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5.1             Introduction 

 Blood pressure load and numerous hormonal and locally acting agents mediate 
vascular damage associated with elevated blood pressure, leading to the 
 complications of hypertension that include stroke, myocardial infarction as a 
consequence of accelerated atherosclerosis [ 1 ], heart failure, and chronic kidney 
disease, the latter resulting from nephroangiosclerosis. Increased peripheral 
resistance as a result of changes in small arteries and arterioles has been classi-
cally presented as the mechanism for blood pressure elevation in essential hyper-
tension. However, this occurs primarily in younger individuals. In older people, 
especially after age 50–60, aging and cardiovascular risk factors contribute to 
stiffen the wall of large arteries such as the aorta and other elastic vessels, which 
leads to elevated systolic blood pressure.  
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5.2     Mechanisms of Remodeling of the Vasculature 

 Chronically elevated blood pressure initiates a number of complex signal transduc-
tion cascades that lead to remodeling of the vasculature [ 2 ]. A critical regulator of 
vascular tone is the endothelium [ 3 ], which becomes dysfunctional in people with 
high blood pressure. As a result, vasodilation is diminished, and in addition, there 
develops a pro-infl ammatory and prothrombotic state. Endothelial dysfunction is a 
key early determinant of progression of atherosclerosis and is independently associ-
ated with increased cardiovascular risk [ 4 ]. Low-grade infl ammation localized in 
the vascular wall and perivascular fat also contributes to the mechanisms of hyper-
tension [ 5 ] and participates in the initiation and progression of atherosclerosis [ 6 ,  7 ] 
(see Chap.   3    ). 

 Activation of the renin-angiotensin-aldosterone system (RAAS) plays a signifi -
cant role in the pathophysiology of hypertension [ 2 ,  8 ]. Angiotensin (Ang) II, one of 
the fi nal products and major mediators of the RAAS, induces vascular remodeling 
and injury by several mechanisms including vasoconstriction, cell growth, oxidative 
stress, and infl ammation. Ang II induces hyperplasia and hypertrophy of vascular 
smooth muscle cells (VSMCs) of resistance arteries of patients with essential hyper-
tension and small arteries from hypertensive rats. Ang II and aldosterone, as well as 
endothelin-1 (ET-1) produced by the endothelium, enhance reactive oxygen species 
(ROS) generation by stimulating reduced nicotinamide adenine dinucleotide phos-
phate (NADPH) oxidase and expression of its subunits by pathways that involve 
c-Src, protein kinase C, phospholipase A 2 , and phospholipase D. NADPH oxidase is 
indeed the major source of ROS in the vascular wall and is expressed in endothelial 
cells, VSMCs, fi broblasts, and monocytes/macrophages [ 9 – 11 ], although uncou-
pled nitric oxide (NO) synthase, xanthine oxidase, myeloperoxidase, cytochrome 
P450 enzymes, and mitochondria are also involved in generating vascular oxidative 
stress. Increased ROS generation induced by Ang II, aldosterone, and ET-1 con-
tributes to vascular remodeling through VSMC proliferation and hypertrophy and 
collagen deposition and by modulating cytokine release and pro-infl ammatory tran-
scription factors such as NF-κB, as well as by reducing the bioavailability of NO. 

 Aldosterone increases as well as tissue angiotensin-converting enzyme activity is 
enhanced [ 12 ] and upregulates angiotensin receptors [ 13 ], thus potentiating effects 
of other components of the RAAS. Indeed, aldosterone and other mineralocorti-
coids affect blood vessels in the heart and kidneys by inducing oxidative stress and 
impairing endothelial function [ 13 ], which can be blunted by mineralocorticoid 
antagonism. Some of aldosterone’s actions may be mediated by stimulation of 
endothelial production of ET-1 [ 14 ]. 

 Ang II, aldosterone, and ET-1 trigger endothelial dysfunction and vascular 
infl ammation by inducing oxidative stress, which upregulates infl ammatory media-
tors in the endothelium and stimulates immune cells such as T effector lymphocytes 
[ 15 ]. Ang II and aldosterone as well as ET-1 stimulate fi brosis via TGF beta. 
Vasoconstriction induced by Ang II thus becomes embedded in the enhanced col-
lagen deposited in the vascular wall [ 1 ,  2 ,  16 ]. Collagen I and III mRNA and colla-
gen protein synthesis by fi broblasts are increased in vessels from essential 
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hypertensive patients [ 17 ], contributing to thickening of the media in hypertrophic 
remodeling and reorganization of components of the vascular wall in eutrophic 
remodeling [ 18 – 21 ]. Reduction in the activity of matrix metalloproteinases (MMPs) 
may also participate in the stiffening of the vascular wall as collagen and other 
extracellular matrix components are not degraded and consequently collagen type 
IV and V and fi bronectin accumulate in resistance arteries [ 22 ]. MMP-1 and MMP-3 
activity is reduced in SHR before hypertension is established [ 23 ]. In hypertensive 
patients with increased vascular type I collagen, serum concentrations of MMP-1 
are reduced [ 24 ]. Ang II stimulates hyperplasia and hypertrophy of VSMCs [ 25 ,  26 ]. 
Other processes participating in remodeling of blood vessels include apoptosis, cell 
elongation, reorganization, and infl ammation [ 25 – 29 ]. Also, infl ammation in peri-
vascular fat with enhanced generation of tumor necrosis factor (TNF)-alpha and 
reduced adiponectin, which has anticontractile and thus antihypertensive properties 
[ 30 ,  31 ], is critically involved in small artery remodeling [ 32 ]. 

 Myogenic tone, the intrinsic ability of vessels to constrict in response to increases 
in intraluminal pressure, participates early on in the alterations occurring in the arte-
rial wall [ 33 ]. Among the mechanisms involved in the control of myogenic tone are 
changes in intracellular calcium, protein kinases, diacylglycerol, modulation of 
transient receptor potential-like channels, and ion transport [ 34 ]. Structural narrow-
ing of the lumen may amplify vasoconstriction. Constriction may be a consequence 
of increased concentration of specifi c agents at the level of receptors, greater recep-
tor density, or postreceptor signaling alterations associated with enhanced Ang II 
signaling leading to increased ROS generation and enhanced constriction and vessel 
growth [ 25 ,  28 ,  34 ,  35 ]. 

 Endothelial dysfunction is involved in the initiation of vascular infl ammation and 
development of atherosclerosis [ 36 ]. The number of circulating endothelial pro-
genitor cells (EPCs), a bone marrow–derived population of cells capable of devel-
oping into competent mature endothelial cells, is an important determinant of 
endothelial function [ 37 ]. Decreased EPC numbers are associated with arterial stiff-
ness and decreased endothelial function [ 38 ]. Endothelial dysfunction is not only 
accompanied by reduced vasodilation and increased endothelium-dependent con-
traction but also by cell proliferation, platelet activation, vascular permeability, and 
a pro-infl ammatory and prothrombotic vascular phenotype. Detachment of endothe-
lial cells (anoikis), increases in circulating microparticles derived from the endothe-
lium, and reduced endothelial progenitor cells contribute also to dysfunction and 
remodeling of the microcirculation in hypertension [ 39 ]. 

 Endothelial dysfunction promotes vascular infl ammation through generation of 
ROS and by the production of vasoconstrictor agents, adhesion molecules, and 
growth factors [ 40 ,  41 ]. Infl ammation is central in cardiovascular disease and could 
be involved in triggering myocardial and cerebrovascular ischemia [ 36 ,  42 ]. Blood 
pressure itself [ 43 ] or activation of the RAAS [ 26 ,  32 ] may induce an infl ammatory 
process characterized by increased expression of adhesion molecules VCAM-1 
(vascular cell adhesion molecule 1) and ICAM-1 (intercellular adhesion molecule 
1) on endothelial cells, leukocyte extravasation, increased oxidative stress, cytokine 
production, and activation of immune cells and pro-infl ammatory signaling 

5 Vascular Changes in the Microcirculation



72

pathways. Greater expression of adhesion molecules on the endothelial cell mem-
brane and accumulation of monocyte/macrophages, dendritic cells, natural killer 
(NK) cells, and B and T lymphocytes are some of the mechanisms that participate 
in the infl ammatory response in the vascular wall [ 44 ]. Patients with cardiovascular 
disease present indeed increased expression and plasma concentration of infl amma-
tory markers and mediators [ 41 ,  45 ,  46 ]. High levels of infl ammatory mediators, 
particularly IL-6, ICAM-1, and C-reactive protein (CRP), may be independent risk 
factors for the development of hypertension [ 47 ,  48 ] and have been associated with 
increased risk of diabetes [ 49 ] and cardiovascular disease. CRP levels correlate with 
insulin resistance, systolic blood pressure, pulse pressure, and hypertension [ 49 ,  50 ] 
and with markers of endothelial dysfunction (plasma levels of von Willebrand fac-
tor, tissue plasminogen activator, and cellular fi bronectin) [ 51 ]. 

 A role of innate immunity in mechanisms that contribute to the low-grade infl am-
matory response in hypertension has also been described. In an osteopetrotic mouse 
model that is defi cient in vascular macrophages because of a mutation in the mCSF 
gene ( csf1 ), neither Ang II nor DOCA-salt induced hypertension or vascular remod-
eling [ 5 ]. Dendritic cells, which are antigen presenting cells originating in the bone 
marrow but present in other tissues, including the vasculature, are critically involved 
in activation of adaptive immune responses. As such, their presence in the vascula-
ture in hypertension and atherosclerosis suggests that they are associated with dis-
ease onset and progression through priming of T cells in cardiovascular disease in 
response to danger-associated molecular patterns (DAMPs) [ 52 ]. Recent evidence 
also suggests that different subsets of T lymphocytes may be involved in the mecha-
nisms leading to the infl ammatory response described in cardiac and metabolic dis-
eases when an imbalance exists between the pro-infl ammatory T helper lymphocytes 
(Th) 1, Th2, and Th17 and the anti-infl ammatory T regulatory (Treg) subsets [ 44 ]. 
Mice defi cient in T and B lymphocytes presented blunted hypertensive response to 
Ang II and DOCA-salt as well as reduced vascular remodeling in response to Ang II 
[ 53 ]. Effector T cell but not B lymphocyte adoptive transfer corrected the lack of 
response to Ang II. The central and pressor effects of Ang II are also critical for 
T-cell activation and development of vascular infl ammation [ 54 ]. One of the mecha-
nisms whereby T lymphocytes participate in hypertension and peripheral infl amma-
tion is in response to increased oxidative stress [ 55 ]. We recently showed that 
adaptive immunity could be enhanced as a result of a genetic predisposition with loci 
on chromosome 2 (which carries many pro-infl ammatory genes) in a consomic strain 
of rats (SSBN2), which contains the genetic background of hypertensive Dahl-salt- 
sensitive rats and chromosome 2 from Brown-Norway normotensive rats [ 56 ]. The 
presence of the normotensive chromosome 2 was associated with upregulation of 
Treg markers, which were depressed in the Dahl-salt-sensitive rats. Enhanced Treg 
(CD8+ and CD4+ lymphocytes which were CD25+) and increased expression of 
Foxp3 (transcription factor that is a marker of Treg) as well as IL-10 and TGF-beta 
production (typically produced by Treg) were found in consomic rats, and the oppo-
site in Dahl rats. Thus Treg decrease and T effector upregulation are associated to 
increased blood pressure and vascular infl ammation. The potential protective role of 
Treg in cardiovascular disease is supported by the more recent evidence that adoptive 
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transfer of Treg cells ameliorated cardiac damage and improved electric remodeling 
in Ang II-infused mice, independently of blood pressure-lowering effects [ 57 ], sug-
gesting a role of T regulatory lymphocytes in the pathogenesis of blood pressure-
induced cardiovascular remodeling. We have also recently shown that Treg adoptive 
transfer lowered blood pressure and protected from vascular remodeling in mice 
infused with either angiotensin II [ 58 ] or aldosterone [ 59 ]. 

 Interestingly, infl ammation may activate the RAAS, which in turn may further 
contribute to vascular remodeling and hypertension. Activators of nuclear receptors, 
such as the peroxisome proliferator-activated receptors (PPARs), downregulate the 
vascular infl ammatory response in experimental animals [ 60 ] and decrease serum 
markers of infl ammation in humans [ 61 ]. Thus, PPARs may be endogenous modu-
lators of the infl ammatory process involved in vascular structural changes occurring 
in hypertension. On the other hand, Ang II downregulates PPARs through activation 
of nuclear factor (NF)-κB [ 62 ]. Also, gene inactivation of PPAR gamma was shown 
to be associated with enhanced responses to Ang II including greater hypertrophic 
and infl ammatory response as well as enhanced endothelial dysfunction [ 63 ]. 

 Arterial aging is a predominant risk factor for the onset of cardiovascular dis-
eases such as hypertension; on the other hand, hypertension is an important factor 
in accelerated aging of the vasculature, resulting in premature cardiovascular dis-
ease. The hypertensive vascular phenotype and the age-associated changes in blood 
vessels are similar. They include structural changes consisting in increased arterial 
wall thickness, reduced compliance, increased stiffness, and decreased lumen diam-
eter and an associated pro-infl ammatory phenotype [ 64 ,  65 ]. These structural 
changes are associated with impaired endothelial function, caused by oxidative 
stress and decreased production of vasodilators (NO and prostacyclins). The activa-
tion of the RAS and increased oxidative stress, decreased telomerase activity and 
telomere shortening, DNA damage, and genomic instability are all important pro-
moters of cellular senescence [ 64 ].  

5.3     Remodeling of Small Resistance Arteries and Arterioles 
in Hypertension 

 As mentioned above, increased peripheral vascular resistance appears to be a mech-
anism for diastolic or systo-diastolic hypertension found mostly in younger indi-
viduals with essential hypertension [ 65 ] which results mostly from resistance to 
fl ow in small arteries (with a lumen diameter of 100–300 μm) and arterioles (smaller 
than 100 μm) [ 1 ,  18 ]. Since according to Poiseuille’s law resistance is inversely 
related to the fourth power of the radius of the blood vessel, small decreases in the 
lumen diameter will increase resistance to a signifi cant degree. Remodeling of resis-
tance arteries (reduced vascular lumen with increased media thickness not corre-
lated with stiffness changes) may be functional, mechanical, and structural [ 1 ]. 
Increases in the media-to-lumen ratio (M/L) are typical and the most reproducible 
parameter to compare changes in small arteries in subjects followed in repeat stud-
ies and when comparing different subjects [ 1 ,  18 ]. Our work has suggested that 
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increased M/L of small arteries may be the most prevalent and possibly the earliest 
alteration that occurs in the cardiovascular system of hypertensive patients aged less 
than 60 years of age [ 16 ] and may be much more frequent than and in fact precede 
endothelial dysfunction in humans. Enhanced M/L of small arteries has been dem-
onstrated to be associated with increased cardiovascular events, especially in high-
risk patients [ 66 ]. 

 In stage 1 hypertension in individuals younger than 60 years, eutrophic remodel-
ing of small arteries and arterioles is usually found (Fig.  5.1 ). In this type of remod-
eling, the outer diameter and the lumen are reduced, but the media cross section 
does not increase; thus there is no vascular hypertrophy [ 1 ,  18 ]. Smooth muscle 
cells are rearranged around a smaller lumen leading to increased media width and 
M/L. Whether vascular smooth muscle cells are increased in volume, length, or 
number remains a subject of controversy. Media growth toward the lumen com-
bined with enhanced apoptosis in the periphery of the vessel may also contribute to 
these changes [ 32 ]. The smaller lumen decreases circumferential tension, according 
to Laplace’s law, and the increased media width reduces media stress, which pro-
tects the vessel’s wall from the effects of elevated blood pressure. When blood pres-
sure elevation is severe or of long duration, increased wall stress results in 
hypertrophic remodeling of small arteries and arterioles as smooth muscle cell 
growth becomes greater than apoptosis and media cross-sectional area is enhanced 
[ 1 ,  67 ,  68 ]. Eutrophic and hypertrophic remodeling may be found in the same exper-
imental animals in different arteries. Interestingly, hypertrophic remodeling of 
resistance arteries is found, particularly in humans, in renovascular hypertension 
[ 68 ], diabetes [ 69 ,  70 ], and acromegaly [ 71 ]. In experimental animals, hypertrophic 
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remodeling can be demonstrated in those hypertensive models that are associated 
with excess endothelin, such as one-kidney one-clip renovascular hypertension, 
DOCA-salt hypertension, aldosterone-salt hypertension, and Dahl-salt-sensitive 
hypertension. Folkow’s model (Fig.  5.2 ) demonstrates that at all levels of vascular 
constriction, arteries with eutrophic remodeling generate more resistance to blood 
fl ow than arteries with hypertrophic remodeling, which in turn, generate more resis-
tance than those from normotensive animals.    

5.4     Rarefaction of Arterioles and Capillaries 

 Rarefaction is another type of remodeling that is found in hypertension. It occurs at 
the level of small arterioles with a lumen diameter smaller than 40 μm and  capillaries 
[ 1 ]. With rarefaction, the density of arterioles and capillaries in tissues is diminished 
and consequently vascular resistance is increased [ 72 ,  73 ] and tissue perfusion is 
impaired [ 74 ]. Arteriolar rarefaction is functional initially as a result of vasocon-
striction, and later anatomical and permanent, followed by rarefaction of capillaries 
with decreased tissue perfusion. Decreases in tissue perfusion have been associated 
with vascular complications and cardiovascular events [ 75 ].  

    Conclusion 
 Vascular remodeling and endothelial dysfunction in small resistance arteries are 
features regularly reported in hypertension. Functional, structural, and mechani-
cal alterations of resistance arteries are probably the earliest alterations in the 
vasculature found in hypertensive subjects younger than 60 years of age. They 
take the form of eutrophic inward remodeling accompanied by endothelial dys-
function associated eventually to enhanced stiffness. These changes have been 
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shown to have prognostic signifi cance with respect to outcomes. They could con-
tribute through wave refl ection to increases in stiffness of large arteries and thus 
to systolic hypertension and the increased pulse pressure found in older subjects 
with hypertension. Alternatively, increased large artery stiffness could increase 
pulsatility, which when conducted into the microcirculation, may cause injury 
and remodeling of small arteries and arterioles. Activation of the RAAS plays a 
key role in vascular remodeling and endothelial dysfunction through redox-sen-
sitive pathways that promote growth and infl ammation in the blood vessel wall.     
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