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8.1             Introduction 

 The main cause of arterial disease (AD) is hardening of the arteries or atherosclero-
sis due to a thickening of the artery lining from fatty deposits or plaques. There are 
several different symptoms, depending on the location of the AD. It most commonly 
affects the arteries in the heart, brain, and legs [ 1 ]. Diabetes is associated with a 
two- to fourfold increase in the risk of developing coronary artery disease (CAD). 
Diabetic patients presenting with unstable angina are more likely to develop myo-
cardial infarction. The mortality caused by myocardial infarction in diabetic patients 
is more than in nondiabetic individuals [ 2 ]. Similarly, diabetes increases the risk of 
stroke and stroke-related mortality [ 3 ]. Meanwhile, diabetes is a major risk factor 
for the development of peripheral arterial disease, which is typically caused by pro-
gressive narrowing of the arteries in the lower extremities [ 4 ]. Thus, AD is the major 
cause of mortality and signifi cant morbidity in diabetes and cardiorenal metabolic 
syndrome (CRS). 
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 Epidemiologic evidence supports the hypothesis that diabetes adds to the impact 
of individual risk factors, such as hypertension and hyperlipidemia, for the prediction 
of excess AD [ 3 ]. It was suggested that integrative effects of elevated glucose, insu-
lin, and triglycerides may have a considerable impact on AD and play an important 
role in the early pathophysiology of AD in patients with type 2 diabetes [ 5 ]. In indi-
viduals with the CRS and those with clinical diabetes, AD has been observed in all 
age groups, including children. Indeed, obese children prematurely manifest signs of 
AD [ 6 ]. In individuals 40 years and older, multiple logistic and linear regression 
analyses from a total of 2,188 individuals demonstrated that AD was independently 
associated with insulin resistance (IR) in middle-aged adults [ 7 ]. In elderly people 
without diabetes mellitus, the Rotterdam study found that impaired fasting glucose 
was associated with increased AD [ 8 ]. Therefore, glycemic control, low-density 
cholesterol-lowering therapy, blood pressure lowering, and comprehensive approaches 
targeting multiple metabolic risk factors to reduce cardiovascular risk may therefore 
account for the clinical benefi cial effects in obese and diabetic patients with AD. In the 
present review, we will discuss the roles of metabolic factors in the pathogenesis of AD 
and provide a better understanding of potential therapeutic strategies.  

8.2     Risk Factors for AD in CRS 

 Several metabolic risk factors such as hyperglycemia, IR, dyslipidemia, obesity, 
fructose, and uric acid may initiate and accelerate artery impairment (Fig.  8.1 ).  

8.2.1     Hyperglycemia and IR 

 Hyperglycemia, a hallmark of diabetes, has been implicated in the development of 
vascular cell dysfunction including vascular smooth muscle cells (VSMCs) and 
endothelial cells (ECs) via mechanisms of protein kinase C (PKC) activation, acti-
vation of the hexosamine, and advanced glycation end products (AGEs). These 
pathways are believed to mediate vascular dysfunction through the unifying mecha-
nism of reactive oxygen species (ROS) overproduction, most notably increases in 
O 2  −  [ 9 ]. Studies have also shown that elevated glucose concentration may activate 
the tissue renin–angiotensin–aldosterone system (RAAS), and this plays an impor-
tant role in the pathogenesis of vascular complications of diabetes [ 10 ,  11 ]. In vivo 
exposure of healthy human subjects to an acute glucose load leads to attenuated 
endothelium-dependent vascular relaxation [ 12 ]. This impaired endothelial relax-
ation is associated with increased oxidative stress, adhesion molecule expression, 
vascular permeability, and plasma levels of plasminogen activator inhibitor-1 [ 12 ]. 
In vitro, both high glucose and angiotensin II (Ang II) induced a progressive increase 
in Ang II receptor type 1 receptor 1 (AT-1R) expression on the cultured human ECs. 
Furthermore, high glucose enhanced Ang II-mediated peroxisome proliferation- 
activated receptor-γ inactivation and expression of pro-infl ammatory adhesion mol-
ecules via signaling through the AT-1R [ 13 ]. With chronic exposure to elevated 
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plasma glucose, the resulting glucotoxicity may activate mitogen-activated protein 
kinase (MAPK) thus increasing secretion of infl ammatory cytokines and inhibiting 
phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling leading to 
reduced nitric oxide (NO) production and endothelial dysfunction [ 13 ]. 

 IR, a metabolic risk factor in patients with normal glucose tolerance and even 
after adjustment for known risk factor such as low-density lipoprotein (LDL), tri-
glycerides (TG), high-density lipoprotein cholesterol (HDL), and systolic blood 
pressure, is frequently present in obesity, hypertension, dyslipidemia, and AD [ 14 ]. 
In nonobese subjects without diabetes, IR predicted the development of cardiovas-
cular disease (CVD) independently of other known risk factors. In another group of 
subjects without diabetes or impaired glucose tolerance, patients with IR had a 2.5- 
fold increase in CVD risk. These data indicate that IR itself promotes atherogenesis 
[ 15 ]. Our study has found that abnormal insulin metabolic signaling is an important 
contributor to AD. In this regard, IR is typically accompanied by reduced PI3K-NO 
pathway and heightened MAPK-endothelin-1 (ET-1) pathway [ 16 ].  
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  Fig. 8.1    Proposed the interaction of metabolic risk factors, adaptive metabolic response, and AD 
in CRS. Risk factors for AD such as hyperglycemia, insulin resistance, dyslipidemia, fructose, and 
uric acid induce the adaptive metabolic responses including mitochondria dysfunction, ROS, 
infl ammation response, sympathetic activity, RAAS, PTH, and TG2, resulting in the pathophysi-
ological abnormalities in ECs, VSMCs, and extracellular matrix on CRS.  Abbreviations :  AD  arte-
rial disease,  RAAS  renin–angiotensin–aldosterone system,  PTH  Parathyroid hormone,  AGE  
advanced glycation end products,  TG2  tissue transglutaminase,  ROS  reactive oxygen species,  IL  
interleukin,  TNF  tumor necrosis factor,  NO  nitric oxide,  ONOO  –  peroxynitrite,  ET-1  endothelin-1, 
 Ang II  angiotensin II,  TxA2  thromboxane A2,  MCP-1  monocyte chemotactic protein-1,  CRP  
C-reactive protein,  MMP  matrix metalloproteinase       
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8.2.2     Dyslipidemia and Obesity 

 Lipid abnormalities play an important part in raising the cardiovascular risk in 
patients with diabetes. The main components of diabetic dyslipidemia are increased 
plasma TG, low concentration of HDL, preponderance of small dense LDL, and 
excessive postprandial lipemia [ 17 ]. Small, dense LDL, the elevation in remnant 
TG-rich lipoprotein particles, and the low HDL are the most powerful atherogenic 
components. The coexistence of these factors strongly aggravates the lipid accumu-
lation in the arterial wall and the formation of atherosclerotic plaques. Small, dense 
LDL particles are held to be more atherogenic than their larger, buoyant counter-
parts because they are more liable to oxidation and may more readily adhere to and 
subsequently invade the arterial wall. The atherogenicity of LDL may also be 
enhanced by nonenzymatic glycation [ 18 ]. Thus, the benefi ts of statin therapy in 
type 2 diabetics can no longer be questioned. 

 Obesity has a strong association with atherogenic dyslipidemia. In a large series 
of 26,000 overweight children, concentrations of one or more of the lipids were 
abnormal in 32 %, total cholesterol in 14.1 %, LDL-C in 15.8 %, HDL-C in 11.1 %, 
and TG in 14.3 % of those in whom data were available [ 19 ]. Indeed, overweight 
and obesity are associated with development of CRS which is a constellation of risk 
factors, such as IR, dyslipidemia, and high blood pressure [ 16 ]. The development of 
AD in obese patients can be attributed to a number of factors including pro- 
infl ammatory cytokines, inappropriate activation of RAAS, vasoconstriction from 
increased sympathetic nervous system (SNS) activation, and dysregulation in adi-
pokine production and secretion [ 20 ]. These data suggest that obesity and dyslipid-
emia are involved in AD in CRS.  

8.2.3     Fructose and Uric Acid 

 The increasing fructose consumption has led to a rise in obesity from 13 to 34 % 
since 1960 and the subsequent rise in diagnosed type 2 diabetes from 5 to 8 % since 
1988 [ 21 ]. In children, the intake of artifi cially sweetened beverages was found to 
be positively associated with adiposity [ 22 ]. A prospective cohort analyses of non-
diabetic women in the Nurses’ Health Study II concluded that higher consumption 
of sugar-sweetened beverages is associated with greater magnitude of weight gain 
and an increased risk for the development of type 2 diabetes [ 22 ]. In the Framingham 
Heart Study, the relationship between soft drink consumption and cardiovascular 
risk factors was evaluated in 6,039 participants; consumption of more than one can 
of soft drink per day was signifi cantly associated with the prevalence of CRS [ 23 ]. 
Thus, fructose has been implicated in promoting obesity and CRS by altering appe-
tite, inducing leptin resistance, and resulting in increased food intake. Recently, The 
Third National Health and Nutrition Examination Survey (NHANES III) report has 
indicated that consumption of sugar-sweetened beverages is signifi cantly associated 
with plasma uric acid concentrations [ 23 ]. Thus, a novel hypothesis has been pro-
posing to link fructose intake, hyperuricemia, and AD in CRS.   
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8.3     EC Dysfunction Initiates AD 

 Forming a vast interface between blood and surrounding tissues, the endothelium 
forms a monolayer comprising the innermost lining of blood vessels. The arterial 
endothelium provides a continuous barrier between the elements of blood and the 
arterial wall and is a critical component to vascular homeostasis, actively respond-
ing to biochemical and physical stimuli through the release of a diverse set of vaso-
active substances [ 24 ]. Endothelial damage and thickening of the intima-media 
layers induced by risk factors we discussed above are early events in the AD pro-
cess. For example, LDL particles invade the endothelium and become oxidized, cre-
ating risk for a subsequent infl ammatory response and ultimately CVD. Monocytes 
enter the artery wall from the bloodstream with platelets adhering to the area of 
insult, differentiate into macrophages, and eventually form foam cells. Foam cells 
die and further propagate the infl ammatory process [ 25 ] (Fig.  8.1 ). 

 NO, a most signifi cant endothelium-derived mediator, plays multiple roles in 
preventing AD. NO diffuses into neighboring VSMCs, activating guanylyl cyclase 
and producing cyclic guanosine monophosphate (cGMP) and activating kinases 
responsible for vascular relaxation [ 16 ]. NO also inhibits platelet aggregation, 
smooth muscle cell proliferation, and nuclear transcription of leukocyte-adhesion 
molecules including vascular cell adhesion molecule (VCAM) and intercellular 
adhesion molecule (ICAM) [ 9 ]. Indeed, vascular homeostasis is tightly controlled 
by EC secreting the vasodilatory substances, such as NO, endothelium-derived 
hyperpolarizing factor (EDHF), prostacyclin (PGI 2 ), and vasoconstrictory sub-
stances, such as ET-1, Ang II, and thromboxane A2 (TxA2) [ 26 ]. These EC-secreting 
vasoactivity substances have been proposed to mediate the AD in CRS, including 
continued activation of the SNS; increased production and activity of vasoconstric-
tors, such as ET-1, Ang II, and TxA2; and impaired endothelium-dependent relax-
ation [ 27 ]. Thus, endothelial dysfunction has been suggested as a common 
underlying mechanism in AD with IR, hyperinsulinemia, and CRS.  

8.4     Dysregulation of VSMCs and Vascular Extracellular 
Matrix Promotes AD 

 Following the EC dysfunction, the metabolic abnormalities that characterize diabe-
tes, hyperglycemia, free fatty acids, and IR provoke the impairment of the function 
and structures in blood vessels include VSMC and extracellular vascular matrix 
(Fig.  8.1 ). 

8.4.1     VSMC Dysfunction 

 The impact of CRS on vascular function is not only limited to the ECs but also 
to VSMCs, which are the predominant cell type found in the arterial wall and are 
essential for the structural and functional integrity of the vessel. Diabetes 
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increases PKC activity, NF-kappaB (NF-κΒ) production, and generation of oxygen-
derived free radicals in VSMCs and heightens migration of VSMCs into athero-
sclerotic lesions, where they replicate and produce extracellular matrix—important 
steps in mature lesion formation [ 28 ]. Dysregulation of VSMC function is exac-
erbated by impairments in SNS function. Studies from the Zucker obese insu-
lin-resistant rat have shown that VSMCs from these rats manifested greater 
concentrations of ROS and impaired activation of the NO/cGMP/protein kinase 
G (PKG) pathway when compared to VSMC from the lean, insulin-sensitive 
Zucker rats [ 29 ]. Our recent data also showed excessive serine phosphorylation 
of insulin receptor substrate (IRS-1) as a key mechanism underlying cellular IR 
in VSMCs. Furthermore, after treatment with aldosterone or Ang II, VSMCs 
show increased activation of p70 S6 kinase 1 signaling pathway, increased pro-
teasome degradation of IRS-1, and attenuated insulin-induced Akt phosphoryla-
tion and glucose uptake [ 30 ]. These observations provide a biochemical basis to 
the IR in VSMCs in the development of AD.  

8.4.2     VSMC Calcification 

 Studies conducted in the United States have revealed that calcium deposits in 
arterial walls are reported in nearly 30 % of Americans over 45 years of age 
[ 31 ]. Vascular calcifi cation risk factors are similar to those of atherosclerosis 
including hypertriglyceridemia, increased LDL, decreased HDL, obesity, and 
hypertension. It has also been shown that diabetes and renal failure contribute 
signifi cantly to higher risk of accumulation of calcium depositions in the vessel 
wall [ 32 ]. Calcifi cation of vessels reduces their elasticity, affecting hemody-
namic parameters of the cardiovascular system. Vascular calcifi cation is an 
active and complex process that involves numerous mechanisms responsible for 
calcium deposits in arterial walls. They lead to an increase in arterial stiffness 
and in pulse wave velocity, which in turn increases CVD morbidity and mortal-
ity. We have known that VSMCs can differentiate from a quiescent, contractile 
phenotype to a proliferative, synthetic phenotype following arterial injury and 
in atherosclerotic diseases [ 33 ]. Indeed, VSMCs are capable of osteoblast trans-
differentiation in calcifying arteries [ 34 ]. Epidemiological data have shown that 
higher insulin levels in diabetes can independently predicate arterial calcifi ca-
tion [ 35 ]. The mechanisms of insulin involved in arterial calcifi cation in these 
clinical settings are still controversial. Furthermore, it has been demonstrated 
that insulin enhances the calcifi cation of VSMCs in vitro [ 36 ]. In this regard, 
insulin promotes alkaline phosphatase activity, osteocalcin expression, and the 
formation of mineralized nodules in VSMCs by increased receptor expression 
of NF-κB ligand (RANKL) through extracellular signal-regulated protein 
kinases 1 and 2 (Erk ½) activation [ 37 ]. However, others suggest that insulin 
attenuated VSMC calcifi cation induced by high phosphate conditions [ 38 ]. 
These contradictory results may be explained by different cell types or different 
experimental conditions.  
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8.4.3     Elastin, Collagen, and Advanced Glycation End Products 

 Elastin is the most abundant protein in the walls of the arteries, which are subjected 
to pulsatile pressure generated by cardiac contraction. Matrix metalloproteinases 
(MMPs) have an important role in the degradation of elastin [ 39 ]. Recently, it was 
reported that in the arterial vasculature from chronic kidney disease patients, the 
presence of diabetes markedly upregulated MMP-2 and -9, and this adaption is 
strongly associated with elastic fi ber degradation and AD. The increase in MMPs in 
diabetic vessels was also accompanied by pronounced generation of angiostatin, 
and the reduction of microvascular density was associated with impaired vasorelax-
ation [ 40 ]. In addition, the degradation of elastin also induces the overexpression of 
transforming growth factor beta (TGF-β). TGF-β1 not only plays an important role 
in osteoblast differentiation but also accelerates the calcifi cation of VSMCs [ 39 ]. 
Meanwhile, hyperglycemia may cause changes in the type or structure of elastin 
and/or collagen in the arterial wall through nonenzymatic glycosylation of proteins 
that generate AGE. AGE may form irreversible cross-links between long-lived pro-
teins such as collagen, leading to accumulation of stiffer molecules that are less 
susceptible to hydrolytic turnover [ 41 ]. These data confi rm that the interaction 
among MMPs, elastin, collagen, and AGE plays a key role in the development of 
AD with CRS.   

8.5     Misregulation of Adaptive Metabolic Responses 
Aggravate to the Progression of AD 

 Misregulation of an adaptive metabolic response contributes to the risk factors 
related CRS and dysfunction of ECs, VSMCs, and extracellular vascular matrix in 
AD (Fig.  8.1 ). 

8.5.1     Mitochondria Dysfunction and ROS 

 Mitochondria are essential for intermediary metabolism as well as energy produc-
tion and normally provide more than 90 % of the cellular energy [ 42 ]. It has been 
established that mitochondrial respiratory chain function is responsible for energy 
metabolism and adenosine triphosphate (ATP) production through the tricarboxylic 
acid (TCA) cycle, coupling of oxidative phosphorylation (OXPHOS), and electron 
transfer [ 43 ]. Mitochondria dysfunction is recognized as playing a central role in the 
development of various abnormalities, including disturbed glucose homeostasis, IR, 
abdominal fat accumulation, dyslipidemia, hypertension, and associated cardiac 
and renal pathology. ROS production occurs mainly at complex I and complex III in 
mitochondria [ 44 ]. Under conditions of glucose and fatty acid overnutrition, nutri-
ent overfl ow into cells prompts electrons transferring to oxygen without ATP pro-
duction and further favors a state of increased ROS, which potentially leads to 
oxidative damage within mitochondria [ 45 ]. Therefore, ROS generated from 
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mitochondria damages proteins, DNA, and lipid in membrane components, which 
result in mitochondrial dysfunction. Although this review is concerned with mito-
chondrial ROS, it should be recognized that the considerable amount of ROS is 
derived from outside of mitochondria, such as oxygen radicals from peroxisomal 
β-oxidation of fatty acids, nicotinamide adenine dinucleotide phosphate (NADPH) 
oxidase, xanthine oxidase, arachidonic acid metabolism, microsomal P-450 
enzymes, and prooxidant heme molecule [ 46 ].  

8.5.2     Adaptive Immunity and Inflammation Response 

 Atherosclerosis is a chronic infl ammatory disease of the arterial wall characterized 
by an innate and adaptive immune system, which is composed of diverse cellular 
components including granulocytes, mast cells, monocytes, macrophages, dendritic 
cells (DCs), and natural killer cells [ 47 ]. Upon activation, partly in response to 
immunological stimuli from the local microenvironment as well as systemic circu-
lation, macrophages polarize into classical (M1) or alternative (M2) phenotypes 
[ 48 ]. M1 macrophages are found in advanced lesions where they accumulate a large 
amount of lipids, which promotes their differentiation into foam cells. Meanwhile, 
M1 macrophages secrete tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, 
and metalloproteinases, which exacerbate and destabilize lesion development. 
However, M2 macrophages predominate in the early stages of atherosclerosis and 
are characterized by IL-10 secretion and smaller amounts of accumulated lipids; 
these events are atheroprotective and can reduce plaque development [ 49 ]. 

 DC precursors or monocytes are recruited to lesions where they differentiate into 
DCs. The DC population is heterogeneous and can be divided into four major cat-
egories: conventional DCs (cDCs), plasmacytoid DCs (pDCs), monocyte-derived 
DCs, and Langerhans cells [ 50 ]. DC accumulation in regions prone to AD suggests 
that their recruitment accounts for an initial infl ammatory or immune activation. 
The exact localization and origin of vascular DCs, however, is still under debate 
[ 51 ]. In general, immature and semimature DCs uptake lipids and other intimal 
antigens, thus preventing them from eliciting pro-infl ammatory signaling in other 
artery wall cells. Toll-like receptor (TLR) ligation by ligands such as oxLDL induces 
DC maturation. Under hyperlipidemic conditions, lipid uptake and efferocytosis 
likely lead to DC-foam cell formation, and mature DCs and foam cells emigrate 
from the vessel wall in a C-C chemokine receptor type 7 (CCR7)-dependent man-
ner, clearing infl ammatory cells, lipids, and apoptotic cell debris from the intimal 
space and preventing necrosis and persistent infl ammation. Mature CD11b+ DCs 
likely expand regulatory T cells (Tregs) and CD4+ effector T cells within the artery 
wall [ 52 ]. CD4 + CD25 + Foxp3 +  Tregs can protect the pro-infl ammatory activation of 
vascular cells. The mechanisms by which Tregs protect against infl ammation are 
thought to be mediated, at least in part, by directing cell-to-cell interactions as well 
as through the secretion of soluble anti-infl ammatory cytokines, including IL-10 
TGF-β [ 53 ]. Thus, further studies are required to understand the role of adaptive 
immunity and infl ammation response in AD with CRS.  
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8.5.3     Sympathetic Activity 

 The role of increased SNS activity in IR with CRS is increasingly recognized. 
Individuals with central obesity show increased sympathetic nervous activity. 
Increased sympathetic outfl ow has been reported in obese nonhypertensive indi-
viduals with the determination of circulating catecholamines, urinary norepineph-
rine (NE), and muscle sympathetic nerve activity (MSNA) [ 54 ]. Multiple 
neurohumoral mechanisms can activate the SNS in patients with CRS including 
direct activation of the SNS in response to the activation of higher cerebral nuclei 
and renal afferent nerve activation mediated by perirenal fat accumulation and kid-
ney compression [ 55 ]. Sympathetic activation can also be triggered by refl ex mech-
anisms such as arterial baroreceptor impairment, psychological stress, oxidative 
stress, obstructive sleep apnea, infl ammation, and metabolic factors and dysregu-
lated production and secretion of adipokines from visceral fat with a particular 
important role of leptin [ 20 ]. Although enhanced activation of SNS is an important 
component in IR, it is often related to activation of RAAS since the RAAS system 
causes sustained sympathetic overactivity by modulating central neurons in the sub-
fornical organ of the forebrain [ 49 ]. The link between sympathetic nervous activity 
and AD offers new clues to identify AD and may allow for development of novel- 
targeted therapeutic interventions.  

8.5.4     Renin–Angiotensin–Aldosterone System 
and Parathyroid Hormone 

 There is evidence that RAAS activation plays an important role in the pathogenesis 
of AD. In the course of RAAS-induced vascular injury, Ang II binds to its type 1 
receptor to induce oxidative stress, mainly mediated by NADPH oxidase. Our study 
has also found that Ang II increased serine phosphorylation of IRS-1 and inhibited 
the insulin-stimulated phosphorylation of endothelial NO synthase through activa-
tion of S6 kinase (S6K) signaling pathway [ 30 ]. Recent data also suggests that 
increased mineralocorticoid receptor (MR) is associated with IR. Studies have dem-
onstrated a relationship between MR activation and decreased insulin sensitivity in 
animal models and humans. For example, patients with primary hyperaldosteronism 
were found to have IR suggesting the contribution of MR signaling to IR [ 56 ]. 
Spironolactone, a blocker of the MR, has been shown to decrease local infl amma-
tion and vascular stiffness in rodent models of hypertension and IR [ 57 ,  58 ]. These 
observations suggest that inhibition of MR might be a benefi cial therapeutic 
approach for preventing AD in diet-induced obesity and IR [ 58 ]. Thus, enhanced 
RAAS activation may represent a link between obesity, hypertension, dyslipidemia, 
and IR, features present in the AD with CRS [ 59 ]. Moreover, cross-talk between 
Ang II and aldosterone signaling underscores the importance of Ang II–aldosterone 
interactions in the development of IR, vascular dysfunction, and AD. 

 Parathyroid hormone (PTH) is secreted from parathyroid glands and increases 
the concentration of calcium in the blood. Recent research suggests that PTH is 
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implicated in regulating RAAS which is proposed to regulate PTH hormones [ 60 ]. 
Ang II seems to be an acute modulator of PTH, potentially through direct stimula-
tion of PTH release via the AT-1R. In contrast, aldosterone may be involved in the 
modulation of PTH in the chronic setting via indirect and direct mechanisms [ 61 ]. 
PTH may increase sensitization towards Ang II and directly stimulate aldosterone 
synthesis by binding to the PTH-related protein receptor, voltage-gated calcium 
channels, and the adrenocorticotropic hormone receptor [ 62 ]. Therefore, the inter-
action of PTH and RAAS plays a key role in the pathogenesis of AD.  

8.5.5     Tissue Transglutaminase 

 Tissue transglutaminase (TG2) is a multifunctional protein that plays an impor-
tant role in vascular function, including remodeling of resistance vessels, 
increased aortic stiffness with age, and arterial calcifi cation [ 63 ]. TG2 is a link 
between IR and AD because of its regulation by NO availability. A study has 
found that bioavailability of NO impaired by infl ammation cytokines and RAAS 
is associated with decreased TG2  S -nitrosylation [ 63 ,  64 ]. Thus, increased secre-
tion of TG2 to the cell surface and extracellular matrix and enhanced cross-
linking activity in isolated endothelial, smooth muscle, and fi broblast cells 
resulted in AD in CRS [ 65 ]. In addition, increased vascular TG2 activity was also 
associated with AD in high fat- fed mice that preceded hypertension [ 66 ], thereby 
suggesting TG2 activation and AD as an early vent in the long-term effects of 
obesity on the vasculature.   

    Conclusion 
 AD increases the risk of developing coronary, cerebrovascular, and peripheral 
arterial disease and is a major cause of disability and death in patients with 
diabetes mellitus and CRS. The pathophysiology of AD in diabetes and CRS 
involves abnormalities in ECs, VSMCs, elastin, collagen, and AGE products, 
which increase the risk of the adverse cardiovascular events. Elucidation of 
mechanisms leading to the pathophysiological alterations in vasculature will 
enable us to specifi cally target therapeutic interventions since currently avail-
able cardiovascular medications fall short at reducing AD. Future therapeutic 
strategies should emphasize the need to achieve control of hyperglycemia, dys-
lipidemia, blood pressure, obesity, and cigarette smoking, in addition to exer-
cise therapy. A better understanding of the mechanisms leading to vascular 
dysfunction may unmask new strategies to reduce disability and death in these 
patients.     
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