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Abstract. This paper presents a finite element model for sound transmission anal-
ysis through a double sandwich panels with viscoelastic core inserted in an infinite
baffle. The proposed model is derived from a multi-field variational principle in-
volving structural displacement of the panels and acoustic pressure inside the fluid
cavity. To solve the vibro-acoustic problem, the plate displacements are expanded as
a modal summation of the plate’s real eigenfunctions in vacuo. Similarly, the cavity
pressure is expanded as a summation over the modes of the cavity with rigid bound-
aries. Then, an appropriate reduced-order model with mode acceleration method
by adding quasi-static corrections is introduced. The structure is excited by a plane
wave. The radiated sound power is calculated by means of a discrete solution of
the Rayleigh Integral. Fluid loading is neglected. Various results are presented in
order to validate and illustrate the efficiency of the proposed reduced finite element
formulation.

Keywords: double-wall, viscoelastic, vibroacoustic, finite element, modal reduc-
tion.

1 Introduction

Double-wall structures are widely used in noise control due to their superiority over
single-leaf structures in providing better acoustic insulation. Typical examples in-
clude double glazed windows, fuselage of airplanes and vehicles, etc. Various the-
oretical, experimental and numerical approaches have been investigated to predict
the sound transmission through double walls [1, 2, 3].

By introducing a thin viscoelastic interlayer within the panels, a better acous-
tic insulation is obtained. In fact, sandwich structures with viscoelastic layer are
commonly used in many systems for vibration damping and noise control. In such
structures, the main energy loss mechanism is due to the transverse shear of the
viscoelastic core [4, 5].
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In the first part of this paper, a non-symmetric finite element formulation of
double-wall sandwich panels with viscoelastic core is derived from a variational
principle involving structural displacement and acoustic pressure in the fluid cav-
ity. Since the elasticity modulus of the viscoelastic core is complex and frequency
dependent, this formulation is complex and nonlinear in frequency. Therefore, the
direct solution of this problem can be considered only for small size models. This
has severe limitations in attaining adequate accuracy and wider frequency ranges
of interest. An original reduced order-model is then proposed to solve the problem
at a lower cost. The proposed methodology, based on a normal mode expansion,
requires the computation of the uncoupled structural and acoustic modes. The un-
coupled structural modes are the real and undamped modes of the sandwich panels
without fluid pressure loading at fluid-structure interface, whereas the uncoupled
acoustic modes are the cavity modes with rigid wall boundary conditions at the
fluid-structure interface. It is shown that the projection of the full-order coupled fi-
nite element model on the uncoupled bases, leads to a reduced order model in which
the main parameters are the classical fluid-structure and residual stiffness complex
coupling factors. Moreover, the effects of the higher modes of each subsystem is
taken into account through an appropriate so-called static correction. Despite its re-
duced size, this model is proved to be very efficient for simulations of steady-state
and frequency analyses of the coupled structural-acoustic system with viscoelastic
damping and the computational effort is significantly reduced.

In the last part, numerical examples are presented in order to validate and analyse
results computed from the proposed formulation.

2 Finite Element Formulation of the Coupled Problem

2.1 Local Equations

Consider a double-wall structure coupled to an acoustic enclosure shown in Fig. 1.
Each wall occupies a domain ΩSi, i ∈ {1, 2} such that ΩS = (ΩS1, ΩS2) is a
partition of the whole structure domain. A prescribed surface force density Fd is
applied to the external boundary Γt of ΩS and a prescribed displacement ud is
applied on a part Γu of ΩS . The acoustic enclosure is filled with a compressible and
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Fig. 1 Double sandwich wall structure coupled to an acoustic enclosure
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inviscid fluid occupying the domain ΩF . The cavity walls are rigid except those in
contact with the flexible wall structures noted Σ.

The harmonic local equations of this structural-acoustic coupled problem can be
written in terms of structure displacement u and fluid pressure field p [6]

divσ(u) + ρSω
2u = 0 in ΩS (1)

σ(u)nS = Fd on Γt (2)

σ(u)nS = pn on Σ (3)

u = ud on Γu (4)

Δp+
ω2

c2F
p = 0 in ΩF (5)

∇p · n = ρFω
2u · n on Σ (6)

where ω is the angular frequency, nS and n are the external unit normal to ΩS and
ΩF ; ρS and ρF are the structure and fluid mass densities; cF is the speed of sound
in the fluid; and σ is the structure stress tensor.

2.2 Constitutive Relation for Viscoelastic Core

In order to provide better acoustic insulation, damped sandwich panels with a thin
layer of viscoelastic core are used in this study (Fig. 1). When subjected to mechanical
vibrations, the viscoelastic layer absorbs part of the vibratory energy in the form of
heat. Another part of this energy is dissipated in the constrained core due to the shear
motion.

The constitutive relation for a viscoelastic material subjected to a sinusoidal
strain is written in the following form:

σ = C∗(ω)ε (7)

where ε denotes the strain tensor and C∗(ω) is the complex elasticity tensor. It is
generally complex and frequency dependent (∗ denotes complex quantities). It can
be written as:

C∗(ω) = C
′
(ω) + iC

′′
(ω) (8)

where i =
√−1.

Furthermore, for simplicity, a linear, homogeneous, viscoelastic constitutive
equation will be used in this work. In the isotropic case, the viscoelastic material
is defined by a complex and frequency dependence shear modulus in the form:

G∗(ω) = G
′
(ω) + iG

′′
(ω) (9)

where G
′
(ω) is know as shear storage modulus, as it is related to storing energy and

G
′′
(ω) is the shear loss modulus, which represents the energy dissipation effects.
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With these assumptions, the stress tensor of the sandwich structure is complex and
frequency dependent.

2.3 Finite Element Equation

After variational formulation using the test-function method [6, 7] and discretiza-
tion by the finite element method, we obtain the following matrix system of the
fluid/elastic structure with viscoelastic damping coupled problem:

[(
K∗

u(ω) −Cup

0 Kp

)
− ω2

(
Mu 0
CT

up Mp

)](
U
P

)
=

(
F
0

)
(10)

where U and P are the vectors of nodal values of u and p respectively; Mu and
K∗

u(ω) are the mass and stiffness matrices of the structure; Mpand Kp are the mass
and stiffness matrices of the fluid; Cup is the fluid-structure coupled matrix; F is
the applied mechanical force vector. Note that since the elasticity modulus of the
viscoelastic core of the sandwich panels is complex and frequency dependent, the
stiffness matrix K∗

u(ω) is also complex and frequency dependent.

3 Reduced Order Model

In this section, we introduce a reduced-order formulation based on a normal mode
expansion with an appropriate static correction.

3.1 Eigenmodes of the Structure in Vacuo

In a first phase, the first Ns eigenmodes of the structure in vacuo are obtained from

[
K∗

u(ω)− ω2Mu

]
U = 0 (11)

Due to the frequency dependent of the stiffness matrix, this eigenvalue problem is
complex and nonlinear. It is assumed that vibrations of the damped structure can be
represented in terms of the real modes of the associated undamped system if appro-
priate damping terms are inserted into the uncoupled modal equations of motion.
Thus, the complex stiffness matrix is decomposed in the sum of two matrices:

K∗
u(ω) = Ku0 + δK∗

u(ω) (12)

where Ku0 = Re[K∗
u(0)] is the real and frequency-independent stiffness matrix

calculated with a constant Young module’s of the viscoelastic core and δK∗
u(ω) is

the residual stiffness matrix.
The ith real eigenmode is obtained from the following equation

[
Ku0 − ω2

siMu

]
Φsi = 0 for i ∈ {1, · · · , Ns} (13)

where (ωsi,Φsi) are the natural frequency and eigenvector for the ith structural mode.



Vibro-Acoustic Analysis of Laminated Double-Wall 353

3.2 Eigenmodes of the Internal Acoustic Cavity with Rigid Walls

In this second phase, the first Nf eigenmodes of the acoustic cavity with rigid
boundary conditions are obtained from the following equation

[
Kp − ω2

fiMp

]
Φfi = 0 for i ∈ {1, · · · , Nf} (14)

where (ωfi,Φfi) are the natural frequency and eigenvector for the ith acoustic
mode.

It is important to note that the physical acoustic modes in a rigid fixed cavity
are such that

∫
ΩF

p dv = 0 which excludes the ωfi = 0, p = constant solution
which is not physical but had to be introduced in the formulation of the coupled
problem. Thus, the variational formulation of this kind of system, in order to be
regularized for zero frequency situation, i.e. valid for a static problem, has to be
modified by adding the following constraint ρF c2F

∫
Σ u.n ds +

∫
ΩF

p dv = 0 (see
[6] for details). When doing this, on one hand the static pressure is defined precisely
by

ps = −ρF c
2
F

|ΩF |
∫
Σ

u.n ds (15)

and on the other hand, the reduced order formulation will be carried only by projec-
tion on the physical acoustic modes.

3.3 Modal Expansion of the General Problem

By introducing the matrices Φs = [Φs1 · · · ΦsNs ] of size (Ms × Ns) and Φf =[
Φf1 · · · ΦfNf

]
of size (Mf × Nf ) corresponding to the uncoupled bases (Ms

and Mf are the total number of degrees of freedom in the finite elements model
associated to the structure and the acoustic domains respectively), the displacement
and pressure are sought as

U = Φsqs(t) and P = Φfqf (t) (16)

where the vectors qs = [qs1 · · · qsNs ]
T and qf =

[
qf1 · · · qfNf

]T
are the modal

amplitudes of the structure displacement and the fluid pressure respectively.

Substituting these relations into Eq. (10) and pre-multiplying the first row by ΦT
s

and the second one by ΦT
f , we obtain

• Ns mechanical equations

−ω2qsi +

Ns∑
k=1

γ∗
ik(ω)qsi + ω2

siqsi −
Nf∑
j=1

βijqfj = Fi (17)
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• Nf acoustic equations

−ω2qfi + ω2
fiqfi − ω2

Ns∑
j=1

βijqsj = 0 (18)

whereFi(t) = ΦT
siF is the mechanical excitation of the ithmode;βij = ΦT

siCupΦfj

is the fluid structure coupling coefficient and γ∗
ik(ω) = ΦT

siδK
∗
u(ω)Φsk the reduced

residual stiffness complex coefficient.
At each frequency step, the reduced system (Eqs. (17) and (18)) is solved by

updating γ∗
ik(ω). After determining the complex amplitude vectors qsi and qfi,

the displacement and pressure fields are reconstructed using the modal expansion
(Eqs. (16)).

3.4 Static Corrections

The process of mode truncation introduces some errors in the response that can
be controlled or minimized by a modal truncation augmentation method. In this
method, the effects of the truncated modes are considered by their static effect only.
First the applied loading vector F is composed as:

F =

L∑
i=1

αi(t)F0i (19)

where F0i is the invariant spatial portion and αj(t) is the time varying portion. For
each invariant spatial load, the static modal eigenvector Ψsi is given by:

Ψsi = K−1
u0F0i (20)

The truncated basis containing the real and undamped structure modes is enriched
by the static modal eigenvectors such that

Φ̄s = [Φs1 · · · ΦsNs ,Ψsi, · · · Ψsl] = [Φs Ψs] (21)

The truncated fluid basis is enriched with the static pressure Ps computed from
Eq. (15):

Φ̄f = [Φf Ps] (22)

Thus, the displacement and pressure are sought as

U = Φsqs(t) +Ψsq
0
s(t) and P = Φfqf (t) +Psq

0
f (t) (23)

where the vectors q0
s and q0f are the quasi-static modal amplitudes of the structure

displacement and the fluid pressure respectively. Similar coupled differential equa-
tions than Eqs. (17) and (18) can of course be obtained after modal projection on
the enriched bases Φ̄s and Φ̄f .
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4 Numerical Examples

4.1 Sound Transmission through an Elastic Double-Panel System

In this section, the validation of the proposed coupled finite elements formulation for
sound radiation is presented. The problem under consideration is shown in Fig. 2. A
normal incidence plane wave excites a double-plate system filled with air (density
ρF = 1.21 kg/m3 and speed of sound cF = 340 m/s). The plane wave has a pressure
amplitude of 1 N/m2 and is applied to plate 1 as the only external force to the system.
The plates are identical and simply supported with thicknesses of 1 mm. The density
of the plates is 2814 kg/m3, the Youngs modulus is 71 GPa, the Loss factor is 0.01
and Poisson ratio 0.33. The surrounding fluid is the air. This example was originally
proposed by Panneton in [2].

Air Cavity

Plate 1

Plate 2

Rigid baffle

Normal plane 
     wave

a=0.35 m

b=
0.

22
 m

c=
0.0

76
4 m

Fig. 2 Double-plate system filled with air: geometric data

When the excitation is applied to the first plate, the second one vibrates and
radiates sound caused by the coupling of air and plate 1. The normal incidence sound
transmission loss is then computed using the Rayleigh’s integral method [1] which
needs the finite element solution of surface velocities of plate 2. For this purpose,
the resolution of the coupled system is done with a modal reduction approach using
the first 10 in vacuo structural modes and the first 10 acoustic modes of the fluid in
rigid cavity. The truncated bases are enriched by the static modal eigenvectors.

Fig. 3 shows the normal incidence transmission loss through a simply supported
plate (dashed line). Due to the modal behavior of the plate, dips in the transmission
loss curve are observed at its resonance frequencies (modes (1, 1), (3, 1) and (1,
3)). When a second plate is used to form an airtight cavity (continuous line), an
increase in the transmission loss is achieved except in the region of the so-called
plate-cavity-plate resonance (mode (1, 1)*). At this frequency, the two plates move
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Fig. 3 Comparison of the normal incidence sound transmission (nSTL) through an air-filled
double panel and a simple panel

out of phase with each other and the effect of the cavity on the plates is mostly
one of added stiffness. This frequency is similar to the mass-air-mass resonance of
unbounded double panels.

In addition, the variation of the nSTL of an air-filled panels and a simple panel is
in very good agreement with the published date from [2].

4.2 Sound Transmission through a Double Laminated Glazing
Window

The proposed reduced order finite-elements formulation is applied now to calculate
the transmission loss factor of a double laminated glazing window. The system con-
sists of two identical clamped laminated panels of glass separated by an air cavity
of 12 mm thickness. Each laminated glass is composed of two glass plates bonded
together by a Polyvinyl Butyral (PVB) interlayer. The thickness of outer and inner
glass ply is h1 = h3 = 3 mm and those of the PVB interlayer is h2 = 1.14 mm.
The glass ply is modeled as linear elastic material (density 2500 kg/m3, Youngs
modulus 72 GPa, and Poisson ratio 0.22). The material properties of the PVB are
both thermal and frequency dependent. From dynamic and thermal tests, Havrillak
and Negami have found an empirical law describing this dependence. The resulting
complex frequency dependent shear modulus of the PVB is given at 20◦C as [8]:

G∗(ω) = G∞ + (G0 −G∞)
[
1 + (iωτ0)

1−α0
]−β0 (24)

where G∞ = 0.235 GPa, G0 = 0.479 Mpa, α0 = 0.46, β0 = 0.1946, τ0 =
0.3979. The Poisson ratio of the PVB is 0.4 and density is 999 kg/m3. Concerning
the excitation and the finite element discretization, we used the same ones as in the
previous example.
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Fig. 4 Comparison of radiated sound power from a simple glass pane and a laminated glass
with the same mass

A comparison between a simple glass and a laminated glass with PVB inter-
layer with an equivalent surface mass is shown in Fig. 4. Calculation was limited
to 2000 Hz maximum. This comparison shows that laminated glass has a much
lower acoustic radiation compared to conventional glass at resonance frequencies
du to the effect of the viscoelastic layer. The reduction of sound radiation power
is around 10 dB in lower frequencies and around 20 dB in higher frequencies. In
fact, at low frequencies, the viscoelastic material is soft and the damping is small.
At higher frequencies, the stiffness decreases rapidly and the damping is highest.
Moreover, flexural vibrations causes shear strain in the viscoelastic core which dis-
sipates energy and reduces vibration and noise radiation. Note that the thickness of
the viscoelastic layer has a significant influence in terms of attenuation.
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Fig. 5 nSTL through an air-filled double panel: comparison between the modal reduction
approach and the direct nodal method
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Fig. 5 shows a comparison between the nSTL of the coupled problem, obtained
with the proposed accelerated modal reduction approach with a truncation on the
first twenty structural modes (Ns = 20) and first twenty acoustic modes (Nf = 20)
and the direct nodal method (Eq. (10)) where the displacement and pressure vectors
are calculated for each frequency step. The structural modes are calculated from
Eq. (13) using the constant shear storage modulus G∞. As can be seen, a very good
agreement between the two methods is proved. In this respect, it should be noted
that the resulting reduction of the model size and the computational effort using the
reduced order method are very significant compared to those of the direct approach.

5 Conclusions

In this paper, a finite element formulation for sound transmission through double
wall sandwich panels with viscoelastic core is presented. A reduced-order model,
based on a normal mode expansion, is then developed. The proposed methodology
requires the computation of the eigenmodes of the undamped structure, and the
rigid acoustic cavity. Quasi-static corrections are introduced in order to accelerate
the convergence. Despite its reduced size, this model is proved to be very efficient
for simulations of steady-state analyses of structural-acoustic coupled systems with
viscoelastic interlayers when appropriate damping terms are inserted into the modal
equations of motion.
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de Sherbrooke (1996)

3. Quirt, J.D.: Sound transmission through windows I. Single and double glazing. Journal of
the Acoustical Society of America 72(3), 834–844 (1982)

4. Akrout, A., Hammami, L., Ben Tahar, M., Haddar, M.: Vibro-acoustic behaviour of lam-
inated double glazing enclosing a viscothermal fluid cavity. Applied Acoustics 70(1),
82–96 (2009)

5. Basten, T.G.H.: Noise reduction by viscothermal acousto-elastic interaction in double wall
panels. PhD-thesis, University of Twente, Enschede, The Netherlands (2001)

6. Morand, H.J.-P., Ohayon, R.: Fluid-structure interaction. John Wiley & Sons, New York
(1995)
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