
Chapter 15

Role of Earthworms on Phytoremediation

of Heavy Metal-Polluted Soils

My Dung Jusselme, Edouard Miambi, Thierry Lebeau,

and Corinne Rouland-Lefevre

15.1 Introduction

Heavy metal contamination of soil is a major concern in all parts of the world, in

particular in emerging countries where there is an increasing need for soil for food.

Heavy metals such as cadmium, copper, lead, mercury, and zinc remain in the soil

where they accumulate as a result of activities such as mining and the application of

urban sewage sludge for agriculture. The accumulation of heavy metals in the

environment can affect the health of humans and animals. At microscale, heavy

metals also have an adverse effect on bacterial populations which in turn affects the

global functioning of ecosystems. Microorganisms play a key role in biogeochem-

ical processes. Changes in the microbial communities may reduce their ability to

maintain soil fertility in the long term. This has led to the recent development of

techniques for cleaning up polluted soils and sites. One such technique is

phytoremediation, which exploits the ability of certain plants to accumulate large

amounts of heavy metals (Chaney et al. 1997; Salt et al. 1998; Padmavathiamma

and Li 2007). Phytoremediation has many advantages: (1) it is the only method

available for in situ extraction of heavy metals from soils; (2) it is economically

viable as, at least theoretically, the energy required for the process is free (from the
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sun), and the harvestable parts of the plants that accumulate heavy metals can be

used for energy, biological catalysts, insulators, etc.; and (3) it has a low environ-

mental impact consistent with environmental protection policies and allows the

soils to be exploited for crops after or at the same time as the soil is being

remediated (Losfeld et al. 2012). However, phytoremediation has limitations:

(1) the slow growth and low biomass require a considerable investment in time

and/or money, and (2) the heavy metals accumulate slowly in the plants as the pools

of heavy metals available to the plants at a given time are small. Chelating agents

such as EDTA, DTPA, and citric acids have been tested successfully (Luo

et al. 2005; Luo et al. 2006a, b) but may have undesirable effects such as toxicity

for plants (Evangelou et al. 2007), and (3) plant growth is reduced by the phyto-

toxicity of the heavy metals (Shah and Nongkynrih 2007; Salt et al. 1998; Singh

et al. 2003).

To improve the performance of phytoextraction, hyperaccumulating plants with

high biomass (e.g., Brassica juncea or Indian mustard) are used. Recent research

has concentrated on the role of the rhizosphere with a view to associating microbial

bioaugmentation of soils with phytoextraction (Lebeau et al. 2008; Sessitsch

et al. 2013; Wenzel 2009; Khan 2005), but few studies have considered the

drilosphere compartment, the part of the soil influenced by earthworm secretions

and castings (Aghababaei et al. 2014a; Du et al. 2014; Jusselme et al. 2012, 2013).

However, earthworms as ecological engineers play an important role in their

environment (Derouard et al. 1997; Bohlen et al. 2002; Dechaine et al. 2005;

Tapia-Coral et al. 2006). The positive effects of earthworms on plant production

(Table 15.1) have been extensively documented (Blouin et al. 2007, 2013; Wang

et al. 2006) as well as their effects on heavy metal solubility and availability

(Sizmur et al. 2011b, c, d). The interactions between heavy metals and earthworms

depend on the earthworm species, the metal, and the physical and chemical

properties of the soil (Weltje 1998; Morgan and Morgan 1999; Sizmur and Hodson

2009). Earthworms have an effect on metal speciation in soils, changing the

bioaccessibility and bioavailability of the metals for other organisms, such as plants

(Sizmur et al. 2011a). This chapter summarizes the current understanding of the

interactions between earthworms, plants, and microorganisms in heavy metal-

contaminated soil. It covers basic research as well as practical phytoremediation.

15.2 Earthworms as Ecosystem Engineers

The term “ecosystem engineers” was used by (Lawton 1994) to designate organ-

isms that directly or indirectly influence the availability of resources to other

species by causing physical state changes in biotic and abiotic materials. Earth-

worms in tropical soils are recognized as key ecosystem engineers as they modify,

maintain, and create habitats (Jones et al. 1994; Lavelle 1996).

Earthworms (annelids, oligochaetes) are the dominant biomass of soil

macrofauna in most terrestrial ecosystems. About 7,000 species have been
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identified, divided into 15 families, most of which live in the tropics (Lavelle 1997).

They play an important role in environmental functioning through various physical

and biological mechanisms that preserve the structure of the soil and improve its

fertility (Stork and Eggleton 1992; Lavelle 1997). By modifying the physical and

chemical properties of the soil, they also change the habitats of microbial commu-

nities (Lavelle 1997).

15.2.1 Main Geographic Origins and Taxonomy

Earthworms are found in all tropical and temperate soils with a high level of

diversity. Quaternary glaciers caused earthworms to become locally extinct so

that they are found in greater abundance in the tropics. Earthworms fall into three

broad ecological categories—epigeic, anecic, and endogeic—depending on mor-

phology and behavior (Bouche 1977).

1. Epigeic earthworms (Bouche 1977) are small (10–30 mm) and generally live in

litter and decomposed organic matter. They are also found in the feces of large

herbivores or in damp woods during decomposition. They live on the soil surface

and are, therefore, particularly susceptible to predation, climate variability, and

anthropogenic activities such as surface plowing and the application of pesti-

cides. Epigeic earthworms play an important role in recycling organic matter.

2. Anecic earthworms (Bouche 1977) are medium to giant worms (10–110 cm)

living in vertical or subvertical burrows with varying degrees of branching that

open onto the soil surface. By ingesting soil and burying organic matter, they

mix the organic matter and mineral fraction from the different soil horizons.

These species are found throughout the entire depth of the soil profile and have

strong muscles enabling them to adapt to a relatively high soil compaction and

withstand human pressures in cultivated soils.

3. Endogeic earthworms (Bouche 1977) vary in size (1–20 cm). They account for

20–50 % of the biomass of fertile land and live in the soil, burrowing in any

orientation. They feed on the organic matter in the soil and in poorer soils may

need to be very mobile to find all the food they need. Lavelle (1981) defined

three subcategories of endogeic earthworms—polyhumics, mesohumics, and

oligohumics—based on the richness of the soil organic matter they eat,

oligohumic earthworms being those which ingest organic matter in the poorest

soils.

15.2.2 Impact of Earthworms on Soil

The impact of earthworms on soil depends on their ecological category, endogeic

and anecic having the greatest effect (Brown et al. 2000). The main physical

activities of earthworms include (1) the creation of galleries in which they move
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and (2) excretion in the galleries (feces) or on the soil surface (casts). The

drilosphere is the area where soil functioning is influenced by earthworm activities.

It includes all dependent physical structures of earthworms such as the contents of

the digestive tract, casts, and galleries as well as associated communities of

invertebrates and microorganisms. The structure and relative importance of the

drilosphere are determined by the climate, soil parameters, and quality of organic

inputs (Lavelle 1997).

15.2.2.1 Galleries

The gallery network (size, orientation, etc.) depends on the ecological category of

the earthworm. The number of galleries in the soil depends on the abundance of

earthworms but can be up to several hundreds per m2. In sites with large earthworm

communities, the volume of the galleries contributes significantly to the pore size of

the soil, providing passageways for air and water in the soil (Bouché and Al-Addan

1997). These galleries improve the porosity and aeration. Experiments have shown

that, in microcosms, the galleries of L. terrestris earthworms significantly increased

the water flow (Joschko et al. 1989). Field studies clearly support these findings by

showing the transfer of water through the L. terrestris galleries (Edwards

et al. 1992) and the strong correlation between the infiltration rate and the length,

area, and volume of the galleries of the anecic earthworm Scherotheca gigas mifuga
(Bouche 1977).

Moreover, galleries make it possible to transfer compounds from different soil

horizons, both passively by percolation and infiltration and by the active role of

anecic burrowing species. Earthworms line their galleries with mucus- and nutrient-

rich droppings as they pass through the soil (Binet and Curmi 1992). This makes the

walls of galleries richer in organic carbon and nitrogen than the surrounding soil.

These relationships stimulate the development of a high density of bacteria

throughout the gallery walls, increasing respiratory activity and enzymatic diges-

tion. Tiunov and Scheu (1999) showed that microbial biomass was higher by a

factor of 2.3–4.7 in the walls of L. terrestris galleries than in the surrounding soil.

This microbial growth increased the soil respiration by a factor of 3.7–9.1 in forest

ecosystems.

15.2.2.2 Casts

Earthworms ingest soil and excrete waste onto the soil surface or in the galleries.

They produce casts on the surface amounting to between 200 and 250 t ha�1 year�1

in temperate soil and 40–50 t ha�1 year�1 in grassland, representing a soil thickness

of 3–4 mm. Binet and Le Bayon (1998) evaluated the production of casts from 2.5

to 3.2 kg m�2 year�1 (dry weight) in a temperate maize crop.

However, the production and abundance of earthworm casts depend on environ-

mental conditions (climate, soil type), the earthworm species, and the vegetal cover.
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For example, the disappearance of earthworm casts accounts for about 70 % and

20 % in rainy season and dry season, respectively. The casts are gradually incor-

porated into the soil matrix during the dry season (Binet and Le Bayon 1998).

The feeding behavior of earthworms leads to considerable variability in the

composition of their casts. The physical structure of the casts provides microenvi-

ronmental conditions that differ from the initial soils. Some earthworms feed

selectively on the parts of the soil that are rich in organic matter (Zhang and

Schrader 1993; Doube et al. 1994). Doube et al. (1997) showed that L. terrestris
and A. caliginosa preferentially consume a mixture of fine inorganic particles and

organic material rather than organic material on its own. Fungi are also an impor-

tant food source for many species of earthworms (Edwards and Fletcher 1988).

Earthworms may also feed on protozoa, bacteria, and algae. During transit through

the digestive tract of earthworms, these microorganism populations are modified by

the physical and chemical conditions in the intestine. The surviving microorgan-

isms (in particular fungal spores, protozoa, and resistant bacteria) are present in the

inoculums that subsequently colonize the casts and are responsible for the microbial

processes (Brown 1995). Parle et al. (1963a) showed that L. terrestris casts had

higher concentrations of bacteria and actinomycetes after the soil had passed

through the earthworm gut where conditions were favorable for their development.

Fungal hyphae developed on the surface of casts (Parle et al. 1963b), a phenomenon

that was also observed for the geophagous earthworm Pontoscolex corethrurus
(Barois et al. 1987). Many studies have demonstrated that earthworms can stimulate

soil microbial activity, although the density of bacterial and fungal populations may

be reduced after transiting the gut of endogeic earthworms (Krišrtuek et al. 1992).

Enzyme activities can provide information on the functional diversity of the

microbial community. Tiwari et al. (1989) showed that phosphatase, dehydroge-

nase, and urease activities were more intense in casts. High phosphatase activity has

also been found in fresh casts of the endogeic earthworm A. caliginosa (Aira

et al. 2010). These enzyme activities can affect the bioavailability of mineral

elements such as phosphorus (Satchell and Martin 1984).

15.3 Earthworms and Heavy Metals

Earthworms are more sensitive to heavy metals than other invertebrates living in

soils (Bengtsson et al. 1992), and their ability to accumulate heavy metals is often

greater than for other animal species (Beyer et al. 1982). However, the effects of

heavy metals depend on the earthworm species, stage of development, lifestyle

(where they live and what they eat), and their ability to adapt to contaminants.

These effects also depend on the nature and chemical forms of the metal and the

physical and chemical properties of the soil.

An increase in the heavy metal content in soil above acceptable levels reduces

the density of earthworms (Pizl and Josens 1995) and also reduces weight gain

(Spurgeon and Hopkin 1996), sexual development, and cocoon production
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(Spurgeon and Hopkin 1999). Spurgeon and Hopkin (1999) reported a significant

reduction in the survival rate of four species of earthworm with zinc levels ranging

from 2,000 to 3,600 mg Zn kg�1 of soil. They also reported significant weight loss

with zinc levels ranging from 1,200 to 2,000 mg Zn kg�1. Lukkari and Haimi

(2005) suggested that one of the potential mechanisms of adaptation to pollution is

avoidance as earthworms placed in contaminated soil may be able to differentiate

organic matter according to its level of contamination.

The ability of earthworms to accumulate heavy metals was recognized in the

literature as early as the late nineteenth century (Hopkin 1989). Heavy metals

accumulate in the digestive tissues of earthworms after ingestion or by dermal

exposure as earthworms have no protective cuticle and are in continuous contact

with the polluted soil. Many studies have determined the factors controlling

bioconcentration: (1) the earthworm species and its ecological category, (2) the

heavy metal species, (3) the physical and chemical properties of the soil, (4) the

season, and (5) the distance from the source of contamination. Studying heavy

metal accumulation in earthworm tissue might be a good bioindicator of heavy

metal availability in soils (Lanno and Mccarty 1997; Conder and Lanno 2000;

Paoletti 1999; Oste et al. 2001).

15.4 Earthworms and Phytoremediation

15.4.1 Evidence of the Effect of Earthworms
on Phytoremediation

The effects of earthworms on phytoremediation performance were described for the

first time by (Ma et al. 2003) who found that the presence of the anecic earthworm

Pheretima guillelmi increased the amount of Pb (mostly in roots) extracted by the

leguminous plant Leucaena leucocephala. These results are in line with those of

(Wang et al. 2006) who reported an increase of Zn phytoextraction by ryegrass and

Indian mustard when the soil was inoculated with the earthworm Pheretima sp. The
additional accumulation of heavy metals by plants as the result of earthworms was

confirmed by (Dandan et al. 2007) with Cu uptake by ryegrass in the presence of

Metaphire guillelmi. In recent years (Ruiz et al. 2009), used soil microcosms to

show that the epigeic earthworm, Eisenia fetida, significantly increased the growth

of maize (Zea mays) and barley (Hordeum vulgare) and resulted in the accumula-

tion of heavy metals (Cu, Cd, Pb, and Zn). The plant growth led to a threefold

increase in Zn extraction. The presence of the anecic earthworm L. terrestris also
significantly increased the phytoextraction of Pb and Zn by maize and barley,

although to a lesser extent (Ruiz et al. 2011). More recently, (Jusselme

et al. 2012) studied the interaction between Lantana camara which is a hyperaccu-

mulating plant for lead and cadmium and the endogenous tropical earthworm

P. corethrurus (Oligochaeta, Glossoscolecidae) commonly found in both polluted
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and unpolluted areas. In this study, which used Pb-spiked soil in microcosms

(500 and 1,000 mg kg�1), most of the earthworms introduced into the microcosms

remained alive (>90 %) after 1 month, and all the soil was burrowed by earth-

worms. With P. corethrurus, an increase of shoot and root biomass was recorded as

well as an increase of lead uptake by plants (Jusselme et al. 2012). Eventually, Du

et al. (2014) showed that the influence of the earthworm Eisenia fetida on the

accumulation of Cd in leaves or stems of corn resulted in a Cd concentration in the

soil of more than 1,000 mg Cd kg�1. Conversely, Pheretima sp. only improved the

phytoextraction of Zn and Pb by ryegrass Lolium multiflorum in moderately con-

taminated soils after the third harvest.

All these studies clearly demonstrated that all types of earthworms have a clear

effect on the phytoremediation by various plants of soils contaminated by heavy

metals. Some of the mechanisms by which earthworms influence phytoremediation

are described below.

15.4.2 Mechanisms by Which Earthworms Influence
Phytoremediation

15.4.2.1 Interactions Between Earthworms and Plants

Most studies showed that earthworms affected the growth of hyperaccumulating

plants, in particular the roots (Table 15.2). The overall health of the plant is often

given as the main factor for the increase in heavy metal phytoextraction perfor-

mance. For example, Wang et al. (2006) showed that soil bioaugmentation by

earthworms increased the biomass of ryegrass and Indian mustard which resulted

in greater uptake and accumulation of zinc. The positive effect of earthworms on

growth and heavy metal accumulation by plants may be direct and/or indirect

through a positive effect on soil microorganisms such as arbuscular mycorrhizal

fungi (AMF) (Eisenhauer et al. 2009; Ortiz-Ceballos 2007; Ma et al. 2006; Gaur

and Adholeya 2004) and almost all plant growth-promoting bacteria (PGPB) (Sinha

2010; Wu et al. 2012) that are themselves known to improve phytoextraction

performance (Lebeau et al. 2008; Sessitsch et al. 2013). In return, the earthworms

use root exudates as a nutrient source to survive in polluted conditions. Earthworms

increase the dispersion rate of viable mycorrhizal propagules and actinomycetes

such as Frankia and PGPB, some of which are nitrogen fixing (Wu et al. 2006). The

effect of microbial stimulation on the amount of nitrogen fixed by the plants could

be an important part of the positive effect of earthworms. The microorganisms

increase the primary biomass by stimulating the plant growth in various ways.

Firstly, PGPB increase the plant biomass and root surface as well as reduce the

toxicity of heavy metals to the plant. The amount of ethylene produced by the plant

during induced heavy metal stress can be reduced by the degradation of ACC

(aminocyclopropane carboxylic acid), a precursor of ethylene, by

ACC-deaminase produced by PGPB (Ma et al. 2009a, b, 2011; Braud et al. 2009;
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Denton 2007; Dimkpa et al. 2009; Grandlic et al. 2009). Secondly, absorption of

iron by the plant can be facilitated by bacterial siderophores (Crowley et al. 1988,

1992; Bar-Ness et al. 1992; Glick 2003). Thirdly, some authors (Tomati et al. 1988;

Castellanos Suarez et al. 2014) have tested the hypothesis that bacterial phytohor-

mones, in particular indoleacetic acid (IAA), that stimulate root growth and are

activated in earthworm casts are responsible for the increase in the root biomass and

the available heavy metal for plants. The exploration of the casts by roots facilitates

the assimilation of large amounts of resources with a reduced investment in carbon.

The resulting carbon gain reduces catabolism, increases chlorophyll synthesis, and

improves the rate of CO2 fixation, consequently accelerating plant growth. This

excess energy can also enable the plant to respond to environmental stress such as

heavy metal toxicity.

15.4.2.2 Interactions Between Earthworms and Heavy Metals

Many studies have addressed the impact of earthworms themselves and their

activities on the dynamics of heavy metals in the soil in terms of solubility,

extractability, and bioavailability (Abdul Rida 1996; Devliegher and Verstraete

1996; Wen et al. 2004; Udovic and Lestan 2007). The presence of the earthworm

Lumbricus terrestris increased Cu availability by 6 % (Devliegher and Verstraete

1996). Some earthworms such as L. terrestris, L. rubellus, and Aporrectodea
caliginosa can survive in heavy metal-polluted soils (Langdon et al. 1999; Morgan

and Morgan 1999; Kızılkaya 2008). They influence the mobility and availability of

metal through their burrowing and casting activity (Sizmur and Hodson 2009;

Sizmur et al. 2011a, b, c, d). However, the effect of these organisms on the

bioavailability of heavy metals for plants remains very modest in heavy metal-

contaminated sites (Abdul Rida 1996).

It was shown that earthworms can influence the heavy metal availability in soils

by mixing deep soils, humus, and biological material in the earthworm gut

(Hobbelen et al. 2006; Cheng and Wong 2002). Ma et al. (2002) demonstrated

that the concentration of the available Pb was increased by up to 48.2 % by

earthworm inoculation, and (Cheng and Wong 2002) suggested that earthworm

burrowing and feeding activities increased Zn availability.

At present, most results concerning the effects of earthworms on the availability

of heavy metal have been obtained from artificially contaminated soils and/or

microcosm experiments. (Smolders et al. 2009) stated that soils artificially contam-

inated with fully soluble metal sources do not represent conditions prevailing in

naturally metal-rich contaminated soils, and (Spurgeon and Hopkin 1995) reported

that heavy metals in artificially contaminated soils are likely to be more bioavail-

able than in “naturally” polluted soils. Therefore, further studies are required to

determine the extent to which differences between the results under controlled

conditions and field results can be explained by the differences between artificially

contaminated and “naturally” polluted soils.

While the application of earthworms to soils to increase heavy metal availability

has in some instances increased metal extraction from soils, it is also important to

note that there are some drawbacks that may have practical implications. Although
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heavy metal migration through the soil is very slow (e.g., 0.01 cm year�1 for Pb

considered to be relatively immobile) (Kylander et al. 2008), if the available heavy

metals exceed the capacity of metal absorption by plants, it is possible that, in some

soils, the increase of metal availability by the earthworm activity may lead to faster

diffusion.

15.4.2.3 Earthworms and Soil Enzyme Activities

The capacity of plants to absorb heavy metals depends on the plants’ health. Plant
health in turn depends on soil quality. Moreover, a phytoextraction process must

aim not only to remove the heavy metal from the soil but, more importantly, to

restore soil quality (Doran and Safley 1997). Therefore, soil quality indicators are

needed to assess the overall performance of a phytoextraction process. Of the

various biological indicators, soil enzyme activity has been suggested as a good

indicator of soil quality (Alkorta et al. 2003) as this plays an important role in

mineralization processes that convert organic compounds into inorganic com-

pounds. The role of enzymes in soils is expressed as the quantity of nutrients

released such as nitrate, phosphorus (P), and potassium (K) that are important for

plant growth.

In heavy metal-contaminated soils, most enzymes are inactive as they are

inhibited by the protein-binding capacity of metals (Alkorta et al. 2003). Enzymes

such as xylanase, cellulase, alkaline phosphatase, and fluorescein diacetate (FDA)

activities are affected by the amount of heavy metal in the soils although (Jusselme

et al. 2013) concluded that lead pollution ranging between 500 and 1,000 mg kg�1

of soils does not inhibit soil enzyme activities. These discrepancies can be

explained by the nature and degree of inhibition of heavy metals as the effects

depend largely on soil type, heavy metal levels, and soil physical and chemical

properties.

Earthworms play a major role in promoting soil health, in particular soil enzyme

activities. A comparison of soil enzyme activities in the presence and absence of

earthworms by (Jusselme et al. 2013) in a Pb-phytoextraction experiment with Pb

ranging between 500 and 1,000 mg kg�1 of soil clearly showed that the presence of

earthworms significantly increased most enzyme activities. This was particularly

true in the root-adhering soil of Lantana camara, the hyperaccumulating plant used

in this study. However, these authors also showed that the increased activities of N-
acetyl-D-glucosaminidase and urease involved in the nitrogen cycle in the presence

of earthworms resulted in lower nitrogen availability for plants. This may be

explained by the complex interactions between plants, nutrient availability, and

earthworms: (1) initially, the earthworm activities increase N availability, improv-

ing plant growth and health and so stimulating the metal phytoextraction process,

but the uptake of available nitrogen by the plants increases too fast and the available

N becomes too scarce by the end of phytoextraction process, and (2) the earthworm

activities improve plant growth and heavy metal uptake by mechanisms not based

on nitrogen. Blouin et al. (2006) showed that earthworms (Millsonia anomala) do
not increase rice growth by improving nitrogen mineralization. Phosphorus (P) is
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also an important nutrient for plant growth and reproduction. Plants use phosphorus

for root development, flower initiation, and seed and fruit development (Fuhrman

et al. 2005). James (1991) showed that P availability in earthworm casts could

contribute about 50 % of the plants’ requirements. Satchell and Martin (1984)

suggested that higher levels of P availability in earthworm casts were based mainly

on increased phosphatase activity, involved in the hydrolysis of organic P com-

pounds in the casts, although it has not been established whether the increase in the

activity is due to earthworm-derived enzymes or to increased microbial activity.

The increase in P availability as a result of an increase in enzyme activities by

earthworms improves plant growth as well as Pb uptake (Jusselme et al. 2012).

Unlike nitrogen and phosphorus, potassium does not form any vital organic com-

pounds in the plant. However, the presence of K is vital for plant growth because K

is known to be an enzyme activator that boosts the metabolism. Jusselme

et al. (2013) demonstrated that earthworms increased FDA activity, which could

lead to increased K availability for plant uptake.

Since enzyme responses depend on the type of enzyme, enzyme activity could be

used as a biological indicator to assess heavy metal-contaminated soil functioning.

This result can be explained by the interaction of plant/microorganisms/earthworms

as shown in Sect. 15.4.2.3.

15.4.2.4 Interactions Between Earthworms and Soil Microorganisms

Trace metals are known to be toxic to soil microorganisms (Del Val et al. 1999;

Giller et al. 1998). They reduce the microbial activity (Lorenz et al. 2006; Oliveira

and Pampulha 2006), diversity (Hassan et al. 2011; Hu et al. 2007), and abundance

(Liu et al. 2012; Pasqualetti et al. 2012). However soil functioning is a result of tight

interactions between microorganisms, plants, and soil macrofauna. Soil microor-

ganisms are in part influenced by soil macrofauna (Aira et al. 2002, 2007, 2010). It

has been shown that earthworms have a significant effect on the composition,

distribution, and activity of soil fungi, in particular by (1) ingesting fungal spores

and even ingesting certain fungi, (2) creating microsites favorable to fungal devel-

opment, (3) dispersing fungal species, and (4) transforming and redistributing soil

organic matter (Brown 1995; Lavelle 2002; Scheu et al. 2002). Despite a large body

of literature on the impact of earthworms and microorganisms on heavy metals in

soils, only a few studies have addressed the question of earthworm-assisted heavy

metal phytoextraction (Wang et al. 2006; Yu et al. 2005) although without consid-

ering the role of microorganisms (Aghababaei et al. 2014b).

The question arises whether the beneficial effect of earthworms on

phytoextraction performance results from the stimulation of soil microorganisms.

Although earthworms may be able to increase metal bioavailability in heavy metal-

contaminated soil, the mechanism remains unclear. Sizmur and Hodson (2009)

suggested four principal mechanisms by which earthworm activities may change

heavy metal mobility and bioavailability: (1) modification of soil pH, (2) modifica-

tion of soil dissolved organic carbon (DOC), (3) heavy metal speciation and
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sequestration within the earthworm tissue, and (4) stimulation of the soil microbial

population.

Although heavy metals are toxic to soil microorganisms, Jusselme et al. (2012)

showed that the total microbial activity and fungal richness index based on DGGE

patterns increased with Pb pollution in the root-adhering soil of L. camara. This did
not agree with previous results for other heavy metals (As, Cd, Hg) in long-term

contaminated sites (Lorenz et al. 2006; Oliveira and Pampulha 2006). There may be

various explanations for this discrepancy: (1) the duration of the exposition in this

study was short (1 month vs. several years), and (2) the growth and activity of

L. camara roots may have stimulated microbial activity as a result of a higher

amount of rhizodeposits and counterbalanced the toxicity of Pb.

Microbial activity increases in the presence of earthworms as shown in many

studies (Aira et al. 2008, 2010; Dempsey et al. 2013; G�omez-Brand�on et al. 2012;

Tao et al. 2009; Tiwari and Mishra 1993). As earthworms digest decaying sub-

strates, they increase the pool size of nutrients available for microorganisms,

promoting microbial growth. Microorganisms are largely dormant in the soil

waiting for favorable conditions which are provided by earthworm burrowing and

casting (Lavelle 2002). Earthworms significantly increase total fungal abundance

and all fungal diversity indices, as has already been shown (Krišrtuek et al. 1992).

Del Val et al. (1999) and Jusselme et al. (2013) showed that, in heavy metal-spiked

soils bioaugmented with earthworms, the structure of the fungal community is

modified: the appearance of new bands indicated that minor populations in

uncontaminated soils became dominant in heavy metal-spiked soils as the result

of their tolerance. The positive effect of earthworms on the abundance of cultivable

fungi counteracted the negative effect of heavy metals in the polluted soils in spite

of the higher bioavailable concentration of heavy metals in soils. The effects of

earthworms on the activity, abundance, and structure of the fungal community may

(1) increase fungal growth by means of decaying substrates (Brown 1995) and

(2) select fungal populations more adapted to heavy metal contamination (Hui

et al. 2012). Smith and Reed also showed that the activity of mycorrhizal fungi

was increased by earthworms resulting in an increase in the exchange surface

between plants and soil, increasing plant uptake and biomass. The effect of earth-

worms alone on Cd availability is greater than that of AMF in Cd-polluted soils, and

interactions between these organisms have a much greater effect on soil microor-

ganisms than on Cd availability. Thus, the presence of both earthworms and AMF

could mitigate the effects of Cd on soil microbial life (Aghababaei et al. 2014b).

These results suggest a combined positive effect of earthworms and soil micro-

organisms on (1) the availability of heavy metals in soil and (2) the availability of

nutrients leading to a higher plant biomass and increasing heavy metal absorption

and accumulation by plants. Earthworms, as soil ecosystem engineers, are known to

change the microbial composition and to stimulate its activity (Brown 1995; Binet

and Le Bayon 1998), while soil microorganisms, as decomposers, improve nutrient

mineralization and availability for plants (Berg and Laskowski 2005).
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15.5 Conclusion: Mutualistic Interactions Between Plants,

Microorganisms, and Earthworms

The bioaugmentation of earthworms in soils spiked by heavy metals modifies

microbial functioning, counterbalances the effect of heavy metals on the fungal

community (abundance, diversity, and structure) and promotes the phytoextraction

of heavy metals by plants. Positive interactions between plants, microorganisms,

and earthworms form a virtuous circle: improving any one of the interactions

improves all the others (Fig. 15.1). Taking just the activation of microorganisms

(PGPB and AMF), there is a benefit for both the plants and earthworms.

The activation by earthworms of microorganisms producing compounds which

target heavy metals reduces the toxic effect of these metals and increases the heavy

metal availability for the plants. The result is an indirect positive effect on plants

exposed to heavy metal pollution (Fig. 15.2). Apart from the direct toxicity of heavy

Microorganisms

Earthworms Plants/
Phytoextraction

Fig. 15.1 Virtuous circle of

interactions between plants,

microorganisms, and

earthworms

Heavy metal 
availability

Microorganisms

Earthworms Plants/
Phytoextraction

Fig. 15.2 Interactions

between plants,

microorganisms, and

earthworms and Pb

availability
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metals to plants, improving any one of the interactions is beneficial for plants,

microorganisms, and earthworms.
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