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Abstract. Composite structures are used in the aerospace, stars and automotive es-
pecially the structures made of composite sandwich panels which are subject to vi-
bration harmful sources of noise and mechanical failures. In this paper, we propose 
to analyze the influence of the shapes of displacement fields on the vibration beha-
vior of a sandwich beam. For this energy method based on the minimum energy is 
used to achieve the equations frequencies and a sandwich beam modes. The kinetic 
and potential energies of the skins are, in turn, derived from the classical laminate 
theory. Several fields of polynomial movements are tested. Other parts will study the 
effects of rotational inertia, taking into account the bending energy of the body of 
sandwich NIDA. We analyzed the frequencies and modes based on different para-
meters. The experimental data are obtained for recessed-free conditions limits excit-
ing near underrun using an impact hammer. The vibrational response is measured 
with a laser vibrometer. The natural frequencies are obtained experimentally by 
modal analysis. Numerical simulations complete this work for two types of sand-
wich Nomex paper and aluminum. The natural frequencies obtained from the  
theoretical formulation for numerical solution of the system are compared with ex-
perimental results and the results of numerical simulation. The very good agreement 
between the results shows that the model is correct. 

Keywords: Displacement, energy, sandwich, Eigen frequency, modal deforma-
tion. 

1 Introduction 

Energy methods are among the most important methods to study the vibration  
behavior of beams. The problem with these methods is that they require the  
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introduction of a field of kinematic ally admissible displacement or statically ad-
missible stress or both at once.  

The accuracy of the method will therefore depend on the right choice of these 
fields. In the literature, there are several choices of the field selection. But it is dif-
ficult to decide on their preferences depending on their application.  

Mindlin [1] proposed a model to study the transverse shear of a thick sandwich 
plate isotope; this model is known by the theory of Mindlin.  

Yarlagadda Lesieutre and [2] have developed an analytical method based on the 
theories of Rayleigh-Ritz to determine the influence of the change of bends orien-
tation directions, temperature and thickness of the laminated plates on the Fre-
quencies and the damping of the bending vibration of a composite plate.  

Wang [3] compared the classical theories of thin plates with the theories of 
Mindlin thick plates then he studied the bending vibrations of a rectangular face 
and core isotropic sandwich panel.  

Meunier and Shenoi [4] introduced the mechanical properties of the elements 
which form the sandwich plate in the analytical equations of elastic-viscoelastic 
model and the results of the differential equations give their frequencies and the 
factors influencing them.  

Soula et al. [5] have studied the influence of the vibration on the kinematic be-
havior of laminated plates. They used three theories plates (Kirchhoff, Mindlin 
and Reddy) to estimate the natural frequencies and modal damping of symmetric 
and antisymmetric plates.  
Maheri and Adams [6] extended the tests used for measuring the damping of stra-
tified monolithic laminated beams in bending vibration for NIDA sandwiches 
beams. The contribution due to the damping components, in particular the fiber 
orientation of the skins, was considered. They compared their experimental results 
with theoretical study.  

Banerjee [7] applied the Timoshenko theory on a beam using the coupling of 
bending and torsion and taking into consideration the rotational inertia. The cha-
racteristics of the composite are taken experimentally as if the material is homo-
geneous.  

Nilsson et al [8] used equivalent homogeneous characteristics to study the 
bending vibrations of a sandwich beam from the Hamilton integral taking into 
consideration the transverse shear, the rotational inertia and distortion. They write 
the dispersion equation giving the wave number for the three modes according to 
the frequency for some boundary conditions and then they find the modal defor-
mations and dynamic stiffness, the formulation is then validated by a test.  

Blevins [9] presented a detailed list of formulas for determining the natural fre-
quencies and their modes corresponding to various structure shapes.  

On this paper, we study the influence of the displacement fields shape under 
different boundary conditions of a sandwich beam on the natural frequencies and 
modal deformations.  

This study which is applied on two different beams shall give us more ideas 
about the influence of various fields on the modeling accuracy.  
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An experimental study of two sandwich beams also allows us to understand 
more this field by comparing the results of tests and calculations on the one hand 
and various tests according to the excitation and measuring points on the other. 

2 Mathematical Formulation 

We choose an n order polynomial transversal displacement depending of the con-
stants (1..n = i-1) and the kinetic and potential energies are determined as follows. 
The potential energy of a sandwich beam is the sum of the bending elastic defor-
mation energy of and traction of both upper and lower faces as well as the shear 
and bending energy of the body.  
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Fig. 1 Nida Sandwich beam 

The elastic deformation of the lower side can be written as follows: 
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With the same method we determine the energy of elastic bending deformation 
of the upper layer:         
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To determine the tensile energy of one of the faces we must first determine the 
normal force to this surface and its extension in the parallel axis to the face.  

FLN  : The normal Force at the lower face and FUN  : the normal force at the 

upper face           
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The Formula of  fσ  which is the stress in an arbitrary face of the fiber is as 

follows:   
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Substitute (7) in (5) and (6) we obtain: 
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Using the integral we determine the normal forces at the both the upper and the 
lower faces: 
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NFV  : is the tensile energy of the lower layer of the normal force of this face.  

  xLε  : The elastic deformation in the x direction of the lower face. 

   xUε  : The elastic deformation in the x direction of the upper face. 
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The bending elastic deformation energy of the bottom layer per unit width is as 
the following: 
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Substituting (10) and (14) in (12) we obtain: 
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Substituting (11) and (15) in (13) we obtain:  
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The body Shear energy (Vc) par unit width is as following: 
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With: 
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The body bending energy is as following: 
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CE  : Young Modulus of core 

From the previous formula we determine the total potential energy which is:  
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            (22) 

The kinetic energy of the vibration of the sandwich panel is equal to the sum of 
kinetic energy of translational and rotational kinetic energy. 
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The vibration system is considered as conservative where iA (i =1..n-1) are 

constants. The resolve of the obtained system allows us to determine (n-1) natural 
frequencies and their shape mode. 

3 The Beam Results 

First, we presented the mechanical and geometrical characteristic of test 
specimens analyzed 

Table 1 Geometrical and mechanical characteristics of used specimen 

 NIDA in Al  NIDA in NOMEX 

Length (a) in mm 250   250  

Width (b) in  mm 53   53  

Thickness core (c) in mm 5   8  

Each layer thickness lu ff =  in mm 0.75   0.5  

Density ρ in Kg/m3 573   221  

cE  in Pa 130.106  2.5 .106 

pE  in Pa 70.109  8.63 .106 

XZG  in Pa 5600.106  70.109 

ν  0.33  0.33 
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Second, we take a beam where field checking the no translation and not the 
non-rotation on the fixed end section x=0 is: 

We present only the results where the differences between fields are observa-
ble. We mention that the fields are the following: 

Field 1: order 2 polynomial              Field 2: order 3 polynomial  
Field 3: order 4 polynomial              Field 4: order 5 polynomial 
Field 5: order 6 polynomial  
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Fig. 2 First natural frequency  depending 
of several parameters 

1500

2000

2500

3000

3500

4000

Champs 2 Champs 3 Champs 4 Champs 5

sans prise en compte de l’inertie rotationnelle et de la flexion dans le corps

Avec flexions corps

Avec effet d'inertie rotationnelles

avec prise en compte de l’inertie rotationnelle et  flexion dans le corps

 

Fig. 3 Second  natural frequency  depend-
ing of several parameters 

The first pulse from the first displacement fields (order 2 polynomial) with only 
one variable is widely superior to other values which tend to the same region limit 
370 rad/s if we consider both the effect of of rotational inertia and the bending 
body. The value of the 2nd natural frequency tends to a limit close to 2300 rad/s 
without the effect of the rotational inertia and converges to 2200 rad / s from the 
third field (order 4 polynomial). The value of the third natural frequency con-
verges only from the fourth field (order 5 polynomial).  

 

 
 

Fig. 4 first modal deformation comparison 
between different fields 

Fig. 5 second modal deformation compari-
son between different fields  

Fileds 1   Filds 2    Filds 3   Filds 4 Fileds 1    Filds 2    Filds 3     Filds 4 

------ Fileds 1  ∗ Filds 2 -------  Filds 3  

 + Filds 4   *Fileds 5  - - -  

∗ Filds 2 -------  Filds 3   + Filds 4   

*Fileds 1  - - -  Numerical  
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Fig. 6 Third modal deformation compari-
son between different fields 

Fig. 7 Fourth modal deformation compari-
son between different fields 

It can be concluded that the high order frequencies require more order to stabil-
ize and more the mode order rises more we need a higher order polynomial. 

We notice that the first modal deformation obtained from the field (1) is not 
close to other deformed because of the function that characterizes the displace-
ment field does not define the shear energy of the body ( )0/ 33 =∂∂ xW . Even the first 

obtained natural frequency is clearly superior to the others results, therefore this 
result will be eliminated from our comparative study.  

When we increase the number of parameters that characterize the displacement 
fields we notice that the natural frequencies and modal deformed curves converge 
to a common solution.  

   Each time we increase the number of parameters that characterize the dis-
placement fields, the calculations become more and more difficult and sometimes 
we can‘t solve the systems of the obtained  equations where we find  unusable 
results (problems with the field (5)), that’ s why we will consider the results  
obtained from the field (4) as a reference.  

From figure 5, 6 and 7 we remark that the deformed reach their max and min in 
the same x-axis and also get canceled at the same points. 

4 Experimental Study 

4.1 Test Presentation 

4.1.1 Used Material Presentation 

The test rig, shown in Figure 8, consists of a massive steel structure for embedding 
beams and insulation from external vibrations. The beams are excited by an in-
strumented hammer connected to the acquisition system. The vibrational response 
of the beam is itself measured with a laser vibrometer. 

-------  Filds 3   + Filds 4   *Fileds 5  

 - - - Numerical  simulation 

+ Filds 4   *Fileds 5 

- - - Numerical  simulation
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Fig. 8 Test rig with vibrometer laser 

Performing a test of static bending with considering the effect of shear force 
(the thickness of the specimen is relatively large) allows us to determine the static 
stiffness and EIz. In these calculations the specimen is assumed to be elastic  
homogeneous isotropic and linear.  

The last two assumptions are verified in the used loading area. 

4.1.2 Experimental Device 

The specimen which is fixed at one end and free on the other is suspended verti-
cally to avoid the effect of static deflection.  

The excitation hammer (Figure 10) with rubber tip and incorporated force sen-
sor excites the bar horizontally with a transient load of small amplitude.  

The bi- channels spectrum analyzer calculates the transfer function averaged 
over several samples. The coherence function is checked at each test and is close 
to one.  

 

 

Fig. 9 Experimental device- Hammer 
shock sensor 

Fig. 10 Experimental device- Hammer shock 
sensor  
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4.2 Test Results 

During the tests we used a single excitation point (at x = a) is the free end and the 
acceleration is measured in a sufficiently close to the fixed end (x = a / 6).  

The results of the transfer functions in amplitude and phase are shown in the 
following section.  

The choice of the frequency band is imposed by the bandwidth of the accele-
rometer concerning the adhesive assembly. 

 

Fig. 11 Transfer function magnitude and 
phase of the Al beam 

 

Fig. 12 Transfer function magnitude and 
phase of the Nomex 

5 Numerical Simulation 

Fig. 13 First modal deformation of flexion in 
plan (o,x,y) 

Fig. 14 First modal deformation of flexion 
in plan (o,x,z) 
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Fig. 15 second modal deformation of flexion 
in plan (o,x,y) 

Fig. 16 First  modal deformation of torsion 

Fig. 17 Third modal deformation of flexion 
in plan (o,x,y) Fig. 18 Fourth  modal deformation of flex-

ion in plan (o,x,z) 

6 Comparative Analysis 

Comparing results among them, we see a slight variation between the natural 
frequencies and modal deformation determined digital simulation compared with 
analytical and experimental results this variation may be due to the not taken into 
account the effect of the glue between the layers has a significant effect known 
vibration damping. 

7 Conclusion 

The shape of the displacement field has a great influence on the natural frequency, 
the right choice is essential to reach a common solution. The second value of the 
first and the third natural frequency converge respectively from a displacement 
field of 3, 4 and 5 order polynomial. 
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For each form of the displacement field we notice the relationship between the 
coefficients of the matrix which may be written as follows 

For n order polynomial: 
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Where ijL  can be in a general form. 
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With relations between the ijN coefficients. 

We can suggest to increase the degree of polynomial that characterizes the dis-
placement field or to modify its shape in order to reach at a general relationship. 

We can also choose a field of displacement according to the three direction  
(x, y, z) wherein for better vibration behavior of our beam while taking account of 
the torsion and bending in both horizontal and vertical plane.  
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