigenvectors. The following theorem
provides the required information. It extends 1D results that can be found for
example in [20] to the two-dimensional setting.

Theorem 1 (Eigenvalues and Eigenvectors of the Discrete Operators).
The orthonormal set of eigenvectors of −L as well as of B is given by

(vm,n)i,j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

1
MN if m = n = 0,√
2

MN · cos
(
μĩ

)
· cos

(
νj̃

)
if either m = 0 or n = 0,√

4
MN · cos

(
μĩ

)
· cos

(
νj̃

)
if m > 0 and n > 0,

(7)

with (m,n) ∈ Γ , μ := mπ
M , ν := nπ

N , ĩ := (i+ 1
2 ), and j̃ := (j + 1

2 ).
The corresponding eigenvalues for −L are

λ−L
m,n =

4

h2

(
sin2

(μ
2

)
+ sin2

(ν
2

))
. (8)

The eigenalues of the discrete biharmonic operator B read as

λBm,n =
(
λ−L
m,n

)2
(9)

Proof. While this eigenstructure may not appear obvious, proving its correct-
ness is fairly straightforward: One has to check that −Lvm,n = λ−L

m,nvm,n and

Bvm,n = λBm,nvm,n hold true for all (m,n) ∈ Γ and that the homogeneous
Neumann boundary conditions are fulfilled. Additionally, one has to show the
orthonormality of the set of eigenvectors. ��

We observe that both operators are singular, since the eigenvalues λ−L
0,0 and

λB0,0 vanish. This will complicate some of our discussions on discrete Green’s
functions in the next section.

3 Discrete Green’s Functions

After the preceding discussions we are in a position to introduce the concept of
discrete Green’s functions. First, we discuss the basic structure before we sketch
relations to linear algebra and specific applications to our inpainting problem.

3.1 Basic Structure

Let us study a general discrete problem of the following type:

Du = a. (10)
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Thereby u ∈ RM×N is the unknown image, a ∈ RM×N is a prescribed right
hand side, andD ∈ R(M×N)×(M×N) a given symmetric discrete linear differential
operator incorporating homogeneous Neumann boundary conditions.

The solvability of this problem can be investigated with the so called Fredholm
alternative, which is known from the theory of differential equations; see e.g. [5]:

Theorem 2 (Fredholm Alternative). If D is invertible, then the solution u
of the discrete problem (10) exists and is unique. Otherwise, assuming that D�

possesses the single eigenvalue 0 with the corresponding eigenvector v ∈ RM×N ,
there exist infinitely many solutions if

〈v,a〉 = 0, (11)

and there exists no solution at all if

〈v,a〉 
= 0. (12)

Here, the Euclidean inner product is defined as 〈a, b〉 =
∑

(i,j)∈Γ ai,jbi,j . Let

us assume that a in (10) is chosen such that there exists a solution u. A standard
approach to find this solution is to solve the linear system of equations directly.
Instead, another promising approach is to express the solution by means of
Green’s functions. The Green’s function can be considered as the influence of an
impulse at a point (k, �) on the complete image. Assuming that D is invertible,
the discrete Green’s function gk,� corresponding to a point (k, �) ∈ Γ for a given
discrete problem is defined as the solution of

(Dgk,�)i,j = δ(k,�),(i,j) for (i, j) ∈ Γ, (13)

where the Kronecker delta function is defined as

δ(k,�),(i,j) =

{
1 if (i, j) = (k, �),
0 if (i, j) 
= (k, �).

(14)

Otherwise, if D possesses the single eigenvalue 0 and if v is the corresponding
eigenvector of D�, we can still obtain Green’s functions by the following mod-
ification. The infinitely many discrete Green’s functions for a point (k, �) ∈ Γ
are now defined as solutions of

(Dgk,�)i,j = δ(k,�),(i,j) −
vi,j · vk,�
〈v,v〉 for (i, j) ∈ Γ. (15)

Indeed, the right hand side of (15) (in vector notation) now satisfies the solv-
ability condition (11):〈

v, δk,� −
vk,�
〈v,v〉v

〉
= vk,� − vk,� = 0. (16)
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3.2 Interpretation as Moore–Penrose Inverse

The Fredholm alternative can also be expressed in terms of linear algebra. To
this end, we reshape the image matrices u, a to vectors of length MN using
the operation col : RM×N → RMN , and D to a symmetric (MN × MN)-
matrix DMN . Then, (10) transfers to a linear system DMN col (u) = col (a)
of size MN . This system is uniquely solvable, if and only if DMN is invert-
ible. If rank(DMN ) = MN − 1, then (10) possesses either infinitely many so-
lutions if rank(DMN ) = rank(DMN , col (a)), or no solution if rank(DMN ) <
rank(DMN , col (a)).

Assuming thatDMN is invertible, the discrete Green’s function defined in (13)
can be expressed as the solution of

DMN GMN = IMN , (17)

where IMN denotes the identity matrix of sizeMN×MN andGMN ∈ RMN×MN

the matrix that contains the discrete Green’s functions gk,� as columns.
If rank(DMN ) =MN − 1 then there exist infinitely many Green’s functions,

and (15) leads to:

DMN GMN = IMN −
1

〈v,v〉 (col (v))(col (v))
�. (18)

In the following theorem, we introduce a useful additional constraint that
creates a unique solution and allows to relate discrete Green’s functions to the
Moore–Penrose inverse of their discrete differential operator. The Moore–Penrose
inverse aims at generalising the inverse of a matrix such that it is also applicable
to singular matrices [10].

Theorem 3 (Discrete Green’s Functions and Moore–Penrose Inverse).
Let col (v) denote the eigenvector to the singular eigenvalue of DMN . If the
discrete Green’s functions gk,� satisfy the additional constraint

〈v, gk,�〉 = 0 for all (k, �) ∈ Γ , (19)

then they are given by the columns of the Moore–Penrose inverse of DMN .

Proof. To verify that GMN is the Moore–Penrose inverse of DMN , we have to
check the following properties (cf. [10]):

(i) DMNGMNDMN = DMN

(ii) GMNDMNGMN = GMN

(iii) DMNGMN is symmetric.
(iv) GMNDMN is symmetric.

Since col (v) is an eigenvector of DMN to the eigenvalue 0, we have

(col (v))�DMN = 0�. (20)
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Thus, together with (18), it follows that

DMNGMNDMN =

(
IMN −

1

〈v,v〉 (col (v))(col (v))
�
)
DMN = DMN (21)

and

GMNDMNGMN = GMN −
1

〈v,v〉GMN (col (v))(col (v))�. (22)

The condition 〈v, gk,�〉 = 0 implies GMN (col (v)) = 0, and hence

GMNDMNGMN = GMN . (23)

From (18) it is evident that DMNGMN is symmetric. Let us now show that also
GMNDMN is symmetric. Due to the symmetry of DMN , we can diagonalise it
and write

DMN = V SV � (24)

with a diagonal matrix S and an orthogonal matrix V . Since DMN contains a
singular eigenvalue, we obtain the Moore–Penrose inverse GMN as

GMN = D+
MN = V S+V �. (25)

The matrix S+ contains the reciprocal of the eigenvalues except for the zero
eigenvalue that remains 0. Furthermore, as V is orthogonal, we obtain

GMNDMN =
(
V S+V �) (V SV �) = V S+SV � (26)

as well as

(GMNDMN )� =
(
V SV �)� (

V S+V �)� (27)

= V S� (
S+

)�
V � = V S+SV � (28)

= GMNDMN . (29)

Thus, GMNDMN is symmetric, too. ��

3.3 Representing Solutions with Green’s Functions

Knowing the Green’s functions for all (k, �) ∈ Γ , the following theorem can be
formulated [6]:

Theorem 4 (Analytic Solution). The solution u of the discrete problem (10)
is given by

u =
∑

(k,�)∈Γ

ak,� gk,� (30)

where in case of a singular operator D the solvability condition (11) is assumed to
be satisfied, and the solution based on the Green’s functions is no longer unique.
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In practice, it is often not straightforward to determine the Green’s functions,
since they depend on the domain as well as on the boundary conditions. There
exist some designated approaches for specific problem settings [16]. The probably
most promising technique is the so-called method of eigenfunction expansion [16]
for the continuous case. In the discrete setting, the discrete Green’s functions
are expressed in terms of the eigenvectors and corresponding eigenvalues of D
(cf. [1]). Let us now study this approach in detail.

3.4 Constructing Discrete Green’s Functions for Our Operators

Let us now apply our theory on the discrete Laplace or biharmonic operator. To
this end, we recall that both operators −L and B have a zero eigenvalue λ0,0. It

belongs to the constant eigenvector v0,0 with entries 1/
√
MN . Thus, we know

from Section 3 that in a point (k, �) ∈ Γ , the Green’s function gk,� for both
operators is not unique. It satisfies the following system of equations:

(Dgk,�)i,j = δ(k,�),(i,j) −
1

MN
for (i, j) ∈ Γ (31)

with D = −L or D = B, respectively. The theorem below states the solution
in a closed form:

Theorem 5 (Discrete Green’s Functions). In a point (k, �) ∈ Γ the discrete
Green’s functions for the matrix D = −L or D = B are given by

(gc
k,�)i,j =

M−1∑
m=0

N−1∑
n=0

(m,n) �=(0,0)

[
1

λm,n
· (vm,n)k,� · (vm,n)i,j

]
+ c, (32)

where λm,n are the eigenvalues corresponding to the eigenvectors vm,n of D, and
the constant c ∈ R can be chosen arbitrarily.

Proof. Following [1], we express the Green’s function in terms of the orthonormal
eigenvectors:

gk,� =

M−1∑
m=0

N−1∑
n=0

cm,nvm,n (33)

with coefficients cm,n ∈ R. Plugging this into (31) yields

M−1∑
m=0

N−1∑
n=0

cm,nλm,n(vm,n)i,j = δ(k,�),(i,j) −
1

MN
. (34)

After multiplying both sides with (vm′,n′)i,j for fixed (m′, n′) ∈ Γ , and summing
up over all pixels (i, j) ∈ Γ , we have

cm′,n′λm′,n′ = (vm′,n′)k,� −
1

MN

∑
(i,j)∈Γ

(vm′,n′)i,j . (35)
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Fig. 1. Example of discrete Green’s functions for the negative Laplacian with homo-
geneous Neumann boundary conditions on an image with 50× 60 pixels. Left: g0
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Fig. 2. Example of discrete Green’s functions for the biharmonic operator with homo-
geneous Neumann boundary conditions on an image with 50× 60 pixels. Left: g0

25,30.
Right: g0

45,10
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For m′ = n′ = 0, the eigenvalue λ0,0 as well as the right hand side become 0
by (7). Thus, c0,0 can be chosen arbitrarily. This means that the Green’s function
is unique up to a constant c. For m′ > 0 or n′ > 0, we obtain

cm,n =
1

λm,n
(vm,n)k,� . (36)

This concludes the proof. ��

We specify a canonic representative g0
k,� by setting the constant c := 0. As the

eigenvectors vm,n with (m,n) 
= (0, 0) of the discrete operator are orthogonal
to v0,0, this is equivalent to assuming 〈g0

k,�,v0,0〉 = 0. This shows that the

obtained Green’s functions g0
k,� have mean value zero. Moreover, we can apply

Theorem 3 and see that they build the Moore–Penrose inverse of D. Example
plots of Green’s functions are depicted in Figure 1 and 2.
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In practice, we can exploit the symmetry of the rectangular image domain to
reduce the effort for computing all discrete Green’s functions by a factor of 4:
Once the Green’s function is computed for a specific source point (k, �) ∈ Γ , the
Green’s functions for the source points (M −k, �), (k,N − �), and (M −k,N− �)
can be obtained by mirroring g0

k,� along the x axis, the y axis and both axes.

3.5 Inpainting with Green’s Functions

We want to use the Green’s functions to find an exact solution of the discrete
inpainting problem. Therefore, the trick is to rewrite the problem such that it
has the form as in (10). We construct a right hand side a such that it is zero
at all non-mask points, while its values at all mask points (i, j) ∈ K must be
determined later. As a result, the problem reads as

Du = a (37)

subject to

ui,j = fi,j if (i, j) ∈ K, (38)

ai,j = 0 if (i, j) ∈ Γ\K. (39)

Assuming that 〈v0,0, a〉 = 0 we can write the solution u of (37) as

ui,j =
∑

(k,�)∈Γ

ak,� · (g0
k,�)i,j + c (40)

with the discrete canonic Green’s functions g0
k,� ((k, �) ∈ Γ ) and an unknown

constant c, comprising all constants of the individual Green’s functions. As by
(39) the entries of a vanish at all non-mask points, (40) can be simplified to

ui,j =
∑

(k,�)∈K

ak,� · (g0
k,�)i,j + c. (41)

This representation shows that the inpainting solution can be composed by a
small number of atoms, namely the discrete Green’s functions corresponding
to the mask pixels. Thus, the discrete Green’s functions g0

k,� corresponding to
(k, �) ∈ K can be seen as a generating system for the space of all inpainting
solutions on Γ \K (with mean value zero on Γ ).

It remains to find the unknown coefficients c and ak,�, (k, �) ∈ K. They
are determined by (38). Together with the solvability condition (11) within the
Fredholm alternative,

〈v0,0,a〉 = 0 ⇐⇒
∑

(k,�)∈K

ak,� = 0, (42)
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Algorithm 1. Inpainting with Green’s functions

Input: Image f at specified mask K.

1. For all (k, �) ∈ K, compute the corresponding canonic Green’s function g0
k,�

using Theorem 5.
2. Compute the unknown coefficients of a and c by solving (43).
3. Obtain the solution u as the superposition given in (41).

Output: Inpainting solution u.

we can specify the inpainting result uniquely. Denoting the 2D pixel indices
of the mask points by m1, . . . ,mL, with L := |K|, we can formulate the linear
system of equations for finding the unknown values of a and c:⎛⎜⎜⎜⎜⎜⎝

(g0
m1

)m1 (g0
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c
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⎛⎜⎜⎜⎜⎜⎝
fm1

fm2

...
fmL

0

⎞⎟⎟⎟⎟⎟⎠ . (43)

For solving this system of equations, we recommend the QR algorithm since
it does not create error accumulations [18]. Once the values for c and am1 ,...,amL

are computed, the inpainting solution u is represented exactly with (41). For the
reader’s convenience, Algorithm 1 summarises the full workflow.

A decisive advantage of our inpainting algorithm with Green’s functions is
that it reveals the influence of each mask point on the overall inpainting result:
This influence is described by the respective Green’s function. It is clear that
the complexity for finding a solution increases with the number of mask points.
Interestingly, this is different to the standard approach of solving the discrete
inpainting problem iteratively, where it is computationally more expensive to find
a solution for a sparse mask: In the latter case, it typically takes more time to
diffuse the information at the mask points over the complete image. In contrast,
our new approach can compute the solution much faster if the specified data is
sparse. For image compression applications this can be a relevant scenario.

4 Experiments

Although the main goal of our paper is to emphasise the theoretical advantages
of Green’s functions as a tool to understand the connections between PDE-
based inpainting and sparsity, our framework can also offer practical advantages.
This shall be illustrated by an application in the context of image compression
with PDEs. In order to reconstruct an image in the decoding step, we have to
solve inpainting problems. If they use the Laplacian or biharmonic operator, we
propose to refrain from storing the greyvalues at all mask pixels and rather store
the coefficients c and am1 ,...,amL−1 instead. Note that the missing coefficient
amL can be recovered from these coefficients with the help of the solvability
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Table 1. Runtime comparison for inpainting with the Laplace operator. The CPU
time is given in seconds.

mask density 0.01% 0.5% 1% 2% 4% 8% 16%
multigrid (max. error 0.5) 0.425 0.306 0.305 0.305 0.264 0.263 0.216
multigrid (max. error 0.05) 0.777 0.855 0.581 0.579 0.263 0.263 0.216

multigrid (max. error 0.005) 11.331 2.238 1.685 0.857 0.742 0.502 0.216
our approach 0.001 0.037 0.073 0.143 0.293 0.585 1.179

Table 2. Runtime comparison for inpainting with the biharmonic operator. The CPU
time is given in seconds.

mask density 0.01% 0.5% 1% 2% 4% 8% 16%
multigrid (max. error 0.5) 0.691 0.463 0.464 0.462 0.382 0.382 0.305
multigrid (max. error 0.05) 0.688 0.876 0.875 0.874 0.382 0.383 0.305
multigrid (max. error 0.005) 5.312 2.114 1.287 1.306 0.725 0.382 0.305
our approach 0.001 0.037 0.074 0.148 0.298 0.597 1.181

condition (42). The computation of the Green’s functions can be performed
offline before storing them on the hard disk. This has the advantage that they
do not have to be recomputed every time they are needed. As a result, we obtain
a very efficient decoding for sparse masks where the inpainting result is computed
by a simple superposition of Green’s functions.

To evaluate this algorithm for inpainting with the Laplace or biharmonic op-
erator, we compare it with bidirectional multigrid methods. These sophisticated
numerical algorithms belong to the most efficient techniques that are used for
this purpose; see e.g. [14]. As a model problem, we consider an image of size
256× 256 pixels with greyvalues in the range between 0 and 255. Moreover, we
use randomly sampled mask points with varying density. Table 1 juxtaposes the
runtimes of our Green’s function algorithm and bidirectional multigrid meth-
ods with two different accuracy levels for the Laplace operator. Corresponding
comparisons for the biharmonic operator are presented in Table 2. We use C
implementations on an Intel Xeon quadcore architecture with 3.2 GHz and 24
GB memory. For more details on the multigrid implementation, we refer to [14].

We observe that our Green’s function approach gives favourable results if the
mask density is low and high accuracy is needed. In the context of depth map
compression for example, one usually deals with very sparse masks as only few
data points suffice to represent smooth transitions [13]. This shows the practical
relevance of the presented algorithm. Note that in contrast to the bidirectional
multigrid approach, the Green’s function algorithm solves the discrete inpainting
problem exactly (up to machine precision). Thus, there is no need for devising
appropriate stopping criteria and making decisions on the numerous parameters
that are characteristic for multigrid methods. Last but not least, it should be
emphasised that the runtime of the Green’s function method does not deteriorate
when one replaces the Laplace operator by the biharmonic operator (or even
higher order linear differential operators). It remains a simple superposition of
Green’s functions.
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5 Conclusion

Since one decade, the paradigms of sparse signal processing and inpainting meth-
ods for compact image representations have been enjoying a successful develop-
ment. Although they often pursue similar goals, it is surprising that this has
happened without any interaction. With our paper, we have paved the way for
a mutual exchange of ideas.

The key concept for understanding this relation was the notion of discrete
Green’s functions. They serve as atoms in a dictionary. Only a single atom
is needed to describe the global influence of one mask pixel. This allows to
reinterpret successful inpainting methods with linear differential operators in
terms of sparsity. Moreover, discrete Green’s functions also offer an interesting
interpretation as columns of the Moore–Penrose pseudoinverse of the discretised
(singular) differential operator.

Our framework is fairly general: It is directly applicable to any linear selfad-
joint differential operator with a known eigendecomposition. We have illustrated
this by means of the Laplace operator with homogeneous Neumann boundary
conditions and its biharmonic counterpart.

One important result of our Green’s function research is the fact that it allows
us to have direct access to the exact solution of the discrete inpainting problem.
This may also have practical advantages for PDE-based decoding with sparse
inpainting masks. In our ongoing research, we are also exploring applications of
Green’s functions within the encoding step.

It is worth mentioning that our representation of PDE-based inpainting in
terms of Green’s functions also connects PDE-based image compression to scat-
tered data interpolation with radial basis functions [2]. Many of these basis
functions are given as continuous Green’s functions on an unbounded domain.
With our research we have taken into account the discreteness of digital images
and have incorporated image boundaries in a natural way.

Acknowledgements. We gratefuly acknowledge the partial funding by the
Deutsche Forschungsgemeinschaft (DFG) through a Gottfried Wilhelm Leibniz
Prize for Joachim Weickert.
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Abstract. We propose to solve an image segmentation problem with
connectivity constraints via projection onto the constraint set. The con-
straints form a convex set and the convex image segmentation problem
with a total variation regularizer can be solved to global optimality in
a primal-dual framework. Efficiency is achieved by directly computing
the update of the primal variable via a projection onto the constraint
set, which results in a special quadratic programming problem similar to
the problems studied as isotonic regression methods in statistics, which
can be solved with O(n log n) complexity. We show that especially for
segmentation problems with long range connections this method is by or-
ders of magnitudes more efficient, both in iteration number and runtime,
than solving the dual of the constrained optimization problem. Experi-
ments validate the usefulness of connectivity constraints for segmenting
thin structures such as veins and arteries in medical image analysis.

1 Introduction

To allow to preserve thin structures, topological constraints, and especially those
that preserve connectivity [16,15], have been introduced into image segmentation
methods.

These constraints have a great advantage in several application areas, includ-
ing the segmentation of arteries and veins in medical imaging but also in a user
interactive setting for general image segmentation. They are very useful when
thin structures should be extracted from image data, allowing to extract the
whole branching tree of blood vessels in the lung, as shown on the left in Fig. 1.
For comparison, a total variation regularized segmentation of the dataset with-
out connectivity constraints is shown on the right. In order to preserve the thin
structures, only a very small weight of the regularizer can be chosen. Therefore
a lot of noise is still present in the final segmentation.

Including these constraints in the segmentation model either leads to a higher
algorithmic complexity [16,6] or slow convergence when solving the dual of the
constrained optimization problem [15].

X.-C. Tai et al. (Eds.): EMMCVPR 2015, LNCS 8932, pp. 183–196, 2015.
© Springer International Publishing Switzerland 2015
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Result with connectivity constraint Without connectivity constraint

Fig. 1. Connectivity constraints allow to extract the whole branching tree of blood
vessels in the lung, as shown on the left1. For comparison, a total variation regular-
ized segmentation without connectivity constraints is shown on the right. In order to
preserve the thin structures, only a very small weight of the regularizer can be chosen,
therefore a lot of noise is still present in the final segmentation.

1.1 Related Work

Topology preserving constraints have been recently proposed for different algo-
rithmic frameworks. For the graph cut [4] framework, Zeng et al . [17] present
an extension, that allows to preserve the topology of the result with respect to
an initial segmentation. Beginning on a coarse scale, their method preserves the
topology of the initial segmentation during refinement. A similar approach was
proposed by Han et al . [11] for the level set framework. The drawback of both
methods is that they depend on the initialization and therefore only reach a
local optimum.

Vicente et al . [16] introduce connectivity priors into interactive segmentation
in a Markov random field framework and enforce connectivity to user given seed
points. The authors show that the original problem is NP-hard and propose a
greedy approximation scheme consisting of a Dijkstra algorithm where in every
expansion step a graph cut needs to be solved. Their method also only reaches
a local optimimum.

Chen et al . [6] propose to alternatingly solve a graph cut and modify the unary
terms based on a level-set representation until predefined topological constraints
are fulfilled. The runtime complexity of the method prevents to use it for large
scale problems.

1 CT dataset from the Vessel Segmentation in the Lung 2012 Grand Challenge.
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Recently, three different methods were proposed, that aim to reach a global
optimum. First, Nowozin and Lampert [12] propose to formulate the image seg-
mentation problem with topological constraints as a linear program relaxation.
However, even for small image sizes the runtime complexity of the method does
not scale well and the relaxation is not tight. In contrast to the method presented
in this publication, their method is not suitable for large scale problems in 3D
segmentation.

Gulshan et al . [10] introduce geodesic star shape priors into the graph cut
framework. The solution of the segmentation is restricted to the shape of a
geodesic star around an input seed, while the geodesic distance depends on the
image gradient. If multiple input seeds are given, the foreground segment takes
the form of a geodesic forest, the union of the geodesic stars for every seed. A
drawback of their method is that the boundary length regularizer is affected by
the discretization of the pixel neighborhood.

In a previous work [15] we propose a global optimal segmentation method with
connectivity constraints in a convex optimization framework. The combination
of a total variation regularizer with a connectivity constraint allows to segment
thin structures even in very noisy image data. Compared to the work of Gulshan
et al . [10] our method uses a continuous segmentation framework and therefore
the boundary length regularizer is not biased by discretization artifacts. The
constrained optimization problem in [15] is solved by computing a solution of
the dual problem. In this work, we propose an efficient projection scheme to
directly compute a solution for the update of the primal variable.

1.2 Contribution

We propose to solve an image segmentation problem with connectivity con-
straints via projection onto the constraint set. We show that the constraints
form a convex set and derive a projection algorithm from isotonic regression
methods in statistics. We show that especially for segmentation problems with
long range connections this method is by orders of magnitudes more efficient,
both in iteration number and runtime, than solving the dual of the constrained
optimization problem.

2 Connectivity Constraints in Image Segmentation

First lets review the results from [15] where image segmentation with connectiv-
ity constraints is formalized as the constrained optimization problem

min
u∈BV (Ω;[0,1])

∫
Ω

f(x)u(x) + |∇u| dx (1)

s.t.

∀x ∈ Ω, u(x) = 1 : ∃Cx
s ∈ Gs : u (Cx

s (t)) = 1. C1
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where I is an image with the domain Ω, a bounded connected subset of Rm,
BV (Ω; [0, 1]) is the space of functions with bounded variation and f : Ω → R
depends on the image data. The data term f is chosen in such a way that it
is negative for image values which a more likely to be foreground and neg-
ative in regions which should be regarded as background, e.g. the log ratio

f(x) = log P (I(x)|l(x)=0)
P (I(x)|l(x)=1) . The discrete label assignment l : Ω → {0, 1}, that

describes if an image region belongs to the object of interest l(x) = 1 or the
image background l(x) = 0, is relaxed by introducing the continuous indica-
tor function u : Ω → [0, 1]. The total variation regularizer |∇u| measures the
boundary length of the foreground segment. With Cx

s we formalize the shortest
geodesic path from a given starting point s, for example defined by user input,
to a terminal point x which is part of the geodesic shortest path tree Gs.

The solution of the optimization problem should satisfy the connectivity con-
straint C1:

For each x ∈ Ω that belongs to the foreground there must exist a connected
shortest geodesic path from a given s ∈ Ω to x such that all p ∈ Ω in the path
between x and s belong to the foreground.

This constraint not only ensures the connection of every labeled foreground
region to s but also ensures that the whole foreground segment is connected.

2.1 Geodesic Distances

Recently, shortest geodesic distance measures have been successfully applied to
image segmentation problems including medical image segmentation [3] as well
as general image segmentation[1,7].

In order to define the geodesic shortest path tree Gs, first we have to choose an
appropriate local geodesic metric. If λ = 0 the labeling function u(x) takes the
value 1 for f(x) < 0 and 0 for f(x) > 0. We leave out the special case f(x) = 0 as
it does not occur in practice. For all xp ∈ Ω that do not belong to the foreground
but need to be added to the foreground to satisfy the connectivity constraint
obviously u(xp) = 0 and therefore f(xp) ≥ 0. The optimal cost of the connecting
path between a fixed s and any x in the region that should be connected on Gs
is then given by

min
Cx

s

∫ T

0

f+(C(t))dt, (2)

with f+ = max(0, f(x)). Thus, we choose the non negative cost funciton f+ as
metric for the construction of Gs. Thus the shortest path tree can be computed
using Djkstra’s algorithm [8].

More complex prior models for the geodesic path are possible. In [15] we could
show that a bending energy prior for the construction of the geodesic shortest
path tree can improve the segmentation performance on a retinal blood vessel
dataset to some extent.
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3 Constrained Convex Optimization

The geodesic shortest path tree forms a directed acyclic graph Gs = {V,E} with
the set of vertices V with |V | = n and the set of directed edges E ⊂ V ×V with
|E| = m. We follow [15] and formulate the global connectivity constraint as a
monotonicity constraint over each edge of this graph. To satisfy the connectivity
constraint we observe that the value of the discretized value function ui of a
node i with distance to the root node di should always be greater or equal than
the labels of its neighbors with a larger distance dj > di to the root node. This
implies that the directional derivative

∂iuj := (du)(eij) = (u(j)− u(i))

of u at vertex i along the edge to vertex j should always be less or equal to zero.
The image segmentation problem Eq. (1) thus can be written as the con-

strained optimization problem

min
ui[0,1]

∫
Ω

f(x)u(x) + λ|∇u| dx (3)

s.t.

∂iuj ≤ 0, ∀(i, j) ∈ E.

This image segmentation problem can be optimized using the Primal-Dual
framework of [14,5] which can be applied to convex optimization problems with
a saddle-point structure

min
u∈U

max
p∈P

〈Ku, p〉+G(u)− F ∗(p), (4)

where U and P are finite-dimensional vector spaces, K : U → P is a continuous
linear operator and G : U → [0,+∞) and F ∗ : P → [0,+∞) are proper, convex,
lower semicontinuous functions. The update steps in [5] are computed using the
prox-operator, which is defined as

v = (I + τ∂G)−1(u) = argmin
v

{
||u− v||2

2τ
+G(v)

}
. (5)

Using this prox-operator, the updates in the primal variable u and the dual
variable p are computed as

uk+1 = (I + τ∂G)−1(uk − τK∗pk+1) (6)

pk+1 = (I + σ∂F ∗)−1
(
pk + σK

(
uk+1 + θ

(
uk+1 − uk

)))
. (7)

To formulate the image segmentation problem Eq. (3) in the Primal-Dual
framework we reformulate the total variation regularizer by introducing a dual
variable p ∈ R2 [14] and after discretization arrive at the saddle point problem

min
ui∈[0,1]

max
|p|≤1

λ〈∇u, p〉+ 〈f, u〉+ δ≤0(∇iu), (8)



188 J. Stühmer and D. Cremers

where ∇iu is the stacked vector of the directional derivatives ∂iuj and the con-
nectivity constraint is included by adding its indicator function1. We identify
the function G(u) in Eq. (4) with G(u) = 〈f, u〉+ δ≤0(∇iu).

While the constraints over the domains of u and p can be solved by sim-
ple projections, the optimization with respect to the connectivity constraint is
more involved. In the following, we will investigate two different strategies to
incorporate the connectivity constraint.

3.1 Optimization via Fenchel Duality

In [15] we propose to optimize the dual of the constrained optimization problem

min
ui∈[0,1]

max
|p|≤1
α≥0

λ〈∇u, p〉+ 〈f, u〉+ 〈α,∇iu〉. (9)

The connectivity constraint is ensured by introducing an additional dual variable
αij for each edge (i, j) ∈ E. Especially for long range connections the convergence
of these multipliers is very slow as we show in our experiments in section 4.

3.2 Projection onto the Constraint Set

In this section we describe how the connectivity constraint can be included by
directly computing the update of the primal variable subject to this constraint.
Therefore we propose an efficient projection scheme to solve the constrained
quadratic programming problem, which results from the definition of the prox-
operator.

According to [5] the update in the primal variable u is defined as

uk+1 = (I + τ∂G)−1(uk + τ div pk+1) (10)

= arg min
v∈[0,1]

{
||v − (uk + τ div pk+1)||2

2τ
+ 〈f, v〉+ δ≤0(∇iv)

}
. (11)

By completing the square and omitting terms independent of v we arrive at

uk+1 = arg min
v∈[0,1]

{
||v − (uk + τ div pk+1 − τf)||2 + δ≤0(∇iv)

}
(12)

which is of the general form

arg min
vi∈[0,1]

||v − ũ||2 (13)

s.t.

vi ≥ vj , ∀(i, j) ∈ E,

with ũ = (uk + τ div pk+1 − τf).

1 Note that while ∇iu is defined on the graph Gs, the gradient ∇u used in the total
variaton regularizer is computed using standard forward operators on the image grid.
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Proposition 1. The feasible set C determined by the constraints of the opti-
mization problem Eq. (13) is a convex set.

Proof. Let C1 be the feasible set determined by the inequality constraints and
C2 the constraint on the range of v. The feasible set of Eq. (13) then is C =
C1 ∩ C2. First we show that C1 is convex. If for every a, b ∈ C1 and α, β > 0 it
holds that αa + βb ∈ C1 then C1 is a convex cone. Because a, b ∈ C1 it holds
that

ai ≥ aj , bi ≥ bj , ∀(i, j) ∈ E, (14)

and because α, β > 0 it follows

αai ≥ αaj , βbi ≥ βbj , ∀(i, j) ∈ E, (15)

αai + βbi ≥ αaj + βbj , ∀(i, j) ∈ E. (16)

Hence the set C1 is a convex cone. In addition to the inequality constraints
we also have the constraint on the range of v. We call the feasible set of this
constraint C2 = [0, 1]. This set is convex, so C = C1 ∩ C2, the intersection of
two convex sets, is convex. ��

Thus the optimization problem Eq. (13) is strictly convex subject to convex
constraints. Its solution is an Euclidean projection of ũ onto the set C and can
be solved to global optimality. Furthermore the inequality constraints describe
a partial order on the values of v. A quadratic programming problem with this
structure is known in statistics as isotonic regression [2].

3.3 Isotonic Regression on a Tree

In Pardalos et al . [13] the authors investigate a class of algorithms for isotonic
regression where the constraints define a partial order which can be represented
by a directed graph. In particular the authors propose an O(n log n) algorithm
for the case when the directed graph is a directed tree with n vertices. For
convenience we present the algorithm IRT-BIN here as Algorithm 1.

We call the isotonic regression problem subject to partial order constraints
IRT. This problem does not include the range constraints of Eq. (13). In the
following, we will show that a projection of the optimal solution of IRT on the
range constraint yields the optimal solution of Eq. (13).

First we follow the presentation of Pardalos et al . [13] and describe the algo-
rithm for isotonic regression with partial order constraints, using the concept of
upper sets, lower sets and level sets :

Definition 1. Let X be a nonempty finite set. Let � be a partial order on X.
Let Y be a nonempty subset of X. We define the average of Y as Av(Y ) =
1

|Y |
∑

i∈Y ũi. We call a subset L ⊂ X a lower set of X with respect to � if

i ∈ X, j ∈ L and i � j implies i ∈ L. Consequently a subset U ⊂ X is an upper
set if i ∈ U , j ∈ X and i � j implies j ∈ U . We call a subset S ⊂ X a level
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set if there are an upper set U and a lower set L such that S = L ∪ U . A block
B of X is a nonempty level set such that for each upper set U ⊂ X for which
U ∩B 
= ∅ it holds that Av(B) ≥ Av(U ∩B).

Furthermore the authors of [13] introduce the concept of a block class:

Definition 2. A collection Δ of blocks of X is called a block class of X if

1. the blocks in Δ are pairwise disjoint and their union is the set X.
2. the collection Δ can be ordered by a partial-order � such that A � B for

A,B ∈ Δ if there exist i ∈ A and j ∈ B such that i � j.

Note that the collection of all singleton subsets {x} with x ∈ X is a block class.
The authors prove that the optimal solution of IRT on a block B is vi =

Av(B) for every i ∈ B. Furthermore they show that if a block class Δ has no
adjacent violators, then the optimal solution of the isotonic regression is given
by v∗i = Av(B(i)), where B(i) is the block which contains i, for each element i
of X .

Algorithm 1. IRT-BIN from Pardalos et al . [13]

1: Let Δ be the singleton block class and let T be a copy of the underlying rooted
tree.

2: Mark each leaf node of T as solved and all other nodes as unsolved.
3: for each node xi of T do
4: Create a block B(xi) = {xi} and a binomial heap Hi.
5: end for
6: if all nodes of T are marked as solved then
7: output the blocks corresponding to the nodes in T as the final block class and

stop;
8: end if
9: Let xi be an unsolved node of T such that all the children nodes of xi are solved.
10: Let B(xi) (resp. Hi ) be the block (resp. binomial heap) corresponding to node xi.
11: while Av(B(xi)) < Maximum(Hi) do
12: ExtractMax(Hi) and let B(xk) be the corresponding block
13: Shrink the edge connecting xi to xk � the new vertex is still called vi
14: Create a new block B(xi) ← B(xi) ∪B(xk) � the new block is still called

B(xi)
15: Calculate the Av(B(xi)) for the new block B(xi)
16: Hi ← Union(Hi,Hk) � this is the binomial heap for the new block B(xi)
17: end while
18: Mark the node xi of T as solved.
19: Let xp be the parent node of xi in T . Let Hp be the binomial heap corre-

sponding to B(xp) and let ai be the node in Hp which corresponds to B(xi).
ChangeKey(ai, Av(B(xi)),Hp).

20: go to 6.

We will show with the proof of the following proposition that given a solution
v∗ of IRT the optimal solution to Eq. (13) is achieved by projecting v∗ on C2.
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Thus, we can directly project onto the constraints of the optimization problem
Eq. (13) by first projecting onto the isotonicity constraint and then onto the
[0, 1]-box constraint.

Obviously, projecting first onto the [0, 1]-box constraint and then onto the
isotonicity constraint will not lead to a valid projection. When the averaging
step is performed after the [0, 1] clipping, in case that the isotonicity constraint
is violated and some values are smaller 1, only block average values well below 1
can be achieved, even when the average of the block before projection was larger
than 1.

Proposition 2. Direct Projection onto the Constraint Set
Let B be a block of X. Let v∗i = Av(B) for every i ∈ B be the solution of IRT.
Let π[0,1] : R→ [0, 1] be a projection that projects negative values to 0 and values

larger 1 to 1. Then
{
π[0,1](v

∗
i ) : i ∈ B

}
is the optimal solution to the optimization

problem (13) on B.

Proof. Let us assume that B hasm elements x1, x2, . . . , xm. We look at the three
cases Av(B) > 1, Av(B) ∈ [0, 1] and Av(B) < 0. Obviously these three cases are
exhaustive. If Av(B) ∈ [0, 1] then the solution v∗ of IRT also fulfills the range
constraint and the solution of Eq. (13) for the set B is identical to the solution
of IRT on B.

If Av(B) > 1 we follow a similar proof as in [13] and show that the point{
π[0,1](v

∗
i ) : i ∈ B

}
=

(
π[0,1] (Av (B)) , π[0,1] (Av (B)) , . . . , π[0,1] (Av (B))

)
∈ Rm

= (1, 1, . . . , 1) ∈ Rm (17)

is the optimal solution to Eq. (13) by showing that the inner product of the
gradient of Eq. (13) with any feasible direction d ∈ Rm at that point is a non-
negative number.

Let d = (d1, d2, . . . , dm) be a feasible direction of the isotonic regression prob-
lem on B. Then, in order to preserve isotonicity, feasibility of the direction d
implies di ≤ dj when xi � xj .

Therefore there exists a permutation σ = (σ(1), σ(2), . . . , σ(m)) such that

dσ(1) ≥ dσ(2) ≥ · · · ≥ dσ(m) (18)

and
xσ(i) � xσ(j) =⇒ i ≤ j. (19)

To prove that for Av(B) > 1 the point in (29) is the optimal solution of the
optimization problem (13) on the set B it is sufficient show that∑

i∈B

(1− ũσ(i))× dσ(i) ≥ 0. (20)

From Eq. (18) and from the definition of a block it follows that

1

m− k + 1

m∑
i=k

uσ(i) ≥ Av(B) > 1 for all 1 < k ≤ m. (21)



192 J. Stühmer and D. Cremers

This implies that

m∑
i=k

(1− uσ(i)) ≤ 0 for all 1 < k ≤ m. (22)

Equations (22) and (18) imply that for all 1 < k ≤ m that the following
inequality holds

m∑
i=k

(1 − uσ(i))× dσ(k−1) ≥
m∑
i=k

(1− uσ(i))× dσ(k). (23)

Because Av(B) > 1 the feasibility of d implies that dσ(i) ≤ 0 for all i ∈
{1, . . . ,m}. Combining everything together we get

m∑
i=1

(1− uσ(i))× dσ(1) (24)

=

1∑
i=1

(1− uσ(i))× dσ(i) +

m∑
i=2

(1− uσ(1))× dσ(1)

≤
1∑

i=1

(1− uσ(i))× dσ(i) +

m∑
i=2

(1− uσ(2))× dσ(2)

=

2∑
i=1

(1− uσ(i))× dσ(i) +

m∑
i=3

(1− uσ(2))× dσ(2)

≤
2∑

i=1

(1− uσ(i))× dσ(i) +

m∑
i=3

(1− uσ(3))× dσ(3)

. . .

≤
m∑
i=1

(1− uσ(i))× dσ(i) (25)

From Av(B) > 1 it follows that

m∑
i=1

(1− uσ(i)) < 0. (26)

Together with dσ(i) ≤ 0 for all i ∈ {1, . . . ,m} it follows for Eq. (24)

m∑
i=1

(1 − uσ(i))× dσ(1) ≥ 0. (27)

Therefore from Eq. (24) to Eq. (25) we have proven that if Av(B) > 1

m∑
i=1

(1− uσ(i))× dσ(i) ≥ 0. (28)
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If Av(B) < 0 we have to show that the inner product of the gradient of Eq.
(13) with any feasible direction d = (d1, d2, . . . , dm) ∈ Rm at the point{

π[0,1](v
∗
i ) : i ∈ B

}
= (0, 0, . . . , 0) ∈ Rm

is a positive number. This proof is equivalent to the proof for Av(B) > 1. ��

4 Experimental Results

For comparison we performed experiments for interactive segmentation on im-
ages from [16] that also have been used in other publications, e.g. [9,15]. As
depicted in Fig. 2, the segmentations acquired with the projection method are
not different from the results of the algorithm based on Fenchel duality [15].

Input image Results from [16] No connectivity Fenchel Dual [15] Projection

Fig. 2. Connectivity priors for interactive segmentation. First column: Input image
with user scribbles. The red scribbles are the source of the geodesic shortest path tree,
green scribbles are foreground regions that should be connected and blue scribbles
are background regions. Second column: Results from [16]. Third column: Segmenta-
tion without connectivity constraints. Fourth column: Segmentation with connectivity
constraints by solving the dual problem [15]. Fourth column: Segmentation with con-
nectivity constraints using the proposed projection scheme.

We provide convergence results of the two different methods on a set of syn-
thetic test images. The set contains images of two circles that are connected by a
2 pixel wide faint path of a length of 64, 128, 256 and 512 pixels. As an example,
the image for the path length of 256 pixels is shown in Fig. 3.

Plots of the convergence of the two methods with respect to runtime are
shown in Fig. 4. The projection method clearly outperforms the method based
on Fenchel duality. The longer the connection, the higher the runtime difference
of both methods. Convergence of the dual method takes from 10.12 seconds for
the 64 pixel connection, over 41.11 seconds for 128, 251.17 seconds for 256 to
1639.15 seconds for the 512 pixel connection, whereas the projection method
converges within less than 3 seconds for all different images. Although solving
the isotonic regression problem results in a higher complexity of each iteration, by



194 J. Stühmer and D. Cremers

Original image Noisy input image

Solution of the dual problem Solution using the projection method

Fig. 3. Synthetic test image. Upper row: The input image with added Gaussian noise.
Lower row: Identical results of the two different methods to include the connectivity
constraint.

magnitudes fewer iterations are required for the projection method to converge.
The needed runtime and number of iterations until convergence for both methods
are also shown in Table 1. To measure the speed of convergence we first compute
a segmentation result that is reached after a large number of iterations (10000).
Then we restart the algorithm and stop when the absolute difference between
the current result and the converged result is below 0.1‰of the number of pixels
of the image. All Experiments were performed on a a single threaded 2.27 GHZ
Intel Xeon architecture.

Fig. 4. Convergence of the two different methods to include the connectivity constraint
on a set of test images as shown in Fig. 3. The set contains images with two circles
that are connected by a 2 pixel width path of a length of 64, 128, 256 and 512 pixels.
Note that the plots have a logarithmic scale at the x axes. When using the projection
method (dashed line), by order of magnitudes fewer iterations are needed than for
solving the dual problem (solid). This results in a by order of magnitudes better runtime
performance.
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Table 1. Comparison of runtime and number of iterations until convergence. Espe-
cially when the images contain long range connections, the projection method is by
magnitudes more efficient than solving the dual problem.

Fenchel Duality Projection Method
Image Iterations Runtime Iterations Runtime

Test Circle 64 5396 10.12 s 19 0.29 s
Test Circle 128 18318 41.11 s 20 0.52 s
Test Circle 256 81987 251.17 s 20 1.06 s
Test Circle 512 344030 1639.15 s 20 2.89 s

Fly 1226 9.13 s 54 3.66 s
Desk 3440 42.00 s 109 13.40 s

5 Conclusion

We presented a very efficient projection scheme to include connectivity con-
straints in a convex image segmentation framework. The method outperforms
commonly used approaches that are based on Fenchel duality by orders of mag-
nitudes. Instead of using the common approach to solve the dual problem of the
constrained optimization problem we directly project onto the constraint set thus
significantly fewer iterations are needed until a sufficient convergence is reached.
This enables to use connectivity constraints for large segmentation problems as
they arise for example in medical image segmentation of three dimensional CT
angiography.
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Abstract. In this paper we propose a variational method to adaptively
decompose an image into few different modes of separate spectral bands,
which are unknown before. A popular method for recursive one dimen-
sional signal decomposition is the Empirical Mode Decomposition algo-
rithm, introduced by Huang in the nineties. This algorithm, as well as
its 2D extension, though extensively used, suffers from a lack of exact
mathematical model, interpolation choice, and sensitivity to both noise
and sampling. Other state-of-the-art models include synchrosqueezing,
the empirical wavelet transform, and recursive variational decomposition
into smooth signals and residuals. Here, we have created an entirely non-
recursive 2D variational mode decomposition (2D-VMD) model, where
the modes are extracted concurrently. The model looks for a number
of 2D modes and their respective center frequencies, such that the ban-
dlimited modes reproduce the input image (exactly or in least-squares
sense). Preliminary results show excellent performance on both synthetic
and real images. Running this algorithm on a peptide microscopy image
yields accurate, timely, and autonomous segmentation - pertinent in the
fields of biochemistry and nanoscience.

1 Introduction

In this paper we are interested in decomposing images into ensembles of con-
stituent modes (components) that have specific directional and oscillatory char-
acteristics. Simply put, the goal is to retrieve a small number of modes, that
each have a very limited bandwidth around their characteristic center frequency.
These modes are called intrinsic mode functions (IMF) and can be seen as
amplitude- and frequency-modulated (AM-FM) 2D signals. Such a mode can
have limited spatial support, its local (instantaneous) frequency and amplitude
vary smoothly, several modes can overlap in space, and together the ensemble
of modes should reconstruct the given input image up to noise and singular
features.
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The problem is inspired by the one-dimensional Empirical Mode Decompo-
sition (EMD) algorithm [16] and its two-dimensional extensions [20,23,22] for
recursive sifting of 2D spatial signals by means of interpolating upper and lower
envelopes, median envelopes, and thus extracting image components in different
“frequency” bands. This 2D-EMD, however, suffers from the same drawbacks
in robustness as the original EMD in extremal point finding, interpolation of
envelopes, and stopping criteria imposed.

Other methods of directional image decomposition work by mostly rigid
frames, decomposing the Fourier spectrum into fixed, mostly or strictly disjoint,
(quasi-)orthogonal basis elements. Examples include Gabor filters [24], wavelets
[7,18,9], curvelets [4], shearlets [17,14], etc. These methods are not adaptive
relative to the signal, and can attribute principle components of the image to
different bands, as well as contain several different image components in the same
band. Adaptivity and tuned sparsity concerns have been addressed through syn-
chrosqueezed wavelet transforms [8,6], where unimportant wavelet coefficients
are removed by thresholding based on energy content. In pursuit of the same
goal, the 2D Empirical Wavelet Transform (EWT) [12,13] decomposes an image
by creating an adaptive wavelet basis.

A variational solution for the related decomposition problem in one dimen-
sion was recently presented [10]. The so-called variational mode decomposition
in 1D is essentially based on well established concepts such as Wiener filtering,
the 1D Hilbert transform and the analytic signal, and heterodyne demodulation.
The goal of 1D-VMD is to decompose an input signal into a discrete number
of sub-signals (modes), where each mode has limited bandwidth in spectral do-
main. In other words, one requires each mode k to be mostly compact around
a center pulsation ωk, which is to be determined along with the decomposition.
In order to assess the bandwidth of a mode, the following scheme was proposed
[10]: 1) for each mode uk, compute the associated analytic signal by means of
the Hilbert transform in order to obtain a unilateral frequency spectrum. 2) For
each mode, shift the mode’s frequency spectrum to “baseband”, by mixing with
an exponential tuned to the respective estimated center frequency. 3) The band-
width is now estimated through the H1 smoothness of the demodulated signal,
i.e. the squared L2-norm of the gradient. The resulting constrained variational
problem is the following:

min
uk,ωk

{∑
k

αk

∥∥∥∥∂t [(δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2
2

}
s.t. ∀t :

∑
k

uk(t) = f(t), (1)

where ∗ denotes convolution.
In this paper we propose a natural two-dimensional extension of the (1D) Vari-

ational Mode Decomposition (VMD) algorithm [10] in the context of image seg-
mentation and directional decomposition. 2D-VMD is a non-recursive, fully adap-
tive, variational method which sparsely decomposes images in a mathematically
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well-foundedmannerwithminimal parameters and no explicit interpolation. Prac-
ticable applications include the decomposition of images into (possibly overlap-
ping) regions of essentially wave-like nature, in order to make these components
accessible for further analysis, such as space-frequency analysis anddemodulation.

The rest of this paper is organized as follows: Section 2 presents and explains
the two dimensional model. 2D generalizations of the Hilbert transform and the
analytic signal are discussed. Once all of the tools from the 1D model are made
analogous, we first present the constrained 2D model, and then its unconstrained
formulation. The details of the optimization with respect to each unknown are
shown, leading to the algorithmic updates of the variables. Section 3 contains our
experiments and results, namely of two images, one synthetic multi-mode image
and one real β-sheet microscopy image. We present the 2D-VMD algorithm’s de-
composition of these images, along with the reconstruction. Section 4 concludes
on our proposed 2D-VMD method, summarizes again the main assumptions and
limitations, and includes some future directions and expected improvements.

2 2D Variational Mode Decomposition

We design the 2D model relatively analogous to its 1D predecessor, minimiz-
ing the constituent sub-signals bandwidth while maintaining data fidelity. While
derivatives in higher dimensions are simply generalized by gradients, and mod-
ulation is also straightforward, the generalization of the analytic signal is less
obvious. To complete the analogy, we must first define the Hilbert transform
along with the analytic signal in the 2D context.

2.1 2D Analytic Signal

In 1D, in the time domain, the analytic signal was achieved by adding the Hilbert
transformed copy of the original signal as imaginary part:

fAS(t) = f(t) + jH{f}(t), (2)

where the 1D Hilbert transform is defined as:

H{f}(t) :=
{

1

π· ∗ f(·)
}
(t) =

1

π
p.v.

∫
R

f(v)

t− v
dv. (3)

We take note that the real signal is recovered simply by taking the real compo-
nent of the analytic signal.

In the spectral domain, the analytic signal is obtained by suppressing the
negative frequencies, thus giving it a unilateral spectrum:

f̂AS(ω) =

⎧⎪⎨⎪⎩
2f̂(ω), if ω > 0

f̂(ω), if ω = 0

0, if ω < 0.

(4)
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Single-sidedness of the analytic signal spectrum was the key-property motivat-
ing its use in the 1D case, since this property allowed for easy frequency shifting
to base-band by complex exponential mixing. Therefore, to mimic this spectral
property in 2D, one half-plane of the frequency domain must effectively be set
to zero; this half-plane is chosen relative to a vector, in our case to ωk. Thus the
2D analytic signal of interest can first be defined in the frequency domain.

ûAS,k(ω) =

⎧⎪⎨⎪⎩
2ûk(ω), if 〈ω,ωk〉 > 0

ûk(ω), if 〈ω,ωk〉 = 0

0, if 〈ω,ωk〉 < 0

= (1 + sgn(〈ω,ωk〉)ûk(ω)

(5)

The 2D analytic signal with the aforementioned Fourier property is [3]:

uAS,k(x) = uk(x) ∗
(
δ(〈x,ωk〉) +

j

π〈x,ωk〉

)
δ(〈x,ωk,⊥〉), (6)

where ∗ denotes convolution and the transform is separable. Here, the analytic
signal is calculated line-wise along the direction of reference, ωk. These lines are
processed independently, hence this definition is intrinsically 1D, but has the
desired 2D Fourier property.

2.2 2D-VMD Functional

We are now able to put all the generalized VMD-ingredient together to define the
two-dimensional extension of variational mode decomposition. The functional to
be minimized, stemming from this definition of 2D analytic signal, is:

min
uk,ωk

{∑
k

αk

∥∥∥∇ [
uAS,k(x)e

−j〈ωk,x〉
]∥∥∥2

2

}
s.t. ∀x :

∑
k

uk(x) = f(x) (7)

The objective function is an assessment of the sum of the modes’ bandwidths
as the squared H1 norm of its directional 2D analytic signal with only half-
space frequencies, shifted to baseband by mixing with a complex exponential of
the current center frequency estimate, while maintaining reconstructive signal
fidelity.

The reconstruction constraint is addressed through quadratic penalty and
Lagrangian multiplier, and we proceed by ADMM for optimization [10,1,19].

2.3 ADMM Optimization of 2D-VMD

To render the problem unconstrained, we include both a quadratic penalty and
a Lagrangian multiplier to enforce the constraint fidelity; the augmented La-
grangian is now:
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L({uk} , {ωk} , λ) :=
∑
k

αk

∥∥∥∇ [
uAS,k(x)e

−j〈ωk,x〉
]∥∥∥2

2

+

∥∥∥∥∥f(x)−∑
k

uk(x)

∥∥∥∥∥
2

2

+

〈
λ(x), f(x)−

∑
k

uk(x)

〉
. (8)

Our unconstrained problem is then:

min
uk,ωk

max
λ
L({uk} , {ωk} , λ) (9)

The solution to the original constrained minimization problem (7) is now found
as the saddle point of the augmented Lagrangian L in a sequence of iterative sub-
optimizations called alternate direction method of multipliers (ADMM) [15,21,2],
see Algorithm 1.

For simplified notation, we incorporate the Lagrangian multiplier term λ into
the quadratic penalty term, and rewrite the objective expression slightly different:

∑
k

αk

∥∥∥∇ [
uAS,k(x)e

−j〈ωk,x〉
]∥∥∥2

2
+

∥∥∥∥∥f(x)−∑
k

uk(x) +
λ(x)

2

∥∥∥∥∥
2

2

−
∥∥∥∥λ(x)24

∥∥∥∥2
2

(10)

Minimization w.r.t. The Modes uk. The relevant update problem derived
from (10) is

un+1
k = argmin

uk

{
αk

∥∥∥∇[uAS,k(x)e
−j〈ωk,x〉]

∥∥∥2
2
+

∥∥∥∥∥f(x)−∑
i

ui(x) +
λ(x)

2

∥∥∥∥∥
2

2

}
.

(11)
Since we are dealing with L2-norms, the functional, including the augmented
Lagrangian, can be written in Fourier domain utilizing the L2 Fourier isometry:

ûn+1
k = argmin

ûk

{
αk ‖jω [ûAS,k(ω + ωk)]‖22 +

∥∥∥f̂(ω)−
∑
i

ûi(ω) +
λ̂(ω)

2

∥∥∥2
2

}
(12)

= argmin
ûk

{
αk ‖j(ω − ωk)ûAS,k(ω)‖22 +

∥∥∥f̂(ω)−
∑
i

ûi(ω) +
λ̂(ω)

2

∥∥∥2
2

}
.

(13)

These equalities are justified by the well-known transform pair:

f(x)e−j〈ω0,x〉 F←→ f̂(ω) ∗ δ(ω + ω0) = f̂(ω + ω0), (14)

where δ is the Dirac distribution and ∗ denotes convolution. Thus, multiplying
an analytic signal with a pure exponential results in simple frequency shifting.
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Taking the first variation with respect to ûk and setting it to 0 yields1:

2αk|ω − ωk|2ûk + (−1)
(
f̂(ω)−

∑
i

ûi(ω) +
λ̂(ω)

2

)
= 0,

∀ω ∈ Ωk : Ωk = {ω | 〈ω,ωk〉 ≥ 0} . (15)

With this optimality condition, solving for ûk yields the following Wiener-filter
update:

ûn+1
k (ω) =

(
f̂(ω)−

∑
i�=k

ûi(ω) +
λ̂(ω)

2

) 1

1 + 2αk|ω − ωk|2

∀ω ∈ Ωk : Ωk = {ω | 〈ω,ωk〉 ≥ 0} , (16)

and the other half-plane is completed through Hermitian symmetry. The term
in parentheses is the signal’s kth residual, where

f̂(ω)−
∑
i�=k

ûi(ω)

is the explicit current residual, and λ̂k accumulates the residual in the form of
the Lagrangian multiplier.

Minimization w.r.t. The Center Frequencies ωk. Optimizing for ωk is
even simpler. Indeed, the update goal is

ωn+1
k = argmin

ωk

{
αk

∥∥∥∇ [
uAS,k(x)e

−j〈ωk,x〉
]∥∥∥2

2

}
. (17)

Or, again in the Fourier domain:

ωn+1
k = argmin

ωk

{
αk ‖j(ω − ωk) [(1 + sgn(〈ωk,ω〉))ûk(ω)]‖22

}
(18)

= argmin
ωk

{
4αk ‖(ω − ωk)ûk(ω)‖2Ωk

}
. (19)

The minimization is solved by letting the first variation w.r.t. ωk vanish (on the
frequency halfplane Ωk):

8αk

∫
Ωk

(ω − ωk)|ûk|2dω = 0. (20)

The resulting solutions are the first moments of the mode’s power spectrum
|ûk(ω)|2 on the half-plane Ωk:

ωn+1
k =

∫
Ωk

ω|ûk(ω)|2dω∫
Ωk
|ûk(ω)|2dω . (21)

1 Note that the functional is complex valued so the process of “taking the first vari-
ation” is not self-evident. However, the functional is analytic and complex-valued
equivalents to the standard derivatives do indeed apply.
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Maximization w.r.t. the Lagrangian Multiplier λ. Maximizing the λ is
the simplest step in the algorithm. The first variation for λ is just the data
residual, f(x)−

∑
k u

n+1
k (x). We use a standard gradient ascent with fixed time

step τ to achieve this maximization:

λn+1(x) = λn(x) + τ

(
f(x)−

∑
k

un+1
k (x)

)
. (22)

Note that the linearity of the Euler-Lagrange equation allows an impartial
choice in which space to update the Lagrangian multiplier, either in the time
domain or in the frequency domain. In our implementation, we perform our dual
ascent update in the frequency domain, see Algorithm 1.

2.4 Optimization Algorithm

The full algorithm is detailed in Algorithm 1.

Algorithm 1. Complete ADMM optimization of 2D-VMD

Initialize {û0
k}, {ω̂0

k}, λ̂0, n ← 0
repeat

n ← n+ 1
for k = 1 : K do

Create 2D Hilbert mask for Fourier multiplier

Hn+1
k (ω) ← 1 + sgn(〈ωn

k ,ω〉) (23)

Update ûAS,k for all ω such that 〈ωn
k ,ω〉 ≥ 0:

ûn+1
AS,k(ω) ← Hn+1

k (ω)

[
f̂(ω)−

∑
i<k û

n+1
i (ω)−

∑
i>k û

n
i (ω) +

λ̂n(ω)
2

1 + 2α|ω − ωn
k |2

]
(24)

Update ωk:

ωn+1
k ←

∫
R2 ω|ûn+1

AS,k(ω)|2dω∫
R2 |ûn+1

AS,k(ω)|2dω
(25)

Retrieve uk:
un+1
k (x) ← �{F−1ûn+1

AS,k(ω)} (26)

end for
Dual ascent:

λ̂n+1(ω) ← λ̂n(ω) + τ

(
f̂(ω)−

∑
k

ûn+1
k (ω)

)
(27)

until convergence:
∑

k ‖û
n+1
k − ûn

k‖22/‖ûn
k‖22 < Kε.
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3 Experiments and Results

We have implemented the 2D-VMD method in MATLAB R©2, and test the algo-
rithm on both a synthetic and a real image.

Fig. 1. Results of 2D-VMD on fSynth. Top left: The synthetic image. Bottom left:
Spectrum. Right: 5 recovered modes, and Bottom right: their mode superposition.

3.1 Synthetic Image

The first, synthetic image is a composition of spatially overlapping basic shapes,
more precisely six ellipses and a rectangle, with frequency patterns varying in
both periodicity and direction, courtesy of J. Gilles [11]. The spectrum is ideal
for segmentation due to modes being deliberately both well isolated and narrow-
banded. The resolution of the synthetic image is 256x256 and the experiment
was run with parameters α = 1000 and K = 5. This experiment converged
in 520 iterations which took 45 seconds on a standard PC. The algorithm has
no problems in accuracy nor timeliness in segmenting the image into its five
constituent sub-images. The first is the DC component of the image - a solid
ellipse and rectangle, while the four remaining decompositions in Fig. 1 show
clear separation of the patterned ellipses. Due to the solid pieces having sharp
edges, their spectra are not bandlimited and only smoothed versions are recov-
ered. This is naturally paired with the two lower frequency modes picking up
residual boundary artifacts of the DC component.

3.2 Peptide β-sheet Microscopy Image

The second test image is a scanning tunneling microscopy (STM) image of pep-
tide β-sheets bonding on a graphite base, courtesy of the Weiss-group at the

2 Code is available at http://www.math.ucla.edu/~zosso/code.html

http://www.math.ucla.edu/~zosso/code.html
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Fig. 2. Results of 2D-VMD on peptide β-sheet image. Top left: Peptide β-sheet (with
manual boundaries), and Bottom left: its power spectrum. Right: Five recovered
constituent modes, and Bottom right: their mode superposition.

California NanoScience Institute (CNSI), [5]. The peptide sheets grow in regions
of directional homogeneity and form natural spatial boundaries where the re-
gions meet. It is important to scientists to have accurate segmentation for their
dual interests in the homogeneous regions and their boundaries. Identifying re-
gions of homogeneity allows for the subsequent study of isolated peptide sheets
of one particular bonding class. For these types of scans, manually finding the
boundaries is a tedious problem that demands the attention of a skilled scientist
on a rote task. In addition to speed and automation, the proposed 2D-VMD is
superior in accuracy to manual boundary identification due to regions potentially
having very similar patterns, varying by only a few degrees, that are difficult to
discern to even the trained eye. The success of the 1D-VMD algorithm in tone
separation carries over to its 2D counterpart in separating patterns that are very
close, yet distinct, in spectrum.

As a common pre-processing step in image analysis, here we apply a difference-
of-Gaussians (DoG) band-pass filter to the image in order to remove both noise
and the DC component. Subsequently, the 2D-VMD algorithm decomposes the
piecewise homogeneous peptide sheet image into its five principle components
with the purpose of segmentation. Fig. 2 illustrates these individual components,
and then compares their superposition to the original peptide sheet with man-
ual boundaries added. The resolution of this peptide image is 512x512 and the
experiment was run with parameters α = 5000 and K = 5. This experiment
converged in 210 iterations which took 140 seconds on a standard PC.

3.3 αk Analysis and ωk Initialization

An important degree of freedom in this algorithm is the initialization of the
variables. While the uk have a natural initialization of uk ≡ 0, the ωk are
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somewhat more sensitive. Though one could manually initialize the frequencies
via the image’s power spectrum visualization with high accuracy, in the pursuit
of full automation, we discuss the robustness of a fully unsupervised method
of initialization. Qualitatively, a high α leads to finer separation of constituent
subsignals due to the Wiener filter being more narrowly concentrated around
its center frequency. However, this same narrow filter, if centered away from
a principle frequency, may fail to capture the relevant principle frequencies.
Conversely, a low α creates a wider filter, allowing the algorithm to “see and
travel” to the correct frequencies, but yields worse separation. Given that we
know the correct frequencies about which to initialize, a high α will produce
accurate results. If we do not know estimates of the principle frequencies of the
subcomponents a priori, it seems that we are forced to use a lower α, where
the ωk gains freedom of mobility to the appropriate modes at the expense of
proper separation. Instead of sacrificing accuracy for mobility, we keep both at
the expense of computation time in the following way:

Initialize the ω0
k for k = 1, ...,K randomly on any half-plane, such as {ω =

(ω1, ω2) | ω1 ≥ 0}. Using a high α, run the VMD algorithm and record the
final values of ωN

k . Perform this repeatedly for a number of times and create a
histogram of the convergent ωN

k , then observe the topK values. Individual itera-
tions may converge to local minimizers, where qualitatively non-principle modes
such as noise will be found, or where multiple ωk converge to the same principle
mode while others are not picked up. The silver lining is that the non-principle
convergent modes will be mostly uniformly spread across the spectrum, while the
principle ones will show up with much higher consistency. This histogram of con-
vergent modes captures the location of the consistent modes, from which we may
get an excellent initialization for a final “clean” iteration. In the above peptide
sheet image, we used 200 such iterations to unambiguously determine a proper
initialization, though as few as 25 iterations were needed for the histogram to
begin to resemble the power spectrum. Keeping this in mind, for practical ap-
plications, one can discount the ideal pursuit of automation, and do an accurate
and simple graphical (semi-supervised) initialization of the frequencies to avoid
multiple iterations in order to preserve timeliness.

4 Conclusions and Outlooks

In this paper, we have presented a 2D variational method for decomposing an
image into an ensemble of band-limited intrinsic mode functions.

Our decomposition model solves the inverse problem as follows: decompose an
image into a given number of modes such that each individual mode has limited
bandwidth. We assess the mode’s bandwidth as the squaredH1 norm of its direc-
tional 2D analytic signal with only half-space frequencies, shifted to baseband by
mixing with a complex exponential of the current center frequency estimate. The
modes are updated by simple Wiener filtering, directly in Fourier domain with a
filter tuned to the current center frequency. Then the center frequencies are up-
dated as the center of gravity of the mode’s power spectrum. We apply our model
to both synthetic and real image data and can show successful decomposition.
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The most important limitation of the proposed 2D-VMD is with boundary
effects, and sudden signal onset in general. Despite the mostly successful decom-
position, there is an issue of components’ boundaries being overly smooth due
to the narrow-band violation caused by discontinuous envelopes in such AM-FM
signals, and a quadratic functional disfavoring and overly penalizing sharp ampli-
tude changes, as with domain boundaries and piecewise regions. Conversely, this
is also reflected by implicit periodicity assumptions when optimizing in Fourier
domain. Another point is the required explicit selection of the number of active
modes in the decomposition. A way to handle this issue is through the histogram
method mentioned above. With many random initialization iterations, the domi-
nant modes would show up with highest frequency, and this appropriate number
of bins would become obvious by looking at an ordered distribution of the con-
vergent frequency bins, exhibiting a gap between true frequencies and random
noise. Rather than relying on iterations, both of these issues are being addressed
in current work on an extended mathematical model.

We thank Paul S. Weiss and group members for sample images, and the
collaborators of the W. M. Keck Foundation project “Leveraging sparsity” for
inspiring discussion.
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Abstract. We focus on the multi-class segmentation problem using the
piecewise constant Mumford-Shah model in a graph setting. After for-
mulating a graph version of the Mumford-Shah energy, we propose an
efficient algorithm called the MBO scheme using threshold dynamics.
Theoretical analysis is developed and a Lyapunov functional is proven
to decrease as the algorithm proceeds. Furthermore, to reduce the com-
putational cost for large datasets, we incorporate the Nyström extension
method which efficiently approximates eigenvectors of the graph Lapla-
cian based on a small portion of the weight matrix. Finally, we imple-
ment the proposed method on the problem of chemical plume detection
in hyper-spectral video data.

Keywords: graph, segmentation, Mumford-Shah, total variation, MBO,
Nyström, hyper-spectral image.

1 Introduction

Multi-class segmentation has been studied as an important problem for many
years in various areas, such as computer science andmachine learning. For imagery
data in particular, the Mumford-Shah model [18] is one of the most extensively
used model in the past decade. This model approximates the true image by an
optimal piecewise smooth function through solving a energy minimization prob-
lem.More detailed review of the work onMumford-Shahmodel can be found in the
references of [4]. A simplified version of Mumford-Shah is the piecewise constant
model (also known as the “minimal partition problem”), which is widely used due
to its reduced complexity compared to the original one. For a given contour Φ
which segments an image regionΩ into n̂many disjoint sub-regionsΩ = ∪n̂

r=1Ωr,
the piecewise constant Mumford-Shah energy is defined as:

EMS(Φ, {cr}n̂r=1) = |Φ|+ λ

n̂∑
r=1

∫
Ωr

(u0 − cr)
2 , (1)
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where u0 is the observed image data, {cr}n̂r=1 is a set of constant values, and
|Φ| denotes the length of the contour Φ. By minimizing the energy EMS over
Φ and {cr}n̂r=1, one obtains an optimal function which is constant within each
sub-region to approximate u0, along with a segmentation given by the optimal
Φ. In [5], a method of active contours without edges is proposed to solve for
the two-class piecewise constant Mumford-Shah model (n̂ = 2), using a level set
method introduced in [19]. The work in [5] is further generalized to a multi-class
scenario in [24]. The method developed in [5,24] is well known as the Chan-Vese
model, which is a popular and representative method for image segmentation.
The Chan-Vese method has been widely used due to the model’s flexibility and
the great success it achieves in performance.

In this work, we formulate the piecewise constant MS problem in a graph
setting instead of a continuous one, and propose an efficient algorithm to solve
it. Recently the authors of [2] introduced a binary semi-supervised segmentation
method based on minimizing the Ginzburg-Landau functional on a graph. In-
spired by [2], a collection of work has been done on graph-based high-dimensional
data clustering problems posed as energy minimization problems, such as semi-
supervised methods studied in [14,11] and an unsupervised network clustering
method [13] known as modularity optimization. These methods make use of
graph tools [6] and efficient graph algorithms, and our work pursues similar
ideas. Note that unlike the Chan-Vese model which uses log2(n̂) many level
set functions and binary representations to denote multiple classes, our model
uses simplex constrained vectors for class assignments representation (details
explained below).

To solve the multi-class piecewise constant MS variational problem in the
graph setting, we propose an efficient algorithm using threshold dynamics. This
algorithm is a variant of the one presented in the work of Merriman, Bence and
Osher (MBO) [16,17], which was introduced to approximate the motion of an
interface by its mean curvature in a continuous space. The idea of the MBO
scheme is used on the continuous MS model [8,21] motivated by level set meth-
ods. The authors of [11,13,14] implement variants of the MBO scheme applied
to segmentation problems in a graph setting. Rigorous proofs of convergence of
the original MBO scheme in continuous setting can be found in [1,9] for the
binary case, and [7] for the multi-class case. An analogous discussion in a graph
setting is given in [23]. Inspired by the work of [7,23], we develop a Lyapunov
functional for our proposed variant of the MBO algorithm, which approximates
the graph MS energy. Theoretical analysis is given to prove that this Lyapunov
energy decreases at each iteration of our algorithm, until it converges within
finitely many steps.

In order to solve for each iteration of the MBO scheme, one needs to compute
the weight matrix of the graph as well as the eigenvectors of the corresponding
graph Laplacian. However, the computational cost can become prohibitive for
large datasets. To reduce the numerical expenses, we implement the Nyström
extension method [10] to approximately compute the eigenvectors, which only
requires computing a small portion of the weigh matrix. Thus the proposed
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algorithm is efficient even for large datasets, such as the hyper-spectral video
data considered in this paper.

The proposed method can be implemented on general high-dimensional data
clustering problems. However, in this work the numerical experiment is focused
on the detection of chemical plumes in hyper-spectral video data. Detecting
harmful gases and chemical plumes has wide applicability, such as in environ-
mental study, defense and national security. However, the diffusive nature of
plumes poses challenges and difficulties for the problem. One popular approach
is to take advantage of hyper-spectral data, which provides much richer sensing
information than ordinary visual images. The hyper-spectral images used in this
paper were taken from video sequences captured by long wave infrared (LWIR)
spectrometers at a scene where a collection of plume clouds is released. Over
100 spectral channels at each pixel of the scene are recorded, where each chan-
nel corresponds to a particular frequency in the spectrum ranging from 7,820
nm to 11,700 nm. The data is provided by the Applied Physics Laboratory at
Johns Hopkins University, (see more details in [3]). Prior analysis of this dataset
can be found in the works [12,15,20,22]. The authors of [15] implement a semi-
supervised graph model using a similar MBO scheme. In the present paper, each
pixel is considered as a node in a graph, upon which the proposed unsuper-
vised segmentation algorithm is implemented. Competitive results are achieved
as demonstrated below.

The rest of this paper is organized as follows. Section 2 introduces the graph
formula for the multi-class piecewise constant Mumford-Shah model and relevant
notations. In Secion 3, the Mumford-Shah MBO scheme is presented as well as
the theoretical analysis for a Lyapunov functional which is proven to decrease as
the algorithm proceeds; techniques such as Nyström method are also introduced
for the purpose of numerical efficiency. In Section 4, our algorithm is tested on
the hyper-spectral video data for plume detection problem. The results are then
presented and discussed.

2 Graph Mumford-Shah Model

Consider an N -node weighted graph (G,E), where G = {n1, n2, . . . , nN} is a
node set and E = {wij}Ni=1 an edge set. Each node ni corresponds to an agent
in a given dataset, (such as a pixel in an image). The quantity wij represents
the similarity between a pair of nodes ni and nj . Let W = [wij ] denote the
graph’s N ×N weight matrix, and in this work we assume W is symmetric, i.e.
wij = wji. In the case of hyper-spectral data, each node (pixel) ni is associated
with a d-dimensional feature vector (spectral channels). Let u0 : G→ Rd denote
the raw hyper-spectral data, where u0(ni) represents the d-dimensional spectral
channels of ni. We use the following notation:

– The matrix L := D − W is called the (un-normalized) graph Laplacian

[6], where D is a diagonal matrix with the i-th entry being
∑N

j=1 wij . For
v : G→ R, observe that
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〈v,Lv〉 = 1

2

N∑
i,j=1

wij (v(ni)− v(nj))
2 . (2)

– Graph function spaces for f = (f1, f2, . . . , fn̂) : G→ Rn̂:

K :=

{
f | f : G→ [0, 1]n̂,

n̂∑
r=1

fr(ni) = 1

}
,

which is a compact and convex set.

B :=

{
f | f : G→ {0, 1}n̂,

n̂∑
r=1

fr(ni) = 1

}
∈ K .

This simplex constrained vector value taken by f ∈ B indicates class assign-
ment, i.e. if fr(ni) = 1 for some r, then ni belongs to the r-th class. Thus
for each f ∈ B, it corresponds to a partition of the graph G with at most n̂
classes. Let 〈f,Lf〉 =

∑n̂
r=1〈fr,Lfr〉.

– Total Variation (TV) for graph G is given as:

|f |TV :=
1

2

N∑
i,j=1

wij |f(ni)− f(nj)| . (3)

In this setting, we present a graph version of the multi-class piecewise constant
Mumford-Shah energy functional:

MS(f, {cr}n̂r=1) :=
1

2
|f |TV + λ

n̂∑
r=1

〈‖u0 − cr‖2, fr〉 , (4)

where {cr}n̂r=1 ⊂ Rd, ‖u0 − cr‖2 denotes an N × 1 vector(
‖u0(n1)− cr‖2, . . . , ‖u0(nN )− cr‖2

)T
,

and 〈‖u0 − cr‖2, fr〉 =
∑N

i=1 fr(ni)‖u0(ni) − cr‖2. Note that when ni and nj

belong to different classes, we have |f(ni)− f(nj)| = 2, which leads to the
coefficient in front of the term 1

2 |f |TV .
To see the connection between (4) and (1), one first observes that fr is the

characteristic function of the r-th class, and thus 〈‖u0− cr‖2, fr〉 is analogous to
the term

∫
Ωr

(u0− cr)2 in (1). Furthermore, the total variation of the character-
istic function of a region gives the length of its boundary contour, and therefore
|f |TV is the graph analogy of |Φ|.

In order to find a segmentation for G, we propose to solve the following min-
imization problem:

min
f∈B,{cr}n̂

r=1⊂Rd
MS(f, {cr}n̂r=1) . (5)
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The resulting minimizer f yields a partition of G.
One can observe that the optimal solution of (5) must satisfy:

cr =
〈u0, fr〉∑N
i=1 fr(ni)

, (6)

if the r-th class is non-empty.
Note that for the minimization problem given in (5), it is essentially equivalent

to the K-means method when λ goes to +∞. When λ → 0, the minimizer
approaches a constant.

3 Mumford-Shah MBO and Lyapunov Functional

The authors of [16,17] introduced an efficient algorithm (known as the MBO
scheme) to approximate the motion by mean curvature of an interface in a con-
tinuous space. The general procedure of the MBO scheme alternates between
solving a linear heat equation and thresholding. One interpretation of the scheme
is that it replaces the non-linear term of the Allen-Cahn equation with thresh-
olding [8]. In this section we propose a variant of the original MBO scheme to
approximately find the minimizer of the energyMS(f, {cr}n̂r=1) presented in (4).
Inspired by the work of [7,23], we write out a Lyapunov functional Yτ (f) for our
algorithm and prove that it decreases at each iteration of the MBO scheme.

3.1 Mumford-Shah MBO Scheme

We first introduce a “diffuse operator” Γτ = e−τL, where L is the graph Lapla-
cian defined above and τ is a time step size. The operator Γτ is analogous to
the diffuse operator e−τΔ of the heat equation in PDE (continuous space). It
satisfies the following properties.

Proposition 1. Firstly, Γτ is strictly positive definite, i.e. 〈f, Γτf〉 > 0 for any
f ∈ K, f 
= 0. Secondly, Γτ conserves the mass, i.e. 〈1, Γτf〉 = 〈1, f〉. At last,
the quantity 1

2τ 〈1− f, Γτf〉 approximates 1
2 |f |TV , for any f ∈ B.

Proof. Taylor expansion gives

e−τL = I − τL +
τ2

2!
L2 − τ3

3!
L3 + . . .

Suppose v is an eigenvector of L associated with the eigenvalue ξ. One then has
Γτv = e−τξv ⇒ 〈v, Γτv〉 = e−τξ〈v, v〉 > 0. Let the eigen-decomposition (with

respect to L) for a non-zero f : G → R to be f =
∑N

i=1 aiφi, where {φi}Ni=1 is
a set of orthogonal eigenvectors of L (note that L is positive definite). Because

Γτ is a linear operator, one therefore has 〈f, Γτf〉 =
∑N

i=1 a
2
i 〈φi, Γτφi〉 > 0.

For the second property, L1 = 0⇒ 〈1,Lkf〉 = 0, where 1 is an N-dimensional
vector with one at each entry. Therefore, the Taylor expansion of Γτ gives
〈1, Γτf〉 = 〈1, f〉.
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At last, Γτ  I − τL⇒ 1
2τ 〈1 − f, Γτf〉  1

2τ 〈1 − f, f〉 − 1
2 〈1,Lf〉+

1
2 〈f,Lf〉.

Particularly when f ∈ B, we have 1
2τ 〈1 − f, f〉 = 1

2 〈1,Lf〉 = 0 and 1
2 〈f,Lf〉 =

1
2 |f |TV . Hence

1
2τ 〈1− f, Γτf〉 approximates 1

2 |f |TV in B.
��

Note that the operator (I + τL)−1 also satisfies the above three properties, and
can serve the same purpose as e−τL, as far as this paper concerns.

The proposed Mumford-Shah MBO scheme for the minimization problem (5)
consists of alternating between the following three steps:

For a given fk ∈ B at the k-th iteration and ckr =
〈u0,f

k
r 〉

〈1,fk
r 〉 ,

1. Compute

f̂ = Γτf
k − τλ

(
‖u0 − ck1‖2, ‖u0 − ck2‖2, . . . , ‖u0 − ckn̂‖2

)
, (7)

2. (Thresholding)

fk+1(ni) = er , r = argmaxcf̂c(ni)

for all i ∈ {1, 2, . . . , N}, where er is the r-th standard basis in Rn̂, i.e.
fk+1
r (ni) = 1 and fk+1 ∈ B.

3. (Update c)

ck+1
r =

〈u0, fk+1
r 〉

〈1, fk+1
r 〉

.

3.2 A Lyapunov Functional

We introduce a Lyapunov functional Yτ for the Mumford-Shah MBO scheme:

Yτ (f) :=
1

2τ
〈1− f, Γτf〉+ λ

n̂∑
r=1

〈‖u0− cr‖2, fr〉 , subject to cr =
〈u0, fr〉
〈1, fr〉

. (8)

According to the third property of Γτ in Proposition 1, energy Yτ (f) approxi-

mates MS(f, {cr}n̂r=1) for f ∈ B and cr = 〈u0,fr〉
〈1,fr〉 . A similar functional for the

graph total variation is shown and discussed in [23].
Pursuing similar ideas as in [7,23], we present the following analysis which

consequently shows that the Mumford-Shah MBO scheme (with time step τ)
decreases Γτ and converges to a stationary state within a finite number of iter-
ations.

First define

Gτ (f, c) :=
1

2τ
〈1− f, Γτf〉+ λ

n̂∑
r=1

〈‖u0 − cr‖2, fr〉 . (9)

Proposition 2. The functional Gτ (·, c) is strictly concave on K, for any fixed
{cr}n̂r=1 ∈ Rd.
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Proof. Take f, g ∈ K, α ∈ (0, 1). We have (1 − α)f + αg ∈ K, because K is a
convex set.

Gτ ((1− α)f + αg, c)− (1− α)Gτ (f, c)− αGτ (g, c)

=
1

2τ
α(1 − α)〈f − g, Γτ (f − g)〉 ≥ 0 . (10)

Equality only holds when f = g. Therefore, Gτ (·, c) is strictly concave on K.
��

Aside from the concavity of Gτ , we observe that the first order variation of
Gτ (·, c) is given as

δ

δf
Gτ (f, c) =

1

2τ
(1− 2Γτf) + λ

(
‖u0 − c1‖2, ‖u0 − c2‖2, . . .

)
.

Note that since 〈 δ
δfGτ (f

k, ck), f〉 is linear, the Step 2 (thresholding) in the
Mumford-Shah MBO scheme is equivalent to

fk+1 := argminf∈K〈
δ

δf
Gτ (f

k, ck), f〉 .

Theorem 1. In the Mumford-Shah MBO scheme, the Lyapunov functional
Yτ (f

k+1) at the (k + 1)-th iteration is no greater than Yτ (f
k). Equality only

holds when fk = fk+1. Therefore, the scheme achieves a stationary point in B
within a finite number of iterations.

Proof.

fk+1 := argminf∈K〈
δ

δf
Gτ (f

k, ck), f〉 (11)

⇒ fk+1 ∈ B (due to linearity) and

0 ≥ 〈 δ
δf
Gτ (f

k, ck), fk+1 − fk〉 (12)

≥ Gτ (f
k+1, ck)−Gτ (f

k, ck) (concavity)

⇒ Gτ (f
k+1, ck) ≤ Gτ (f

k, ck) = Yτ (f
k). Observe that ck+1

r =
〈fk+1

r ,u0〉
〈fk+1

r ,1〉 is the

minimizer of
argmin{cr}n̂

r=1∈RdGτ (f
k+1, c)

⇒ Gτ (f
k+1, ck+1) ≤ Gτ (f

k+1, ck) ≤ Yτ (f
k).

⇒ Yτ (f
k+1) ≤ Yτ (f

k). Therefore the Lyapunov functional Yτ is decreasing on
the iterations of the Mumford-Shah MBO scheme, unless fk+1 = fk. Since B is
a finite set, a stationary point can be achieved in a finite number of iterations.

��
Minimizing the Lyapunov energy Γτ is an approximation of the minimization

problem in (5), and the proposed MBO scheme is proven to decrease Γτ . There-
fore, we expect the Mumford-Shah MBO scheme to approximately solve (5). In
Section 3.3 and Section 3.4, we introduce techniques for computing the MBO
iterations efficiently.
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3.3 Eigen-Space Approximation

To solve for (7) in Step 1 of the Mumford-Shah MBO scheme, one needs to
compute the operator Γτ , which can be difficult especially for large datasets. For
the purpose of efficiency, we numerically solve for (7) by using a small number of
the leading eigenvectors of L (which correspond to the smallest eigenvalues), and
project fk onto the eigen-space spanned from the eigenvectors. By approximating
the operator L with the leading eigenvectors, one can compute (7) efficiently. We
use this approximation because in graph clustering methods, researchers have
been using a small portion of the leading eigenvectors of a graph Laplacian to
extract structural information of the graph.

Let {φm}Mm=1 denote the first M (orthogonal) leading eigenvectors of L, and

{ξm}Mm=1 the corresponding eigenvalues. Assume fk =
∑M

m=1 φma
m, where am

is a 1×n̂ vector, with the r-th entry amr = 〈fk
r , φm〉. Thus f̂ can be approximately

computed as:

f̂ =

M∑
m=1

e−τξmφma
m − τλ

(
‖u0 − ck1‖2, ‖u0 − ck2‖2, . . . , ‖u0 − ckn̂‖2

)
. (13)

The Mumford-Shah MBO algorithm with the above eigen-space approxima-
tion is summarized in Algorithm 1. After the eigenvectors are obtained, each
iteration of the MBO scheme is of time complexity O(N). Empirically, the al-
gorithm converges after a small number of iterations. Note that the iterations
stop when a purity score between the partitions from two consecutive iterations
is greater than 99.9%. The purity score, as used in [13], measures how “similar”
two partitions are. Intuitively, it can be viewed as the fraction of nodes of one
partition that have been assigned to the correct class with respect to the other
partition.

Algorithm 1. Mumford-Shah MBO algorithm

Input: f0, u0, {(φm, ξm}Mm=1, τ , λ, n̂, k = 0.
while (purity(fk, fk+1) < 99.9%) do

– cr =
〈u0,f

k
r 〉

∑N
i=1

fk
r (ni)

.

– am
r = 〈fk

r , φm〉.
– f̂ =

∑M
m=1 e

−τξmφmam − τλ
(
‖u0 − c1‖2, ‖u0 − c2‖2, . . . , ‖u0 − cn̂‖2

)
.

– fk+1(ni) = er, where r = argmaxcf̂c(ni).
– k ← k + 1.

end while

3.4 Nyström Method

The Nyström extension [10] is a matrix completion method which has been
used to efficiently compute a small portion of the eigenvectors of the graph
Laplacian for segmentation problems [2,14,11]. In our proposed scheme, leading



Multi-class Graph Mumford-Shah Model for Plume Detection 217

eigenvectors of L are required, which can require massive computational time
and memory. For large graphs such as the ones induced from images, the explicit
form of the weight matrix W and therefore L is difficult to obtain (O(N2) time
complexity). Hence, we expect to use the Nyström method to approximately
compute the eigenvectors for our algorithm.

Basically, the Nyström method randomly samples a very small number (M) of
rows ofW. Based on matrix completion and properties of eigenvectors, it approx-
imately obtains M eigenvectors of the symmetric normalized graph Laplacian
Ls = I − D− 1

2WD− 1
2 without computing the whole weight matrix. Detailed

descriptions of the Nyström method can be found in [2,14].
Note that our previous analysis only applies to L rather than Ls, and the

Nyström method can not be trivially formularized for L. Therefore this question
remains to be studied. However, the normalized Laplacian Ls has many similar
features compared to L, and it has been used in place of L in many segmentation
problems. In the numerical results shown below, the eigenvectors of Ls computed
via Nyström perform well empirically.

One can also implement other efficient methods to compute the eigenvectors
for the Mumford-Shah MBO algorithm.

4 Numerical Results

The hyper-spectral images tested in this work are taken from the video recording
of the release of chemical plumes at the Dugway Proving Ground, captured by
long wave infrared (LWIR) spectrometers. The data is provided by the Applied
Physics Laboratory at Johns Hopkins University. A detailed description of this
dataset can be found in [3]. We take seven frames from a plume video sequence
in which each frame is composed of 128 × 320 pixels. We use a background
frame and the frames numbered 72 through 77 containing the plume. Each pixel

(a) 2nd Eigenvector

(b) 3rd Eigenvector

(c) 4th Eigenvector

(d) 5th Eigenvector

Fig. 1. The leading eigenvectors of the normalized graph Laplacian computed via the
Nyström method
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has 129 spectral channels corresponding to a particular frequency in the EM
spectrum ranging from 7,820 nm to 11,700 nm. Thus, the graph we construct
from these seven frames is of size 7× 128× 320 with each node ni corresponding
to a pixel with a 129-dimensional spectral signature vi. The metric for computing
the weight matrix is given as:

wij = exp{−
(1− 〈vi,vj〉

‖vi‖‖vj‖ )
2

2σ2
} ,

where σ = 0.01 is chosen empirically for the best performance. Note that in this
experiment σ is a robust parameter which gives decent results for a wide range
of values (0.001 < σ < 10).

The goal is to segment the image and identify the “plume cloud” from the
background components (sky, mountain,grass), without any ground truth. As
described in the previous section, M = 100 eigenvectors of the normalized graph
Laplacian (Ls) are computed via the Nyström method. The computational time
using Nyström is less than a minute on a 2.8GHz machine with Intel Core 2Duo.
The visualization of the first five eigenvectors (associated with the smallest eigen-
values) are given in Figure 1 for the first four frames, (the first eigenvector is
not shown because it is close to a constant vector).

We implement the Mumford-Shah MBO scheme using the eigenvectors on this
seven frames of plume images, with τ = 0.15, λ = 150 and n̂ = 5. The test is run
for 20 times with different uniformly random initialization, and the segmentation
results are shown in Figure 2. Note that depending on the initialization, the
algorithm can converge to different local minimum, which is common for most
non-convex variational methods. The result in (a) occurred five times among the
20 runs, and (b) for twice. The outcomes of other runs merge either the upper
or the lower part of the plume with the background. The segmentation outcome
shown in (a) gives higher energy than that in (b). Among the 20 runs, the lowest
energy is achieved by a segmentation similar to (a), but with the lower part of
the plume merged with the background. It may suggest that the global minimum
of the proposed energy does not necessarily give a desired segmentation.

(a)

(b)

Fig. 2. The segmentation results obtained by the Mumford-Shah MBO scheme, on
a background frame plus the frames 72-77. Shown in (a) and (b) are segmentation
outcomes obtained with different initializations. The visualization of the segmentations
only includes the first four frames.
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Notice that in Figure 2 (b), even though there actually exist five classes, only
four major classes can be perceived, while the other one contains only a very
small amount of pixels. By allowing n̂ = 5 instead of 4, it helps to reduce the
influence of a few abnormal pixels. The computational time for each iteration
is about 2-3 seconds on a 1.7GHz machine with Intel Core i5. The number of
iterations is around 20-40.

Fig. 3. Energy MS(f) (blue, solid line) and Yτ (f) (red, dash line) at each iteration
from the same test as shown in Figure 2 (a)

Figure 3 demonstrates a plot of the MS(f) and Yτ (f) energies at each itera-
tion from the same test as the one shown in Figure 2 (a). The Lyapunov energy
Yτ (f) (red, dash line) is non-increasing, as proven in Theorem 1. Note that all
the energies are computed approximately using eigenvectors.

As a comparison, the segmentation results using K-means and spectral clus-
tering are shown in Figure 4. The K-means method is performed directly on
the raw image data (7 × 128 × 320 by 129). As shown in (a) and (b), the re-
sults obtained by K-means fail to capture the plume; the segmentations on the
background are also very fuzzy. For the spectral clustering method, a 4-way (or
5-way) K-means is implemented on the four (or five) leading eigenvectors of the
normalized graph Laplacian (computed via Nyström). As shown in (c) and (d),
the resulting segmentations divide the sky region into two undesirable compo-
nents. Unlike the segmentation in Figure 2 (a) where the mountain component
(red, the third in the background) has a well defined outline, the spectral clus-
tering results do not provide clear boundaries. Our approach performs better
than other unsupervised clustering results on this dataset [12,20].

Another example of the plume data is show in Figure 5, where the 67th to
72nd frames (instead of the 72nd to 77th) are taken along with the background
frame as the test data. The test is run 20 times using different uniformly random
initialization, where τ = 0.15, λ = 150 and n̂ = 5. The result in Figure 5 (a)
occurred 11 times among the 20 runs, and (b) for 5 times. The outcomes from
the other 4 runs segment the background into three components as in (a), but
merge the plume with the center component. The segmentation result shown in
(a) gives the lowest energy among all the outcomes. The visualization includes
all seven frames since the plume is small in the first several frames.
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(a) 4-way K-means

(b) 5-way K-means

(c) Spectral Clustering with 4-way K-means

(d) Spectral Clustering with 5-way K-means

Fig. 4. K-means and spectral clustering segmentation results. The visualization of the
segmentations only includes the first four frames.

(a)

(b)

Fig. 5. The segmentation results obtained by the Mumford-Shah MBO scheme, on
a background frame plus the frames 67-72. Shown in (a) and (b) are segmentation
outcomes obtained with different initializations.
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5 Conclusion

In this paper we present a graph framework for the multi-class piecewise con-
stant Mumford-Shah model using a simplex constrained representation. Based
on the graph model, we propose an efficient threshold dynamics algorithm, the
Mumford-Shah MBO scheme for solving the minimization problem. Theoreti-
cal analysis is developed to show that the MBO iteration decreases a Lyapunov
energy that approximates the MS functional. Furthermore, in order to reduce
the computational cost for large datasets, we incorporate the Nyström exten-
sion method to approximately compute a small portion of the eigenvectors of
the normalized graph Laplacian, which does not require computing the whole
weight matrix of the graph. After obtaining the eigenvectors, each iteration of
the Mumford-Shah MBO scheme is of time complexity O(n). The number of
iterations for convergence is small empirically.

The proposed method can be applied to general high-dimensional data seg-
mentation problems. In this work we focus on the segmentation of hyper-spectral
video data. Numerical experiments are performed on a collection of hyper-
spectral images taken from a video for plume detection; using our proposed
method, competitive results are achieved. However, there are still open questions
to be answered. For example, the Nyström method can only compute eigenvec-
tors for the normalized Laplacian, while the theoretical analysis for the Lyapunov
functional only applies to the un-normalized graph Laplacian. This issue remains
to be studied. Note that the graph constructed in this paper does not include
the spacial information of the pixels, but only the spectral information. One
can certainly build a graph incorporating the location of each pixel as well, to
generate a non-local means graph as discussed in [2].

Acknowledgments. We thank Dr. Luminita A. Vese for useful comments.
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Abstract. Texture is intuitively defined as a repeated arrangement of a basic pat-
tern or object in an image. There is no mathematical definition of a texture though.
The human visual system is able to identify and segment different textures in a
given image. Automating this task for a computer is far from trivial.

There are three major components of any texture segmentation algorithm: (a)
The features used to represent a texture, (b) the metric induced on this represen-
tation space and (c) the clustering algorithm that runs over these features in order
to segment a given image into different textures.

In this paper, we propose an active contour based novel unsupervised algo-
rithm for texture segmentation. We use intensity covariance matrices of regions
as the defining feature of textures and find regions that have the most inter-region
dissimilar covariance matrices using active contours. Since covariance matrices
are symmetric positive definite, we use geodesic distance defined on the manifold
of symmetric positive definite matrices PD(n) as a measure of dissimilarity be-
tween such matrices. Using recent convexification methods, we are able to com-
pute a global maxima of the cost function. We demonstrate performance of our
algorithm on both artificial and real texture images.

1 Introduction

Texture is intuitively defined as a repeated arrangement of a basic pattern or object in
an image. There is no universal mathematical definition of a texture though. The human
visual system is able to identify and segment different textures in a given image without
much effort. Automating this task for a computer, though, is far from trivial.

Apart from being a tough academic problem, texture segmentation has several appli-
cations. Texture segmentation has been applied to detect landscape changes from aerial
photographs in remote sensing and GIS [40], content based image retrieval [16] and
diagnosing ultrasound images [27] and others.

There are three major components in any texture segmentation algorithm: (a) The
model or features that define or characterize a texture, (b) the metric defined on this
representation space, and (c) the clustering algorithm that runs over these features in
order to segment a given image into different textures.

There are two approaches of modeling a texture: Structural and Statistical. The struc-
tural approach describes a texture as a specific spatial arrangement of a primitive ele-
ment. Voronoi polynomials are used to specify the spatial arrangement of these primitive
elements [34,33]. The statistical approach describes a texture using features that encode
the regularity in arrangement of gray-levels in an image. Examples of features used are

X.-C. Tai et al. (Eds.): EMMCVPR 2015, LNCS 8932, pp. 223–236, 2015.
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responses to Gabor filters [15], graylevel co-occurrence matrices [42,20], Wavelet co-
efficients [12], human visual perception based Tamura features [32], Laws energy mea-
sures [25], Local binary patterns[28] and Covariance matrices of features [35,14]. In
[23], the authors compare performance of some of the above mentioned features for the
specific goal of image retrieval. In fact, Zhu, Wu & Mumford [41] propose a mecha-
nism of choosing an optimal set of features for texture modeling from a given general
filter bank. Markov random fields[10], Fractal dimensions[8] and the space of oscillat-
ing functions [36] have also been used to model textures.

Various metrics have been used to quantify dissimilarity of features: Euclidean, Chi-
squared, Kullback-Leibler & its symmetrized version [38], manifold distance on the
Gabor feature space [9] and others. k−NN, Bayesian inference, c− means, alongwith
active contours algorithms are some of the methods used for clustering/segmentating
texture areas in the image with similar features.

In this paper, we use intensity convariance matrices over a region as the texture fea-
ture. Since these are symmetric positive definite matrices which form a manifold, de-
noted by PD(n), it is natural to use the intrinsic manifold distance as a measure of
feature dissimilarity. Using a novel active contours method, we propose to find the
background/foreground texture regions in a given image by maximizing the geodesic
distance between the interior and exterior covariance matrices. This is the main contri-
bution of our paper.

In the next subsection we list out some existing texture segmentation approaches
using active contours model.

1.1 Related Work

Sagiv, Sochen & Zeevi [9] generalize both, geodesic active contours and Chan & Vese
active contours, to work on a Gabor feature space. The Gabor feature space is a para-
metric 2−D manifold embedded in R7 whose natural metric is used to define an edge
detector function for geodesic active contours, and to define the intra-region variance in
case of the Chan & Vese active contours. In [31], the authors use Chan & Vese active
contours on Local Binary Pattern features for texture segmentation.

In [30], the authors propose a Chan & Vese active contour model on probability dis-
tribution of the structure tensor of the image as a feature. The closest approach to our
algorithm is by Houhou et. al.[21], where the authors find a contour that maximizes
the KL-divergence based metric on probability distribution of a feature for points ly-
ing inside the contour and outside the contour. The feature used is based on principal
curvatures of the intensity image considered as a 2−D manifold embedded in R3. In
particular, the cost function for a curve Ω is defined as

KL(pin(Ω), pout(Ω)) =

∫
R+

(pin(κt ,Ω)− pout(κt ,Ω))

· (log pin(κt ,Ω)− log pout(κt ,Ω)) dκt

where pin(Ω), pout(Ω) is the probability distribution of the feature κ inside and outside
the closed contour Ω respectively. Gaussian distribution is assumed as the model for
the probability distribution of the feature both inside as well as outside the contour.
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Recent modifications of this algorithm, as in [22] uses a feature based on determinant
of the metric of the manifold (which is a semi-local representation based on the Beltrami
framework), while the authors in [11] use the Cauchy-Schwartz distance (instead of the
KL-divergence) on the probability density of a feature similar to κ used above.

In our approach, instead of using some scalar feature to represent texture, we com-
pute a contour that maximizes the geodesic distance between the interior and exterior
intensity covariance matrix of the contour. It can be seen that the maximization process
has to be carried out over the manifold of symmetric positive definite matrices, making
it fundamentally different from the approaches in [21,22]. Moreover, we can easily ex-
tend this approach to covariance matrices of any other texture feature one may want to
use as we show for Gabor features in section3.

The paper is organized as follows: In next section we provide a brief review of active
contour models for image segmentation. In Section 2, we describe our active contour
model based on geodesic distance between the interior and exterior covariance matrices
of a contour. We give our experimental results in Section 3 followed by conclusions and
future scope.

1.2 Active Contours and Level Sets

Active contour methods can be catagorized into two: edge-based and region-based. The
classical active contours by Kazz, Witkin & Terzopoulous [24] and the newer Geodesic
active contours[4] fall into the first catagory in which region boundaries are detected
by iteratively minimizing a cost function that encourages an initial curve to latch on to
intensity edges via a curve evolution equation. An efficient numerical scheme to imple-
ment these curve evolution equations is via level sets [1]. Since texture boundaries do
not typically correspond to intensity edges, we base our method on the second catagory
- region based active contours, which we review next.

In the region-based approach, an energy functional based on regional similarity prop-
erties of an object, rather then its edges (image gradient) is minimized. A successful
example of such a method is the Active Contours Without Edges (ACWE) model pro-
posed by Chan & Vese [7]. It tries to approximate the given image I : Ω ⊂ R2 → R
by a function that can take only two values. Such a function can be represented by the
values μ1,μ2 that it takes and the boundary C between regions taking the two values.
The energy function after including regularization terms is given by

F(μ1,μ2,C) = μ .Length(C) + ν.Area(int(C)) + λ1

∫
int(C)

(I(x,y)− μ1)
2dxdy

+ λ2

∫
ext(C)

(I(x,y)− μ2)
2dxdy, (1)

where μ ≥ 0,ν ≥ 0,λ1,λ2 > 0 are fixed scalar parameters, and int(C) and ext(C) de-
notes the interior and exterior region of the curve C in Ω respectively. Re-writing the
above functional using a level set function[29] φ with the following convention:

int(C) = {(x,y) ∈Ω | φ(x,y) < 0}
ext(C) = {(x,y) ∈Ω | φ(x,y) > 0}, (2)
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the Heaviside function H, and the Dirac Delta function δ , we obtain the following
energy functional:

F(μ1,μ2,φ) =
∫

Ω
μδ (φ(x,y))|∇φ(x,y)|

+ν(1−H(φ(x,y)))+λ1(I(x,y)− μ1)
2(1−H(φ(x,y)))

+λ2(I(x,y)− μ2)
2H(φ(x,y)) dxdy. (3)

For a fixed C (and therefore a fixed φ ), the minimizers for μ1,μ2 can easily be seen to
be the mean gray value in int(C) and ext(C) respectively. The minimization in terms of
φ , keeping μ1,μ2 fixed (and using smooth approximations Hε ,δε , of H,δ as given in
[7]) is given by the following gradient descent based level set evolution equation:

∂φ
∂ t

= δε(φ)
[

μ div

(
∇φ
‖∇φ‖

)
+ν +λ1 (I− μ1)

2−λ2 (I− μ2)
2
]
. (4)

A drawback of such gradient descent schemes is that they can get stuck in a local min-
ima and hence these methods heavily rely on a good user initialization. This is essen-
tially the result of non-convex energy functionals. To alleviate this problem, convexifi-
cation of active contour energies was proposed in [6]. With μ = 1,ν = 0,λ1 = λ2 = λ ,

following the presentation in [3], we let r(x,μ1,μ2) := λ
[
(I− μ2)

2− (I− μ1)
2
]
. Then,

the level set evolution below also provides the same steady state solution as by the
gradient descent equation(4) above.

∂φ
∂ t

= div

(
∇φ
‖∇φ‖

)
−λ r(x,μ1,μ2) (5)

This is a gradient descent for the convex energy:

E(u,μ1,μ2,λ ) =
∫

Ω
||∇u||+λ r(x,μ1,μ2)u dx, (6)

where we replace φ with u since it need not be the usual level set function. This func-
tional is one-homogeneous in u, therefore the minimization is carried out over 0≤ u≤ 1
in order to get a stationary solution. Thus the task is to solve:

min
0≤u≤1

E(u,μ1,μ2,λ ) (7)

Several numerical schemes have been proposed for fast minimization of such convex
energies, of which we mention two: a gradient projection method [5] and the Split-
Bregman method [19], with the latter solving a regularized version of the original
problem[18]. We choose to use the Split-Bregman1 method. It introduces an auxiliary
variable d for ∇u, which converts the constrained minimization (constraint: d = ∇u) to
the following unconstrained problem:

(uk+1,dk+1) = arg min
0≤u≤1,d

∫
Ω
||d||+λ r(x,μ1,μ2)u+

μ
2
||d−∇u− bk||2 dx, (8)

bk+1 = bk +∇uk+1− dk. (9)

1 The Split Bregman method has been shown to be equivalent to the Augmented Lagrangian
method[39].
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The Euler-Lagrange equation for the first minimization problem above is

Δu =
λ
μ

r+∇ · (dk− bk) (10)

Gauss-Seidel procedure yields the solution:

αi, j = dx
i−1, j− dx

i, j− bx
i−1, j + bx

i, j + dy
i, j−1− dy

i, j− by
i, j−1+ by

i, j, (11)

βi, j =
1
4

(
ui−1, j + ui+1, j + ui, j−1 + ui, j+1−

λ
μ

r+αi, j

)
, (12)

uk+1
i, j = max{min{βi, j,1},0}, (13)

while minimization with respect to d in Equation(8), is obtained by soft-wavelet
thresholding[37]:

dk+1 = shrink(bk +∇uk+1,μ), (14)

where shrink(p,μ) =max{||p||−μ ,0} p
||p|| . This process is iterated till ||uk+1−uk||> ε .

Our active contour model for (two-class) texture segmentation is based on finding
disjoint regions of the image which have as different texture features as possible. In the
next section, we describe our energy functional, derive the gradient descent equation,
and convexify the energy as shown above in order to make our model independant of
the initialization.

2 Proposed Active Contour Model for Texture Segmentation

In what follows, we assume familiarity with concepts from differential geometry like
geodesic distance, Riemannian Exponential and Riemannian Logarithm maps. A thor-
ough introduction to these concepts can be found in the books [2,13]. We are given
an intensity image I : Ω ⊂ R2 → R. Our algorithm assumes that the image contains a
background and a foreground texture. At every point x ∈Ω , let N(x) be a R2×1 vector
of intensities over a small neighborhood2, say of size R×R. Given a closed contour C
on Ω , we define the following two covariance matrices:

Mi(C) =

∫
int(C) N(x)N(x)T dx∫

int(C) dx

Me(C) =

∫
ext(C) N(x)N(x)T dx∫

ext(C) dx
. (15)

Note that Mi(C) and Me(C) both belong to the set of R2 × R2 symmetric positive
definite matrices, which is a Riemannian manifold henceforth denoted by PD(R2).

2 Although we use a continuous region Ω to model the image domain, we are implicitly assum-
ing a discrete image domain while defining the concept of a neighborhood N(x). We choose to
ignore this discrepancy.



228 A. Tatu and S. Bansal

Let d : PD(R2)× PD(R2)→ R denote the geodesic distance between two points of
this manifold. Since the image contains two different texture regions, it is evident that
the two covariance matrices(points on this manifold) defined in (15) will be furthest
away (in terms of geodesic distance) from each other when the contour C lies on the
boundary between the two textures. We support this claim with an empirical evidence in
Figure 1. For a given texture image I : Ω → R, we propose the following cost function
on the set of all closed contours defined on Ω :

Fig. 1. (left) Different contours on an image with a foreground/background textures, (right) the
corresponding (referred by appropriate contour number) geodesic distance between the covari-
ance matrices defined in (15)

J(C) = d(Mi(C),Me(C)) (16)

where Mi(C),Me(C) are defined in Equation (15)3. We find the contour C that max-
imizes this cost, using the gradient ascent approach giving us a novel active contour
scheme. Instead of working on parametric representations of C, we work with its level
set representation which has several benefits as discussed in [1]. Using level set function
φ with the convention given in Equation(2) and the Heaviside function, we redefine the
covariance matrices from Equation (15), as

Mi(φ) =
∫

Ω (1−H(φ))N(x)N(x)T dx∫
Ω (1−H(φ))dx

Me(φ) =
∫

Ω H(φ)N(x)N(x)T dx∫
Ω H(φ)dx

. (17)

Re-writing our cost function from Equation (16) in terms of the level set function φ
gives us

3 Note the subtle difference between our cost function and that of ACWE: Mi,Me are not vari-
ables to be optimized in contrast to μ1,μ2 in Equation(1).
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J(φ) = d(Mi(φ),Me(φ)). (18)

The gradient of this functional is given as,

∂J
∂φ

(φ) =
〈

∂d
∂Mi ,

∂Mi(φ)
∂φ

〉
Mi

+

〈
∂d

∂Me ,
∂Me(φ)

∂φ

〉
Me

(19)

where 〈., .〉Mi and 〈., .〉Me are the Riemannian inner products defined on the Tangent
space of PD(R2) at points Mi(φ) and Me(φ), respectively. Specific details on this inner
product can be found in [17]. The derivatives of the geodesic distance d is given by4

∂
∂Mi d(Mi,Me) =−LogMi(Me) ∈ TMi PD(R2) (20)

∂
∂Me d(Mi,Me) =−LogMe(Mi) ∈ TMe PD(R2) (21)

where Log denotes the Riemannian log map defined on PD(R2). Derivatives of the
covariance matrices defined in Equation (17) are given by

∂Mi

∂φ
(φ) =

1
|Ωint |

∫
Ω

(
Mi(φ)−N(x)N(x)T )δ (φ)dx (22)

∂Me

∂φ
(φ) =

1
|Ωext |

∫
Ω

(
N(x)N(x)T −Me(φ)

)
δ (φ)dx (23)

where |Ωint | and |Ωext | are given by

|Ωint |=
∫

Ω
(1−H(φ))dx

|Ωext |=
∫

Ω
H(φ)dx.

Substituting Equations (20),(21),(22),(23) into Equation (19), we get

∂J
∂φ

=

∫
Ω

[〈
−LogMi(Me),

1
|Ωint |

(
Mi(φ)−N(x)N(x)T )δ (φ)

〉
Mi

+

〈
−LogMe(Mi),

1
|Ωext |

(
N(x)N(x)T −Me(φ)

)
δ (φ)

〉
Me

]
dx (24)

The gradient ascent as a level set evolution equation, after including the curvature flow
as a regularizer (with weigth 1/λ ) and replacing δ (φ) by its smooth approximation
δε(φ), is then given by

∂φ
∂ t

(x) = div

(
∇φ
||∇φ ||

)
δε (φ)+λ

(〈
−LogMi (Me),

1
|Ωint |

(
Mi(φ)−N(x)N(x)T

)
δε (φ)

〉
Mi

+

〈
−LogMe(Mi),

1
|Ωext |

(
N(x)N(x)T −Me(φ)

)
δε(φ)

〉
Me

)
(25)

4 A simpler explanation for this can be given in case we are working with R2 instead of PD(R2).
In this case ∂ d

∂ x (x,y) = −(y− x) and ∂ d
∂ y (x,y) = −(x− y). This is exactly what is done by the

Riemannian Log map on manifolds.
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2.1 Convexification of the Energy

Following Section 1.2, we let

r(x,Mi,Me) :=

〈
LogMi(Me),

1
|Ωint |

(
Mi(φ)−N(x)N(x)T )〉

Mi

+

〈
LogMe(Mi),

1
|Ωext |

(
N(x)N(x)T −Me(φ)

)〉
Me

(26)

Substituting r in Equation(25), we get

∂φ
∂ t

(x) =

[
div

(
∇φ
||∇φ ||

)
−λ r(x,Mi,Me)

]
δε(φ).

Thus, the above evolution also minimizes the following convex energy

E(u) =
∫

Ω

(
||∇u||+λ r(x,Mi,Me) u

)
dx, (27)

where we replace φ by u as in Section 1.2. Finally, our segmentation task is reduced to
the minimization:

min
0≤u≤1

E(u). (28)

The Split Bregman minimization procedure as discussed in Section1.2 is used for this
minimization and is summarized below in Algorithm 1. In the next section we give

Algorithm 1. Split Bregman minimization

while ||uk+1−uk||< ε , do
- Compute Mi(φ),Me(φ) from Equation(17) and rk from Equation (26), using

φ = uk−0.5, where 0.5 is the selected threshold.
- Compute uk+1 using Equation(13), dk+1 using Equation(14) and bk+1 using

Equation(9).
end while

texture segmentation results on synthetic and real textures and compare the results with
that of [22].

3 Experiments

The results shown in this section were obtained on a Intel Core2Duo, 2GB RAM ma-
chine using MATLAB. We have used a random initialization for all images and all
results were obtained within 2− 5 minutes. Image sizes vary form 150× 150 pixels to
250× 250 pixels.
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In Figure 2, we show successful segmentation for a synthetic texture image, on the
Europe night sky image, image of a zebra, and an example of gray-valued image seg-
mentation using our model. For gray-valued image segmentation, we use N(x) = I(x)
in our model. The covariance matrices Mi(C),Me(C) defined in Equation (15), will
simply be the mean of squared intensities in the interior and exterior of the closed con-
tour C, respectively. Also note that the covariance matrices now belong to PD(1), i.e.,
the set of positive real numbers R+, of course with a metric different from the usual
Euclidean one on R. Our algorithm will then find the contour that maximizes the dif-
ference (geodesic distance on PD(1)) between the two numbers Mi(C) and Me(C). We
next compare our results with the results generated by the algorithm in [22], on some
images from the Berkeley Segmentation dataset [26], in Figure 3. We have used images
from [22] to display their results. One can clearly see that our algorithm gives a better
texture segmentation. Small noise-like artifacts are in fact regions where texture simi-
lar to the object texture is present, for instance, in the tiger image, there are reflection
of the tiger strips in the water that our algorithm is able to successfully segment. Note
that the feature used in [22] is the determinant of the metric, which loses all directional
properties of the texture. As shown in the center image in Figure 4, the distribution of
the feature inside and outside the actual object boundary is not significantly different,
while our algorithm is successful in segmenting the texture.

Fig. 2. Segmentation results on (top-left) artificial texture image, (top-right) Europe night sky
image, (bottom-left) image of a zebra, and (bottom-right) gray-valued image. For the artificial
texture image, we use a neighborhood of size 7×7, 5×5 for Europe night sky image, 7×7 for
the zebra image, and 1×1 for image segmentation. Texture being defined using neighborhoods,
the computed boundary can be observed to lie few pixels away from the actual object boundary.
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Fig. 3. Comparing results from [22](left column) with results from our algorithm (right column).
The size of neighborhood for these results is 9× 9 pixels. It can be seen that our results are
comparable if not better in most cases. The small noise-like artifacts are points around which
object-like texture is present. For example, in the tiger image, our algorithm also captures the
tiger-strips that appear due to reflection in water.
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Instead of taking intensity values in the neighborhood as a feature, we next explore
multiscale Gabor features at every pixel as a feature. Let f (x) denote the output of
Gabor filters at 5 different scales in a single orientation. Using f (x) as N(x) also yields
good texture segmentation results, as shown in Figure 5. In fact an advantage of these
features is that, since higher scales will contain information from a neighborhood, there
is no need to append features from a neighborhood to every pixel. This seems to yield
a better boundary localization.

Finally, we show the effect of changing the size of neighborhood on the segmentation
results in Figure 6. As expected, if the scale of texture is either too large or too small
to be captured by the neighborhood size, the algorithm will over-segment or under-
segment respectively. The synthetic image in Figure 6 contains chequerboard patterns
of unit block size 2× 2,4× 4,6× 6 and 8× 8 each. With neighborhood size R = 3, the
algorithm is able to capture only the smallest texture with blocks of size 2× 2, with
R = 5, it is able to capture texture with blocks upto 4× 4 and with R = 7, it is able
to capture texture with blocks upto 6× 6. Not surprisingly, with R = 9, it captures all
textures involved, except the smallest with block size 2×2, since with R = 9, the small
scale texture is more like a homogeneous region rather than a textured region.

Fig. 4. (left) Original image, texture inside is simply rotated version of the texture outside, (center)
Image of the feature used in [22], notice that the feature is unable to distinguish the interior
from the exterior, specifically, the distribution of this feature inside and outside the actual object
boundary is not that different, (right) Result of our algorithm.

Fig. 5. Texture segmentation using Gabor features in our algorithm. Observe better localization
of the boundary, especially in the image on the left (compare with Figure 4).



234 A. Tatu and S. Bansal

Fig. 6. Effect of changing neighborhood size R on segmentation: (top-left) Segmentation us-
ing R = 3, (top-right) Segmentation using R = 5, (bottom-left) Segmentation using R = 7, and
(bottom-right) Segmentation using R = 9. Refer to the text for details.

4 Conclusion

In this paper, we propose a novel active contour based unsupervised texture segmen-
tation algorithm. The algorithm finds a contour with maximum geodesic distance be-
tween its interior and exterior intensity covariance matrices. With the least possible
neighborhood size R = 1, the process successfully segments gray-level images. Using
convexification methods, the algorithm does not depend on user initialization and is able
to compute globally optimal solutions. The computational complexity is also brought
down by using the Split Bregman approach.

In its current state, the method depends on the size of the neighborhood R. Efforts
are on to make it independent of R, either using a semi-supervised approach or using
other multi-scale methods.
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Abstract. In this paper, we propose a subMarkov random walk (subRW) with
the label prior with added auxiliary nodes for seeded image segmentation. We
unify the proposed subRW and the other popular random walk algorithms. This
unifying view can transfer the intrinsic findings between different random walk
algorithms, and offer the new ideas for designing the novel random walk algo-
rithms by changing the auxiliary nodes. According to the second benefit, we de-
sign a subRW algorithm with label prior to solve the segmentation problem of
objects with thin and elongated parts. The experimental results on natural images
with twigs demonstrate that our algorithm achieves better performance than the
previous random walk algorithms.

Keywords: Segmentation, subMarkov random walk, auxiliary nodes.

1 Introduction

In many computer vision tasks, the random walk (RW) has been widely used such as
segmentation [4], clustering [12], and classification [17]. Grady et. al. [5] first proposed
the RW for medical image segmentation and extend it in [4] for general image segmen-
tation. In their work, the user should give labels to a small number of pixels. Then the
probability of each unlabeled pixel belonging to a label is determined by the probability
that a random walker starting at each unlabeled pixel will first reach one pixel with this
label. By assigning each pixel to a label with the greatest probability, the interactive im-
age segmentation result can be obtained. After [5], there are many related and important
works based on RW [3,14,2]. In [3], the RW has been extended to segment out discon-
nected objects by using prior models without labeling each object. In other words, the
user only indicates labels on some objects and the other similar objects will be seg-
mented. Sinop and Grady [14] proposed a common framework to unify the RW, the
graph cuts, and the shortest path algorithms for interactive segmentation. Further, the
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authors in [2] added the popular watershed segmentation algorithm to this framework
and make the theoretical analysis for the connection of these algorithms. This unifying
framework brings some benefits, like opening new possibilities for using unary terms in
traditional watershed algorithm, and using watershed to optimize more general models.

In general, these algorithms [7,13] are graph-based so we can use a graph to describe
the image for introducing them. In [7], Kim et. al. propose a random walk with a restart-
ing probability (RWR) for segmentation. It means that this random walker will return to
the starting node with a probability c at each step, and walk to other adjacent nodes with
the probability 1− c. Shen et. al. [13] proposed a novel lazy random walk (LRW) algo-
rithm with self-loops to effectively solve the superpixel segmentation problem in weak
boundary and complex texture regions. In [16], Wu et. al. proposed another similar RW
algorithm called partially absorbing random walk (PARW) for some applications based
on cluster, such as ranking, classification and so on. Comparing the above three RW-
based algorithms, we have found that they all satisfy the subMarkov property [9] i.e. the
sum of transition probabilities

∑
q(i, j), that a random starts from a node to the other

adjacent nodes, is less than or equal to 1.
In this paper, we propose a subMarkov random walk (subRW) to unify the three

RW-based algorithms: RWR, LRW and PARW, and extend it by adding label prior to
solve the twig problem. First, according to the subMarkov property, we build a subRW
framework for segmentation. In subRW, a random walker will leave a graph G from a
node iwith probability ci and walk to the other adjacent nodes inGwith probability 1−
ci. This random walker can be transformed to a random walker with Markov transition
probability (

∑
q(i, j) = 1) walks in the expanded graph Ge. This graph is constructed

by adding auxiliary staying nodes connected with seeds and an auxiliary killing nodes
connected with unseeded nodes into the graph G. Then we unify the subRW and the
aforementioned three RW-based algorithms in the expanded graph. After analyzing the
connections between them, we find an idea to design a new RW-based algorithm by
changing edges or adding auxiliary nodes. According to this idea, we design a novel
subRW with label prior to solve the twig problem. This label prior can be viewed as
global ‘seeds’ connected with all nodes. Each global ‘seed’ corresponds to a label. So
we can add some prior nodes connected with all nodes into the graphGe to build a new
expanded graph Gp. Then we compute the probability that a random walker starting
from each node reaches the staying nodes or the prior nodes in the graph Gp, as the
likelihoods probability of corresponding labels. In the other word, we want to compute
the probability of reaching the user specified seeds plus the probability of reaching
the global ‘seeds’. These global ‘seeds’ will help to segment out the twigs parts. Our
subRW source code will be publicly available online1.

2 An Unifying View of subRW

In this section, we propose a novel random walk algorithm with a subMarkov transition
probability (subRW) for interactive mutil-labeled image segmentation and analyze the
relations between this proposed algorithm and other popular RW algorithms, such as
RWR [7], LRW [13], and PARW [16].

1 https://github.com/shenjianbing/subrw14

https://github.com/shenjianbing/subrw14
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We first give some important notations and their corresponding descriptions. An im-
age is formulated as a weighted undirected graph G = (V,E) with nodes v ∈ V , and
edges e ∈ E ⊆ V × V . Each node vi represents an image pixel xi. An edge eij con-
nects two nodes vi and vj in neighborhood system. The weight wij ∈ W of edge eij
measures the likelihood that a random walker will cross this edge. As many previous
graph-based segmentation algorithms [4,7,15,6,8,13], a weight wij is defined as the
Gaussian weighting function:

wij = exp(−‖Ii − Ij‖2
σ

) + ε, (1)

where Ii and Ij are the pixel colors at two nodes vi and vj in Lab color space, σ is
a controlling parameter which is set as 1/60 in this paper, and ε is a small constant as
10−6. The degree matrix D is a diagonal matrix where Dii = di, di =

∑
j∼i wij is

the degree of a node vi, j ∼ i represents a node vj is in the neighborhood (not include
itself) of vi. N is the number of nodes (pixels).

In our approach, the user needs to indicate some scribbles on foreground objects
as multi-labeled seeds. Here, we define these seeds as a set of labeled nodes VM =
{V l1 , V l2 , · · · , V lK}. Then a set of labelsLS = {l1, l2, · · · , lK} is also defined, where
K is the number of labels V lk = {vlk1 , v

lk
2 , · · · , v

lk
Mk
} and Mk is the number of seeds

with label lk.

2.1 The subMarkov Random Walk

Given a weighted graph G, a set of labeled nodes VM , and a set of unlabeled nodes
VU , where VU ∩ VM = V , the multi-labeled image segmentation can be formulated
as a labeling problem, which means assigning each node vi ∈ V with a label from the
set LS. This problem can be solved by comparing the likelihoods probability rlki of

Fig. 1. The nodes graph of a subRW. The ellipse nodes denote the original nodes in V and the
circle nodes are the newly added auxiliary nodes. The green ellipses are the unseeded nodes and
the others are the seeded nodes.
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each node belonging to a label lk in our algorithm. Before computing this likelihoods
probability, we define the subMarkov transition probability q on V as follows:

Definition 1: q denotes a subMarkov transition probability if for each node vi∑
j∼i

q(i, j) � 1. (2)

According to [9], a subMarkov transition probability has the following property:

Property 1: through adding a auxiliary node ), a subMarkov transition probability
q on G can be made into a (Markov) transition probability on V ∪ {)} by setting
q(),)) = 1 and q(i,)) = 1−

∑
j∼i

q(i, j). The probability q(i,)) can be viewed as a

probability that a random walker leaves the graph G.
According to the above property, we can design different subMarkov random walk

algorithms by adding different auxiliary nodes. In fact, the popular random walk algo-
rithms, such as RWR [7], LRW [13], and PARW [16], can be interpreted in this view
(more details will be given in next subsection). We first consider a general subRW al-
gorithm for interactive seeded image segmentation. Two kinds of auxiliary nodes are
added into the graph G to get an expanded graph Ge. As shown in Fig. 1, one kind of
auxiliary node is a killing node ) connected with all unseeded nodes (e.g. the green
circle node in Fig. 1). When a random walker from a node vi reaches this node, it will
be killed at this node and the corresponding probability will be omitted. In other words,
an effective random walker will not reach this node. The other one is the staying node
slkm connected with the m-seeded node with label lk (e.g. the blue, orange or purple
circle nodes in Fig. 1). When a random walker reaches this node which can be viewed
as a target node, it will stay at this node. We denote SM as a set of staying nodes cor-
responding to the seeds set VM , and ci as the leaving probability for each node in V .
Then, the transition probability on V ∪ {)} ∪ SM is formulated as follows:

q(i, j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ci, if i ∈ V, j ∈ {)} ∪ SM

(1− ci)
wij

di
, if j ∼ i ∈ V

1, if i = j ∈ {)} ∪ SM

0, otherwise.

(3)

Suppose a random walker starts from a node vi ∈ V and walks on V ∪ {)} ∪ SM

with the transition probability q(i, j) in (3). By setting rlkim as the reaching probability
that this random walker reaches the auxiliary staying node slkm, then we have

rlkim =

⎧⎪⎨⎪⎩
(1− ci)

∑
j∼i

wij

di
rlkjm + ci · 1 if vi = vlkm,

(1− ci)
∑
j∼i

wij

di
rlkjm + ci · 0 otherwise.

(4)

The vector notation rlkm = [rlkim]N×1 (N = |V | is the number of nodes, which is
formulated as follows:

rlkm = (I−Dc)Prlkm +Dcb
lk
m, (5)



Segmentation Using SubMarkov Random Walk 241

where blk
m = [blkim]N×1 is theN -dimensional indicating vector with blkim = 1 if vi = vlkm

and blkim = 0 otherwise. Dc is a diagonal matrix which diagonal element is ci i.e.
Dc = diag(c1, c2, · · · , cN ), and I is a N × N identity matrix. The transition matrix
P = [pij ]N×N is a row-normalized matrix of the adjacency matrix W (defined in (1)):

pij = wij/di. (6)

The number of a set of seeded nodes with same label is often larger than one. A good
RW approach should consider all seeded nodes. We use an average reaching probability
rlki , that a random walker from a node vi reaches a set of staying nodes with label lk, as
the likelihood of assigning this node to the label lk. The formulation (5) can be rewritten
as follows:

rlkm = (I− (I−Dc)P)−1Dcb
lk
m = E−1Dcb

lk
m, (7)

where E = I− (I−Dc)P.
Thus, a vector formulation of this average steady-state probability rlk can be given

as follows:

rlk =
1

ZMk

Mk∑
m=1

rlkm =
1

ZkMk
E−1Dcb

lk , (8)

where blk = [blki ]N×1 is a vector with blki = 1 if vi ∈ Vlk and blki = 0 otherwise, Zk

is a normalized constant. The final labeling result (i.e. the segmentation result) for each
node vi ∈ V is obtained as follows:

Ri = argmax
lk

rlki . (9)

2.2 Relations with other Well-Known RW Algorithms

We will analyze the relations between the proposed subMarkov random walk and the
other popular algorithms: RWR [7], LRW [13], and PARW [16]. And we will find these
algorithms can be unified and related with the subRW.

Relations with RWR. In [7], Kim et al. suppose a random walker starts from a m-th
seed node vlkm of label lk in a graph G. Different from the traditional random walker, it
has a restarting probability c to return to the seed vlkm at each step. Then each node is
assigned a steady-state probability frlkim that this random walker will finally stay at this
node, which is formulated as:

frlkim = (1− c)
∑
j∼i

wij

di
frlkjm + c · blkim. (10)

Equation (4) of subRW is rewritten as follows:

rlkim = (1− ci)
∑
j∼i

wij

di
rlkjm + ci · blkim. (11)

Combining Equations (10) and (11), we find that the RWR is a special case of subRW
with leaving probability ci = c, i = 1, 2, · · · , N . In other words, the subRW can be
viewed as a set of RWR with different restarting probability at each node.
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Relations with LRW. In [13], Shen et al. propose a lazy random walks for superpixel
segmentation, which is viewed as a multi-labeled segmentation method. Under their
framework, a random walker will stay at the current position with the probability (1−α)
and walk out along arbitrary edge with the probability α. They use the commute time
CTij , which is the expected number of steps for a lazy random walker starting at vi to
vj and then returning, to measure the likelihoods probability that this two nodes belong
to the same label. After normalizing the commute time, the likelihoods probability fllkm,
that a node vi has the same label with the seeded node vlkm, can be formulated as:

fllk
m = (I− αS)−1blk

m, (12)

whereS = D−1/2WD−1/2, D is a diagonal matrix andDii = di. We rewrite Equation
(12) as follows:

fllk
m = αD−1/2WD−1/2fllk

m + blk
m, (13)

In fact, the labeling result of LRW (or other algorithms based on RW) only de-
pends on the likelihoods probabilities of each node with different labels i.e. Rli =
argmax

lk
fllkim. So we can scale these likelihoods probabilities to interpret the LRW in

a subRW view, which will not change this labeling result. By setting β = (1− α)d
1/2
min,

dmin = min
i=1:N

di, and rllkm = βD−1/2fllk
m, we then multiply Equation (13) by βD−1/2

to obtain:
rllkm = αD−1Wrllkm + βD−1/2blk

m, (14)

This above equation is rewritten as follows:

rllkim = α
∑
j∼i

wij

di
rllkjm + (1− α)γib

lk
im + (1− α)(1 − γi) · 0, (15)

where γi = (dmin

di
)1/2. According to this equation, we find that the LRW can also be

viewed as a subMarkov random walk by adding an edge between each seeded node and
the killing node ). Then the corresponding transition probability on V ∪ {)} ∪ SM

can be formulated as:

q(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− α, if i ∈ VU , j = )
(1− α)γi if i ∈ VM , j ∈ SM

(1− α)(1 − γi) if i ∈ VS , j ∈ SM

α
wij

di
, if j ∼ i ∈ V

1, if i = j ∈ {)} ∪ SM

0, otherwise.

(16)

Relations with PARW. In [16], partially absorbing random walks (PARWs) is proposed
for ranking, clustering, and classification. Wu et. al. suppose that a PARW is absorbed
at current node i with probability αi, and walk out of it following a random edge with
probability 1 − αi. They set the probability aij that a PARW starting from node i, is
absorbed at node j in any finite number of steps. Then the matrix A = [aij ]N×N of
absorption probabilities is formulated as:



Segmentation Using SubMarkov Random Walk 243

A = (Λ+D−W)−1Λ, (17)

where Λ = diag{λ1, λ2, · · · , λN}, λi � 0, i = 1 : N . To solve the segmentation
or labeling problem, we can use the absorption probability rplkim that a PARW starting
from a seeded node vlkm is absorbed at node vi, as the likelihoods belonging to the label
lk. The vector notation rplk

m is:
rplk

m = Ablk
m. (18)

By combining Equation (17), Equation (18) can be rewritten as:

rplk
m = (Λ+D)−1(Wrplk

m +Λblk
m). (19)

The above equation is then equivalent to:

rplkim =
∑
j∼i

wij

di + λi
rplkim +

λi
di + λi

blkim. (20)

By comparing the above equation and Equation (11), we find that (20) is equivalent
to (11) when ci = λi

di+λi
, i.e. the PARW is equivalent to the subRW. In fact, after submit

ci =
λi

di+λi
to 1−ci

di
, then we have 1−ci

di
= 1

di+λi
.

Merits of an Unifying View. We have shown that subRW can unify or relate the pop-
ular models based on RW. There are at least two merits of the unifying view. First, it
builds the connections between different RW-based algorithms, so that it is easier to
transfer findings between them. For example, in RWR [7], the authors have discussed
the influence of parameter c. We can choose the parameter ci according their discussion
since the subRW is the generalized version of RWR. Second, a unifying view offers a
new way to design the novel RW-based algorithm by adding some new auxiliary nodes
or changing the edges between the auxiliary nodes and the original nodes in V . For ex-
ample, the LRW can be viewed as an expansion of the subRW. Inspired by the second
merit, we design a new subRW with label prior to segment out the twigs object.

3 Segmentation via subRW with Label Prior

An object with twigs can be separated into two parts: main branch object and the twigs
part. Usually, the twigs part is similar to the main object, so the appropriate user speci-
fied scribbles on main object have included enough information for segmenting out the
twigs part. But most RW-based algorithms does not make full use of this information
and often omit the twigs part. In this section, we want to add a label prior constructed
by these scribbles into the subRW to help segment out the twigs part.

In general, the user specified scribbles are considered as an exact label prior. Unfor-
tunately, this prior only work at the seeded nodes and all unseeded nodes do not have
this prior. Therefore, we want to give all nodes in V a new label prior, which maybe
less exact than user scribbles, but can be used for unseeded nodes. This label prior is
constructed by the user scribbles i.e. the seeded nodes. We can use probability distri-
butions to build the prior model. Assume a label lk has an intensity distribution Hk
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for each node, where uki denotes the probability density belonging to Hk at node vi.
This distribution can be learnt via a wide array of techniques, such as the kernel esti-
mation, Gaussian Mixture Model (GMM), and so on. Here, the GMM is used as the
prior model. Each prior distributionHk is viewed as a GMM learnt by the seeded nodes
with label lk (more details about GMM learning can be seen in [1]). Given these prior
distributions, we can add a set of prior auxiliary nodes HM = {h1, h2, · · · , hK} into
the expanded graphGe and get a graph with prior Ḡ. Each prior node is connected with
all nodes in V and the weight wihk

of an edge between a prior node hk and a node
vi ∈ V is proportional to the probability density uki i.e. wihk

∝ uki . In this paper, we
set the weight wihk

= (1− ci)λuki , where λ is a controlling parameter, which measures
the importance of the prior distribution.

Then the transition probability on V ∪ {)} ∪ SM ∪HM is formulated as follows:

q̄(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ci, if i ∈ V, j ∈ {)} ∪ SM

(1− ci)
λuk

i

di+λgi
, if i ∈ V, j = hk

(1− ci)
wij

di+λgi
, if j ∼ i ∈ V

1, if i = j ∈ {)} ∪ SM ∪HM

0, otherwise,

(21)

where gi =
∑K

k=1 u
k
i .

Given a transition probability q̄ on a graph with prior Ḡ, the probability r̄lkim, that a
random walker from a node vi ∈ V reaches the m-th staying node slkm with label lk or
the prior node hk, is formulated as follows:

r̄lkim = (1− ci)
∑

j∼i∈V

wij r̄
lk
jm

di + λgi
+ (1− ci)

λuki
di + λgi

+ cblkim, (22)

where blkim = 1 if vi = vlkm and blkim = 0 otherwise.
In fact, this prior node hk can be viewed as a new staying node with label lk, so this

reaching probability of hk should be considered. By setting a vector r̄lkm = [r̄lkim]N×1,
we can get the vector formulation of Equation (22):

r̄lkm = (I−Dc)P̄r̄
lk
m + (I−Dc)ū

k +Dcb
lk
m

= (I− (I−Dc)P̄)−1((I−Dc)ū
k +Dcb

lk
m)

= Ē−1((I−Dc)ū
k +Dcb

lk
m),

(23)

where Ē = I− (I−Dc)P̄, the transition probability matrix P̄ = [p̄ij ]N×N in V is
defined as:

p̄ij =
wij

di + λgi
, (24)

ūk = [ūki ]N×1 is a vector with

ūki =
λuki

di + λgi
. (25)
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As mentioned before, we use the average reaching probability r̄lki for each node
vi ∈ V as the likelihoods belonging to the label lk. The vector notation r̄lk is formulated
as:

r̄lk =
1

Zk
Ē−1((I−Dc)ū

k +
1

Mk
Dcb

lk), (26)

The final labeling (segmentation) result with a label prior is obtained as follows:

R̄i = argmax
lk

r̄lki , (27)

where R̄i represents the final label for each node i.e. the pixel in an image.
Adding the label prior may produce some noises. One solution is decreasing the

parameter λ. However, when λ is too small, the twig parts may be lost. Then we need to
use the other strategy to decease these noises. Combining the label prior value for each
node, we can get a coarse segmentation result:

CRi = argmax
k

uki . (28)

4 Experimental Results

In this section, we evaluate the performance of the proposed subRW with label prior on
both synthetic and natural images. We compare our algorithm with the state-of-the-art
methods including RW [4], RWR [7], and LRW [13] algorithms in qualitative and quan-
titative aspects. The implementation codes of these three algorithms are offered by the
respectful authors, and the optimal parameters in their papers are used to run the exper-
imental results. Our algorithm includes two main parameters: the leaving probabilities
c1, c2, · · · , cN and the label prior parameter λ. The leaving probabilities control the
probability that a random walker reaches the staying nodes (seeds), which principally
influence the regions without twigs. As mentioned before, when all of ci are set as the
same constant, the subRW is equivalent to the RWR. And a RWR with a proper restart-
ing probability performs well in most nature images without twigs. Then we empirically
set the leaving probabilities to a constant ci = 4e− 4.

(a) scribbled image (b) λ = 1e − 11 (c) λ = 1e− 10 (d) λ = 5e− 10 (e) λ = 1e− 9

Fig. 2. The segmentation results with varying parameter λ with thin and elongated objects
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Then we should pay more attention to the parameter λ. In order to better explain the
effect of λ, we should consider the influence of noise. The selecting parameter γ for the
noise reducing process is set as 0. Fig. 2 shows an example of the segmentation results
by our algorithm with varying parameter λ. It appears that more and more twigs of bee
are successfully segmented out (Fig. 2(b)-(e)) in a proper range of λ when the value
of λ increases gradually. If λ is too large, some noise may occur such as the right-up
corner of Fig. 2(e). This may be caused by the inaccurate distribution estimation of
GMMs. If λ is too small, the twigs of object will be lost (Fig. 2(b)). Therefore, we can
make λ to be small or large according to the results with too much noise or losing many
twigs. Through the extensive experiments, we find the proper λ may fall into the range
of [1e− 11, 1e− 9] for most nature images. In this paper, we set λ = 2e− 10 for most
test images in our experiments.

(a) (b) (c) (d) (e)

Fig. 3. Comparisons between our algorithm and the state-of-the-art algorithms. (a) The input
scribbled images. (b), (c), (d) and (e) are the segmentation results of RW [4], RWR [7] with
c = 4e− 4, LRW [13] with 1− α = 1e − 4, and our method with ci = 4e − 4, λ = 2e− 10.

We have also compared our algorithm with the other three well-known RW algo-
rithms for natural images shown in Fig. 3. These images are taken from two datasets:
the Berkeley segmentation dataset (BSD) [10] and the Microsoft research cambridge
object recognition image database (MSRC). The manual labeled ground-truth masks
are also provided in these two datasets. We adopt a normalized overlap a0 [14] to mea-
sure the accuracy of the segmentation result for quantitative comparison. We choose the
natural images with twigs for our experiments. Some of them own complex texture like
the cheetah, and some of them own very thin twigs such as the helicopter. Fig. 3 shows
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that our algorithm outperforms the other algorithms no matter in quality or in quantity.
In the qualitative comparisons, it is obvious that our method not only successfully seg-
ment out the most twigs of objects, but also adhere the edges to the boundaries better
than the others. This is due to the adding label prior also has impact on the main part of
the object. In the quantitative comparisons, our improvements is also significant such
as the airplane and the leopard in Fig. 3, where the twigs parts are very small and our
improvements are still very evident for these complicated images.

We further compared our algorithm with the other algorithms on synthetic textured
images. The goal of texture segmentation is to extract the texture with twigs parts from
these images. The segmentation results in Fig. 4 (e) show that all the twigs are com-
pletely segmented out and the boundaries of main part are also correctly detected by our
algorithm. As shown in Fig. 4(b)-(d), the other RW algorithms [4,7,13] do not perform
well for these texture images. The RW method almost does not find the right bound-
aries since there are too many short noise edges in textured images. Both RWR and
LRW algorithms reduce the probability that a random walker walks on the original im-
age graph, which also reduce the influence of these barriers. Then the random walker
in RWR or LRW will be more likely to find the correct boundaries. Fig. 4 (c) and (d)
show the similar results by RWR and LRW algorithms. Our algorithms still perform
very well for this complicated situation.

(a) (b) (c) (d) (e)

Fig. 4. Comparisons between our algorithm and other RW algorithms on synthetic texture images.
(a) The input scribbled images. (b), (c), (d) and (e) are the segmentation results by RW [4], RWR
[7] (c = 1e−6), LRW [13] (1−α = 1e−6), and our subRW (γ = 1, ci = 4e−4, λ = 4e−11).

5 Conclusions

A novel subMarkov random walk approach has been proposed for seeded image seg-
mentation in this work. Our framework can be explained as a traditional random walk
walks on the graph by adding some new auxiliary nodes, which makes it to be easily
understand and to be more flexible. Under this framework, we unify the well-known
RW-based algorithms, which satisfy the subMarkov property and build bridges to make
it easy to transform the findings between them. Furthermore, we design a novel subRW
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with label prior to solve the twigs segmentation problems by adding prior nodes into
our framework. This also demonstrates that it is feasible to design a new subRW algo-
rithm by adding new auxiliary nodes into our framework. The experimental results have
shown that our algorithm outperforms the previous well-known RW-based methods. In
the future, we will extend our framework to more applications by adding different aux-
iliary nodes in computer vision, such as saliency cut for stereo images [11].
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Abstract. In this paper, an object segmentation algorithm based on au-
tomatic shape constraint selection is proposed. Different from the tradi-
tional shape prior based object segmentation methods which only provide
loose shape constraints, our proposed object segmentation gives more ac-
curate shape constraint by selecting the most appropriate shape among
the standard shape set. Furthermore, to overcome the inevitable differ-
ences between the true borders and the standard shapes, the Coherent
Point Drift (CPD) is adopted to project the standard shapes to the local
ones. A quantitative evaluating mechanism is introduced to pick out the
most suitable shape prior. The proposed algorithm mainly consists of
four steps: 1) the initial GrabCut segmentation; 2) standard shape pro-
jection by CPD registration; 3) rank the standard shapes according to the
evaluation scores; 4) refine GrabCut segmentation with the chosen shape
constraint. The comparison experiments with the related algorithms on
Weizmann horse dataset have demonstrated the good performance of the
proposed algorithm.

1 Introduction

Object segmentation and shape matching are fundamental tasks in computer vi-
sion and image processing which are closely related with each other. On the one
hand, accurate segmentation of foreground object is the premise of shape match-
ing, and on the other the appropriate mapped shapes which can be regraded as
prior knowledge provide global auxiliary boundary information for segmentation
in a complex scene where local information is ambiguous and unreliable.

We propose here a point sets matching based segmentation algorithm where a
standard shape set is considered as candidate shape prior pool. A standard shape
with the highest confidence of boundary prediction is automatically selected in
our shape evaluation system. The selected shape prior will be incorporated into
MRF-based framework in the form of level-set which keeps all the pair-wise terms
submodular, and then graph cuts is used to achieve the global optimization.
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1.1 Related Works

Graph Cut Based Segmentation. In recent years, graph cuts based segmen-
tation approaches have been shown to be quite accurate and efficient and have
attracted more and more attention. Compared with fully automatic graph-based
segmentation approaches, such as normalized cut [1], graph cuts based segmen-
tation methods with interactions alleviate their inherent problems, i.e., the high
computational complexity and the unavailability for label modification.

The graph cuts based segmentation approach was first proposed and tested by
BoyKov et al. [2]. They raised an interactive segmentationmethod formonochrome
images with N-dimension. Firstly, the users are required to label some pixels as
foregroundor background.Afterwards, the histograms of gray values are computed
to describe the feature distributions of foreground and background respectively. In
the end, graph cuts is used to find the globally optimal segmentation. However, for
color images it is impractical to get adequate description of the color space. Grab-
Cut [3] extends it to color images by replacing the histograms based model with
Gaussian mixture model (GMM). And furthermore, the segmentation process it-
eratively alternates between GMM parameters learning and segmentation estima-
tion to solve the min-cut problem until it converges. Lazy snapping [4] produces
high quality segmentations almost in real-time by incorporating the advantages of
graph cuts and pre-segmentation methods (such as watershed segmentation [5]),
but it works poor for thin structures.

Segmentation with Shape Priors. Along with the development of interactive
segmentation algorithms, more and more investigators find it hard to get sat-
isfactory segmentations within loose interactions especially in complex scenes.
But at the same time, prior knowledge has been demonstrated that it makes
segmentation more robust by reducing ambiguous partitions which are inconsis-
tent with the prior. Shape prior, as a kind of auxiliary information, has been
incorporated into many segmentation methods [6–12].

Slabaugh et al. [6] included an elliptical shape prior into the interactive graph
cut framework, which is implemented only within an iterative refinement pro-
cess. In [7], Funka-Lea et al. encouraged the target to be a convex blob sur-
rounding the certain point. Another blob-like prior named compact shape prior
is introduced in [8]. Vicente et al. [9] imposed connectivity constraints in the
segmentation to overcome the shrinking bias of graph cut methods. In [12], an
object specific shape prior is introduced in the form of level-set which keeps all
the pairwise terms submodular. Another prior knowledge called star shape prior
[10] provides more generic constraint for graph cut segmentation and Gulshan
et al. [11] developed it by replacing the single star and Euclidean rays with
multiple stars and Geodesic paths which make the method more generally ap-
plicable. Beyond that, Kim et al. [13] introduced another category-independent
shape prior for object segmentation which utilizes the shared shapes among the
objects from different categories. A non-parametric prior that transfers object
shapes from an exemplar database to a test image based on local shape matching
is presented and is incorporated into graph cut formulation to produce a pool
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1. Shapes before registration

4. Shapes after registration

5. Consistency ranking

Score=0.2531

Score=0.1228

6. Segmentation with shape prior

Score=0.1791

Score=0.12912. Initial
Segmentation

3. Registration

Fig. 1. An overview of the flow of the standard shape set constraint based object
segmentation pipeline. We start with the input image and performing initial segmen-
tation on it with GrabCut method [3]. And then, by using CPD registration method,
the standard shapes are mapped to the initial shape which is extracted from the initial
object segmentation. Through the consistency ranking process, the most appropriate
shape will be automatically determined by selecting the one with the highest consis-
tency score. Eventually, by taking the chosen shape as constraint, segmentation result
improves greatly.

of segmentation hypotheses. This method assumes no specific classes, however
training a huge exemplar database is needed. Besides, the general applicability
of these shape priors also brings the lack of constraint ability which results in
the poor segmentations in complicated scene.

1.2 Contribution

To overcome the limitations of the traditional shape constraint mentioned above,
a standard shape set is selected as the constraint in our approach, where a group
of shapes depicting a particular object in different postures are included. As Fig.
1 described, we start with projecting these standard shapes to the correct loca-
tions of the image according to the initial segmentation. And then, the projected
standard shapes are put into the proposed consistency evaluation system, the
shape with highest evaluation score will be selected as the final shape constraint
which will be integrated into MRF-based framework in the next step. The key
contribution of our approach lies in three aspects:
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a) A group of standard shapes which come from natural images are provided as
constraint. Rather than general shape prior discussed in the former works,
concrete shape constraint is full of detail shape information and global pos-
ture constraint. On the other hand, multiple constraints overcome the sig-
nificant shape changings brought by postures diversity which are common in
natural images, the best fitted shape will be selected as the final constraint.

b) An excellent point sets matching method called Coherent Point Drift (CPD)
is used to project the standard shapes to the initial segmentation boundary.
This method not only overcomes the rigid transformations such as transla-
tion, rotation and scaling, captures the local non-rigid deformations under
the similar posture, but also keeps the topological structures of the point sets
thanks to the coherently moving constraint. The fixed topological structure
guarantees the correctness and effectiveness of the boundary prediction.

c) A statistical distance distribution based shape consistency evaluation system
is proposed, where the most appropriate shape constraint can be automati-
cally determined. The evaluation criterion is based on the fact that the more
parts of the standard boundaries are overlapped with the initial segmenta-
tion edges, the higher the boundary prediction confidence of the standard
shape will be. The deviated parts of the choose standard shape are assumed
to have predicted the true boundaries in a complicated background.

Organization. The rest of the paper is organized as follows. After a brief
introduction of the Coherent Point Drift (CPD) method, how to evaluate the
conformity between the standard shapes and the target objects is presented
in Section 3. Section 4 presents how to integrate the shapes with graph cut
framework. Section 5 describes the implementation details and gives the settings
of parameters. The experiment results and comparisons are also displayed in this
section. Finally, some concluding remarks are presented in Section 6.

2 Point Sets Registration: Coherent Point Drift

The goal of point set registration is to find the meaningful correspondences be-
tween the two point sets and to recover the underlying transformation that maps
one point set to the other. When it comes to shape matching, it appears as if
a shape is moving towards the fixed one in the registration process. The Coher-
ent Point Drift (CPD) method [14] is an excellent point set registration method
which is robust to noise, outliers, rotation and slight non-rigid transformations.
The alignment of two point sets is viewed as a probability density estimation
problem in CPD algorithm. The points of the moving point set, which is called
the model set, are treated as the centroids of Gaussian Mixture Models(GMM).
The fixed point set is treated as the data set generated by those GMMs. Then,
the point sets registration can be formulated as a maximum likelihood estimation
problem. The GMM centroids are forced to move toward the data set coherently
so as to keep the topological structure of the point set.
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Before
Registration Iter_1 Iter_3 Iter_5 Iter_10 Convergence

Fig. 2. Some examples of iterative process of shape registration, where the purple
lines denote the initial shape extracted from initial segmentation and the yellow lines
describe the dynamic changing process of the standard shape. The locations of the
initial and standard shapes turn out to be overlapped when the shapes are well fitted.

Let S = {xk|xk ∈ R2, k = 1, . . . , n} be the initial object shape in the given
image and Si = {yl|yl ∈ R2, l = 1, . . . ,m} be a standard shape template from
the standard shape set F = {Si}, i = 1, . . . , N . We consider the points in Si as
the centroids of a Gaussian Mixture Model and the points in S as the data points
generated by the GMM centered at yl. Assume all the GMM components have
the equal mixture coefficient and an additional uniform distribution is added to
the mixture model to account for the noises and outliers. Specifying the weight
of the uniform distribution as ω, 0 ≤ ω ≤ 1, then the mixture model takes the
form

p(xk|T , σ, ω) = (1 − ω)
m∑
l=1

plp(xk|yl) + ω · p(outlier), (1)

where p(xk|yl) describes the probability of the points xk in the Gauss distribution
centered at point yl and σ is the variance for all Gaussian components. T is the
motion function which can be written as the linear combination of kernels T (z) =∑m

j=1 ϕjK(z, yj) = KΦ, where K is a m × m kernel matrix and K(yi, yj) =

e−
‖yi−yj‖2

2β . Thus, the likelihood is a mixture model of distributions for inliers
and outliers which is defined as L(T, σ, ω) =

∏n
k=1 p(xk|T, σ, ω).

The GMM centroids yl in Si move coherently as a group to be fit to the data
points xk in S under the coherence constraint given by Tikhonov regulariza-
tion which is defined as the prior p(T ) = e−

2
λ‖T ‖2

H , where ‖T ‖2H is the norm of
T (y) in the Reproduction Kernel Hilbert Space (RKHS). Therefore, the poste-
riori probability P (T, σ, ω) ∝ L(T, σ, ω)p(T ). Thus, we can solve the maximum a
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Fig. 3. Two unnormalized distance histograms of the mapped standard shapes. Take
the standard shapes from Fig. 1 for example, their distance histograms are calculated
respectively. A distance histogram with the majority elements falling into the first
several bins will be favored by the evaluation criteria, such as the histogram of S∗

2 . The
scattered distribution of the elements usually implies that the mapped shape deviates
from the initial one to some extent, S∗

1 for example.

posteriori (MAP) problem to estimate the transformation T . This is equivalent
to minimizing the negative log-posterior ε(T , σ, ω) as

ε(T , σ, ω) = −
n∑

i=1

log
(
p(xk|T , σ, ω)

)
+
λ

2
‖T ‖2H. (2)

The Expectation-Maximization (EM) algorithm [15] is chosen to optimize the
energy function (2). After the algorithm converges, a transformation T = KΦ
is estimated, which is used to map the standard shape Si to the initial shape S
to get S∗

i . In Fig. 2, several examples are used to show the shape registration
process where the correspondences between two shape point sets and the mapped
shapes are presented during the iterations.

3 Consistency Evaluations of Initial Object Shape and
the Standard Shapes

After all the standard shapes in the template set S are mapped to the initial
shape S to get F∗ = {S∗

i }, i = 1, . . . , N , we need to find the most appropriate
shape prior which keeps the topological structure as well as the local shape fea-
tures by evaluating the consistency between the initial shape and the mapped
standard shapes. Considering that the error shape information implied in the
priors will make the local boundaries more ambiguous and seriously degrade the
segmentation results, the shape priors should be able to provide as much accu-
rate shape information as possible and contain relatively few borders that may
generate equivocality. We propose here a quantitative way to rank the standard
shape which is based on the statistical distance distribution. As already stated
in our previous letter, the initial segmentation is supposed to have captured par-
tial meaningful boundaries. Through the matching between the given standard
shapes and the meaningful boundaries, the unmatched parts of the standard
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Fig. 4. The scoring mechanism of the mapped shapes. The normalized distance his-
tograms of S∗

1 and S∗
2 are displayed in left. The exponential stepped rewarding function

(ρ = 0.5) is shown in the middle as a histogram where the height of each bar denotes the
corresponding scoring factor. Perform point multiplication operation on the distance
histogram and the rewarding model by viewing them as vectors, then the scoring re-
sult can be obtained by adding all the bars of point product histogram. The rewarding
factor M = 8.

shapes provide reliable guiding information for the following segmentation. Note
that, another assumption proposed here is that the better the consistency of ini-
tial segmentation and the standard shape is, the more likely the standard shape
shares the same outlines with the foreground object. Here, consistency is used
to describe the fitness between two shapes. We first define the distance between
a point p and a point set S in two-dimensional space as the minimum Euclidean
distance of p and pi ∈ S, i.e.,

ε(p, S) = min{ε(p, p1), ε(p, p2), . . . , ε(p, pn)}, pi ∈ S. (3)

To characterize the aberration of the mapped standard shapes with the initial
segmentation borders, distance histogram, which is analogous to density his-
togram, is introduced into our evaluation approach. The distance histogram of
shape Si corresponding to S is a discrete function h(rk) = nk, where rk is the
kth distance level and nk is the number of pixels in the image having distance
level dk. Equivalently,

h(rk) = #{p|ε(p, S) ∈ bin(k)}, k = 1, 2, . . . ,K. (4)
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Fig. 5. The ranking results of 20 mapped standard shapes

Considering that the outliers of Si may be far from the initial shape S, we only
select pixels with ε(p, S) less than a threshold (one-tenth diagonal distance of
the image). Note that, we normalize the distance histograms to overcome the
influence caused by different numbers of shape points. By dividing nk by the
total number of adopted points in S∗, denoted by n∗, the normalized histogram
can be given as

p(rk) = nk/n
∗, k = 1, 2, . . . ,K. (5)

In Fig. 3, the unnormalized distance histograms are displayed on the right. A dis-
tance histogram with most elements falling into the first several bins means that,
for most shape points, their projected location are almost overlapped with the
initial shape points. On the contrary, the scattered distribution of the distance
elements usually implies that the projected shape has totally deviated from the
initial one. Obviously, the former one is more favorable.

To provide each mapped shape with a quantitative evaluation result which is
based on the distance histogram, we propose a scoring mechanism and rank the
shapes with their scores. Especially, an exponential stepped rewarding model is
proposed, and the score of mapped shape S∗ corresponding to S can be calcu-
lated by

δ(S∗, S) =
L∑

k=1

δ(rk) =

L∑
k=1

(ρk−1 × p(rk)), k = 1, 2, . . . ,K, (6)

where ρ(0 < ρ ≤ 1) is the falling strength of the exponential stepped rewarding
function which reflects the tolerance of shape deviation. In our experiments,
ρ = 0.5 is a good choice. The diagram of the scoring mechanism is displayed
in Fig. 4. The normalized distance histograms of S∗

1 and S∗
2 are shown in the

left. The exponential stepped rewarding function is shown in the middle as a
histogram where the height of each bar denotes the corresponding scoring factor.
Weight each histogram bin with the exponential stepped rewarding function,
then the scoring results of the mapped shape can be obtained by adding all the
weighted terms. The ranking results of 20 mapped standard shapes are shown in
Fig. 5, which are abtained by following the steps in Fig. 3 and Fig. 4 according
to the serial numbers.
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4 Graph Cut Based Segmentation with Shape Prior

In the traditional graph-based segmentation formulation, image I which is de-
fined on pixel set V is mapped to a weighted graph G = (V ,E). Extracting
objective foreground of image can be posed as an pixel-wise binary labeling
problem. That is to say, each pixel will be assigned a unique label Lp from label
set L = {0, 1} by performing max-flow/min-cut algorithm on the graph G to
minimize the following energy function,

E = μ
∑
p∈P

Dp(Lp) +
∑

(p,q)∈N :Lp �=Lq

Vp,q(Lp, Lq), (7)

where P is the set of all pixels in image I, N is the set of all pairs of neighboring
pixels defined on 4 or 8-connected neighborhood system, Lp = 1 (Lp = 0) stands
for assigning pixel p as foreground (background) pixel, μ is weight for different
terms. The first term of the energy function called regional or data term, which
encodes individual label-preferences of pixels based on observed data and the
specified likelihood function. For color images, it indicates how the color feature
of pixel p ∈ P fits into the known appearance models (e.g. Gaussian mixture
model), i.e. Mfg and Mbg. Let f(p) be the color feature distribution of pixel p,
and then the probability of pixel p belonging to the foreground (background) is
formulated as:

Dp(Lp) =

{
− logPr(f(p)|Mfg) if Lp = 1,
− logPr(f(p)|Mbg) if Lp = 0.

(8)

Obviously, a smaller value indicates a better matching. The second term of
(7) called boundary or smooth term encourages spatial coherence by penalizing

neighboring pixels with different labels, where Vp,q(Lp, Lq) ∝ e−α
(
f(p)−f(q)

)2
/2γ2

.
Vp,q(Lp, Lq) is large when f(p) and f(q) are similar and Vp,q(Lp, Lq) is close to
zero when they are extremely different. In another word, a lower punishment
indicates a higher possibility of p, q to be boundary pixels.

Supposed that a specific shape has been provided as the global constraint for
segmentation, and then we prefer a good fitness between segmentation boundary
and shape prior. Freedman et al. [12] proposed an ingenious way to incorporate
shape prior into the graph cut framework. The shape prior is parametrically
specified as a curve named s(c) and the boundary of the segmentation is defined
as s̃(c) = B{p ∈ P , Lp = 1}, where B{Ω} is the boundary of point set Ω. If we
limit the shape parameter c on [0, 1], and then the fitness between segmentation
boundary and shape constraint can be evaluated by a natural energy function:

Es[s̃(c)] =

∫ 1

0

‖s(c)− s̃(c)‖2dc. (9)

Obviously, Es[s̃(c)] will achieve global minimum Es[s̃(c)] = 0 when s(c) = s̃(c)
for all values of c. A segmentation whose border is deviated from the given shape
prior will receive a large punishment. And now the new object function can be
defined as
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(a) (b) (c) (d) (e)

Fig. 6. Segmenting horse. (a) The user interactions: only a rectangle around the horse
is provided. (b) The segmentation results without shape constraints, the foreground
targets are covered by blue masks. (c) The corresponding shape constraints. (d) The
level-set form of the shape constraints. (e) The segmentation results are greatly im-
proved with the constraint of shape priors.

Es = E + Es[s̃(c)]. (10)

In order to make (10) an energy function able to be minimized by graph cuts,
the shape prior constraint is specified as a regular and unsigned distance function
whose zero level set is correspondent to the shape itself. Then, the terms of shape
constraint in the energy function can be rewritten as

Es[s̃(c)] =
∑

(p,q)∈N :Lp �=Lq

ψ(p, q, s), (11)

where ψ(p, q, s) measures the distance between the differently labeled neighbor-
ing pixels p, q and the shape prior s, it satisfies ψ(p, q, s) ≈ 0 when the pixel pair
lies near the shape prior. An example of such a function for a horse shape curve
is given in Fig. 6.

Eventually, the newly formulated energy function for segmentation with shape
prior can be written as:

Es =
∑
p∈P

(1 − η)μDpLp +
∑

(p,q)∈N :Lp �=Lq

(1 − η)wp,q + ηψ(p, q, s) (12)

where η(0 ≤ η ≤ 1) is weight for different parts of pairwise terms. Minimizing
this energy function with graph cuts leads to desired segmentation constrained
by shape prior.

5 Experiments

5.1 Implementation Details

The standard shape set constraint based segmentation algorithm first segments
the image by GrabCut method to obtain the initial object shape. And then,
each shape in the standard shape set is mapped to the initial object shape by
CPD registration. The key of our algorithm lies in the scoring mechanism, which
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determines the final ranking of the mapped shapes. Our proposed scoring mech-
anism will give each mapped shape a score to describe the goodness of boundary
fitting as well as the confidence of being a constraint. The standard shape with
highest score will be selected as the constraint to refine the unsatisfactory object
segmentation.

During the iterations, the algorithm terminates itself when the segmentation
does not change anymore or reaches maximum number of iteration (the number is
set to 3 in our implementation). Note that, we update the shape S by extracting
the segmentation border of last loop to make the mapped shapes more accurate
than the previous ones. We employ the publicly available implementation of
GrabCut [3] and CPD registration [14] in our experiments and build the whole
segmentation system in MATLAB/C++. The running time is closely related
with the time cost on CPD registration. Generally, for two shapes each contains
200-300 points, CPD algorithm needs about 0.5 secs to make them matched on a
3.0 Ghz processor. Given a 300× 200 image constrained by 10 standard shapes,
the overall segmentation process takes about 5-10 secs on the same platform.

5.2 Parameter Setting

There are several parameters that must be appropriately determined for the
implementation of the proposed method. Part of the default values for these
parameters have been given in the place where we discussed the corresponding
algorithms. In view of integrity and clarity, here the descriptions of the parame-
ter settings are given again. There are two important free parameters: λ and β in
the CPD registration algorithm which are set to 25 and 2, respectively. In CPD
registration algorithm, parameter λ is the weight of the smoothness penalization
term which reflects the trade-off between data fitting and the smoothness of
transformation. β is the Gaussian bandwidth when computing the kernel matrix
K which reflects the strength of interaction between points. Generally speaking,
the larger λ and β are, the more coherent and smooth the transformation will
be. The original intention of the proposed method lies in rectifying the unsatis-
factory segmentation with the assistance of the standard shapes, the premise of
which is that the standard shapes should keep their overall structures and local
shape features along the registration. Therefore, relatively larger values for λ
and β are preferred here. The distance histogram parameter L is chosen as 30 to
build an accurate statistical model for the deviation distributions of the mapped
shapes. Another important parameter ρ which greatly influences the accuracy
of the chosen shape constraint is fixed to 0.5 to guarantee the distinctions of the
evaluation scores. As to the parameters in formula (12), we set μ = 10 and the
particular choice is not very important since changing γ will change the rela-
tive weight between the data and smooth terms. Generally, γ can be set as an
average absolute intensity difference between neighboring pixels. The remaining
parameter in formula (12) is η which is the weight of shape constraint. We fix it
as 0.3 in all the experiments.
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Fig. 7. The standard shape set for Weizmann horse dataset

5.3 Segmentation Results and Comparison

We firstly testify the performance of our proposed segmentation algorithm on the
Weimann horse dataset and compare with the other segmentation algorithms in
[3] and [13].

We firstly perform GrabCut method on the whole Weizmann horse dataset
which consists of 328 side-view color images of horses, and here only a rectangle
around the foreground object is provided for each image. And then, we pick out a
subset of Weizmann horse dataset which is composed of 110 images that are not
well segmented with GrabCut. Taking the shapes displayed in Fig. 7 as standard
shape set, we segment the 110 horse images with our method. The result shows
that the segmentations of 28 images keep unchanged compared with the GrabCut
segmentations while the segmentations of the other 82 images are significantly
improved. The total segmentation accuracy of the subset of Weizmann horse
dataset increases from 0.6524 to 0.7608, which is defined as intersection-over-
union score. We also compared our method with the shape sharing method in
[13], whose segmentation accuracy on Weizmann horse dataset is 0.7477. Note
that this approach provides a segmentation pool for each image, therefore we
select the segmentation with best segmentation accuracy by comparing each
proposal with the ground truth result. Some segmentation results are displayed
in Fig. 8, where the first row shows the original images and the second row
displays the corresponding ground truth segmentations. The experimental results
of the methods in [3], [13] and our method are presented in the following three
rows respectively. Additionally, comparison results on some other groups are also
presented in this figure.

It can be noticed that the proposed algorithm achieves the best performance
among the three approaches. It rectifies the error segmentation of GrabCut which
is brought by the ambiguous object borders, such as the shadows on the ground.
Compared with the shape sharing method, the proposed method performs better
on the details, such as the thin and branch structures, horse legs for example.
That is because the details are not well captured in the shared shapes which
are provided by the BPLRs, and then they cannot provide constraint with high
confidence. However, our shape priors have rich detail information thanks to the
CPD registration which fixes the deviation between real shapes and the standard
shapes from real world objects.
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Fig. 8. Segmentation results of [3], [13] and the proposed method on Weizmann horse
dataset. The original images are displayed in first and sixth rows, the corresponding
ground truth are displayed in second and seventh rows. The following three rows display
the experimental results of the methods in [3], [13] and our method, respectively.

6 Conclusion

In this paper, we introduce a novel shape constraint for object segmentation that
collects a group of standard shapes for a specific object. To eliminate the indi-
vidual differences between the standard shapes and the images to be segmented
as well as determine the most appropriate shape constraint, we perform CPD
registration on each standard shape and the initial shape which is extracted
from the current segmentation to get the projections of the standard shapes.
The score mechanism gives each mapped standard shape a quantitative evalu-
ation about the appropriateness. And finally, the segmentation will be refined
with the guide of the selected shape constraint. Compared with the traditional
general shape prior which may not be specified enough to provide detailed guide
information, our standard shape set prior which is composed of shapes with
non-rigid transformation is able to provide more detailed constraint information
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with high confidence, and that significantly reduces the dependency of manual
interaction and handles the objects in complicated scenes well. The experimental
results have verified the superior performance of the proposed method.
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Science Foundation of China (61371140 and 61305044).
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Abstract. Tensor-driven anisotropic diffusion and regularisation have been suc-
cessfully applied to a wide range of image processing and computer vision tasks
such as denoising, inpainting, and optical flow. Empirically it has been shown
that anisotropic models with a diffusion tensor perform better than their isotropic
counterparts with a scalar-valued diffusivity function. However, the reason for
this superior performance is not well understood so far. Moreover, the specific
modelling of the anisotropy has been carried out in a purely heuristic way. The
goal of our paper is to address these problems. To this end, we use the statistics of
natural images to derive a unifying framework for eight isotropic and anisotropic
diffusion filters that have a corresponding variational formulation. In contrast
to previous statistical models, we systematically investigate structure-adaptive
statistics by analysing the eigenvalues of the structure tensor. With our findings,
we justify existing successful models and assess the relationship between accu-
rate statistical modelling and performance in the context of image denoising.

Keywords: diffusion, regularisation, anisotropy, diffusion tensor, statistics of
natural images, image priors.

1 Introduction

Anisotropic diffusion and regularisation models involve a positive definite 2×2 matrix
called diffusion tensor. Its eigenvalues steer the amount of data propagation in the direc-
tion of the corresponding eigenvector. Throughout more than two decades of research,
such anisotropic methods have been successfully used for a large number of image pro-
cessing and computer vision problems. These tasks include denoising [3], inpainting
[24], image compression [6], optical flow computation [16], stereo reconstruction [31],
and shape from shading [1]. Application domains cover e.g. computer aided quality
control [25], medical image processing [14], and seismic image analysis [8].

To this date, modelling nonlinear diffusion filters is a heuristic, task-driven proce-
dure, where images are processed towards a certain goal. It is a well-known fact that
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c© Springer International Publishing Switzerland 2015



264 P. Peter et al.

anisotropic models can be much more powerful in certain applications than isotropic
diffusion approaches with a scalar-valued diffusivity function. Clearly, one reason for
the success of anisotropic concepts are their additional degrees of freedom which can
be adapted to a task at hand. However, another potential explanation for this success is
still unexplored: Could it be that smoothness assumptions of anisotropic models reflect
statistical properties of natural images more accurately than isotropic ones?

For specific isotropic diffusion models, there exists a well-known connection to prob-
abilistic filter models based on the statistics of natural images [29]: There is a negative
logarithmic correspondence between natural image priors and regularisation terms in
variational models. However, in particular for anisotropic diffusion, previous investiga-
tions have focused on isolated, specific models in practical contexts such as parameter
learning. In particular, there is a lack of a cohesive theory that systematically anal-
yses the correspondence between probabilistic filters and diffusion filters that can be
expressed by energy minimisation.

Our Contributions. The goal of our paper is to provide a justification of tensor-driven
diffusion models via the statistics of natural images. We aim at systematically assess-
ing the differences between isotropic and anisotropic approaches from a probabilistic
perspective. To this end, we use natural image priors to derive a unifying framework
that incorporates eight existing diffusion filters that have a corresponding variational
formulation. In order to cover the full range of nonlinear models, these statistics have
to reflect the local image structure and allow to involve directional information. The
eigenvalue statistics of the structure tensor in databases of natural images provide not
only such information, but also offer a lot of flexibility to generate a wide range of
derivative-based priors. This allows us to construct probabilistic filters that represent
existing isotropic and anisotropic filter classes and analyse the differences in the under-
lying priors. We discuss the implications of these differences on filter performance in
the context of image denoising.

Related Work. At its core, our work relies on the non-Gaussian nature of the his-
tograms that result from applying filters to natural images. For wavelet coefficients,
these specific attributes were first reported by Huang and Mumford [5]. These obser-
vations were systematically investigated for both derivative filters and wavelet coeffi-
cients in [10]. Invariances of these statistics are vital for their practical relevance. Zhu
and Mumford proposed that these statistical priors are invariant to scale and verified
this empirically in [29]. Evaluations on databases containing different motives were
conducted by Huang and Mumford in [9]. For more details on the statistics of natural
images, we refer to the recent monograph of Pouli et al. [19].

General connections between diffusion processes and statistical image processing
models have been pioneered by Zhu and Mumford [29] within a Gibbs diffusion–
reaction framework. Later on, Roth and Black [20] have found additional relations in the
context of fields of experts. Works considering anisotropic diffusion models are, how-
ever, very rare. In the context of parameter learning, Scharr et al. [22] introduced an
anisotropic model with Gaussian derivatives. A more recent parameter-free model goes
back to Krajsek and Scharr [12]. They consider a two step procedure. In the first step,
an isotropic diffusion process is derived. Afterwards, this is used to construct a linear
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anisotropic regularisation model. More recently, Kunisch and Pock [13] have analysed
parameter learning for regularisation methods with a bilevel optimisation scheme.

Organisation of the Paper. We start with a brief overview of existing tensor-driven
diffusion in Section 2. In Section 3, we investigate the properties of the structure tensor
as an image feature and use it to derive a probabilistic denoising filter in Section 4.
We show that this model is related to a unifying framework for diffusion filtering in
Section 5. In Section 6 we investigate diffusion models that are learned from a database,
evaluate their performance for denoising and interpret the results. Finally, we present
our conclusions and outlook on future work in Section 7.

2 Tensor-Driven Diffusion Processes

Let us start by reviewing a number of isotropic and anisotropic diffusion filters which
can be derived from a general energy functional that we present in Section 5.

General Structure. Let f = ( f1, ..., fm)
* represent a vector-valued image with m chan-

nels. Each of these channels is a function fk : Ω → R that maps the rectangular image
domain Ω ⊂ R2 to the colour value range R. A tensor-driven, vector-valued diffusion
process computes filtered versions {u(x,y, t) |(x,y) ∈ Ω , t ≥ 0} of f(x,y) as solutions
of the diffusion equation

∂tuk =∇*(D∇uk) on Ω × (0,∞), k = 1, . . . ,m (1)

with u(x,y,0) = f(x,y) as initial condition on Ω , and reflecting boundary conditions:

〈D∇uk,n〉= 0 on ∂Ω × (0,∞), k = 1, . . . ,m. (2)

The diffusion time t serves as a scale parameter: Larger times yield simpler image
representations. The nabla operator ∇ and the divergence operator ∇* involve spatial
derivatives only, and n denotes the outer normal vector to the image boundary ∂Ω .
The diffusion tensor D is a positive definite 2× 2 matrix that steers the diffusion. Its
eigenvalues specify the amount of diffusion in the direction of the eigenvectors.

Isotropic Models. The simplest diffusion process, homogeneous diffusion [11], is ob-
tained for D := I with a unit matrix I. In this case, the diffusion does not depend on
the image structure. For more sophisticated nonlinear isotropic diffusion models the dif-
fusion tensor is of the form D := g(|∇u|2)I. If one wants to permit strong smoothing
within homogeneous regions and inhibit smoothing across edges, one chooses the dif-
fusivity g(|∇u|2) as a decreasing positive function of its argument. Many diffusivity
functions have been proposed, e.g. the Perona/Malik diffusivity gPM [18] or the Char-
bonnier diffusivity gC [2]:

gPM(s2) :=

(
1+

s2

λ 2

)−1

, gC(s
2) :=

(
1+

s2

λ 2

)−1/2

. (3)

Note that locations where |∇u| + λ are regarded as edges where the diffusivity is
close to 0, while we have full diffusion in regions with |∇u| ! λ . Therefore, λ > 0
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acts as a contrast parameter. Isotropic models allow space-variant smoothing, but due
to their scalar-valued diffusivity, the diffusion process acts in the same way in all di-
rections. The first isotropic nonlinear model goes back to Perona and Malik [18] and
is designed for greyscale images. Gerig et al. [7] have extended it to colour image pro-
cessing by coupling the evolution of the individual channels through a diffusivity of the
form g(∑m

k=1 |∇uk|2). Scherzer and Weickert [23] have investigated an isotropic nonlin-
ear diffusion model where all spatial gradients ∇ are replaced by Gaussian-smoothed
gradients ∇σ := Kσ ∗∇. Here Kσ denotes a Gaussian with standard deviation σ .

Anisotropic Models. In order to model direction-dependent diffusion processes, we
need an anisotropic diffusion tensorD whose eigenvalues can differ significantly. These
eigenvalues and their corresponding eigenvectors are adapted to the local image struc-
ture. A popular descriptor of the local image geometry is the structure tensor of Di
Zenso [4]. In its most sophisticated form, it is given by the symmetric positive semidef-
inite matrix

Jm,ρ ,σ := Kρ ∗
( m

∑
k=1

∇σ uk∇σ u*k
)

(4)

with eigenvalues μ1,ρ ,σ ≥ μ2,ρ ,σ ≥ 0. On greyscale images (m = 1), the tensor Jm,0,0

without Gaussian smoothing has rank 1, while on colour images, it retains full rank in
general. The corresponding diffusion tensor D := g(Jm,ρ ,σ ) uses the same set of eigen-
vectors and obtains its eigenvalues as functions of μ1,ρ ,σ and μ2,ρ ,σ . The anisotropic
models of Weickert/Brox [27] and Tschumperlé/Deriche [24] do not incorporate any
smoothing in the structure tensor (i.e. σ = ρ = 0). However, such models degenerate
to isotropic diffusion on greyscale images (m = 1). The methods of Roussos/Maragos
[21] and Scharr et al. [22] involve a smoothing scale ρ > 0 and remain also anisotropic
for m = 1. While Roussos/Maragos use σ = 0, Scharr et al. consider the case σ > 0 and
replace all gradients ∇ by their Gaussian-smoothed counterparts ∇σ .

3 Structure-Adaptive Analysis of the Berkeley Database

Interpretation of the Structure Tensor. The local image structure of a vector-valued
image u with m channels can be characterised by the joint structure tensor from Eq. (4).
Its eigenvalues μ1 ≥ μ2 represent the local contrast in the direction of the correspond-
ing eigenvectors v1 and v2. For μ1 + μ2, the eigenvector v2 describes the direction
of coherent structures while v1 points across these structures. Locally isotropic image
content is characterised by μ1 ≈ μ2. Thus, the eigenvalues of the structure tensor are
image features that describe local geometry.

The Gaussian smoothing scales σ and ρ play distinct roles for the analysis of local
image structure: Smoothing with Kσ removes noise and small-scale details. Thus, it
should be chosen as small as possible. The smoothing scale ρ is usually chosen to be
larger since its task is to accumulate neighbourhood information in the structure tensor.

In our implementation of the structure tensor, we use the finite difference discretisa-
tion from [28] with a parameter α = 1/6. Its leading error term is rotationally invariant.

Anisotropic Statistics of Colour Images. Let us now use the aforementioned struc-
ture tensor for a statistical analysis of the Berkeley database [15]. The histogram of
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Fig. 1. Evolution of the negative logarithmic histogram of the eigenvalue pairs (μ1,ρ ,σ ,μ2,ρ ,σ ) of
the structure tensor Jm,ρ ,σ over different scales ρ and σ . Dark values indicate high occurrences
and bright values low occurrences.

the eigenvalue pairs (μ1,μ2) with σ = ρ = 0 is displayed in Fig. 1(a). The fact that
the eigenvalue μ1 clearly dominates and there are many structure tensors where μ2 is
significantly smaller confirms two things: Firstly, colour images contain many strongly
oriented structures which legitimates the use of anisotropic filters. Secondly, these struc-
tures have some correlations over the colour channels. Fig. 2(a) reveals that both eigen-
values have the heavy-tailed distributions that are characteristic for filter results on nat-
ural images. Such kurtotic distributions are captured well by the function

ψ(x2) =
λ 2

1− γ

(
1+

x2

λ 2

)1−γ

. (5)

The free parameters λ and γ can be adapted to fit ψ to the discrete histograms. A related
model with one more degree of freedom was also proposed in [12]. Similar statistics
have been shown to be nearly identical on many databases of natural images such as the
Berkeley [15] or McGill [17] test sets. In particular, they are also invariant for image
content on different scales. Therefore, they form a good prior for natural images. This
scale invariance implies that the statistics do hardly change under subsampling.

Behaviour under Smoothing. If one averages with overlapping neighbourhoods, the
statistics depend significantly on the neighbourhood size. This happens for the Gaussian-
smoothed structure tensor Jm,ρ ,σ , where the tensor entries are embedded in a Gaussian
scale-space. Let us first fix σ and consider the scale-space behaviour with
respect to ρ . Fig. 1(a)–(d) shows the evolution of the histogram for the eigenvalue pairs
(μ1,ρ ,σ , μ2,ρ ,σ ). We observe that for increasing ρ , the joint histogram clusters towards
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Fig. 2. Evolution of the negative logarithmic histograms h(μ1), h(μ2) of the eigenvalues μ1,ρ ,σ ,
μ2,ρ ,σ of the structure tensor Jm,ρ ,σ over different scales ρ and σ

the diagonal. This shows that μ1,ρ ,σ and μ2,ρ ,σ approach each other, i.e. the struc-
ture tensor becomes more isotropic. This is plausible, since one smoothes over struc-
tures with different orientations. For ρ → ∞, all tensors Jm,ρ ,σ converge to the average
structure tensor of the whole image. If all directions were equally prominent over the
database, this average tensor would be purely isotropic . However, the steady state of the
statistics (ρ = 105 in Fig. 1(d) and Fig. 2(d)) reveals some anisotropy. Thus, the average
eigenvalue histograms show the inherent directional bias of the image database.

Now we fix ρ and investigate the evolution under σ . For σ → ∞, the local con-
trast given by μ1,ρ ,σ and μ2,ρ ,σ approaches 0 and the corresponding diffusion tensor D
converges to the unit matrix I. Interestingly, Figs. 1(e)–(f) and 2(e)–(f) show that for
small σ , the presmoothing increases the difference between the histograms of μ1,ρ ,σ
and μ2,ρ ,σ . This fosters anisotropy of the image prior. We conjecture that Gaussian con-
volution effectivly removes high-frequent isotropic perturbations, such that anisotropic
image structures become more dominant. For larger σ their dominance decreases again.

In conclusion, we observe that natural images contain pronounced anisotropies and
their statistics strongly depend on the smoothing scales ρ and σ . This suggest to design
filters that take into account such anisotropic phenomena as priors.

4 Probabilistic Denoising with a Structure Tensor Prior

We can use the statistics from Section 3 as a prior for a Bayesian denoising approach.
Let a discrete, noisy image f of size M×N with m channels be given. The goal is to
compute an approximation u to the original image v under two assumptions: v belongs
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to the class of natural images and is degraded by Gaussian noise. For any image u, let
p(u) be the natural image prior. It describes the probability that u is a natural image
and is derived from the statistics of image features on a suitable database. Furthermore,
an assumption on the distribution of the noise yields the noise prior p(f |u). According
to Bayes’ rule, the posterior probability for a candidate image u to be the ground truth
to an observed noisy image f obeys

p(u|f)∼ p(f |u) · p(u). (6)

Thus, the optimally denoised image û can be obtained by maximising the posterior
probability p(u|f) over all candidates u:

û= argmax
u

p(u|f). (7)

Since we assume independent identically distributed Gaussian noise for each channel k
with k ∈ {1, ...,m}, the noise prior is given by

p(f |u)∼
m

∏
k=1

M

∏
i=1

N

∏
j=1

exp
(
− 1

2σ2 (uk,i, j− fk,i, j)
2
)
. (8)

In order to formulate a natural image prior, we follow the minimax entropy model that
has been used to model texture [30] and whole images [29]. For a set of given linear or
nonlinear filters {F1, . . . ,FL} the distribution of natural images is modelled as

p(u) =
L

∏
�=1

N

∏
i=1

M

∏
j=1

φ�(F�(u)i, j). (9)

Here the potential functions φ� model the distribution of the corresponding filter F�.
Current state-of-the-art models like the fields of experts approach [20] use specifically
learned linear filters as a feature set. Interestingly many of these learned filters resemble
derivative filters as was shown in [20].

Let φ(μ1,μ2) define the distribution of an arbitrary image feature that is derived
from the eigenvalues μ1 and μ2 of Jm,ρ ,σ . In particular, this formulation also includes
separate statistics for both eigenvalues, i.e. φ(μ1,μ2) := φ1(μ1) · φ2(μ2). Such image
features can be interpreted as second-level priors in the terminology of [29], since they
model the local geometry of image structures. In particular, these priors adapt to dom-
inant directions in the image in contrast to linear filters that approximate derivatives in
a fixed, global direction. By specifying the natural image prior (9) with a feature based
on μ1 and μ2 and including the noise prior (8) we obtain the following energy:

EP(u) =
M

∏
i=1

N

∏
j=1

( m

∏
k=1

(
exp

(
− (uk,i, j− fk,i, j)

2

2σ2

))
·φ(μ1,i, j,μ2,i, j)

)
. (10)

Maximising EP gives the denoised image û.
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5 The Unifying Prior-Based Diffusion Framework

Let us now show that the probabilistic denoising model (10) is the discrete counterpart
to a unifying diffusion framework that incorporates a large family of existing diffusion
approaches. Instead of maximising the energy EP, we consider the minimisation of its
negative logarithm

Elog(u) :=
1
2

M

∑
i=1

N

∑
i=1

( m

∑
k=1

1
τ
(uk,i, j− fk,i, j)

2 +ψ(μ1,i, j, μ2,i, j)
)
. (11)

Here, we define the penaliser ψ as ψ(μ1,μ2) =− logφ(μ1,μ2), and we choose τ ∼ σ2.
A variational regularisation approach is obtained by the minimisation of the continuous
counterpart to Elog:

E(u) =
1
2

∫
Ω

(1
τ
|u−f |2 + ψ(μ1,μ2)

)
dxdy (12)

where | · | denotes the Euclidean norm. Interestingly, this energy provides a unifying
framework for the eight diffusion models from Section 2. The key result for under-
standing this connection is given by the following proposition.

Proposition 1 (Euler-Lagrange Equations of the General Energy Functional).
The energy functional E(u) from Eq. (12) gives rise to the Euler–Lagrange equations

uk− fk

τ
= ∇*

σ
(
(Kρ∗D) ∇σ uk

)
, k = 1, ...,m, (13)

with natural boundary conditions n*(Kσ ∗Kρ ∗D∇σ uk) = 0 on ∂Ω . Here, n is the
outer image normal and D is given in terms of the eigenvectors v1, v2 and eigenvalues
μ1, μ2 of the structure tensor Jm,σ ,ρ :

D :=
∂ψ(μ1,μ2)

∂ μ1
v1v

*
1 +

∂ψ(μ1,μ2)

∂ μ2
v2v

*
2 . (14)

Proof. The Euler-Lagrange equations are obtained from the Gâteaux derivatives of
E(u). We focus on the derivative of the penaliser ψ . With dεk( f ) := ∂

∂εk
f |εk=0, k ∈

{1, ...,m}, a test function h : R2 -→ Rm, H := diag(h), and ε ∈ Rm we calculate:

dεk

(
ψ(μ1(u+Hε), μ2(u+Hε))

)
=

∂ψ
∂ μ1

dεk(μ1) +
∂ψ
∂ μ2

dεk(μ2). (15)

Therefore, the derivatives of the eigenvalues μ1 and μ2 of Jm,ρ ,σ must be computed. In
terms of the matrix elements J1,1, J1,2, J2,2, the eigenvalue μ1 is given by

μ1 =
1
2

(
J1,1 + J2,2+

√
(J1,1− J2,2)2 + 4J2

1,2

)
. (16)
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By writing the derivatives dεk(J1,2), dεk(J1,1 + J2,2), and dεk(J1,1− J2,2) as dot products
with ∇σ hk, we can simplify dεk(μ1) to

dεk(μ1) = Kρ ∗
(
(M∇σ uk)

*∇σ hk

)
, (17)

M :=
2

μ1− μ2

(
μ1− μ2 + J1,1− J2,2 2J1,2

2J1,2 μ1− μ2− J1,1 + J2,2

)
. (18)

Algebraic computations similar to [21] lead to M = 2v1v
*
1 . With analogous results for

dεk(μ2), we obtain dεk(ψ(μ1,μ2)) = (Kρ ∗D∇σ uk)
*∇σ hk. Plugging these results into

the Gâteaux derivative dεkE of the energy and applying partial integration yields

dεk E =
2

∑
�=1

[(
Kσ ∗Kρ ∗D∇σuk

)
�
hk

]b�

a�
−

∫
Ω
∇*

σ

(
(Kρ ∗D)∇σ uk

)
hk dxdy (19)

with Ω = [a1,b1]× [a2,b2]. Variational calculus yields Eq. (13) and the natural bound-
ary conditions n*(Kσ ∗Kρ∗D∇σ uk) = 0 on ∂Ω . ��

According to [23], Eq. (13) can be interpreted as an implicit time discretisation with
one time step of size τ of the general diffusion equation

∂tuk = ∇*
σ

(
(Kρ∗D)∇σ uk

)
, k = 1, ...,m (20)

with initial condition u(t = 0) = f . In Table 1 we demonstrate that a large number
of existing diffusion models can be considered as special cases of this unifying partial
differential equation. To see this, note that the isotropic models use ρ = 0 and the prior

φ(μ1 + μ2) = φ (trJm,0,σ ) = φ
( m

∑
�=1

|∇σ u�|2
)
. (21)

Moreover, for greyscale images (m = 1) and smoothing scale ρ = 0, the structure tensor
J1,0,σ = ∇σ u∇σ u* has the normalised eigenvectors v1 = ∇σ u

|∇σ u| and v2 = v⊥1 . As a
consequence, the diffusion process from Eq. (20) degenerates to isotropic diffusion with
a scalar diffusivity: Using (14) we get

D∇σ u =
( ∂ψ

∂ μ1

∇σ u∇σ u*

|∇σ u|2 +
∂ψ
∂ μ2

∇σ u⊥∇σ u⊥*

|∇σ u|2
)
∇σ u

=
∂ψ
∂ μ1

∇σ u = ψ ′
(
|∇σ u|2

)∇σ u. (22)

Homogeneous diffusion is also captured by the model (20), if one chooses φ(|∇u|2) :=
exp(−|∇u|2) as prior distribution. The four anisotropic models are covered as follows:
Weickert/Brox [27] and Scharr et al. [22] use the factorised prior φ1(μ1) ·φ2(μ2), in the
case of Weickert/Brox with identical functions φ1 and φ2 and σ = ρ = 0. The models of
Tschumperlé/Deriche [24] and Roussos/Maragos [21] allow general priors φ(μ1,μ2),
but specify σ := 0. Moreover, Tschumperlé/Deriche also set ρ := 0.
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The whole framework was derived from a common natural image prior, the direc-
tional statistics of the structure tensor. This shows that the ad hoc choices that were
made for diffusion models during decades of research in fact reflect inherent properties
of natural images. This observation can be even extended to the choice of diffusivities:
If we consider the special case φ(μ1,μ2) = φ1(μ1) ·φ2(μ2), we are able to decompose
ψ(μ1,μ2) :=ψ1(μ1)+ψ2(μ2) into two separate penalisers ψ� =− lnφ� with �∈ {1,2}.
The kurtotic distribution model (5) gives rise to the following family of diffusivities:

ψ ′(x2) =

(
1+

x2

λ 2

)−γ

. (23)

Comparing this to (3) shows that the Perona/Malik diffusivity [18] is covered for γ = 1
and the Charbonnier diffusivity [2] results for γ = 0.5. To the best of our knowledge, our
framework covers all relevant diffusion models that offer a variational interpretation.
Since it is a variational framework, it is natural that it cannot be applied to models
for which no variational formulation is known, e.g. edge- and coherence-enhancing
diffusion filters [26].

6 Denoising Experiments

In the following, we compare the performance of different diffusion models in the con-
text of image denoising. We focus on those models from Table 1 that are designed for
colour images and apply small modifications where necessary: In analogy to [7], we
extend the Scherzer/Weickert model to colour images by coupling the gradient within
a joint diffusivity. Furthermore, we use separate penalisers ψ1(μ1) and ψ2(μ2) for the
anisotropic models. This extends the Weickert/Brox model with individual diffusivities
for both eigenvalues, which is a special case of the Tschumperlé/Deriche model. In
the accompanying figures we use the abbreviations H for homogeneous diffusion [11],
GKKJ for Gerig et al. [7], SW for Scherzer/Weickert [23], WBTD for the hybrid model
of Weickert/Brox [27] and Tschumperlé/Deriche [24], RM for Roussos/Maragos [21],
and SBH for a vector-valued extension of Scharr et al. [22].

For our experiments, we first determine the parameters λ and γ of the prior distri-
bution (5) and the corresponding diffusivity (23). To this end, we compute the discrete
histograms of μ1 and μ2 on the 200 training images of the Berkeley database [15]. For
a nonlinear least squares fit to these histograms, we have chosen the Matlab implemen-
tation of the Levenberg–Marquardt algorithm (version 3.2.1 of the Matlab curve fitting
toolbox). In Fig. 3(a) we see that the resulting diffusivities decrease more rapidly for
μ1 than for μ2. Thus, they inhibit diffusion across coherent structures more than along
them. For increasing smoothing scales σ and ρ this anisotropic behaviour is reduced,
since the difference between the diffusivities ψ ′1 and ψ ′2 is less pronounced. In the fol-
lowing, we use ρ = 0.5 and σ = 0.2.

For our denoising experiments, we consider the partial differential formulation of the
statistically-derived diffusion filters and apply them to the 100 images of the Berkeley
test set [15] with added Gaussian noise. The average peak signal to noise (PSNR) val-
ues for different standard deviations of the noise are given in Fig. 3(b). We observe that
for all noise levels, homogenous diffusion H yields the worst results, and the isotropic
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ψ’1, ρ=0
ψ’2, ρ=0
ψ’1, ρ=2
ψ’2, ρ=2

Model γ1 λ1 γ2 λ2 n = 20 n = 40 n = 60
H - - - - 27.26 24.40 22.67
GKKJ 0.756 0.340 - - 29.08 25.59 23.45
SW 0.754 0.336 - - 29.09 25.64 23.52
WBTD 0.752 0.334 0.694 0.326 29.58 25.88 23.63
RM 0.733 0.304 0.644 0.231 29.56 25.99 23.76
SBH 0.739 0.315 0.646 0.234 29.66 26.05 23.80

Fig. 3. (a) Left: Diffusivities estimated for the eigenvalues μ1 and μ2 on the Berkeley database for
different smoothing scales. (b) Right: Diffusivity parameters and denoising results for different
diffusion models on the Berkeley test set. See Section 6 for the abbreviations. In the last three
columns, the average PSNR for Gaussian noise with standard deviation n is given.

original noisy, PSNR=17.10 H, PSNR=24.78 GKKJ, PSNR=25.89

SW, PSNR=26.00 WBTD, PSNR=26.21 RM, PSNR=26.48 SBH, PSNR=26.50

Fig. 4. Denoising results for image 108082 of the Berkeley test set with Gaussian noise of stan-
dard deviation n = 40 for the models L, GKKJ, SW, WBTD, RM and SBH. The PSNR is given
for the whole image, but only a zoom of size 128×128 is shown.

methods GKKJ and SW perform consistently below the anisotropic models WBTD, RM
and SBH. With increasing noise levels, the Gaussian smoothing scales σ and ρ within
the models SW, RM and SBH offer a slight PSNR advantage over their counterparts
GKKJ and WBTD that have to cope without Gaussian smoothing. Visually, the most
distinct difference is the severe blurring of edges in homogenous diffusion that sets it
apart from the other models.

Let us now interpret these findings from a probabilistic modelling perspective. The
performance ranking according to the PSNR mirrors the accuracy of the underlying
natural image priors. In particular, the large gap between homogenous diffusion and
the rest of the models is caused by the wrongly assumed Gaussian-like distribution of
the underlying image prior μ1 + μ2 = |∇u|2 in model H (see Tab. 1). Since all of the
remaining filters accurately reproduce the kurtotic shape of the prior distributions, they
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perform much better. Finally, the inherent directional bias in natural image models is
only respected by the anisotropic models WBTD, RM and SBH, which gives them a
consistent advantage over the isotropic models GKKJ and SW.

7 Conclusion and Outlook

We have presented a unifying framework for eight diffusion filters that have a corre-
sponding variational formulation. It enabled us to derive these models from probabilis-
tic filters with a structure tensor prior. We have verified experimentally that those filters
which model the structure adaptive statistics of natural images more accurately also of-
fer a better performance in practice. This justifies their use in digital image processing
and computer vision, and it establishes a hitherto unknown reason for the success of
anisotropic filters. From a statistical viewpoint, we have emphasised the importance of
directional statistics that take into account the local image structure and its scale de-
pendency. Interestingly, our statistical foundation of tensor-driven diffusion gives also
additional insights that go beyond a pure statistical foundation of existing models: For
instance, it sheds light on how the decay function of each eigenvalue should be adapted
to the smoothing scales of the structure tensor.

Our results give rise to a number of ongoing and future activities. We are focussing
our current research on anisotropic models that are tailored optimally to the statistics of
natural images in a specific application context. Moreover, we expect that our frame-
work can also be extended to novel energy functionals once they will be discovered for
other important classes of anisotropic diffusion filters.
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Abstract. We propose a new principle, the variational region competi-
tion, to simultaneously propagate multiple disjoint level-sets in a fully
time-implicit manner, minimizing the total cost w.r.t. region changes.
We demonstrate, that the problem of multiphase level-set evolution can
be reformulated in terms of a Potts problem, for which fast optimization
algorithms are available using recent developments in convex relaxation.
Further, we use an efficient recently proposed duality-based continuous
max-flow method [1] implemented using massively parallel computing
on GPUs for high computational performance. In contrast to conven-
tional multi-phase level-set evolution approaches, ours allows for large
time steps accelerating the evolution procedure. Further, the proposed
method propagates all regions simultaneously, as opposed to the one-by-
one phase movement of current time-implicit implementations. Promis-
ing experiment results demonstrate substantial improvements in a wide
spectrum of practical applications.

Keywords: Level-Set, Multiphase, Image Segmentation, Convex Opti-
mization, ASeTs.

1 Introduction

An important problem in the fields of image processing and computer vision is
the identification of objects from 2D images or 3D volumes. The mean-curvature-
driven evolution of contours, e.g 2D curves or 3D surfaces, has been established as
a fundamental tool to address these problems. The ability to reliably propagate
a contour, C, with respect to optimization criteria or prior knowledge towards an
object of interest within a given image is the subject of a wide spectrum of recent
studies [2, 3]. Active contours [4], particularly their implementations via level
sets, is capable of incorporating sophisticated energies from image intensities,
shape models, and statistical criteria [5] while overcoming the main drawback of
the classical formulation by allowing for topological change.

Despite the large number of successful applications of level-sets, there are two
major drawbacks of the classical time-explicit implementations of the mean-
curvature-driven level-sets evolution process: first, it requires a complex numeri-
cal scheme for the highly non-smooth second-order derivatives [6] and second, the

X.-C. Tai et al. (Eds.): EMMCVPR 2015, LNCS 8932, pp. 278–291, 2015.
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discrete time step-size must be small enough to achieve convergence resulting in
low computational performance. In addition, it is cumbersome to extend the time-
explicit evolution scheme for a single level-set to the case of multiphase level-sets,
a great interest in the fields of image processing and computer vision.

In fact, if the applied embedding function of the conventional level-set is con-
strained to separate one region into two, it does not lead directly to the partition
of multiple regions. To address this, several approaches have been proposed: Zhao
et al. [7, 8] introduced a penalty to enforce region disjointness, that is:

n∑
i=1

ui(x) = 1 ; ui(x) ∈ {0, 1} , ∀x ∈ Ω , (1)

where n is the number of regions represented by the indicator function u over
the image domain Ω.

Brox et al. [9] proposed an additional force term to enforce this constraint
(1). Vese et al. [10] suggested that n = 2m regions be represented by recur-
sively splitting the domain to 2 subdomains m times, hence only m binary level
sets were used to reduce the associated computational cost. However, these ap-
proaches [7, 8, 10, 9] result in more complicated numerical schemes and slow
convergence.

1.1 Time-Implicit Level-Set Method

Recent studies [11–16] describe a method substantially distinct from the classical
level-set approach, proposing fully time-implicit level-set schemes in terms of
global optimization with advantages in both implementation and computation.

Luckhaus et al [12] and Boykov et al [13] first proved that, given the outer
force f and mean-curvature κ, the mean-curvature-driven level-set problem:

∂tC = −κ+ f (2)

can be solved iteratively, for each discrete time frame from t to t+ h, by mini-
mizing the variational energy [12]:

Ct+h := min
C

∫
∂C

ds +

∫
C�Ct

1

h
dist(x, ∂Ct) dx −

∫
C
f dx , (3)

where the function dist(x, ∂Ct) denotes the distance from x to the region bound-
ary ∂Ct, and Ct and Ct+h is the respective position of the region at time t and
t+ h. This problem (3) can be expressed as:

min
C

∫
∂C

ds +

∫
C

( 1

h
sdist(x, ∂Ct) dx− f

)
dx , (4)

where sdist(x, ∂Ct) denotes the signed distance of x to ∂Ct. More recent devel-
opments in convex optimization proved that the minimization problem (3) or (4)
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can be solved exactly by means of the continuous min-cut [17, 18]. This indicates
that during each discrete time-frame the level-set can be moved to the globally
optimal position without further constraints on the time step-size h. This ap-
proach is entirely different from classical time-explicit ones, which are based on
approximations which strictly require the time step-size to be sufficiently small
as to converge. Another advantage of time-implicit approaches is the availability
of fast global optimizers via convex optimization [18–20], or graph-cuts [21, 22].

In parallel, Boykov et al. [13] proposed the same variational principle (3) to
the mean-curvature-driven level-set evolution and studied it under a discrete
graph-cut perspective. Yuan et al. [15] investigated the proposed time-implicit
evolution scheme of level-set introduced in [12] with help of continuous max-
flow theory [18], which demonstrated that the global optimum to (3) or (4) is
essentially the backward motion of (2), that is:

x = xt − h
(
f − κ

)
(x)n(xt) , (5)

where the projection of any pixel x at the computed new boundary ∂Ct+h, on the
boundary ∂Ct, is xt, and n(xt) is the unit outward normal to Ct at xt. Obviously,
(5) becomes to the equation of mean-curvature motion (2) as h→ 0.

It should be noted that Chambolle [14] also studied the mean-curvature driven
motion (2) of contours with the force term f(x) = 0, which showed that at each
discrete time frame, the next contour position Ct+h can be obtained by the zero
level set of the total-variation regularized signed distance function sdist(x, ∂Ct)
w.r.t. Ct, with the backward motion scheme

x = xt − hκ(x)n(xt) , (6)

where is equal to (5) given f(x) = 0. Bresson & Chan [23] extended Chambolle’s
work [14] to the case of geodesic level-set evolution with region forces.

Despite the advantages of the time-implicit level-set methods in both theory
and implementation, very few studies have dealt with the propagation of multiple
level-sets in a fully time-implicit style. One interesting approach was proposed by
Yuan et al. [16], which introduced a global optimization scheme for the evolution
of multiple level-sets Ci, i = 1 . . . n, preserving a linear order over said level-sets:

Cn ⊂ . . . ⊂ C1 .

Yuan et al. [16] demonstrated that such level-sets can be simultaneously moved
to their globally best positions in a fully time-implicit manner.

1.2 Contributions

In this work, we study the evolution of multiphase level-sets by means of global
optimization. We propose a novel principle, the variational region competition,
to jointly propagate multiple disjoint level-sets by minimizing the total cost
w.r.t. region changes. We show that the variational time-implicit scheme [11,
12, 15] for a single level-set is just a special case of the introduced variational
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region competition principle. In addition, we prove that the reduced optimization
problem can be expressed as Potts problem, where fast optimization solvers
are available via convex relaxation [19, 24, 1, 20] and graph-cuts [21, 22]. To
address the resulting optimization problem, we make use of the fast duality-
based continuous max-flow method developed in [1], which is implemented using
a massively parallel computing architecture (GPU) for high performance.

In contrast to classical approaches to multiphase level-sets, the new global
optimization-based multiphase approach is fully time-implicit, allowing large
step-sizes for contour propagation which ultimately improve efficiency. In ad-
dition, it propagates the level-sets simultaneously, instead of one-by-one phase
movement of the conventional level-set implementation [6]. Moreover, the convex
relaxation solver of the introduced Potts problem approximates the global opti-
mum well in practice, at least within some bound [25]. Promising experimental
results show the proposed time-implicit multiphase level-set method substan-
tially improves results in both efficiency and reliability for different applications.

2 Variational Time-Implicit Multiphase Level-Sets

In this section, we study the evolution of multiple mean-curvature-driven con-
tours with respect to a disjointness constraint, for which we propose a novel
variational principle, i.e. the variational region competition. The proposed vari-
ational region competition generalizes recent developments in level-set methods
and establishes a variational basis for simultaneously propagating multiple dis-
joint level-sets by means of minimizing costs w.r.t. region changes. We show
that previous approaches for single level-sets under via a minimum cost of re-
gion changes w.r.t. foreground and background, e.g. [12, 13] and recently [15],
are a special case of the proposed theory.

The proposed principle can be reformulated as a spatially continuous Potts
problem [26], i.e. a continuous multi-region min-cut problem, which we study
here via convex relaxation under a continuous max-flow perspective.

2.1 Principle of Variational Region Competition

Consider the evolution of n regions, Ci, i = 1 . . . n, under the constraint:

Ω = ∪n
i=1Ci , Ck ∩ Cl = ∅ , ∀k 
= l . (7)

Let Cti , i = 1 . . . n, be the i-th region at the current time frame t, which moves to
position Ct+1

i at the next time frame t+1. For each region Cti at time t, we define
two types of difference regions with respect to Ct+1

i (see Fig.1 for illustration):

1. C+i indicates expansion of Cti w.r.t. Ct+1
i : for ∀x ∈ C+i , it is outside Cti at time

t, but inside Ct+1
i at t+ 1; for such an expansion of x, with cost c+i (x).

2. C−i indicates shrinkage of Cti w.r.t. Ct+1
i : for ∀x ∈ C−i , it is inside Cti at time

t, but outside Ct+1
i at t+ 1; for such a shrinkage of x, with cost c−i (x).

With these definitions, we propose the variational principle as:
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(a) (b)

Fig. 1. A simple example of the evolution of 4 regions: (a) shows the 4 disjoint regions
at the current time frame t; (b) depicts the evolution of Ct

1 from discrete time t to the
next t+ 1, i.e. Ct+1

1 , which depicts region expansion C+
1 and shrinkage C−

1

Variational Region Competition Principle 1. For n disjoint regions Ci,
i = 1 . . . n, the evolution of each region over the discrete time frame from t to
t+ 1 minimizes total cost of region changes. That is, the new optimal contours
Ct+1
i , i = 1 . . . n, minimize the energy:

min
Ci

n∑
i=1

{∫
C−
i

c−i (x) dx +

∫
C+
i

c+i (x) dx
}

+

n∑
i=1

∫
∂Ci

g(s) ds (8)

subject to (7), where g(s) is a weighting function acting as a cost along the
contour boundaries.

We describe special applications of the proposed variational region competi-
tion principle in the following subsections:

Application to Single Level-Set Evolution. The mean-curvature-driven
motion of the single contour C:

∂tC = −κ ,

with Ct be the current level set. We define the cost functions c−(x) and c+(x)
of region changes w.r.t. Ct1 = Ct, which are linear to the distance from x to its
boundary ∂Ct, i.e.

c−1 (x) = c+1 (x) = dist(x, ∂Ct)/h , (9)

where h > 0 is constant.
This can be represented as the case of evolving two disjoint regions, i.e. region

C1 = C and its complementary region C2 = Ω\C. Since the two regions Ct1 =
Ct and Ct2 = Ω\Ct are complementary to each other, the region shrinkage of
Ct1 corresponds to the region expansion of Ct2 and vice versa. Hence, the cost
functions satisfy

c−1 (x) = c+2 (x) , c+1 (x) = c−2 (x) .
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Given the variational region competition principle (8) and∫
∂C1(:=C)

ds =

∫
∂C2(:=Ω\C)

ds =

∫
∂C

ds ,

we can derive

Ct+h := min
C

∫
∂C

ds +

∫
C�Ct(:=C+

1 ∪C−
1 )

1

h
dist(x, ∂Ct) dx , (10)

which is the variational formulation (3) with force f(x) = 0, proposed in [12]. It
is also straight-forward to extend it to cases with a non-zero force term f(x) 
= 0.

Application to Multiphase Level-Set Evolution. Likewise, for the mean-
curvature-driven evolution of multiple disjoint level-sets Ci, i = 1 . . . n, we define
the cost functions c−i (x) and c

+
i (x), i = 1 . . . n, to be proportional to the distance

function from x to the current boundary ∂Cti such that

c−i (x) = c+i (x) = dist(x, ∂Cti )/h , i = 1 . . . n . (11)

Using the variational region competition principle (8), we have:

Corollary 2. The mean-curvature-driven evolution of multiple disjoint level-
sets Ci, i = 1 . . . n, during time frame t to t+ 1 minimizes the cost w.r.t. region
changes. The optimal new regions Ct+1

i , i = 1 . . . n, therefore minimize:

min
Ci

n∑
i=1

∫
Ci�Ct

i

1

h
dist(x, ∂Cti ) dx +

n∑
i=1

∫
∂Ci

ds (12)

subject to the constraint (7).

Application to Multiphase Image Segmentation. For multiphase image
segmentation, the level-set evolution is driven not only by the distance functions
as above, but also by image features. In general, the cost functions c−i (x) and
c+i (x), i = 1 . . . n, w.r.t. region changes are given by the combination of the
image feature costs and the distance functions, i.e.

c−i (x) = ω1 f
−
i (x) + ω2

1

h
dist(x, ∂Cti ) , ∀x ∈ Cti , and

c+i (x) = ω1 f
+
i (x) + ω2

1

h
dist(x, ∂Cti ) , ∀x /∈ Cti ;

where the weighting parameters are ω1, ω2 > 0, ω1 + ω2 = 1, and the cost
functions f−

i (x) and f+
i (x), i = 1 . . . n, are derived according to the specified

image features. The corresponding optimization formulation is then given by the
variational region competition principle (8) directly, which is slightly different
from (11). For the purpose of our experimental setup we define

f−
i (x) = (I(x) − li)

2 , ∀x ∈ Ci , and

f+
i (x) = (I(x) − li)

2 , ∀x /∈ Ci ,
where li is the mean intensity I inside the contour Ci, i = 1 . . . n.
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2.2 Spatially Continuous Potts Model

In this section, we show that the variational problem (8) introduced by the
variational region competition principle can be equally reformulated as the Potts
problem [26]. For this purpose, we define two cost functions Ds

i (x) and Dt
i(x)

w.r.t. the current contour Cti , i = 1 . . . n, at time t:

Ds
i (x) :=

{
c−i (x) , where x ∈ Cti
0 , otherwise

(13)

Dt
i(x) :=

{
c+i (x) , where x /∈ Cti
0 , otherwise

. (14)

Let ui(x) ∈ {0, 1}, i = 1 . . . n, be the indicator function of the region Ci.
Therefore, the disjoint constraint in (7) can be represented by

n∑
i=1

ui(x) = 1 ; ui(x) ∈ {0, 1} , ∀x ∈ Ω . (15)

Via the cost functions (13) and (14), we can prove

Proposition 3. The variational formulation (8) associated with the variational
region competition principle can be expressed as the Potts problem

min
ui(x)∈{0,1}

n∑
i=1

〈
ui, D

t
i −Ds

i

〉
+

n∑
i=1

∫
Ω

g(x) |∇ui| dx (16)

subject to the contour disjointness constraint (15), where the weighted length
term in (8) is encoded by the weighted total-variation functions.

Proof. To see the equivalence between the two optimization problems (8) and
(16), we first consider the total cost related to the region changes of the contour
Ci, i = 1 . . . n, i.e. ∫

C−
i

c−i (x) dx +

∫
C+
i

c+i (x) dx . (17)

In view of the new cost functions (13) and (14), the above total cost (17) can be
equally written as

〈1− ui, D
s
i 〉 +

〈
ui, D

t
i

〉
. (18)

Summing (18) over the n contours, we obtain

n∑
i=1

{
〈1− ui, D

s
i 〉 +

〈
ui, D

t
i

〉}
=

n∑
i=1

〈
ui, D

t
i −Ds

i

〉
+

n∑
i=1

∫
Ω

Ds
i (x) dx (19)

where the last term is constant.
Also, we can formulate the weighted perimeter term in (8) by means of the

total variation function such that∫
∂Ci

g(s) ds =

∫
Ω

g(x) |∇ui| dx . (20)

By combining (19) and (20), the equivalence between (8) and (16) is proved.



Variational Time-Implicit Multiphase Level-Sets 285

Potts Formulation to Multiphase Level-Set Evolution. From the mean-
curvature-driven evolution of multiple disjoint level-sets Ci, i = 1 . . . n, the cost
functions (13) and (14), we have the functions Ds

i (x) and Dt
i(x), i = 1 . . . n,

by the definition of (11). The difference Dt
i(x) −Ds

i (x), i = 1 . . . n, defines the
respective signed distance functions

Dt
i(x) −Ds

i (x) =
1

h
sdist(x, ∂Cti ) =

{
−dist(x, ∂Cti )/h , where x ∈ Cti
dist(x, ∂Cti )/h , otherwise

. (21)

Invoking Prop. 3, we have:

Corollary 4. The variational problem (12) of the mean-curvature-driven evo-
lution of multiple disjoint level-sets Ci, i = 1 . . . n, can be identically formulated
as the Potts problem with respect to the minimum total signed distances:

min
ui(x)∈{0,1}

n∑
i=1

1

h

〈
ui, sdist(x, ∂Cti )

〉
+

n∑
i=1

∫
Ω

g(x) |∇ui| dx (22)

subject to the contour disjointness constraint (15).

2.3 Continuous Max-flow Approach and Dual Optimization

The resulting formulation (16) gives rise to a challenging combinatorial optimiza-
tion problem. From recent developments of convex optimization [19, 24, 1, 20],
its global optimum can be approximated efficiently through convex relaxation,
i.e.

min
u(x)∈�+

n∑
i=1

〈
ui, D

t
i −Ds

i

〉
+

n∑
i=1

∫
Ω

g(x) |∇ui| dx (23)

where )+ is the simplex set

for ∀x ∈ Ω ,

n∑
i=1

ui(x) = 1 ; ui(x) ∈ [0, 1] , i = 1 . . . n .

The minimization problem (23) is a special case of that studied in [1] where
ρ(i, x) = Dt

i − Ds
i . To solve (23), we use an efficient algorithm proposed in

[1], which solves a max-flow formulation of (23) by the augmented Lagrangian
method. We refer to [1] for details.

3 Experiments

In this section we conduct a series of numerical experiments to assess several
aspects of the performance of the proposed method. We demonstrate the ability
to evolve multiple contours in a synthetic example converging to the minimum-
length partition between all segments. Furthermore, we implement the proposed
method in a massively parallelized manner and test it against a sequential imple-
mentation on a single core. We also compare both implementations, in terms of
run times and convergence, against the classical multi-region level-set evolution.
Finally, we demonstrate its applicability in 3D medical volume segmentation.
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3.1 Experiments of Level-Set Evolution and Image Segmentation

By setting up the energy terms proposed in Coro. 4, we minimize the variational
problem in (22) with dual optimization. We employed the initialization in Figure
2 to demonstrate this behavior on five regions. The contour evolves from an
initial higher energetic state towards the optimum, where the total perimeter of
all partitions is minimized. Figure 2 depicts the course of 100 iterations from the
initialization (top left) to the final evolution status. Fig. 3 shows two examples
of multi-region image segmentation by the proposed method given in Sec. 2.1.

Fig. 2. Five initial regions (top left) are propagated via the proposed contour evolution
method. From left to right: t = 0, 1, 4, 10, 25, 50, 100, h = 25, g(x) = 10.

Fig. 3. Supervised example segmentation of two natural images from the Berkeley
database with 6 and 3 regions, respectively. The contours are initialized via seeds placed
by a user and convergence achieved if less than 50 pixels change between iterations.
From left to right: Image and corresponding segmentation.
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3.2 Comparison against Classical Multiphase Level-Sets

We tested the proposed method against a recent classical multi-region level set
(MRLS) implementation [27] for segmentation of brain tissue in a T1-weighted
magnetic resonance image, using two different initializations (Figure 4, row 1).
We defined the three regions (red, green and background regions) as converged
if fewer than 5 pixels change over an iteration. We used the same cost function
(from section 2.1) in both methods and individually adjusted parameters for
rapid convergence. The proposed method converged after 3 and 4 iterations
(column 2 & 4) and MRLS after 100 and 50 iterations (column 1 & 3).

t=0 t=0 t=0 t=0 

t=10 

t=50 

t=100 t=3 t=50 t=4 

t=2 t=10 t=2 

t=1 t=5 t=1 

Fig. 4. Comparison of the proposed method (column 2 & 4) against MRLS [27] (column
1 & 3) for unsupervised brain tissue segmentation from a magnetic resonance image.
Two initializations (row 1), and propagation over time (rows 2-4) are shown.
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Additionally, we calculated the percentage of mislabeled pixels against a
ground truth from manual segmentation at each iteration for both methods
and initialization patterns (Fig. 5). The lowest mislabeling rate is reached far
earlier by the proposed method than by MRLS, due to the larger time step-sizes
allowed.

Fig. 5. Log-log plotted percentage of mislabeled pixels with time steps corresponding
to Fig. 4. Initialization I (row 1, column 1 & 2) and II (row 1, column 3 & 4) for the
proposed method (red) and MRLS [27] (blue).

3.3 Computation Performance and Parallelized Implementation

We employ General-Purpose Programming on Graphics Processing Units
(GPGPU) via the CUDA (v6.0, NVIDIA, Santa Clara, CA) architecture to par-
allelize the underlying continuous max-flow optimization and test its impact on
overall run times against the C++ implementation. Table 1 summarizes the run
times of the experiments in Figure 4 using a Ubuntu 64-bit workstation, with
144GB memory and an NVIDIA Tesla C2070 (6GB) graphics card.

Table 1. Run time experiments for the brain example in Figure 4 until convergence
at different resolutions: 202x170 (original image), 256x256 and 512x512 px

Method Architecture Dimensions Iterations Total run time [s]

Proposed

CPU

202x170 3 3.9
256x256 3 5.9
512x512 3 8.0

GPU

202x170 3 0.4
256x256 3 0.5
512x512 3 0.9

Ben Ayed et al. [27] CPU
202x170 100 22.9
256x256 100 24.7
512x512 100 33.1
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3.4 Application to 3D Medical Image Segmentation

Fig. 6 demonstrates an application in 3D medical image segmentation, specifi-
cally of multiple brain tissue regions. In contrast to the complex implementation
and low performance of classical 3D level-sets, the 3D implementation of the
proposed multiphase level-sets is simple and fast, in particular when using mod-
ern parallelized computing platforms. The example took 8 iterations to converge
to the segmentation shown (202x170x158 voxels).

Fig. 6. Application in 3D brain MRI segmentation. From left to right: the image,
initialization, iteration 1,2,4 and 8. Axial slices (top) and surface renderings (bottom)
are shown. Computation took 265.7 s (202x170x158 voxels) on GPU.

4 Discussion and Conclusions

We propose a new time-implicit multiphase level-set evolution method based
on the spatially continuous Potts model, and demonstrate its performance and
applicability in image processing. Due to the implicit evolution of contours to
optimal positions at each time step, which allows for large step-sizes, the pro-
posed method leads to a simple algorithmic scheme taking advantage of recent
developments in convex optimization. The proposed variational method and the
derived Potts problem could also be addressed by discrete optimization meth-
ods, e.g. graph-cuts [21, 22], but solving the Potts formulation in a spatially
continuous setting [18–20] successfully avoids metrification artifacts and can be
easily implemented on GPUs to significantly improve computational efficiency.

We compare the proposed variational time-implicit level-sets method against
the classical multi-region level-set implementation used in [27]. Numerical re-
sults in Table 1 demonstrate that the proposed method converges quicker and
with fewer iterations, and both its sequential and parallelized implementations
outperform the slower and more complex classical approach, [27]. Convergence
rates of both compared methods for the problem in Fig. 4 are depicted in log-log
plots in Fig. 5. We demonstrate that the proposed method not only converges
with fewer iterations, but reaches the same mislabeling error as classical MLS
given the same initialization. This benefits 3D/4D medical imaging applications



290 M. Rajchl et al.

(see Fig. 6 as an example) in particular, which often require rapid computation
as not to impede clinical workflow. Future directions potentially include recently
studied appearance and label ordering constraints [28–31], which could be read-
ily applied to the proposed framework. Lastly, we provide the implementation, as
well as the Matlab prototype used in this study, to the community. The proposed
method is included into the Advanced Segmentation Tools (ASeTs) repository
(http://sourceforge.net/projects/asets/).
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Theiss Research,
National Institute of Standards and Technology,

100 Bureau Dr., Stop 8910,
Gaithersburg, MD 20899-8910, USA

gunay.dogan@nist.gov

Abstract. We propose a novel iterative algorithm for multiphase image
segmentation by curve evolution. Specifically, we address a multiphase
version of the Chan-Vese piecewise constant segmentation energy. Our
algorithm is efficient: it is based on an explicit Lagrangian represen-
tation of the curves and it converges in a relatively small number of
iterations. We devise a stable curvature-free semi-implicit velocity com-
putation scheme. This enables us to take large steps to achieve sharp
decreases in the multiphase segmentation energy when possible. The ve-
locity and curve computations are linear with respect to the number
of nodes on the curves, thanks to a finite element discretization of the
curve and the gradient descent equations, yielding essentially tridiagonal
linear systems. The step size at each iteration is selected using a non-
monotone line search algorithm ensuring rapid progress and convergence.
Thus, the user does not need to specify fixed step sizes or iteration num-
bers. We also introduce a novel dynamic stopping criterion, robust to
various imaging conditions, to decide when to stop the iterations. Our
implementation can handle topological changes of curves, such as merg-
ing and splitting as well. This is a distinct advantage of our approach,
because we do not need to know the number of phases in advance. The
curves can merge and split during the evolution to detect the correct
regions, especially the number of phases.

1 Introduction

The goal of this work is to devise an efficient algorithm for segmentation of
approximately piecewise constant images. We are given a possibly noisy and
degraded image I with domain composed of distinct regions {Ωl}nΩ

l=0 each with
homogeneous image intensity, i.e., I|Ωl

≈ cl (see Figure 1), and we would like
to extract the boundaries of all the regions in the image and the average values
{cl} of image intensity for all regions. We express this problem as an energy
minimization problem, in which a curve Γ =

⋃nΩ

l=1 Γl, which is the union of a set
of simple closed curves, and a set of region averages {cl}nΩ

l=0, also the number of
regions nΩ are the unknowns. This can be considered as a more general version
of two-phase segmentation problem solved by Chan and Vese in [5]. Given an
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image I : D ⊂ R2 → R defined on a bounded image domain D, we seek to
minimize the following energy

J(Γ, {cl}) =
1

2

nΩ∑
l=0

∫
Ωl

χD(x)(I(x) − cl)
2dx+ μ

∫
Γ

dΓ, μ > 0 (1)

where χD is the indicator function for the image domain D; it is included to
account for the situations when the curves (and the enclosed regions) in the
geometric model extend beyond D, but the image data is available only on D.
The first term in the energy (1) is a data fidelity term so that the optimal
curves match the boundaries of the homogeneous regions in the given image.
The second term is a length penalty and favors shorter and smoother curves, so
that the optimal curves do not fit insignificant variations or noise in the image.

Many different approaches have been proposed to address the problem of
multiphase image segmentation. Recent notable approaches are based on graph
formulations [1,3,16,23], convex relaxations [2,4,17,21], variational formulations
[15,22] and level sets [5,7,11,27,26]. Our algorithm is closer to the level set ap-
proach, but it is Lagrangian and offers several advantages that we explain below.

To develop our segmentation algorithm, we study the multiphase energy (1),
derive its shape derivative (or first variation) and propose a semi-implicit gra-
dient descent algorithm (in Section 2) that enables large steps (hence fewer
iterations) in the minimization. Then we propose a numerical realization (in
Section 3) using explicit (but nonparametric) Lagrangian curves to represent
the region boundaries, and the finite element method to compute the gradi-
ent descent velocity in linear time with respect to the number of nodes on the
curves, thereby to perform the curve updates very efficiently at each iteration of
the minimization. We also introduce numerical procedures to ensure robustness
and reliability in execution, and address issues of practical importance, such as
automation of step size and stopping criterion, ensuring adequate distribution
of nodes in curve representation, topological changes, i.e., merging and splitting
of curves during the curve evolution.

We emphasize the following main contributions of our work:

– Formulation and implementation of the multiphase segmentation problem
with only a set of explicit polygonal curves, in a way that does not require
several level set functions, label grids or indicator functions to represent
multiple regions. Moreover we do not need to know the number of regions
or phases a priori, this number can change during the minimization.

– A curvature-free semi-implicit gradient descent scheme that is uncondition-
ally stable with respect to step size, so that we can take large steps at each
iteration and converge to the minimum of the energy (1) faster. Curvature
is a second order differential geometric quantity and is difficult to handle in
both parametric and level set approaches; therefore, not having to compute
the curvature to obtain the gradient descent velocity is a critical ingredient
in the efficiency and stability of our algorithm.

– A linear time algorithm for velocity computation through finite element dis-
cretization. This way we obtain sparse matrices that we need to invert at
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each iteration to compute the gradient descent velocity. The sparse matrices
consist of circulant tridiagonal blocks on the diagonal and are inverted in
O(n) time where n is the number of curve nodes.

The latter two features of our approach are central to its efficiency. The memory
footprint of the curves and the associated data structures, such as the vectors
and matrices, is proportional to the number of nodes, and the time complex-
ity consists of pixel summations and other curve procedures, with cost linearly
proportional to the number of nodes.

Additionally, our algorithm requires minimal input from the user for execu-
tion. It is fully automatic; the user only sets the smoothing parameter μ in (1)
and specifies the initial curve(s) and our algorithm performs the minimization
without requiring the step size, the number of iterations or other stopping pa-
rameters from the user. We use line search to choose the right step size and
follow the norm of the shape gradient with a novel dynamic tolerance formula
to determine convergence (see Section 2).

Our algorithm currently has two limitations:

– It does not handle junctions. We assume that the boundaries of the homoge-
neous regions are simple curves that do not intersect with each other. This
is not true for some images. Handling the cases with junctions requires some
changes to our model and we will address this in future work.

– It does not guarantee convergence to a global minimum, and it can converge
to a local minimum. But this can be alleviated with a good initialization
scheme, such as topology optimization [12].

2 Gradient Descent Algorithm

The geometry of the problem is specified by a set of disjoint domains {Ωl}nΩ

l=0 that
are used to cover the image domain D, namely, we have D ⊂

⋃nΩ

l=0Ωl (note that
a domain Ωl may extend beyond D, as illustrated in Figure 1). The boundaries
{∂Ωl}nΩ

l=0 of the domains make up the curve Γ , which is the free variable in this
problem. The curve Γ is the union of a set of simple (non-intersecting) closed
curves {Γl}nΩ

l=1. The numbering or indexing of the domains and curves is such
that a simple curve Γl gives the outer boundary of domain Ωl. We distinguish
between two cases:

– If Ωl has no interior boundary due to a hole (i.e. another domain inside Ωl),
then ∂Ωl = Γl, namely, the boundary ∂Ωl of Ωl is equal to Γl.

– If Ωl encloses some other domains {Ωk} inside, then the boundary ∂Ωl of
Ωl includes the outer boundaries {Γk} of {Ωk}, namely ∂Ωl = Γl ∪

⋃
k Γk.

See Figure 1 for an illustration of the domains, curves and their numbering. Note
that the previous work on variational multiphase segmentation required multiple
level set functions, labeled grids or indicator functions in 2d to represent multi-
phase partitioning of the image domain. This is in contrast with our approach,
which is built on a set of 1d curves. Moreover, although the number of distinct
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Fig. 1. Illustration of domains, boundaries and their numbering. The image domain D
is covered by the regions {Ωl}nΩ

l=0, specified by the curves Γ =
⋃nΩ

l=0 Γl.

regions nΩ is a constant in our formulation (1), in the implementation it need
not be known a priori, and it changes during the minimization process as the
curves merge and split.

Before we continue to develop the gradient descent algorithm for the en-
ergy (1), we review some definitions and concepts from differential geometry.
We denote the outer unit normal, the scalar curvature and the curvature vec-
tor of a curve Γ ∈ C2 by n, κ, κ(:= κn) respectively. For a given function
f ∈ C2(D), we define tangential gradient ∇Γ f and tangential Laplacian ΔΓ f :

∇Γ f =

(
∇f − ∂f

∂n
n

)∣∣∣∣
Γ

, ΔΓ f =

(
Δf − n ·D2f · n− κ

∂f

∂n

)∣∣∣∣
Γ

.

If the function f is defined on Γ only, then we consider a normal extension of f
and use the same definitions for the tangential derivatives.

Shape Derivative of the Energy. We use the concept of shape derivatives to
understand the change in the energy induced by a given velocity field V . Once
we have the means to evaluate how any given velocity affects the energy, we
can choose from the space of admissible velocities the particular velocity that
decreases the energy (1) for a given Γ . We define the shape derivative of an
energy J(Γ ) at Γ with respect to a velocity field V as the limit

dJ(Γ ;V ) = lim
t→0

1

t
(J(Γt)− J(Γ )),

where Γt = {x(t,X) : X ∈ Γ} is the deformation of Γ by V via the ordinary
differential equation dx

dt = V (x(t)), x(0) = X . Shape derivative of energies J(Ω)
depending on domains or regions Ω are defined similarly. We refer to the book
[8] for more information on shape derivatives.
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Lemma 1 ([8]). The shape derivative of curve length J(Γ ) = |Γ | =
∫
Γ
dΓ with

respect to velocity field V is dJ(Γ ;V ) =
∫
Γ
κV dΓ, where V = V ·n is the normal

component of the vector velocity.

Lemma 2 ([5,8,12]). The shape derivative of the data fidelity term

J(Ωl) =
1

2

∫
Ωl

χD(x)(I(x) − cl)
2dx

from energy (1) for domain Ωl with respect to velocity field V is

dJ(Ωl;V ) =
1

2

∫
∂Ωl

χD(x)(I(x) − cl)
2V dx, (2)

where V = V · n is the normal component of the vector velocity.

We will use Lemma 1 and Lemma 2 next to write the shape derivative for our
energy (1) that is based on multiple curves and multiple regions.

Theorem 1. The shape derivative of the energy (1) for Γ = ∪nΩ

l=1Γl ∈ C2 with
respect to a given velocity field V is

dJ(Γ ;V ) =

∫
Γ

GV dΓ, G = μκ+ f(Γ ), (3)

where G is the shape gradient, V = V ·n is the normal component of the velocity
and the image-based force term f is defined by

f |Γl
= (coutl − cinl )χD(x)

(
I(x) − 1

2
(cinl + coutl )

)
, (4)

in which cinl = cl =
1

|Ωl∩D|
∫
Ωl∩D

I(x)dx is the average image intensity in the

region Ωl ∩ D enclosed by Γl, and coutl = ck = 1
|Ωk∩D|

∫
Ωk∩D I(x)dx is the

average over the outer region Ωk enclosing both Ωl and Γl. We can write the
shape derivative more explicitly as

dJ(Γ ;V ) = μ

∫
Γ

κV dΓ +

nΩ∑
l=1

(coutl − cinl )

∫
Γl

χD(x)

(
I(x) − 1

2
(cinl + coutl )

)
V dΓ

Proof. The Euler-Lagrange equation of the energy (1) with respect to the un-
known cl gives cl = 1

|Ωl∩D|
∫
Ωl∩D I(x)dx. We use Lemmas 1, 2 and write the

shape derivative of the energy (1) as

dJ(Γ ;V ) = μ

∫
Γ

κV dΓ +
1

2

nΩ∑
l=0

∫
∂Ωl

χD(x)(I(x) − cl)
2V dΓ. (5)

Note that the boundary Ωl consists of the curves Γl and {Γk : k ∈ IN(l)}, where
IN(l) is the set of indices of the curves immediately inside Γl. The domain Ω0
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does not have an outer boundary, it has only interior boundaries given by the
curves {Γk : k ∈ IN(0)}. Thus we rewrite the shape derivative as follows

dJ(Γ ;V ) = μ

∫
Γ

κV dΓ +
1

2

∑
k∈IN(0)

∫
Γk

χD(x)(I(x) − ck)
2V · (−nk)dΓ

+
1

2

nΩ∑
l=1

(
∫
Γl

χD(x)(I(x) − cl)
2V · nldΓ

+
∑

k∈IN(l)

∫
Γk

χD(x)(I(x) − ck)
2V · (−nk)dΓ).

(6)

Each simple curve Γl appears only twice in the expression (6), because Γl is the
outer boundary of the domain Ωl and it is an inner boundary of the domain
Ωm, namely l ∈ IN(m). So we can collect all the integrals of Γl together and
reorganize (6) as

dJ(Γ ;V ) = μ

∫
Γ

κV dΓ +
1

2

nΩ∑
l=1

∫
Γl

χD(x)
(
(I(x)− coutl )2 − (I(x)− cinl )2

)
V · nldΓ

= μ

∫
Γ

κV dΓ +

nΩ∑
l=1

(coutl − cinl )

∫
Γl

χD(x)

(
I(x)− 1

2
(cinl + coutl )

)
V · ndΓ,

where cinl = cl is the constant value for the domain Ωl, for which ∂Ωl is the
outer boundary, and coutl is the constant value for the enclosing domain Ωm, for
which Γl is an inner boundary. This concludes our proof.

Gradient Descent for Minimization. Theorem 1 enables us to derive a gra-
dient descent velocity, so that we can evolve a given initial curve Γ 0 continuously
in a manner that decreases its energy J(Γ ) and drives it to a minimum of the
energy (1). For this, we simply set V = −(μκ + f(Γ )n) following the shape
derivative equations (3), (4). By substituting this velocity in V = V ·n and then
in (3), we can verify that

dJ(Γ ;V ) =

∫
Γ

(μκ+ f)V dΓ = −
∫
Γ

(μκ+ f)2dΓ � 0,

by recalling κ = κn. Thus, V is indeed a gradient descent velocity, and to pursue
the minimization, one can conceive a curve evolution scheme as follows: Start
with initial curve Γ 0 and update the curve iteratively by

V k = −μκk − f(Γ k)nk, Xk+1 = Xk + τkV k, ∀Xk ∈ Γ k.

This update scheme can be viewed as an explicit time discretization of the evo-
lution equation dx

dt = V (x) = −μκ− f(Γ )n; we use the curve Γ k at the current
step to compute the geometric quantities n,κ and the data term f(Γ ); we then
compute the velocity V , and finally update Γ k with V to obtain Γ k+1. The fact
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that the scheme is explicit and contains the curvature term creates stability is-
sues resulting in spurious oscillations on the curve as we iterate. This is a feature
of this geometric update scheme and it is there regardless of the representation,
whether it is parametric curves or level sets. This instability can be prevented
by taking small steps τ , but this leads to too many iterations and increased
computation time. To circumvent these difficulties, we propose a semi-implicit
update scheme:

V k+1 + μκk+1 = −f(Γ k)nk, Xk+1 = Xk + τkV k+1, ∀Xk ∈ Γ k,

where we choose to evaluate the curvature term κ in the next iteration rather
than the current iteration. We recall κ = −ΔΓX, so we can write κk+1 =
−ΔΓX

k+1 = −τkΔΓV
k+1 +ΔΓX

k. Hence we obtain the following form of the
semi-implicit update, in which the curvature does not appear explicitly

(Id− μτkΔΓ )V
k+1 = −μΔΓX

k − f(Γ k)nk,

Xk+1 = Xk + τkV k+1, ∀Xk ∈ Γ k.
(7)

Now computing the velocity V k+1 at each iteration requires inverting a second
order tangential differential operator, namely computing

−(Id− μτkΔΓ )
−1(μΔΓX

k − f(Γ k)nk). (8)

We will see that this operation can be done in linear time with respect to the
number points on the curve; therefore, the semi-implicit step is asymptotically as
efficient as the explicit step. Moreover, it is unconditionally stable with respect
to step size τk, so we can take steps as large as we need in order to achieve
significant energy decrease and to approach the minimum in few iterations.

Equation (8) can also viewed as preconditioning the gradient descent velocity
with a smoothing operator, and this is helpful in understanding the stability
of this scheme. In other words, we are solving for a gradient descent velocity in
H1(Γ ) space and this has been shown to have favorable properties in recent works
[6,24,25]. Moreover, an H1 gradient descent scheme seems to appear naturally
when we use the second shape derivative to derive gradient descent velocities for
curve integrals [13,14]. Using the semi-implicit updating scheme (7), we devise
the Algorithm 1 for iterative minimization.

At this point, we should point out two important pieces of Algorithm 1: the
stopping criterion and step size selection. In many implementations of the Chan-
Vese segmentation algorithm [5] with curve evolution and its variants, users
fix the step size τ and take a fixed number of iterations. This is not a good
approach, because sometimes the number of iterations may not be enough to
reach the minimum, or sometimes one keeps taking many unnecessary iterations
even when the curve is already at the minimum. The solution implemented in
[10,14] is to select the step that satisfies the Armijo energy decrease criterion [19]
at each iteration and to stop when the norm of the shape gradient falls below a
stopping tolerance. At each iteration, we choose a step size τk that satisfies the
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Algorithm 1. Gradient Descent Algorithm

set initial curve Γ 0 and k = 0
repeat

mark domains {Ωl} on pixels
sum up pixels in Ωl as SUMl and compute average cl =

1
|Ωl∩D|SUMl

compute energy Jk = J(Γ k)
solve (Id− μτkΔΓ )V

k+1 = −μΔΓX
k − f(Γ k)nk

test step size τk, modify if necessary to ensure energy decrease
update Xk+1 = Xk + τkV k+1, ∀Xk ∈ Γ k

until ‖Gk+1‖L2 < tol(Γ k, {ckl })

nonmonotone energy decrease condition proposed by Zhang and Hager in [28]
for continuous optimization

J(Γ k+1) < Ck + ατkdJ(Γ k;V k), (9)

where Ck = (ηQk−1Ck−1 + J(Γ k))/Qk, C0 = J(Γ 0), Qk = ηQk−1 +1, Q0 = 0.
We set α = 10−4, η = 0.2 in our experiments. We found that the nonmonotone
energy decrease condition (9) is more robust and more efficient than the mono-
tone counterpart. It allows energy increases in some iterations, but ensures good
progress towards the minimum.

We found that a fixed tolerance on the norm of the shape gradient was not
a robust stopping criterion across various image examples, e.g., poor contrast,
unbalanced region sizes, etc. Thus we derived our novel dynamic cutoff tolerance.
We impose the following relative tolerance on pointwise values of the data fidelity
term (setting μ = 0 in the shape gradient G (3)),∣∣∣∣I(x) − 1

2
(cin + cout)

∣∣∣∣ < ε
1

2
|cin − cout|. (10)

The term 1
2 |cin − cout| gives a measure of contrast between neighboring regions.

Noting G|Γl
= (clin− clout)(I(x)− 1

2 (c
l
in + clout)), we multiply (10) by (clin− clout)

and integrate over Γ to obtain the L2 norm of the shape gradient, thereby getting
the following condition as a stopping criterion:

‖G‖L2 =

(∫
Γ

|G|2dΓ
)1/2

< tol(Γ k, {ckl }) =
1

2
min

l
(|clin − clout)

2|Γ |1/2ε. (11)

Figure 2 illustrates the effectiveness of the dynamic cutoff tolerance in identifying
the dip in ‖G‖L2 in different versions of the same segmentation problem under
varying conditions. A fixed tolerance would give either premature termination
or no termination for these images.

3 Discretization and Numerical Solution

The works building on the Chan-Vese approach [5] to image segmentation rep-
resent the curves as level set functions. The main advantage of the level set
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Fig. 2. Illustration of dynamic cutoff tolerance for different versions of a simple image
example, a filled white circle centered at (0.5,0.5) in the foreground on a square image
domain [0, 1]2 with zero background. Good, noisy and low contrast images have a circle
of radius 0.25, large object has radius 0.40, small object has radius 0.10. Low contrast
has gray-scale value 0.1 in the circle, whereas the others have gray-scale value 1.0.
The noisy image has uniform noise added to all pixels with values between [-0.5,0.5].
The plots show the energy values, the L2 norm of the shape gradient, the dynamic
cutoff tolerance for circle curves centered at (0.5,0.5) on these images. The dip in the
shape gradient norms signal the optimal circle radius in the minimization and cannot be
captured with a fixed tolerance or criterion. On the other, the dynamic cutoff tolerance
(shown with dotted curves on the right) tracks the norm of shape gradient very well. We
can stop our iterative algorithm when the norm of the shape gradient falls significantly
below the dynamic tolerance.

approach is that it can handle topological changes, such as splitting and merg-
ing of curves, easily without additional work. The main disadvantage of the level
set approach is the high computational cost of introducing an additional dimen-
sion to represent a 1d object, often using the image grid itself as the basis of a 2d
array representation for the curve. The level set representation can be difficult to
maintain through the evolution and may require costly reinitialization or other
regularization schemes [20]. Moreover, representing more than two phases with
level sets requires using more than one level set function, thus increasing the
computational cost further.

We choose to work with explicit Lagrangian representations of curves, because
it is much more efficient with respect to memory use and running time than
the level set approach; all our velocity computations and curve updates have
linear time complexity with respect to the number of points on the curve, and the
number of points used to represent the curves is much fewer than the number of
pixels that the image contains; therefore, the number of variables that we need
to deal with is much lower than it would be in the case of a level set approach
(including narrow-band level set representation).

Curve Representation and Adaptivity. We approximate a continuous curve
Γ as a polygonal curve Γ h that consists of linear curve elements {Γ h

i }mi=1. Thus
the curve approximation is piecewise linear. The curve element Γ h

i is a segment
connecting a point (x1,i, x2,i) to the next point (x1,i+1, x2,i+1). This way the
discrete curve Γ h is stored as an ordered list of curve nodes {(x1,i, x2,i)}mi=1

and this representation, nor the velocity computations described below, does not
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require a parameterization. Therefore our approach is explicit Lagrangian, but
not parametric.

An important issue in realizing the Lagrangian curve representation is where
to put the nodes and how to distribute them, especially after the curve is de-
formed by the iterations in unpredictable ways. A reasonable strategy is to
equidistribute the nodes yielding uniform element length, but this approach is
suboptimal. Ideally we would like to distribute the nodes in an economical way,
just enough the capture the geometry and the image faithfully, but not use more
nodes than necessary in order to control the computational cost; namely we put
more nodes where the geometry and image vary more and few nodes in flat
regions. Thus, the curve representation is spatially adaptive and it changes dy-
namically during the gradient descent evolution following our adaptivity criteria.
We realize this through two atomic operations on the curve:

– Coarsening: Combines two consecutive elements Γ h
i , Γ

h
i+1 into one by re-

moving the shared node.
– Refinement : Splits an element Γ h

i into two elements by adding a new node
(x1,i+ 1

2
, x2,i+ 1

2
) in the middle. The new node is displaced in the normal

direction to match the average of the curvatures at the two nodes of Γ h
i .

(Curvature at a node is estimated by fitting an osculating circle to the node
and its two neighbors.)

The decision to refine or coarsen an element is based on the following two criteria:

– Geometric criterion: The error on an element Γ h
i for piecewise linear ap-

proximation is bounded by maxΓh
i
κ|Γ h

i |. If this error estimate is high, we
refine. If it is very small, then we coarsen.

– Data criterion: We aim to evaluate if the element resolves the underlying
image data. For this, we compare two numerical approximations of the inte-
gral

∫
Γh
i
I(x)dΓ by a low order and a high order numerical quadrature rule.

If the difference is large, we refine. If it is too small, we coarsen.

Since we have two criteria to guide adaptivity, we refine if one of the rules mark
the element for refinement, and coarsen only if both rules mark the element
and its neighbor for coarsening. We have observed that our approach to curve
adaptivity works very well in a diverse set of scenarios. The curve dynamically
adjusts the number of nodes during the minimization process capturing compli-
cated geometries and images in a efficient and reliable manner. In addition to
curve adaptivity, we have implemented topological changes for curves; we detect
curve intersections and split or merge the curves if needed. Explaining the details
of topological changes is beyond the scope of this paper and this will be pursued
in a separate paper. Descriptions of other methods for topological changes of
Lagrangian curves can be found in [9,18]. We perform the procedures for curve
adaptivity and topological changes at each iteration after the curve has been
moved by the new velocity.

Finite Element Method for Velocity. Computing the update velocity using
our semi-implicit scheme at each iteration requires solving the following velocity
PDE for V k+1
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−μτkΔΓV
k+1 + V k+1 = −μΔΓX

k − f(Γ k)nk on Γ. (12)

Note that since V ,X,n are vectors, Equation (12) is actually two PDEs to be
solved on Γ k, one for each component of these vector functions. To solve the
PDE (12), we discretize it using the finite element method (FEM) on curves.
For this, we first write its weak form: we multiply the PDE (12) with suitable
test functions φ, integrate over Γ k, then integrate the tangential Laplacian term
ΔΓV by parts

〈V k+1,φ〉+ μτk+1〈∇ΓV
k+1,∇Γφ〉 = μ〈∇ΓX,∇Γφ〉 − 〈f(Γ k)nk,φ〉. (13)

The brackets 〈·, ·〉 denote integrals on the curve Γ k, i.e. 〈f, g〉 =
∫
Γk f(x)g(x)dΓ

and 〈f , g〉 =
(
〈f1, g1〉
〈f2, g2〉

)
. Next we choose a finite set of nodal basis functions {φi}

to discretize the weak form of the velocity PDE (13). We use piecewise linear
vector functions φi = (φi, φi), such that φi is nonzero only on the elements
Γ h
i−1, Γ

h
i , but zero on the other elements, and satisfies

φi(Xi) = 1, φi(Xi−1) = φi(Xi+1) = 0.

We expand the unknown velocity in terms of the basis functions: V (X) =
ΣiViφi(X) (omit the iteration index k to simplify notation), so that our new
unknown becomes a finite vector of nodal velocity coefficients V = {Vi}mi=1. We
expand the position vector X = ΣiXiφi as well and obtain∑
j

V j(〈φi,φj〉+μτ〈∇Γφi,∇Γφj〉) = −〈φi, f(Γ
h)n〉+μ

∑
j

Xj〈∇Γφi,∇Γφj〉.

We define the corresponding matrices Mij = 〈φi,φj〉, Aij = 〈∇Γφi,∇Γφj〉 and
vector f i = 〈φi, f(Γ

h)n〉, and obtain the compact linear system that we need to
solve to compute velocity at each iteration:

(M+ μτA)V = μAX− f .

Note that we actually have M =

(
M 0
0 M

)
, A =

(
A 0
0 A

)
, f =

(
f1
f2

)
. Since

the basis functions are piecewise linear, the entries of the matrices M,A can be
computed easily and are given by the following expressions:

Mij , Aij =

⎧⎨⎩di/3, 2/di, if i = j,
di/6, −1/di, if i = j − 1, j + 1 mod m,
0, 0, otherwise,

where di = |Γ h
i | is the length of the ith curve element and m is the number

of nodes on the curve. The entries of the vector f , on the other hand, depend
on the image and can be computed with numerical quadrature by interpolating
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Fig. 3. The minimization dashboard. The shape energy (left), the step sizes (mid-
dle), L2 norm of shape gradient (right, blue curve), the values of the dynamic cutoff
tolerance (right, red curve) from the iterations of a segmentation example with galaxy
image (Figure 4). The nonmonotone step size criterion allows some increases in energy
to encourage large steps as much as possible. The dynamic cutoff tolerance tracking
the L2 norm of the shape gradient signals when to stop the iterations.

k=0, J=-0.0102 k=1, J=-0.013661 k=2, J=-0.015573 k=3, J=-0.016284

k=9, J=-0.017941 k=13, J=-0.018402 k=16, J=-0.018472 k=25, J=-0.018522

Fig. 4. Segmentation of galaxy image. We observe large displacements in the first
iterations to achieve sharp decreases in the energy and small displacements in the final
iterations to ensure a good fit. The curves adapt to the new configurations easily by
adding and subtracting nodes, always ensuring a good representation of the geometry.

the image on each element Γ h
i . The matrices M,A are circulant tridiagonal for

a simple curve; therefore, they can be inverted in linear time with respect to
the number of nodes on the curve using the Thomas algorithm . In the case of
multiple simple curves, the matricesM,A consist of circulant triadiagonal blocks
on their diagonals and zero elsewhere. The inversion is still linear time as each
block is inverted independently.

4 Experiments

In this section, we present several numerical experiments demonstrating impor-
tant aspects of our algorithm. We have confirmed the convergence and reliability
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of our algorithm in many experiments. Figure 3 shows the computed energy val-
ues, step sizes, the norm of the shape gradient and the dynamic cutoff criterion
from one of our experiments (segmentation of the galaxy image). The energy
goes down steadily on average, but the nonmonotone step size criterion some-
times allows increases in the energy. We see the step sizes are kept large as long
as possible, but they decrease as we get close the minimum to ensure a good fit
in the final positioning of the curves at the minimum. The L2 norm of the shape
gradient fluctuates through iterations. Our dynamic cutoff tolerance is small at
the beginning and prevents premature termination. It increases gradually and
helps detect the right dip in the norm of the shape gradient.

We also show two segmentation examples. One is a two-phase segmentation of
the galaxy image shown in Figure 4. This example shows the judicious progress
of the curve evolution. The curves take large steps in the first few iterations
and achieve rapid energy decreases. The steps get smaller gradually to ensure
convergence and a good fit at the minimum. The step sizes are determined by the

2 phases at k=0 3 phases at k=1 5 phases at k=3
J = -0.1659 J=-0.171907 J=-0.173870

4 phases at k=6 3 phases at k=11 5 phases at k=56
J=-0.180111 J=-0.197878 J=-0.215860

Fig. 5. Segmentation of synthetic multiphase image. This example shows seg-
mentation of a noisy multiphase image. The curves take large steps and achieve large
energy decreases at the beginning. They take small conservative steps close to the
minimum to ensure a good fit and convergence. The number of phases changes during
the evolution and finalizes in five phases. The number of nodes on the curves changes
adaptively as well, increasing or decreasing as needed. The final curves have few nodes,
because the region boundaries are straight.
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nonmonotone step size selection criterion. The number of nodes on the curves
changes at each iteration to ensure good representation of the geometry and
resolving the image features. The curves have high quality representations at
all times. They do not suffer from entanglements or other problems typically
expected in front-tracking techniques. Moreover, topological changes, such as
merging and splitting, are handled in a graceful manner by our topology surgery
routines.

The second segmentation example is a noisy synthetic multiphase image,
shown in Figure 5. The behaviour of the curve evolution is similar to that we
observe for the galaxy image. In this image, we additionally observe adaptation
of the phases. We start with two phases, increase to three phases right away in
the first iteration, then increase to five, back to four, and finally settle at five
phases when we terminate at the minimum. We see that the algorithm finds the
correct number of phases without the user specifying this number a priori.
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Abstract. We present a novel variational approach to a tensor-based
total variation formulation which is called gradient energy total variation,
GETV. We introduce the gradient energy tensor [6] into the GETV and
show that the corresponding Euler-Lagrange (E-L) equation is a tensor-
based partial differential equation of total variation type. Furthermore,
we give a proof which shows that GETV is a convex functional. This
approach, in contrast to the commonly used structure tensor, enables
a formal derivation of the corresponding E-L equation. Experimental
results suggest that GETV compares favourably to other state of the
art variational denoising methods such as extended anisotropic diffusion
(EAD) [1] and total variation (TV) [18] for gray-scale and colour images.

1 Introduction

The variational approach to image diffusion is to model an energy functional
E(u) = F (u) + λR(u) where F (u) is a fidelity term. The positive constant λ
determines the influence of R(u), the regularization term describing smoothness
constraints on the solution u∗ that minimizes E(u). In this work we are interested
in tensor-based formulations of the regularization term and we introduce the
functional gradient energy total variation (GETV).

A basic approach to remove additive image noise is to convolve the image data
with a low-pass filter e.g. a Gaussian kernel. The approach has the advantage
that noise is eliminated, but so is image structure. To tackle this drawback,
Perona and Malik [16] introduced an edge stopping function to limit the filtering
where the image gradient takes on large values. A tensor-based extension of the
Perona and Malik formulation was presented by Weickert [20] in the mid 90s
which we refer to, in accordance to Weickert, as anisotropic diffusion.

The principle of anisotropic diffusion is that smoothing of the image is per-
formed parallel to image structure. The concept is based on the structure ten-
sor [2,7], a windowed secondmoment matrix, which describes the local orientation
in terms of a tensor field. To smooth the image parallel to the image structure, the
tensor field is transformed by using a non-linear diffusivity function. The trans-
formed tensor field is then used in the diffusion scheme and the resulting tensor is
commonly denoted as the diffusion tensor. In this paper we propose to replace
the structure tensor and introduce the gradient energy tensor (GET) [6] into the

X.-C. Tai et al. (Eds.): EMMCVPR 2015, LNCS 8932, pp. 307–320, 2015.
c© Springer International Publishing Switzerland 2015
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Fig. 1. In this work we derive a gradient energy tensor-total variation (GETV) scheme.
In this example, our approach clearly boosts the visual impression, PSNR and SSIM
performance over EAD and TV in a colour image auto-denoising application.

regularization term of a total variation energy functional. The formulation al-
lows us to consider both the eigenvalues and eigenvectors, in contrast to previous
work which only considers the eigenvalues of the structure tensor. We formulate
a gradient energy total variation functional and show significant improvements
over current variational state-of-the-art denoising methods. In figure 1 we il-
lustrate the denoising result obtained by the proposed gradient energy total
variation formula compared to extended anisotropic diffusion (EAD) [1] and to-
tal variation (TV) [18], note that our approach obtain higher error measures and
sharper edges.

1.1 Related Works

The linear diffusion scheme (convolution with a Gaussian kernel) is the solution
of a partial differential equation (PDE) and it is closely related to the notion of
scale-space [11]. Therefore it has been of interest to investigate also the Perona
and Malik formulation and its successors of adaptive image filtering in terms of
a variational framework.

In the linear diffusion scheme the regularization terms are given by R(u) =∫
Ω
|∇u|2 dx and in total variation (TV) R(u) =

∫
Ω
|∇u| dx, see [18]. The total

variation formulation is of particular interest since it has a tendency to enforce
piecewise smooth surfaces, however it is also the drawback since it produces
cartoon-like images.

Several works have investigated generalizations of the standard total variation
approach to tensor-based formulations. Roussous and Maragos [17], Lefkimmi-
atis et al. [14] and Grasmair and Lenzen [9], all consider the structure tensor and
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define objective functions in terms of the tensor eigenvalues. The difference from
those work compared to our presentation is that our formulation allows us to
consider both eigenvalues and eigenvectors of the gradient energy tensor.

Roussous and Maragos [17] considered a functional which indirectly takes the
eigenvalues of the structure tensor into account and ignores the eigenvectors.
They considered the regularization R(u) =

∫
Ω ψ(μ1, μ2) dx, where μ1,2 are the

eigenvalues of the structure tensor. They remark that standard variational calcu-
lus tools are not applicable to derive the Euler-Lagrange equation. The problem
arise when computing the structure tensor where a smooth kernel is convolved
with the image gradients. Furthermore, Lefkimmiatis et al. which, similar to
Roussous and Maragos, considered Schatten-norm of the structure tensor eigen-
values. Grasmair and Lenzen [9] defined R(u) =

∫
Ω

√
∇tuA(u)∇u dx, where

A(u) is the structure tensor with remapped eigenvalues. The objective function
is then solved using a finite element method instead of deriving a variational so-
lution. Krajsek and Scharr [13], linearized the diffusion tensor thus they obtained
a linear anisotropic regularization term resulting in an approximate formulation
of a tensor-valued functional for image diffusion.

The common formulation by the aforementioned works is that they use the
structure tensor which does not allow for an explicit formal derivation of the
Euler-Lagrange equation. Our framework does.

1.2 Contributions

The approach we take in this work is to introduce the gradient energy tensor
(GET) [6] into the regularization term of the proposed functional. We give a proof
which shows that the GETV is a convex functional. Our formulation allows us
to differentiate both the eigenvalues and eigenvectors since the GET does not (in
this work) contain a post-convolution of its components. The following major
contributions are presented

– We present a novel objective function gradient energy total variation which
models a tensor-based total variation diffusion scheme by using the gradient
energy tensor in section 4.

– In section 5, we show that the new scheme combines EAD [1] and TV [18]
achieving highly competitive results for grey and colour image denoising.

2 Variational Approach to Image Enhancement

2.1 Energy Minimization

The variational framework of image diffusion is based on functionals of the form

E(u) =

∫
Ω

(u − u0)2 dx+ λR(u), (1)

where x = (x1, x2)
t ∈ Ω ⊂ R2, Ω is the image size in pixels and u0 is the

observed noisy image. The first term in (1) is the fidelity term F (u) and the
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second term is the regularization term, R(u). The constant λ > 0 determines
the amount of regularization. The stationary point that minimizes E(u) is given
by the Euler-Lagrange (E-L) equation

lim
ε→0

∂E(u+ εv)

∂ε
= 0, in Ω, (2)

where v is a test-function. The corresponding boundary condition to (2) is a
homogeneous Neumann condition e.g. ∇u · n = 0 where n is the normal vector
on the boundary ∂Ω and ∇ = (∂x1 , ∂x2)

t is the gradient operator. The E-L
equation for total variation [18] is⎧⎨⎩u− u0 − λdiv

(
∇u
|∇u|

)
= 0 in Ω

∇u · n = 0 on ∂Ω,
(3)

and the u which minimizes (3) can be obtained by solving a parabolic initial
value problem (IVP) to get the diffusion equation. Alternatively, TV is often
solved by using primal-dual formulations [4] or by modifying its norm to include
a constant offset to avoid discontinuous solutions.

2.2 Tensor-Based Anisotropic Diffusion

In order to filter parallel to the image structure, a tensor-based anisotropic dif-
fusion scheme was introduced by Weickert [20]. The filtering scheme is defined
as the partial differential equation (PDE)

div (D(T )∇u) = 0, in Ω. (4)

The adaptivity of the filter is determined by the structure tensor

T = w ∗ (∇u∇tu), (5)

where ∗ is a convolution operator and w is a Gaussian kernel [7,2]. The ten-
sor is a windowed second moment matrix, thus it estimates the local variance
and can be thought of as describing a covariance matrix [8]. The eigenvector
of T corresponding to the largest eigenvalue is aligned orthogonal to the image
structure. Therefore, to avoid blurring of image structures, the diffusion tensor
D is computed as D(T ) = UT g(Λ)U , where U is the eigenvectors and Λ the
eigenvalues of T [5]. We require g(r)→ 1 as r → 0 and g(r)→ 0 as r →∞ and
a common choice is the negative exponential function g(r) = exp(−r/k) where
k is an unknown edge-stopping parameter.

3 Gradient Energy Tensor

The gradient energy tensor is a real-valued and symmetric tensor and it deter-
mines the directional energy distribution of the signal gradient [6]. In contrast
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to the structure tensor (5) it does not require a post-convolution of the tensor-
components to form a rank 2 tensor. Note that due to the convolution operator,
the structure tensor is not sensitive to structures smaller than the width of the
averaging filter used to compute it. The classical GET is defined in terms of
the image data in u [6]. Here we use an alternative, but equivalent, formulation
of GET expressed in the image gradient. Let H = ∇∇t be the Hessian and
∇Δu = ∇∇t∇u, then we define the GET as

GET (∇u) = HuHu− 1

2
(∇u[∇Δu]t + [∇Δu]∇tu). (6)

The presence of second and third-order derivatives in GET makes it sensitive
to noise, however, it allows us to capture orientation of structures that are not
possible to detect with the structure tensor. In general the GET is not positive
semi-definite. An investigation of the positivity of the 1-dimensional energy op-
erator was done in [3]. In the two-dimensional case, the positivity of the operator
is reflected in the sign of the eigenvalues. Let the components of the GET be a, b

and c i.e. GET :=

(
a b
b c

)
, then the GET is positive semi-definite if the condition

in Lemma 1 is satisfied.

Lemma 1. The GET is positive semi-definite if tr (HuHu) − ∇tu∇Δu ≥
√
l

where l = tr (GET )
2 − 4det (GET ) ≥ 0.

Proof. Since GET is symmetric it has real eigenvalues. Thus by its eigenvalue
decomposition it is sufficient to show that tr (GET ) ≥

√
l in order for GET to

be positive semi-definite. l is necessarily positive since l = (a− c)2 + 4b2 ≥ 0.

Since GET is not necessarily positive semi-definite we define GET+, in the below
definition, which is a positive semi-definite tensor.

Definition 1. The positive semi-definite tensor GET+ is

GET+(∇u) = V t

(
|ι1| 0
0 |ι2|

)
V (7)

where V is the eigenvectors and ι1,2 are eigenvalues of GET .

4 Introducing Gradient Energy Total Variation

In this section we introduce the proposed energy functional which results in the
gradient energy tensor-based total variation scheme. The regularization term we
consider is given in the following definition

Definition 2. The gradient energy total variation functional (GETV) is

R(u) =

∫
Ω

∇tuS(∇u)∇u dx, (8)

where S(∇u) ∈ R2×2 is a symmetric positive semi-definite tensor.
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4.1 Variational Formulation of Gradient Energy Total Variation

In this section we will study properties and interpretation of the GETV before
deriving its corresponding Euler-Lagrange equation in the next section.

We begin our analysis by putting S(∇u) ∈ R2×2 to be the symmetric positive
semi-definite tensor in (8) with eigenvalues μ1,2 and orthonormal eigenvectors
v, w then

S(∇u) = vvtμ1 + wwtμ2.

Furthermore, we define a tensorW (∇u) ∈ R2×2 which also is symmetric positive
semi-definite with corresponding eigenvectors to S(∇u) i.e.

W (∇u) = vvtλ1 + wwtλ2,

and λ1,2 are the eigenvalues. In particular we will consider W (∇u) of the form

W (∇u) = |∇u|S(∇u), (9)

such that (8) is convex (see Corollary 1).
Start by expressing the quadratic form defined in S(∇u) by its eigendecom-

position and rearranging the resulting vectors such that

∇tuS(∇u)∇u = ∇tu[μ1vv
t + μ2ww

t]∇u
= μ1v

t[∇u∇tu]v + μ2w
t[∇u∇tu]w, (10)

The product ∇u∇tu is a rank-1 tensor with orthonormal eigenvectors p =
(p1, p2)

t and p⊥ = (p2,−p1)t such that P = (p, p⊥) and Λ has the corresponding
eigenvalues κ1 and κ2 on its diagonal. Note that, by the spectral theorem, the
eigendecomposition of ∇u∇tu is always well-defined, i.e. the eigenvector p is
not singular. This is shown by the generalized definition of p, i.e. in the case of
|∇u| 
= 0 then p = ∇u/|∇u|, and in the case of |∇u| = 0 we let P = I where I
is the identity matrix

In the following we substitute the eigendecomposition of ∇u∇tu = P tΛP
into (10):

∇tuS(∇u)∇u =
(
μ1v

tPΛP tv + μ2w
tPΛP tw

)
=

(
μ1v

tP

(
κ1 0
0 κ2

)
P tv + μ2w

tP

(
κ1 0
0 κ2

)
P tw

)
(11)

and insert κ1 = |∇u|2 and κ2 = 0 and use the eigenvalue relation from (9) i.e.
λ1 = μ1|∇u| and λ2 = μ2|∇u|. Then after rewriting (11) we obtain

∇tuS(∇u)∇u = λ1|∇u|(v · p)2 + λ2|∇u|(w · p)2. (12)

The interpretation of (12) is that v, p, w are normalized eigenvectors such that
the scalar products defines the rotation of W (∇u) and S(∇u) in relation to the
image gradients direction. This can be illustrated by using the definition of the
scalar product i.e. v · p = cos(θ) and w · p = sin(θ), where θ is the rotation
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∇u∇tu

θ

W (∇u), S(∇u) Φ(∇u)

c

√
τ2
c

q2√
τ1
c

q1

(a) (b)

Fig. 2. (a) Illustration of eigenvector basis at coordinate (x, y), the dashed (red) arrows
indicate the eigenvectors of W (∇u) and S(∇u) and thick (black) arrows ∇u∇tu. (b)
Illustration of the paraboloid (15) where we set c = τ1q

2
1 + τ2q

2
2 .

angle as shown in figure 2 a. Note that, if W (∇u) describes the local directional
information its eigenvectors will be parallel to the orthonormal eigenvectors of
∇u∇tu, i.e. v || p and w || p⊥ if θ = 0.

In the following we set W (∇u) in (9) as

W (∇u) = exp(−GET+(∇u)/k), (13)

where exp is the matrix exponential function such that λi = exp(−|ιi|/k) for
i = 1, 2 and k > 0, the eigenvalues ιi were defined in (7). In the below Corollary
we put W (∇u) as (13) and show that Φ(∇u) is convex and thereby R(u) is
convex in u.

Corollary 1. The GETV functional, R(u), is convex w.r.t. u.

Proof. To prove the convexity of R(u) we write Φ(u) = ∇tuS(∇u)∇u in terms
of the eigenvectors and eigenvalues of W (∇u). Then, from (12) it follows that

Φ(∇u) = |∇u|(λ1pt(vvt)p+ λ2p
t(wwt)p)

= |∇u|pt(λ1vvt + λ2ww
t)p

= (V p)t
(
τ1 0
0 τ2

)
V p, (14)

where V = (v, w) and τi(∇u) = |∇u|λi ≥ 0 for i = 1, 2. Let q = V p = (q1, q2)
t,

then

Φ(∇u) = τ1q
2
1 + τ2q

2
2 , (15)

is a quadratic form in the basis of orthonormal eigenvectors V and τi(∇u). This
quadratic form is always well-defined due to the spectral theorem. Since the
paraboloid (15) has positive curvature everywhere, and u maps continuously to
the paraboloid, R(u) is convex in u which concludes the proof. ��

We illustrate Φ(∇u) by the paraboloid in figure 2 b.
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Remark 1. Φ(∇u) can also be expressed in the Schatten-1 norm [10] (pp. 441)
i.e. ||A||1 =

∑n
i |σi(A)| where σi(A) denotes the i’th singular value of a tensor A.

Since ||A||1 is a norm it has the important properties of positivity and convexity.
However, in our case it is not obvious that the convexity follow directly from the
norm due to the non-linearity of W (∇u), see Corollary 1. From (12) we have
that

∇tuS(∇u)∇u = ||A(∇u)||1. (16)

This means that A(∇u) has singular values σ1(A) = λ1|∇u|(v · p)2 and σ2(A) =
λ2|∇u|(w · p)2 where λ1,2 are the eigenvalues of W (∇u) in (9).

Remark 2. The standard total variation formulation is obtained from (9) by
setting W (∇u) as the identity matrix I, then we have Φ(∇u) = ∇tu I

|∇u|∇u =

|∇u|2
|∇u| = |∇u|. Notice that we can derive the same result from (16). Suppose that

W (∇u) = I, then λ1,2 = 1 and σ1(A) = |∇u| and σ2(A) = 0, thus we obtain
that Φ(∇u) = ||A(∇u)||1 = |∇u|.

4.2 A Formal Minimizer of Gradient Energy Total Variation

In the previous section we defined the GETV in definition 2 by putting S(∇u)
according to (9) withW (∇u) as in (13). In order to minimize our proposed func-
tional we use a result from [1] which derived the corresponding Euler-Lagrange
equation for a functional with a quadratic form. Therefore we use this result to
directly minimize (17) in the below Theorem 1 in order to compute the Euler-
Lagrange equation of (8). Note that Theorem 1 is restated from [1] but with the
difference that the tensor S is symmetric.

Theorem 1. Let the regularization term R(u) in the functional (1), be given by

R(u) =

∫
Ω

∇tuS(∇u)∇u dx, (17)

where u ∈ C2 and S(∇u) ∈ R2×2 is a tensor-valued function R2 → R2×2. Set
s = ∇u and define

Ss(s) =

(
∇tuSs1(s)
∇tuSs2(s)

)
. (18)

where Ss1 is defined as the component-wise differentiation of S with respect to
s1. Then the corresponding E-L equation is given by{

div (B∇u) = 0 in Ω

n ·B∇u = 0 on ∂Ω,
(19)

where B = [2S + Ss]
∣∣
s=∇u

.
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By using Theorem 1 we compute Ss as

Ss = − 1

|∇u|3

(
ux∇tuW
uy∇tuW

)
+

1

|∇u|

(
∇tuWux

∇tuWuy

)
, (20)

so that the corresponding minimizer of the regularizer (17) is obtained by in-
serting (20) into (19)⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

div

⎛⎜⎜⎜⎝
[
2W +

(
∇tuWux

∇tuWuy

)
− 1

|∇u|2

(
ux∇tuW
uy∇tuW

)]
︸ ︷︷ ︸

=Q

∇u
|∇u|

⎞⎟⎟⎟⎠ = 0 in Ω

n ·B∇u = 0 on ∂Ω,

(21)

where the bracket, which we denote as Q, defines a weight controlling the
anisotropy of the total variation scheme. We compute the component-wise deriva-
tive of W with respect to ux and uy by using an explicit eigendecomposition i.e.

Wux =

[(
2v1 v2
v2 0

)
(∂uxv1) +

(
0 v1
v1 2v2

)
(∂uxv2)

]
λ1 + vvt(∂uxλ1)

+

[(
2w1 w2

w2 0

)
(∂uxw1) +

(
0 w1

w1 2w2

)
(∂uxw2)

]
λ2 + wwt(∂uxλ2), (22)

with the corresponding orthonormal eigenvectors v and w. The general expres-
sions for the derivatives of the eigenvalues and eigenvectors are given in the
supplementary material.

The most intuitive interpretation of the GETV is to consider the eigende-
composition of W (∇u). Thus given eigenvalues λ1,2 = exp(−|ι1,2|/k) of W (∇u)
where ι1,2 are eigenvalues computed from the gradient energy tensor, the expo-
nential function will adapt the filtering to be parallel to the image structures i.e.
close to an image structure λ1 will be small and λ2 larger. Since the gradient
energy tensor does not contain a post-convolution of the tensor-components, our
formulation allows us to better preserve fine details in the image structure, than
if we would use the structure tensor, as we show in the numerical experiments.

4.3 Discretization

The proposed PDE (21) is solved with a forward Euler-scheme and the image
derivatives are approximated by using regularized finite differences [21]. The
numerical approximation of the divergence operator is based on the expansion
div(M∇u) = ∂x(M11∂xu) + ∂x(M12∂yu) + ∂y(M21∂xu) + ∂y(M22∂yu). The first
and last term in the previous equation are computed by averaging the forward ∂+

and backward ∂− finite difference operators, and the mixed derivatives are com-
puted with central differences. The final E-L equation that we solve is (21) but
with regularized derivatives, i.e. let β denote regularization with a small posi-
tive constant such that the denominators are expressed as |∇u|β =

√
|∇u|2 + β2.
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Fig. 3. A test image corrupted with 20 standard deviation additive Gaussian noise and
the corresponding denoised results. Observe that the errors larger than 10% (magenta)
are considerably less concentrated at high frequencies for the GETV than the other
methods.

Furthermore, we are required to compute third-order derivatives (in GET) for
terms such as ∂xΔu, and we found that it is appropriate to directly approximate
these higher-order derivatives with central differences of the Laplacian. In prac-
tice, to avoid numerical instabilities, it is sufficient to regularize the first and
second order derivatives with a Gaussian filter of standard deviation σ of 8/10.
To compute the third-order term a Gaussian filter of standard deviation 3 was
suitable for regularization. These filter sizes were kept constant for all images
and all noise levels in the experimental evaluation, we fixed β = 10−4.

5 Application to Image Enhancement

We evaluate our approach with respect to extended anisotropic diffusion
(EAD) [1] and a state-of-the-art primal-dual implementation of the Rudin-Osher-
Fatemi [18] total variation model (TV) [4]1. In figure 3 we illustrate the behaviour
of the three schemes on a radial test pattern consisting of increasingly high-
frequency components. The histogram illustrates that the proposed gradient
energy total variation (GETV) scheme in essence exhibits fewer large magni-
tude errors than the other methods, this is marked by the red box. The EAD
scheme shows errors in high-frequency areas as illustrated with the magenta
colour, whereas standard total variation gives errors for all frequencies due to
the tendency of enforcing piece-wise constant surfaces.

1 Code (14-02-17) gpu4vision.icg.tugraz.at/index.php?content=downloads.php

gpu4vision.icg.tugraz.at/index.php?content=downloads.php
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(a) PSNR values for the grey-scale images.
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(b) Mean and standard deviation of error measures for the Berkeley dataset.

Fig. 4. Error measures, a higher W-PSNR indicates better recovery of high-frequency
regions. The visual appearance for selected images is shown in figure 6.

5.1 Experiments’ Setup

Datasets that we consider are twofold. First we consider a number of standard
grey-scale images barbara, boat, cameraman (cman), house and lena, each image
is of size 256 × 256. The other dataset is the Berkeley database [15], where we
randomly choose 50 colour images each of size 481× 321. In the evaluation we
corrupted each image with Gaussian additive noise of standard deviations 5,
10, 15 and 20. The images that we have used are listed in the supplementary
material. In this work we use the decorrelation CIELAB transform, however
other choices of colour spaces are possible as investigated in [1].

Error measures are in the image processing community recognised to not
correlate with perceived image quality, therefore we investigate several error mea-
sures and consider the visual image quality. PSNR is widely used in the denoising
literature so we report it, as well as, the structure similarity index (SSIM) [19]
known to better reflect the true image quality. Also, since large homogeneous
regions have more impact on the error measures than edges in the image do,
we compute a weighted PSNR, W-PSNR, to assess preservation of edges in the
images after filtering. The weight we use is given by the trace of the structure
tensor and it is applied on the difference between the original and the enhanced
image in the computation of the PSNR. Since the trace measures the magnitude
of the gradient, the W-PSNR value correlates with a better preservation of edges
than the PSNR measure does in relation to the noise-free image.

Image auto-denoising is used to optimize the selection of parameters in the
different filtering schemes. It is a method which does not take the noise-free image
into account when determining a quality measure. In this work we use the image
auto-denoising metric proposed in [12], which we denote as A-IQA (auto-image
quality assessment). The basic idea of A-IQA is that a high correlation score is
obtained if the denoised image has smooth surfaces, but yet preserves boundaries.
In the total variation scheme, we select the regularization parameter λ from the
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Noisy EAD GETV TV

A-IQA: - 0.91 0.90 0.84
PSNR: 24.84 30.5 30.6 28.4
PSNR-W: 63.30 63.44 64.12 60.43
SSIM: 0.21 0.91 0.92 0.88

Fig. 5. Example from the grey-scale dataset for 15 standard deviation of noise. GETV
shows an improvement over EAD and TV, both in PSNR and preservation of fine image
structures such as the camera handle. Also, note that the images obtained with GETV
appear less blurry than EAD and TV.

values 6, 8, 10, 12 and 14 based on maximum A-IQA. The control parameter k
in the EAD scheme is computed according to k = (exp(1)−1)/(exp(1)−2)σ2 [5]
where σ is the standard deviation of the added noise. The k obtained for EAD
is also used in the proposed GETV scheme but scaled with a factor 10−1. The
stopping time for all methods was determined by the maximum A-IQA value.

5.2 Result of Image Denoising

In figure 4 (a) we show the PSNR values that we have obtained for each grey-
scale image and noise level. We observe that the standard TV formulation does
not perform well compared to EAD and GETV in these cases. In figure 5 we
show close-ups of cameraman. We note that in all cases the error measures are
similar for the A-IQA values, however considering the visual quality it is obvious
that more details are preserved in GETV, i.e. the presence of sharp edges in the
cameraman image such as the handle of the camera.

With respect to the colour images, figure 6 shows examples from the Berkeley
dataset and the corresponding error measures are given in figure 4 (b). By com-
paring EAD and GETV for lower noise levels (5-15 standard deviations) we see
that the difference in PSNR and SSIM is at best marginal. However, considering
the variance, GETV is more robust than EAD. In figure 6 the visual differences
can be seen for some selected images. Note that it is primarily in the high-
frequency regions that GETV excels, consider e.g. the clarity of the document,
the visibility of waves and details in the grass in the horse image. For both gray-
scale and colour images, EAD tends to oversmooth the images. Furthermore, it
is obvious that the TV-method fails to handle these images when auto-tuning is
used. By manually tweaking the regularization parameter of the methods we can
improve the error measures for some images, however this approach is infeasible
for a large amount of images.
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Noisy EAD GETV TV

A-IQA: - 0.85 0.87 0.76
PSNR: 25.01 30.5 30.4 28.3
PSNR-W: 22.57 23.08 23.45 21.89
SSIM: 0.65 0.90 0.89 0.86

A-IQA: - 0.81 0.84 0.67
PSNR: 24.93 29.5 29.6 26.8
PSNR-W: 22.54 23.22 23.42 21.50
SSIM: 0.68 0.87 0.87 0.77

A-IQA: - 0.79 0.83 0.72
PSNR: 24.73 27.4 28.6 23.9
PSNR-W: 22.41 22.22 22.93 20.00
SSIM: 0.69 0.84 0.86 0.72

Fig. 6. Results from the Berkeley colour-image dataset with 15 standard deviation of
noise where GETV excels. Consider particularly the text on the document and the
grass behind the horse on the last row. Note that GETV in general preserves more fine
details than EAD and TV, which both tends to oversmooth the images.

6 Conclusion

In this work we have presented a novel variational approach to tensor-based
total variation. In particular, we have proposed a gradient energy total variation
functional which uses the gradient energy tensor. Our results suggest that the
GETV formulation is suitable for images containing high-frequency information
such as fine structures. Secondly, we showed by using the error measure A-IQA
that the diffusion formulation performs well in denoising applications compared
to EAD and TV.
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Abstract. In this paper, we propose a two-stage approach for color im-
age segmentation, which is inspired by minimal surface smoothing. In-
deed, the first stage is to find a smooth solution to a convex variational
model related to minimal surface smoothing. The classical primal-dual
algorithm can be applied to efficiently solve the minimization problem.
Once the smoothed image u is obtained, in the second stage, the seg-
mentation is done by thresholding. Here, instead of using the classical
K-means to find the thresholds, we propose a hill-climbing procedure to
find the peaks on the histogram of u, which can be used to determine
the required thresholds. The benefit of such approach is that it is more
stable and can find the number of segments automatically. Finally, the
experiment results illustrate that the proposed algorithm is very robust
to noise and exhibits superior performance for color image segmentation.

Keywords: image segmentation, minimal surface, primal-dual method,
total variation.

1 Introduction

Image segmentation is a fundamental and challenging topic in image processing,
and the minimal surface theory has been applied in this area for many years [6,
10,11,39]. To begin with, we will briefly review some related image segmentation
models, such as edge-based and region-based approaches.

The Geodesic Active Contour (GAC) model [10, 11] is a classical edge-based
model. This model employs the intrinsic geometry nature of the image to com-
pute minimal distance curves. The authors smooth the image before performing
the segmentation, and put considerable efforts to construct appropriate terms
with minimal surface property to advance the level set function. Basically, they
first apply a simple smooth procedure to the image, then provide the level set
framework to solve a sophisticated model. The re-initialization procedure is usu-
ally used to prevent the level set function generating undesired shapes during the
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curve evolution. However, the re-initialization process has its own side effects,
Li et al. [24] suggested a new variational formulation to avoid this procedure.

One of the most popular region-based models is the Chan-Vese (CV) model
[15] based on the piecewise constant Mumford-Shah (MS) functional [15], where
Chan and Vese implement the level set method.

Moreover, in order to segment a given image f , the MS model [27] deals with
the minimization of the following energy,

E(u, Γ ) =

∫
Ω

(u− f)2dx+ μ

∫
Ω−Γ

‖∇u‖2 dx+ λ |Γ | ,

where u approximates f , μ, λ are positive parameters, Γ is the collection of
the boundaries of the partitions Ωi inside Ω, |Γ | denotes the summation of the
lengths of Ωi, ∪K

i=1Ωi ∪ Γ = Ω, and Ωi ∩Ωj = ∅, ∀i 
= j, and K is the number
of partitions.

The MS model accomplishes two major purposes: one is to find a piecewise
smooth approximation u of the image f . This means u is differentiable on ∪Ωi,
the variation of u on each Ωi is small, and u can be discontinuous across the
boundaries of each Ωi. The other purpose is to find an edge set Γ separating u,
while |Γ | is as short as possible.

A simplified version of the MS model is the piecewise constant MS model, and
this is also known as the cartoon limit problem. The energy is rewritten as

E(ci, Γ ) =

K∑
k=1

∫
Ωi

(ci − f)2dx+ λ

K∑
k=1

|∂Ωi| , (1)

where K is the number of partitions, |∂Ωi| measures the perimeter of each Ωi,
u = ci is a constant on each open set Ωi.

TheCVmodel is equivalent tominimizing (1)with an additional area-penalizing
term. However, themodel is hard to solve in consequence of the two difficulties that
(i) the non-convexity of the energy, (ii) solving the two unknowns (a function u and
a contour Γ ) with different natures at the same time.

The difficulty (i) may lead to a local minimum, and due to the difficulty (ii),
the CV model has to solve m ODEs for n = 2m partitions, because m level set
functions ϕj (j = 1, . . . ,m) must be used. During each iteration time step, and

in each ODE, the non-smooth high-order derivative term, div(
∇ϕj

|∇ϕj | ) has to be

computed. Practically speaking, as a component of the ’image force’, this term
is implemented by a matrix (the same size as the image) contains the mean
curvature of each level set function approximated by a finite difference scheme.

Cai et al. [9] suggested a two-stage segmentation method to conquer the two
difficulties. In the first stage, they minimize a convex functional based on the MS
energy to obtain u (the smoothed version of the grayscale image f), and K-means
in the second stage will choose K − 1 thresholds and segment u into K parts.
Most importantly, the authors reveal the connection between image segmenta-
tion and image restoration, and it is the first time to handle the difficulty (ii) of
the CV model properly. Until recently, combined with the ’four color theorem’,
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the updated CV model [38] can segment any number of regions with four indi-
cator functions. But implementation of the ’four color theorem’ will add extra
workload. Moreover, the users have to compute the whole model again, if they
want different segmentation results, while in the two-stage method [9], since the
smoothed u is already computed in the first stage, the user can adjust the second
stage to give new thresholds for a different segmentation very quickly. For the
undesired non-convexity of the CV model, there are continuing works [4, 8, 14]
to improve the CV model based on different convex relaxation methods.

Besides of edge-based models and region-basedmodels, there are also other im-
portant segmentation methods, such as graph-based models. Yuan et al. [36,37]
proposed the continuous max-flow and min-cut approach. This method can get
a global minimum solution, and includes the above-mentioned [14] as a special
case, but in the max-flow algorithm [37], the indicator function is implemented
by a 3-dimensional matrix, called the label function. The size of the first 2 di-
mensions of this matrix is the same as the size of the image which related to each
pixel, and the size of the third dimension is equal to the number of segments.
This matrix has to be updated during each iteration, thus this algorithm is not
an easy breezy for the multiphase case. And it worth mentioning that Boykov [6]
extended the minimal surface idea to graph cuts.

In this paper, we adopt the strategy in [9] to propose a new two-stage segmen-
tation method. We improve [9] by three aspects. First, instead of two parameters
in the first step in [9], we use the minimal surface energy which has only one
parameter. Second, we use the concept of vectorial total variation (VTV) to han-
dle the color image segmentation problem, which is ignored in [9]. Third, in the
second step, we propose to use the hill-climbing method to replace the K-means
and thus we can find the required thresholds automatically and stably.

The rest of the paper is organized as follows. In Section 2, we review the VTV
and some thresholding methods. Then we present our method stage by stage
in Section 3. We suggest the convex model with the minimal surface property
for the first stage, and show that the model has a unique solution, then the
primal-dual schema is adopted to solve the discrete version of the convex model.
For the second stage, we give the detailed implementation of the hill-climbing
algorithm. In Section 4, we compare our method with a nonconvex segmentation
model [33]. Numerical experiments conform that the smoothing process is good
enough, and a straightforward segment method can give satisfactory results from
the smoothed image. Conclusions are given in Section 5.

2 Preliminaries

In this section, we recall the concept of VTV and the hill-climbing method.

2.1 Vectorial Total Variation

The vectorial total variation [7] is useful for color image processing. Let Ω be
a bounded convex region in R2, a given function u : Ω → RM . The VTV for a
color image u can be defined as:
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Ω

|Du| := sup
v∈V

{∫
Ω

−〈u, div υ〉 dx
}
, (2)

where V =
{
v|υ := (υ1, · · · , υM ) , v ∈ C1

c

(
Ω;RM×2

)
: |v| ≤ 1

}
, refer to [3,7] for

more details. The divergence operator div υ := (div υ1, · · · , div υM ) : Ω → RM .

The gradient operator ∇u :=
(
(∇u)1 , (∇u)2

)
: Ω → RM×2.

2.2 Some Thresholding Methods

Now we review some thresholding methods. The image is smoothed delicately
in the first stage, and in the second stage, we plan to adopt a simple algorithm
to segment the well smoothed image. Thresholding is considered as the simplest
image segmentation method, we will revisit some thresholding algorithms, and
show that the hill-climbing method is a more suitable one.

We compare the famous K-means [9, 20, 31] with the hill-climbing method
[2, 17, 29], and outline the advantages of the hill-climbing method. First, the
K-means model is NP-hard, and for efficiency consideration, it usually comes
with parallel execution support. The hill-climbing algorithm we consider detects
peaks of the color histogram, thus it is easier to compute because of dealing with
limited number of bins not all the pixels. Second, the K-means algorithm may
stick in a local minimum because of the nonconvexity of the model. For this
reason, it usually suffers from bad results because of the required misleading
initial values. While the hill-climbing algorithm will find all of the fixed peaks,
once the histogram is fixed. Third, K-means has to take another input parameter
K, and clusters the pixels into K groups. The hill-climbing algorithms only need
the histogram of the image, initial center values and the number of thresholds
are not required as input parameters. Considering the drawbacks of K-means,
the hill-climbing method is a better choice.

There are other histogram based thresholding methods. The image histogram
acting as a representation of pixel distribution (e.g., the gray value of the pixels
in the gray scale image) can be a useful tool for thresholding, for example,
the Otsu’s method [30], and it was extended to deal with color images in [28].
The authors separate the RGB channels and smooth them independently, after
apply their multi-level thresholding method, a region merging algorithm has to
be used to overcome over segmentation. While the hill-climbing algorithm [29]
deals with the 3D histogram instead of the independent channels, only those
peaks approved by all 3 channels are recorded, then the over-cut is avoided.
Starting from a random bin, the algorithm compares with the neighborhood
bins to find the uphill direction and moves along that direction until a peak is
reached. The bins that lead to the same peak are placed in the same group.

3 The Proposed Two-Stage Method

In this section, we will show the details of our two-stage segmentation method.
We will not try to achieve the two goals of finding the smooth approximation



Color Image Segmentation by Minimal Surface Smoothing 325

u of the image f and an edge set separating u at the same time, such as the
MS model. Alternatively, we first apply a sophisticated smoothing process to
clear out the singularities and useless details from the image, and our convex
model leads to a unique smooth image u. Here we will solve a single saddle-
point problem not an ODE system like in the CV model. What’s more, since we
do not consider the segmentation in this step, there is no large storage matrix
for implementation of the indicator functions, such as the max-flow algorithm.
In the second stage, we employ a simple hill-climbing algorithm to search the
K peaks, and use them as thresholds to segment u into K parts, no complex
computations involved in this step.

3.1 First Stage

Most images are deteriorated, and contain useless details for image segmentation.
For this reason, we will choose a convex model which is robust to noise like the
CV model, and we search the image manifold for the surface with a minimal
area, as a result, singularities are smoothed, while main features are kept.

Inspired by the two-stage algorithm [9] and MS functional [27], we consider
the model

E(u) = λ ‖u− f‖22 +
∫
Ω

√
1 + |∇u|2dx, (3)

where Ω ⊂ R2 is a bounded open connected set (in most cases, is a rectangle),
u is the approximation of the image f : Ω → RM , M = 1,3. The first term
is the data fidelity term. It provides an appropriate measure of the difference
between the image f and the approximation image u, and the second term
gives u reasonable smoothness [5]. λ is a positive parameter to make sure the
solution does not deviate too much from the measured data f , and also drops
some information to get a simple u. This process can be seen as applying image
restoration ideas to image segmentation. This model is first brought up in [7] as
an extension of the vectorial ROF model for image denoising.

The first three parts of section 3.1 are basically following [1] and [7]. We
briefly show how to include minimal surface property to the VTV, and we call
it the QMSVTV (Quasi-Minimal Surface Vectorial Total Variation). Then we
consider the dual form of the QMSVTV, and show the model (3) has a unique
solution. Finally, we employ the primal-dual approach to solve discrete setting
of the convex model in the last part of section 3.1.

Quasi-Minimal Surface Vectorial Total Variation. As pointed out in
[7, 11, 21], coupling all the color information is very important for the VTV.
First, we assume that all channels contribute equally to the VTV. Second, all
channels gain smoothness in scale, which implies that we need to minimize en-
ergy function involving the gradient of all channels. Last but not the least, we
argue that easy-to-compute is also a significant consideration in constructing the
energy.
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Starting from modern Riemannian differential geometry, Kimmel et al. [21]
considered images as Riemannian manifolds. In this way, the image can be seen
as a 2-dimensional surface embedded in a (2 +M)-dimensional space: (x, y) →
(x, y, βu1 (x, y) , . . . , βuM (x, y)). By taking account of the metric, they proposed
the area norm [21,32] as follow

S =

∫
Ω

√√√√1 + β2

M∑
i=1

|∇ui|2 + β4
1

2

M∑
i,j=1

(∇ui,∇uj)2,

where β is a constant scale factor multiplying the intensity values. In this paper,
we use

S :=

∫
Ω

√√√√1 +

M∑
i=1

|∇ui|2, (4)

and call it the QMSVTV, because of the ease of implementation and each channel
is equally smoothed, most importantly, the minimal surface property is well
preserved.

There are other literatures on the minimal area/mean curvature, for exam-
ple, Zhu, Tai and Chan [39] proposed a denoising model employing the mean
curvature of the image surface, and this model can preserve corners and im-
age contrast. With Γ -convergence technique and the minimal surfaces theory,
Kluzner et al. [22, 23] provided an alternative for the MS functional.

Dual of Quasi-Minimal Surface Vectorial Total Variation. Because the

Fenchel transform of the convex functional f(x) =

√
1 + |x|2 is√

1 + |x|2 = sup

{
x · y +

√
1− |y|2 : y ∈ RM |y| ≤ 1

}
,

and the supremum is attained when y = x√
1+|x|2

[16]. Similar to Section 2.1, we

can define [1]

J (u) := sup
υ∈V

∫
Ω

(
−u div υ +

√
1− |υ|2

)
dx. (5)

From Theorem 2.1 in [1], we know

J (u) =

∫
Ω

√
1 + |∇u|2, u ∈W 1,1(Ω).

Existence and Uniqueness of the Model (3)

Proposition 1. The energy functional E in (3) is weakly lower semicontinuous
with respect to the L1 topology.
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Proof. Let un ⇀ ū (weak convergence in L1(Ω)). For any v ∈ V , div υ ∈ C (Ω),
and from Fatou’s lemma,

λ ‖u− f‖22 +
∫
Ω

(
−ūdiv υ +

√
1− |υ|2

)
= lim

n→∞
λ ‖u− f‖22 +

∫
Ω

(
−un div υ +

√
1− |υ|2

)
≤ lim inf

n→∞
λ ‖un − f‖22 + J (un) .

Taking the supremum over v ∈ V , and referring to (3), we get

E(u) = λ ‖u− f‖22 + sup
υ∈V

∫
Ω

(
−ūdiv υ +

√
1− |υ|2

)
≤ lim inf

n→∞
λ ‖un − f‖22 + J (un) .

��

Proposition 2. The energy functional E in (3) is strictly convex.

Proof. The proof is obvious from the definitions. ��

Theorem 1. (Existence-uniqueness) The minimization problem inf
u∈BV (Ω)

E (u)

has a unique minimizer.

Proof. From Theorem 3.1 and Theorem 4.1 in [1], we know there is a

u∗ = argmin
u∈L1(Ω)

E (u), and E(u) = λ ‖u− f‖22 +
∫
Ω

√
1 + |∇u|2dx < ∞, then∫

Ω

√
1 + |∇u∗|2 <∞.

We use the dual relationship, and get sup
υ∈V

∫
Ω

(
−u∗ div υ +

√
1− |υ|2

)
dx <

∞, then sup
υ∈V

∫
Ω
(−u∗ div υ) dx <∞, hence u∗ ∈ BV (Ω). Since BV (Ω) ⊂ L1(Ω),

u∗ = argmin
u∈BV (Ω)

E (u). Uniqueness of minimizers follows immediately from strict

convexity. ��

The Discrete Setting and Implementation Details. In this section, we
will give the discrete version of the model (3), and solve it with the primal-dual
algorithm to get the smoothed image.

The discrete setting of the model (3) is

min
u
λ ‖u− f‖22 +

√
1 + ‖∇u‖22, (6)

the detailed definitions of the operators can be found in section 2.1.
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There are many algorithms, such as [12, 18], can be adopted to solve this
convex minimization problem, similar to [13], we choose the primal-dual al-
gorithm [12] because of its easy implementation, and we can easily proof the
convergence of the algorithm.

We write the saddle-point formulation of (6)

max
q

min
u,p

λ ‖u− f‖22 +
√
1 + ‖p‖22 + 〈p−∇u, q〉 . (7)

Applying the primal-dual method, we arrive at the following 3 minimization
subproblems:

qk+1 = argmax
q

{〈
pk −∇uk, q

〉
− 1

2σ

∥∥q − qk
∥∥2
2

}
uk+1 = argmin

u

{
λ ‖u− f‖22 +

〈
−∇u, qk+1

〉
+

1

2τ

∥∥u− uk
∥∥2
2

}
pk+1 = argmin

p

{√
1 + ‖p‖22 +

〈
p, qk+1

〉
+

1

2τ

∥∥p− pk
∥∥2
2

}

uk+1 = 2uk+1 − uk

pk+1 = 2pk+1 − pk.

Algorithm 1 summarizes the procedure of solving the 3 minimization subprob-
lems.

Algorithm 1. Solving (7) by the primal-dual algorithm

1. Initialization
2. Solve the 3 subproblems:

Do k = 0, 1, . . .,, until
‖uk+1−uk‖
‖uk+1‖ < ε

1) solve the 1st subproblem: qk+1 = σ
(
pk −∇uk

)
+ qk

2) solve the 2nd subproblem: uk+1 = 1
2λτ+1

(
2λτf − τdivqk+1 + uk

)
3) solve the 3rd subproblem: using the Newton iteration
4) update uk+1, pk+1

3. Output: u

3.2 Second Stage

In this stage, the hill-climbing method finds thresholds from the smoothed im-
age u got from the first stage. The image matrix u is grouped into a 3D his-
togram, then the hill-climbing algorithm attempts to locate the peaks on the
color histogram. These peaks are used as thresholds to segment the image based
on different distance measures. The advantage of this step is that, for different
segmentation results, just simply regroup u into a different histogram, and the
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hill-climbing algorithm will find a new set of peaks to thresholding the smoothed
image data u. Figure 1 shows the peak for the 1 channel case, for a single bin,
it only has up to two neighbors (Figure 2).

The hill-climbing method in this paper is presented in Algorithm 2. A few
modification is made to the hill-climbing algorithm in [29]. (i) We loop through
each bin of the 3D histogram to find the peaks, if the number of pixels falling
into the current bin is larger than all it neighbors’, then we consider there is a
peak in this bin [19], and the possible neighbors for the 3 channels case is shown
in Figure 2. In [29], the authors use a Dijkstra-like algorithm to move along
the uphill direction until a peak was reached, then start search again from an
unclimbed bin until all bins have been visited. This algorithm requires extra data
structures, such as the stack, to store those unclimbed bins, and this will cause
inefficiency for the numerical experiments here. (ii) We average the intensity
values of the pixels falling into the peak bin, and use this average value as the
peak. After getting all the peaks, we compute the distance between these peaks
and each pixel in the image under certain measure. And the pixel is associated
with the nearest peak. While in [29], they do not compute the peaks, all bins
leading to certain peak bin are grouped together, then it is unfair for those pixels
falling into the valley bin, because some of them may belong to the other group.

Fig. 1. histogram for 1 channel Fig. 2. number of neighbors

Algorithm 2 The hill-climbing algorithm for the color image

1. Initialization:
Group image I into matrix A(N,N,N) (N is the number of bins per channel)
A(i, j, k) = the number of pixels fail into the (i, j, k) bins/matrix
2. Find peaks of A:
For all A(i, j, k)
If A(i, j, k) > all its neighbors
1) average the intensity values of those pixels in the (i, j, k) bin
2) store this average value as a peak
EndIf
EndFor 3. Output: peaks c
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4 Experimental Results

In this section, to demonstrate the superior performance of our convex model,
we compare the proposed method with two state of the art methods: the SW-
Potts model [33] and the FRC (Fuzzy Region Competition) model [25]. The
SW-Potts model uses the dynamic programming and the ADMM algorithm to
minimize the Potts model which is non-convex. And the FRC model is solved by
the alternative minimization method. To standardize the experiments, all test
images are transferred to the Lab space from the RGB color space except in the
3-SHAPE example, because we add noise to each RGB channel of the 3-SHAPE
image.

4.1 2-phase Segmentation

The PLANE image in the first row of Figure 3 is from the Berkeley segmentation
dataset [26]. It can be seen that our method cuts the plane from the background
sky, and the picture is divided into two reasonable parts, while the FRC model
fails and the SW-Potts model over cuts the image into 5 parts.

4.2 Multi-phase Segmentation

The FLOWER image in the second row of Figure 3 is a commonly used image
for testing variational image processing techniques. Our method successfully
segments the picture into 4 parts: the sky is grouped into one part, the flowers
are well cut by colors, and the stems and torus are count as a whole. But the FRC
model loses some detail features and the SW-Potts model divides the image into
51 segments after we carefully choose the parameter. Because of the convexity of
the target energy, and taking the advantage of the uniqueness for the minimizer,
our algorithm finds the optimal solution, instead of getting stuck in one of the
local minima.

The BIRD image in the third row of Figure 3 is also from the Berkeley seg-
mentation dataset. Our segmentation result exhibits the gray color on the tails
and also the detailed shape of feathers on wings. The FRC model fails to show
the tails. Although the SW-Potts model also divides the image into 4 parts, the
result is vague.

The PELLET image in the fourth row of Figure 3 is from the USC-SIPI image
database [35]. Our result presents decent segmentation based on the color of the
pellets, but the other two models do not get reasonable segments, for example,
the SW-Potts model gets 37 different colors.

The 3-SHAPE image in the fifth row of Figure 3 is an extension of the grayscale
example in [34]. The target image is corrupted by strong Gaussian noise with
m = 20, σ = 200. We use our model (6) to preprocess it, and notice that the
majority of noise is smoothed out. Then we use the hill-climbing algorithm to
segment the smoothed image into 4 parts separately, and the basic important
colors and shapes are revealed. The FRC model recovers and separates the 3
different shapes, but messes up on the image boundary. The SW-Potts model
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(a) (b) (c) (d) (e)

Fig. 3. Segmentation comparison: (a) given image, (b) FRC, (c) SW-Potts, (d) solution
u from (6), (e) our method

fails to segment the red ring object and a few details are missing even it also
gets 4 segments.

The Table 1 shows the comparison of the CPU time, it is obvious that our
method is faster than the FRC model and the SW-Potts model.

Finally, we will show ’one smoothing multiple segmentations’, this means we
smooth the image once, then adjust the ’light-weight’ hill-climbing method to
cut the image into different number of parts. The baboon image in Figure 4
is from the USC-SIPI image database, and Figure 4 reveals different levels of
features. For instance, compared with Figure 4b (3 segments) and Figure 4c (4
segments) , Figure 4d (6 segments) distinguishes between the eyes and the cheek.
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(a) (b)

(c) (d)

Fig. 4. Multiple segmen-
tation results

Table 1. CPU time (seconds) for Figure 3

�������Fig
Model

FRC SW-Potts Ours

PLANE 16.45 23.56 7.45

FLOWER 48.41 44.79 9.16

BIRD 34.58 20.32 1.87

PELLET 20.47 8.95 3.77

3-SHAPE 18.96 14.87 0.85

5 Conclusion

In this paper, we have proposed a convex image smoothing model followed by a
thresholding algorithm which can divide images efficiently. The fast primal-dual
algorithm was presented to minimize the convex functional with minimal surface
properties. The attractive features of the model guarantee a unique and smooth
solution. We have successfully demonstrated our approach on various images.
For color images, we improve the hill-climbing algorithm to find more precise
centers. And the future work could be using mixed norms for the data-fidelity
term to yield better results.
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Abstract. In this paper, overlapping domain decomposition methods
(DDMs) are used for solving the Rudin-Osher-Fatemi (ROF) model in
image restoration. It is known that this problem is nonlinear and the min-
imization functional is non-strictly convex and non-differentiable. There-
fore, it is difficult to analyze the convergence rate for this problem. In
this work, we use the dual formulation of the ROF model in connec-
tion with proper subspace correction. With this approach, we overcome
the problems caused by the non-strict-convexity and non-differentiability
of the ROF model. However, the dual problem has a global constraint
for the dual variable which is difficult to handle for subspace correction
methods. We propose a stable unit decomposition, which allows us to
construct the successive subspace correction method (SSC) and parallel
subspace correction method (PSC) based domain decomposition. Nu-
merical experiments are supplied to demonstrate the efficiency of our
proposed methods.

Keywords: ROF Model, Dual Formulation, Domain Decomposition
Methods (DDMs), Successive Subspace Correction (SSC), Parallel Sub-
space Correction (PSC).

1 Introduction

The ROF model [22] plays an important role in image restoration, which is
also instrumental in boosting the use of total variation (TV)-regularization in
other image processing tasks. Over the last two decades, many fast and efficient
algorithms have been proposed to solve the ROF model.

In general, these algorithms can be classified into three categories based on
the nature of manipulating the primal and dual variables and one can refer
to [23]. The first category is the primal approach, such as the gradient descent
method (cf. [1,19,22,30,31,32,33]). In order to accelerate these methods, the most
popular algorithms were proposed based on Bregman iteration (cf. [14,34,35]),
augmented Lagrangian methods (cf. [15,36]), graph cuts method, additive opera-
tor splitting (AOS), and multigrid method. A concise outline of these approaches
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can be found in [37]. The second one is the dual approach. A typical and efficient
approach (see, e.g., [5]) is to apply the KKT condition to the dual formulation
for ROF model, which allows to solve the dual variable. The last one is the
primal-dual approach. This type of approach was introduced in [2,3]. Extensive
applications to image processing were studied in [4,39]. Domain decomposition
methods (DDMs) and multigrid methods are known to be efficient for the com-
putation of different partial differential equations. Their applications to image
processing are still very limited. The DDMs can break down a large problem into
a sequence of subproblems with much smaller sizes, so better-conditioned solvers
can be constructed over each subdomain. They also allow for parallel computa-
tions with the pretty good load balance and speed-up efficiency. In this work,
we shall use the space decomposition and subspace correction ideas proposed
in [24,25,26,27] for general nonlinear minimization problems. Especially, we will
use a parallel subspace correction (PSC) algorithm and a successive subspace
correction (SSC) algorithm to get some efficient algorithms for solving the ROF
models with an explicit estimate of the convergence rate.

Before explaining the details for the approaches we are going to use, we would
like to review some existing studies using DDMs for image processing. In [13],
DDMs with Dirichlet boundary condition were studied for image denoising re-
lated to Gaussian curvature. Overlapping DDMs were used there based on a
primal-dual formulation for the anisotropic total variation problem [20]. The
PSC and SSC were applied to variational image restoration and segmentation
in [9,28,37]. In these applications, the original problem was successfully decom-
posed into smaller-size subproblems, which were solved in parallel. Especially
in [37], a coarse mesh space correction was considered. Xu et al. [38] also ap-
plied the DDMs to image deblurring. Chang et al.[6] extended the DDMs for the
nonlocal total variation(NLTV) based image restoration, where the authors also
pointed out that their proposed DDMs for NLTV can be adopted to solve the
ROF model directly. In addition to these works, some variants of the classical
DDMs have been proposed in [10,11,12,17]. In [10,11,12], the authors introduced
the surrogate functional to form an approximation(or iterative proximity-map)
of the subproblems. Then the subproblems were solved by oblique thresholding.
Their proposed algorithms were very efficient in image restoration and compress
sensing. At the same time, the weak convergence of the algorithm was proved.
In [17], they studied the TV − L1− L2 model. The convergence and monotone
decay of the associated energy for SSC were guaranteed. We would also like to
mention that a non-overlapping domain decomposition method was proposed by
Hintermüler and Langer [18] for the dual formulation of the anisotropical total
variation based image denoising. There, fast solvers for the subproblems and
convergence analysis of the algorithm were given as well.

It is known that the minimization functional for the ROF model is non-
differentiable. It is convex, but not strongly convex in the BV-space (space of
functions with bounded variations). The associated partial differential equation
is nonlinear degenerate with special anisotropic diffusion effect. We could use
space decomposition ideas to get domain decomposition and mutligrid to work



Domain Decomposition Methods for Total Variation Minimization 337

for the ROF model. It is easy to prove convergence for the resulting algorithms,
but it is difficult to prove the convergence rate. Normally, strong convexity is
needed as in [24,27]. So far, there is no convergence rate estimate for applying
DDMs to the ROF model. In this work, we shall rely on the dual model and use
proper space decomposition techniques to get a domain decomposition method.
We shall also estimate the convergence rate for the proposed algorithms.

In the following, we focus on solving the dual model using subspace correction
methods in our paper. The paper is organized as follows. We introduce the dual
formulation and then construct the overlapping DDMs in Section 2. Numerical
examples for the proposed algorithms are listed in Section 3. At last we conclude
this paper in Section 4.

2 Dual Formulation and the Overlapping DDMs

The ROF model is to restore a noisy image g on a domain Ω (e.g. in R2) through
the following minimization problem:

min
u∈BV (Ω)

{
λTV (u) +

1

2
‖u− g‖2L2(Ω)

}
, (1)

where λ > 0 and BV (Ω) is the space of functions of bounded variation, and the
total variation of u is defined as in [1] by

TV (u) := sup
p∈K

∫
Ω

u divp dx with (2)

K :=
{
p = (p1, p2) ∈ (C1

0 (Ω))2 : |p| := (p21 + p22)
1/2 ≤ 1

}
. (3)

As usual, p is known as the dual variable, while u is the primal variable.
In Chambolle [5], it was observed that the solution for the ROF model can

be obtained by solving the following dual problem:

inf
p∈K

{∫
Ω

(λdivp− g)2dx
}
, (4)

and then get u through:
u = g − λdivp. (5)

2.1 Problem Description

As the digital images consist of discrete pixels, we study the discrete model in
this paper. Hereafter, we use the following notations. For simplicity, set Ω :={
(i, j) | 0 ≤ i ≤ m, 0 ≤ j ≤ n

}
, where the image g has the resolution of

(m+ 1)× (n+ 1). Then define the gradient and divergence of each ui,j over Ω
with the Neumann boundary condition as

(∇u)i,j =
(
(∇u)1i,j , (∇u)2i,j

)
, ∀ (i, j) ∈ Ω,
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where

(∇u)1i,j =
{
ui+1,j − ui,j, i < m,

0, i = m,
(∇u)2i,j =

{
ui,j+1 − ui,j , j < n,

0, j = n.

The divergence of p = (p1, p2) ∈ R2 satisfying div = −∇∗ in the discrete form
is defined as

(divp)i,j =

⎧⎪⎨⎪⎩
p1i,j − p1i−1,j ( as 0 < i < m )

p1i,j ( as i = 0 )

−p1i−1,j ( as i = m )

+

⎧⎪⎨⎪⎩
p2i,j − p2i,j−1 ( as 0 < j < n ),

p2i,j ( as j = 0 ),

−p2i,j−1 ( as j = n ).

Denote the discrete form for K as

K :=
{
p : |pi,j | ≤ 1, ∀(i, j) ∈ Ω

}
, (6)

and the total variation in the discrete form as

TVh(u) := max
p∈K

∑
(i,j)∈Ω

ui,j(divp)i,j .

One can give an equivalent definition as

TVh(u) :=
∑

(i,j)∈Ω

|(∇u)i,j |. (7)

Then the discrete ROF model reads

min
u

{
λTVh(u) +

1

2
‖u− g‖2Ω

}
, (8)

where the ‖ · ‖Ω denotes the discrete L2 norm over the index set Ω. In view of
this, we consider the following dual formulation of (8):

min
p∈K

{
D(p) :=

∑
(i,j)∈Ω

(λ(divp)i,j − (g)i,j)
2
}
. (9)

Notice that the functional D(p) is convex but not strictly convex, so the
problem (9) may have non-unique minimizers in K. To ensure the uniqueness,
one may modify the energy functional (see, e.g., [8,16]) by adding the additional
regularization term for p. However, it will change the problem. For our proposed
algorithms, the non-uniqueness of the minimizer for the dual problem does not
pose a problem and we just need one of the minimizers p∗ to resolve the primal
variable via u∗ = g − λdiv p∗. Note that the minimizer for the ROF model is
unique.
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2.2 General Setup for DDMs

To use DDMs, we first decompose the domainΩ into subdomains and then use the
decomposed subdomains to decompose the constraint set K.We illustrate a sim-
ple case in Figure 1 (a). Here, we first divide the domain into two non-overlapping
subdomains by the center red line. Then we extend these two non-overlapping sub-
domains by including points that have a distant order to decompose the constraint
setK, and we need to use the “Partition of unity functions” (PUFs) with respect
to the overlapping subdomains. Figure 1 (b) shows the PUFs θ1 and θ2 for this
special partition. In Figure 2 of Section 3, details about the decomposition used
for the numerical experiments will be given.

(a) (b)

Fig. 1. (a) Domain decomposition Ω = Ω1 ∪Ω2 with the overlapping size δ; (b) PUFs
θ̂1(red line), and θ̂2(green line)

Hereafter, we assume that the discrete computational domain Ω has been

decomposed to M overlapping subdomains Ω =
M⋃
s=1

Ωs (M ≥ 2) and θs, s =

1, 2, · · ·M , are the PUFs satisfying the following properties:

(i)

M∑
s=1

(θs)i,j ≡ 1, (θs)i,j ≥ 0, ∀ (i, j) ∈ Ω; (10)

(ii) supp(θs) ⊂ Ωs, 1 ≤ s ≤M ; (11)

(iii) ‖∇hθs‖∞ ≤ C0

δ
, 1 ≤ s ≤M, (12)

where ∇h is a proper discrete gradient operator (forward difference, for exam-
ple), C0 is a positive constant independent of δ, and ‖ · ‖∞ is the L∞-norm for
discrete functions with values at the grid points. See PUFs in Figure 1 (b) for
1-dimensional case in the discrete setting (M = 2).

Using the PUFs, we can define the decomposed constraint sets as

Ks =
{
p : |(p)i,j | ≤ (θs)i,j , (i, j) ∈ Ω

}
, 1 ≤ s ≤M. (13)

Then, it is easy to see that

K =

M∑
s=1

Ks. (14)
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This decomposition means that for any p ∈ K, we can find ps ∈ Ks such that

p =
M∑
s=1

ps. In addition, for any ps ∈ Ks, we have
M∑
s=1

ps ∈ K.

2.3 Proposed DDMs

As we have finished the decomposition of domain Ω and constraint set K, we
are now ready to present the DDMs for the dual problem (9). Taking α > 0
as the relaxation parameter, the parallel subspace correction (Algorithm I) and
successive subspace correction (Algorithm II) algorithms are given below.

Algorithm I. Parallel Subspace Correction (PSC) Method

1. Initialization: choose p0 and select a relaxation parameter α.
2. For n = 0, 1, · · · , find pn+1 in the following two steps:

(i) Find {q̂n
s }Ms=1 in parallel for s = 1, 2, · · · ,M, such that

q̂n
s = arg min

v∈Ks

D
(
v +

∑
t�=s

θtp
n
)
, s = 1, 2, · · · ,M. (15)

(ii) Compute pn+1 by

pn+1 = (1 − α)pn + α

M∑
s=1

q̂n
s , (16)

3. Endfor till some stopping criterion meets.

Algorithm II. Successive Subspace Correction (SSC) Method

1. Initialization: choose p0 and select a relaxation parameter α.
2. For n = 0, 1, · · · , find pn+1 in the following two steps:

(i) Find {q̂n
s }Ms=1 sequentially for s = 1, 2, · · · ,M, such that

q̂n
s = arg min

v∈Ks

D
(
v +

∑
t<s

qn
t +

∑
t>s

θtp
n
)
, (17)

and then define

qn
s = (1− α)θsp

n + αq̂n
s .

(ii) Update

pn+1 = (1 − α)pn + α

M∑
s=1

q̂n
s .

3. Endfor till some stopping rule meets.



Domain Decomposition Methods for Total Variation Minimization 341

In order to guarantee pn+1 be in K, it is sufficient to choose α ∈ (0, 1],

for Algorithm II and then we have |pn+1| ≤ (1 − α)|pn| + α
M∑
s=1

|q̂n
s | ≤ 1. For

Algorithm I, a sufficient condition to guarantee pn+1 ∈ K is to choose α ∈
(0, 1/M ]. In practice, it is possible to choose α bigger and still retain convergence
of the algorithms and guarantee that the solution at convergence is in K. For
both algorithms, bigger relaxation parameter α will give faster convergence.

We see that the original minimizing of (9), which is normally large in size, is
now decomposed into a number of subproblems (15) and (17) with much smaller
sizes. Moreover, we can use parallel processor for both algorithms. The parallel
degree of Algorithm I is higher than Algorithm II, as the M sub-minimization
problems can be computed in parallel. However, Algorithm I usually converges
slower than Algorithm II, since it does not update the iterative solutions in a
timely manner. Algorithm II can be also computed using parallel processor if
the subdmaims are colored properly, see section 3 for some more details. Indeed,
subproblems defined on the subdomains with the same color are independent of
each other, and therefore can be solved in parallel [6].

The algorithms proposed here is essential the algorithms proposed in [24]
applied to decomposition (14) for the dual problem. The essential difference
between the above algorithms with those in [24] mainly lies in two aspects. First,
the minimization functional is neither strongly and nor strictly convex. Second,
the sub-minimization problems (15) and (17) do not have unique minimizers.
These bring about significant difficulties for the analysis and lead to different
convergence behaviors as well. In a forthcoming paper, we will show some details
about the convergence analysis of this algorithm. Letting p∗ be one of the exact
minimizer of the dual problem (which is not unique as well), we can deduce the
following results for Algorithm I and Algorithm II:

‖un − u∗‖L2(Ω) ≤
C√
n
, (18)

where un := g − λdivpn, u∗ := g − λdivp∗, C is a positive constant, which
mainly depends on parameters C0,M, α, δ, λ and the initial value p0. Obviously,
the proposed DDMs are convergent with the rates O(n−1/2).

The algorithm for subproblems of the proposed DDMs is given as follows. In
order to solve (15) and (17), we can apply the gradient projection methods (GP)
similarly to [5]. One can choose other solvers [7,21] for the subproblem. Here,
the divergence for the subproblems is just the restriction of the divergence for
the entire domain to the subdomains. We only present the algorithm to solve the
subproblems for Algorithm I. Let p be the given initial value for per iteration.

Denoting q0
s :=

∑
t�=s

θtp and gs =
g

λ
− divq0

s , we shall solve the minimization

problem as

v∗
s = min

v∈Ks

{
Ds(v) :=

∑
(i,j)∈Ωs

((divv)i,j − (gs)i,j)
2
}
.
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By KKT conditions, there exists a Lagrange multiplier μs ≥ 0, such that D′
s(v̂

∗
s+

q0
s)+2μsv̂

∗
s = 0, associated with either μs > 0 as |v̂∗

s | = θs, or μs = 0 as |v̂∗
s | < θs,

where D′
s(·) is the Gâteaux derivative. Thus

θi
(
− λ2∇(divv̂∗

s − gs)
)
+

∣∣ − λ2∇(divv̂∗
s − gs)

∣∣v̂∗
s = 0.

Therefore, the iterative scheme of semi-implicit gradient descent method is con-
structed to obtain v∗

s as follows:

v̂n+1
s =

v̂n
s + θsτ

(
∇(divv̂n

s − gs)
)

1 + τ
∣∣∇(divv̂n

s − gs)
∣∣ , n = 0, 1, · · · (19)

with suitable iterative step τ > 0 from the initial value v̂0
s . One can readily

obtains |(v̂n+1
s )i,j | ≤ θs, ∀ (i, j) ∈ Ωs, i.e. v̂

n+1
s ∈ Ks. Following [5], one can

prove that the algorithm is convergent if τθs ≤ 1
8 .

3 Numerical Experiments

In this section, we supply several numerical experiments to show the performance
and convergence of the proposed DDMs.

First, the domain Ω is partitioned in a checkerboard-like overlapping-blocks,
c.f. Figure 2. Then we extend the non-overlapping blocks to get overlapping
blocks. We assume that each of the extended blocks can be painted with one
color such that the blocks with the same color will not intersect each other.
From the four-color theorem, we know that 4 colors are enough to paint the
extended blocks if the overlapping size is not bigger than half of the size of
non-overlapping blocks.

We define Ωi to the union of the blocks of the same color. Accordingly, we

have Ω =
4⋃

i=1

Ωi. Each subdomain Ωi, consisting of mi disjoint blocks painted

with the same color, i.e. the ith color, See Figure 2. Hence, the total number

of blocks that cover Ω is mT =
4∑

i=1

mj . Here the blocks covering Ω are defined

by {Ωblock
j }mT

j=1. Define Ωin
j = Ωblock

j \ (
⋃
i�=j

Ωblock
i ), δj = dist(∂Ωblock

j \ ∂Ω,Ωin
j ),

and overlapping size δ = min
1≤j≤mT

δj . In Figure 2, the blocks (defined by Ω̃i)

with solid lines are non-overlapping blocks, and the blocks with dotted lines are
the overlapping extended blocks. Define subsize is the size of non-overlapping
blocks, i.e. subsize = max

1≤j≤mT

min{ljx, ljy}, with the width of non-overlapping

blocks Ω̃block
j (the small regions in Figure 2 with solid lines) in horizontal or

vertical directions lx and ly. If assuming that the original domain Ω is square as
[0, L]2 and blocks are decomposed to be squares with same sizes (except for the
blocks adjacent to the boundaries of Ω), it holds

√
mT ×subsize = L. In the real

computation, the domain Ω is discretized to be the grid of size (W1−1)×(W2−1)
if the image hasW1×W2 pixels, i.e. each pixel is considered to be as one grid point
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Fig. 2. Domain decomposition with coloring technique, M = 4,m1 = 9,m2 = 6,m3 =
6,m4 = 4 and mT = 25. The overlapping blocks (dotted lines) are generated by ex-
tending the non-overlapping blocks (solid lines).

and the distance of two adjacent pixels in the horizontal or vertical directions is
set to be 1.

We give the numerical examples only by Algorithm II via coloring technique
stated above. The image “Cameraman” in Figure 3(a) are tested. Define energy

E(p) :=

m∑
i=0

n∑
j=0

(λdivp− g)2i,j . (20)

The image resolution is (m+1)×(n+1). The following tests are qualified by the
the decreasing of the energy defined by Energy := (E(pDDM )− E(p∗)) /E(p∗),
where p∗ is approximated by the GP methods [5] after 1.0 × 107 iterations
without DDM, and pDDM is computed by our proposed DDMs. Assume that
the data g is contaminated by an additive zero-mean white Gaussian noise with
standard deviation σ. Nin is the iteration number for subproblems. Set σ = 50,
λ = 80, and the overlapping size δ = 4(unless specified differently).

3.1 Performance and Convergence of the Proposed DDMs

The restored images, and the differences between the solutions by proposed
DDMs and the exact minimizer are shown in Figure 4 at iteration 103. The pro-
posed DDMs (Figure 4 (c)) perform as good as the gradient projection method
(Figure 4 (b)). Inferred from Figure 4, the denoising results are good enough
within 3 iterations (Figure 4 (d)-(f)) of the proposed DDMs. Furthermore in
Figure 4 (g), the differences located at the boundary of the subdomains are
much bigger than that anywhere else after the first iteration. As the iteration
goes on, the differences near the boundary of subdomains become small (Figure
4 (h)-(j)). Indeed, the proposed DDMs converge by observing Figure 3 (b), where
we show the curve of the energy decay.

3.2 Convergence v.s. Overlapping Size δ, subsize and Relaxed
Parameter α

First, we test how the convergence performance relies on the overlapping size δ by
setting δ = 4, 8, 16, and 32. By observing the results in Figure 5 (a), the DDMs
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(a) (b)

Fig. 3. (a)Cameraman with resolution 256 × 256; (b)Energy decay v.s. iteration num-
ber, with α = 1, τ = 1

4
, subsize = 128, mT = 4, δ = 4, σ = 50, λ = 80, Nin = 500

converge fast when overlapping size becomes large. Second, we test how the con-
vergence rate relies on the number of subdomains by setting subsize = 8, 16, 32
and 64 (number of blocksmT = 32× 32, 16× 16, 8× 8, and 4× 4). The results are
shown in Figure 5 (b). The convergence becomes fast when the size of subdomain
becomes small. Since we use coloring techniques that fixes M = 4, the smaller
size of the subdomain, the relative larger is the overlapping size. Third, we test
our DDMs with respect to the relaxed parameter α by setting α = 1/8, 1/4, 1/2
and 1, and see the results in Figure 5 (c). The DDMs converge faster as α is much
closer to 1, and one shall fix α to be 1 in order to achieve better performance in
real computation.

3.3 Sensitivity to the Regularized Parameter

We test the performance of the proposed DDMs with respect to the regularized
parameter λ. The energy decay is shown in Figure 5(d), that implies that our
proposed DDMs are quite sensitive to the parameter λ. Therefore, the two-
level method with additional coarse mesh shall be considered to accelerate the
proposed DDMs.

3.4 Performance of Parallel Implementation

At last, we realize Algorithm II in parallel. Coloring technique is adopted as Fig-
ure 1, and the subproblems defined on the subdomains with the same color can
be computed in parallel. The algorithm coded by C(OpenMP) runs on the work-
station (Dell Precision-WorkStation-T7500) with Intel (R) Xeon(R) CPU X5650
2.67GHz×2(12 cores), and 10G Ram. Each subproblem with the same color is
computed using one single core. Therefore, there are at most 12 subproblems
are computed in parallel at the same time. We consider the image “Lena” with
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(a) (b) (c)

(d) (e) (f)

(g) (h)

(i) (j)

Fig. 4. α = 1, τ = 1
4
, subsize = 128, mT = 4, δ = 4, σ = 50, λ = 80, Nin = 500. Noised

Image (a); Denoised image without DDMs (b) and denoised by proposed DDMs(c);
The denoised images within first 3 iterations in (d)-(f); Errors between the iterative
results(within the first 3 iterations) and the exact solution in (g)-(i); Errors between
the solutions by DDMs after 100 iterations and the exact solution in (j).
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(a) (b)

(c) (d)

Fig. 5. (a) Convergence v.s. overlapping size δ; (b) Convergence v.s. subsize(or number
of blocks mT ); (c) Convergence v.s. relaxed parameter α; (d) Energy decay with respect
to the regularized parameter λ.

the resolution 2048× 2048, and the noise level σ = 50. The parameters λ = 60,
and α = 1. The algorithm stops after n = 10 outer iterations, while Nin = 500.
For the domain decomposition, we set subsize = 16, and overlapping size δ = 4.
That is to say, there are mT = 128×128 blocks. At most mT /4 subproblems can
be computed independently, that also depends on the cores of the workstation.

We present the time table by using different cores in Table 1. Meanwhile, the
speed-up ratio and speed-up efficiency are adopted to measure the performance
of the parallel computing. The speed-up ratio is computed by the ratio of the
elapsed time by multiple cores to the time by one single core, and the speed-up
efficiency is the ratio of the speed-up ratio to the number of cores. Obviously, the
speed-up ratio can not exceed the maximum number of cores, and the efficiency
can not exceed 1. The bigger the values are, the better is the proposed algorithm.

Table 1. Parallel test: * denotes blank

Number of Cores 1 2 4 8 12

Elapsed Time 1074 540 273 146 102

Speed-up Ratio * 1.99 3.93 7.35 10.43

Speed-up Efficiency * 0.99 0.98 0.92 0.88
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Inferred from the table, the better speed-up ratio and efficiency are obtained.
Especially, the speed-up efficiency is not less than 0.88. Therefore, our proposed
algorithm is quite suitable for parallel computing.

4 Conclusion

We have proposed the efficient one-level DDMs for the dual formulation of ROF
model, and the convergence rates are deduced as well. Extensive numerical ex-
periments demonstrate the efficiency of the DDMs. In the future, the two-level
corrections and multigrid methods should be adopted to accelerate and increase
the robustness of the DDMs. The dual formulation based model with more ap-
plications in image processing should be considered as well.
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Abstract. We present a novel approach to the reconstruction of depth
from light field data. Our method uses dictionary representations and
group sparsity constraints to derive a convex formulation. Although our
solution results in an increase of the problem dimensionality, we keep
numerical complexity at bay by restricting the space of solutions and by
exploiting an efficient Primal-Dual formulation. Comparisons with state
of the art techniques, on both synthetic and real data, show promising
performances.

Keywords: Light fields, multi-view stereo, primal-dual formulation.

1 Introduction

The estimation of a disparity map from multiple images is one of the very well
studied problems in computer vision. Some of the most dramatic improvements
in this field occurred with the introduction of novel numerical frameworks and
their corresponding theory. A non-exhaustive list of such breakthroughs are the
early work on space carving [20], the level set formulation and the variational
framework [10], the Markov random field framework with polynomial-complexity
solvers [6], the L1-Total Variation optimization framework [35] and, more re-
cently, convex formulations that aim for global optimality [25]. In this paper, we
look at a novel approach based on recent primal-dual optimization techniques.
Our approach is also convex as in the most recent developments, but we work
with discrete labels (the possible disparity values).

Our formulation is based on a linear model of the data where a patch in an
image is written as a linear combination of patches in other views. The key
idea is that ideal Lambertian objects generate views that look alike (modulo
foreshortening) and therefore corresponding patches live approximately on a 1D
manifold. When objects are not Lambertian, they generate effects, such as spec-
ularities, that change with the pose of the camera. One can notice, however, that
these effects are typically rare (i.e., they happen only on some of the views) and
spatially local. Hence, a natural way to model image patches of non Lambertian
objects is by using an additive model where one of the two factors is sparse and
the other is low-rank. If a finite set of possible depth candidates for a patch is

X.-C. Tai et al. (Eds.): EMMCVPR 2015, LNCS 8932, pp. 350–363, 2015.
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available, one can then verify which hypothesis best fits the low-rank + sparse
model. Our strategy is therefore a competition between the different disparity
hypotheses. We essentially allow the data to be explained by a simultaneous
linear combination of all low-rank + sparse models. However, we force coeffi-
cients to focus on only a few of the models (where each model corresponds to
a single disparity hypothesis) via group-sparsity penalty terms. We expect that
coefficients be mostly non zero at the true disparity as this is the case that gives
the fit with the sparsest set of outliers. Notice that the individual coefficients of
each linear combination are not important, and indeed, typically, infinite solu-
tions might be possible especially at the correct disparity. However, as long as
coefficients have most non zero values at only one group, we can still correctly
identify the disparity.

While this approach seems straightforward, in practice it faces considerable
dimensionality challenges because data is replicated several times due to the
patch-based model and the number of disparity hypotheses. This makes opera-
tions such as matrix inversion, often encountered in optimization schemes, im-
possible to carry out. To address these challenges we propose a primal-dual ap-
proach that results in simple element-wise thresholding operations and 2 (global)
matrix multiplications at each step.

Contributions: We propose a framework to address the disparity estimation
problem of light fields. In particular, we make the following contributions:

– We present a novel model for light field disparity estimation to represent a
light field image patch as a linear combination of other light field patches.
This representation satisfies a group sparse model and depends only on a
group of light field patches of the same disparity.

– Occlusions are handled uniformly in our framework as a sparse component
and this brings more robustness than in traditional matching methods.

– We introduce a robust and globally optimal solution for light field patch
matching based on a preconditioned primal-dual algorithm [24], which allows
to match a light field patch in all the views to estimate the disparity map.

2 Related Work

Light Field Disparity Estimation: Light fields can be captured using a cam-
era array [30] or lenslet arrays [23] or as a sequence of images. One of the first
approaches to compute light field depth exploits linear structures in light fields
through a line fitting algorithm [5]. Other methods use more traditional stereo
reconstruction techniques to match the corresponding pixels in light field images,
such as block-matching techniques [4] or clustering methods to identify similar
pixel matches [3, 11]. Ziegler et al. [36] proposed a Fourier-based technique to
compute depth values. To achieve higher global coherence, light field depth es-
timation methods employ a global cost function to impose smoothness on the
estimated depth values [8, 19, 32]. A limitation common to all these methods
is that they optimize a global cost function that is not convex. Therefore, the
estimated depth map depends on the initial input. Moreover, fine details are lost
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because a coarse-to-fine multi-resolution technique is often used to avoid ending
in weak local minima. Our approach overcomes these limitations by introducing
a convex formulation.
Multiview Stereo Methods:Multiview techniques require detecting and han-
dling outliers [2,16]. The difficulty of outlier modeling is due to the unstructured
nature of errors produced by outliers. However, these errors can only influence
a small part of the image and are therefore sparse in a canonical basis [2, 33].
An alternative to explicit occlusion modeling is to match only reliable pixels
and fill the unmatched correspondences via regularization [18, 27]. However, as
explained in [28], these methods are prone to artifacts. Multiview stereo meth-
ods employ a large number of images [13, 17] to compute the full geometry of
a scene and often yield a smooth geometry. Our light field disparity estimation
yields a representation that falls in the middle: it is more complete than in stereo
techniques, but less than in multiview stereo.
Sparse Representation: The similarity of image structures in a dataset is
used in data clustering [9,22] to determine the low-dimensional subspace of high
dimensional data. Many schemes exploit data similarity to represent image cor-
respondences in a dataset [21, 33]. In contrast to these clustering techniques,
our proposed disparity estimation scheme looks for the best representation of
each patch within a set of clusters. The clusters are generated from a number
of disparity hypotheses, such that the members of a cluster are either chosen or
discarded together. To achieve this we introduce a coupling term between the
coefficients via group sparsity.
In this paper, we estimate disparity from light fields by representing patches
of a desired light field view with an overcomplete dictionary. The elements of
the dictionary are patches of other views reprojected back onto a reference view
for a given set of disparity candidates. If sufficiently many patch samples are
available, patches of the reference view can be written as a linear combination of
patches from the correct disparity hypothesis. This representation is naturally
group sparse, since only a single disparity candidate of the dictionary can be
assigned to a given patch. This representation can be recovered efficiently via
group sparsity minimization [34].

3 Multiple Views and Light Fields

We consider capturing several images of the same static scene by translating
a camera on the x − y plane, where z is aligned to the camera optical axis,
or, equivalently, by employing a camera array, or a plenoptic camera, where all
the camera sensors lie on the same plane. More in general, we can describe the
captured data as a 4D light field L : Ω×Θ -→ [0,+∞) where Ω ≡ IRN×M denotes
the spatial domain (the pixel coordinates within each image) and Θ the angular
domain (the camera center coordinates). We consider cameras arranged in a
regular lattice and denote with Δ = [Δx Δy]

T ∈ IR2 the displacement between
a camera and its north-west neighbor. Then, we define Θ = {[Δxi Δyj]

T |i =
1 . . . n, j = 1 . . .m} as the 3D camera center of the (i, j)-th camera is located at
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[Δxi Δyj 0]
T . For simplicity, we use the notation Li,j(x, y) to denote L(x, y, i, j).

A visible plane in the scene, parallel to the images planes of the cameras, will
generate images in the light field L that are related to each other by a shift or
disparity ρ : Ω -→ [0,+∞), for simplicity we denote ρ(x, y) by ρ. In formulas,
this can be written as

Li,j(x, y) = Lp,q(x− ρΔx(p− i), y − ρΔy(q − j)) (1)

for all (x, y) that fall within the spatial domain of both light field views and for
all (i, j) and (p, q) camera pairs.
A common approach to estimating the disparity ρ is then to pose a variational
problem of the form

min
ρ

∑
i,j,p>i
q>j,x,y

Φ(Li,j(x, y)− Lp,q(x− ρ(p− i)Δx, y − ρ(q − j)Δy)) + Γ (ρ), (2)

where Φ is some robust penalty term for departures from zero and Γ is a regular-
ization term for the unknown disparity ρ such as total variation. This problem
is non convex and therefore finding the global optimum is a very challenging
task. While good solutions have been obtained for the above problem, recent
efforts have produced convex variational formulations [12, 25] with high-quality
disparity reconstructions. Both of these methods work with continuous repre-
sentations. However, one of the key differences between these two methods is
that, while [25] achieves convexity by increasing the problem dimensionality, [12]
achieves convexity by fixing the structure tensor with some initial approximate
disparity estimate. Our method follows the strategy of the first approach and
also results in a high-dimensional representation. However, we do not rely on
any initial estimate (although it might considerably speed up the convergence).
Moreover, as we describe in the next sections, our convex formulation is entirely
in the discrete domain and exploits the quantization of the disparity values.

4 A Patch-Based Image Formation Model

Our first step is to rewrite the problem (2) as a patch matching problem. Let us
define the patch operator Px,y as the mapping that extracts the W ×W patch
whose top-left corner lies at (x, y) of an image I, i.e.,

Px,y(I) = {I(x+ x0, y + y0)}x0,y0=0,...,W−1. (3)

We define the output of the patch operator to be a patch rearranged as a col-
umn vector whose W 2 elements have been rearranged in lexicographical order.
Consider extracting one patch from each view of a light field, except for the
(i0, j0)-th one (for example, this could be the central view), given a disparity ρ

and collecting all the patches in a matrix Qρ
x,y ∈ IRW 2×(nm−1). This operation

can be described via

Qρ
x,y = {Px−ρΔx(p−i0),y−ρΔy(q−j0)(Lp,q) : ∀(p, q) 
= (i0, j0)}. (4)
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If ρ is the true disparity of a fronto-parallel object in space, then all the columns
in Qρ

x,y will be identical to each other (in the ideal Lambertian case) and iden-
tical to the column vector Px,y(Li0,j0). We also denote the latter vector with
the symbol Yx,y. More in general however, noise, non Lambertianity, shadows,
occlusions, inter reflections and so on need to be taken into account. Since we be-
lieve that most of the time the Lambertian approximation will hold, we consider
all the other image distortions as infrequent and use a sparse representation to
model them, i.e.,

Yx,y = Qρ
x,yC

ρ
x,y + Ex,y (5)

where Cρ
x,y is a nm − 1 column vector and Ex,y is a W 2 column vector with

few nonzero entries. The coefficients in Cρ
x,y determine the linear combination of

vectors in Qρ
x,y that generate Yx,y. When the disparity ρ corresponds to the true

solution, any Cρ
x,y such that 1TCρ

x,y = 1 will satisfy the above equation. Vice
versa, when the disparity is incorrect and the scene has sufficiently rich texture,
there should not exist any vector Cρ

x,y that satisfies (5). Thus, we propose to
force the disparity ρ to take values only from the set {ρ1, ρ2, . . . , ρD} and extend
(5) to

Yx,y = [Qρ1
x,y Q

ρ2
x,y . . . QρD

x,y][C
ρ1
x,yC

ρ2
x,y · · ·CρD

x,y]
T + Ex,y

.
= Qx,yCx,y + Ex,y (6)

where the W 2 × (nm − 1)D matrix Qx,y and the (nm − 1)D vector Cx,y are
implicitly defined by the equation to the right.

5 Depth Estimation

Based on the model (5), a first formulation for estimating disparity through
patch matching is

min
C,E

1

2

∑
x,y

‖Yx,y −Qx,yCx,y − Ex,y‖22 + μ‖Ex,y‖1 (7)

where μ > 0 is a constant determining the degree of sparsity of Ex,y, ‖Ex,y‖1
denotes the �1 norm of Ex,y, and C and E are the column vectors obtained
by stacking vertically all the vectors Cx,y and Ex,y respectively. Since the total

number of patches within the image domain is M̃Ñ , where M̃ = M −W + 1
and Ñ = N −W + 1, the E vector has M̃ÑW 2 elements and the C vector has
M̃Ñ(nm− 1)D elements.
As explained in the previous section, we aim at concentrating the coefficients
of Cx,y on the patches belonging to just one disparity hypothesis. If this is the
case, then, given Cx,y, one can estimate the disparity at a pixel (x, y) by using

ρ̂ = argmax
ρ∈{ρ1,...,ρD}

‖Cρ
x,y‖. (8)
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The same problem can be written in the following compact form

min
C,E

1

2
‖Y −QC − E‖22 + μ‖E‖1 (9)

where the column vector Y has been obtained by stacking all the Yx,y, and
Q is a block diagonal matrix whose blocks are the matrices Qx,y. To encour-
age the concentration of nonzero entries in a single disparity block of Cx,y

we propose to minimize the mixed �1/�2 norm of Cx,y, which is defined as
‖C‖1,2 .

=
∑

x,y

∑
k=1,...,D ‖Cρk

x,y‖2. Finally, since the disparity is a smooth map,
we add a vector-valued isotropic total variation (TV) regularization term

‖∇C‖1,2 .
=

∑
x,y

√
‖Cx,y − Cx+1,y‖22 + ‖Cx,y − Cx,y+1‖22 (10)

where ∇ denotes the finite gradient in the spatial domain (and can be written in
matrix form). By minimizing this term we encourage C coefficients to be similar
across the spatial domain. The complete minimization problem can be written
as follows

min
C,E

1

2
‖Y −QC − E‖22 + μ‖E‖1 + λ‖∇C‖1,2 + γ‖C‖1,2 (11)

where λ, γ > 0 are two constants. This is a convex problem and therefore it
has the desirable property of converging to the same global optimum given any
initialization. The minimization of problem (11) presents several challenges due
to its high dimensionality, which we address in the next section.

6 Primal-Dual Formulation

One immediate issue of a primal solver for problem (11) is that it requires invert-
ing very large matrices that are not easily diagonalized. To avoid such compu-
tational difficulties, we consider the primal-dual method, which is a first order
algorithm, it does not require matrix inversions and enjoys fast convergence
rates [25].
Firstly, we rewrite problem (11) in a more compact way by combining all the
unknowns C and E into a single variable X , and by defining 3 new functions
F1, F2, and F3 as follows

F1(AX − Y )
.
=

1

2
‖Y −QC − E‖22 (12)

F2(ΠEX)
.
= ‖E‖1 (13)

F3(BX)
.
= ‖∇C‖1,2 +

γ

λ
‖C‖1,2 (14)

whereA
.
= [Q Id], with Id the identity matrix,ΠEX

.
= E andB

.
= [∇T γ

λId]
TΠC ,

with ΠCX
.
= C. Notice that all the above functions are convex in the variable

X . Then, our primal formulation becomes

min
X

F1(AX − Y ) + μF2(ΠEX) + λF3(BX). (15)
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To solve the primal problem we can compute the gradients of the cost function
and set it to zero. An immediate observation is that the gradient will yield in
the best case linear systems with non-diagonal matrices. For example, the first
term F1(AX − Y ) yields

∂

∂X
F1(AX − Y ) = ATAX −ATY (16)

which requires dealing with the matrix ATA. To avoid that, we use the primal-
dual method. This method is based on the Legendre-Fenchel (LF) transform.
Given a function F , the LF transform yields a conjugate function F ∗ such that

F ∗(Z)
.
= sup

X
〈X,Z〉 − F (X). (17)

The conjugate function F ∗ is by construction convex and when F is also convex,
then the LF transform F ∗∗ of the conjugate F ∗ is again F . When the conjugate
functions F ∗

1 , F
∗
2 , and F ∗

3 can be computed easily and possibly in closed-form,
then it is convenient to consider the primal-dual problem

min
X

max
Z1,Z2,Z3

< AX − Y, Z1 > −F ∗
1 (Z1) + μ < ΠEX,Z2 > −μF ∗

2 (Z2)

+ λ < BX,Z3 > −λF ∗
3 (Z3). (18)

which we write in more compact form as

min
X

max
Z

< KX,Z > −F̂ (Z) (19)

where K
.
= [AT μΠT

E λBT ]T , Z
.
= [ZT

1 ZT
2 ZT

3 ]
T , and F̂ (Z)

.
= F ∗

1 (Z1) +
μF ∗

2 (Z2)+λF ∗
3 (Z3). To solve the above saddle point problem, we need to define

the proximity operator, which is our fundamental computational tool to deal
with the conjugate functions.

6.1 Proximity Operator

A proximity operator proxσF , with σ > 0, takes as input a convex and lower
semicontinuous function F and maps it to the following function

proxσF (Z) = argmin
X

1

2
‖Z −X‖22 + σF (X), ∀Z, (20)

see for more information the review paper [7]. The main result that we will
exploit here is Moreau’s identity. Given the conjugate F ∗ of F we have that

proxσF∗(Z) = Z − σproxF/σ(Z/σ) (21)

and hence we can compute the proximity operator of the conjugate function F ∗

directly by using the proximity operator of the function F .
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6.2 Primal-Dual Algorithm

The primal-dual algorithm to solve problem (19) is

Zn+1
1 = proxσF∗

1
(Zn

1 + σ(AX̄n − Y ))

Zn+1
2 = proxσμF∗

2
(Zn

2 + σμΠEX̄
n)

Zn+1
3 = proxσλF∗

3
(Zn + σλBX̄n)

Xn+1 = Xn − τKTZn+1

X̄n+1 = Xn+1 + θ(Xn+1 −Xn)

(22)

where n is the iteration index, θ ∈ (0, 1] and τσ‖K‖2 < 1. While the bottom
two iterations are straightforward, the first one on the dual variable Z requires
computing the proximity operator of the conjugate functions F ∗

1 , F
∗
2 , and F ∗

3 .
The first two functions are relatively easy to obtain as the conjugate functions
can be computed in closed-form

F ∗
1 (Z1) =

1

2
‖Z1‖22, {F ∗

2 (Z2)}s =
{

0 if |{Z2}s)| ≤ μ
+∞ otherwise

(23)

where s = 1, . . . , M̃ÑW 2. Hence, we can readily obtain the first two steps of the
primal-dual algorithm

Zn+1
1 =

1

σ + 1
(Zn

1 + σ(AX̄n − Y )), {Zn+1
2 }s = Hσμ

({
Zn
2

σμ
+ΠEX̄

n

}
s

)
(24)

where s = 1, . . . , M̃ÑW 2 andHσμ denotes the element-wise thresholding operator

Hσμ(z)
.
= min {σμ, |z|} sign(z). (25)

The last term F ∗
3 is more involved. We compute the update equation by exploit-

ing Moreau’s identity

proxσλF∗
3
(Zn

3 + σλBX̄n) = Zn
3 + σλBX̄n − σλproxF3/(σλ)(Z

n
3 /(σλ) +BX̄n) (26)

so that we only need to compute proxF3/(σλ). Notice that F3(Z3) is the �1/�2
norm ‖Z3‖1,2. Thus, we need to evaluate

proxF3/(σλ)(Z
n
3 /(σλ) +BX̄n) = argmin

Z

1

2

∥∥∥∥ 1

σλ
Zn

3 +BX̄n − Z

∥∥∥∥2

2

+
1

σλ
‖Z‖1,2. (27)

The solution is computed in closed-form and results in a block soft-thresholding
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proxF3/(σλ)(Z
n
3 /(σλ) +BX̄n) = S1/(σλ)

(
1

σλ
Zn
3 +BX̄n

)
(28)

with {
S1/(σλ)(Z3)

}
b
= {Z3}bmax

{
0, 1− 1

σλ‖{Z3}b‖2

}
(29)

and where blocks are indexed by b = 1, . . . , (3M̃Ñ − M̃ − Ñ)D, since Z3 is a
(3M̃Ñ − M̃ − Ñ)D(nm − 1) dimensional vector.1 Finally, by plugging the last
expression in the proximity operator of F ∗

3 , the last update equation becomes

{proxσλF∗
3
(Zn

3 + σλBX̄n)}b ={Zn
3 + σλBX̄n}b (30)

·
(
1−max

{
0, 1− 1

‖{Zn
3 + σλBX̄n}b‖2

})
where b = 1, . . . , (3M̃Ñ − M̃ − Ñ)D.
In all update equations there are no matrix inversions and calculations are there-
fore highly parallelizable. The final algorithm is summarized in Table 1.

Table 1. Primal-dual algorithm for disparity estimation from light field data. Notice

that Z1 ∈ IRM̃ÑW2×1, Z2 ∈ IRM̃ÑW2×1, and Z3 ∈ IR(3M̃Ñ−M̃−Ñ)D(nm−1)×1.

Zn+1
1 = (Zn

1 + σ(AX̄n − Y ))/(σ + 1)

{Zn+1
2 }s = Hσμ({Zn

2 /(μσ) +ΠEX̄
n}s)

{Zn+1
3 }b = {Zn

3 + σλBX̄n}b
(
1−max

{
0, 1− 1

‖{Zn
3 + σλBX̄n}b‖2

})
Xn+1 = Xn − τKTZn+1

X̄n+1 = Xn+1 + θ(Xn+1 −Xn)

s = 1, . . . , M̃ÑW 2

b = 1, . . . , (3M̃Ñ − M̃ − Ñ)D

6.3 Implementation Details

Because of the discretization, the dimensionality of the problem is quite high.
One approach to managing such dimensionality is to use block coordinate de-
scent [29], where one works iteratively on different subsets of the variables. In
this paper we consider a simple and efficient approximation: we consider restrict-
ing the possible disparities ρ1, . . . , ρD to a small but carefully selected subset and

1 The total variation term introduces 2 blocks for any pixel in Ω except for the left
hand side column and the bottom row of pixels (total blocks is 2(M̃ − 1)(Ñ − 1)).
These two rows of pixels, except for the bottom right corner, introduce only one
block (total blocks (M̃ − 1) + (Ñ − 1)). Finally, the block sparsity term introduces
M̃ÑD blocks.
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always work with that subset. To gain additional freedom, at each pixel (x, y) we
make a different choice of such subset. Our strategy is to evaluate the function

gx,y(ρ) =
∑
i,j

∑
p>i,q>j

Φ(Li,j(x, y)− Lp,q(x− ρΔx(p− i), y − ρΔy(q − j))) (31)

for as many ρ values as possible. Then, we sort gx,y in ascending order and take
the disparities corresponding to the first 5 values of gx,y. We then also add 5
more disparity candidates by selecting the disparities of neighboring pixels (in
a 4-neighborhood structure) corresponding to the smallest cost. The purpose of
this second group of disparity candidates is to allow (spatially) smooth disparity
estimates.

7 Experimental Results

We study the performance and robustness of our light field disparity estimation
framework on different datasets, Buddha [31], Watch [1], Amethyst and Truck
from the Stanford light field archive.2 We compare our results with two light field
depth estimation schemes [19,32], and convex formulations [26]. Our parameters
are: μ = 0.6 and γ = 1 for all datasets, and λ = 0.1 for Amethyst and Truck. We
work with 5× 5 pixels patches (W = 5). Our algorithm is also demonstrated in
the limit case where there are only two views (stereo). The group sparsity con-
straint can still work quite successfully. Another important factor is the input
image size. We find that the method works better with high resolution images.
However, it can also perform reasonably well on low-resolution data. In con-
trast, [19, 32] are challenged with few views and/or low-resolution images. The
runtime of our algorithm is higher than [19]. If parallelism is fully exploited the
ideal running time is about 1-3 minutes depending on the resolution and number
of views. In our experiments we search through 200 disparity candidates to deter-
mine the 10 candidates. Figure 1 compares our scheme with simple plane sweep
disparity search (independently at each pixel). We observe that our scheme im-
poses the global smoothness on the estimated disparity while the plane sweep
fails to provide a smooth disparity map. As expected, the number of views used
in the disparity estimation problem improves the depth estimate considerably.
In our approach an increase in the number of views results in more samples per
disparity candidate in the Q matrix, and therefore a better chance of fitting
data more reliably. This is clearly noticeable in Fig. 1 and Fig. 2. We compare
qualitatively our disparity estimation algorithm with the techniques introduced
in [14,32] in Table 2. It is clear that our scheme provides a better reconstruction
quality. In Fig. 4 we illustrate how the patch size W has an immediate effect on
the recovered depth map. As is well known, the larger the patch, the less noisy
the depth estimate is. However, increases in patch size also affect the performance

2 See http://lightfield.stanford.edu.

http://lightfield.stanford.edu
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of the algorithm in the recovery of small details. More comparisons are included
in [15].

Table 2. Qualitative results for Buddha shown in Fig. 1. The table shows the percent-
age of pixels with relative depth error of more than 0.2%, 0.5% and 1%.

4 views 3 views stereo [14] [32]

1% 0.5% 0.2% 1% 0.5% 0.2% 1% 0.5% 0.2% 1% 0.5% 0.2% 1% 0.2%

0.13 0.33 1.9 0.139 0.33 1.99 0.42 0.85 3.26 1.15 2.44 15.05 2.9 60.4

(a) View (b) True depth (c) Sweep (d) stereo

(e) 3 views (f) 4 views (g) [32]

(h) 4 views 1% (i) 3 views 1% (j) stereo 1%

Fig. 1. Buddha dataset: Comparison of the depth maps obtained from our method
with the ground truth. From left to right, top row shows: the center view, the ground
truth, the depth map obtained by plane sweep depth search (independently at each
pixel). Middle row: the estimated depth map using different number of views, and the
depth map obtained from [32]. Bottom: the estimated disparity in areas with error
more than 1% are highlighted in red. We observe that an increase in the number of
views improves the reconstruction quality and our scheme provides sharpe edges while
the depth map estimated using [32] blurs the edges and has staircasing artifacts.
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(a) Input (b) Initial (c) 4 views (d) [32] (e) [25]

Fig. 2. Amethyst dataset. (a) One of the input images. (b) Initial depth estimate (plane
sweep depth search) (c) Estimated disparitity using our scheme. (d-e) Estimated depth
map using [32] and [25]. Notice how we obtain a reasonable estimate of the top part of
the stone, while competing methods either fail or obtain a noisier estimate.

(a) Center view (b) 4 views (c) Manufacturer (d) [32]

Fig. 3. Depth estimation with the Raytrix plenoptic camera (handheld light field cam-
era). We compare our algorithm with the reference depth provided by the manufacturer
and [32]. Our scheme on a handheld light field camera yields a more detailed depth map.

(a) Input (b) Initial (c) W = 5

(d) W = 8 (e) [32] (f) [19]

Fig. 4. Truck dataset. We assess the influence of patch size in our scheme. Increasing
the patch size results in a less noisy, but also smoother, depth map. In comparison
to [19, 32], our algorithm provides sharper edges with a noisier background. This is
due to two main reasons: 1) The initial 10 disparity candidates selected among 200
candidates do not contain the true disparity value, which can be improved by working
on 200 candidates using block coordinate descent [29]. 2) The selection of the highest
coefficients in C may lead to noisy disparity which can be addressed by imposing
smoothness in the final estimation of the disparity from the coefficients of C.
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8 Conclusions

We have presented a novel convex formulation to estimate depth from light field
data. The method is based on a careful discretization of disparity values and
exploits a linear patch-based formulation to represent patches in one view with
patches in other views. The proposed model can easily be extended to handle
simple departures from the ideal Lambertian model. For example, the current
model can already handle contrast changes due to illumination (these changes
would be reflected in the magnitude of the coefficients of C). The problem of
depth estimation is cast as a minimization problem subject to group sparsity
constraints and spatial smoothing. To gain computational efficiency we use the
primal-dual method. This results in an algorithm where each dual variable up-
date can be computed easily, independently and efficiently. Our experiments
show that this method competes well with the state of the art.

References

1. Raytrix, http://www.raytrix.de/

2. Ayvaci, A., Raptis, M., Soatto, S.: Sparse occlusion detection with optical flow.
IJCV (2012)

3. Basha, T., Avidan, S., Hornung, A., Matusik, W.: Structure and motion from scene
registration. In: CVPR. IEEE (2012)

4. Bishop, T., Favaro, P.: The light field camera: extended depth of field, aliasing and
superresolution. PAMI (2012)

5. Bolles, R.C., Baker, H.H., Marimont, D.H.: Epipolar-plane image analysis: An
approach to determining structure from motion. IJCV (1987)

6. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. PAMI (2001)

7. Combettes, P.L., Pesquet, J.C.: Proximal Splitting Methods in Signal Processing.
In: Fixed-Point Alg. for Inv. Prob. in Science and Eng. (2011)

8. Donatsch, D., Bigdeli, S.A., Robert, P., Zwicker, M.: Hand-held 3d light field pho-
tography and applications. The Visual Computer (2014)

9. Elhamifar, E., Vidal, R.: Sparse subspace clustering. In: CVPR. IEEE (2009)

10. Faugeras, O., Keriven, R.: Variational principles, surface evolution, PDE’s, level
set methods and the stereo problem. IEEE (2002)

11. Fitzgibbon, A.W., Wexler, Y., Zisserman, A., et al.: Image-based rendering using
image-based priors. In: ICCV, vol. 3, pp. 1176–1183 (2003)

12. Goldluecke, B., Cremers, D.: An approach to vectorial total variation based on
geometric measure theory. In: CVPR (2010)

13. Goldluecke, B., Magnor, M.A.: Joint 3d-reconstruction and background separation
in multiple views using graph cuts. In: CVPR. IEEE (2003)

14. Heber, S., Ranftl, R., Pock, T.: Variational shape from light field. In: Heyden, A.,
Kahl, F., Olsson, C., Oskarsson, M., Tai, X.-C. (eds.) EMMCVPR 2013. LNCS,
vol. 8081, pp. 66–79. Springer, Heidelberg (2013)

15. Hosseini Kamal, M., Favaro, P., Vandergheynst, P.: A Convex Solution
to Disparity Estimation from Light Fields via the Primal-Dual Method.
oai:infoscience.epfl.ch:202076 (2014)

http://www.raytrix.de/


A Convex Solution to Disparity Estimation from Light Fields 363

16. Humayun, A., Mac Aodha, O., Brostow, G.J.: Learning to find occlusion regions.
In: CVPR. IEEE (2011)

17. Kang, S.B., Szeliski, R.: Extracting view-dependent depth maps from a collection
of images. IJCV 58(2), 139–163 (2004)

18. Kang, S.B., Szeliski, R., Chai, J.: Handling occlusions in dense multi-view stereo.
In: CVPR. IEEE (2001)

19. Kim, C., Zimmer, H., Pritch, Y., Sorkine-Hornung, A., Gross, M.: Scene recon-
struction from high spatio-angular resolution light fields. In: SIGGRAPH (2013)

20. Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving. IJCV (2000)
21. Liu, C., Yuen, J., Torralba, A., Sivic, J., Freeman, W.T.: SIFT flow: Dense cor-

respondence across different scenes. In: Forsyth, D., Torr, P., Zisserman, A. (eds.)
ECCV 2008, Part III. LNCS, vol. 5304, pp. 28–42. Springer, Heidelberg (2008)

22. Liu, G., Lin, Z., Yu, Y.: Robust subspace segmentation by low-rank representation.
In: ICML (2010)

23. Ng, R., Levoy, M., Brédif, M., Duval, G., Horowitz, M., Hanrahan, P.: Light field
photography with a hand-held plenoptic camera. CSTR (2005)

24. Pock, T., Chambolle, A.: Diagonal preconditioning for first order primal-dual al-
gorithms in convex optimization. In: ICCV, pp. 1762–1769 (2011)

25. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: Global solutions of variational
models with convex regularization. SIAM J. on Imag. Sciences (2010)

26. Pock, T., Schoenemann, T., Graber, G., Bischof, H., Cremers, D.: A convex formu-
lation of continuous multi-label problems. In: Forsyth, D., Torr, P., Zisserman, A.
(eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 792–805. Springer, Heidelberg
(2008)

27. Sun, X., Mei, X., Zhou, M., Wang, H., et al.: Stereo matching with reliable disparity
propagation. In: 3DIMPVT. IEEE (2011)

28. Szeliski, R., Scharstein, D.: Symmetric sub-pixel stereo matching. In: Heyden, A.,
Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part II. LNCS, vol. 2351,
pp. 525–540. Springer, Heidelberg (2002)

29. Tseng, P.: Convergence of a block coordinate descent method for nondifferentiable
minimization. J. Optim. Theory Appl. (2001)

30. Vaish, V., Wilburn, B., Joshi, N., Levoy, M.: Using plane+ parallax for calibrating
dense camera arrays. In: CVPR. IEEE (2004)

31. Wanner, S., Meister, S., Goldluecke, B.: Datasets and benchmarks for densely sam-
pled 4d light fields. In: Vision, Modelling and Visualization, (VMV) (2013)

32. Wanner, S., Goldluecke, B.: Globally consistent depth labeling of 4d light fields.
In: CVPR. IEEE (2012)

33. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition
via sparse representation. PAMI 31(2), 210–227 (2009)

34. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped
variables. J. of the Royal StatistSociety: Series B (Stat. Meth.) (2006)

35. Zach, C., Pock, T., Bischof, H.: A globally optimal algorithm for robust TV − �1
range image integration. In: ICCV, pp. 1–8. IEEE (2007)

36. Ziegler, R., Bucheli, S., Ahrenberg, L., Magnor, M., Gross, M.: A bidirectional light
field-hologram transform. In: Computer Graphics Forum., vol. 26, pp. 435–446. Wi-
ley Online Library (2007)



Optical Flow with Geometric Occlusion Estimation
and Fusion of Multiple Frames

Ryan Kennedy and Camillo J. Taylor

Department of Computer and Information Science
University of Pennsylvania

{kenry,cjtaylor}@cis.upenn.edu

Abstract. Optical flow research has made significant progress in recent years
and it can now be computed efficiently and accurately for many images. How-
ever, complex motions, large displacements, and difficult imaging conditions are
still problematic. In this paper, we present a framework for estimating optical flow
which leads to improvements on these difficult cases by 1) estimating occlusions
and 2) using additional temporal information. First, we divide the image into dis-
crete triangles and show how this allows for occluded regions to be naturally esti-
mated and directly incorporated into the optimization algorithm. We additionally
propose a novel method of dealing with temporal information in image sequences
by using “inertial estimates” of the flow. These estimates are combined using a
classifier-based fusion scheme, which significantly improves results. These con-
tributions are evaluated on three different optical flow datasets, and we achieve
state-of-the-art results on MPI-Sintel.

1 Introduction

Optical flow has a long history and many different methods have been used. Several
modern methods have their roots in the seminal work of Horn and Schunck [1]. Current
variants of this approach employ robust cost functions [2] and modern optimization
techniques [3] and can compute optical flow accurately and efficiently for many types
of images. This is corroborated by results on the Middlebury dataset [4], for which the
top-performing algorithms are nearly error-free.

Despite this success, optical flow is far from solved. The underlying assumption of
most models is that matching pixels should have similar intensity values and nearby
pixels should have similar motions. However, these assumptions are violated in many
situations, especially when motion blur, lighting variation, large motions, and atmo-
spheric effects are involved. While Middlebury does not contain these real-world situ-
ations, more recent datasets [5,6] have many of these difficulties and the error rates of
the best methods are correspondingly much higher. It remains an open question of how
best to deal with these complex motions and imaging conditions.

In this paper, we present a framework for optical flow that leads to an improvement
for difficult datasets. Our method is based on a triangulation of the image domain, over
which we compute optical flow. We employ a tectonic model where the triangular facets
are allowed to move relative to each other and a numerical quadrature scheme is used

X.-C. Tai et al. (Eds.): EMMCVPR 2015, LNCS 8932, pp. 364–377, 2015.
c© Springer International Publishing Switzerland 2015
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to handle the resulting occlusion effects. This allows for occlusions to be directly in-
corporated into the optimization procedure without the need for arbitrary regularization
terms.

Additionally, we describe a novel way to incorporate temporal information over mul-
tiple frames. First, we propose “inertial estimates,” which are estimates of the optical
flow based on nearby frames. Next, we combine these estimates using a classifier-based
fusion. Although fusion-based methods have been used previously [7], our approach is
fundamentally different and does not require optimizing an NP-hard quadratic binary
program. The approach is also agnostic to the underlying optical flow method and could
be used with other algorithms.

In summary, we make the following four contributions:

– We show how occluded regions can be easily detected during optimization by using
a triangulation of the image domain.

– We introduce “inertial estimates” which provide multiple motion estimates based
on nearby frames.

– We show how fusing inertial estimates using a classifier provides a simple and
effective means of incorporating temporal information into optical flow.

– We evaluate our method on multiple datasets, achieving state-of-the-art accuracy
on the difficult MPI-Sintel dataset [5].

2 Related Work

Occlusions are often modeled as noise and handled through a robust cost function [2],
but an explicit model for occlusions is desirable in many situations. One common ap-
proach is to compare forward and backward flow estimates, which will not match for
occluded pixels [8]. Strecha et al. [9] use a probabilistic framework and estimate oc-
clusions as latent variables. Occlusions can also be dealt with by incorporating layers
into the model [10]. In [11], layer ordering was determined using the relative data cost
between overlapping layers. Another approach is that of Xu et al. [12] and Kim et
al. [13], who label points as occluded when multiple pixels map to a single point. The
most similar approach to our own is from Sun et al. [14], who jointly estimate motion
and occlusions, although their method is significantly more complex than our own and
is only used to fine-tune flow fields computed using other methods.

Multi-frame optical flow estimation is often approached by assuming that flow es-
timates are smooth over time as well as space [15,10,16], rather than using a fusion
method as we do here. Fusion methods have usually been proposed in the context of
fusing the results of multiple algorithms [17] rather than incorporating temporal infor-
mation. Lempitsky et al. [7] write the fusion problem as a quadratic binary program
which they then approximate the solution to, while Jung et al. [18] use an algorithm
involving random partitions of the flow estimates.

Triangulations of an image were used in optical flow estimation by Glocker, et al.
[11], although otherwise their approach is quite different from ours; their triangulations
are used for incorporating higher-order likelihood terms, while we use triangulations to
model the flow and the resulting occlusions. Superpixel-based approaches that are not
based on triangles have also been previously applied to optical flow problems [19].
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Fig. 1. A triangulated section of an image. Blue circles denote edge points and red squares denote
points generated on a uniform grid with a spacing of 5 pixels. The Delaunay triangulation given
by the green lines tessellates the image into regions which form the basis of our algorithm. In
practice, the data cost functions are evaluated at a set of quadrature points within each triangle,
shown here as black dots.

3 Problem Setup

Let I1, I2 : (Ω ⊆ R2) → Rd be two d-dimensional images. In this paper, we consider
both to be color images in the CIELab color space such that d = 3. Channels are
denoted using a superscript, such as I(c)1 . We attempt to estimate the motion of each
point from I1 to I2. The estimated motions in the horizontal and vertical directions are
denoted by u and v respectively. Let x = (x, y) be a point in Ω, and let f : Ω → R2

be a function such that f(x) = (u(x), v(x)), that is f returns the estimated motion
vector associated with every point in the image. In addition, we estimate a function
m : Ω → R which is a multiplicative factor that measures changes in lightness between
frames, as we will define in Section 4. This “generalized brightness constancy” model
has been previously used [20], and we found that it improved our results.

A key aspect of our approach is that we consider the image to be a continuous 2D
function of the image domain, rather than a set of sampled pixel locations. We do so by
extending the sampled pixel values to intermediate locations in the image plane using
bicubic interpolation. More specifically, at any continuous-valued location (x, y) ∈ Ω,
the value of the image at channel c is computed using a quadratic form

I
(c)
1 (x, y) =

[
x3 x2 x 1

]
Kc

[
y3 y2 y 1

]T
, (1)

where Kc is the matrix of coefficients based on the channel values of nearby pixels.
Note that spatial image derivatives at any point are easily computed using derivatives of
this quadratic form. Given this representation of the image as a continuous function, our
goal is to compute a corresponding continuous function f(·) that specifies the motion
of each point in Ω, along with a multiplicative brightness factor m(·).

We discretize the problem by tessellating the image I1 into discrete triangular re-
gions (Figure 1), and then seek to estimate a constant motion vector f(·) and brightness
offsetm(·) for each triangle. Because we assume the motion to be constant within each
triangle, the triangles should be made to conform to the content of the image in order
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to find an accurate solution. This approach is similar to that of [11], where a triangu-
lation of the image domain was also used. We use the following procedure. First, we
extract edges from the image I1 by using the method of [21] and threshold the given
ultrametric contour map at 0.2. Each edge pixel in the image is then used as a vertex
in our triangulation. In addition to these points, we also use a set of grid points that are
evenly spaced throughout the 2D image, which serve to limit the maximum dimension
of the resulting triangles. The grid points and edge pixels are combined and a Delaunay
triangulation is constructed. An example of a tessellated image is shown in Figure 1.

4 Cost Function

Our cost function consists of data terms and smoothness terms. The data terms penalize
incorrectly-matched pixels based on image data, while the smoothness terms encourage
solutions that are smooth over the image domain. Our cost function takes the form

E(f,m) = D(f,m) + τ0F(f) + τ1S1(f) + τ2S2(f) + τ3S3(m) , (2)

whereD(·) is a data cost term based on image data,F(·) is a feature matching term, and
S1(·),S2(·) and S3(·) are smoothness terms. The parameters τ0, τ1, τ2 and τ3 control
the tradeoff between these terms.

The cost function will be defined as an integral over the entire continuous image do-
main. We approximate this continuous integral by considering a discrete set of quadra-
ture points within each triangle using the scheme described in [22]. The integral is then
approximated by forming a weighted sum of the cost function evaluated at these points.
We used 3 quadrature points per triangle, as shown in Figure 1.

4.1 Data Term

Our data term is given by the equation

D(f,m) =

∫
Ω

Φγ

⎛⎝I2(x+ f(x)) −

⎡⎣m(x) 0 0
0 1 0
0 0 1

⎤⎦ I1(x)
⎞⎠ dx , (3)

where Φγ(·) is a robust error function with parameter vector γ. Because of the large
amount of data made available in the MPI-Sintel dataset, we chose our robust cost func-
tion through a fitting procedure. In particular, the difference values, I(c)2 (x + f(x)) −
I
(c)
1 (x), are well-modeled by a Cauchy distribution, as has been previously observed

[23]. The robust function Φγ(·) is then the negative log-likelihood of the Cauchy den-
sity function, summed over all channels:

Φγ(δ) =

d∑
c=1

log
[
π(δ2c + γ2c )/γc

]
. (4)

A separate distribution was fit to the lightness and to the combined color channels, giv-
ing values of γ1 = 0.3044 for lightness and γ2 = γ3 = 0.2012 for the color channels.
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4.2 Feature Matching Term

Feature matching has been shown to be effective at improving optical flow results, es-
pecially for large motions [24,12]. We use HOG features [25], computed densely at
every pixel. These descriptors are then matched to their nearest neighbor in the oppo-
site image using the approximate nearest neighbors library FLANN [26]. The matches
from I1 to I2 generate motion estimates for each of the pixels, which we denote as
fHOG : Ω → R2.

If the HOG match is correct, then it is desirable to have f(x) be close to fHOG(x).
Thus, our feature matching term is given by

F(f) =
∫
Ω

s(x)Ψα (‖f(x)− fHOG(x)‖2) dx , (5)

where
Ψα(δ) = (δ2 + ε)α (6)

is a robust cost function with parameter α and small constant epsilon (i.e., ε = 0.001)
[3]. For α = 1, this is a pseudo-�2 penalty. As α decreases, it becomes less convex with
it becoming a pseudo-�1 penalty for α = 0.5. For our feature matching term, we set
α = 0.5.

The function s : Ω → R is a weighting function which measures the confidence
in each HOG match, and is defined as follows. First, we enforce forward-backward
consistency by setting s(x) = 0 if a match is not a mutual nearest-neighbor. Otherwise,
we let s(x) = ((d2 − d1)/d1)

0.2
, where di is the �1 distance between the HOG feature

vector in I1 at location x and its ith-closest match in I2. This is similar to the weight
used in [24] and provides a measure of confidence for each HOG match.

When evaluating this term on a triangulation, each triangle is assigned a HOG flow
estimate by taking the mean of all flow values within the triangle t weighted by their
confidence scores,

∑
x∈t

s(x)∑
x∈t s(x)

fHOG(x). The confidence of each triangle is simi-

larly set to the average of its confidence values. These flow values are then used for all
quadrature points within each triangle when evaluating the cost function.

While we used HOG features due to their speed and simplicity, more complex feature
matching could be used here as well, such as [27] or [28].

4.3 Smoothness Terms

We use two different smoothness terms in our cost function: a first-order term that
penalizes non-constant flow fields, and a second-order term that penalizes non-affine
flow fields.

First-Order Smoothness. A first-order smoothness term penalizes non-constant motion
estimates. In our cost function, all pairs of neighboring triangles are considered. The cost
is defined as

S1(f) =
∑

ti,tj∈N

|ti||tj |Ψα

(
‖f(ti)− f(tj)‖2
‖t̄i − t̄j‖2

)
, (7)
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where N ⊆ T × T is the set of all neighboring triangles T in the tessellation, t̄i is
the centroid of triangle ti ∈ T , and |ti| is its area. The function Ψα(·) is a robust cost
function, which was defined in Equation (6).

This cost function penalizes differences in the flows between neighboring triangles,
modulated by the distance between their centroids. Note that we also multiply by the
area of the two triangles (rather than by the edge length), which effectively connects
all points within one triangle to all points in the other triangle. Now, recall that our
triangulation is constructed using both edges points and a set of uniform grid points
(Figure 1). The triangles along edges will therefore tend to have a smaller area, resulting
in a weaker smoothness constraint. In this way, our triangulation naturally allows for a
non-local smoothness cost [29].

We also apply this same smoothness cost to the multiplicative term m to encourage
only locally-consistent changes in image brightness. This is denoted as the function
S3(m), and for this we use α = 0.5.

Second-Order Smoothness. While a first-order smoothness term penalizes non-
constant flows, a second-order smoothness term penalizes non-planar flows. This al-
lows for motion fields with a constant gradient, which is important for datasets where
such motions are common, such as KITTI (Section 8.3).

Intuitively, our second order smoothness term says that the flow of each triangle
is encouraged to be near the plane that is formed from the flow values of its three
neighbors. Formally, the cost function is written as a sum of costs over all triangles
t ∈ T :

S2(f) =
∑
t∈T

|ti||tj ||tk|Ψα

(
‖f(t)− [λif(ti) + λjf(tj) + λkf(tk)] ‖2

|Δijk |

)
. (8)

Here, ti, tj and tk are the three neighboring triangles to t. The values λi, λj and λk
are the barycentric coordinates of the centroid of t with respect to the centroids of ti,
tj and tk. In other words, the numerator is exactly zero when the flow vector associ-
ated with the triangle t can be linearly interpolated from the values associated with the
neighboring triangles. This discrepancy is then normalized by |Δijk|, the area of the
triangle formed by connecting the centroids of ti, tj and tk, making the cost akin to a
finite-difference approximation of the Laplacian. Similar to the first-order smoothness
term, the function Ψα(·) is a robust cost function and each term is multiplied by the
areas of the three neighboring triangles to impart a non-local character to the cost.

5 Occlusion Reasoning

Since we model an image as a set of triangular pieces that can move independently,
we can directly reason about occlusions. A depiction of this process is shown in Figure
2. At each iteration of our algorithm, for each quadrature point in each triangle of I1,
we compute where it appears in the other image I2. We then determine whether any
other triangles overlap it in I2. For each of these overlapping triangles, we determine
whether that triangle offers a better explanation for that location as measured by the data
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I1

(a)

I2

(b)

Edata

−

+

(c)

Fig. 2. Depiction of our occlusion term. (a) Two triangles and their quadrature points in the
tessellation of I1. (b) The triangles are moved to their estimated locations in I2, where they now
overlap. Each quadrature point is processed separately and we have highlighted one quadrature
point as an example. (c) The data cost is compared for all overlapping triangles at the quadrature
point. The quadrature point here has a lower data cost at the same location in the red triangle, and
so we mark the quadrature point as occluded.

Fig. 3. Examples of our occlusion estimation on MPI-Sintel. During optimization, the occlusion
status of each quadrature point in each triangle is directly estimated. For visualization, we label
each triangle a value in [0, 1] as the proportion of its quadrature points that are labeled occluded,
and then each pixel is labeled based on the triangles that it overlaps. Top: Groundtruth flow.
Middle: Estimated occlusions. Bottom: Groundtruth occlusions.

cost (Equation (3)). If a better solution exists, then the quadrature point in question is
labeled as occluded. The occluded quadrature points are not included in the evaluation
of the data cost. In this way, the data cost function only includes points which are
estimated to be unoccluded. Note that these occlusion estimates are generated directly
from the geometry and from the data cost term; no additional regularization parameters
are needed to avoid the trivial solution of labeling all points occluded. An example of
our occlusion estimation is show in Figure 3.

Occlusions can be calculated efficiently by rasterizing the triangles to find which
pixels they overlap in I2. When evaluating the occlusion term for a quadrature point,
only triangles rasterized to the same pixel need to be considered as potential occluders.



Optical Flow with Geometric Occlusion Estimation and Fusion of Multiple Frames 371

6 Optimization

As is standard, local optimization is carried out within a coarse-to-fine image pyramid
[30]. We begin with a zero-valued flow at the coarsest level and iteratively perform
local optimization until a local minimum is reached. During this process, image values
and gradients are calculated using bicubic interpolation. The resulting solution is then
propagated to the next pyramid level where it is used as an initialization and the local
optimization is repeated. At each level, a new triangulation is calculated as described in
Section 3.

Rather than linearizing the Euler-Lagrange equations [30], we use Newton’s method,
a second-order optimization algorithm. Newton’s method provides flexibility to our
framework since any suitably-differentiable function can be substituted for our cost
function without changing the optimization scheme. To find the Newton step at each it-
eration, a sparse linear system must be solved. This is commonly done with an iterative
method, such as Successive Over-Relaxation (SOR). Instead, we decompose the Hes-
sian matrix into its Cholesky factorization, after which the linear system can be solved
directly. Cholesky factorization is often avoided since it has the potential to use a sig-
nificant amount of memory, but we have found that the use of a triangulation makes it
possible to reduce these memory requirements. First, there are often fewer triangles than
pixels, resulting in a smaller linear system. Also, the memory requirement for Cholesky
factorization is dependent on the adjacency structure of the matrix, which gives trian-
gulations an advantage since each triangle has only three neighbors rather than four or
eight. We have found that the resulting Hessian matrices can be efficiently reordered
and factorized using algorithms such as [31].

7 Multi-frame Fusion of Inertial Estimates

A significant challenge for modern optical flow algorithms is when objects move large
distances. This is especially true when objects move either into or out of frame, for
which there are no matches. In this case, it is often not possible to estimate the motion
of these pixels from two-frame optical flow. In this section, we address this by proposing
a simple method of incorporating temporal information from adjacent frames.

7.1 Inertial Estimates

Let [t → (t + 1)] denote the estimated flow between frames t and t + 1, and suppose
that we also have access to frames t−1 and t+2. If it is assumed that objects move at a
constant velocity (i.e., they are carried by inertia) and move parallel to the image plane,
then an estimate of the motion from [t → (t + 1)] is given by −[t → (t − 1)], which
is found by computing the flow from t to t − 1 and negating it, as shown in Figure 4.
Similarly, another estimate can be found using frame t + 2 as 1

2 [t → (t + 2)]. We call
these “inertial estimates” since they provide an estimate of the flow by assuming that
inertia moves all objects at a constant velocity. All three inertial estimates are computed
independently, using the same optical flow algorithm.

Of course, these estimates will, on average, be inferior to using [t→ (t+1)] directly.
However, if an object is visible in frame t and moves out of frame in t+ 1, then it may
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tt-1 t+1 t+2

× 1
2

×(-1)

Fig. 4. Inertial flow estimates used in multi-frame fusion. In addition to using the two-frame
estimate [t → (t + 1)] directly, we also estimate the flow from [t → (t − 1)] and from [t →
(t + 2)]. These two estimates are then multiplied by the factors −1 and 1

2
, respectively, to give

an estimate of the desired flow [t → (t + 1)]. All three flow estimates are then fused using a
classifier.

still be visible in t− 1 and so −[t → (t − 1)] will likely give a better estimate for that
part of the image. Similarly, using the estimate 1

2 [t→ (t+2)] will provide an additional
source of information.

7.2 Classifier-Based Fusion

The three inertial estimates [t → (t+ 1)], 1
2 [t → (t + 2)] and −[t → (t− 1)] must be

fused. We do so by training a random forest classifier whose output tells us which esti-
mate for each pixel is predicted to have the lowest error. We use the following features:

– The tail probability for the Cauchy distribution used in the match cost D(·). This
value varies from 0 to 1 with larger values indicating a better match. The index of
the flow estimate with the best score, and its associated score, are also used.

– Each pixel in frame t is projected forward via the flow estimate and then projected
back using the backward flow. The Euclidean norm of this discrepancy vector is
used as a feature for each flow estimate. The index of the flow estimate with the
smallest discrepancy and its corresponding value are also included as features.

– The flow estimates u and v, and the magnitudes
√
u2 + v2.

– The multiplicative offset m(x) at each pixel.
– For every pixel, an indicator of whether the pixel is estimated to be occluded.
– The (x, y) location of each pixel.

This results in a total of 27 features. For each dataset that we evaluated our methods
on, we sampled a number of points uniformly at random from the associated training
images such that the resulting dataset had ∼ 106 observations.

In this classification problem, not all data points should be counted equally. In par-
ticular, a misclassification is more costly when the three inertial estimates have very
different errors. To take this into account, each data point was weighted by the differ-
ence between the lowest endpoint error of all three flow estimates and the mean of the
other two. This weighting indicates how important each datapoint is. We then trained a
random forest classifier with 500 trees using MATLAB’s TreeBagger class. An exam-
ple of our fusion is shown in Figure 5 on the MPI-Sintel dataset [5]. As a final step in
our procedure, a median filter of size 15×15 was applied.
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EPE: 8.34 EPE: 2.35 EPE: 7.68 EPE: 19.94

EPE: 11.09 EPE: 4.78 EPE: 10.74 EPE: 28.40

EPE: 16.82 EPE: 4.32 EPE: 16.41 EPE: 18.59

EPE: 7.91 EPE: 1.85 EPE: 7.33 EPE: 13.94

Fig. 5. Examples of our multi-frame fusion from the MPI-Sintel Final training set. Top row:
Frame at time t. Rows 2-4: Inertial estimates of the flow [t → t + 1], −[t → t − 1], and
1
2
[t → t + 2]. Row 5: Fusion classification for each pixel. Color indicates the estimate used at

each pixel. Colors correspond to the border colors of the inertial estimates. Row 6: Fused flow
estimate. Bottom row: Groundtruth flow. For all flow estimates, the endpoint error is printed in
the image.

8 Experiments

We evaluate our algorithm on three datasets. The free parameters of our method are
τ0, τ1, τ2, τ3, the value of α used in the smoothness terms S1(·) and S2(·), and the
spacing of the uniform grid used in the triangulation. For S3(·), we set α = 0.5 for all
experiments. Parameters were chosen for each dataset using a small-scale grid search
on the training data.

We use a scale of 0.95 between pyramid levels – resulting in around 60 levels – and
used 10 Cholesky-based iterations of Newton’s method at each level.

Our basic method is denoted as TF (TriFlow), and when occlusion estimation, multi-
frame fusion and median filtering are used, they are denoted as “O” (occlusion), “F”
(fusion) and “M” (median filtering), respectively. Our final method with all components
is thereby denoted as TF+OFM.
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8.1 Middlebury

We begin with the Middlebury dataset [4] since it is a standard benchmark for optical
flow, although it has only small and simple motions. For this dataset, the parameters
were set to τ0 = 0, τ1 = 3.5, τ2 = 0, τ3 = 25, α = 0.36, and a small grid spacing of 2
pixels was used in order to capture the small details in this dataset.

Results on the test dataset are given in Table 1. Note that we did not evaluate our
multi-frame fusion since the dataset was too small for a reliable classifier to be trained.
Our results are comparable to other similar coarse-to-fine methods such as DeepFlow
[27]. Our occlusion estimation provides little benefit in this case, since the dataset has
very small occlusion regions.

Table 1. Endpoint error on the Middlebury test dataset. Our results are comparable with similar
coarse-to-fine methods

Army Mequon Scheff. Wooden Grove Urban Yosemite Teddy mean

TF+OM 0.10 0.22 0.36 0.20 0.98 0.56 0.16 0.76 0.42

Layers++ [10] 0.08 0.19 0.20 0.13 0.48 0.47 0.15 0.46 0.27
MDP-Flow2 [12] 0.09 0.19 0.24 0.16 0.74 0.46 0.12 0.78 0.35
DeepFlow [27] 0.12 0.28 0.44 0.26 0.81 0.38 0.11 0.93 0.42
LDOF [24] 0.12 0.32 0.43 0.45 1.01 0.10 0.12 0.94 0.56

8.2 MPI-Sintel

The MPI-Sintel dataset [5] is a large, difficult dataset that includes large displacements,
significant occlusions and atmospheric effects. Parameters were set to τ0 = 0.5, τ1 =
2.0, τ2 = 0, τ3 = 100, α = 0.6, and the grid spacing was set to 5 pixels.

Results on the MPI-Sintel test dataset are given in Table 2. As of this writing, our
method is ranked 2nd among all submissions on the Final dataset and it outperforms
all other published methods in terms of endpoint error. The results are especially good
for unmatched pixels which are helped by our occlusion term and multi-frame fusion.
In particular, on the Final dataset the occlusion term improves the error on unmatched
pixels by 6.4% and the fusion improves it by an additional 7.2%.

Several examples of results from our multi-frame fusion for the Final version of the
training dataset are shown in Figure 5. As we would expect, the inertial estimates that
the classifier selects are spatially localized around the edges of objects where occlusions
occur. In all cases, the multi-frame fusion significantly reduces the endpoint error.

Figure 3 shows several examples of the occlusion estimates on images from MPI-
Sintel. During optimization, the occlusion status of each quadrature point in each tri-
angle is estimated. For visualization, we label each triangle a value in [0, 1] as the pro-
portion of its quadrature points that are labeled as occluded, and then each pixel is
labeled based on the triangles that it overlaps. The occlusion term is able to estimate the
occlusions accurately, which results in reduced error.
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Table 2. Results on the MPI-Sintel test set. Our algorithm outperforms all other published results
in terms of endpoint error (EPE) on the Final dataset. The largest change is on unmatched pixels
due to our occlusion estimation and multi-frame fusion.

Final Clean
EPE matched unmatched EPE matched unmatched

TF+OFM 6.727 3.388 33.929 4.917 1.874 29.735
TF+OF 6.780 3.436 34.029 4.986 1.937 29.857
TF+O 7.164 3.547 36.657 5.357 2.033 32.474
TF 7.493 3.609 39.170 5.723 2.077 35.471

DeepFlow [27] 7.212 3.336 38.781 5.377 1.771 34.751
AggregFlow [32] 7.329 3.696 36.929 4.754 1.694 29.685
FC-2Layers-FF [16] 8.137 4.261 39.723 6.781 3.053 37.144
MDP-Flow2 [12] 8.445 4.150 43.430 5.837 1.869 38.158
LDOF [24] 9.116 5.037 42.344 7.563 3.432 41.170

8.3 KITTI

The KITTI dataset [6] consists of grayscale images taken from a moving vehicle. We
used the parameter settings τ0 = 0.05, τ1 = 0.02, τ2 = 7, τ3 = 125, α = 0.6, and the
grid spacing was set to 5 pixels.

On the KITTI test dataset, error is measured as the percentage of pixels with an
endpoint error greater than 3, in addition to the standard endpoint error. Our results
on this dataset are given in Table 3. This dataset is quite different than MPI-Sintel:
the images are grayscale and have low contrast and the motions are often dominated
by that of the camera. Top-performing methods on this dataset take advantage of these
properties by using better features such as census transforms and more information such
as stereo and epipolar information [33]. However, our results are comparable to similar
coarse-to-fine approaches such as DeepFlow [27], especially for endpoint error (which
the fusion classifier was trained to minimize).

We also evaluate the effect of our occlusion and fusion terms on a validation set from
the training images. For this, 100 training images were used to train a fusion classifier
and evaluation was done on remaining 94 images. Results are show in Table 4. Both the
occlusion and multi-frame fusion terms significantly improve results, as measured by
either endpoint error or the percentage of pixels with and endpoint error more than 3.

8.4 Timing

Timing was evaluated on a laptop with a 1.80 GHz Intel Core i5 processor and 4 GB
of RAM. The typical time taken for two-frame flow estimation on a 1024×436 image
from MPI-Sintel (including all setup and feature matching, but excluding multi-frame
fusion) was 500 seconds. About half of this time is spent evaluating the cost function
within Newton’s method, and another 20% is spent solving linear systems. Much of
our approach can be sped up through parallelization. For example, the cost function
evaluation, running the algorithm on all three inertial estimates, and the random forest
fusion are all trivially-parallelizable.
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Table 3. Results on the KITTI test set. We show both the
endpoint error (EPE) and the percentage of pixels with an
EPE more than 3, for all pixels as well as non-occluded
pixels.

EPE EPE % > 3 % > 3
(all) (not occ.) (all) (not occ.)

TF+OFM 5.0 2.0 18.46% 10.22%

PCBP-Flow [33] 2.2 0.9 8.28% 3.64%
DeepFlow [27] 5.8 1.5 17.79% 7.22%
LDOF [24] 12.4 5.6 31.39% 21.93%
DB-TV-L1 [34] 14.6 7.9 39.25% 30.87 %

Table 4. Results on a valida-
tion set from the KITTI training
dataset. The occlusion estima-
tion term and multi-frame fusion
significantly improve results.

EPE % > 3

TF+OFM 4.23 16.43%
TF+OF 4.32 16.62%
TF+O 5.29 16.91%
TF 6.89 19.96%

9 Conclusion
This paper presents a novel framework for estimating optical flow based on a triangu-
lation of the image which improves results in difficult regions due to occlusions and
large motions. We use a geometric model that allows us to directly account for occlu-
sion effects. We also present a method that exploits temporal information from adjacent
frames by acquiring several flow estimates and fusing them via a classifier. Together,
these contributions result in state-of-the-art performance on the MPI-Sintel dataset. Our
approach was evaluated on a range of datasets and the results demonstrate that the pro-
posed enhancements have a significant impact on the quality of the resulting flow.
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Abstract. We present a novel approach to detect the trajectories of par-
ticles by combining (a) adaptive dictionaries that model physically con-
sistent spatio-temporal events, and (b) convex programming for sparse
matching and trajectory detection in image sequence data. The mutual
parametrization of these two components are mathematically designed
so as to achieve provable convergence of the overall scheme to a fixed
point. While this work is motivated by the task of estimating instanta-
neous vessel blood flow velocity using ultrasound image velocimetry, our
contribution from the optimization point of view may be of interest also
to related pattern and image analysis tasks in different application fields.
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1 Introduction
Overview. Ultrasound Image Velocimetry (Echo PIV) has evolved into an ac-
tive research interest primarily due to its ability to measure instantaneous flow
velocity and wall shear stress in a non-intrusive manner [1,2] with a wide range of
applications (e.g. from arterial wall shear stress measurements for atherosclerosis-
related studies to two-phase flow quantification for industrial studies such as
dredging).

Currently available sensors, however, severely limit the spatial and temporal
resolution of measurements. Computational cross-correlation techniques, adopted
from the traditional laser-based optical PIV and used in different fields of exper-
imental fluid mechanics [3], suffer from poor signal to noise in the reconstructed
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image sequences. Moreover, the established cross-correlation methods make it dif-
ficult to mathematically quantify motion information over an entire image se-
quence in a consistent frame-by-frame analysis of the spatio-temporal flow char-
acteristics. As such, it becomes important, but yet challenging, to incorporate the
physical principles governing the imaged fluid flow.

In this paper we present a novel approach that directly addresses these short-
comings in terms of adaptive spatio-temporal dictionaries of particle trajectories.
These dictionaries are based on a basic physical model of vessel blood flow and
are integrated into a standard sparse convex programming framework.

Related Work, Contribution. Research in connection with Echo PIV con-
cerns (i) sensor design image reconstruction and (ii) image analysis. Since re-
search on sensor design is rapidly evolving [4,5], we ignore this inverse modelling
aspect and focus on (ii) with context to PIV wherein we derive a mathematical
abstraction of “particles”, to be understood as coefficients of a basis expansion,
that discretises a realistic imaging operator in our future work.

Echo PIV employs the standard cross-correlation technique for motion esti-
mation [1,2]. In this paper, we propose a novel approach radically different from
this standard protocol with the following objectives:

1. Any imaging operator model discretized by suitable basis functions can be
incorporated later on.

2. Particle trajectories are detected by a comprehensive spatio-temporal anal-
ysis of entire image sequences in terms of dictionaries of trajectories. This
copes better with noise in comparison to techniques that merely analyse sub-
sequent image pairs. Furthermore, physical models of vessel blood flow [6,7]
can be directly exploited.

3. The computational costs for the aforementioned spatio-temporal analysis are
subdivided by adapting a smaller collection of dictionaries until convergence.

While the novelty of our approach is obvious from the viewpoint of Echo PIV, our
main contribution from the optimization point of view concerns the consistent
integration of adaptive dictionaries into a standard sparse convex programming
framework. This is accomplished by carefully modelling the mutual interaction of
dictionary parametrization and sparse convex particle matching so as to obtain
a provably converging fixed point scheme. These mathematical aspects of our
approach might be of interest also to related computational image and pattern
analysis tasks in different application fields.

Organization. The application and the corresponding imaging techniques are
sketched in Section 2. Section 3 details the model-based definition of dictionaries
together with the variational approach for motion estimation through particle
trajectory detection. Section 4 provides a convergence analysis of the adaptive
variational approach. Properties of our approach are validated experimentally in
Section 5.

Basic Notation. We set [n] = {1, 2, . . . , n} for n ∈ N. Vectors are column
vectors and indexed by superscripts. 〈x, z〉 denotes the standard scalar product
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in Rn, and ‖x‖1 =
∑n

i=1 |xi| and ‖x‖ := ‖x‖2 =
√∑n

i=1 x2
i . � = (1, 1, . . . , 1)�

denotes the one-vector whose dimension will always be clear from the context.
Δd = {x ∈ Rd

+ : 〈�, x〉 = 1} denotes the probability simplex in Rd.

2 Ultrasound Imaging and Echo PIV

We briefly sketch the state-of-the-art in imaging and motion analysis in Echo
PIV to highlight the novelty of our own methodological approach compared to
the established computational PIV techniques.

Particle Image Velocimetry (PIV). PIV is an optical method for measuring
fluid flows. For the purpose of imaging, the fluid is seeded with particles that
follow the flow dynamics. The region of interest is illuminated with a laser sheet
and a high-speed camera takes successive images. In a subsequent step, a cross
correlation technique is applied to every pair of two subsequent images and
returns an estimate of the instantaneous velocity field. For a recent overview of
the history of PIV techniques, we refer to [8].

Ultrasound Microbubble Imaging. Echo PIV, first introduced in [1], is a
technique based on the same PIV principles. Instead of the high-speed cameras
used in optical PIV, an ultrasound transducer is used in Echo PIV to capture
tracer images with the ability to image opaque media. Another major difference
to optical 2D PIV is the generation of so-called B-mode images, as sketched in
Figures 1 and 2. These 2D images are acquired via the conventional pulse-echo
technique that concatenates a series of scan lines within the field of view (FOV),
as depicted in Fig. 2. This severely limits the spatio-temporal resolution of flow
measurements.

One way to overcome this problem is to replace multiple line measurements
by a single plane wave illumination of the medium [4]. Plane wave imaging was
very recently applied to Echo PIV [5] and allows for measuring higher velocities,
since the frame rate is only limited by the propagation time of the waves, rather

Fig. 1. A schematic representation of an Echo PIV setup. The left image, adapted from
[2], overviews geometry and orientation of the transducer. Velocity is estimated from
a sequence of B-mode images (middle). Flow motion is estimated from the motion of
tracer particles injected in the medium (right), which follow the flow dynamics – here,
a steady laminar flow.
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Fig. 2. B-mode imaging in Echo PIV: images are not recorded as snapshots, but are
usually constructed line-by-line, due to the shifting of the ultrasound beam (a). The
data – RF signals (b) – can be converted (offline) to so-called B-mode images (e) by
means of envelope detection (c) and log compression (d). This scanning procedure
results in a blurred, smeared image due to moving particles between consecutive mea-
surements.

than by the number of consecutive measurements necessary to obtain a single
B-mode image. This motivates us to ignore inter-line delay in our present work.

Motion Estimation. Standard Echo PIV setups estimate the velocity field
by matching image patterns across consecutive image pairs within the acquired
image sequence, as in conventional PIV [8,9]. Such PIV methods fail to

(i) exploit the entire spatio-temporal context of a corresponding volume of
image sequence data, and

(ii) take into account the physical prior knowledge in a mathematically more
principled way.

Our present work addresses both aspects for the specific setting of Echo PIV
as summarized in Section 1.

3 Spatio-temporal Motion Model and Estimation

3.1 Dictionary of Moving Particles

As mentioned in Section 2, ultrasound images of the seeded flow for Echo PIV are
composed of vertical scan lines within the FOV acquired at different time steps.
This scheme limits the fame rate and consequently the maximum resolvable ve-
locity. In the present work, we propose a different acquisition protocol motivated
by current research on image acquisition [4,5] in which the whole image/frame
is recorded at the same point in time.

With index n we label the image of the FOV recorded at time τn = (n−1) Δt,
n ∈ [NI ], where NI is the total number of frames. All images have size Lx ×Lz in
length units or lx × lz in pixels. We introduce a 2D rectangular grid with lattice
spacing Δx = Lx/lx, Δz = Lz/lz in x and z respectively in the plane of FOV,
induced by discrete pixel representation of images.
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Image 1 Image 2 Image 3 Image 4 Image NI
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Fig. 3. Each column of the dictionary D is an image of an undersampled discrete
line, and describes a possible trajectory in the NI acquired images concatenated along
the tube axis (left). Each such column depends on the discretization of Ω, acquisition
process and flow model. Here the Poiseuille flow model leads to straight lines. The
input data (right) is given by all NI frames concatenated along the tube axis. The
problem is to sparsely match imaged particles to trajectories in D parametrized by the
unknown maximal velocity vm.

Below we describe how to build a flow dictionary corresponding to steady
laminar flow with maximal velocity along the cylinder axis equal to vm.

Dictionary of a Single Velocity Profile. The dictionary of trajectories
D is a sparse matrix with binary entries {0, 1} and it describes the position of
particles at time τn, n ∈ [NI ] relative to the FOV. Each column in D is associated
to the trajectory of a single particle j, j ∈ [NP ], where NP denotes the number of
particles. The number of columns in D equals the number of possible trajectories.
Due to the discretization, in the limit when a particle is located at all grid points,
there is an upper bound for NP < lx lz + (NI − 1) Δt vm lxLx/lz. The number of
rows in D is independent of vm and equals NI lxlz.

According to the adopted model sketched in Figure 1 (right panel), the motion
of particle j with initial coordinates (xj

1, zj
1) at time τ1 is governed by

⎧
⎨

⎩

xj
n = xj

1 + (n − 1)Δt vm

(

1 −
(

rj

R

)2
)

,

zj
n = zj

1 = const.
(1)

where rj = |zj
1 − R|, zj

1 ∈ [0, 2R] is the distance from the axis and R the inner
radius R of the cylinder.

If at time τn particle j is present in the FOV, i.e. xj
n ∈ (0, Lx], then its pixel

coordinates in image n is (mj
xn

, mj
zn

), where mj
xn

= � xj
n

Δx �, mj
xn

∈ [lx] (�a� is the
smallest integer larger then a) and since coordinates z remain unchanged over
time we set zj

1, ∀ j ∈ [NP ], to have the form

zj
1 = zj

n = (mj
zn

− 1
2

)Δz, (2)

mj
zn

∈ [lz]. Further, we select the row index

ij
n = (n − 1) lx lz + mj

zn
lx − mj

xn
+ 1 (3)

and define the entries in the j column of the dictionary as

Dij = Dij(vm) =
{

1, if i = ij
n,

0, otherwise.
(4)
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We stress the fact that, with all discretization parameters fixed, a dictio-
nary D of particle trajectories corresponding to a single velocity profile (1) is
parametrized by the single scalar maximal velocity vm.

The above definition implies that the number of non vanishing entries in any
column j does not exceed the number of images NI . This is consistent with the
physical picture that a particle appears only once in a measured image, or it does
not appear at all. We note that two columns D•,j , D•,j′ will be equal if and only if
the initial coordinates for two different particles are equal, i.e. (xj

1, zj
1) = (xj′

1 , zj′
1 ).

Consequently D will not contain redundant (equal) columns. Another consequence
is the orthogonality of the columns of D, as formally stated next.
Proposition 1. For any two columns D•,j and D•,j′ in D corresponding to
particles with initial coordinates (xj

1, zj
1) and (xj′

1 , zj′
1 ) we have

〈D•,j, D•,j′〉 = 0 ⇐⇒ (xj
1, zj

1) �= (xj′
1 , zj′

1 ). (5)

Proof. We show 〈D•,j, D•,j′〉 �= 0 ⇐⇒ (xj
1, zj

1) = (xj′
1 , zj′

1 ).
”⇐” Clear, in view of (1) and the construction of D.
”⇒” Assume 〈D•,j , D•,j′〉 �= 0. We show that this implies (xj

1, zj
1) = (xj′

1 , zj′
1 ).

The assumption implies that there exists an index in = in′ such that Din′ j′ =
Din j = 1, i.e. by (3)

n lx lz + mj
zn

lx − mj
xn

= n′ lx lz + mj′
zn′ lx − mj′

xn′ . (6)

From mj
zn

= {1, . . . , lz} and mj
xn

= {1, . . . , lx}, we have 0 ≤ mj
zn

lx − mj
xn

≤
lx lz − 1, and similarly for j′, i.e. 0 ≤ mj′

zn′ lx − mj′
xn′ ≤ lx lz − 1. Dividing (6)

through lx lz, we get

n︸︷︷︸
∈N

+
mj

zn
lx − mj

xn

lx lz︸ ︷︷ ︸
∈[0,1)∩Q

= n′
︸︷︷︸
∈N

+
mj′

zn′ lx − mj′
xn′

lx lz︸ ︷︷ ︸
∈[0,1)∩Q

(7)

from which we conclude n = n′ and mj
zn

lx − mj
xn

= mj′
zn′ lx − mxn′ . Rewriting

the latter expression as

mj
zn

= mj′
zn

+ (mj
xn

− mj′
xn

)/lx, (8)

we infer mj
xn

− mj′
xn

= 0 as follows: The relation | mj
xn

− mj′
xn

| ≤ lx − 1, mj
zn

,
mj′

zn
∈ N and n = n′ implies mj

xn
= � xj

n

Δx �. Since this equality must hold for any
Δx, we conclude xj

n = xj′
n .

As a consequence, (8) implies mj
zn

= mj′
zn

and hence zj
1 = zj′

1 by (2). This
together with (1) and xj

n = xj′
n finally implies xj

1 = xj′
1 . �

3.2 Variational Motion Estimation
Given noisy measurements F of particles {(xj

n, zj
n)}j∈[NP ],n∈[NI ] for a collection

of NI subsequent frames at points of time τn = (n − 1)Δt, n ∈ [NI ], we set up
an adaptive variational approach for localizing these particles in F .
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To this end, we exploit the motion model (1) that describes particles’ trajec-
tories parametrized by the unknown maximal velocity vm and unknown initial
coordinates (xj

1, zj
1). Aggregating potential local detections over time in this way

is our approach (i) to suppress noise, (ii) to discriminate particles from each
other, and (iii) to estimate the unknown velocity vm that is the ultimate goal
from the viewpoint of the application area.

We make the reasonable assumption of knowing an interval

vm ∈ [vmin, vmax], vmin > 0 (9)

that contains the unknown parameter vm. Every velocity value v′
m ∈ [0, vmax]

defines a dictionary D(v′
m) by (4) that exhaustively enumerates trajectories gen-

erated by (1) with vm = v′
m, that could have been observed in the image se-

quence. If we knew the true velocity vm, we could detect trajectories in the data
F by sparsely matching D(vm)u to F , where u corresponds to a sparse indicator
vector selecting active trajectories in D(vm).

Since vm is not given, we have to estimate it from the data F as well. Since
a single dictionary D(v′

m) is quite large, setting up a collection of dictionaries

D(v) :=
(
D(v1), D(v2), . . . , D(vd)

)
, 0 < v1 < v2 < · · · vd < vmax (10)

with closely spaced values {vi}i∈[d] is computationally infeasible. We therefore
limit d to a reasonable value (see Section 5 for the setup) and estimate vm by
an adaptive sequence of dictionaries defined by a sequence of velocity vectors

D(k) := D(v(k)), v(k) = (v(k)
1 , . . . , v

(k)
d )� ∈ [vmin, vmax]d, k ∈ N (11)

that localizes vm ∈ [v(k)
1 , v

(k)
d ] in intervals of shrinking sizes: |v(k)

d − v
(k)
1 | <

|v(k−1)
d − v

(k−1)
1 |. At each iterative step k, we match trajectories and data by

solving

u(k) := argmin
u∈[0,1]N

‖D(k)u−F‖1+ α

2
‖u‖2+ 1

2λ
‖u−u(k−1)‖2, α > 0, λ > 0. (12)

We stress that nonnegativity constraints enforce sparse recovery without explicit
sparse regularization [10]. In order to additionally cope with sparse outliers we
decided to use an �1-based data/linear model discrepancy term, since minimizing
‖D(k)u − F‖1 is better suited for sparse error recovery, see [11]. Subsequently,
we subdivide u(k) into subvectors conforming to the structure (10) of D(k),

u(k) = (u1,(k), . . . , ud,(k)), (13)

and estimate vm as convex combination of the velocity values v(k) defining the
current dictionary D(k),

v(k)
m :=

∑

i∈[d]

w
(k)
i v

(k)
i = 〈w(k), v(k)〉, w

(k)
i := 1

‖u(k)‖1 ‖ui,(k)‖1, i ∈ [d]. (14)
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Iteration step k is completed by updating the velocity vector

v(k+1) = Vτ (u(k), v(k)), v
(k+1)
i := v(k)

m + τ(v(k)
i − v(k)

m ), i ∈ [d], (15)

with τ ∈ (0, 1). In the next section, it is shown that for any choice of the
parameters λ > 0 and τ ∈ (0, 1), the sequence of non-stationary mappings
(i.e. depending on k)

v(k) Eqn. (12)−−−−−−→ u(k) Eqn. (15)−−−−−−→ v(k+1) (16)

is a fixed point iteration that converges to a constant vector v(∞) = vm�, that
constitutes the estimate of vm. The quality of this estimate from the applied
viewpoint as outlined in Section 2, will be assessed in Section 5.

4 Convergence Analysis

We next show the convergence of the scheme (16) under mild conditions. The
proof reveals how the scheme can be modified from the viewpoint of the intended
application without compromising convergence. We describe a promising variant
in the next paragraph.

Convergence. We write for the proximal mapping u(k−1) → u(k) defined by (12)

u(k) = Pλf(u(k−1), v(k)) := argminu f(u, v(k)) + 1
2λ

‖u − u(k−1)‖2, (17a)

f(u, v(k)) := ‖D(k)u − F‖1 + α

2
‖u‖2 + δC(u), C = [0, 1]N , (17b)

eλf(u, v(k)) := inf
w

f(w, v(k)) + 1
2λ

‖w − u‖2, (17c)

in order to exhibit the parametrization by v(k) defining the dictionary (11).
Eq. (17c) additionally introduces the Moreau envelope eλf of f [12, Def. 1.22],
that we need in the proof of Prop. 2 below.

Likewise, we regard the mapping v(k) �→ v(k+1) defined by (15) as parametrized
by u(k). These mutual dependencies of the sequences (u(k))k∈N and (v(k))k∈N and
their convergence are addressed next.
Proposition 2. Let the sequences (u(k))k∈N, (v(k))k∈N be given by (12) and (15),
respectively. Suppose the mapping v �→ D(v) is continuous. Then, for any ini-
tializations v(0) ∈ [vmin, vmax]d ⊂ Rd

++ and u(0) ∈ C, the sequence v(k) k→∞−−−−→
v(∞) = v

(∞)
m � converges to a constant vector as fixed point, and the sequence

u(k) k→∞−−−−→ u(∞) = argmin f(u, v(∞)) converges to the corresponding minimizer
of f .

Proof. The mapping (15) reads in view of (14)

Vτ (u, v) = τv + (1 − τ)vm� =
(
τI + (1 − τ)�w�(u)

)
v =: Vτ (u)v. (18)

We observe for every fixed u ∈ C:
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(i) w(u) ∈ Δd and hence constant vectors c�, c > 0, constitute fixed points:
Vτ (u)(c�) = τc� + (1 − τ)〈w(u), c�〉� = c�.

(ii) The matrix Vτ (u) has eigenvalues τ ∈ (0, 1) with multiplicity d − 1 and
1, where the constant vectors are the eigenvectors corresponding to the
largest eigenvalue 1.

As a consequence, Vτ constitutes a contraction for any non-constant vector v,
‖Vτ (u, v′) − Vτ (u, v)‖ < ‖v′ − v‖, independent of u. Conversely, if we fix any
feasible v and consider any sequence u(k) → u, then we have Vτ (u(k), v) →
Vτ (u, v) due to the continuity of Vτ (·, v).

As a consequence of these properties, a variant of Banach’s fixed point theorem
[13, Prop. 1.2] asserts that the equation vu = Vτ (u, vu) has exactly one positive
solution in the unit sphere (Sd−1 ∩ [vmin, vmax]d) ⊂ Rd

++ and that vu(k) → vu.

Next, we consider the mapping u(k−1) �→ u(k), given by the proximal mapping
(17), that is parametrized by v(k). We have to show convergence of the sequence
of minima (17a), which is best covered by the epi(graphical)-convergence [12,
Def. 7.1] of the sequence (17b) of functions f (k) := f(·, v(k)), whose analysis
simplifies due to f being proper, lower semicontinuous and (strongly) convex as
follows.

By [12, Thm. 7.37], pointwise convergence eλf (k)(u) → eλf (∞)(u) of the
Moreau envelopes (17c) for some λ > 0, which holds due to the continuity of
v �→ D(v) by assumption, already yields epi-convergence of the sequence f (k) to
f (∞). This in turn assures by [12, Thm. 7.33] convergence of the unique minima
u(k) → u(∞), where uniqueness is due to the strict convexity of the objective
function of (17a), and finally u(∞) = argmin f (∞). �

As a result, the sequence v(k) converges to a constant vector v(∞) = vm� in
connection with the convergence of minima u(k) �→ u(∞) that finally determines
the constant vm which is the estimate we are primarily interested in, by matching
the dictionary D(v(∞)) to the given data F through minimizing ‖D(v(∞))u−F‖1.

Remark 1. The assumption of continuity of the mapping v �→ D(v), made in
Prop. 2, does not strictly hold true for our current implementation described
in Section 3.1, but only “up to (small) discretization effects”. Our experiments
show however that this does not compromise convergence. A more refined dis-
cretization using smooth compactly supported basis functions will remove this
(minor) deficiency in our future work.

Variants of the Estimation Scheme. The proof of Proposition 2 shows that
the assertion holds for any smooth mapping

u(k) �→ w(k) = w(u(k)) ∈ Δd. (19)

As a consequence, we can investigate alternatives to the mapping (14). Attractive
candidates are mappings that are more sensitive to the subvector ui,(k) in (13)
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with maximal support maxi∈[d] ‖ui,(k)‖1. A natural candidate for such a smooth
mapping is

w
(k)
i := 1

∑
j∈[d] e

sj/ε
esi/ε, si := ‖ui,(k)‖1, ε > 0, i = 1, 2, . . . , d. (20)

This results in a strictly positive vector w(k) ∈ Δd that, for ε → 0, concentrates
its mass at the component i ∈ [d] corresponding to maxi∈[d] ‖ui,(k)‖1.

We summarize the performance of this variant in numerical experiments in
Section 5.

5 Numerical Experiments

In this section, we illustrate the performance of our approach (see Section 3 and
Alg. 1 below, for a compact summary), in noisy and non-noisy environments.
Experimental Setup. The experimental verification was done using data sim-
ulated as follows.

(a) first, randomly distribute a fixed number of microbubbles in the cross section
of a tube with length L (100cm) and radius R (5cm);

(b) select an arbitrary value for v∗
m between vmin = 0.001 and vmax = 5;

(c) calculate the position of every microbubble according to Eq. (1) at each time
step τn = (n − 1)Δt, Δt = 0.2s;

(d) scan simultaneously the field of view Ω = [0, Lx]× [0, Lz] at each time τn and
store NI = 20 binary 2D images of size lx × lz (in pixels) and microbubbles
position therein. Lx = Lz = 10 cm and lx = lz = 100;

(e) sort all NI images and form the larger image Fideal =: F of size lx × NI lz
(see Figure 4);

(f) add noise to mimic ghost particles or error in the position of particles in
the form of outliers or perturbing positions in a random direction of random
particles. The amount of noise is given by

# fraction of corrupted entries = ‖Fideal − Fnoise‖1
2‖Fideal‖1 .

We set the particle density to 10 particles/cm. For practical reasons we precom-
pute and store in advance dictionary blocks corresponding to a single velocity
profile for all velocity values in [vmin, vmax] in steps of Δv = 0.001. The velocity
resolution on this particular grid is of the order of Δv. Thus dictionary blocks
D(v1) and D(v2) corresponding to v1 and v2 coincide if |v1 − v2| < Δv.
Optimization. For the two proposed variants mapping velocities (according to
(14) or (20)), we run Alg. 1 below until the accuracy Δv was reached. The large-
scale optimization task of Alg. (1) is the application of the proximal mapping and
solving (12) at each iteration. To perform this task we currently use the CVX
package for disciplined convex programming [14]. The average runtime for solving
(12) is 5 minutes. Currently each D is a highly sparse

(
2 · 105

)×(
NP (vk

i ) · d
) ≈ 2·



388 E. Bodnariuc et al.

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

N
I
 L

z

L x

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

N
I
 L

z

L x

Fig. 4. Typical input (top) and output (bottom) of Alg. 1, but here using only 1%
of the actual particle density for the purpose of visualization (better viewed in color).
20% (red dots) of input data are corrupted. All points should ideally belong to 84
unknown trajectories. Our proposed algorithm assigns microbubbles in the input frames
to particle trajectories from a sparsifying dictionary. Correctly matched trajectories
are displayed by thin black lines, wrong ones with magenta. The slopes of matched
trajectories yield the velocity of each particle. Quantitative performance statistics for
the full data sets are listed in Table 1.

105×106 matrix, with d = 11 and i ∈ [d]. Each NP depends on each velocity value
vk

i and NP (vk
i ) < lx lz + (NI − 1) Δt vk

i lxLx/lz = 105 + 38vk
i . For processing real

data a dedicated numerical optimization algorithm is necessary as CVX cannot
handle much larger problem sizes. We emphasize that by ignoring the quadratic
terms in (12) the problem can be recast as a linear program. Thus (12) can be
seen as a perturbed linear program. Our future work from the algorithmic point
of view will exploit this fact along with the structure and sparsity of D consisting
of d building blocks having each orthogonal columns due to Proposition 1.
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Fig. 5. Convergence performance of the fixed point Alg. 1 and its two variants for 20%
noise, for large (v∗

m = 3.2463, top row) and small true (unknown) velocity (v∗
m = 0.4321,

bottom row). Both variants of the algorithm for estimating v∗
m converged in 10 (top)

and 25 (bottom) iterations. However, computing the weights wi according to (20) based
on the softmax function – softmax-weights – (right) leads to a more accurate estimate
of v∗

m than computing weights according to (14) – �1-weights – (left). Further numerical
values are given in Table 1 based on averaged results over 20 runs.
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Fig. 6. Estimating the velocity v∗
m via Alg. 1 is robust (left) to corrupting a large

fraction of the input data, although the fraction of correctly detected trajectories de-
creases (right). This fraction suffices to define a “correct” dictionary D(v(k)) due to the
convergence of v(k) to a uniform vector vm�. Results are consistent for different values
of τ ∈ [0.4, 0.8], τ ∈ [0.2, 0.4] and ε ∈ {50, 100, 150, 200}.
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Algorithm 1. Fixed Point Algorithm with two variants of mapping veloc-
ities according to (14) or (20).
Data: concatenated frames F , d ∈ N initial estimates for velocity profiles

v(1) = (v(1)
1 , . . . , v

(1)
d ), parameters Δv > 0, λ > 0, α > 0, ε > 0, τ ∈ (0, 1)

Result: vm, Np

k = 1 ;
while |v(k)

d − v
(k)
1 | < Δv do

D(k) = (D(v(k)
1 ), D(v(k)

1 ), . . . , D(v(k)
d ));

u(k) = arg min
u∈[0,1]

‖ D(k) u − F ‖1 + α
2 ‖u‖2 + 1

2λ
‖u − u(k−1)‖2 ;

Compute weights from (14) / (20): ;
∀j ∈ [d] : w

(k)
j = sj

‖u(k)‖1
, sj := ‖uj,(k)‖1 / w

(k)
j := 1∑

�∈[d]
es�/ε

esj /ε;

v
(k)
m =

∑

i∈[d]
w

(k)
i v

(k)
i ;

∀j ∈ [d] : v
(k+1)
j = v

(k)
m + τ (v(k)

j − v
(k)
m );

k = k + 1;

vm = v
(k)
m , NP = ‖u(k)‖0;

Results and Discussion. Fig. 4 illustrates the detection and particle trajecto-
ries after convergence to the fixed point according to Prop. 2. The convergence
behavior is depicted by Fig. 5 along with a discussion in the caption. Finally
Fig. 6 demonstrates a remarkable robustness of our approach against data noise
over a wide range of values of the parameters τ ∈ (0, 1), λ > 0 and ε in (20), due
to the aggregation of all information over the entire spatio-temporal volume.

Table 1. Estimated velocity and number of particles for ideal and noise data. The
velocity value to be estimated is v∗

m. The number of true trajectories is N∗
p . We averaged

results over 20 runs. Velocity estimates are stable against noise, and the results reveal
better estimates for the softmax-weights in the case of small velocities.

v∗
m = 3.2463; N∗

p = 1526; τ = 0.4
0 % 10 % 20 %

vm Np vm Np vm Np

�1-weights 3.2437 ± 0.003 1526 3.2438 ± 0.0003 1513 ± 3 3.2437 ± 0.005 1478 ± 8
softmax-weights 3.2450 ± 0.006 1526 3.2456 ± 0.007 1519 ± 3 3.2460 ± 0.0006 1493 ± 5

v∗
m = 0.4321; N∗

p = 1035; τ = 0.8
0 % 10 % 20 %

vm Np vm Np vm Np

�1-weights 0.4416 ± 0.016 1031 0.4688 ± 0.0037 754 ± 11 0.5291 ± 0.0227 360 ± 64
softmax-weights 0.4300 ± 0.020 1035 0.4296 ± 0.0007 1032 ± 2 0.4299 ± 0.0008 731 ± 24

6 Conclusion
We have reformulated the velocity estimation problem for a steady laminar flow
via Echo PIV as a sparse and global spatio-temporal estimation problem, using
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a physical flow model. The input data was the whole image sequence assumed to
be well approximated by the sum of few elements from a flow dictionary. Since
the dictionary was parametrized by the unknown velocity profile, we updated the
dictionary in each iteration, thereby refining the unknown quantity. We showed
convergence to a fixed point of the overall scheme under weak assumptions to
a sparsifying dictionary that robustly estimated velocity even in the presence of
high levels of noise. Numerical examples demonstrated this robustness, conver-
gence and estimation accuracy of our approach.

Further work will concentrate on adapting the dictionary using more general
physical fluid flow models, and incorporating models of the real imaging sensor
with proper discretization.

References

1. Kim, H., Hertzberg, J., Shandas, R.: Development and Validation of Echo PIV.
Exp. Fluids 36(3), 455–462 (2004)

2. Poelma, C., van der Mijle, R.M.E., Mari, J.M., Tang, M.X., Weinberg, P.D., West-
erweel, J.: Ultrasound Imaging Velocimetry: Toward Reliable Wall Shear Stress
Measurements. European Journal of Mechanics - B/Fluids 35, 70–75 (2012)

3. Raffel, M., Willert, C., Wereley, S., Kompenhans, J.: Particle Image Velocimery –
A Practical Guide. Springer (2007)

4. Schiffner, M.F., Schmitz, G.: Fast Image Acquisition in Pulse-Echo Ultrasound
Imaging using Compressed Sensing. In: 2012 IEEE International Ultrasonics Sym-
posium (IUS), pp. 1944–1947. IEEE (2012)

5. Rodriguez, S., Jacob, X., Gibiat, V.: Plane Wave Echo Particle Image Velocimetry.
Proceedings of Meetings of Acoustics, POMA 19 (2013)

6. Womersley, J.R.: Method for the calculation of velocity, rate of flow and viscous
drag in arteries when the pressure gradient is known. J. Physiol. 127, 553–563
(1955)

7. Sutera, S., Skalak, R.: The History of Poiseuille’s Law. Ann. Rev. Fluid Mech. 25,
1–19 (1993)

8. Adrian, R.J.: Twenty Years of Particle Image Velocimetry. Experiments in Flu-
ids 39(2), 159–169 (2005)

9. Westerweel, J.: Fundamentals of Digital Particle Image Velocimetry. Measurement
Science and Technology 8(12), 1379–1392 (1997)

10. Slawski, M., Hein, M.: Sparse Recovery by Thresholded Non-Negative Least
Squares. In: Proc. NIPS, pp. 1926–1934 (2011)

11. Candès, E.J., Tao, T.: Decoding by Linear Programming. IEEE Transactions on
Information Theory 51(12), 4203–4215 (2005)

12. Rockafellar, R., Wets, R.J.B.: Variational Analysis, 2nd edn. Springer (2009)
13. Zeidler, E.: Nonlinear Functional Analysis and its Applications: Fixed Point The-

orems, vol. I. Springer (1993)
14. Grant, M., Boyd, S.: CVX: Matlab Software for Disciplined Convex Programming,

version 2.1. (March 2014), http://cvxr.com/cvx

http://cvxr.com/cvx


Point Sets Matching by Feature-Aware Mixture

Point Matching Algorithm

Kun Sun1, Peiran Li1, Wenbing Tao1,�, and Liman Liu2

1 National Key Laboratory of Science and Technology on Multi-spectral Information
Processing, School of Automation, Huazhong University of Science and Technology,

Wuhan 430074, China
wenbingtao@hust.edu.cn

2 School of Biomedical Engineering, South-Central University for Nationalities,
Wuhan 430074, China

Abstract. In this article we propose a new method to find matches be-
tween two images, which is based on a framework similar to the Mixture
Point Matching (MPM) algorithm. The main contribution is that both
feature and spatial information are considered. We treat one point set
as the centroid of the Gaussian Mixture Model (GMM) and the other
point set as the data. Different from traditional methods, we propose
to assign each GMM component a different weight according to the fea-
ture matching score. In this way the feature information is introduced
as a reasonable prior to guide the matching, and the spatial transforma-
tion offers a global constraint so that local ambiguity can be alleviated.
Experiments on real data show that the proposed method is not only
robust to outliers, deformation and rotation, but also can acquire the
most matches while preserving high precision.

Keywords: image matching, Gaussian Mixture Model, feature informa-
tion, spatial arrangement.

1 Introduction

Finding corresponding points between two images is one of the fundamental
problems in computer vision and is a key ingredient in a wide range of applica-
tions. However, due to the differences between images such as illumination, view
point, occlusion, and scaling, the matching results are either too sparse or with
too many mismatches. In this paper we focus on finding as more correct matches
as possible while preserving satisfactory precision.

1.1 Literature Review and Problems

Among all kinds of matching methods, three classes deserve to be mentioned: the
feature descriptor based methods, the spatial arrangement based methods
and the methods considering both of them.
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The feature descriptor based methods build a high dimensional descriptor
for each detected feature point in its local neighborhood. Lowe[12] proposed a
scale invariant feature transform(SIFT), which combines a scale invariant region
detector and a descriptor based on the gradient distribution in the detected
regions. Bay et al. [2] proposed a much faster descriptor “SURF” by relying on
integral images and Hessian-matrix based detector. The BRIEF descriptor [3] is
a n-dimensional binary bitstring computed from pairwise intensity comparison
and based on it a new oriented descriptor called ORB is defined by Rublee
et al [15]. Hauagge and Snavely [8] designed a specific descriptor for matching
symmetric images. Mikolajczyk and Schmid [13] recently evaluated a variety
of approaches and concluded the SIFT based features perform best. However,
although a lot of work has been done to improve the performance of descriptors,
the results are either too sparse or with unavoidable outliers.

The second class of methods solve the matching problem by point sets reg-
istration, in which two best aligned points denote a match. Recently a popular
view treats the alignment of two point sets as a MAP problem of the Gaussian
Mixture Model(GMM). The Mixture Point Matching (MPM) algorithm [9] and
the Robust Point Matching (RPM) algorithm [6] are two early algorithms that
use the GMM representation explicitly and implicitly. The CPD algorithm [14]
directly modeled one point set by the GMM and the other set as the data gen-
erated by this model. Jian and Vemuri [10] proposed to model both point sets
by the GMM and then minimize their discrepancy. In spite of the success in
point sets registration, the methods mentioned above are seldom used in image
matching. This is because: 1) an abundant of outliers exist in the initial features,
2) the transformation between two image feature point sets are complex due to
the projection of the scene at different depth to the image plane, especially in
wide baseline cases.

The third class of methods simultaneously take both feature and spatial
information into consideration. Among them graph matching is a hot topic.
Leordeanu and Hebert [11] build an adjacent matrix whose nodes represent pos-
sible correspondences and edges denote pairwise agreement between them. The
correct correspondences were recovered according to the principal eigenvector of
the adjacent matrix. Cho and Lee [5] proposed a novel progressive framework
which combines probabilistic progression of graphs with matching of graphs.
Based on the current graph matching result, the algorithm explores the space of
graphs beyond the current graphs. However, the application of graph matching
methods is limited due to high computational complexity. Other works utilize
both kinds of information by embedding the image coordinates and feature de-
scriptors into a unified subspace. A pairwise matching algorithm PW [17] was
proposed in which a spectral decomposition for the affinity matrix in the sub-
space is adopted to find matches. This work was then improved by Hamid et
al. [7], in which random projection is used to approximate subspace learning
and matches with high confidence are used to guide the procedure for dense
matching. However, the matching in the learned subspace is to find the nearest
neighbour, which may also produce mismatches.
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1.2 Basic Idea for the Solution

One drawback of the traditional GMM based method is that all the GMM com-
ponents are assigned the same weights, which means that one data point could
be matched to each of the model points with equal chance. It suffers from the fol-
lowing cases when matching feature points extracted from images: 1) When the
point set contains a high ratio of outliers. In the context of image matching, the
initial features contain a large portion of outliers, which can easily degrade the
performance. This is especially severe for wide baseline cases. 2) It cannot handle
large geometry changing such as large rotation, which is common in multi-view
images. This is because the transformation corresponding to a large rotation will
result in a large smoothness penalization. As a result, it will return a seemingly
smooth transformation but the correspondence is totally wrong. 3) The shape
of the point set is flat or symmetric. The difficulty for aligning this kind of point
set is the uncertainty of the transformation. Since several transformations could
spatially align the point sets, it prefers a simpler and smoother transformation,
which may not be the most appropriate.

In this paper, we propose a new method for image feature points matching.
Our main contribution is to take both feature similarity and spatial arrangement
into consideration. To achieve this, we model one point set by the GMM but
assign each GMM component a different weight. Specifically, for a given data
point, we compute each GMM component a weight according to the feature
matching score between the data point and the model point corresponding to
the component. By doing so we are using the feature information to guide the
spatial alignment between the point sets. The motivations for doing this are:

1. If two points are similar in the feature space, they are more likely to form
a correct match. So the GMM component should be given a larger weight
if its corresponding model point has higher feature matching score with the
data point.

2. Feature similarity constraint, which provides a reasonable prior for the align-
ment, together with the spatial smoothness constraint are encoded in a uni-
fied model. As a result, the performance is enhanced.

We will develop our method in the framework similar to the MPM algo-
rithm [9], in which the Deterministic Annealing technique and the EM algorithm
are used. The main difference is that [9] considers only the spatial arrangement
and uses the same weights for all the GMM components, while our method inte-
grates the feature information into this framework by assigning different weights
to the GMM. The Thin Plate Spline(TPS) is used as the transformation model.
This is because that even though the scene is rigid, the transformation between
its projections on two image planes will be modeled by a non-rigid formulation
when depth discontinuity exists.

Fig. 1 is a simple example of ourmethod.We consider two images of a scene with
repeated patterns. SIFT key points and their descriptors are extracted. We then
match them using (a) SIFT [18], (b) RPM [6] and (c) the proposed algorithm.
As the recurring patterns produce many local similar regions, the local feature
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TP: 27 TN: 8

(a) SIFT [18]

TP: 4 TN: 70

(b) RPM [6]

TP: 50 TN: 2

(c) Ours

Fig. 1. A simple example of our method. From top to bottom: matching using
SIFT [18], RPM [6] and our method. True Positives(TP) are in green and True Nega-
tives(TN) are in red.
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descriptor based matching method such as SIFT will not work well. RPM is un-
able to find correct matches due to large geometry changes and outliers in the
original feature points. Our method not only finds the most correct matches, but
also acquires satisfactory precision. This shows that our thinking of using feature
similarity to guide the matching procedure while imposing spatial arrangement
constraint is feasible, and can enhance the result.

The remainder of this paper is organized as follows: in Sect. 2 we give our
proposed Gaussian Mixture Model and formulate the matching task as a MAP
problem. In Sect. 3 we solve the problem using the framework similar to [9], in
which Deterministic Annealing and the EM algorithm are used. After this, we
summarize the algorithm and give the detailed parameters setting in Sect. 4.
Section 5 is the experimental part. Following the robustness test and the ex-
perimental analysis of parameters is the evaluation on real images. Finally we
conclude in Sect. 6.

2 The Probabilistic Formulation of the Matching Task

Suppose we have two point sets X = {(xi, gi)|xi ∈ R2, gi ∈ RD}Mi=1 and
Y = {(yj ,hj)|yj ∈ R2,hj ∈ RD}Nj=1. The former in the two-tuples is the
2-Dimension image coordinate and the latter is its corresponding N-Dimension
feature descriptor. M and N are the number of points in each point set, respec-
tively. Our goal is to learn a transformation f that can best align f (X) and
Y and then to find matches. To achieve this, we model points from X by the
Gaussian Mixture Model so that the probability of a data point from Y is

p(yj) =

M∑
i=1

vijN (yj ;xi, σ
2,f), (1)

where

N (yj ;xi, σ
2,f ) =

1√
2πσ

exp(−‖yj − f(xi)‖2
2σ2

) (2)

is the component of the GMM and vij is the weight of each component. In order
to account for outliers in the point set, we introduce another term

N (yj ;x0, σ
2
0) =

1√
2πσ0

exp(−‖yj − x0‖2
2σ2

0

) (3)

to (1). Here x0 = 1
N

∑N
j=1 yj and σ2

0 = max ‖ya − yb‖2 are the center and
covariance of the outlier component, respectively. Then (1) is extended to the
following form

p(yj) = (1 − θ)

M∑
i=1

vijN (yj ;xi, σ
2,f) + θN (yj ;x0, σ

2
0), (4)

in which θ is the ratio of outliers that we assume the point set may contain.
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We compute vij according to the feature matching score between xi and
yj . The intuition is that if a model point and a data point are similar in the
feature space, they are more likely to form a correct match. So the component
represented by this model point should be assigned a larger weight. Denote δ(·, ·)
as a metric that measures the pairing score between two features, then vij has
the following form:

vij = δ(gi,hj). (5)

Suppose V is a M × N matrix with elements vij . Then the jth column of V
is the weight vector of the GMM describing yj . There are many candidates for
the choice of δ. In our paper, we leverage the SLH algorithm [16] to compute V .

Specifically, we compute a matrix G with elements Gij = exp(− ‖gi−hj‖2

2β2 ) and
then get its singular value decomposition G = TDU , where D is a non-negative
diagonal matrix. We convert D into another matrix E by replacing its diagonal
elements by one. The matrix V is then computed from V = TEU . However, V
can not be directly used as the weight in our application since it contains negative
elements. To tackle this we simply set all the negative values in V to zero and
normalize each column. Note that G can be directly used as δ in our method,
but the performance may be dropped. This is because that considering only the
“proximity” priciple in G may lead to false matches. The SLH algorithm can
refine the matching result and provide more reliable guidance by taking both
“proximity” principle and “exclusion” principle into consideration. So in this
paper we use the latter instead.

Suppose the data points are independent identically distributed, then the joint
probability distribution of the whole data set Y is

p(Y |X ,f , σ2) =

N∏
j=1

p(yj). (6)

Eq. (6) is also known as the likelihood function. Denoting the regularization over
the transformation f as ‖Lf‖2, where L is an operator that extracts the high
frequency part of the function, we can take the prior with the form

p(f ) = exp(−λ
2
‖Lf‖2). (7)

Thus according to the Bayes rule the posterior probability is

p(f |Y ,X, σ2) ∝ p(f )p(Y |X,f , σ2). (8)

3 The Solution Based on EM and Deterministic
Annealing

As is known to all, maximizing (8) is equivalent to minimizing the following
negative logarithm energy function

E1(f , σ
2) = − log p(Y |X,f , σ2)− log p(f). (9)
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However, (9) is difficult to solve because it does not offer a closed form solu-
tion for the parameters. The EM algorithm is an elegant algorithm to solve the
problem in (9). The EM algorithm alternates between two steps: the E-step and
the M-step. In the E-step, the correspondences are estimated based on current
parameters, and in the M-step, the parameters are updated according to cur-
rent correspondences. On the other hand, as Chui pointed in [9], including extra
variables as free parameters can result in more local minimum and make the
optimization harder. So we leverage the Deterministic Annealing to make our
method robust and insensitive to initialization. Specifically, we replace the pa-
rameter σ2 with a newly introduced parameter T , and gradually reduce it in the
matching process. As a result, we aim to minimize the following energy function:

E2(P ,f ) = λT ‖Lf‖2 +
N∑
j=1

M∑
i=1

pij‖yj − f (xi)‖2

+ T logT

N∑
j=1

M∑
i=1

pij + T

N∑
j=1

M∑
i=1

pij log pij , (10)

where P is a matrix with elements pij and T , also called “temperature”, is a
newly introduced parameter in place of σ2.
E-step : in the E-step, a probability matrix P is estimated. Each of its element
is the posterior of the GMM component computed from

pij =
vijN (yj ;xi, T,f)∑M

k=1 vkjN (yj ;xk, T,f) + c0
, (11)

where c0 = θ
1−θN (yj ;x0, σ

2
0) is a constant. pij in (11) indicates to what extent

a data point yj corresponds to a model point xi. Then each column of P is the
matching score vector of a certain data point to all the GMM components. A
property of P is that it implicitly tells the correspondence. Note that pij in (8)
is modulated by the introduced vij . pij will take a large value only when xi and
yj are not only spatially close but also similar in the feature space.
M-step : in the M-step, the transformation function f is updated based on P
estimated in the E-step by minimizing

E3(f ) = λT ‖Lf‖2 +
M∑
i=1

‖zi − f(xi)‖2, (12)

where zi =
∑N

j=1 pijyj can be seen as the new estimated position of the data.
We use the Thin Plate Spline(TPS) to parameterize the non-rigid transfor-

mation f as
f(xi; d, ω) = xid+ φ(xi)ω, (13)

where d and ω are the affine and non-affine transformation matrix, respectively.
Each model point xi is represented by its homogenous coordinate. φ(xi) is a vec-
tor with elements computed from the kernel φa(xi) = ‖xa−xi‖2 log ‖xa − xi‖.
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Fig. 2. The flowchart of our algorithm

Thus (13) becomes

E4(f) = λtrace(ωTΦω) + ‖Z −Xd− Φw‖2, (14)

where Z, X and Φ are the concatenated matrix form of zi, xi and φ(xi),
respectively. To solve ω and d, we first apply the QR decomposition to X

X = [Q1Q2]

(
R

0

)
, (15)

and substitute it to (14). Then the optimal solutions of ω and d are

ω = Q2(Q
T
2 ΦQ2 + λIM−3)

−1QT
2 Z (16)

and
d = R−1(QT

1 X − Φω). (17)

We finish the above matching process and get the probability matrix P after
convergence. Suppose the maximum for each column of P is stored in a vector
{δn|δn = pmn, n = 1 . . .N,m ∈ [1,M ]}, which means that the maximum of the
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nth column is its mth element. Then we denote xm and yn as a match. To this
end, δn can be seen as the matching confidence, which can be obtained at the
same time we denote a match. Besides, we can also tell a match is “strong” if
its matching confidence is high and “weak” otherwise. To achieve more robust
results, we introduce a threshold parameter τ on the matching confidence δn and
discard the matches with confidence lower than τ .

4 Algorithm and Implementation Details

4.1 Summary of Our Proposed Algorithm

The flowchart of our method is shown in Fig. 2. At the beginning of our al-
gorithm, two images I1 and I2 are loaded from the disk. Feature points are
then extracted, including their image coordinates and feature descriptors. Next
the matrix V is computed using the SLH algorithm. Each column of V is the
weight vector of the GMM describing a certain data point. We set the starting
temperature to a relatively high value TH and initialize the energy of EM as
infinity. The main part of our algorithm consists of two nested loops. The inner
loop is the EM iteration, during which the temperature T is constant. In the
E-step, the probability matrix P is estimated from (11) and in the M-step the
transformation model f is updated according to (13), (16), and (17). After each
iteration we compute the new EM energy Enew. The change between Enew and
Eold is indicated by α. If α is smaller than a threshold ϕ, the energy tends to
be stable and the EM algorithm converges. Otherwise the E- and M-steps are
repeated. The outer loop is the deterministic annealing iteration. Different from
the inner loop with a constant temperature, the outer loop gradually decreases
T by a rate γ after EM converges. The annealing procedure will end if T reaches
a relatively lower temperature TL. Then our algorithm returns the probability
matrix P computed in the E-step and correspondences are built by finding the
maximum for each column of P . Finally, we discard matches whose matching
confidence δn is smaller than a threshold τ .

4.2 Analysis and Setting of the Parameters

We then explain our parameter setting. We follow the setting of β in [16]. In (4)
the parameter θ is the ratio of outliers that we assume the point set would con-
tain. Since this ratio may be quite different for different instances and is difficult
to know in advance, we set it to 0.5, which assumes an equal split of inliers
and outliers. The starting temperature TH , the ending temperature TL and the
annealing rate γ are set as described in [9]. We set TH = σ2

0 = max ‖ya − yb‖2,
where a, b ∈ [1, . . . , N ] and TL = 1

N

∑N
s=1 min ‖ys − yt‖2, where t ∈ [1, . . . , N ]

and t 
= s. This means at the beginning we allow a data point to match to any
model point with even probability, and at the final stage a data point should
precisely match to only one model point. The annealing rate γ is set to 0.93. λ is
a very important parameter that controls the smoothness of f . A large λ will be
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(a) The “Zleby4” pair and matches selected.
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(c) deformation

Fig. 3. Robustness to outliers and deformation tested on the image pair “Zleby4” [4].
Outliers are randomly selected points and deformation perturbations are generated by
N (0, ε2). The results show that our method has strong ability to recover matches with
high ratio of outliers or large deformation.

less tolerant to the perturbation of the transformation while a small λ may lead
to a disordered motion. We set λ = 0.1 ∗N in our experiments. Another impor-
tant parameter is τ , which has close relation with the precision and amount of
matches. We set its value to 0.5 in our experiments. In our implementation, we
do not use ϕ to control the convergence of EM. Instead, we fix the iteration num-
ber of EM to 5 for each temperature. Since we search for correspondences in a
global to local way, so this simplification will not lead to significant performance
reduction.

5 Experiment Results

5.1 Robustness Test of Our Algorithm

We first carry out experiments to show that our algorithm is robust to outliers
and deformation. Given the image pair “Zleby4” [4] in Fig. 3(a), we manually
mark 83 points on each image so that they compose 83 one-to-one true positive
matches, which are treated as the ground truth. After computing the SIFT
feature descriptor for each point, we re-find the correspondences between the
two point sets, and compare the result with the ground truth. Outliers are added
to both point sets by randomly selecting pixels with their SIFT descriptors
computed. We gradually increase the ratio of outliers from 0 to 90%. On the other
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hand, we regard deformation as the Gaussian White noise added to the position
for each point. Specifically, we add each point a perturbation generated by a
Gaussian N (0, ε2) with zero mean and ε standard. We also gradually increase ε
so that the original point sets are more deformed. Since the selection of outliers
and the generation of Gaussian White noise are stochastic, we repeat 50 trials
for both outlier and deformation tests and then plot the mean and variance. For
both outlier and deformation test, we compare our method with some state-of-
the-art methods such as RPM [6], CPD [14], PGM [5] and PW [17]. Another
two methods SLH [16] and SIFT [18] are not compared in the deformation test
because only the position of the points are changed but their feature descriptors
are constant. From Fig. 3(b) we can see that with the ratio of outlier increases,
the performance of our method drops a little, but is still the best when compared
with others. In Fig. 3(c) our method can always find all the correct matches. This
shows that our method has strong ability to recover correct matches with high
outlier ratio and large deformation.

Then we adopt the NewYork sequence [1] to test the robustness to rotation.
This sequence contains 35 images, with rotation angle increases from 0 to 360◦.
We match the first image to all the other 34 images and evaluate the results
using the ground truth provided. From Fig. 4 we can see that our method can
find the most correct matches for all the image pairs. The PW [17] algorithm is
slightly worse than ours around 180◦. The SLH [16] algorithm can always find a
certain number of matches but is quite unstable. Large rotation angle leads to
collapse for RPM [6], CPD [14] and PGM [5].
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Fig. 4. Robustness to rotation tested on the NewYork sequence [1]

5.2 Results on Real Images

More examples are displayed to visually show the advantage of our method in
Fig. 5. The images were taken by a digital camera. Each of them contain several
repeated patterns so that feature descriptor based methods may produce many
false matches. On the other hand, there exists apparent geometry differences
as well as outliers between a pair of images which may also defect the spatial
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TP:42 TN:4

TP:106 TN:4

TP:67 TN:11

TP:76 TN:9

TP:27 TN:8

TP:78 TN:6

(a) SIFT [18]
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TP:1 TN:114
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TP:3 TN:91

(b) RPM [6]

TP:33 TN:16
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TP:11 TN:66

TP:9 TN:92

TP:8 TN:57

TP:32 TN:50

(c) PGM [5]
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(d) PW [17]

TP:53 TN:1

TP:110 TN:0

TP:69 TN:3

TP:95 TN:0

TP:50 TN:2

TP:84 TN:2

(e) Ours

Fig. 5. The matching results of 6 image pairs with several repeated patterns as well as
apparent geometry differences. True Positives (TP) are in green while True Negatives
(TN) are in red. Our method performs the best when considering both the number of
correct matches and the precision.

arrangement based methods. True positives and true negatives are manually
labeled. From the results we can see that most mismatches of SIFT [18] relate
two parts that have similar local appearance but differ from each other globally.
RPM [6] also collapses due to outliers and geometry differences. PGM [5] and
PW [17] are two other state-of-the-art methods which considers both spatial and
feature constraints, but their results are still not as good as ours. Our method
can find the most correct matches and at the same time the least mismatches
are included. We want to use this experiment to show that our idea of dual
constraints can enhance the result when using only feature descriptor or spatial
arrangement is insufficient.

6 Conclusion

In this paper we propose a new method for image matching. Our main contribu-
tion is to use feature information to guide the spatial movement. Specifically, we
assign each GMM component a different weight according to feature matching
score between the data point and each of the model point. This is achieved by
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simply decompose a distance matrix in the feature space. By doing so both the
feature and spatial information are considered to enhance the result. Compari-
son results with state-of-the-art methods on real data show that our method can
find the most correct matches while preserving high precision.
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Abstract. Structured-output learning is a challenging problem; partic-
ularly so because of the difficulty in obtaining large datasets of fully
labelled instances for training. In this paper we try to overcome this dif-
ficulty by presenting a multi-utility learning framework for structured
prediction that can learn from training instances with different forms of
supervision. We propose a unified technique for inferring the loss func-
tions most suitable for quantifying the consistency of solutions with the
given weak annotation. We demonstrate the effectiveness of our frame-
work on the challenging semantic image segmentation problem for which
a wide variety of annotations can be used. For instance, the popular
training datasets for semantic segmentation are composed of images with
hard-to-generate full pixel labellings, as well as images with easy-to-
obtain weak annotations, such as bounding boxes around objects, or
image-level labels that specify which object categories are present in an
image. Experimental evaluation shows that the use of annotation-specific
loss functions dramatically improves segmentation accuracy compared to
the baseline system where only one type of weak annotation is used.

Keywords: semantic image segmentation, structured-output learning,
weakly-supervised learning, loss functions.

1 Introduction

Training structured-output classifiers is a challenging problem; not only because
of the associated computational burden, but also due to difficulties in obtaining
the ground-truth labelling for training data: in problems like semantic image
segmentation the structured label may comprise thousands of scalars, so anno-
tation of large datasets requires a lot of human effort. In contrast, it is much
easier to obtain a weak annotation of an image, i.e. some statistic of the image
labelling. This may take various forms: an image-level label that indicates pres-
ence or counts the number of pixels of a particular object category like ‘sky’ or
‘water’, a set of objects’ bounding boxes—rectangles that tightly bound object
instances’ segmentations, or a set of seeds—the pixels that have to take the spec-
ified labels (Fig. 1). More broadly, weakly-supervised learning may be useful in
many training problems where the input is obtained by crowdsourcing.

X.-C. Tai et al. (Eds.): EMMCVPR 2015, LNCS 8932, pp. 406–420, 2015.
c© Springer International Publishing Switzerland 2015
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Usage of different annotation types help not only to overcome logistic difficul-
ties, but also to characterize certain categories better. For example, many object
categories (i.e. ‘things’ in terms of Heitz and Koller [3]) are better described
by bounding-box annotations, while the background categories (i.e. ‘stuff’ [3])—
which tend to fill significant parts of an image—by image-level labels.

A number of researchers have recognized the importance of weak annotations
for learning semantic segmentation, but most of the methods only use image-level
labels. For example, Vezhnevets et al. [20, 21] use a multi-image probabilistic
graphical model to propagate image-level annotations across different training
images. In this paper, we present a framework for learning structured classifica-
tion from the mixture of fully and weakly annotated instances. Our framework
can employ different types of weak annotations, even for a single instance.

Some papers approach weakly-supervised structural learning by introducing
latent variables. Training is performed by latent-variable structural support vec-
tor machine (LV-SSVM) [23, 5], hidden conditional random field (HCRF) [10], or
their amalgamation [11]. Our work introduces to LV-SSVM annotation-specific
loss functions, which measure the inconsistency of some labelling predicted by
the algorithm with the ground-truth weak annotation. We define those loss func-
tions by describing parametric families and then setting parameters such that
their expected value would equal Hamming loss. Due to this definition, the loss
functions specific to different annotation types have the same scale. Our frame-
work thus requires only one coefficient, which balances the relative impact of
the loss functions for fully labelled and weakly annotated data, since the latter
are typically less informative. We empirically show that balancing between these
two kinds of loss functions can improve labelling performance.

A number of key technical challenges arise while learning an LV-SSVM model
with multiple annotation-specific loss functions. These include solution of the
loss-augmented and annotation-consistent inference problems. The former in-
volves finding the labelling that satisfies the current model and deviates from
the annotation the most, while the latter involves finding the best labelling that
is consistent with the weak annotation. We show how to solve these optimization
problems for various loss functions using efficient optimization algorithms.

(a) Original image (b) Full (strong)
labelling

(c) Bounding-box
annotation

(d) Object-seed
annotation

Fig. 1. Types of annotation for an image from the MSRC dataset [13]
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Relation to Previous Work. Our work is most closely related to the work of
Kumar et al. [5], who use a sequential method to learn semantic segmentation
from different types of annotations. Their method starts by training LV-SSVM
with a loss function defined on partial labellings; it performs loss-augmented
inference using carefully initialized iterated conditional modes (ICM). Once this
model is trained, they infer the partial labellings for weakly-annotated images
that are consistent with their bounding-box or image-level annotations. The
model is then re-trained by considering those solutions as the true partial la-
bellings for the training instances. Unlike Kumar et al. [5], at the training stage
we minimize our annotation-specific loss functions simultaneously. In this re-
gard, our framework does not require neither fully nor partially labelled images,
which are essential for the first stage of their algorithm. Furthermore, our loss
functions allow us to use powerful graph cut based algorithms for solving the
loss-augmented and annotation-consistent inference problems, instead of using
an ICM-based inference. Finally, we use different types of weak annotations.

For some of the loss functions we use, the loss-augmented inference problems
cannot be decomposed to the individual variables. This relates us to the re-
cent work on supervised learning with non-decomposable loss functions [9, 14].
Pletscher and Kohli [9] use a higher-order loss function that penalizes the differ-
ence in the area of the target category between binary segmentations. They show
how to use graph cuts for efficient exact loss-augmented inference. Tarlow and
Zemel [14] use message-passing inference in SSVM training with three different
higher-order loss functions: PASCAL VOC loss, bounding box fullness loss, and
local border convexity loss.

The line of our work that employs bounding-box weak annotations is related
to papers that leverage object detection to perform segmentation, which is ex-
tremely helpful for recognizing categories underrepresented in a training set.
Ladický et al. [6] describe a CRF model that employs object detection hypothe-
ses and allows for efficient graph-cut inference. Yao et al. [22] use a multi-layer
graphical model including the indicators for bounding boxes and image-level cat-
egories to perform joint inference. Tighe and Lazebnik [17] perform segmentation
and object detection independently, then transfer training set segmentations for
the detected objects and combine the resulting segmentation maps on the late
stage. In contrast to those methods, we employ the bounding-box annotations
within a single structured learning framework using specific loss function.

Our Contributions

– we propose an LV-SSVM basedmulti-utility learning framework, which simul-
taneously minimizes different annotation-specific loss functions, and a unified
technique for establishing loss functions for weak annotation of different types;

– we apply our framework to define the loss functions for training semantic
segmentation that are specific to the following weak annotation types and
their combinations: image-level labels, bounding boxes, and objects’ seeds;

– we propose efficient inference algorithms required for LV-SSVM training with
these loss functions.
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2 Latent-Variable SSVM

2.1 Structured-Output Learning

Structured-output learning attempts to learn a mapping H from the space of
features X to the space of all possible labellings Y. In what follows, we consider
only the mappings that can be expressed as maximization of a discriminant
function F that depends linearly on its parameters w:

H(x) = argmax
y∈Y

F (x,y;w) = argmax
y∈Y

wᵀΨ(x,y), (1)

where vector function Ψ(x,y) denotes so-called generalized features of in-
stance x ∈ X and labelling y. Ψ(x,y) is defined in a problem-specific way,
while the weights w are learned from the training data. We address a wide class
of so-called labelling problems, where the structured label is a vector of discrete
variables: Y = KV , where K = {1, . . . ,K}. Its length V may vary for individual
instances.

The goal of supervised structured-output learning is to obtain the most ap-
propriate weights w given the set of features and ground-truth labels of training
instances: {(xn,yn)}Nn=1, yn ∈ Yn. Here Yn is a set of possible labellings compat-
ible with the n-th instance. In this paper we follow the max-margin formulation
of structured-output learning (also called structural support vector machine,
SSVM) [15, 19, 4]:

min
w,ξ≥0

1

2
wᵀw +

C

N

N∑
n=1

ξn, (2)

s.t. F (xn,yn;w) ≥ max
ȳ∈Yn

(
F (xn, ȳ;w) +Δ(ȳ,yn)

)
− ξn, ∀n, (3)

where Δ(ȳ,yn) is the loss of some labelling ȳ = {ȳi}Vi=1 with respect to the
ground truth labelling yn = {yni }Vn

i=1. Let c
n
i be some cost associated with the i-

th variable in the labelling of the n-th instance. The commonly used loss function
is the weighted Hamming distance:

Δ(ȳ,yn) =
∑
i∈Vn

cni [ȳi 
= yni ],
1 (4)

This loss function is decomposable w.r.t. the individual variables. It often im-
plies that loss-augmented inference, i.e. maximization in (3), is no more difficult
than the maximization of discriminant function F (x,y;w). In some cases it is
possible to use higher-order loss functions that cannot be decomposed w.r.t. the
individual variables [9, 14, 2].

Problem (2)–(3) is convex and can be solved by the cutting-plane method [19,
4]. This method replaces the constraint (3) with a bunch of linear constraints and
then iteratively approximates the feasible polytope by adding the most violated
constraint. Such constraint is determined in each iteration by running the loss-
augmented inference in (3).

1 We use the Iverson bracket notation: [e] = 1 if the logical expression e is true, and
[e] = 0 otherwise.
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2.2 Learning with Weak Annotations

Consider the case when in addition to N fully-labelled objects, train set contains
M weakly-annotated ones: {(xm, zm)}N+M

m=N+1. From now on, we assume that
the weak annotation zm defines a subset of full labellings L(zm) ⊂ Y that
are consistent with it, and thus zm is less informative than an individual full
labelling ym. Examples of such weak annotations for the image segmentation
problem are (1) bounding boxes of the segments of a given label; (2) a value of
some global statistic (area, average intensity, number of connected components
etc.) for the segments of a given label; (3) subsets of superpixels that belong to
a given label (seeds).

We now generalize the standard SSVM formulation to make it handle both
fully and weakly annotated data simultaneously. Our multi-utility SSVM is for-
mally defined as follows:

min
w,ξ≥0,η≥0

1

2
wᵀw +

C

N +M

(
N∑

n=1

ξn + α

M∑
m=1

ηm

)
, (5)

s.t. F (xn,yn;w) ≥ max
ȳ∈Yn

(F (xn, ȳ;w) +Δ(ȳ,yn))− ξn, ∀n, (6)

max
y∈L(zm)

F (xm,y;w) ≥ max
ȳ∈Ym

(F (xm, ȳ;w) +K(ȳ, zm))− ηm, ∀m. (7)

Note that forM = 0 the above formulation degenerates to the standard SSVM
formulation, while for N = 0 it reduces to the latent-variable SSVM [23]. Note
also that the full labelling yn can be seen as a degenerate weak annotation, where
L(zm) = {yn}. Therefore, Problem (5)–(7) is almost equivalent to LV-SSVM,
but it contains the slack balancing coefficient α. Ignoring this coefficient may
hurt the performance of multi-utility learning, as we show in Section 4.2. In
order to perform the optimization, in addition to the loss-augmented inference
in (6), we should also be able to perform the weak-loss augmented inference
in (7), as well as the annotation-consistent inference in the left-hand side of (7).

Optimization problem (5)–(7) is not convex and thus hard. We follow Yu and
Joachims [23] and use the concave-convex procedure (CCCP) [24] to solve it
approximately.

3 Weak Annotation for Semantic Image Segmentation

Semantic image segmentation aims to assign category labels to image pixels.
We assume that an image is represented as a set of superpixels, i.e. groups of
co-located pixels similar by appearance. Consider a graph G = (V , E). Its nodes
V correspond to superpixels of the image. The set of edges E represents a neigh-
borhood system on V that includes the pairs of nodes that correspond to all
adjacent superpixels. Let xi ∈ Rd be a vector of superpixel features associated
with some node i ∈ V , xij ∈ Re be a vector of superpixel interaction features
for the edge connecting nodes i and j, and x =

⊕
i∈V xi ⊕

⊕
(i,j)∈E xij be their
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concatenation. The value of each variable yi corresponds to the label of the i-th
superpixel. We use the following discriminant function F :

F (x,y;w) = wᵀΨ(x,y) =
∑
i∈V

K∑
k=1

[yi = k](xᵀ
i w

u
k) +

∑
(i,j)∈E

[yi = yj](x
ᵀ
ijw

p), (8)

where w =
⊕K

k=1 w
u
k ⊕wp is a vector of the model parameters, and wu

k ∈ Rd,
wp ∈ Re . The summands in the first and the second terms are called unary and
pairwise potentials, respectively. We restrict pairwise weights wp and pairwise
features xij to be nonnegative and thus obtain an associative discriminative
function (with only attractive pairwise potentials) [15]. Maximizing F (x,y;w)
w.r.t. y is known to be NP-hard, but efficient approximate algorithms exist,
e.g. α-expansion [1].

We use the weighted Hamming loss (4) for fully-labelled images, where ci
is the number of pixels in the corresponding superpixel, so the loss function
estimates the number of mislabelled image pixels.2 To use some type of weak
annotations for training, we need to define the annotation-specific loss function
that allows loss-augmented inference and annotation-consistent inference. The
former should be efficient, since it is performed in the inner loop of training and
thus is typically a bottleneck. We show how to define and combine them for the
annotations of the following types: image-level labels, bounding boxes around
objects, and objects’ seeds.

3.1 Image-Level Labels

We start by defining loss functions K(y, z) for some arbitrary labelling y and
ground-truth weak annotation z. In this subsection we assume that z is a set
of labels used in the ground-truth image labelling (for the image in Fig. 1,
z = {‘sky’, ‘tree’, ‘plain’, ‘grass’}). We cannot compute the Hamming loss (4)
if the full labelling is unknown for one of its arguments. Let’s instead define
a proxy loss function, that is symmetric and does not compare labels of any
superpixels directly:

Δil(y, ȳ) =
∑
i∈V

ci[�j ∈ V : yj = ȳi ∨ �j ∈ V : ȳj = yi]. (9)

It penalizes all the superpixels that have been given any label that is absent in
the annotation ȳ, as well as superpixels which have ground truth labels that is
absent in y. Unfortunately, the ground-truth labelling ȳ is unknown. If we knew
the areas Sk of each label k ∈ z, we could derive the following upper bound
on (9):

Kil(y, z; {Sk}k∈z) =
∑
k �∈z

∑
i∈V

ci[yi = k] +
∑
k∈z

Sk

∏
i∈V

[yi 
= k]. (10)

2 In practice, ground-truth labelling of a superpixel may contain several labels; in this
case the number of incorrectly inferred pixels is added to the loss. We ignore this
case to ease the notation, but all the algorithms still work in that case.
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This upper bound is tight up to a factor of 2. The first term penalizes the pixels
labelled with wrong labels, while the second term penalizes ignoring the labels
from z.

Since we do not know the areas Sk, the best we can do is to assume K(y, z)
to be the expectation of (10) taken over all full labellings consistent with z. If
there are enough fully-labelled images, the areas Sk can be estimated. Otherwise
we assume the uniform distribution over the feasible full labellings y ∈ z and
get

Kil(y, z) =
∑
k �∈z

∑
i∈V

ci[yi = k] +
∑
k∈z

∑
i∈V ci

|z|
∏
i∈V

[yi 
= k]. (11)

Having defined the loss function Kil, we need to provide algorithms for infer-
ence problems in (7). For annotation-consistent inference maxy∈zm F (xm,y;w)
we use α-expansion over the labels from zm only. Note that this may result in
an inconsistent labelling: some labels from zm may miss in y. We have tried an
heuristic algorithm for making it strictly consistent with z by changing one node
per missing label, but observed no significant difference in practice.

The loss-augmented inference is now not decomposable to unary and pairwise
factors. To work this around, we derive:

max
ȳ∈Ym

(F (xm, ȳ;w) +Kil(ȳ, zm)) =

max
ȳ∈Ym

(
F (xm, ȳ;w) +

∑
k �∈z

∑
i∈V

ci[ȳi = k]−
∑
k∈z

∑
i∈V ci

|z| [∃i : ȳi = k]

)
+ const.

(12)

The last maximization is the standard MRF inference problem with label costs.
We use the efficient modification of α-expansion for accounting label costs [2].

3.2 Bounding Boxes

It is convenient to annotate instances in an image with tight bounding boxes
(Fig. 1c). On the other hand, they do not give much information for background
categories. Therefore, we consider the annotation that consists of both bounding
boxes and image-level labels. For example, annotation of an image may contain
the bounding-box locations of cars and pedestrians, and additionally state that
there are buildings, road, and sky in the image. We assume that within a cer-
tain image each category can be defined either with image-level labels, or with
bounding boxes, though the type of annotation for a category may vary from
image to image (see Section 4.3 for an example where it can be useful).

We model weak annotation z of an image as a pair (zil, zbb) of image-level
and bounding box annotations. The latter is a set of bounding boxes with asso-
ciated category labels: zbb = {zi}, with the following functions defined: label(zi),
which defines the associated category label, and box(zi) = [left(zi), right(zi)] ×
[top(zi), bottom(zi)] that defines the extent of the bounding box. The set of la-
bels K is partitioned into three subsets w.r.t. the weak annotation z: the labels
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that are defined with bounding boxes (Kb =
⋃

z∈zbb label(z)), those that are

present somewhere else in the image (Kp = zil), and those that are absent (Ka =
K \ (Kb ∪Kp)). Nodes V are also partitioned: Vk =

⋃
z∈zbb:label(z)=k

box(z) is the

union of pixel indices in the bounding boxes corresponding to the label k ∈ Kb,
and V0 = V \

⋃
k∈Kb

Vk. We now define the combined loss function as:

Kil-bb(y, z) =
∑
k∈Ka

∑
i∈V

ci [yi = k] +
∑
k∈Kp

σk
∏
i∈V

[yi 
= k]+

β
∑
z∈zbb

(
bottom(z)∑
p=top(z)

νzp

right(z)∏
q=left(z)

V((p, q);y, label(z))+

right(z)∑
q=left(z)

ωz
q

bottom(z)∏
p=top(z)

V((p, q);y, label(z))

)

+
∑
k∈Kb

∑
i∈V0

ci [yi = k] . (13)

The first two terms are almost the same as in (11), but the estimate of the
category area in the second term does not include the pixels within the bounding
boxes: σk =

(∑
i∈V0

ci
)
/|zil|. The third term penalizes ‘empty’ rows and columns

in the bounding boxes, i.e. those rows and columns that do not contain pixels of
a target category at all. The violation function V is defined as:

V(p;y, k) =

{
1, if map(y)p 
= k,

0, otherwise.
(14)

Here map(y) is the classification map induced by the superpixel labelling y.
Coefficients νzp and ωz

q allow us to assign the penalty for the corresponding row
or column being empty, depending on its position in the bounding box. One
can learn the category-specific profiles of νz and ωz when the full labelling is
abundant enough, but we use uniform profiles assuming that half of a bounding
box is occupied by the object on average: νzp =

(
right(z) − left(z)

)
/2, ωz

q =(
bottom(z)− top(z)

)
/2. Note that this makes the loss an estimate on the number

of mislabelled pixels (similar to the image-level label loss (11)), so the value
coefficient β = 1 should work well (we show in Section 4.3 that it really does).
We have also tried linearly decreasing loss used by Kumar et al. [5], but it did not
affect the performance significantly. The last term penalizes the bounding-box
labels outside of bounding boxes.

We have shown in the previous section how to account for the two initial terms
in the loss-augmented inference. The last term is decomposable w.r.t. superpix-
els. The third term is a sum over the higher-order cliques of the following form.
For each bounding box z, each row and each column generates a clique of nodes
corresponding to the superpixels that intersect that row/column. We treat them
the same way as the image-level loss: we modify α-expansion with label costs [2]
to penalize each clique of superpixels, which contains at least one superpixel
labelled with label(z). There is a technical difficulty with the superpixels that
cross the bounding box border: it is unclear if their labelling with label(z) should
be penalized. We adopted the following strategy: shrink the bounding box to al-
low some margin, and treat all superpixels that intersect the shrunk bounding
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box (and only them) as insiders. We set the margin width equal to 6% of the
corresponding bounding box dimension.

During the annotation-consistent inference, we need to infer a labelling that
has objects only in bounding boxes of the corresponding category labels, and
they should fill those bounding boxes tightly, i.e. touch upon all four sides of the
bounding box shrunk to allow a 6% margin (Lempitsky et al. [7] showed that
this corresponds to the tightness in a typical labelling produced by a human).
The first condition is easy to satisfy: we can suppress certain labels outside of
bounding boxes by using infinite unary potentials. To provide tightness, we use a
variation of the pinpointing algorithm [7], adapted for the multi-class segmenta-
tion. First, segmentation is performed without the tightness constraints. Then,
until those constraints are satisfied, one of the superpixels changes its unary po-
tential, and expansion move is performed. In our implementation, we select the
superpixel with the highest relative potential for label(z) that has not been as-
signed this label yet, and assign it the infinite potential for label(z) to guarantee
that it will change its label. This procedure is finite because at each iteration at
least one superpixel within box(z) switches to label(z). In contrast to Lempitsky
et al. [7], we do not perform further dilation, since it is unclear, which label we
should use for expansion move(s); neither of the heuristics we tried improved
the result significantly. We also found that initialization of the latent variables
in LV-SSVM matters: we obtained the best results when initially all superpixels
within box(z) were initialized with label(z). Note that Kumar et al. [5] used a
different criterion during the annotation-consistent inference: they penalize the
empty rows and columns within bounding boxes (the opposite to what we do
in loss-augmented inference). Note that their heuristic does not guarantee the
tightness of the resulting segmentation.

3.3 Objects’ Seeds

Another form of a weak annotation natural for the object categories is the seed
annotation (Fig. 1d). In general, for a segment of some category, a seed is a
subset of its pixels. We consider a particular case, where only one pixel, persum-
ably close to the segment center, is labelled. During the annotation-consistent
inference, we require the superpixel where this point is located to have the fixed
seed label.

We now model the weak annotation z as a pair (zil, zos), where zos is a set of
2D points with the corresponding labels: (p, k). The seed centrality assumption
allows us to set the Gaussian penalty for inferring any non-seed label in the
neighbourhood of each seed, which brings us to the following loss function:

Kil-os(y, z) =
∑
k∈ka

∑
i∈V

ci [yi = k] +
∑
k∈kp

σk
∏
i∈V

[yi 
= k] +

β
∑

(p′,k′)
∈zos

∑
p∈I

V (p;y, k′) exp

(
−π‖p− p′‖2

τk′

)
. (15)
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Here the first two terms are the same as in the image-level label loss. The inner
sum in the third term is taken over all image pixels I. The form of the Gaussian
is defined in such a way that the penalty for misclassification of the central pixel
p′ is 1, and whenever no superpixels of the label k′ are found, the penalty is
equal to the estimated area of the label k′ w.r.t. all labellings consistent with
the weak annotation; specifically,

τk′ =

∑
i∈V ci

(|zil|+#Lab(zos)) ·#Obj(zos, k′)
. (16)

Here #Lab(zos) is the number of different labels in zos, and #Obj(zos, k′) is the
number of seeds of the label k′ in zos. Loss (15) is decomposable to factors, so
the loss-augmented inference is trivial.

4 Experiments

4.1 Datasets and Metrics

We test the proposed framework on two datasets: MSRCv23 [13, 20] and SIFT-
flow4 [8, 16, 21]. MSRC contains 276 training and 256 test images that are fully
labelled using 23 category labels; significant part of pixels remains unlabelled.
SIFT-flow is amore challenging dataset: it is a subset of the LabelMe database [18],
which contains 2488 training and 200 test images; they are labelled to 33 categories
using crowd-sourcing. See Appendix A for details on the used features.

Quality Measures. We use two standard measures of segmentation quality: ac-
curacy and per-class recall. The accuracy is defined as the rate of correctly
labelled pixels of the test set. The per-class recall is the number of correctly
labelled pixels of each category divided by the true total area of that category,
averaged over categories. Following the previous work [20, 12], we exclude the
pixels of rare categories (‘horse’ and ‘mountain’) from recall computation for
MSRC, but include the ‘other’ label, see Section 4.2. Similarly, we exclude rare
categories (‘cow’, ‘desert’, ‘moon’, and ‘sun’) from SIFT-flow recall computation.

4.2 Image-Level Labels

Varying the Full-Labelling Rate. In our basic setting we have a (possibly empty)
part of the training set fully labelled, while the rest of the images have only
image-level labels. We generate those subsets using the Metropolis–Hastings
sampling, trying to make the distribution of their label counts approximate that
of the whole training set. Fig. 2a shows the accuracy and per-class recall of
the test set segmentation for various full labelling rates in comparison to the
fully-supervised setting.5 In the most common scenario—when less than 20% of
the training set is fully labelled—the weakly-annotated subset provides a stable
10–15% improvement both in terms of the accuracy and mean per-class recall.

3 http://research.microsoft.com/en-us/projects/objectclassrecognition/
4 http://people.csail.mit.edu/celiu/LabelTransfer/code.html
5 http://shapovalov.ro/data/MSRC-weak-train-masks.zip

http://research.microsoft.com/en-us/projects/objectclassrecognition/
http://people.csail.mit.edu/celiu/LabelTransfer/code.html
http://shapovalov.ro/data/MSRC-weak-train-masks.zip
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Fig. 2. (a)–(c) Accuracy (solid lines) and per-class recall (dashed lines) subject to
different parameters on the MSRC dataset. (a) Varying the number of fully-labelled
images. Blue line show test set segmentation quality when only fully-labelled images
are available; green line—when the complementary part of the train set has image-level
labels. (b) Varying the coefficient of the weak-loss coefficient α. Black line show test set
segmentation quality when 40 images are fully labelled, red line—when 80 images; the
complementary part of the train set has image-level labels. (c) Varying the coefficient
of the bounding box (magenta line) or object seed (cyan line) loss β. All 276 training
images have image-level labels, all objects have tight bounding box or seed annotations,
respectively.

Balancing the Loss Functions. When the training set consists of both weak an-
notations and full labellings, the coefficient α from (5) needs to be set. We dis-
covered that its optimal value was lower than 1 (Fig. 2b shows the dependency
of performance on α). We speculate that this is because we are more certain
about the strong loss, so it should contribute to the objective more. Thus, for
all the other experiments we set α = 0.1.

SIFT-Flow Results. On the SIFT-flow dataset, we compare fully-supervised
learning with weakly-supervised at one point, i.e. when only 256 training im-
ages are fully labelled, and the rest 2232 images have only image-level labels
(Table 1). This weakly-learned model loses to the fully-supervised one only 2%
in the accuracy and 4% in the per-class recall. Note that our model is on par
with Vezhnevets et al. [21], who also reached 21% on that dataset with the same
superpixels and features. The difference is they used only image-level annota-
tion, while we used about 10% fully labelled images. However, their model is
substantially more complicated: they use extremely-randomized hashing forest
for non-linear feature transform, learn objectness and image-level priors, and
connect superpixels of different images within the multi-image model. Since the
LV-SSVM optimization problem is not convex, the algorithm may get stuck at
local minima. We initialize the parameters of LV-SSVM by the parameters of
the SSVM trained on the fully-labelled part of the dataset, if there is one.

4.3 Adding Bounding Boxes and Seeds

Generating Weak Annotation. We generate two more annotations for the MSRC
training data to test additional annotation-specific loss functions. Similar to
image-level labels, we generate them from the full labelling. Tight bounding
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Table 1. Accuracy and average per-
class recall on the SIFT-flow dataset.
The first two lines describe train-
ing on the subset of 256 fully la-
belled images of the models with
and without pairwise potentials, re-
spectively. The third line experiment
used the whole dataset with image-
level labels, but for only 256 of them
full labelling is known. The bottom
line shows the result when the whole
dataset is fully labelled.

experiment acc rec

256/256 strong, local 0.574 0.167
256/256 strong, init loc. 0.620 0.176
256/2488 strong, init ↑ 0.674 0.208
2488/2488 strong 0.696 0.246

Table 2. Accuracy (first number in each cell)
and average per-class recall (second number) on
the MSRC dataset when during training i) only
full labelling is available, ii) image-level (il) labels
are also available for the rest of the data set, iii)
object seeds (os) are additionally available, iv)
bounding boxes (bb) for objects are available,
v) both seeds and bounding boxes are available.
Note that the numbers in the last column are all
equal since the weak annotation does not add any
information when all training set is fully labelled

il bb os 0/276 strong 5/276 strong 276 strong

− − − n/a 0.300/0.170 0.648/0.599
+ − − 0.385/0.178 0.478/0.273 0.648/0.599
+ − + 0.559/0.346 0.574/0.370 0.648/0.599
+ + − 0.597/0.543 0.606/0.546 0.648/0.599
+ + + 0.531/0.567 0.542/0.564 0.648/0.599

boxes and object seeds are good for description of the object (‘thing’) categories,
while do not add much information beyond image-level labels for the background
(‘stuff’) categories. We divide the list of categories into two parts: background,
which includes ‘grass’, ‘sky’, ‘mountain’, ‘water’, ‘road’, and ‘other’; and ob-
jects, which includes all other categories. There are two ambivalent categories—
‘building’ and ‘tree’—which can instantiate either a target object of a photo-
graph, or background. We used the following heuristic for each image: consider
tree and building as background iff there are other objects in the image. We en-
hanced the image-level labelling with either tight bounding boxes or object seeds
for segments of object categories only. For the other categories, only image-level
labels were available. To generate seeds, for each segment we took its pole of
inaccessibility—the point that maximizes its distance transform map.

Results. Table 2 summarizes the results. When the full labelling is unavailable,
both object seed and bounding box annotations give significant improvement
over just image-level labels. Bounding boxes notably increase per-class recall:
they help to better learn ‘thing’ categories, which are numerous and typically
have smaller area. Overall, learning with bounding boxes only 5% inferior to
learning on fully labelled data both in terms of the accuracy and per-class recall.
Object seed annotation gave more modest increase in performance, though is
easier to obtain. We used the value β = 1 to balance the impact of image-level
vs. bounding box (or seed) loss functions: they seem to provide equal contribution
to the objective function; Fig. 2c supports that hypothesis.

Comparison to Kumar et al. [5]. Unfortunately, we cannot directly compare to
Kumar et al. [5] since the type of input data for their framework is unorthodox.
They use two different datasets to obtain segmentation maps (partial labellings)
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Fig. 3. Qualitative results of the proposed algorithm and two variations of the algo-
rithm by Kumar et al. [5] applied to three images from the MSRC test set

for the foreground and background categories, respectively. Our framework does
not support this kind of annotation: we believe that it is easier to obtain segmen-
tation for background and foreground categories using the same set of images.
This eliminates the need to use the latent-variable SSVM for training the basic
model; instead the global minimum of SSVM objective can be found efficiently.
Also, when both image-level labels and bounding boxes (or seeds) are known for
each weakly-annotated image, both background and foreground partial labellings
can be inferred, and using latent-variable SSVM after adding weakly-annotated
data is not necessary again. Thus, when given the data we use, the method of
Kumar et al. [5] could look like this:

– train SSVM using the fully-labelled part of the training set,
– use the trained model to infer labelling consistent with the weak annotation,
– train SSVM using the hallucinated labelling obtained in the previous step.

This method is similar to running one outer iteration of our training algorithm,
but it has one important difference: the loss function in the second SSVM. While
our method uses the weak loss function, the modified method of Kumar et al.
[5] uses the strong loss function w.r.t. the hallucinated labelling. To compare
the methods, we use the MSRC training set with 5 fully-labelled images and
the rest annotated with bounding boxes and image-level labels (row 4, column
2 in Table 2, excluding headers) to train both described modifications: with the
weak bounding-box loss function (13), and with the strong loss function (4) (still
different from the loss function of Kumar et al. [5]). The segmentation maps and
numerical results in Fig. 3 show that the proposed simultaneous minimization
of loss functions is superior both in terms of accuracy and per-class recall.

5 Conclusion

We presented the framework for learning structural classification from different
types of annotations by minimizing annotation-specific loss functions. We applied
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it to semantic image segmentation by introducing weak loss functions for for
image-level, bounding box, and object seed annotations. Usage of weakly-
annotated training data consistently improves the labelling. The results on the
semantic segmentation datasets show that the joint annotation where back-
ground is given by image-level labels, and objects are given by bounding boxes,
is the best trade-off between segmentation quality and annotation effort.
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Abstract. An energy landscape map (ELM) characterizes and visualizes
an energy function with a tree structure, in which each leaf node rep-
resents a local minimum and each non-leaf node represents the barrier
between adjacent energy basins. We demonstrate the utility of ELMs in
analyzing non-convex energy minimization problems with two case stud-
ies: clustering with Gaussian mixture models and learning mixtures of
Bernoulli templates from images. By plotting the ELMs, we are able to
visualize the impact of different problem settings on the energy landscape
as well as to examine and compare the behaviors of different learning al-
gorithms on the ELMs.

1 Introduction

In many computer vision, pattern recognition and learning problems, the energy
function to be optimized is highly non-convex. A large body of work has been
devoted to designing algorithms that are capable of efficiently finding a good
local optimum in the non-convex energy landscape. On the other hand, much
less work has been done in analyzing the properties of such non-convex energy
landscapes.

In this paper, inspired by the success of visualizing the landscapes of Ising and
Spin-glass models by [2] and [14], we compute Energy Landscape Maps (ELMs)
in the high-dimensional hypothesis spaces for a few model learning problems
in computer vision and pattern recognition — learning mixtures of Gaussian
and learning mixtures of Bernoulli templates. An ELM is a tree structure in
which each leaf node represents a local minimum whose energy determines the
y-axis position of the leaf node; each non-leaf node represents the energy bar-
rier between local minima. Figure 1 shows an example energy function and the
corresponding ELM. The ELM of an energy landscape reveals important char-
acteristics of the landscape, including

– the number of local minima and their energy levels;
– the energy barriers between adjacent local minima; and

X.-C. Tai et al. (Eds.): EMMCVPR 2015, LNCS 8932, pp. 421–435, 2015.
c© Springer International Publishing Switzerland 2015
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Fig. 1. (Left) An energy function. (Middle) Its corresponding ELM. The y-axis of the
ELM is the energy level. Each leaf node is a local minimum and the leaf nodes are
connected at the energy barrier between their energy basins. The probability mass or
volume of an energy basin is indicated by the size of the circle around the leaf node.
(Right) Partition of the spaces into bins according to basins and energy levels.

– the probability mass and volume of each local minimum.

Such information can be very useful in analyzing the intrinsic complexity of
the optimization problems (for either inference or learning tasks), analyzing the
effects of various conditions on the complexity, and visualizing the behavior of
different optimization algorithms (i.e. how they move in the landscape).

ELMs can be efficiently constructed by running a MCMC algorithm that fea-
tures a dynamic reweighting scheme allowing the sampler to cross energy barriers
and efficiently traverse the entire space. In the literature, Becker and Karplus
[2] presents the first work for visualizing multidimensional energy landscapes for
the spin-glass model. Liang [6,7] generalizes the Wang-Landau algorithm [13] for
random walks in the state space. Zhou [14] uses the generalized Wang-Landau
algorithm to plot the landscape for Ising model with hundreds of local minima
and proposes an effective way for estimating the energy barriers. In contrast
to the above work that compute the landscapes in “state” spaces for inference
problems, our work is focused on the landscapes in “hypothesis” spaces (the sets
of all models) for statistical learning problems. We modify the previous MCMC
algorithm to handle several new issues that arise in plotting ELMs of continuous
hypothesis spaces.

2 ELM Construction in Hypothesis Spaces

Let H be a hypothesis space for a learning problem and let E(x) be the energy of
a hypothesis x ∈ H. For example, in a n-component mixture of Gaussian cluster-
ing problem, given a training dataset, a posterior probability π(x) is defined and
x includes the model parameters such as the means and variances of the n un-
known Gaussians; the landscape is defined by energy function E(x) = − logπ(x).
For simplicity, we bound H by limiting x to a finite range calculated from the
input data points.
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As Figure 1 (right) shows, the finite hypothesis space is partitioned into energy
basins Di and each basin is further partitioned into energy intervals [uj+1, uj).
Thus the space H is divided into bins Di,j

Di,j = {x : x ∈ Di, E(x) ∈ [uj+1, uj)}. (1)

Let φ(x) be the index mapping x to the bin index (i, j), and βij = π(Dij) the
probability mass of bin Di,j . Our goal is to design an MCMC algorithm with
equal probability visiting all bins, i.e. its state at time t follows a new equalized
probability,

xt ∼ π+(x) ∝ π(x)

βφ(x)
. (2)

The generalized Wang-Landau algorithm estimates βij by γij using stochastic
gradient. The algorithm goes as follows:

1. Initialize a sample x0 ∈ H and the bin weights γ0ij for the bins Di,j . Repeat
step 2-6:

2. At step t, sample y ∼ Q(xt, y) from some proposal distribution Q.
3. Perform steepest descent initialized with y to find the energy basin that y

belongs to. Let φ(y) be the index of the bin containing y.
4. Accept proposal y with probability α(xt, y):

α(xt, y) = min

(
1,
Q(y, xt)

Q(xt, y)

π(y)

π(xt)

γtφ(xt)

γtφ(y)

)
. (3)

5. If the proposal is accepted, increase the weight γt+1
φ(y) = γtφ(y) ∗ f for some

constant f > 1.
6. If xt and y belong to different basins Dk and Dl, then perform ridge descent

to update the estimated upper-bound of the energy barrier between the
two basins. In ridge descent we search for a local minimum along the ridge
between the two basins, by starting with a0 = xt, b0 = y and iterating to
find (at, bt):

at = argmina {E(a) : a ∈ Neighborhood(bt−1) ∩Dk}
bt = argminb {E(b) : b ∈ Neighborhood(at) ∩Dl}

until bt−1 = bt. The neighborhood of a sample is defined as the subspace
surrounding the sample with its size controlled by an adaptive radius.

7. After the algorithm converges, construct the ELM based on the energy of the
basins that have been discovered and the estimated energy barriers between
them. We check the convergence of the algorithm using the multivariate
extension of the Gelman and Rubin criterion [5].

Figure 2 illustrates the Markov chain produced by the algorithm. Note that the
modified acceptance probability in eqn.(3) will reject sample y if the Markov
chain has visited bin φ(y) many times, forcing the sampler to move into less
explored space.
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Xt

Xt+1 Xt+2

Xt+3 Xt+4 Xt+5
Xt+6

Xt+7

Xt+8
Xt+9

B1
B2

Barrier(B1,B2)

Fig. 2. Sequential MCMC samples xt, xt+1, . . . , xt+9. For each sample, we perform gra-
dient descent to determine which energy basin the sample belongs to. If two sequential
samples fall into different basins (xt+3 and xt+4 in this example), we estimate or up-
date the upper-bound of the energy barrier between their respective basins (B1 and
B2 in this example).

Unlike in previous work that samples from discrete state spaces, several new
issues arise in plotting the ELMs of continuous hypothesis spaces. For example,
many of the basins in the hypothesis space have a flat bottom which may result in
a large number of false local minima, and thus we merge local minima identified
by gradient descent based on the following criteria: (1) the distance between
two local minima is smaller than a constant ε; or (2) there is no barrier along
the straight line between two local minima. Besides, there may be constraints
between parameters (e.g., a probability vector should lie on the surface of a unit
simplex), and thus we may need to run our algorithm on a manifold. More details
of our algorithm can be found in [8].

3 ELMs of Gaussian Mixture Models

An n-component Gaussian Mixture Model (GMM) is a weighted mixture of n
Gaussians. The energy function of data clustering using GMM is the negative
log of the posterior, given by E(x) = − logP (x|zi : i = 1 . . .m)− logP (x) for m
input data examples {zi}. We use a Dirichlet prior on the weights of the model
and the Normal-inverse-Wishart prior on the means and variances of the model
components.

3.1 Experiments on Synthetic Data

We synthesize a 2-dimensional, 3-component GMM, draw m samples from it,
and run our algorithm to plot the ELM. We want to analyze how the sep-
arability c affects the energy landscape. The separability of the GMM repre-
sents the overlap between separate components of the model and is defined as

c = min
(

||μi−μj ||√
nmax(σ1,σ2)

)
[4]. We also look at the effect of partial supervision

on the energy landscape by assigning ground truth labels to a fraction of the
samples.



Mapping the Energy Landscape of Non-convex Optimization Problems 425

Fig. 3. ELMs for 100 samples drawn from GMMs with low, medium and high separabil-
ity (c = 0.5, 1.5, 3.5). The relative probability mass of the energy basins corresponding
to the 5 lowest-energy minima are indicated by circle size around the local minima.

Comparing Different Ground-Truth Models. Figure 3 shows some of the
ELMs with the separability being {0.5, 1.5, 3.5} form = 100 samples. The energy
landscape becomes increasingly simple (containing fewer local minima) as the
separability increases. The landscape for the high separability (c = 3.5) case
has relatively small energy barriers between the high-energy local minima and
a pronounced low-energy global minimum. Conversely, the landscape for the
low separability has a structure with high energy barriers between local minima
and multiple local minima with similar energy to the global minimum. This
indicates that the complexity of learning the GMM model should increase as the
separability decreases, as we would expect.

The probability mass of the 5 energy basins corresponding to the lowest-
energy local minima are shown in Figures 3 by the circles (similarly we can also
show the volume of each basin). The ratio of the mass of the lowest energy basin
to the mass of the remaining energy basins increases with separability. This is
also consistent with the intuition that high-separability landscapes have lower
complexity, as it is more likely that the global optimal solution can be found by
gradient descent from a randomly sampled starting point.

We examine the affects of partial supervision by assigning ground truth la-
bels (i.e. which Gaussian cluster a point belongs to) to a portion of the data
samples. Figure 4 shows the ELMs of a synthesized GMM (dimension = 2, num-
ber of components = 3, separability c = 1.0, number of samples = 100) with
{0%, 5%, 10%, 50%, 90%, 100%} labelled data points. Figure 5 shows the num-
ber of local minima in the ELM for the labeling of 1, . . . , 100 samples. This
shows a significant decrease in landscape complexity for the first 10 labels, and
diminishing returns from supervised input after the initial 10%.
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Fig. 4. ELMs of synthesized GMMs (separability c = 1.0, nSamples = 100) with
{0%, 5%, 10%, 50%, 90%, 100%} labelled data points

Behavior of Learning Algorithms: EM, K-mean and SW-Cut.
Expectation-maximization (EM) is one of the most popular algorithms for learn-
ing a GMM from data. K-means is another popular learning algorithm of GMM
which can be seen as a degraded variant of EM with hard assignments in the
E-step and the assumption of identical spherical Gaussian components. The
Swedsen-Wang Cut (SW-cut) algorithm [1] is a generalization of the Swendson-
Wang method [11] to arbitrary probabilities. It is a MCMC method that has
much faster convergence rates than classic Markov Chain Monte Carlo methods
such as the Gibbs sampler in cases when model states are strongly coupled (such
as the Ising-Potts model) [9].

For each synthetic dataset, we ran the three algorithms for 200 times and
found the energy basins of the ELM that the learned models belong to. Hence
we obtain a histogram of the learned models on the leaf nodes of the ELM for
each learning algorithm as shown in Figure 6–7.

Figures 6 and 7 show a comparison of the EM, K-mean, and SW-cut al-
gorithms for n = 100 samples drawn from low (c = 0.5) and high (c = 3.5)
separability GMMs. The SW-cut algorithm performs best in each situation, al-
ways converging to the global optimal solution. In the low separability case, the
K-mean algorithm converges to one of the seven local minima, with a higher
probability of converging to those with lower energy. The EM algorithm almost
always finds the global minimum and thus outperforms K-mean. This can be
explained by the fact that K-mean is a degraded variant of EM with extra as-
sumptions that may not hold. However, in the high separability case, the K-mean
algorithm converges to the true model the majority of the time, while the EM
almost always converges to a local minimum with higher energy than the true
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Fig. 5. Number of local minima versus the percentage of labelled data points for a
GMM with separability c = 1.0

(a) EM (b) k-means (c) SW-cut

Fig. 6. Low separability c = 0.5: histogram of EM, k-means, and SW-cut algorithm
results on the ELM
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(a) EM (b) k-means (c) SW-cut

Fig. 7. High separability c = 3.5: histogram of EM, k-means, and SW-cut algorithm
results on the ELM

model. This can be explained by a recent theoretical result showing that the
objective function of hard-EM (with k-means as a special case) is the summation
of the standard energy function of GMM with an inductive bias in favor of high-
separability models [12,10].

3.2 Experiments on Real Data

We ran our algorithm to plot the ELM for the well-known Iris data set from
the UCI repository [3]. The data set contains 150 points in 4 dimensions and
can be modeled as a 3-components 4-dimensional GMM. The three components
each represent a type of iris plant and the true component labels are known.
The points corresponding to the first component are linearly separable from the
others, but the points corresponding to the remaining two components are not
linearly separable.

Figure 8 shows the ELM of the Iris dataset. We visualize the local minima by
plotting the ellipsoids of the covariance matrices centered at the means of each
component in 2 of the 4 dimensions.

The 6 lowest energy local minima are shown on the right and the 6 highest
energy local minima are shown on the left. The high energy local minima are
less accurate models than the low energy local minima. The local minima (E)
(B) and (D) have the first component split into two and the remaining two
(non-separable) components merged into one. The local minima (A) and (F)
have significant overlap between the 2nd and 3rd components and (C) has the
components overlapping completely. The low-energy local minima (G-L) all have
the same 1st components and slightly different positions of the 2nd and 3rd
components.



Mapping the Energy Landscape of Non-convex Optimization Problems 429

Fig. 8. ELM of the Iris dataset and corresponding local minima

4 Learning Mixtures of Bernoulli Templates

An object image can be converted to a dense edge map or a sparse sketch map
using Gabor filters. We can quantize the edges/sketches into finite locations and
orientations, and thus each input image is transformed to a binary vector. A
Bernoulli template P ∈ {0, 1}n is an n-dimensional binary vector. A sample x
is generated from P with independent Bernoulli noise: the i-th coordinate xi
is equal to Pi with a fixed probability p and equal to 1 − Pi with probability
1− p. An K-component Mixture of Bernoulli Templates (MBT) B is a weighted
mixture of K Bernoulli templates defined by the set of templates {Pi} and
weights {wi|wi ∈ [0, 1]} for i ∈ {0, . . . ,K} with

∑
wi = 1. Samples sj are

drawn from B by first sampling a component Pi from the discrete distribution
of weights {wi}, then sampling from the template Pi as outlined above. We wish
to compute the energy landscape map of the space of MBTs with a fixed noise
level p. The energy function that we use is the negative log of the posterior, given
by E(B) = − logP (B|zi : i = 1 . . .M) for M samples {zi}. The probability of a
sample zi given a MBT is defined as:

P (zi|B) =
m∑
i=1

wip
∑n

j=1 I(zi(j)=Pi(j))(1− p)
∑n

j=1 I(zi(j) �=Pi(j)),

where Pi(j) is the j-th component of the i-th Bernoulli template in B, and
zi(j) is the j-th component of the i-th sample. When constructing the ELMs,
we discretize the hypothesis space by allowing the weights to take values wi ∈
{0, 0.1, . . . , 1.0}.

4.1 Experiment on Synthetic Data

We synthesized Bernouilli templates which represent animal faces as show in
Figure 9. Each animal face is a 9x9 grid with each cell containing up to 3 sketches.
The dictionary of sketches contains 18 elements, each of which is a straight line
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(a) cat (b) chilchilla (c) dog

(d) elephant (e) goat (f) lion

Fig. 9. Animal face templates - low overlap

(a) (b) (c)

(d) (e) (f)

Fig. 10. Mouse face templates - high
overlap

(a) landscape
map

(b) number of local minima

Fig. 11. The number of local minima in the energy landscape of learning MBT with
varying values of noise level p and number of samples

connecting the endpoints or midpoints of the cell edges. The Bernouilli template
can therefore be represented as a 18 × 9 × 9 dimensional binary vector. There
are 10 animals in total, so we have a Bernoulli mixture model with the number
of component M = 10.

We construct the energy landscape maps of the Bernouilli mixture model
for varying numbers of samples n = 100, 300, . . . , 7000 and varying noise level
p = 0, 0.05, . . . , 0.5, 0.55. The number of local minima in each energy landscape
is tabulated in Figure 11 (b) and drawn as a heat map in Figure 11 (a). As
expected, the number of local minima increases as the noise level p increases,
and decreases as the number of samples decreases. In particular, with no noise,
the landscape is convex and with noise p > 0.45, there are too many local minima
and the algorithm does not converge.

We repeat the same experiment using variants of a mouse face as shown in
Figure 10. We swap out components of the mouse face (the eyes, ears, whiskers,
nose, mouth, head top and head sides) for three different variants. We thereby
generate 20 Bernouilli templates which have relatively high degrees of overlap.
We generate the ELMs of various MBTs containing three of the 20 templates
with noise level p = 0. In each MBT, the three templates have different degrees
of overlap. Hence we plot the number of local minima in the ELMs versus the
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Fig. 12. Number of local minima found for varying degrees of overlap in the Bernoulli
templates

degree of overlap as show in Figure 12. As expected, the number of local minima
increases with the degree of overlap, and there are too many local minima for
the chains to converge past overlap c = 0.5.

4.2 Experiment on Real Data

We perform the Bernouilli templates experiment on a set of real images of animal
faces. We binarize the images by extracting the prominent sketches on a 9x9 grid.
Eight Gabor filters with eight different orientations centered in the centers and
corners of each cell are applied to the image. The filters with a strong response
above a fixed threshold correspond to edges detected in the figure; these are
mapped to the dictionary of 18 elements. Thus each animal face is represented
as a 18× 9× 9 dimensional binary vector. The Gabor filter responses on animal
face pictures are shown in Figure 13. The binarized animal faces are shown in
Figure 14.

We chose 3 different animal types – deer, dog and cat, with an equal num-
ber of images chosen from each category (Figure 15). The binarized versions of
these can be modeled as a mixture of 3 Bernouilli templates - each template
corresponding to one animal face type.

The ELM is shown in Figure 16 along with the Bernouilli templates corre-
sponding to three local minima separated by large energy barriers. We make
two observations: 1. the templates corresponding to each animal type are clearly
identifiable, and therefore the algorithm has converged on reasonable local min-
ima. 2. The animal faces have differing orientations across the local minima (the
deer face on in the left-most local minimum is rotated and tilted to the right
and the dog face in the same local minimum is rotated and lilted to the left),
which explains the energy barriers between them.
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Fig. 13. Animal face images and corre-
sponding binary sketches indicates the
existence of a Gabor filter response
above a fixed threshold

Fig. 14. Deer face sketches binarized
from real images

Fig. 15. Animal face images

Figure 17 shows a comparison of the SW-cut, k-means, and EM algorithm
performance as a histogram on the ELM of animal face Bernouilli Mixture Model.
The histogram is obtained by running each algorithm 200 times with a random
initialization, then finding the closest local minimum in the ELM to the output
of the algorithm. The counts of the closest local minima are then displayed as a
bar plot next to each local minimum. It can be seen that SW-cut always finds
the global minimum, while k-means performs the worst probably because of the
high degree of overlap between the sketches of the three types of animal faces.
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Fig. 16. ELM of three animal faces (dog, cat, and deer). We show the Bernouilli
templates corresponding to three local minima with large energy barriers.

(a) SW-cut (b) EM (c) k-means

Fig. 17. Comparison of SW-cut, k-means, and EM algorithm performance on the ELM
of animal face Bernouilli Mixture Model
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5 Conclusion

We present a method for computing the energy landscape maps (ELMs) in hy-
pothesis spaces and thus visualize for the first time the non-convex energy mini-
mization problems in computer vision, pattern recognition and statistical learn-
ing. We demonstrate the methods in two cases: clustering with Gaussian mixture
models in low dimensional space, and learning mixtures of Bernoulli templates
from images in very high dimensional space. By plotting the ELMs, we have
shown how different problem settings, such as separability and levels of super-
vision, impact the complexity of the energy landscape. We have also examined
the behaviors of different learning algorithms in the ELMs. More experimental
results and analysis can be found in our technical report [8].
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Abstract. In this paper, we propose a new marked point process (MPP)
model and the associated optimization technique to extract curvilinear
structures. Given an image, we compute the intensity variance and ro-
tated gradient magnitude along the line segment. We constrain high level
shape priors of the line segments to obtain smoothly connected line con-
figuration. The optimization technique consists of two steps to reduce the
significance of the parameter selection in our MPP model. We employ
Monte Carlo sampler with delayed rejection to collect line hypotheses
over different parameter spaces. Then, we maximize the consensus among
line detection results to reconstruct the most plausible curvilinear struc-
tures without parameter estimation process. Experimental results show
that the algorithm effectively localizes curvilinear structures on a wide
range of datasets.

Keywords: curvilinear structure extraction, marked point process, Monte
Carlo sampling with delayed rejection, aggregation algorithm.

1 Introduction

Curvilinear structures are widely observed in natural scenes. Thus, it is an impor-
tant task to detect lines in many computer vision applications. For example, road
network extraction algorithms [18, 30] have been developed for remote sensing.
To find defects of the road pavement, an adaptive filtering and image segmen-
tation algorithm has been proposed in [5]. For medical application, blood vessel
detection [8, 25] aids diagnosis of disease. Localization of facial wrinkles [2, 16]
provides visual cue of aging. However, these algorithms have a limitation of the
use on different domains because the corresponding models of curvilinear struc-
tures have been specifically designed for their target applications.

Since linear structures correspond to image gradient information, image fil-
tering with higher order derivatives [9, 15] is successful to grasp such image
characteristics. Pixelwise segmentation for linear structure extraction measures
the linearity for each pixel, and then sets up a threshold to remove out redun-
dant outcomes [5, 8, 25, 30]. Supervised learning algorithm [3] has been proposed
to find optimal convolution kernels for extracting linear features. Mathematical
morphology operator [27] can enhance thin line structures based on shape infor-
mation. However, criteria used for choosing the threshold values are ambiguous
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if the image gradient information is corrupted by noise or rough textures. Tree-
like representation [12, 29] has been recently proposed to automatically extract
curvilinear structures. These algorithms initially define a set of seed points, and
then grow branches based on a local tubularity measure [19]. However, the tree
representation requires heavy computations, and a localization of seed points is
crucial for the final result.

Curvilinear structures can be seen as a combination of small line segments.
Sampling techniques with geometric priors have been exploited to detect multiple
line segments in a scene [2, 16, 18, 22, 24, 28]. The marked point process (MPP)
framework [6, 7, 20, 26] is helpful to enforce high level constraints on shape
prior. However, the MPP model requires heavy formalization to interpret spatial
distribution of the objects. Large number of parameters should be defined to
describe the geometric shape of the objects (modeling parameters) and to control
the relative importance of data and prior energy terms (hyperparameters). MPP
modeling has been considered less practical to solve general problem because the
performance is very sensitive for the selection of parameters. Although stochastic
expectation maximization algorithm [4, 21] has been used to estimate modeling
parameters, it exhibits both speed and scalability issues.

Although the contour grouping algorithms [1, 28] also examine image features
corresponding to curves and lines, the goal is quite different from the curvilinear
structures extraction techniques. The contour grouping algorithms seek closed
contour lines to divide an image into meaningful regions. On the other hand,
we look for multiple curvilinear structures, which are not necessarily closed,
within a homogeneous texture. While the contours are associated with salient
edges around objects boundaries, the curvilinear structures are subtle local image
features in the same plane. Unlike [1], we cannot exploit global texture cues for
the data energy term; therefore, an accurate design of the shape prior energy is
essential to solve our problem.

In this paper, we propose a new MPP model for curvilinear structures ex-
traction in a fully automatic way, where the performance is not biased by the
hyperparameter selection. Indeed, our MPP model can detect wide types of in-
put data without a sophisticated parameter tuning process. To fit in with a
dataset, we analyze image gradients and homogeneity of intensities along the
line segments. The prior energy is defined on local configuration to implement
smooth connection among line segments (Sec. 2). To avoid the burden of hy-
perparameter selection, we first generate multiple candidates of the line con-
figuration with different hyperparameter settings. Markov chain Monte Carlo
sampler [11, 13, 14, 23] with delayed rejection scheme [14] is employed to op-
timize the proposed probability density function. Next, we combine the whole
set of line candidates in a way that maximizes the consensus among line detec-
tion results (Sec. 3). Extensive experiments on various datasets including facial
wrinkles, road cracks, DNA filaments, and blood vessels demonstrate the effec-
tiveness of the proposed MPP model for extracting thin curvilinear structures
(Sec. 4).



438 S.-G. Jeong, Y. Tarabalka, and J. Zerubia

2 Marked Point Process Modeling

2.1 MPP Revisited

We briefly review the definition of MPP [20, 26] to provide a mathematical
description of the proposed model.

Definition 1 (Spatial point process). A realization of point process consists
of an unordered set of points in a compact set F ⊂ Rd. A point process on F
maps from a measurable probability space (F ,B, μ) onto the configuration space
Ω = ∪∞

n=0Ωn, where B denotes σ-algebra of subset of F , and μ is the Lebesgue
measure. In other words, for all bounded Borel sets B ⊆ B, the number of points
falling in B is a finite random variable.

Definition 2 (Marked point process). In the MPP framework, each point
is associated with additional information which describes a shape of the object.
Specifically, we reconstruct curvilinear structures as smoothly connected line seg-
ments. Let si = (xi,mi) be a line segment specifying its center point xi = (xi, yi)
in the image sites F with a label of the length and the orientation mi = (�i, θi),
where the label is sampled from the mark space M with a probability measure μM .
We now define a marked point process on F×M as a finite random configuration
s = {s1, . . . , sn} ∈ Ψ .

The probability distribution of the MPP is defined based on an image I and
spatial interactions between line segments. Given an image, we look for an opti-
mal configuration ŝ which maximizes the unnormalized probability density f(s)
as follows:

ŝ = argmax
s∈Ψ

f(s) = argmin
s∈Ψ

#(s)∑
i=1

Ud(si) +
∑
i∼j

Up(si, sj), (1)

where #(s) is the cardinality of the configuration, and i ∼ j represents the
symmetry relationship between interacting line segments si and sj . Ud and Up

denote the data likelihood and the prior energy, respectively. In general, Monte
Carlo samplers [10, 13, 14, 31] are employed in MPP models to maximize the
proposed density function f(s). Each state of a discrete Markov chain (Xt)t∈N

corresponds to a random configuration on the Ψ . The chain is locally perturbed
by transition kernels, and is evolved to converge to the stationary distribution
which is identical to the proposed probability density.

2.2 Data Likelihood

We define the data likelihood of the line segment si as a weighted sum of the
rotated gradient magnitudes Um

d and the intensity variance Uv
d along the line:

Ud(si) = ωm
d U

m
d (si) + ωv

dU
v
d (si), (2)
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(a) (b) (c) (d) (e) (f) (g)

Fig. 1. Examples of the line configurations with different prior energies: (a)–(c) show
preferable line configurations composed of aligned lines (a), almost perpendicular lines
(b), and adjacent lines (c). (d)–(g) depict unfavourable line configurations which are
penalized because of a singular segment (d), acute corner (e), overlap (f), and parallel
(g), respectively.

where ωm
d and ωv

d are weighting coefficients corresponding to Um
d and Uv

d ,
respectively.

We obtain the rotated gradient information by convolving the input image
with steerable filters [9, 15]. Steerable filters are generated from a linear combi-
nation of basis filters. In this work, we use second-order derivatives of an isotropic
Gaussian function as the basis filters. Let gθi

(
x;σ2

)
be a steerable filter associ-

ated with an orientation θi and ∇Iθi = gθi ∗ I be its filtering response, which
adaptively accentuates gradient magnitudes corresponding to the angle θi. Then,
the gradient magnitude energy Um

d is defined as

Um
d (si) =

∫ 1

0

|∇Iθi (pi(t))| dt, (3)

where pi(t) represents points on the line segment si. Note that pi(t) = (1 −
t)ui + tvi is a function of the endpoints ui and vi with parameter t ∈ [0, 1[.

When the input image is heavily corrupted by noise or composed of uneven
textures, observing gradient distribution often fails to detect linear structures. To
ease this problem, we also measure the intensity variance along the line segment.
This is because intensities are likely to be homogeneous, if pixels are laid on the
same line. We can write:

Uv
d (si) =

1

�i

∫ 1

0

(
I (pi(t))− E[I(si)]

)2
dt, (4)

where E[I(si)] denotes the intensity mean of the line segment si, and �i is the
line length.

2.3 Prior Energy

In this section, we propose the prior energy to define spatial interactions on a
local configuration. We want to obtain smoothly connected lines with a small
curvature as a final solution. We compute the overlapping area Υ (si, sj) to reject
congestion of lines and the coupling energy states cij to evaluate attraction
between line segments (see Fig. 1). The prior energy Up(si, sj) is defined as

Up(si, sj) = Υ (si, sj) +wᵀ
pcij , ∀ i ∼ j, (5)
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wherewp denotes a vector of weighting factors which control relative importance
of each element in cij . We assume that a line segment only correlates with the
other ones within a certain distance. Thus, a neighborhood system consists of
pairs of line segments, such that their center distance is smaller than half the
sum of their lengths. In other words,

i ∼ j =

{
(si, sj) ∈ Ψ2 : 0 < ‖xi − xj‖2 ≤

�i + �j
2

+ ε

}
, (6)

where ε denotes the marginal distance to be connected with each other.
In order to evaluate an overlapping area between line segments, we dilate

the line segments with a three pixel-radius disk, and then count up the number
of pixels falling in the same image site. Suppose that we have a set of points
A(si) which is a dilated version of the line segment si, and n(A(si)) denotes
the number of pixels in A(si). As shown in Fig. 1 (e)–(g), we penalize a con-
figuration {si, sj}, when a portion of the overlapping area is greater than 10%
of min{n(A(si)), n(A(sj))}. However, almost perpendicular line segments are
excluded from this penalty. The criteria for rejection are then given as

Υ (si, sj) =

⎧⎪⎨⎪⎩
0 if θ⊥ij < τ,

0 if
n(A(si)∩A(sj))

min{n(A(si)),n(A(sj))} < 0.1,

∞ otherwise,

(7)

where θ⊥ij=
π
2−θij represents an angle difference between si and the perpendicular

line of sj , τ is the maximum angle difference for segments to be aligned.
The coupling energy states cij of the lines are composed of the singularity,

connectivity, curvature, and perpendicularity:

cij = [1, ϕ(dij , ε), ϕ(θij , τ), ϕ(θ
⊥
ij , τ)]

ᵀ, ϕ(u, v) = min{0, (u/v)2 − 1}, (8)

where dij denotes the minimum distance from endpoints of si to a point on the
line sj , and θij is the angle difference between line segments. The function ϕ(u, v)
tests a firmness of the coupling state u by comparing with the given tolerance
value v.

The weighting factors wp = [ωs
p, ω

c
p, ω

a
p , ω

r
p]

ᵀ can be derived from their role in
the prior energy. Specifically, ωs

p penalizes birth of a single line segment in the
final configuration; hence its value is affected by the average gradient magnitude
and the noise level of the input. ωc

p encourages adjacent segments within ε to
become connected. ωa

p promotes segments being aligned with a small curvature in
the final configuration. ωr

p supports perpendicularly approaching line segments.
Although the selection of wp values is critical for the performances of the MPP
model, it is hard to estimate the coefficients because of hidden dependencies
among them.

2.4 Monte Carlo Sampler with Delayed Rejection

We employ the Reversible jump Markov chain Monte Carlo (RJMCMC) sam-
pler [13] to obtain an optimal line configuration which maximizes the probability
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(a) s = {s1, s2, s3} (b) s\{s2} ∪ {s′} (c) Searching (d) s\{s2} ∪ {s̃}

Fig. 2. Given configuration (a), if a line segment s′ proposed by LT kernel is rejected
(b), the delayed rejection kernel searches for the nearest extremes in the rest of line seg-
ments (c). An alternative line segment s̃, which enforces connectivity, will be proposed
by interpolation of the retrieved points (d).

density function. The RJMCMC sampler is an iterative method that locally per-
turbs a current configuration s with a transition kernel. The transition kernel
consists of multiple sub-transition kernels, namely, birth-and-death (BD) and
linear transform (LT). A new configuration s′ is proposed according to the tran-
sition kernel, given by

ξ (s, s′) =
∑
m

pmξm (s, s′) , (9)

where pm denotes a probability to choose m-th type of sub-transition kernel
ξm (s, s′). For each sub-transition kernel, the detailed balance condition [13] is re-
quired to ensure the reversibility of the Markov chain. Acceptance ratio αm(s, s

′)
is compared with a stochastic value rand[0, 1] to take a new configuration into
account. The RJMCMC sampler is coupled with the simulated annealing (SA)
algorithm [17] to secure the convergence of the Markov chain via relaxation pa-
rameter T (temperature); the temperature gradually decreases as the iteration
goes on. To compute an acceptance ratio of the transition kernel, we use a density
f(s)

1/T instead of f(s). The acceptance ratio is

αm(s, s
′) = min

(
1,
ξm (s′, s)

ξm (s, s′)

f(s′)
1/T

f(s)1/T

)
. (10)

The BD kernel changes the dimensionality of the current configuration s by
adding a new line segment or removing an existing line segment. When the birth
kernel proposes a new configuration s′ = s ∪ {s}, the length and the orienta-
tion of the new line segment are uniformly sampled from the mark space M =
[�min, �max] × [θmin, θmax], where �min and �max are the minimum and maximum
length of the line segment, respectively. θmin and θmax denote the minimum and
maximum orientation of the line segment, respectively. Note that we refuse a birth
of the line lying on singular points, which have zero gradient magnitudes. On the
other hand, the death kernel removes a line segment which is randomly picked
from the current configuration. Thus, a new configuration s′ = s\{s} is proposed
by the death kernel. We compute the acceptance ratio of the birth kernel αB and
the death kernel αD in the same way as proposed in [18], given by

αB(s, s
′) = min

(
1,
pD
pB

μ(F)
#(s) + 1

f (s′)
1/T

f(s)1/T

)
, (11)

αD(s, s
′) = min

(
1,

pB
pD

#(s)

μ(F)
f(s′)

1/T

f (s)
1/T

)
. (12)
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Algorithm 1. RJMCMC sampler with delayed rejection

1: Initialize: X0 ← s0 (or X0 ← ∅), t ← 0, T ← T0

2: while T > Tmin do
3: s ← Xt

4: Choose a transition kernel ξm according to probability pm
5: Propose a new configuration s′ with ξm (s, s′)
6: if αm(s, s′) > rand[0, 1] then
7: Xt+1 ← s′

8: else
9: Propose an alternative segment s̃ based on ξ2LT (s, s′, s̃)

10: if α2
LT(s, s

′, s̃) > rand[0, 1] then
11: Xt+1 ← s̃
12: else
13: Xt+1 ← s
14: end if
15: end if
16: t ← t+ 1
17: Decrease the temperature: T ← Tt

18: end while

The LT kernel chooses a line segment s randomly, and then modifies its model
parameters: s = (x, (�, θ)) → s′ = (x ± dx, (� ± d�, θ ± dθ)), where dx, d�, and
dθ denote changes of center position, length, and orientation, respectively. The
LT kernel draws a new configuration s′ = s\{s} ∪ {s′}. The acceptance ratio of
the LT kernel is defined by

αLT(s, s
′) = min

(
1,
f(s′)

1/T

f(s)1/T

)
. (13)

The LT kernel can be extended by the delayed rejection scheme [14]. The
main idea of the delayed rejection scheme is to give a second chance to a rejected
sample point. The acceptance ratio of delayed rejection is defined by

α2
LT(s, s

′, s̃) = min

(
1,
ξLT (s̃, s′)

ξLT (s, s′)

ξ2LT (s′, s̃, s)

ξ2LT (s, s′, s̃)

[1− αLT(s̃, s
′)]

[1− αLT(s, s′)]

f(s̃)
1/T

f(s)1/T

)
,

 min

(
1,
f(s̃)1/T − f(s′)1/T

f(s)1/T − f(s′)1/T

)
. (14)

where s′ = s \{s} ∪ {s′}, s̃ = s\{s} ∪ {s̃}, and ξ2LT (s, s′, s̃) is the transition
kernel for the delayed rejection. In order to reduce the burn-in time, we add
heuristics to design the delayed rejection kernel. When we propose an alternative
line segment s̃, we look for the closest endpoints from both ends of s′, which is
rejected from the first trial. The line segment s̃ is generated by interpolation of
the retrieved points; we force the connectivity of the neighboring segments, so
that a probability of being accepted increases in terms of prior energy. Fig. 2
summarizes the process of the delayed rejection kernel, and Algorithm 1 provides
the pseudo-code of the RJMCMC sampler with delayed rejection.



Marked Point Process Model for Curvilinear Structures Extraction 443

(a) Input (b) |∇I | (c) [27] (d) [3] (e) ŝ1 (f) ŝ2 (g) ŝ3 (h) PŜ

Fig. 3. Given the input image (a), we compute the gradient magnitude (b). Mathemat-
ical morphology operator, path opening [27], is applied on such gradient magnitude
image (c). Linearity score of each pixel is drawn by the supervised feature learning
algorithm [3] (d). We provide line hypotheses (e)–(g) associated with different hyper-
parameter vectors. Composition result (h) is equivalent to mixture probability density,
and it highlights pixels corresponding to linear structures.

3 Curvilinear Structure Extraction via Integration of
Line Hypotheses

While the MPP allows to design complex prior knowledge of the object distribu-
tion, its performance is very sensitive to the selection of modeling parameters and
hyperparameters. For clarity, we note that the modeling parameters are related
to the physical characteristics of the line segments (e.g., range of length and
orientation). The hyperparameters denote the weighting coefficients of energy
terms (i.e., wm

d , wv
d , and wp). The modeling parameters can be chosen empiri-

cally since the values are related to the image resolution (see Sec. 4); however,
it is hard to estimate the hyperparameters via trial-and-error for different types
of dataset. Our goal is to maximize the probability density without estimating
hyperparameters.

3.1 Generation of K Line Hypotheses

Let w = [ωm
d , ω

v
d , ω

s
p, ω

c
p, ω

a
p , ω

r
p]

ᵀ be a hyperparameter vector which consists of
the weighting coefficients of the proposed probability density. Suppose that we
have K different hyperparameter vectors, w1, . . . ,wK . For each hyperparameter
vector, we substitute k-th hyperparameter vector wk into the proposed proba-
bility density f(s;wk). Then, we look for its optimal configuration ŝk via Monte
Carlo sampler proposed in Sec. 2.4.

For a practical reason related to the implementation, we bound the values
of w. Specifically, we sweep the weighting coefficients of the prior energy wp

according to the gradient magnitude and noise level of the input image. Let
χ = −�min×E[∇I]+Var[Iσ2 ] be a baseline to accept a new line segment into the
current configuration without considering spatial interaction, where Iσ2 denotes
a smoothed image using a Gaussian kernel with σ2 = {1.5, 2.25, 3.5}. To reduce
computation overhead, we fix the weighting factors of data likelihood energy as
ωm
d = −1 and ωv

d = 1. We setw1 = [−1, 1, χ, 0.1χ, 0.01χ, 0.01χ]ᵀ, and gradually
change χ by 10% of increments, i.e., w2 = [−1, 1, χ2, 0.1χ2, 0.01χ2, 0.01χ2]

ᵀ,
where χ2 = 1.1χ. In our experiments, we set K = 15 to create line hypotheses.
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3.2 Combination of Line Hypotheses into a Probability Map

We now have a family of line hypotheses Ŝ = {ŝ1, . . . , ŝK} obtained from K
different hyperparameter vectors. We jointly use the image data and the line
hypotheses. More specifically, the final solution s∗ maximizes not only the prob-
ability density but also the consensus among line hypotheses. For each optimal
configuration ŝk, we compute a probability map Pk of being a line in the image
site. Then, we integrate K probability maps into a mixture density PŜ :

Pk(x) =

⎧⎨⎩
1 if ∃ski ∈ ŝk,x ∈ ski ,
1
2 if ∃ski ∈ ŝk,x ∈ A(ski ),
0 otherwise,

PŜ(x) =
1

K

K∑
k=1

Pk(x). (15)

Fig. 3 compares image gradient magnitude, morphological filtering [27], su-
pervised feature learning [3], line hypotheses, and the mixture density. Since the
input image contains many high frequency components, its gradient also high-
lights non-linear structures in the background. While the morphological filter
accentuates linear structures, its performance depends on the setting of path
length. Supervised learning method requires high quality of a training dataset
and corresponding ground truth images. Depending on the setting of hyperpa-
rameter vectors, the MPP model leads incomplete detection results as shown in
Fig. 3. (e)–(g). We integrate line hypotheses of the proposed MPP model into
a mixture density PŜ . The mixture density shows the consensus between line
hypotheses in the sense that the pixels corresponding to line structures are more
highlighted when compared to [3, 27].

We assume that the most promising hyperparameter vector draws a configu-
ration which is more akin to the mixture density. We compute the correlation-
coefficient (CC) between PŜ and Pk’s to analyze coherence of line detection
results. That is

k∗ = argmax
k={1,...,K}

CC(PŜ ,Pk), (16)

CC(PŜ ,Pk) =

∑
x

(
PŜ(x)− E[PŜ ]

)
(Pk(x)− E[Pk])√∑

x

(
PŜ(x)− E[PŜ ]

)2 ∑
x (Pk(x)− E[Pk])

2
, (17)

where k∗ represents the index of the most reliable hyperparameter vector.

3.3 Curvilinear Structure Extraction from Reduced Sampling Space

The line hypotheses span a configuration space S ⊂ Ψ which will be considered
as a new sample space. Since the size of S is significantly reduced compared to
the original sample space Ψ , the optimization process becomes more tractable
in terms of convergence time and detection accuracy.

We redefine the data likelihood energy by adding a new energy term as follows:

U ′
d(si) = Ud(si) + Uh

d (si), Uh
d (si) =

∫ 1

0

− logPŜ(si(t)) dt, (18)
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(a) T0 = 100 (b) T102 = 21.67 (c) T103 = 14.47 (d) T104 = 10.86

Fig. 4. We provide intermediate sampling processes when the temperature parameter
Tt is decreasing. The results shown in first row are obtained without specifying seed
segment. For the second row, we randomly set 20 seed segments and run the algorithm.
For the third row, we initialize 20 line segments which are highly corresponding to
underlying curvilinear structures. The algorithm converges toward almost the same
solution regardless of the initial state.

where Uh
d (si) quantifies the consensus among line hypotheses with respect to the

line segment si. We stimulate the modified probability density over the reduced
sample space S with the most promising hyperparameter vector wk∗

:

s∗ = argmin
s∈S

#(s)∑
i=1

U ′
d(si) +

∑
i∼j

Up(si, sj ;w
k∗
). (19)

4 Experiments

We test the proposed algorithm on a wide range of datasets: facial wrinkles, DNA
filaments1, road cracks, and retinas. The facial wrinkle images are collected on
the Internet, and forehead areas are manually selected for the experiments. Test
images of the defects on the road pavements and ground-truth are courtesy
of Chambon et al. [5]. We use the DRIVE dataset [25] to test the proposed
algorithm on retina images.

For all test sequences, we fix the modeling parameters as follows: �min is set to
5 pixels and �max = 20 pixels. The orientation θ is varying from −90◦ to 90◦ with
increments of 2◦. The marginal distance of connected segments ε is fixed to 2
pixels, and the maximum angular difference of aligned segments τ is 30◦. For the
SA, the initial temperature T0 is set to 100, and it follows the logarithm cooling
schedule Tt = T0/log(1+t), where t denotes the number of the current iteration. We
start the sampling process with the empty configuration. However, careful choice
of initial segments can speed up the convergence of the algorithm (see Fig. 4).
The computational time depends on the image resolutions; it takes less than a
minute for the experimental images having 300× 400 pixels, approximately. We
use a PC with a 2.9 GHz CPU (4 cores) and 8 GB RAM.

1 https://www.biochem.wisc.edu/faculty/inman/empics/dna-prot.htm

https://www.biochem.wisc.edu/faculty/inman/empics/dna-prot.htm
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Fig. 5. Precision-and-recall curves for pixelwise segmentation of curvilinear structures
using path opening operator [27] with different setups of length, supervised feature
learning [3], baseline MPP, and the proposed method

To compare the performances of the proposed method with the state-of-the-art
techniques, we apply the path opening operator [27] on the gradient magnitude
images by controlling the length parameters. For the supervised feature learning
algorithm [3], we train 15 images for each dataset. In our experiments, we use
the original implementations of path opening operator2 and supervised feature
learning algorithm3.

Fig. 5 shows the precision-and-recall curves for four test images. To obtain the
curve of the comparison methods [3, 27], we tune thresholds on line detection re-
sults. The baselineMPP is selected from the line hypotheses amongwhich it shows
the best performance. The performances of the supervised learning algorithm are
controlled by the quality of the training set; hence, it shows low performances on
wrinkle and dna datasets, which are composed of noisy images with various
sizes. In particular, the ground truth set of the wrinkle dataset is based on sub-
jective perception. While the morphology operator enhances linear structures on
gradient magnitude images, it is required to specify the length of the linear struc-
tures according to the target applications. Since the pixelwise comparison fails
to incorporate the geometry similarity with the ground-truth, the proposed algo-
rithm shows lower scores on the crack and retina datasets. More specifically,
the proposed algorithm detects slightly shifted lines for the crack image.

Fig. 6 compares the detection results of the proposedMPPmodel with theman-
ually labeled image byhuman expert,morphology operator [27], supervised feature
learning algorithm [3], and baselineMPP. For a fair comparison, we set the thresh-
old values of the competing algorithms [3, 27] to obtain the closest recall scores
to the proposed algorithm. Blue pixels denote perfectly matching regions as com-
pared with the ground-truth. Green and red pixels show over-detected and under-
detected results, respectively. The main strength of the proposed algorithm is that
it ensures stable performances for all datasets without any parameter
estimation procedure. The proposed algorithm extracts the most salient line struc-
tures in the input image. On the other hand, the proposed algorithm suffers from

2 http://hugues.zahlt.info/91.html
3 http://cvlab.epfl.ch/page-108936-en.html

http://hugues.zahlt.info/91.html
http://cvlab.epfl.ch/page-108936-en.html
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(a) (b) (c) (d) (e) (f)

Fig. 6. We visualize the localization of the curvilinear structures on input images (a).
We compare with the results of a manually labeled image by a human expert (b),
morphological filtering [27] (c), supervised feature learning [3] (d), baseline MPP (e),
and the proposed algorithm (f). Threshold values of (c) and (d) are chosen to achieve
the closest recall scores to the proposed method. We use blue pixels to indicate areas
which are completely corresponding to (b). Green and red pixels denote over-detected
and under-detected areas, respectively, as compared with ground-truth. The name of
the test images is from top to bottom: wrinkle, dna, crack, and retina.



448 S.-G. Jeong, Y. Tarabalka, and J. Zerubia

under-detectionwhen thewidth of the line structure is varying, for example, see the
result for theretina. Suchdrawback canbe overcome ifwe introduce an additional
parameter for width of the line segment in our MPP model.

5 Conclusions
We have developed a new MPP model to reconstruct curvilinear structures via
vectorized line segments. For the data likelihood, the density function computes
rotated gradient magnitude and intensity variance. Prior energies of the proposed
MPP model define interactions of the local configuration in terms of coupling en-
ergy states and overlapping areas. We have presented a new optimization scheme
which is not biased by the parameter selection in the MPP model. We used an
advanced RJMCMC sampler with different hyperparameter vectors to obtain
line hypotheses. The line hypotheses span a feasible sample space, so that the
final solution interprets underlying curvilinear structures more faithfully. We
have shown line detection results on a wide rage of datasets, and compared the
performances of the proposed method with morphological filtering [27], super-
vised learning [3], and baseline MPP method. The whole optimization process is
friendly designed to the parallel implementation; thus, the computational time
can be further reduced by applying the parallel Monte Carlo sampler [31]. We
plan to extend our model for time-varying sequences in order to analyze the tem-
poral changes of the linear structures. While the heuristically proposed values
for modeling parameters detect lines in practice, it is one of our future research
topics to generate an optimal parameter vector using learning methods.
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Abstract. Spectral graph clustering is among the most popular algo-
rithms for unsupervised segmentation. Applications include problems
such as speech separation, segmenting motions or objects in video se-
quences and community detection in social media. It is based on the
computation of a few eigenvectors of a matrix defining the connections
between the graph nodes.

In many real world applications, not all edge weights can be defined. In
video sequences, for instance, not all 3d-points of the observed objects are
visible in all the images. Relations between graph nodes representing the
3d-points cannot be defined if these never co-occur in the same images.
It is common practice to simply assign an affinity of zero to such edges.

In this article, we present a formal proof that this procedure decreases
the separation between two clusters. An upper bound is derived on the
second smallest eigenvalue of the Laplacian matrix. Furthermore, an al-
gorithm to infer missing edges is proposed and results on synthetic and
real image data are presented.

1 Introduction

Grouping similar data without any knowledge about the possible labeling is an
important problem. This so-called unsupervised segmentation task is necessary
in bioinformatics, machine learning, pattern recognition and computer vision.

One known technique for unsupervised segmentation is spectral clustering.
It rests upon the segmentation of a graph capturing the relations between the
data. Minimum cuts are used to decide the segmentation of the the graph into
two [1, 2] or more sub-graphs [3].

Constructing the graph requires that affinities are computed between the ver-
tices representing the data. If more than two data items are necessary to estimate
the affinity, the corresponding hyper -edge connects all involved vertices [4]. For
such hyper-graphs, the number of edges is exponential in the number of data
items necessary to compute the affinity. Since many real-world problems induce
prohibitively large hyper-edge sets, a commonly used approach is to estimate a
subset of edges only [5–8], ie. many edge weights remain undefined.

In applications such as motion segmentation from video sequences [9] 2d-
trajectories corresponding to different 3d-points have to be compared. Due to
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occlusion or tracking failure, 2d-projections of different 3d-points may never co-
occur in the same images so affinities between the corresponding graph nodes
cannot be defined.

This situation is handled by state-of-the-art algorithms [6–9] by setting the
corresponding edge weight to 0. This procedure is equivalent to assuming max-
imum dissimilarity between the two trajectories even though they may belong
to the same group.

The contribution made here is twofold: (1) We model the impact of un-
known edge weights in the context of spectral clustering. A lower bound on
the separation between the two clusters and the upper bound on the eigenvalue
gap is derived and proved. (2) We propose an algorithm to infer the weights of
unknown edges using the known edges.

Whereas the effect of noise on the affinities has been investigated before [10,
11], this is the first work that considers the impact caused by undefined edges
on spectral graph clustering.

The structure of this article is as follows: Some definitions are made in Sec-
tion 2. Some facts of spectral clustering and the NCut-algorithm are shortly
explained in the same section. Our first contribution, the derivation of upper
and lower bounds on the cluster separability and the eigenvalue gap is presented
in Sec. 3. Sections 4 and 5 present the proposed algorithm for inferring unknown
edges of the graph and an application on motion segmentation. Experimental
results using synthetic and real image data are shown in Sec. 6. The article
concludes with a discussion in Sec. 7.

2 Definitions

For matrices, we use capital letters, such as matrix W . Vectors are indicated by
lower-case letters, e.g. w. By w(i) we denote the ith entry of a vector w whereas

wi denotes the ith vector, for instance given W =
[
w1 · · · wn

]�
the vector w3

implies the third row of matrix W . The (i, j)th entry of matrix W is indicated
by wij . By ‖v‖, we mean the L2-norm of v.

Let G = (V,E) be an undirected graph consisting of |V | = n nodes V and a
set of edges E connecting the nodes. Let there be subsets V1 ⊂ V and V2 ⊂ V
such that V1 ∩ V2 = ∅ and |V1| = n1, |V2| = n2, n1 + n2 = n.

The real-valued weight wij(eij) of an edge eij between two vertices vi and vj
equals c1 if and only if both vi and vj are vertices of either V1 or V2. Otherwise,
its edge weight equals c2 < c1. We may further assume that c1, c2 ∈ [0, 1]. The
idea motivating c1 and c2 is that the clusters do not need be perfectly separated.
Noise on the edge weights can be considered by decreasing c1 and increasing c2,
respectively.

Denote by W the matrix consisting of the edges weights between all nodes.
Assuming without loss of generality that the vertices are sorted, the n1 × n1

upper left block and lower right n2 × n2 block of W are all but c1 whereas the
remaining entries of W equal c2.
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Let di =
n∑

j=1

wij and D the matrix with its (i, i)th diagonal entry equal to di.

The Laplacian L of W can be defined as

L = I −D−1W, (1)

where I denotes the identity matrix. The segmentation is given by the eigenvector
x2 to the second smallest eigenvalue of L. Assuming that the nodes are sorted
and the clusters do not overlap, it is a piece-wise constant vector [1, 3, 10]. The
labelling can be obtain by kmeans, for instance.

3 An Upper Bound on the Eigenvalue Gap

This section introduces the first contribution of this work, namely bounds on the
second smallest eigenvalue of the Laplacian if not all edge weights are defined.

Let w be a vector consisting of the entries of a particular row ofW . Denote by
w′ the same vector with some yet not all of its entries set to zero. It is possible
to establish upper and lower bounds on the angle between w and w′:

Lemma 1. For the angle between w and w′ we have

0◦ < ∠ (w,w′) < 90◦ (2)

Proof. Let P(w′) denote the set of non-zero entries of w′. If a particular i is
chosen such that w′(i) 
= 0, we have w(i) · w′(i) = w(i)2, hence we have for the
scalar product between w and w′

wT · w′

‖w‖ · ‖w′‖ > 0. (3)

Regarding the upper bound on the scalar product, we have

w� · w′ =
∑

i∈P(w′)

w′(i)2 = ‖w′‖2. (4)

we can see that Eq. (3) cannot attain a value of 1 since the first factor of the
denominator is ‖w‖ and we have ‖w‖ > ‖w′‖. ��

These vectors wi induced by the vertices v ∈ Vk, with either k = 1 or k = 2,
can be regarded to span an nk-dimensional subspace

Sk = span
(
wi1 , . . . , wink

)
. (5)

Denote by the matrix Sk an orthonormal basis of Sk. For the angle between w′

and the corresponding subspace Sk we obtain that

Lemma 2. ∠ (w′,Sk) > ∠ (w,Sk).



Graph Segmentation with Unknown Edge Weights 453

Proof. Noticing that ∠ (w,Sk) = 0 ⇔
∥∥∥ w�
‖w‖ · Sk

∥∥∥ = 1 we can show that∥∥∥ w�
‖w‖ · Sk

∥∥∥ > ∥∥∥ w′�
‖w′‖ · Sk

∥∥∥ as in the proof of of Lemma 1. ��

Let w′
p be the vector with p of its entries being set to zero. From the above

two lemmata, we immediately obtain that

Corollary 1. The angle between w′
p and Sk increases with the weight of the

“zeroed” entries of w′
p,

∑
i�∈P(w′

p)

w(i)2

∠ (w′
1, Sk) < ∠ (w′

2, Sk) < · · · (6)

Notice that the gap between the two clusters – measured by the difference
between the second and the third smallest eigenvalue of the Laplacian L – is
maximum if and only if S1 ⊥ S2. Increasingly perturbed vectors w′

i, i = 1, . . . , nk,
thus cause increasingly perturbed subspaces S ′

k spanned by the vectors w′
i.

The question we are interested in is what happens to the angle between S ′
1

and S ′
2 compared with ∠ (S1,S2). If we are interested in exactly determining the

gap, the convex hulls of the two sets of vectors w′
i need be compared.

However, analyzing the worst-case turns out to be much easier. This worst-
case is defined by the ex-radius, ie. the largest distance between the centroid bk
of the points wi ∈ Sk and the points wi.

To derive an upper bound we need to determine the distance between w and
w′

p. Obviously, the Euclidean distance between w and w′
p is largest if and only

if c1 entries are zeroed. Here, we further assume that p < nk, ie. not all edges to
other vertices of the same cluster are removed.

Theorem 1. The squared Euclidean distance between w and w′
p is bounded by

‖w − w′
p‖2 ≤ p · c21. (7)

With probability ρ1 >

(
1

1+
n2
n1

)p

if w ∈ S1, and ρ2 >

(
1

1+
n1
n2

)p

if w ∈ S2,

respectively, the distance ‖w − w′
p‖2 is smaller.

Proof. Since c1 > c2, the distance ‖w − w′
p‖2 is largest if and only if all zeroed

edges have weight c1. The probability to sample c1 entries of vectors w ∈ S1 is
given by

ρ′1 =
n1!

p!(n1 − p)!
· p!(n1 + n2 − p)!

(n1 + n2)!
=

n1!(n1 + n2 − p)!

(n1 − p)!(n1 + n2)!
(8)

=
n1!

(n1 − p)! ·
p∏

i=1

(n1 + n2 − p+ i)

=

p∏
i=1

n1 − p+ i

n1 + n2 − p+ i
. (9)

Defining di = n1 − p+ i we obtain

ρ′1 =

p∏
i=1

di
di + n2

=

p∏
i=1

di
di(1 + n2

di
)
=

p∏
i=1

1

1 + n2

di

=

p∏
i=1

1

1 + n2

n1−p+i

. (10)
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Using an upper bound of each factor we finally arrive at the claim:

ρ′1 =

p∏
i=1

1

1 + n2

n1−p+i

(11)

<

p∏
i=1

1

1 + n2

n1−p+p

(12)

=

p∏
i=1

1

1 + n2

n1

=

(
1

1 + n2

n1

)p

. (13)

The derivation of the probability to only sample c1 entries of vectors w ∈ S2 is
equivalent. ��

In other words, theorem 1 implies that the probability that the distance ‖w−
w′

p‖2 is smaller than p · c21 reduces exponentially as the number of zeroed entries
p in w′

p grows. In the following, we call this distance the separation between S1
and S2.

Let the centroids b1 =
[
c1 · · · c1 c2 · · · c2

]
, b2 =

[
c2 · · · c2 c1 · · · c1

]
, and a

vector v parallel to b1− b2 with ‖v‖ = 1. Assuming that p entries of each vector
w′

p ∈ {S1,S2} are zeroed where p < {n1, n2}, we arrive at

Theorem 2. The separation between the two perturbed clusters equals s = s1 +
s2 where

sk ≥
∥∥(b�k v) v∥∥2 − p · c21, (14)

and the angle equals α = α1 + α2 where

αk ≥ tan−1

√
sk
‖l‖ (15)

with l = b1 −
(
b�1 v

)
v = b2 −

(
b�2 v

)
v.

Proof. The vector v indicates the line between the two cluster centroids bk. If the
orthogonal projection of the vector bk onto v is subtracted from bk, we obtain
the vector l from the origin to the perpendicular point on the line between b1
and b2.

The length of the line segment between one of the two centroids and the
perpendicular point is given by the length of the orthogonal projection of the

vector bk onto v, ie.
∥∥(b�k v) v∥∥2. Subtracting the radius of the sphere around bk

by lemma 1 yields the expression in Eq. (14).
Since the perpendicular line and the line between the perpendicular point and

the sphere around each bk from a right triangle, we can compute the the angle
between the perpendicular l and the vector between origin and the closest point
on the sphere around bk by Eq. (15). ��

The probability that the separation s is in fact larger than the minimum stated
in theorem 2 is 1− ρ1ρ2, ie. usually very large.
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Let v′1 and v′2 be the vectors from the origin to the intersection of the line
between b1 and b2 with the sphere around each cluster center. Let the first two
rows of the n× n matrix T ′ be the vectors v′1 and v′2, and the other rows being
zero.

Let further v1 and v2 be the two 2d-vectors resulting from rotating
[√

2
√
2
]

by α
2 and −α

2 , respectively. Assume further that v1 and v2 are normalized such
that

∑
i

v1(i) =
∑
i

v2(i) = 1. Let the 2× 2 matrix T consist of v1 and v2 as first

and second row.
Using theorem 2 we are now able to derive a bound on the second largest

eigenvalue of the Laplacian. The following theorem constitutes the first of our
two main contributions.

Theorem 3. The second smallest eigenvalue λ2 of the Laplacian matrix L is
bounded by

λ2 ≤ 1− λmin (16)

where λmin is the smaller of the two solutions 0 ≤ λmin ≤ 1 of the quadratic
equation

(t11 − λmin)(t22 − λmin)− t12t21 = 0 (17)

where the scalars tij are the entries of the matrix T .

Proof. We can see that the two eigenvalues of T and T ′ are identical: Obviously
both share the eigenvalue 1. The second eigenvalue is also identical since α =
∠ (v′1, v

′
2) = ∠ (v1, v2), and the principal angle θ and the singular value and

eigenvalue are related by

0 ≤ cos θ = σ
(
v�1 v2

)
= λ

(∣∣v�1 v2∣∣) ≤ 1 (18)

where σ(·) denotes the singular value of the argument and λ(·) the eigenvalue.
Lastly, as the eigenvalues of the Laplacian L are related to those of D−1W

by Λ (L) = 1− Λ
(
D−1W

)
, we obtain the claim in Eq. (16).

��

4 Graph Completion

Let the edge ẽi,j between vertices vi and vj be unknown. Denote by Tu =(
ei,L1 , eL1,L2 , · · · , eLnl

,j

)
the uth path between vi and vj of length nl > 1.

Proposition 1. The unknown weight w̃i,j of an edge ei,j between vertices vi
and vj can be inferred by

w̃i,j = max
u
{min {w(e), e ∈ Tu}} . (19)

This is motivated by the following idea: Let vi and vj both be vertices of the
same cluster Sk. Then, there exists at least a single path T (i, j) such that all
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edges along this path have large weight. Assume, conversely, that vi ∈ Sk1 and
vj ∈ Sk2 , k1 
= k2. Then, all paths T (i, j) contain at least a single edge with low
weight.

As the probability that a path contains an edge with low weight increases
with the path length, it suffices to search the q shortest paths Tu, u = 1, . . . , q,
between vi and vj .

5 Application and Algorithm

In this section we present an algorithm for motion segmentation. Suppose that
several sets of 3d-points move independently and are projected into images by a
camera possibly also rotating and translating. Due to occlusion within the scene
or failure of the feature point tracker, not every 2d-projection of a 3d-point is
visible in all the images.

The problem is then to assign each trajectory – temporally consecutive 2d-
projections of a particular 3d-point – a label indicating which group of 3d-points
it belongs to. Associating one graph node with each trajectory, it requires to
define affinities between each two vertices. If two trajectories do not overlap
sufficiently such an affinity cannot be defined.

In the following we explain the procedure how to estimate affinities between
nodes. It strongly rests upon the guided-sampling algorithm proposed in [12] yet
only uses random sampling in a strict sense.

Low-dimensional subspaces are fitted to a subset of vertices representing the
trajectories. Since subspace fitting is susceptible to missing data, a random ver-
tex is selected first. We then discard vertices that are not visible at exactly those
images the first vertex is visible at. From this subset, F−1 vertices are randomly
chosen and the model parameters are computed by SVD. Here, we define F > D.

Given this model, the error is computed for all vertices which are visible in
at least 8 of the images the subspace model is valid for. As error measure we use
the Euclidean distance between each visible trajectory and the subspace. The
resulting error is appended to a residual matrix. If a 3d-point is not visible in at
least 8 of the images used for estimating the subspace, the corresponding entry
in the residual matrix is set to undefined.

These steps are repeated R times. The error matrix is then sorted similarly
as in [12]. The difference to [12] is that undefined entries are discarded at the
sorting. If error vectors corresponding to two vertices vi and vj share the same b
models among those H with lowest error, the weight of the edge between vertices
vi and vj is set to eij = b/H . The scalar parameter H controls the connectivity
of graph.

Finally, weights of edges which could not be defined are inferred by using the
algorithm proposed in Sec. 4. The resulting complete graph is segmented using
NCut spectral clustering.
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6 Experiments

6.1 Synthetic Data

The algorithm proposed in Sec. 5 was evaluated using an artificial graph con-
sisting of n1 = 50 and n2 = 50 nodes. While the data is ordered, neither the
algorithm proposed in Sec. 5 nor the spectral clustering have any knowledge
about the labeling.

The effect which undefined but “zeroed” edge weights have on the spectral
clustering can be seen by the dash-dotted red curve in the left plot of Fig. 1.
Here, for fixed, normally distributed noise applied to the non-zero entries of W ,
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Fig. 1. Dash-dotted red line: spectral clustering (undefined edge weights are set to
zero). Solid blue line: proposed graph completion followed by NCut. Left plot: the
number of incorrectly classified graph vertices. Right plot: minimum absolute sum be-
tween any two of the entries |x2(i)| and |x2(j)| of x2. i and j indicate vertices of different
clusters. Larger values of the minimum absolute sum indicate better separability of the
two clusters.
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Fig. 2. Left plot: The solid blue line indicates the predicted upper bound on the eigen-
value corresponding to the second smallest eigenvalue of the Laplacian while the dash-
dotted red line indicates the true value. The noise was fixed to 2% and c1 = 0.8,
c2 = 0.2. Middle plot: The solid red line shows the measured second eigenvalue for
c1 = 0.6 and c2 = 0.4. Right plot: The solid line shows the angle between the corre-
sponding eigenvector and the ground truth.
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Fig. 3. The weight matrix W shown in the left image was created by taking c1 = 0.6,
c2 = 0.4, setting the noise level to a standard deviation 3% and randomly removing
60% of all edges. The right image shows the recovered graph by the proposed algorithm.
The recovered eigenvector to the second smallest eigenvalue of the Laplacian L differed
from the ground truth by approximately 2.76◦ whereas that vector corresponding to
the right image differed by about 36.87◦.

fixed separation c1 − c2 and gradually increasing percentage of zeroed weights,
the misclassification (measured by the number of misclassified vertices) increases
(shown is the average of ten trials with different noise).

For this experiment, noise and separation were fixed to σ = 2% and c1 = 0.7,
c2 = 0.3, respectively. The dash-dotted red lines indicate the results using a
traditional spectral clustering, ie. the entries of the weight matrix W are simply
set to zero. The solid blue lines indicate the results after the proposed graph
completion followed by the spectral clustering.

The right plot in Fig. 1 shows the minimum

min |x2(i)| − |x2(j)| , ∀ i, j (20)

of the eigenvector x2 to the second smallest eigenvalue of L between any two of
its entries |x2(i)| and |x2(j)| where i and j indicate vertices of different clusters.
Larger values indicate better separability of the two clusters.

As can be seen, the amount of undefined edge weights decreases the separation
between the two clusters for standard spectral clustering (dash-dotted red line).
The proposed graph completion is not affected that strongly.

The left plot of Fig. 2 shows the average (of ten trials) of the predicted upper
bound on the eigenvalue (solid blue line) corresponding to the second smallest
eigenvalue of the Laplacian while the dash-dotted red line indicates the true
value. The noise was fixed to 2% and c1 = 0.8, c2 = 0.2. It can be seen that
for increasing noise both the theoretical upper bound and the measured values
decrease. The middle plot in the same figure shows the average of the measured
second eigenvalue for c1 = 0.6 and c2 = 0.4. Apparently, the eigenvalue decreases
more strongly. The right plot shows the angle between the corresponding eigen-
vector and the ground truth. Thios pertubation causes the misclassification.
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The left image of Fig. 3 shows an example of a weight matrix W if 60% of
all edges are randomly removed. The right image in the same image shows the
graph recovered by the proposed algorithm.

The three plots in Fig. 4 show averages of the Frobenius norm between the
ground truth weight matrix and the recovered one of ten trials with different,
normally distributed noise each time. In the left plot, the standard deviation
was increased from 0 to 0.03 in steps of 0.005. The solid blue line indicates 10%
randomly removed edges, the dash-dotted red line 30%, and the dashed green
one 60%.

In the middle plot, the percentage of missing edges was increased. Here, the
solid blue line was obtained by setting c1 = 1 and c2 = 0, the dash-dotted red
line c1 = 0.8 and c2 = 0.2; the dashed green line c1 = 0.6 and c2 = 0.4. The
noise was kept fixed to 1%. It can be seen that the amount of missing edges is
more important than the difference between c1 and c2.

The right figure corresponds to an experiment where the difference between
c1 and c2 was decreased. The solid blue line indicates 10% randomly removed
edges, the dash-dotted red line 30%, and the dashed green one 60%. The noise
was kept fixed to 1%. Since all of the three lines are relatively constant while
c1 − c2 varies we can conclude that the determining factor is the amount of
undefined edge weights.
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Fig. 4. Each of the three plots was obtained by varying a particular parameter: for the
left plot, the noise was increased; edges were randomly removed for the middle one;
the difference between c1 and c2 was decreased for the right plot. As error measure we
used the Frobenius norm between the recovered weight matrix and the ground truth
(root of sum of squared errors, RSSE). For the definitions of the different lines of each
plot please see the explanation in Sec. 6.1.

6.2 Real Image Experiments

Two real image sequences, cars9 and farm01, were selected from the extended
Berkeley motion database1. These sequences were selected because they are
longer (60 and 252 images, respectively) so not all trajectories co-occur at a
given number of frame. That also is the reason why the sequences from the pop-
ular Hopkins benchmark were not considered here as they simply do not contain
sufficiently many missing correspondences.

1 http://lmb.informatik.uni-freiburg.de/resources/datasets

http://lmb.informatik.uni-freiburg.de/resources/datasets
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Fig. 5. cars9 sequence from the extended Berkeley motion database. Images in the
left column indicate segmentation results by the algorithm of [6]; middle column: spec-
tral clustering followed by spectral clustering without graph completion before; right
column: proposed (graph completion followed by spectral clustering)
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Fig. 6. farm01 sequence from the extended Berkeley motion database. Images in the
left column indicate segmentation results by the algorithm of [6]; middle column: spec-
tral clustering followed by spectral clustering without graph completion before; right
column: proposed (graph completion followed by spectral clustering)
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The software from [6]2 was used for tracking feature points. Tracks shorter
than 8 images were discarded as the subspace distance measure is not reliable
then.

For the cars9 sequence 80% of the theoretically possible edges can be defined.
The remaining ones correspond to trajectories that do not co-occur at sufficiently
many images. For the farm01 sequence, 40% of the trajectories do not overlap
sufficiently.

Figures 5 and 6 show segmentation results on the farm01 and the cars9 se-
quence for a state-of-the-art algorithm for motion segmentation (left column)
[6], the proposed algorithm for motion segmentation without graph completion
before the spectral clustering (middle column), and the proposed algorithm with
graph completion followed by spectral clustering (right column).

Differently than the algorithm of [6], the proposed algorithm does not merge
multiple oversegmentations.

As can be seen, the proposed graph completion greatly improves segmentation
results. The wheels of the tractor in the farm01 sequence are somewhat mis-
segmented as they define a separate rigid motion in terms of the rigid subspace
measure as affinity.

7 Discussion

This article investigated the effect of undefined edge weights on spectral graph
clustering. Upper bounds on the squared distance between two clusters were de-
rived. It was possible to establish a lower bound on the second smallest eigenvalue
of the Laplacian.

A practical algorithm was proposed to infer undefined edge weights. Its per-
formance was evaluated using synthetic data. Using challenging sequences from a
standard benchmark, it was shown that the proposed method outperforms both
a state-of-the-art algorithm for motion segmentation and a spectral clustering
without the graph completion.

Up to the best knowledge of the authors, this is the first work which considers
the effect of undefined edges on the performance of spectral clustering.
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Invertible Orientation Scores: Application to
Optic Nerve Head Detection in Retinal Images
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Abstract. A new template matching scheme for the detection of ob-
jects on the basis of orientations is proposed. The matching scheme is
based on correlations in the domain R2 � S1 of complex valued invert-
ible orientation scores. In invertible orientation scores, a comprehensive
overview of how an image is decomposed into local orientations is ob-
tained. The presented approach allows for the efficient detection of ori-
entation patterns in an intuitive and direct way. Furthermore, an energy
minimization approach is proposed for the construction of suitable tem-
plates. The method is applied to optic nerve head detection in retinal
images and extensive testing is done using images from both public and
private databases. The method correctly identifies the optic nerve head
in 99.7% of 1737 images.

Keywords: template matching, multi-orientation, invertible orientation
scores, optic nerve head, optic disk, retina.

1 Introduction

We propose a new cross-correlation based template matching scheme for the de-
tection of objects on the basis of local orientations. Template matching based
on (normalized) cross correlation is a common approach to object recognition.
The use of a similarity measure based on cross correlation is intuitive, easy to
implement, and with the existence of optimization schemes for real-time pro-
cessing [1, 2] a popular method to consider in computer vision tasks. However,
the usual approach using pixel intensities as features for object recognition has
its limitations, especially in applications where line-structures play an important
role. In this case, template matching on the basis of geometrical information, e.g.
local orientations, might be more appropriate (see e.g. [3]). We therefore gen-
eralize the concept of cross-correlations on position space R2 to the joint space
R2 � S1 of positions and orientations (≡ SE(2), the Euclidean motion group).
To this end, we represent an image f : R2 → R in the form of an orientation
score Uf : R2 � S1 → C, i.e., a complex valued function on the extended do-
main R2 � S1. In an orientation score [4], we obtain a comprehensive overview

X.-C. Tai et al. (Eds.): EMMCVPR 2015, LNCS 8932, pp. 464–477, 2015.
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of how an image is decomposed into local orientations, see Fig. 1. We thus stay
in the conventional and convenient framework of template matching via cross-
correlation, however, the extension to orientation scores enables us to match
patterns of orientation distributions, rather than pixel intensities.

For the construction of suitable templates we minimize an energy functional,
where we pay attention to the following criteria:

1. The template should give a high response for inner products with positive
object patches.

2. The template should ideally be perpendicular to negative object patches,
i.e., the inner product with a negative object patch should be zero.

3. The template should be sufficiently smooth, as to prevent overfitting.

To enable 1 and 2 the energy functional contains a data-term. Here we make use
of a representative training set of image patches, in which patches of the object
of interest, as well as of objects not to be detected are included. To accommodate
point 3, a Sobolev-type regularization-term is added to the energy functional.
That is, regularization is done on the basis of gradients. In our extension to SE(2)
we make use of left-invariant gradients, i.e., a derivative frame that rotates with
the orientation of the group elements (x, θ) ∈ SE(2) in the orientation score.
Consider to this end the (∂ξ, ∂η, ∂θ)-frame in the upper right figure of Fig. 1. The
left-invariant gradients allow for (anisotropic) regularization in the direction of
oriented structures.

The proposed generic template matching framework on SE(2) is applied in the
detection of the optic nerve head (ONH) in retinal images. Automated detection
of the ONH is a challenging task and has therefore been the subject of many
previous studies [5–11]. For a recent and extensive overview of ONH detection
algorithms see [11]. Correct identification of the ONH is crucial in (automated)
retinal image analyses, as the optic nerve head is either part of the analysis itself
(classification of glaucoma [12]), or is used as a reference point in measurement
protocols [13]. On conventional fundus (CF) images the ONH appears as a bright
disk-like feature, but appears generally dark on images obtained by scanning
laser ophthalmoscopy (SLO) cameras. Conventional ONH detection algorithms
are designed for use with CF images, and are based on the analysis of pixel
intensities [5, 6]. These approaches are fast, however, the performance typically
decreases in the presence of pathologies. As an alternative, methods have been
developed that include more contextual information and consider the typical
pattern of blood vessels emerging from the optic nerve head [7–9]. These methods
generally perform better than traditional methods; however, they often follow an
elaborate processing pipeline, with high computational times as a consequence.
Recently, methods have been proposed that are both fast and accurate, see
[10, 11]. Our method is intuitive, easy to implement, fast and outperforms recent
state-of-the-art methods on publicly available benchmark databases.

In this paper, we improve our recent work [14] on ONH detection by including:
1) training of templates; 2) regularization in SE(2); and 3) a thorough investi-
gation on the combination of complementary templates. The generic template
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matching framework is especially beneficial for the detection of objects charac-
terized by orientations/line structures, as is demonstrated in our application to
optic nerve head detection in retinal images.

Structure of This Article. The remainder of this article is organized as fol-
lows: In Section 2 the reader is provided with the necessary prerequisites. The
section starts with an explanation of orientation scores (Subsection 2.1), followed
by normalized cross-correlation and the concept of cross-correlation on orienta-
tion scores (Subsection 2.2). An optimization scheme for the construction of
templates for cross-correlation based template matching is provided (Subsection
2.3). Section 3 describes our approach to optic nerve head detection in retinal
images. In Section 4 the performance of the method is reported and discussed.
General conclusions can be found in Section 5.

Image Orientation Score 

Real 

 

 

 

 

Imaginary Absolute 

Fig. 1. Top row: Exemplary image and corresponding orientation score. Bottom row:
Respectively the real part, imaginary part and modulus of a slice of the score at θ = π

4
.

2 Theory

2.1 Invertible Orientation Scores

An orientation score, constructed from image f : R2 → R, is defined as a function
Uf : R2 � S1 → C and depends on two variables (x, θ), where x = (x, y) ∈ R2

denotes position and θ ∈ [0, 2π] denotes the orientation variable. An orientation
score Uf of image f can be constructed by means of correlation with some
anisotropic wavelet ψ via

Uf (x, θ) = (Wψf)(x, θ) = (ψθ  f)(x) =

∫
R2

ψ(R−1
θ (x̃− x))f(x̃)dx̃, (1)
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where ψ ∈ L2(R2) is the correlation kernel, aligned with the x-axis, where Wψ

denotes the transformation between image f and orientation score Uf , and  de-
notes correlation. The overline denotes complex conjugation, ψθ(x) = ψ(R−1

θ x)
and Rθ is a counter clockwise rotation over angle θ. Note that x̃ ∈ R2 denotes a
location in the image domain, whereas (x, θ) denotes a location in the orienta-
tion score domain. The domain of an orientation score is essentially the classical
Euclidean motion group SE(2) of planar translations and rotations, equipped
with product g · g′ = (x, θ) · (x′, θ′) = (Rθx

′ + x, θ + θ′).
In our work we choose cake wavelets [4] for ψ. Cake wavelets are designed to

cover the entire Fourier domain, and have thereby the advantage over other ori-
ented wavelets (s.a. Gabor wavelets) that they allow for a stable inverse transfor-
mationW∗

ψ from the orientation score back to the image. As such, cake wavelets
ensure that no data-evidence is lost during the transformation.

2.2 Template Matching via Normalized Cross Correlation

Normalized Cross Correlation in R2. Let us consider a template and an
image, t, f : R2 → R. We will denote translation by x and rotation by θ of
template t using the representation (Ugt)(x̃) = t(R−1

θ (x̃ − x)) and write g =
(x, θ) ∈ SE(2). The cross correlation coefficient as a function of translation and
rotation of the template by g is then defined as follows:

ct,f (g) = (Ugt, f)L2(R2) =

∫
R2

t(R−1
θ (x̃− x))f(x̃)dx̃ = (tθ  f)(x), (2)

where (·, ·)L2(R2) denotes the L2 inner product.
In order to make the correlation measure invariant to intensity scalings, both

slots in the inner product can be normalized to zero mean and unit standard
deviation. This is known as normalized cross correlation. To be able to normalize
the image locally we make use of an additional mass function m : R2 → R+ with∫
m(x̃)dx̃ = 1, which indicates the relevant region of the template, and define

the L2(R2) inner product using probability measure m(x̃)dx̃ as follows:

(t, f)L2(R2,m dx̃) =

∫
R2

t(x̃)f(x̃)m(x̃)dx̃. (3)

The normalized cross correlation coefficient ĉt,f (g) is then defined as follows:

ĉt,f(g) = (Ug t̂, f̂g)L2(R2,Ugmdx̃), (4a)

t̂(x̃) =
t(x̃)− 〈t〉m

‖t− 〈t〉m‖L2(R2,m dx̃)
, (4b)

f̂g(x̃) =
f(x̃)− 〈f〉Ugm

‖f − 〈f〉Ugm‖L2(R2,Ugmdx̃)
, (4c)

with 〈t〉m = (1, t)L2(R2,m dx̃) the local average with respect to the area covered

by m, and with ‖·‖L2(R2,m dx̃) =
√
(·, ·)L2(R2,m dx̃).
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Since the normalized image f̂g depends on g it needs to be calculated for
every translation of the template, making this approach computationally expen-
sive. Therefore, we will instead approximate (4c) by assuming that the local
average is approximately constant in the area covered by m and that the mass
is rotation invariant (i.e., m(R−1

θ x) = m(x)). That is, assuming 〈f〉U(x,θ)m(x̃) ≈
〈f〉U(x̃,θ)m(x̃) = (m  f)(x̃) for ‖x̃− x‖L2(R2) < r, with r the radius that deter-
mines the extent of m, we approximate (4c) as follows:

f̂g(x̃) ≈
f(x̃)− (m  f)(x̃)√

(m  (f − (m  f))2)(x̃)
. (5)

Normalized Cross Correlation in SE(2). Analogue to the R2 case, for two
normalized orientation scores T̂ , Ûf ∈ L2(SE(2)) the normalized correlation is
given by

ĈT,Uf
(g) =

(
LgT̂ , Ûf

)
L2(SE(2)),LgMdxdθ

. (6)

There we take the SE(2) inner product with probability measure M(x, θ)dxdθ:(
T̂ , Ûf

)
L2(SE(2),M dxdθ)

=

∫
R2

∫ 2π

0

T̂ (x, θ)Ûf (x, θ)M(x, θ)dθdx, (7)

and the shift-twist operator (LgT )(x, θ) = T (R−1
α (x−b), θ−α). Rotations by α

followed by a translation b via Lg, with g = (b, α), of orientation scores is done

since (WψUgf)(x, θ) = (LgWψf)(x, θ). Normalized template T̂ and orientation

score Ûf are calculated in a similar fashion as described in Eq. (4b) and (5),
where one can replace all inner products (·, ·)L2(R2,m dx̃) by (·, ·)L2(SE(2),M dxdθ)

and where the correlation operator  can be replaced by its SE(2) equivalent:

(T SE(2) Uf)(x, θ) =
(
L(x,θ)T, Uf

)
L2(SE(2),M dxdθ)

. (8)

Matching of Patterns of Orientation Distributions Using |Uf |. Since
both the orientation score transform (1) and template matching schemes, (4a)
and (6), rely on a series of linear operators (correlations), it is possible to show
that both Eq. (4a) and (6) produce the same results if the orientation score
objects originate from their image equivalents. That is, there is no gain in per-
forming template matching in SE(2) if Uf = Wψf and T = Wψt, since then

argmax
g∈SE(2)

ĉt,f(g) = argmax
g∈SE(2)

ĈT,Uf
(g). However, in this work we find the ONH

location go = (xo, θo) ∈ SE(2) via

go = argmax
g∈SE(2)

(
LgT̂ , |̂Uf |

)
L2(SE(2),M dxdθ)

. (9)

Here template matching in SE(2) is done via the modulus of the orientation
scores. This adaptation makes that the appearance (encoded in the phase) of
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structures is not measured, it is rather the presence of structures that is being
detected, consider to this end the bottom row of Fig. 1. We remove the image
DC component before applying the orientation score transform. This guarantees
a low response at locally constant regions where no orientation preference is
expected. The absolute orientation score |Uf (x, θ)| can then be regarded as a
measure for finding an oriented structure at position x and orientation θ. Note
also that similar techniques for linear structure detection have been used before
by Freeman et al. using (steerable) quadrature filter pairs [15].

2.3 Template Training

We describe a framework for the construction of suitable templates via the min-
imization of an energy functional. First, the energy functionals for both the R2

and the SE(2) are described. Then, the templates will be represented in a B-
spline basis. This allows for efficient and accurate optimization of the energy
functionals. Finally, the minimizers corresponding to the energy functionals are
presented in matrix-vector notation. A simple conjugate gradient approach can
be used to solve for the B-spline coefficients.

Fig. 2. Exemplary retinal image patches used for template training

Energy Functional. For the optimization of 2D image templates t, the follow-
ing energy functional is minimized:

E(t) =

P∑
i=1

((
t, f̂i

)
L2(R2,m dx̃)

− yi

)2

︸ ︷︷ ︸
data term

+λ

∫∫
R2

‖∇t‖2L2(R2)dxdy︸ ︷︷ ︸
regularization term

, (10)

where f̂i is one of P normalized patches representing either the optic nerve head,
in which case the corresponding label yi = 1, or a negative samples, in which case
yi = 0. Patches with label yi = 1 will be referred to as positive patches, those
with label yi = 0 as negative patches. Examples of training patches are given in
Fig. 2. The data-term of the functional trains the template to give a response of
1 if the inner-product is taken with a positive patch, and to give response 0 oth-
erwise. The regularization term ensures that the template is smooth enough. I.e.,
sharp transitions in image intensities are punished using the squared gradient
magnitude ‖∇t‖2. Parameter λ balances the data- and regularization-term.
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Similar to Eq. (10), for the optimization of the orientation score template T
the following functional is minimized:

E(T ) =
P∑
i=1

((T, Ûfi)L2(SE(2),Mdxdθ) − yi)
2

︸ ︷︷ ︸
data term

+λ

∫∫∫
SE(2)

‖∇T ‖2D dxdydθ

︸ ︷︷ ︸
regularization term

, with

∫∫∫
SE(2)

‖∇T ‖D dxdydθ =

∫∫∫
SE(2)

Dξξ

∣∣∣∣∂T∂ξ
∣∣∣∣2+Dηη

∣∣∣∣∂T∂η
∣∣∣∣2+Dθθ

∣∣∣∣∂T∂θ
∣∣∣∣2 dxdydθ, (11)

and with the left-invariant gradient ∇T =
(

∂T
∂ξ ,

∂T
∂η ,

∂T
∂θ

)T

defined by

∂ξ := cos θ ∂x + sin θ ∂y, ∂η := − sin θ ∂x + cos θ ∂y, and ∂θ. (12)

Note that ∂ξ gives the spatial derivative in the direction aligned with the orien-
tation score kernel used at layer θ, recall Fig. 1. The parameters Dξξ, Dηη and
Dθθ are used to balance the regularization in the three directions. Similar to this
problem, first order Tikhonov-regularization on SE(2) is related1, via temporal
Laplace transforms, to left–invariant diffusions on the group SE(2). In which
case Dξξ, Dηη and Dθθ denote the diffusion constants in ξ, η and θ direction.
Here we set Dξξ = 1, Dηη = 0, and thereby we get Laplace transforms of hypo-
elliptic diffusion processes [16, 17]. Parameter Dθθ can be used to tune between
isotropic (large Dθθ) and anisotropic (low Dθθ) diffusion. See Fig. 3, where we
have illustrated the Green’s function of hypo-elliptic diffusion processes and the
effect of regularization parameterDθθ in the score domain. Note that anisotropic
diffusion, via a low Dθθ, is preferred as we want to maintain line structures in
orientation scores.

B–Spline Basis. In order to efficiently minimize (10) and (11), the templates
are described in a B-spline basis of direct products of n-th order B-splines Bn:

t(x, y) =

Nk∑
k=1

Nl∑
l=1

ck,l B
n

(
x

sk
− k

)
Bn

(
y

sl
− l

)
, (13a)

T (x, y, θ) =

Nk∑
k=1

Nl∑
l=1

Nm∑
m=1

ck,l,m Bn

(
x

sk
− k

)
Bn

(
y

sl
− l

)
Bn

(
θmod 2π

sm
−m

)
,

(13b)

with Bn(x) =
(
1[− 1

2 ,
1
2 ]
∗(n) 1[− 1

2 ,
1
2 ]

)
(x) a n-th order B-splines obtained by n-

fold convolution of the indicator function 1[− 1
2 ,

1
2 ]
, and ck,l and ck,l,m the coeffi-

cients belonging to the shifted B-splines for R2 respectively SE(2).

1 In which case ‖T −Uf‖2L2(SE(2)) is used for the data term instead of the one in (11).
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D =  D =  D =    

Fig. 3. The Green’s function of hypo-elliptic diffusion with Dθθ = 10−5 and an orienta-
tion score template with different regularization settings. From left to right: no regular-
ization (λ = 0), anisotropic (Dθθ = 10−5), and isotroptic regularization (Dθθ = 10−1).

The Minimizer for the R2 Case in Matrix-Vector Notation. By substi-
tution of (13a) in (10), the energy functional can be expressed in matrix-vector
notation as follows:

E(t) = ED(c) := ‖Sc− y‖2 + c†Rc. (14)

The corresponding minimizer is given by

(S†S − λR)c = S†y. (15)

Here S is a [P ×NkNl] matrix given by

S = {(si1,1, si1,2, ..., si1,Nl
, si2,1, s

i
2,2, ..., s

i
2,Nl

, ..., ..., siNk,2
, ..., siNk,Nl

)}Pi=1,

sk,l = ( Bn
sksl ∗ (m f̂i) )(k, l),

(16)

with Bn
sksl(x, y) = Bn

(
x
sk

)
Bn

(
y
sl

)
, for all (x,y) on the discrete spatial grid on

which the discrete input image fD : {1, Nx} × {1, Ny} → R is defined. Here Nk

and Nl denote the number of splines in resp. x and y direction, and sk = Nx

Nk
and

sl =
Ny

Nl
are the corresponding resolution parameters. The [NkNl × 1] column

vector c contains the B-spline coefficients, and the [P × 1] column vector y
contains the labels, stored in the following form

c = (c1,1, c1,2, ..., c1,N , c2,1, c2,2, ..., c2,N , ..., ..., cM,2, ..., cM,N )T

y = (y1, y2, ..., yP )
T .

(17)

The [NkNl ×NkNl] regularization matrix R is given by

R = Rsk
x ⊗Rsl

x +Rsk
y ⊗Rsl

y , (18)

where ⊗ denotes the Kronecker product, and with

Rsk
x (k, k′) = − 1

sk
∂2B2n+1

∂x2 , (k′ − k) Rsk
y (k, k′) = skB

2n+1(k′ − k),

Rsl
x (l, l′) = slB

2n+1(l′ − l), Rsl
y (l, l′) = − 1

sl
∂2B2n+1

∂y2 (l′ − l),
(19)

with k, k′ = 1, 2, ..., Nk and l, l′ = 1, 2, ..., Nl.
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The Minimizer for the SE(2) Case in Matrix-Vector Notation. For
the SE(2) case, the shape of the energy functional E(T ) and the corresponding
minimizer are the same as for E(t) on the R2 case, and are given by (14) and
(15). However, the definitions of S, R and c are different. In this case S is a
[P ×NkNlNm] matrix given by

S = {(si1,1,1, si1,1,2, ..., si1,1,Nm
, si1,2,1, ..., s

i
1,2,Nm

, ..., si1,Nl,Nm,...,sNk,Nl,Nm
)}Pi=1,

sk,l,m = ( Bn
skslsm ∗ (M Ûfi) )(k, l,m),

(20)

with Bn
skslsm(x, y, θ) = Bn

(
x
sk

)
Bn

(
y
sl

)
Bn

(
θ mod 2π

sm

)
, with angular resolution

parameter sm = 2π/Nm. Vector c is a [NkNlNm × 1] column vector containing
the B-spline coefficients and is stored as follows:

c = (c1,1,1, c1,1,2, ..., c1,1,Nm , c1,2,1, ..., c1,2,Nm , ..., c1,Nl,Nm , ..., cNk,Nl,Nm)T . (21)

The explicit expression of [NkNlNm×NkNlNm] matrixR is given in Appendix A.

3 Optic Nerve Head Detection

3.1 Processing Pipeline

The location of the ONH is found through the following five steps:

1. The input image f is (locally) normalized via the Luminosity-Contrast nor-
malization method described by Foracchia et al. [18], giving flcn.

2. To further reduce sensitivity to high intensity structures, we apply the fol-

lowing intensity mapping ferf
lcn = erf(8 flcn), with erf(i) = 2√

π

∫ i

0
e−x2

dx the

error function. The effect is a soft binarization of the image, by which more
emphasis is put on contextual information rather then intensity information.

3. In case of a 2D template t, f̂erf
lcn is approximated by (5). In case of an orienta-

tion score template T , the score Uferf
lcn

is calculated via (1), and is normalized

after taking the modulus giving |̂U |ferf
lcn

.

4. An ONH probability map P t(g) = ĉt,f (g) is calculated via (4a), or PT (g) =

ĈT,Uf
(g) is calculated via (6) in case of an orientation score template.

5. An ONH probability map constructed using template τ (with τ = t or τ = T )
is denoted by P τ . In case multiple templates are used, each probability map
P τ is rescaled to a range of [0, 1]. The final optic nerve head location is then

calculated as go = argmax
g∈SE(2)

( ∑
τ∈T

P τ (g)

)
, with T the set of templates used.

Since the ONH generally appears under the same orientation in every image, we
restrict our search for the ONH location go = (xo, θo) to translations xo only,
and assume θo = 0. To reduce computation time the image is rescaled by a factor
of

rtarget

rest
, with rtarget = 20 pixels and rest the estimated optic disk radius. For

normalization in step 1 we used a window size of 1
2rtarget, for the orientation

score transforms we used cake wavelets [4] with angular resolution sθ = π
12 . For

normalization we have used isotropic mass functionsM(x, θ) = m(x), for details
see [14, Section 2.4].
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3.2 Templates

In our experiments we have considered three different types of templates: model
templates, average templates and trained templates. In total we will be inves-
tigating 6 different templates, labeled A-F, see Table. 1. Template A is a disk
filter and models the shape of the optic disk, and has been used for ONH detec-
tion in [8]. Template B is a template that models the pattern of blood vessels
radiating outwards from the ONH. This template is described in our previous
work [14]. Templates C and D are average templates, and are respectively found

by tC = 1
P

∑P
i=1 fi and TD = 1

P

∑P
i=1 |Ufi |, with {f1, ..., fP } the set of positive

ONH image patches, and {Uf1 , ..., UfP } the set of orientation scores hereof.
Templates E-F are trained using the the methods described in Subsection 2.3.

The number of B-splines was set to Nk = Nl = 50 and Nm = 12. Template
E is constructed in the R2 domain with regularization parameter λ = 10−1.5.
The orientation score template F is constructed using regularization parameters
λ = 10 and Dθθ = 10−3.5.

Templates C-F require a training set. The set is constructed using
the first P = 100 images of the publicly available MESSIDOR database
(http://messidor.crihan.fr/index-en.php). Each positive optic nerve head
patch fi (with label yi = 1) is centered at the ONH and has a square window
size of 8 rtarget. The negative patches were selected based on the critical areas
for template C. Each negative patch fi (with label yi = 0) is centered around
the largest local maximum of the image filtered with template C, and which
does not lie within the circumference of the optic disk. See Fig. 2 for examples
of positive and negative patches. The images used in the training underwent the
same first three processing steps as described in Subsection 3.1. For processing
of conventional (RGB) fundus images we used the green channel. For SLO im-
ages we used the near-infrared color channel of the first P = 100 images of our
private SLO image database, which will be described in the next section.

4 Results and Discussion

Data. For validation, we made use of a private database consisting of 208
SLO images taken with an EasyScan (i-Optics B.V., the Netherlands) and 208
CF images taken with a Topcon NW200 (Topcon Corp., Japan). For full de-
tails see [14]. The two sets of images are labeled as ”ES” and ”TC” respec-
tively. Our method is also tested on three widely used public databases: MES-
SIDOR, DRIVE (http://www.isi.uu.nl/Research/Databases/DRIVE) and
STARE (http://www.ces.clemson.edu/~ahoover/stare), consisting of 1200,
40 and 81 images respectively. For each image, the detected ONH position was
marked as correct if it was located within the circumference of the actual ONH.
To this end we used the annotations kindly provided by the authors of [6]
(http://www.uhu.es/retinopathy), and manually outlined the ONH border
for the other databases.

http://messidor.crihan.fr/index-en.php
http://www.isi.uu.nl/Research/Databases/DRIVE
http://www.ces.clemson.edu/~ahoover/stare
http://www.uhu.es/retinopathy
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Table 1. Results of (combinations) of templates for optic nerve head detection (number
of fails in parentheses)

Template ES (SLO) TC MESSIDOR DRIVE STARE All Images
ID Domain 208 208 1200 40 81 1737

model templates
A R2 65.38% (72) 95.19% (10) 82.00% (216) 87.50% (5) 53.09% (38) 80.37% (341)
B SE(2) 62.50% (78) 77.40% (47) 86.67% (160) 67.50% (13) 65.43% (28) 81.23% (326)

average templates
C R2 99.52% (1) 99.04% (2) 98.00% (24) 95.00% (2) 67.90% (26) 96.83% (55)
D SE(2) 99.52% (1) 100.0% (0) 99.50% (6) 97.50% (1) 93.83% (5) 99.25% (13)

trained templates
E R2 92.79% (15) 98.56% (3) 94.58% (65) 92.50% (3) 50.62% (40) 92.75% (126)
F SE(2) 100.0% (0) 98.56% (3) 99.67% (4) 100.00% (0) 90.12% (8) 99.14% (15)

combinations of two templates
D + F 100.0% (0) 100.0% (0) 99.75% (3) 100.0% (0) 97.53% (2) 99.71% (5)
C + D 100.0% (0) 100.0% (0) 99.58% (5) 100.0% (0) 85.19% (12) 99.02% (17)
C + F 100.0% (0) 100.0% (0) 99.58% (5) 100.0% (0) 85.19% (12) 99.02% (17)
E + F 100.0% (0) 100.0% (0) 99.50% (6) 100.0% (0) 83.95% (13) 98.91% (19)
E + D 100.0% (0) 100.0% (0) 99.42% (7) 100.0% (0) 81.48% (15) 98.73% (22)

...

Results and Discussion. Results of our ONH detection framework are given
in Table 1. The results for single template methods are categorized in three
categories: model templates, average templates and trained templates. For com-
binations of two templates only the best five combinations are shown.

Firstly, we observe that templates acting in the domain SE(2) of an orienta-
tion score considerably outperform their 2D equivalents. The orientation score
templates put more emphasis on the pattern of blood vessels, rather than in-
tensity features, and are therefore more robust against bright lesions and other
pathologies. The advantage of our extension to SE(2) is best observed on the
challenging STARE database, which contains a wide variety of severely patho-
logical images.

Secondly, from Table 1 we see that average as well as trained templates outper-
form basic model templates, with the average templates slightly outperforming
the trained templates. While the two best templates D and F individually give
excellent performances, an even higher performance can be achieved in combin-
ing templates. With an accuracy of 99.71%, only 5 fails out of 1737 images, this
combination D+F outperforms all other combinations of the templates used in
this paper. Here we stress the crucial role of our proposed template optimization
scheme that provides additional means for the construction of complementary
templates; with single templates alone such high accuracy could not have been
achieved. Exemplary results of matching with templates D and F are shown in
in Fig. 4.

Thirdly, we note that when combining templates it is favorable to stay within
the SE(2) framework. From the results we see that detection with R2-type tem-
plates is improved by combination with SE(2)-type templates. However, with
respect to the use of single SE(2)-type templates, these combinations are not
favorable (compare e.g. the result of C, D and C+D). In future work we will
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Fig. 4. A selection of successful ONH detections in challenging images

therefore put more focus on the design of complementary SE(2)-type templates.
As such, we will investigate the ability of regularization parameter Dθθ to tune
the template to anisotroptic or isotroptic structures (see Fig. 3) as a means to
construct different/complementary SE(2) templates.

Finally, in Table 2 we compare our method to the state of the art on ONH
detection (for full comparison to literature see [11, 14, and references therin].
Although our correlation-based method is rather basic in nature, it competes
well with the state of the art. Only the method by Lu slightly outperforms our
method by ones less false detection on the STARE database. Furthermore, as
our detection framework merely relies on a sequence of correlations the method
is highly parallelizable for speed optimization. Our current implementation (in
Python) of the entire processing pipeline, including preprocessing (see Subsec-
tion 3.1), takes on average 1.1s per image.

Table 2. Comparison to state of the art: Optic nerve head detection results (number
of fails in parentheses). The most recent five methods were selected for comparison.
For a full comparison to literature see [11].

Database Size Proposed Ramakanth Yu Lu Lu. [9] Mahfouz
et al. [11] et al. [8] et al. [7] et al. [10]

DRIVE 40 100.0% (0) 100.0% (0) - 97.5% (1) - 100.0% (0)
STARE 81 97.53% (2) 93.83% (5) - 96.3% (3) 98.77% (1) 92.59% (6)
MESSIDOR 1200 99.75% (3) 99.42% (7) 99.0% (12) - 99.75% (3) -

Av. time (s) 1.1 0.21 4.7 40 5 0.65

5 Conclusion

In this paper we have extended the concept of object detection via (normalized)
cross correlation in the image domain R2, to the domain R2 � S1 of orientation
scores. The extension allows for the efficient detection of orientation patterns,
while staying in the intuitive and efficient framework of template matching via
cross correlation. Furthermore we have presented a method for the construction
of templates to be used in this matching framework. The method was tested in
the application to optic nerve head detection in retinal images. Here we achieved
a success rate of 99.71% on a set of 1737 images, with an average processing
time of 1.1s per image. The method is generically applicable, and is especially
beneficial for the detection of objects characterized by orientated/line structures.
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A Explicit Expression of the Regularization Matrix

Matrix R for regularization of templates in SE(2), see Section 2.3, is given by

R = D11Rξ +D22Rη +D33Rθ, (22)

with regularization matrix

Rξ =
(
RIsk

ξ ⊗RIsl
ξ ⊗RIsm

ξ

)
+

(
RIIsk

ξ ⊗RIIsl
ξ ⊗RIIsm

ξ

)
+

(
RIIIsk

ξ ⊗RIIIsl
ξ ⊗ RIIIsm

ξ

)
+

(
RIV sk

ξ ⊗RIV sl
ξ ⊗RIV sm

ξ

)
(23)

of which the elements of the matrices are given by

RIsk
ξ (k, k′) = − 1

sk
∂2B2n+1

∂u2 (k′ − k), RIsl
ξ (l, l′) = slB

2n+1(l′ − l),

RIsm
ξ (m,m′) =

π∫
0

cos2(θ)Bn( θ
sm
−m)Bn( θ

sm
−m′)dθ,

RIIsk
ξ (k, k′) = −RIIIsk

ξ (k, k′) = ∂B2n+1

∂u (k′ − k),

RIIsl
ξ (l, l′) = −RIIIsl

ξ (l, l′) = −∂B2n+1

∂v (l′ − l),

RIIsm
ξ (m,m′) = RIIIsm

ξ (m,m′) =
π∫
0

cos(θ) sin(θ)Bn( θ
sm
−m)Bn( θ

sm
−m′)dθ,

RIV sk
ξ (k, k′) = skB

2n+1(k′ − k), RIV sl
ξ (l, l′) = − 1

sl
∂2B2n+1

∂v2 (l′ − l),

RIV sm
ξ (m,m′) =

π∫
0

sin2(θ)Bn( θ
sm
−m)Bn( θ

sm
−m′)dθ,

(24)
with regularization matrix

Rη =
(
RIIsk

ξ ⊗RIIsl
ξ ⊗RIV sm

ξ

)
−

(
RIIsk

ξ ⊗RIIsl
ξ ⊗RIIsm

ξ

)
−

(
RIIIsk

ξ ⊗RIIIsl
ξ ⊗RIIIsm

ξ

)
+

(
RIV sk

ξ ⊗RIV sl
ξ ⊗RIsm

ξ

)
, (25)

and with regularization matrix

Rθ = (Rsk
θ ⊗Rsl

θ ⊗Rsm
θ ) , (26)

of which the elements of the matrices are given by

Rsk
θ (k, k′) = skB

2n+1(k′ − k) ,

Rsl
θ (l, l′) = slB

2n+1(l′ − l) , Rsm
θ (m,m′) = − 1

sm
∂2B2n+1

∂w2 (m′ −m).
(27)

Note that the four separate terms I−IV of Eq. (23) arise from the left invariant

derivative ∂ξ:
∣∣∣∂T∂ξ

∣∣∣2 =
∣∣∣cos(θ)∂T∂x

+ sin(θ)∂T∂y

∣∣∣2.
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Abstract. The first stage in computer aided pulmonary nodule detec-
tion schemes is a candidate detection step designed to provide a sim-
plified representation of the lung anatomy, such that features like the
lung wall, and large airways are removed leaving only data which has
greater potential to be a nodule. Nodules which are connected to blood
vessels tend to be characterized by irregular geometrical features which
can result in their remaining undetected by rule-based classifiers relying
only local image metrics. In the current paper a novel approach for lung
nodule candidate detection is proposed based on the application of global
segmentation methods combined with mean curvature minimization and
simple rule-based filtering. Experimental results indicate that the pro-
posed method can accurately detect nodules displaying a diverse range
of geometrical features.

1 Introduction

Every year, deaths due to lung cancer outnumber those related to other types
of cancers around the world [1]. The most important indicator of the disease
is the presence of pulmonary lung nodules [2,3], the early detection of which is
essential to increase the chances of successful treatment [4].

The most popular modality for imaging the thorax is Computed Tomography
(CT) [2]. Currently the most common method for quantifying lesion development
using CT is through manual detection and measurement of the nodule diameter.
In addition to being error-prone and subjective [5], this technique is limiting
because a 1-D measure is used to describe a 3-D non-symmetric, non- spherical
object. At the same time, manually characterizing the tumor using all of the 3-D
data available would be extremely time-consuming [6].

Numerous studies have shown that computer aided detection (CAD) systems
can effectively assist radiologists in detecting lung nodules [7,8,9,10,11,12]. In
studies by Martin et al. [13] and Lee et al. [14] it was shown that the sensitivity

X.-C. Tai et al. (Eds.): EMMCVPR 2015, LNCS 8932, pp. 478–491, 2015.
c© Springer International Publishing Switzerland 2015
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of CAD systems for detecting small, isolated nodules was greater than achieved
by a radiologist, but sensitivity was lower than that of a radiologist for nodules
with vascular attachment.

In [15] a nodule detection scheme is presented in which the first step is lung
segmentation. This is achieved by thresholding the lung volume on a frame-
by-frame basis. Noting that the volume histogram displays 2 prominent peaks,
corresponding respectively to pixels inside the lungs and to pixels representing
soft tissue and bone, for each frame, the authors in [15] select as a threshold
the broad minimum existing between these peaks. The next step is a corrective
stage which has the purpose of excluding structures such as airways and includ-
ing juxta-pleura nodules (i.e. lung wall-connected) excluded by the thresholding
step. To re-include juxta-pleura nodules they apply morphological opening and
to exclude the airways, they apply a 2-D region growing technique. This is fol-
lowed by a region-labeling technique designed to group contiguous structures in
three dimensions. Finally, to obtain the candidacy mask the authors apply a
volume threshold to these contiguous structures.

In Tan et al. [16] the first step is lung segmentation, performed using a similar
technique as proposed in [15]. In the next step the authors compute the diver-
gence of normalised gradient (DNG) of the volume to estimate the center of
nodules, they then use this in combination with nodule and vessel enhancement
filters proposed in [17,18] to detect nodule candidates. To obtain the nodule
candidacy mask, the authors apply a different thresholding/filtering combina-
tion to each nodule type; i.e. isolated, juxtavascular (or vessel-connected), and
juxtapleural nodules. For example for isolated nodules they apply a threshold of
-600 Hounsfields Units (a quantitative scale for describing radiodensity) to the
output of the lung segmentation, they then apply the nodule enhancement filter
to this result. Subsequently another (gray level) threshold of 6 is applied to this
nodule enhanced image. The output of this system is then combined with the
result of the DNG method. Finally to this result, another volume threshold of
9 voxels is applied. The outputs of this last step are taken to be the isolated
nodule candidates. The steps to extract both juxtavascular and juxtapleural
nodules are similar to those outlined above and similarly involve a specific set
of threshold parameters. The result of the procedure described above is multi-
ple thresholded volumes consisting of nodule clusters corresponding to isolated,
juxtavascular, and juxtapleural nodules. A logical OR-ing operation is then car-
ried out to consolidate the results in one volume. In [19], the detection scheme
starts with the generation of a lung mask in a scheme similar to that proposed
in [15]. The authors then apply multi-level thresholding [15] to the remainder
of the volume to produce multiple 3-D lung nodule candidate masks. To re-
move vessels, they apply a morphological opening operation with specific radius
to each mask, which is followed by another rule based filter (with sphericity
and area criteria) to remove false positives. The final nodule mask is generated
by logically OR-ing these intermediate masks. The thresholds as well as the
radii of the structuring elements are determined empirically. In [20] the authors
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apply a 2-D filter to each axial slice image to highlight structures similar to
discs or half-discs. To reduce the false positives, six 3-D features based on size,
compactness, sphericity and gradient-intensity, are calculated for each candidate.
The authors use a support vector machine (SVM) to classify the data.

In consecutive CT slices, blood vessels often appear as circular objects closely
resembling nodules. Using this fact, the authors in [21] proposed a scheme to
generate multiple 2-D images based on different spherical viewpoints of each
3-D nodule candidate. The authors show that these different viewpoints allow
the noncircular linear structure of components corresponding to vessels to be
more easily identified. The authors then combined features generated from these
images with 3-D features such as diameter and compactness [22]. They then
employ a linear classifier [22,23] to classify the results.

Murphy et al. [24] proposed a detection scheme which uses shape index and
curvedness to detect nodule candidates. Using these features the authors fil-
tered the datasets to produce seed points in areas of high filter response and
expanded these points using hysteresis thresholding to produce region clusters.
To reduce false positives, they applied two consecutive classification steps us-
ing k-Nearest-Neighbour. In analysing the results according to nodule size, the
authors reported that for nodules with a diameter greater than 8.6mm, the sen-
sitivity rate was under 45%. These findings highlight the difficulty in detecting
nodules characterized by irregular shapes by means of local image features alone,
a fact which the authors themselves acknowledged.

The purpose of this paper is to present an algorithm for the detection of the
lung lobe interior with particular emphasis on detecting nodules with vascular
attachment. The output of the algorithm is a set of regions that can be analyzed
further either manually or with an advanced classifier to determine whether they
represent a true nodule. As can be observed in the previous review, several of
the proposed schemes make use of a combination of multi-thresholding methods
and as well as spherical shape filters to isolate nodules [15,19,21,16], however
as noted in [25], when nodules are connected to other high density structures,
separating them with intensity thresholds alone is in most cases, impossible. In
the same way, incorporating spherical constraints early into a detection scheme
can be limiting especially in the case of nodules which exhibit a high degree of
vascular attachment and which therefore represent quite a complex geometry. In
this paper, we make use of more sophisticated variational models [26] and a re-
cently developed efficient convex optimization algorithm for obtaining solutions
numerically. The entire algorithm consists of several successive steps that are
described in detail below.

2 Methodology

A challenge for obtaining a good segmentation is that many objects inside the
lung have very similar intensity distributions to the nodule, in particular blood
vessels and the chest wall. This makes it difficult to separate the intensity profile
of the nodule from other tissue classes using a multiregion segmentation frame-
work. We develop an algorithm where a two region segmentation model is first
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used to capture the nodules, chest wall and other objects of similar intensity in
a foreground region, and the air and remaining objects in a background region.
The remaining parts of the algorithm attempt to separate the potential nodules
from the rest of the tissue that were captured in the foreground region. This
concerns mainly the chest wall and surrounding blood vessels, which is handled
in two separate steps.

2.1 Computation of a Global 2-Phase Segmentation Output

The first step of our method aims to extract the chest wall, nodules, blood
vessels and other tissue of similar intensity values into one region using the
active contour model with two regions [26]:

min
S,c1,c2

∫
Ω\S

|I(x)− c1|2 dx+

∫
S

|I(x) − c2|2 dx+ ν |∂S| . (1)

In recent work, efficient algorithms have been proposed for computing global
minimizers to this model. In [27] it was shown that (1) can be exactly minimized
via the convex problem

min
φ(x)∈[0,1]

∫
Ω

|I(x) − c1|2φ(x) + |I(x) − c2|2(1− φ(x))dx + ν

∫
Ω

|∇φ(x)|dx . (2)

It was shown that if φ∗ is a minimizer of (2) and t ∈ (0, 1] is any threshold
level, the partition S = {x ∈ Ω : φ(x) ≥ t}, Ω\S = {x ∈ Ω : φ(x) < t} is a
global minimizer to the model (1). The binary function

φt(x) :=

{
1 , φ(x) ≥ t
0 , φ(x) < t

, (3)

is the characteristic function of the region S.
We make use of an efficient augmented Lagrangian algorithm for solving a

dual formulation of (1) proposed in [28,29], which could be interpreted as a
maximum flow problem. By introducing a Lagrange multiplier for the flow con-
servation constraint, the following augmented Lagrangian primal-dual problem
was obtained

sup
φ

inf
ps,pt,p

∫
Ω

ps dx+

∫
Ω

φ
(
div p− ps + pt

)
dx− c

2
‖div p− ps + pt‖2 (4)

such that

|p(x)|2 ≤ ν, ∀x ∈ Ω; ps(x) ≤ |I(x) − c1|2, pt(x) ≤ |I(x) − c2|2, ∀x ∈ Ω
(5)

where ps, pt : Ω -→ R and p : Ω -→ RN and N is the dimension of Ω.
By applying the augmented Lagrangian method, the following algorithm was
derived for solving (2)
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- pk+1
s := arg max

ps(x)≤|I(x)−c1|2 ∀x∈Ω

(∫
Ω

ps dx−
c

2

∥∥ps − pt
k − div pk + φk/c

∥∥2 )
which can easily be computed pointwise in closed form.

- pk+1 := arg max
‖p‖∞≤ν

− c
2

∥∥div p− ps
k+1 + pt

k − φk/c
∥∥2 ,

where ‖p‖∞ = supx∈Ω |p(x)|2. This problem can either be solved iteratively
or approximately in one step via a simple linearization [29]. In our imple-
mentation we used the linearization.

- pk+1
t := arg max

pt(x)≤|I(x)−c2|2 ∀x∈Ω

− c

2

∥∥pt − ps
k+1 + div pk+1 − φk/c

∥∥2
This problem can also easily be computed in closed form pointwise.

- φk+1 = φk − c (div pk+1 − pk+1
s + pk+1

t ) ;

- Set k = k + 1 and repeat.

The output φ at convergence will be a solution to (2) and one can obtain a
partition which solves (1) by the thresholding procedure described in the previous
section. More details can be found in [29].

In simple cases, the two region segmentation algorithm may separate out the
nodule as a single connected component. In more difficult scenarios, the nodule
region may be connected to either the chest wall or surrounding blood vessels.

2.2 Lung Wall Removal Process

The 3-D global segmentation described above essentially segments the volume
into 2 classes: tissue and air. The next step is to separate the lung wall from
the structures that are interior to the lung. This is done using a combination of
connected component labeling as well as morphological opening.

First a connected component labeling operation is used to identify the largest
component in the volume. This step identifies the lung wall together with addi-
tional structures connected via vessels to the lung wall. A correction step which
consists of a morphological opening operation [30] is used to remove these ad-
ditional structures. The result of the morphological opening operation, which
corresponds to the lung wall is then subtracted from the 3-D segmentation re-
sult leaving just structures in the interior lung lobe.

2.3 Nodule Separation Scheme

We address the issue of separating the nodules from surrounding tissue by
applying mean curvature minimization using the method of Merriman-Bence-
Osher (MBO) [31] to the output of the segmentation scheme. The effect of this
scheme is to ‘simplify’ the underlying structures of the nodule candidates (or ves-
sels); essentially, through the diffusion process, a spiculated mass will become
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smoother/more spherical, while structures connected to each other by (rela-
tively) thin connections will be separated.

Let φ0 denote the binary function indicating the segmentation result after
removal of the lung wall. The MBO algorithm applied to φ0 is a discrete time
approximation of mean curvature motion and can be described as follows:

For k = 1, 2, ...,K

ψ = Gσ ∗ φk (6)

φk+1(x) =

{
1 , if ψ(x) ≥ 0.5
0 , if ψ(x) < 0.5

. (7)

Step (6) above is time step of the heat equation, which is equivalent to convo-
lution with the Gaussian kernel Gσ, and can be solved efficiently by the fast
Fourier transform (FFT). After each MBO iteration, a rule based classifier is
applied to each connected component of the result, to check if the component
is a nodule candidate. The rule based classifier is described in the next section.
The number of iterations K is set in advance to prevent too much smoothing.

2.4 Rule Based Classifier

The effect of the MBO step is to make a spiculated mass smoother and more
spherical in shape, which allows structures to be identified as potential nodules
using simple geometric features. The final step in determining nodule candi-
dacy is the application of a simple rule-based classifier, in which candidacy is
determined by the following features: area, volume, circularity, elongation.

The following definitions are used for each feature: assuming that the nodules
are spherical, the area and volume of the nodule candidates can be computed
using the standard formulae: Area = πr2; Volume = 3/4πr3.
Elongation is defined simply as the ratio of the largest dimension in the x,y or
z direction over the minimum dimension in any direction i.e.

Elongation =
max([xLength, yLength, zLength])

min([xLength, yLength, zLength])

Circularity is defined as:

Circularity =
4πArea

Perimeter2

In the above equation, ‘Area’ and ‘Perimeter’ are calculated using the me-
dian slice of the connected component. The respective maximum and minimum
thresholds for each feature are listed in section 3. This step closely follows the
method proposed by Choi et al. in [32] and further details can be found therein.

2.5 Summary of the Complete Algorithm

In summary, the proposed nodule candidacy detection scheme comprises the fol-
lowing steps; first a global 2 phase segmentation is performed, which segments
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the volume into 2 classes: tissue and air. The next step is to further segment
the tissue into lung wall and interior lobe data; this is done using morphological
techniques. The main part of the proposed scheme is the use of mean curvature
smoothing to isolate vascular connected nodules. The detection step is carried
out by applying the rule-based classifier once before the MBO smoothing and
subsequently on each connected component after each MBO iteration. The final
lung nodule candidacy mask is obtained by logically OR-ing all of the interme-
diate detection results. The entire algorithm is outlined below.

Input: 3D CT lung image

1. Obtain two region segmentation by global minimization of (2).
2. Remove lung wall from the segmentation result as described in section 2.2

and let φ0 denote indicator function of the remaining region.
3. Apply rule based classifier to each remaining connected component as in

section 2.4
– Store positive connected components as potential nodule candidates

4. For iterations k=1,...,K:
– Apply one step of MBO scheme (6), (7) to obtain φk.
– Apply rule based classifier on each component of φk. If positive: store

connected component as potential nodule candidate and for all points x
inside connected component and set indicator function φk(x) = 0.

Output: Set of nodule candidates, represented by a binary function.

Fig. 1. Examples of nodules included in the test subset. The majority of the nodules in
the test set exhibit some degree of attachment to surrounding vascular tissue; isolated
nodules were also included (as can be observed in the rightmost column).
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3 Experiments

A test set of 16 datasets were selected from the lung image consortium (LIDC)
database [33,34] which consisted of both nodules exhibiting vascular attachment
as well as isolated nodules. Our standard of reference were the expert annotations
provided with this database. The test set includes a total of 27 nodules.

Figure 1 shows examples of nodules in the test subset. Figure 2 highlights
the normal operation of the rule based classifier. It can be observed in figure
2(b) that the nodule in question is isolated from other structures in the lung
after application of the first segmentation step and the filter easily selects the
nodule. The results of the algorithm are demonstrated in figure 3, which displays
6 sample slices from the test set. Compared with the data set in figure 2(a),
each nodule in figure 3 exhibits connectivity with surrounding tissue. The first
segmentation step is unable to sufficiently separate the nodules from surrounding
tissue in these cases due to their similar intensity profiles. Application of the
MBO scheme has the effect of either removing fine structures attached to the
nodule, such as fine blood vessels, or splitting the regions into two or more
geometrically simpler components, one of which encompasses the nodule region.

(a) (b) (c) (d)

Fig. 2. Example of normal operation of rule-based classifer: (a) Annotated Data indi-
cating nodule (b) Initial Segmentation Results + lung wall removal (c) Corresponding
Detection Results (d) Corresponding Detection Results with annotation

In figures 4 and 5, two examples of nodules are shown which in 4(a) and 5(a)
appear to be isolated. Using only steps 1-3 of the algorithm results in the nodules
remaining undetected because, as adjacent slices reveal, there is some degree of
vascular attachment. The nodules are detected (Figures 4(e) and 5(e)) when the
MBO scheme (step 4) is used as part of the detection scheme.

Figure 6 shows a case where the detection scheme fails to detect a nodule. In
this case, the degree of connectivity between the nodule and surrounding struc-
tures was too extensive for the proposed method to work. Figure 6(c) shows the
connected structure of which the nodule forms a part. Ongoing work is focused
on a more complex algorithm for removing the lung wall taking into account prior
geometrical knowledge about the shape, such that potential nodules attached to
the lung wall gets disconnected.
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R1

R2

R3

R4

R5

R6
C1 C2 C3 C4 C5

Fig. 3. Results achieved by the method on 6 sample frames (Rows R1 R6). Each row
shows an example of a nodule with vasular attachment. C1: The original data with
expert annotation. C2: 2 phase global segmentation result C3: Results of the rule-
based detection method C4: Detection results post MBO processing C5: Detection
results with superimposed expert annotation.
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Example of a nodule which is processed using only the rule-based classifier
(i.e. using only steps 1-3 of the algorithm)(a) Original Annotated dataset (b) slice 71
of dataset: nodule looks well delineated from surrounding structures but is actually
part of a large connected component (c) the connected component which contains the
nodule (d) an adjacent slice (e) Step 4: Detection with MBO (f) Annotation overlayed
on result

(a) (b) (c)

(d) (e) (f)

Fig. 5. Second example of a nodule which is processed using only the rule-based clas-
sifier (i.e. using only steps 1-3 of the algorithm) (a) Original Annotated dataset (b)
nodule looks well isolated from surrounding structures but is actually part of a large
connected component (c) connected component which includes the nodule (d) an ad-
jacent slice (e) Step 4: Detection with MBO (f) Annotation overlayed on result
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(a) (b) (c) (d)

Fig. 6. Example of a case where MBO-detection scheme fails (a) Original Annotated
dataset (b) 2-phase segmentation (c) Connected component (d) Detection with MBO
- failure

The following empirically derived parameter values were used in the experi-
ments: the length parameter, ν was set to 1e-12 , for the 3-D global segmentation.
The initial estimates for the mean value of both regions, c1 and c2, were set to
0.3 and 0.6 respectively. The morphological opening operation used to remove
the lung wall was carried out using a spherical kernel of radius 13. With respect
to the MBO scheme, with the exception of 1 dataset, σ for the Gaussian kernal
was set to 1, while the maximum number of iterations used was 20. For one
dataset, sigma was reduced to 0.7, with the number iterations remaining at 20.
The thresholds used for the rule based classifier were the following: maximum
diameter, T d

max, was set to 30, minimum diameter T d
min was set to 3, correspond-

ingly the maximum area threshold was (T d
max/2)

2π , minimum area threshold
was (T d

max/2)
2π, maximum volume threshold was set to 3(T d

max/2)
3π/4, min-

imum threshold was set to 3(T d
min/2)

3π/4, maximum elongation was set to 4,
while minimum circularity was set to 1

6 .
Minimum and maximum diameter thresholds for the rule-based classifier were

chosen based on data in the LIDC dataset, where 97% of the nodules recorded
have a diameter in the 3-30mm range (with 86% in the 3-12mm range and
a further 11% in the 12-30mm range). With respect to the test set used in
these experiments, 80% of the nodules were in the 3-12mm diameter range, with
the remaining 20% in the 12-30mm range. The greater representation of larger
nodules in our test set was a design decision taken in response to the previously
discussed findings in [24], in which it was reported that larger nodules tended to
be characterized by irregular shapes and thus were harder to detect.

As described, the MBO parameters were changed for one dataset. This dataset
presented a nodule with a diameter of 6mm that also exhibited a connection
with neighboring blood vessels. For this nodule, a sigma value of 1 represented
an over-smoothing and consequent detection failure, while a sigma value of 0.7
resulted in accurate detection. To make the system more robust with respect to
parameter choice a smaller sigma value can be used and the number of iterations
increased.
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The experiments show that the algorithm successfully detected all but one of
the nodules present (see figure 6). This resulted in an average detection rate of
96%, while an average of 16 false positives were detected per scan. Without the
MBO smoothing step the detection rate was 44%.

4 Conclusion

Several studies [24,14,13] have highlighted the difficulty in detecting larger nod-
ules in lung images, which tend to be characterized by greater shape diversity.
In the current paper an algorithm was described for handling this task using
variational and PDE based methods. The algorithm was tested on 16 datasets
containing 27 nodules with various degrees of attachment to surrounding tissue.
A 96% detection rate was obtained. These initial results show that the proposed
method has the potential to be an effective module in an automated detection
pipeline.

Future work is focused on a more complex algorithm for separating the most
difficult nodules from the lung wall to improve the detection rate further, and a
finer segmentation step applied in the end, using the detected nodule candidates
as location prior information.
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Abstract. We introduce a novel algorithm for hierarchical clustering on
planar graphs we call “Hierarchical Greedy Planar Correlation Cluster-
ing” (HGPCC). We formulate hierarchical image segmentation as an ul-
trametric rounding problem on a superpixel graph where there are edges
between superpixels that are adjacent in the image. We apply coordi-
nate descent optimization where updates are based on planar correlation
clustering. Planar correlation clustering is NP hard but the efficient Pla-
narCC solver allows for efficient and accurate approximate inference. We
demonstrate HGPCC on problems in segmenting images of cells.

1 Introduction

We approach the problem of image segmentation in the framework of hierarchical
segmentation where the goal is to group the pixels into a hierarchical structure
where contiguous groups of pixels are divided and further subdivided. At the
coarsest level of the hierarchy, all pixels are in the same region. At the finest
level of the hierarchy each pixel is its own region. Each boundary that is present
at a given level of the hierarchy is present in each finer level of the hierarchy.

Hierarchical segmentation can be understood as assigning confidence to var-
ious boundaries where boundaries present in coarser levels of the hierarchy are
estimated to be more reliable. Hierarchical segmentation has been done primarily
using agglomerative clustering, with the Ultrametric Contour Maps Algorithm
being the state of the art (Arbelaez et al., 2011). Here we frame hierarchical
segmentation as an ultrametric rounding problem (Ailon and Charikar, 2005;
Yarkony, 2012).

Model the data to be clustered as the nodes of a graph where each pair of
nodes is connected with an edge e that is associated with a real valued weightXe.
For any real value α let Y α

e := [Xe ≥ α] where [ ] is the indicator function. Now
consider the unweighted graph Gα with edges connecting nodes only if Y α

e = 0.
If X is an ultrametric then for all α and e, Y α

e = 0 if and only if the pair of

X.-C. Tai et al. (Eds.): EMMCVPR 2015, LNCS 8932, pp. 492–504, 2015.
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nodes connected by e are in the same component of Gα. Ultrametrics define a
natural model of hierarchical grouping where the threshold α specifies the level
of the hierarchy. If α is large then Gα has few regions while if α is small it has
many regions. Edges present in Gα are present in Gα+v for all v > 0.

Given an initial graph and set of (sparse) edges where each edge e is associated
with a real valued target Te, the objective of ultrametric rounding is to assign a
new set of values {Xe} to the edges which satisfies the property of being an ultra-
metric and is minimally distorted from the targets (either in an L1 or L2 sense).
In our application nodes correspond to superpixels and edges indicate adjacency.
Superpixels (Ren and Malik, 2003) are small compact groups of pixels which can
be produced by various approaches. Superpixels are the most elementary unit
in our hierarchical segmentation approach. We connect neighboring superpixels
with an edge and associated score Te that defines how strong the image bound-
ary is locally between the two superpixels. Large Te are associated with stronger
visual indications of an edge between the superpixels connected by edge e. The
goal of finding the closest ultrametric X to T can thus be interpreted as finding
a hierarchical segmentation which is consistent with the local evidence encoded
in T . Edges only connect nodes whose corresponding superpixels are immedi-
ately adjacent in the image. Thus our graph is planar which allows for many
computational advantages which is the focus of this paper.

We focus on the application of segmenting cells in biological images. Cell
segmentation is one of the prerequisite tasks in answering many biological ques-
tions related to both basic understanding of cell function and interpretation
of pathological states. Recent emerging research efforts in diverse cell lines and
microscopic imaging techniques require robust and automatic algorithms for per-
forming segmentation, particularly in high-throughput experiments. While cell
imaging with fluorescent labels or other chemical staining can provide contrast
on objects of interest for easy segmentation, it is not ideal for studying cells
under natural conditions. Without such dyes, cells are much harder to segment.
Cells in brightfield or phase contrast images are only distinguishable by their
outer membrane. Other major challenges of segmenting cells from these images
are: touching cells, weak or broken boundaries, large variations on boundary
pattern, and false boundaries due to artifacts or other sub-cellular structures.

2 Related Work

2.1 Related Work on Clustering

Hierarchical clustering has been considered since early machine learning. Ag-
glomerative clustering is the primary way in which this has been approached
in the domain of computer vision. The seminal ultrametric contour maps algo-
rithm (UCM) (Arbelaez et al., 2011) is the clearest application of this approach
in image segmentation. UCM associates with each pair of superpixels i, j a dis-
tance metric Dij . Dij is initially a function of image features. UCM initializes
each superpixel as an independent region. UCM proceeds by merging the pair of
adjacent regions whose average distance metric between superpixels across the
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boundary is minimal. Usually this is average weighted by the length lij of the
boundary between the superpixels. Let B(Q1, Q2) be the set of edges between
the superpixels making up region Q1 and Q2. The weighted average distance is
computed as:

D̄(Q1, Q2) =

∑
[i,j]∈B(Q1,Q2)

lijDij∑
[ij]∈B(Q1,Q2)

lij
(1)

(2)

In the UCM algorithm, when two regions Q1 and Q2 are merged, each edge be-
tween the superpixels spanning across the two regions is set to the average value
D̄(Q1, Q2). This assure that the resulting set of distances forms an ultrametric.
UCM continues grouping the pair of regions whose average distance is minimal
until all superpixels are in the same region. UCM is a fast greedy method which
is quite successful but does not claim to minimize the ultrametric distortion.

Ultrametric rounding for image segmentation has been explored in a regime
in which each Xe may only take on a set of fixed discrete values (Yarkony, 2012)
using the formulation of (Ailon and Charikar, 2005). Our work significantly de-
parts from this line as it does not restrict X to take on a set of discrete values.

2.2 Related Work on Cell Segmentation

Many efforts have been devoted very recently in cell segmentation based on
boundaries. In (Liu et al., 2014) cell segments are selected from a UCM-based
hierarchical segmentation region candidates through an integer linear program-
ming (ILP) formulation. Each region candidate has a score predicted from SVM
classifier, that takes part of its input from a cell contour shape model. This
technique tries to find the best segmented cells from multiple hierarchical lay-
ers. However, the dependency on a common cell shape may not likely to apply
this technique on cells evolve or deform such as the fibroblast cells in (Wu et al.,
2012). However, the fact that in (Wu et al., 2012) the segmentation is formulated
as a partial matching problem between cell boundaries obtained from consecutive
frames in time-lapse images limits its applicability to static images. An interac-
tive cell segmentation approach to correct erroneous segmentation is proposed
very recently (Su et al., 2014). It uses an augmented affinity graph to efficiently
incorporate and propagate corrected labels for an updated partitioning of the su-
perpixels. But this method explicitly uses phase retardation features (Su et al.,
2013) to generate superpixels so as to enable efficient corrections on superpixel
level. Yet another method in (Zhang et al., 2014a) combines detection of cell
centers and clustering cell boundary points in an ILP fashion. But this method
is primarily designed for cells with convex shapes with similar sizes.

3 Ultrametric Rounding

We start by formulating ultrametric rounding as an optimization problem. Con-
sider a graph G with edges indexed by e. G is often a sparse graph meaning
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that most pairs of nodes are not connected. We denote the desired ultrametric
as X which is indexed by e. Here we assume Xe is a real valued in the range
[0, 1]. For X to be an ultrametric it must be the case that if we remove the set of
edges for which Xe is greater than any given value α we do not remove any edges
within a connected component of the resulting graph. This can be enforced by
the constraint that for any cycle C in our graph containing an edge e between
adjacent superpixels separated by a boundary (a pair where Xe ≥ α), at least
one other boundary is present along every cycle C connecting them. We write
this as:

∑
e∈C−ê

[Xe ≥ α] ≥ [Xê ≥ α] ∀C ∈ Cycles : ê ∈ C (3)

where [ ] to denotes the indicator function whose value is 1 if the condition is
true and otherwise outputs a zero. An equivalent definition is that for an edge
in a cycle there must be at least one other edge in the cycle whose value is as
large or larger.

max
e∈C−ê

Xe ≥ Xê ∀C ∈ Cycles : ê ∈ C (4)

We call the above inequalities “ultrametric inequalities”. Each edge e is as-
sociated with a target value Te ∈ [0, 1]. Finding the ultrametric X closest to T
in an Lp sense (p is 1 or 2 depending on the desired norm) is the objective of
ultrametric rounding. We write the optimization problem below.

min
X

∑
e

|Xe − Te|p (5)

s.t. max
e∈C−ê

Xe ≥ Xê ∀{C ∈ Cycles : ê ∈ C}

(6)

3.1 Correlation Clustering

When constructing our solver for minimizing ultrametric distortion we rely heav-
ily on repeated calls to a solver for correlation clustering on a planar graph. Thus
we now briefly discuss correlation clustering (Bansal et al., 2002; Kim et al.,
2011; Yarkony et al., 2012; Bagon and Galun, 2011; Andres et al., 2012, 2013,
2011). Correlation clustering is a powerful clustering criteria in which each pair
of nodes (in our case adjacent superpixels) is associated with a real valued term
θe where e indexes the edge between the two nodes. Correlation clustering groups
the nodes into regions so as to minimize the sum of the θe terms of edges span-
ning the boundary. We define the presence of a boundary using binary indicator
vector Y which is indexed by e. Here Ye = 1 if and only if there is a boundary
on edge e. Notice that if θe > 0 then it is desirable to set Ye = 0 and if θe < 0
it is desirable to set Ye = 1. However Y has to be set so that a clustering is
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produced. This means that no Ye can be set to 1 in the middle of a region.
These constraints are called cycle inequalities and they are the discrete binary
analog of the ultrametric inequalities in Eq 3, 4. The form of cycle inequalities
are written below. ∑

e∈C−ê

Ye ≥ Yê ∀{C ∈ Cycles, ê ∈ C} (7)

Correlation clustering is a natural clustering criteria because the number of
regions is not a user defined hyper-parameter that must be hand tuned for each
problem. Instead it is a function of the potentials θ themselves. Notice that if θ
is exclusively positive then all superpixels are in the same region in the optimal
solution. Also notice that if all θ terms are negative then each superpixel is in
its own region in the optimal solution.

Solving the correlation clustering problem is NP hard even for planar graphs
(Bachrach et al., 2011). However for many problems in computer vision the Pla-
narCC algorithm (Yarkony et al., 2012) can solve them exactly usually in sec-
onds or fractions of seconds. PlanarCC is a dual column generation algorithm
operating only on planar graphs. PlanarCC provides upper and lower bounds
on the optimal value of the objective. The upper bound is associated with a
partition Y that achieves this value. In practice the upper and lower bounds
are identical or nearly identical for problems in the domain of image segmenta-
tion (Yarkony et al., 2012) meaning that the solution is verified to be the global
optima. PlanarCC provides fast performance for image segmentation problems
in computer vision notably on the benchmark Berkeley Segmentation Data Set
(BSDS)(Martin et al., 2001).

4 The Hierarchical Greedy Planar Correlation Clustering
Algorithm (HGPCC)

We now consider the problem of minimizing ultrametric distortion as in Eq 5.
We employ a coordinate descent approach in which at each step we identify
optimal setting of X in a particular space that includes that current solution.
We alternate between three unique coordinate descent steps which are described
below. When we apply an update we denote the current setting of our solution
as X0, and the output as X1. We initialize X0 to be the zero vector. At all times
during our algorithm our solution describes an ultrametric. Two out of the three
coordinate updates use the PlanarCC algorithm which requires planarity of the
graph in order to work. To satisfy planarity in our application we have edges
between each adjacent pair of superpixels and no other edges.

4.1 Update One: Shifting the Values in the Ultrametric While
Preserving Their Order

Consider optimizing over X subject to the constraint that the ordering of X
does not change. We frame this as an optimization problem which is potentially
a linear or quadratic program depending on the norm applied on the ultrametric.
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min
X

∑
e

|Te −Xe|p (8)

s.t. Xe ≥ Xê ∀e, ê : X0
e ≥ X0

ê

Let Λb be the set of edges that take on the b’th smallest unique value specified
by X0. Our goal is to find new values λb to assign to each set of edges Λb. Let
|λ| denote the the number of unique values in X0 and |Λb| the cardinality of Λb.

min
λ

∑
b

∑
e∈Λb

|Te − λb|p = min
λ

∑
b

|Λb||Te − λb|p (9)

s.t. λb ≤ λb+1

In addition to solving the optimization above as a linear/quadratic program
we can approach it as a dynamic program on a chain structured Markov random
field. For each variable λb we create a node that has cost to take on each possible
value αb of Zb(αb) which is defined below.

Zb(αb) =
∑
e∈Λb

|Te − αb|p = |Λb||Te − αb|p (10)

We also have a pairwise potential over each pair of adjacent b values
Zb,b+1(αb, αb+1) which is defined below.

Zb,b+1(αb, αb+1) =∞[αb > αb+1] (11)

This pairwise potential simply enforces that the ordering of the values of b re-
mains constant. We discretize the space of possible values for λ terms making
sure to include all unique values in X0. For example we can include 1000 uni-
formly distributed points between min(T ) and max(T ) in addition to all unique
values of X0. We denote the set of all such values as Ω.

Computing the optimal λ in the above graphical model can be done using
dynamic programming in time O(|Ω||λ|). Once we solve for λ we simply set each
index of X to its associated value in λ. Thus X1

e is set to λb ∀b, ∀e ∈ Λb.

4.2 Update Two: Raising the Values of X to α in Large Groups

We now introduce a coordinate update that raises the values in X in large groups
over long ranges of value while preserving the ultrametric property of X . This is
a coordinate update parameterized by a randomly chosen value α on the range
of [min(T ),max(T )]. Here α is different every time this update is done.

During this update we optimize X over the space of ultrametrics subject to
the constraint that Xe ∈ {X0

e ,max(X0
e , α)} for all e. We denote this space as

Ŝ(X0, α) and the super-space that does not enforce the ultrametric property as
S(X0, α). We now write the objective of this update formally.

X1 = arg min
X∈Ŝ(X0,α)

∑
e

|Te −Xe|p (12)
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Notice that in the space S(X0, α) the only possible violations to the ultra-
metric property come in the form of ultrametric inequalities of pairs of cycle C,
and edge ê such that: ∀e ∈ C, X0

e < α and Xê = α.
Using this we write a version of the ultrametric inequalities needed to ensure

that any X ∈ S(X0, α) also lies in Ŝ(X0, α).

max
e∈C−ê

[Xe ≥ α] ≥ [Xê ≥ α] ∀{C ∈ Cycles , ê ∈ C} (13)

Notice that we can replace the max in the above equation with a
∑

. This
is because each of the inequalities can be only violated if all terms under the
sum/max are zero.∑

e∈C−ê

[Xe ≥ α] ≥ [Xê ≥ α] ∀{C ∈ Cycles ê ∈ C} (14)

We write our coordinate update as an instance of correlation clustering. We use
binary indicator Ye as an indicator for [Xe ≥ α] and edge potentials θ given by:

θe =

{
|α− Te|p − |X0

e − Te|p ∀ e s.t. X0
e < α

−∞ o.w.

where edges with potential −∞ are required to be active in the final solution.
The resulting correlation clustering problem is then

min
Y

θeYe (15)

s.t.
∑

e∈C−ê

Ye ≥ Yê ∀(C ∈ Cycles, ê ∈ C) (16)

After computing Y we simply set X1
e ← α iff (Ye = 1 and X0

e < α); otherwise
set X1

e ← X0
e .

Implementation Detail. Since we already established that no edge e s.t. X0
e ≥

α is involved in any necessary ultrametric inequality in S(X0, α) and their θ
terms are negative then we can simply remove (ignore) those edges from the
graph and set their values in X1 to X0. This saves us from having −∞ as the
value of an edge potential.

Another way of ignoring edges such that X0
e ≥ α is as follows. For each such

edge set θe = 0. Next then solve for Y . Finally set X1
e ← X0

e for all such edges.
We use this approach as it avoids instantiating multiple graph structures.

4.3 Update Three: Lowering the Values of X for a Subset of X

We now discuss a coordinate update that lowers the values in X for all values
that take on a unique value in X so as to reduce the ultrametric distortion of
X . This update parameterized by a randomly chosen value α on the range of
[min(T ),max(X)). Here α is different every time we perform this update. Let
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the set of all unique values in X0 be denoted λ0. Here λ0 is sorted with λ00 being
the smallest and λ0|λ| being the greatest. Let μ be the smallest value in λ0 greater
than α.

We optimize over the space of solutions in which each Xe such that X0
e = μ

may take on either α or μ and all Xe such that X0
e 
= μ must continue to take

on their current value. We denote the space of solutions that meet these proper-
ties as V (X0, α) and the subset of that space corresponding to ultrametrics as
V̂ (X0, α). We now formally write the optimization over the space V̂ (X0, α).

X1 = arg min
X∈V̂ (X0,α)

∑
e

|Te −Xe|p (17)

The ultrametric inequalities needed to enforce that an X ∈ V (X0, α) is also
in V̂ (X0, α) are written below.

max
e∈C−ê

[Xe > α] ≥ [Xê > α] ∀{C ∈ Cycles ê ∈ C} (18)

As in the previous subsection (see the transition from Eq 13, to Eq 14) we can
replace the max with a

∑
allowing us to write our coordinate update as an

instance of correlation clustering with Ye as an indicator for [Xe > α]. The
correlation clustering objective is described by the potentials

θe =

⎧⎨⎩
−|α− Te|p + |X0

e − Te|p. ∀e s.t. X0
e = μ

−∞ ∀e s.t. X0
e > μ

∞ ∀e s.t. X0
e ≤ α

where the edges with negative and positive infinite weights are required to be
cut or not cut respectively.

After solving the optimization above we simply set X1
e ← α iff (Ye = 0 and

X0
e = μ); otherwise set X1

e ← X0
e . Note that this operation can be performed in

parallel with a unique value α chosen between each pair of adjacent μ. As in the
previous section we can ignore the edges that must be boundaries in the solution
meaning (X0

e > α) as they are not involved in any violated cycle inequalities
and furthermore must be set to 1. Ignoring them is done by setting their θ value
to zero. Similarly we can merge any superpixels that are connected by an ∞
valued potential. Merging superpixels was not done in our experiments but can
conceivably make inference faster.

4.4 Final Procedure

Updates can be performed in any order. Furthermore one can complete multiple
updates of one type in a row. For our experiments we consider one iteration
to be completing updates 1,2,1,3. We repeat this iteration many times in our
experiments.
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4.5 Optimality in PlanarCC

For our experiments we used the PlanarCC code provided by the authors of
(Yarkony et al., 2012). We operated this code unchanged. PlanarCC attacks an
NP hard problem so it is conceivable that its lower and upper bounds are not
tight at convergence or when a user would want an anytime solution. Thus when
we terminate PlanarCC which we run for no more than a minute we take the
best anytime solution generated (including the solution corresponding to the
initial solution). We never saw this time limit reached.

5 Experiments

In order to evaluate the generality and robustness of our approach, we test
it on datasets that differ in sample preparation and imaging equipment and
conditions.

Data set one: These are bright field Diploid yeast cell images
from (Zhang et al., 2014a), in which both out-of-focus and in-focus cells exist
and are cluttered together. And the cells of interest are only the in-focused ones,
i.e. those with least contrast on cell boundaries. Apart from this, cell boundaries
can be partially missing and with diverse appearances, even in the same cell.

Data set two: These are phase-contrast HeLa cell images from (Arteta et al.,
2012). It presents a high variability in cell shapes and sizes, as opposed to the
ellipse like cells in data set one. These images have relatively lower resolution,
where cell boundaries are disturbed by the bright halo owing to this specific
imaging technique.

5.1 Producing Problem Instances

The edge probability map is predicted from a trained classifier using ilastik
(Sommer et al., 2011), an open-source toolkit that relies on a family of generic
nonlinear image features and random forests, to estimate the probability of be-
longing to a cell boundary edge for each individual pixel. We use a small labeled
training data set.

To compute superpixels we use a watershed transformation then smooth the
result using a gaussian filter. Finally we compute the average boundary proba-
bility along each superpixel boundary thus providing a value Pbe for every edge
e. UCM operates on this raw probability. We take the log odds ratio to convert
that to an energy which is then used as the targets for HGPCC. The equation
for the targets is written below.

Te = − log(
1− Pbe
Pbe

) (19)

For HGPCC we experimented with L1 and L2 norms in the log odds ratio
space. In Fig 1 we display the results of UCM and of HGPCC for an image in
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Fig. 1. Top Row: UCM segmentation thresholding X at values various thresholds.
Bottom Row: HGPCC segmentation thresholding X at values at the same thresholds
as UCM. We indicate boundaries in red.

the data set one. Once the nearest ultrametric to T is solved for in log odds
space we convert X to a probability by a sigmoid operation.

With regards to the quality of the segmentations we found no significant
qualitative difference between UCM and HGPCC. That being said HGPCC has
multiple advantages over UCM. First it is an energy minimization formulation
which allows for structured learning and principled mathematical extensions to
be used. Second HGPCC is robust to indications of no boundaries being placed
on actual boundaries, which may result in the merging of these boundaries at
finer positions in the hierarchy for UCM than desirable.

5.2 Experimental Comparisons: Distortion and Timing

For problems in data set one and data set two we completed 500 iterations
of HGPCC. For each iteration we completed updates 1,2,1,3 in that order. We
found that HGPCC converged very rapidly. Furthermore the time to complete an
iteration of HGPCC decreases at first then after convergence begins to increase
again. We compared against the UCM algorithm which since it is not an iterative
algorithm was not timed. It is very fast compared to our approach. We found
that HGPCC produces lower distortion ultrametrics than UCM very early during
optimization.

When plotting the distortion we applied the following normalization scheme.
All distortions including the output of UCM are normalized by subtracting off
the lowest value of HGPCC for a given instance and dividing by the gap between
the lowest and highest distortions of HGPCC for a given instance. All results
are averaged across the data sets. All results are plotted in Fig 2.
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Fig. 2. We show the convergence of HGPCC as a function of time and iteration and
compare it to the final result of UCM (which is not timed). We use the data set one and
data set two and color their results red and blue respectively. Dotted lines correspond to
UCM and solid lines to HGPCC. Left Column) Distortion as a function of time. Center
Column) Distortion as a function of iteration. Right Column) Time for an iteration of
HGPCC as a function of iteration.

6 Conclusion

We present a novel fast algorithm for finding low distortion ultrametrics on
planar graphs. Our method exploits the fact that correlation clustering can often
be done efficiently on planar graphs with very high degrees of accuracy. Our
method is an analog of alpha expansion/alpha beta swap (Boykov et al., 2001)
as both make large efficient moves in the space of values for their variables. This
work extends the family of PlanarCC (Yarkony et al., 2012; Andres et al., 2013;
Zhang et al., 2014b) methods so as to include efficient hierarchical clustering.
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