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        Associated with deleterious changes in the structure and function damage to large 
arteries is a major risk factor contributing to the cardiovascular complications in 
hypertension, diabetes, chronic kidney disease, and chronic infl ammatory dis-
eases [ 1 – 3 ]. In many circumstances, these changes are in many aspects similar to 
those occurring with aging, with this age-related process accelerated and intensi-
fi ed in diabetes and chronic kidney disease (CKD) [ 4 ,  5 ]. Although atherosclero-
sis and plaque-associated occlusive lesions are the frequent underlying causes of 
these complications, the spectrum of arterial alterations is broader, including 
remodeling of large arteries and stiffening of arterial walls, with consequences 
that differ from those due to atherosclerotic plaques burden [ 6 ,  7 ]. Arterial stiffen-
ing is related to intrinsic changes in biophysical and geometric characteristics of 
arteries with increased calcium content and arterial calcifi cations (AC) as one of 
the most frequent consequences of arterial damage associated with deleterious 
changes in the structure and function of the arterial system [ 7 – 10 ]. AC are fre-
quently associated with mineral and bone disorders which play an important 
pathophysiological role in the pathogenesis and progression of arterial damage 
[ 11 – 16 ]. Many studies showed that the extents of calcifi cations are associated 
with subsequent cardiovascular mortality and morbidity beyond established con-
ventional risk factors [ 17 – 20 ]. 
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11.1     Arterial Calcifications and Mineral and Bone Disorders 

 AC develop in two distinct sites: the intima and media layers of the large and medium-
sized arterial wall. These two forms are frequently associated. Intima plaque calcifi -
cation occurs in the context of common atherosclerosis and progresses in parallel 
with the plaque evolution. Calcium accumulation in the media (Mönckeberg’s scle-
rosis or mediacalcosis) of arteries is observed with high frequency with aging, diabe-
tes, and CKD [ 4 ,  5 ,  10 ,  11 ]. For a long time, it was thought that these calcifi cations 
resulted from passive deposition of calcium salts as the consequence of extracellular 
fl uid volume oversaturation with a high calcium−phosphate product. Experimental 
and clinical studies indicate that cardiovascular calcifi cations are an active process 
that is regulated by a variety of genes and proteins involved in mineral and bone 
metabolism. AC is a process akin to bone formation, regulated by an equilibrium 
between factors promoting or inhibiting calcifi cation [ 21 – 23 ]. Emerging evidence 
indicates that senescence, diabetes, infl ammation, dyslipidemia, oxidative stress, 
estrogen defi ciency, and vitamin D and K defi ciencies could provide stimuli for 
osteogenic phenotype expression process involving differentiation of contractile vas-
cular smooth muscle cells, pericytes, and calcifying vascular cells into phenotypi-
cally distinct, “osteoblast-like” cells with secretory phenotype [ 24 – 31 ]. 

 Aging is the most typical condition associated with the development of vascular 
calcifi cations. VSMC senescence is associated with the switch to a secretory pheno-
type (senescence-associated secretory phenotype, SASP) that initiates osteoblastic 
transition with calcifi cations and artery-wall remodeling [ 32 ,  33 ]. SASP is linked to 
low-grade arterial infl ammation with production of proinfl ammatory cytokines (IL- 
1, TNF-α) and oxidative stress all factors leading to NF-κB activation [ 34 ]. NF-κB 
activity, infl ammation, and excessive production of reactive oxygen species (ROS) 
are associated with several features of the progeroid syndrome, such as accumula-
tion of prelamin A [ 35 ], low telomerase activity and telomere shortening [ 36 ], and 
DNA damage [ 37 ], all conditions being associated with the development of an 
osteogenic program by activation of BMP 2/4 and Wnt/β-catenin signals (Fig.  11.1 ).  

 Molecular imaging in vivo has demonstrated infl ammation-associated osteogen-
esis in early stages of atherosclerosis [ 38 ], confi rming the role of infl ammation in 
triggering the metabolic cascade leading to the transformation of VSMC into an 
osteogenic phenotype. Macrophage activation releases proinfl ammatory cytokines 
(such as IL-6 and TNFα) and proteolytic enzymes (metalloproteinases MMP 2, 
MMP 9, and cathepsin S) whose release is associated with osteochondrocytic 
VSMC transdifferentiation [ 23 ,  38 ]. IL-6 and TNFα are the fi rst steps for the activa-
tion of BMP2:BMP4 and Msx2 which promote calcifi cation by activating paracrine 
Wnt signals and nuclear activation and localization of β-catenin, an indispensable 
coregulator of expression of Runx2, osterix, and Sox9 which are all transcription 
factors associated with the osteochondrogenic phenotype conversion of VSMC and 
pericytes [ 23 ,  38 – 40 ]. The second aspect of infl ammation-related calcifi cation is the 
proteolytic activation of elastolysis and degradation of extracellular matrix. The 
fragmentation of elastic lamellae and release of biologically active elastin-derived 
peptides also promote VSMC dedifferentiation and calcium deposition [ 41 ]. 
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 In the presence of normal serum, VSMC do not calcify. Serum inhibits spontane-
ous calcium and phosphate precipitation in solution [ 42 ], indicating that systemic 
calcifi cation inhibitors are present in the serum. VSMC which constitutively express 
potent local or systemic inhibitors of calcifi cation [ 21 ], such as matrix GLA protein 
[ 43 ], may limit AC by binding to bone morphogenic proteins [ 44 ]. Osteopontin and 
osteoprotegerin are potent inhibitors of AC in vivo, and inactivation of their genes 
enhances the calcifi cation process [ 45 ,  46 ]. Fetuin-A (AHSG or α 2- HS glycoprotein) 
is a potent circulating AC inhibitor that is abundant in the plasma [ 47 ]. Pyrophosphate 
is another potent inhibitor. In vitro, phosphate-stimulated apatite production can be 
completely prevented by adding pyrophosphates that antagonize the cellular 
sodium–phosphate cotransport system [ 48 ]. 

 While in the general populations the presence of cardiovascular calcifi cations 
could be observed in the absence of overt mineral metabolism disorders in several 
clinical conditions such as CKD/ESRD, the associations between vascular calcifi -
cations are associated with deterioration of mineral and bone metabolism caused 
by changes in serum phosphorus and calcium and disruption of endocrine and 
humoral pathways including parathyroid hormone (PTH), calcitriol, FGF-23/
Klotho, and vitamin D. In vitro, calcium and phosphate promote both synergisti-
cally and independently VSMC calcifi cation [ 28 ,  49 ]. Recent fi ndings indicate that 
hyperphosphatemia, through activation of mitochondrial respiration, stimulates the 
production of ROS with fi nal activation of NF-κB, enhancing Runx2 (Cbfa1) acti-
vation [ 50 ]. 
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  Fig. 11.1    Osteochondrogenic BMP- Msx2-Wnt signaling in arterial calcifi cations       
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 Hyperphosphatemia is tightly related to disruption of Klothe-FGF23 axis [ 51 , 
 52 ]. Several experimental models and clinical conditions such as CKD are charac-
terized by increased FGF23 and decreased Klotho activity [ 53 ,  54 ]. In animal mod-
els, Klotho and FGF23 knockout animals are characterized by short life span, 
accelerated aging phenotype, extensive arterial calcifi cations, osteoporosis, and 
hyperphosphatemia [ 52 ,  55 ,  56 ]. Suppression of phosphate from the diet or knock-
out of gene for Pit1 and sodium-dependent phosphate uptake restores normal life 
span and phenotype [ 52 ,  55 ]. Klotho defi ciency increases expression of Pit1 and 
expression of Runx2 associated with secretory osteogenic phenotype of VSMC 
[ 53 ]. In animal models, FGF23 is not directly associated with vascular calcifi cations 
since neutralization of FGF23 with specifi c antibodies results in extensive arterial 
calcifi cations and premature death of animals [ 57 ]. 

 Decreased Klotho expression and increased FGF23 precede the elevation of par-
athormone (PTH) secretion also responsible for mineral and bone homeostasis [ 58 ]. 
Chronic elevation of PTH upregulates RANKL and downregulates OPG gene 
expression and enhances the RANKL–OPG ratio, RANK–RANKL–OPG (receptor 
activator of nuclear factor (NF)-κB–receptor activator of NF-κB ligand–osteoprote-
gerin) signaling pathway, and the RANKL–OPG ratio [ 59 – 61 ]. Once bound to 
RANK, RANKL activates the alternative NF-κB pathway and initiates production 
of infl ammatory cytokines and activates MSx2/Runx2 pathway. Results of a recent 
study demonstrated that RANKL increased VSMC calcifi cation directly through 
BMP4 upregulation, providing autocrine stimulus and activation of Wnt signaling 
[ 62 ]. The arterial calcifi cations observed with increased PTH secretion are attrib-
uted to RANKL-mediated bone resorption by osteoclast-associated excessive cal-
cium and phosphate releases.  

11.2     Bone–Vascular Cross-Talk 

 There is growing clinical and experimental evidence linking bone pathology and dif-
ferent functional and structural characteristics of cardiovascular system. Several pop-
ulation-based longitudinal studies demonstrated associations between osteoporosis 
and AC or arterial stiffness, as well as an association between the progression of aortic 
calcifi cations and decreased bone mineral density [ 14 – 17 ,  63 – 65 ]. The mechanisms 
accounting for these associations are not well understood. Several possibilities should 
be considered: (1) common risk factors for osteoporosis or bone remodeling and vas-
cular calcifi cations, (2) role of primary vascular pathologies on bone function and 
remodeling, and/or (3) the participation of bone cells in vascular remodeling. 

11.2.1     Common Factors 

 Clinical data show that osteoporosis and vascular calcifi cations are infl uenced by sev-
eral common risk factors, such as age, menopausal status, diabetes, dyslipidemia with 
infl ammation, and oxidative stress as the fi nal common mechanisms [ 27 ,  66 – 69 ]. 
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 Aging is associated with bone loss and with development of vascular calcifi ca-
tions especially in postmenopausal women [ 66 ,  67 ]. Nevertheless, this bone–vascu-
lar association remained signifi cant after adjustment for age suggesting a biologically 
linked phenomenon [ 14 ,  16 ,  65 ]. Aging is the most typical condition associated with 
the development of vascular calcifi cations. VSMC senescence is associated with the 
switch to a secretory phenotype (senescence-associated secretory phenotype, SASP) 
linked to low-grade arterial infl ammation with production of proinfl ammatory cyto-
kines associated with AC by activation of BMP 2/4 and Wnt/β-catenin signals [ 32 , 
 33 ]. Direct evidence that infl ammation was the factor linking bone remodeling and 
arterial calcifi cations was recently provided by Hjortnaes et al. who, using near- 
infrared fl uorescence molecular imaging, showed that arterial and aortic valve cal-
cifi cations inversely were correlated with osteoporotic bone remodeling [ 69 ]. 
Chronic infl ammation is also associated with unbalanced bone formation and bone 
resorption [ 70 ]. 

 Normal bone remodeling is characterized by a balance between osteoclast bone 
resorption and osteoblast bone matrix deposition. This balance is disrupted in osteo-
porosis and is infl uenced by the RANKL–OPG equilibrium. The discovery that 
OPG-defi cient mice develop severe arterial calcifi cations concomitantly with severe 
osteoporosis, cortical and trabecular bone porosity, and their high fracture rate pro-
vided robust evidence pointing to the RANKL–OPG disequilibrium as a possible 
common factor linking osteoporosis and arterial calcifi cations [ 71 ]. RANKL acti-
vates the alternative NF-κB pathway and initiates production of infl ammatory cyto-
kines and arterial calcifi cations in parallel with RANKL-mediated bone resorption 
by osteoclasts whose apoptosis is suppressed osteoclast apoptosis. The association 
between arterial calcifi cation and osteoporosis is most typically observed in post-
menopausal women. It could largely refl ect estrogen defi ciency since estrogen 
inhibits RANKL-signaling and induces osteoblast OPG expression [ 72 ]. 

 Osteopenia, poor fracture healing, arterial calcifi cations, and higher risk of hip 
fractures are frequently found simultaneously in patients with diabetes mellitus 
[ 73 ]. Increased AGE accumulation could be the common factor linking bone and 
arterial pathologies in diabetes. Endogenous ligands for AGE receptors (RAGE) 
trigger activation of transcription factor NF-κB and ROS signaling, leading to the 
production of proinfl ammatory cytokines and activation of VSMC osteogenic BMP/
Wnt signaling through Runx2 upregulation inducing AC [ 74 ]. In vitro, through their 
accumulation in diabetes, AGEs stimulate osteoblast apoptosis and modify osteo-
clast activity by delaying bone regeneration and contributing to defective bone for-
mation [ 75 ,  76 ].  

11.2.2     Arterial Disorders and Bone Alterations 

 Atherosclerosis also affects bone circulation and impaired bone perfusion. With 
aging, bone arteries and arterioles are subjected to arteriosclerosis, with reduced 
bone marrow blood supply that renders the marrow ischemic and diminishes the 
cortex blood supply, which is replaced by the periosteal circulation [ 77 ]. That a 
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link between compromised intraosseous circulation and consequent osteoporo-
sis might exist is also suggested by the observation associating decreased bone 
mineral density and peripheral artery disease [ 78 ]. Intraosseous angiogenesis 
and bone remodeling are regulated by similar cytokines and growth factors, and 
bone formation–resorption and blood supply are tightly associated [ 79 ]. Some 
results showed that, in healthy women, bone perfusion indices were lower in 
subjects with osteoporosis than those with osteopenia or normal bone–mineral 
density [ 79 ,  80 ].  

11.2.3     Bone Functions and Arterial Alterations 

 Several experimental fi ndings support that bone and osteoblast physiology are 
involved in the control of fat-tissue metabolism and adipokine release, energy 
expenditure, and insulin secretion and sensitivity, all factors directly affecting car-
diovascular function and health. Lee et al. [ 81 ] showed that osteoblasts exert endo-
crine regulation on energy metabolism, with osteocalcin (OCN) playing an important 
role. Uncarboxylated osteocalcin can regulate the expression of insulin genes and 
β-cell proliferation and adiponectin (ADPN) release and expression by adipocytes 
[ 81 ,  82 ]. In CKD patients, serum OCN was positively associated with serum ADPN 
[ 83 ]. ADPN is anti-infl ammatory, suppresses atherosclerosis, increases insulin 
secretion and sensitivity, and activates osteoblastogenesis [ 84 ]. Moreover, ADPN 
regulates arterial calcifi cations [ 85 ], and an inverse relationship was observed 
between ADPN and the progression of coronary calcifi cations [ 86 ]. In ESRD 
patients, cardiovascular calcifi cations are frequently observed in the presence of low 
bone volume and adynamic bone disease, characterized by decreased osteoblast 
numbers/activity [ 15 ,  87 ] suggesting that bone cells could infl uence vascular func-
tion and calcifi cation. In a recent study in ESRD patients, it has been shown that 
peripheral artery disease with extensive calcifi cations is associated with low osteo-
blastic activity characterized by pronounced osteoblast resistance to PTH [ 87 ]. 

 In conclusion, the results of cross-sectional studies on general populations and 
several clinical conditions showed an association between atherosclerosis/arterio-
sclerosis and arterial calcifi cations. The two types of calcifi cations, i.e., intimal and 
medial, have a different impact on arterial functions. The intimal calcifi cation as a 
part of advanced atherosclerosis results in the development of plaques and arterial 
lumen decrease or occlusion and ischemic lesions downstream. Medial calcifi ca-
tions result in the stiffening of arterial walls with increased systolic and decreased 
diastolic pressures. Arterial changes occur in relation with mineral and bone disor-
ders, including osteoporosis, low bone volume, and high or low bone activity. The 
pathophysiology and biological links between bone and arterial abnormalities sug-
gest the existence of bone-vascular cross-talk and common regulatory factors shared 
by vascular and bone systems. 

 This leads to cardiac pressure overload, left ventricular hypertrophy, and 
decreased myocardial perfusion. The two types of calcifi cations are associated with 
increased mortality.      
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