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Preface

The theory of variational inequalities is a relatively young mathematical discipline.
One of the bases for its development was the contribution of Fichera [5], who coined
the term “Variational Inequality” in his paper on the solution of the frictionless
contact problem between a linearly elastic body and a rigid foundation posed by
Signorini [15]. The foundations of the mathematical theory of elliptic variational
inequalities were laid by Stampacchia [16], Hartman and Stampacchia [7], Lions
and Stampacchia [11], and others. Evolutionary variational inequalities have been
preliminary treated by Brézis [2] who also connected the notion of variational
inequality to convex subdifferential and maximal monotone operators. The theory
of variational inequalities can be viewed as an important and significant extension
of the variational principle of virtual work or power in inequality form, the origin
of which can be traced back to Fermat, Euler, Bernoulli brothers, and Lagrange.
The theory of variational inequalities and their applications represents the topics
of several well-known classical monographs by Duvaut and Lions [4], Glowinski,
Lions, and Trémoliéres [6], Kinderlehrer and Stampacchia [10], Baiocchi and
Capelo [1], Kikuchi and Oden [9], and so on.

The notion of hemivariational inequality was first introduced by Panagiotopoulos
[13] and is closely related to the development of the concept of the generalized
gradient of a locally Lipschitz functional provided by Clarke [3]. Interest in
hemivariational inequalities originated, similarly as in variational inequalities, in
mechanical problems. From this point of view, the inequality problems in Mechanics
can be divided into two main classes: that of variational inequalities, which is
concerned with convex energy functions (potentials), and that of hemivariational
inequalities, which is concerned with nonsmooth and nonconvex energy func-
tions (superpotentials). Through the formulation of hemivariational inequalities,
problems involving nonmonotone and multivalued constitutive laws and boundary
conditions can be treated successfully mathematically and numerically. The theory
of hemivariational inequalities and their applications was developed in several
monographs by Panagiotopolous [13], Naniewicz and Panagiotopolous [12], and
Haslinger, Mietten, and Panagiotopolous [8], among others.
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vi Preface

During the last decades, variational and hemivariational inequalities were shown
to be very useful across a wide variety of subjects, ranging from nonsmooth
mechanics, physics, and engineering to economics. For this reason, there are a
large number of problems which lead to mathematical models expressed in terms of
variational and hemivariational inequalities. The mathematical literature dedicated
to this field is growing rapidly, as illustrated by the list of references at the end of
each chapter of this volume.

The purpose of this edited volume is to highlight recent advances in the field of
variational and hemivariational inequalities with an emphasis on theory, numerical
analysis, and applications. The theory includes existence and uniqueness results
for various classes of nonlinear inclusions and variational and hemivariational
inequalities. The numerical analysis addresses numerical methods and solution
algorithms for solving variational and hemivariational inequalities and provides
convergence results as well as error estimates. Finally, the applications illustrate
the use of these results in the study of miscellaneous mathematical models which
describe the contact between deformable bodies and a foundation. This includes the
modeling, the variational and the numerical analysis of the corresponding contact
processes.

This volume presents new and original results which have not been published
before and have been obtained by recognized scholars in the area. It addresses to
mathematicians, applied mathematicians, engineers, and scientists. Advanced grad-
uate students can also benefit from the material presented in this book. Generally, the
reader is expected to have background knowledge on nonlinear analysis, numerical
analysis, partial differential equations, and mechanics of continua.

This volume is divided into three parts with 14 chapters. This division of the
material is not strict and it is done only for the convenience of the reader. A brief
description of each part is the following.

Part I, entitled Theory, is devoted to the study on abstract nonlinear evolutionary
inclusions and hemivariational inequalities of the first and second order, an approx-
imation method to solve nonsmooth problems and its application to variational–
hemivariational inequalities, a bifurcation result for a nonlinear Dirichlet elliptic
problem, and variational inequality problems on nonconvex sets.

Part II, entitled Numerical Analysis, deals with the numerical approximation of
the hemivariational inequalities, extragradient algorithms for solving various classes
of variational inequalities, the proximal methods for treating a nonlinear inverse
problem in linearized elasticity relating to tumor identification, and discontinuous
Galerkin methods for solving an elliptic variational inequality of the fourth order.

Part III, entitled Applications, is dedicated to the study of miscellaneous classes
of problems issued from Contact Mechanics. Topics include the analysis of a
dynamic contact model for Gao beam, an energy-consistent numerical model for
the dynamic frictional contact between a hyperelastic body and a foundation, a
nonclamped frictional contact problem in thermo-viscoelasticity, the large time
asymptotics for contact problems for Navier–Stokes equation and antiplane elastic-
ity, hemivariational inequalities, and history-dependent hemivariational inequalities
in dynamic elastic-viscoplastic contact problems.
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Chapter 1
Bifurcation Phenomena for Parametric
Nonlinear Elliptic Hemivariational Inequalities

Leszek Gasiński and Nikolaos S. Papageorgiou

Abstract We consider a nonlinear Dirichlet parametric problem with discontinuous
right hand side in which we have a competing effect of sub and superlinear
nonlinearities. A bifurcation type result is studied when the parameter tends to zero.

Keywords Nonlinear elliptic hemivariational inequality • Concave-convex prob-
lem • Bifurcation • Mountain pass theorem

AMS Classification. 35J20, 35J60, 35J92

1.1 Introduction

Let ˝ � R
N be a bounded domain with a C2-boundary @˝. In this paper we study

the following nonlinear parametric Dirichlet problem

.A/

( ��pu.z/ D �u.z/q�1 C f .z; u.z// in ˝;

uj@˝ D 0; u > 0 in ˝; � > 0;

where 1 < q < p. Here �p (1 < p < C1) denotes the p-Laplace differential
operator defined by

�pu D div .krukp�2ru/ for all u 2 W 1;p
0 .˝/:
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The interesting feature of our problem is that f .z; �/ need not be continuous. It is
only jointly measurable and the function � 7! f .z; �/ is L1-bounded on bounded
sets. Then the potential function

F.z; �/ D
Z �

0

f .z; s/ ds

is no longer smooth and it is only locally Lipschitz in the �-variable. The usual way
to treat such discontinuous problems is to pass to an inclusion by “filling in the
gaps” at the discontinuity points. This way we introduce a new form of variational
expressions, known as hemivariational inequalities which arise in nonsmooth
mechanics (see [17]). Hemivariational inequalities can be dealt effectively using
the nonsmooth critical point theory (see [5]). The other important feature of our
analysis is that the potential F.z; �/ is p-superlinear near C1, but without satisfying
the usual, in such cases, Ambrosetti–Rabinowitz condition. So, in the problem
we have the competing effects of the concave (sublinear) term ��q�1 and of the
convex (superlinear) term f .z; �/. We prove a bifurcation type result for small
values of � > 0. Such results were proved for semilinear equations (i.e., p D 2)
by Ambrosetti et al. [1] and for nonlinear equations driven by the p-Laplacian by
García Azorero et al. [4] and Guo and Zhang [12]. In these works the reaction has
the special form

��q�1 C �r�1 for all � > 0;

with 1 < q < p < r < p�, where

p� D
8<
:

Np

N � p if p < N;

C1 if N 6 p:

More general superlinear nonlinearities were employed by Hu and Papageorgiou
[14] and Marano and Papageorgiou [15]. To the best of our knowledge, there are no
such bifurcation results for problems with a nonsmooth potential.

A similar analysis is also conducted for the following parametric problem

.B/

( ��pu.z/ D �f .z; u.z// in ˝;

uj@˝ D 0; u > 0 in ˝; � > 0:

Again f .z; �/ may be discontinuous. So, we deal with this problem by passing to
an inclusion obtained by filling in the gaps at the discontinuities (hemivariational
inequality). We prove a bifurcation type theorem for large values of � > 0 and with
f .z; �/ being .p � 1/-sublinear near C1. Similar “smooth” equations were studied
in [16, 20] (semilinear problems) and in [9, 11, 13, 19] (nonlinear equations driven
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by the p-Laplacian). Only [9] establishes the precise behaviour of the set of positive
solutions as the parameter � > 0 varies (bifurcation type result).

Our approach uses variational methods based on the nonsmooth critical point
theory and suitable truncation and comparison techniques. In the next section for
the convenience of the reader, we review the main mathematical tools which we
will use in the sequel.

1.2 Mathematical Background

LetX be a Banach space andX� its topological dual. By h�; �i we denote the duality
brackets for the pair .X�; X/. Also by k �kX we denote the norm ofX and by k �kX�

the norm of X�. If 'WX ! R is a locally Lipschitz function, then the generalized
directional derivative of ' at x 2 X in the direction h 2 X is defined by

'0.xIh/ D lim sup
y ! x

� & 0

'.y C �h/ � '.y/
�

:

Then '0.xI �/ is sublinear and continuous and so it is the support function of a
nonempty, convex and w�-compact set in X� defined by

@'.z/ D ˚
x� 2 X� W hx�; hi 6 '0.xIh/ for all h 2 X�:

The multifunction @'WX ! 2X
� n f;g is called the generalized subdifferential of '.

If ' is continuous, convex, then it is well known that ' is locally Lipschitz and the
generalized subdifferential coincides with the subdifferential in the sense of convex
analysis which is given by

@'.x/ D ˚
x� 2 X� W hx�; hi 6 '.x C h/ � '.x/ for all h 2 X�:

Moreover, if ' 2 C1.X/, then ' is locally Lipschitz and

@'.x/ D f'0.x/g:
If gW˝ � R ! R is a measurable function and for almost all z 2 ˝, the function
g.z; �/ is bounded on bounded sets, then the function G.z; �/WR ! R defined by

G.z; �/ D
Z �

0

g.z; s/ ds

is locally Lipschitz and

@G.z; �/ D �
gl.z; �/; gu.z; �/

�
;



6 L. Gasiński and N.S. Papageorgiou

where

gl.z; �/ D lim
ı&0

ess inf
j��sj6ı

g.z; s/ and gu.z; �/ D lim
ı&0

ess sup
j��sj6ı

g.z; s/:

Moreover, if

jg.z; �/j 6 a.z/.1C j�jr�1/ for almost all z 2 ˝; all � > 0;

with 1 6 r < C1, a 2 L1.˝/, then the integral map IG WLr.˝/ ! R defined by

IG.u/ D
Z
˝

G.z; u.z// d z

is locally Lipschitz and

@IG.u/ � ˚
h 2 Lr 0

.˝/ W gl.z; u.z// 6 h.z/ 6 gu.z; u.z// a.e. in z 2 ˝�
( 1
r

C 1
r 0

D 1). For details we refer to [3].
For a given locally Lipschitz function 'WX ! R we say that x 2 X is a critical

point of ', if 0 2 @'.x/. It is easy to see that when x is a local minimizer or a local
maximizer of ', then x is a critical point of '.

For a given locally Lipschitz function 'WX ! R, we set

m'.x/ D inf
x�2@'.x/ kx

�kX� :

We say that ' satisfies the Cerami condition at the level c 2 R, if for every sequence
fxngn>1 � X such that '.xn/ ! c and .1 C kxnkX/m'.xn/ ! 0 has a strongly
convergent subsequence. If this property holds at every level c 2 R, then we say
that ' satisfies the Cerami condition. If ' 2 C1.X/, then we recover the classical
definition of the Cerami condition (see e.g., [6]), since m'.xn/ D k'0.xn/kX� for
all n > 1.

Using this compactness type condition, one can prove a deformation theorem
from which follows the minimax theory of the critical values of '. One of the main
results of this theory is the next theorem which is a nonsmooth version of the so
called mountain pass theorem. For details we refer to [5].

Theorem 1.1. If X is a Banach space, 'WX ! R is a locally Lipschitz functional
which satisfies the Cerami condition, x0; x1 2 X are such that kx1 � x0k > r > 0,

max
˚
'.x0/; '.x1/

�
< inf

˚
'.x/ W kx � x0kX D r

� D mr

and

c D inf
�2� max

06t61
'
�
�.t/

�
;
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where

� D ˚
� 2 C �Œ0; 1�IX� W �.0/ D x0; �.1/ D x1

�
;

then c > mr and c is a critical value of the functional '.

In the analysis of the two parametric equations, in addition to the Sobolev space
W

1;p
0 .˝/, we will also use the Banach space

C1
0 .˝/ D ˚

u 2 C1.˝/ W uj@˝ D 0
�
:

This is an ordered Banach space with positive cone

CC D ˚
u 2 C1

0 .˝/ W u.z/ > 0 for all z 2 ˝�:
This cone has a nonempty interior given by

intCC D
�

u 2 CC W u.z/ > 0 for all z 2 ˝; @u

@n
.z/ < 0 for all z 2 @˝

�
;

where n.�/ is the outward unit normal on @˝.
The next theorem is a special case of a more general result of [8] and relates local

C1 and local W 1;p minimizers for a large class of nonsmooth functionals.
So, let j0W˝ � R ! R be a measurable function, which is locally Lipschitz in

the � 2 R variable. Assume that

juj 6 a.z/
�
1C j�jr�1� for almost all z 2 ˝; all � 2 R; all u 2 @j0.z; �/;

with a 2 L1.˝/C and 1 < r < p�. Let '0WW 1;p
0 .˝/ ! R be the functional

defined by

'0.u/ D 1

p
krukpp �

Z
˝

j0
�
z; u.z/

�
d z for all u 2 W 1;p

0 .˝/: (1.1)

From [3, p. 83] we know that '0 is Lipschitz continuous on bounded sets, hence it
is locally Lipschitz.

Theorem 1.2. If '0 is defined by (1.1) and u0 2 W
1;p
0 .˝/ is a local C1

0 .˝/-
minimizer of '0, i.e., there exists %0 > 0, such that

'0.u0/ 6 '0.u0 C h/ for all h 2 C1
0 .˝/; khkC10 .˝/ 6 %0;

then u0 2 C
1;ˇ
0 .˝/ for some ˇ 2 .0; 1/ and u0 is also a local W 1;p

0 .˝/-minimizer
of '0, i.e., there exists %1 > 0, such that

'0.u0/ 6 '0.u0 C h/ for all h 2 W 1;p
0 .˝/; khk 6 %1:
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Hereafter by k � k we denote that norm of the Sobolev space W 1;p
0 .˝/. By virtue

of the Poincaré inequality, we have

kuk D krukp for all u 2 W 1;p
0 .˝/:

Let AWW 1;p
0 .˝/ ! W �1;p0

.˝/ D W
1;p
0 .˝/� (where 1

p
C 1

p0
D 1) be the

nonlinear map defined by

hA.u/; yi D
Z
˝

krukp�2
RN

.ru;ry/RN d z for all u; y 2 W 1;p
0 .˝/: (1.2)

The next proposition summarizes the main properties of the map A (see e.g., [7,
Lemma 3.2] or [6, pp. 745–746]).

Proposition 1.3. The map AWW 1;p
0 .˝/ ! W �1;p0

.˝/ defined by (1.2) is bounded
(i.e., maps bounded sets to bounded sets), continuous, strictly monotone (hence
maximal monotone too) and of type .S/C, i.e., if un ! u weakly in W 1;p

0 .˝/ and

lim sup
n!C1

hA.un/; un � ui 6 0, then un ! u in W 1;p
0 .˝/.

We will also need the following fact about ordered Banach spaces (see e.g., [15]).

Lemma 1.4. If X is an ordered Banach space with order cone XC, intXC ¤ ;,
u0 2 intXC, then for every u 2 X there exists t D t .u/ > 0 such that tu0�u 2 XC.

In the following by O�1 we denote the first eigenvalue of .��p;W
1;p
0 .˝//. We

know that O�1 > 0, it is isolated, simple and

O�1 D inf

� krukpp
kukpp W u 2 W 1;p

0 .˝/; u ¤ 0

�
: (1.3)

In (1.3) the infimum is actually attained on the one dimensional eigenspace
corresponding to O�1 > 0. From (1.3) it is clear that the elements of this eigenspace
do not change sign. By Ou1 we denote the Lp-normalized (i.e., kOu1kp D 1) positive
eigenfunction for O�1 > 0. From the nonlinear regularity theory and the nonlinear
maximum principle (see e.g., [6, pp. 737–738]) we have that Ou1 2 intCC.

Finally let us fix our notation in this paper. For every � 2 R, we set �˙ D
maxf˙�; 0g. Then for u 2 W 1;p

0 .˝/ we set u˙.�/ D u.�/˙. We know that

u˙ 2 W 1;p
0 .˝/; u D uC � u� and juj D uC C u�:

By j � jN we denote the Lebesgue measure on R
N .
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1.3 Problem .A/

In this section we study problem .A/.
Due to the discontinuous nature of the perturbation f .z; �/, to study problem .A/

we replace the equation by an inclusion, by filling in the gaps at the discontinuity
points. So, we consider

.P�/

( ��pu.z/ � �u.z/q�1 2 @F.z; u.z// in ˝;

uj@˝ D 0; u > 0 in ˝; � > 0:

By a positive solution of this problem we mean a function u 2 W
1;p
0 .˝/, u ¤ 0,

u.z/ > 0 for almost all z 2 ˝ such that

Z
˝

krukp�2
RN

.ru;rh/RN d z D �

Z
˝

uq�1h d z C
Z
˝

g�hd z for all h 2 W 1;p
0 .˝/;

with g� 2 Lr
0

.˝/ (for some r 2 .p; p�/, 1
r

C 1
r 0

D 1) and g�.z/ 2 @F.z; u.z// D�
fl.z; u.z//; fu.z; u.z//

�
for almost all z 2 ˝.

Our hypotheses on the perturbation f are the following.

H1 f W˝ � R ! R is a measurable function, such that for almost all z 2 ˝,
f .z; 0/ D 0, f .z; �/ > 0 for all � > 0 and

(i) there exist a 2 L1.˝/C and r 2 .p; p�/ such that

f .z; �/ 6 a.z/.1C j�jr�1/ for almost all z 2 ˝, all � 2 R;

(ii) if F.z; �/ D R �
0
f .z; s/ ds, then we have

lim
�!C1

F.z; �/

�p
D C1 uniformly for almost all z 2 ˝

and there exist � 2 .0; .r � p/maxfN
p
; 1g/ and ˇ0 > 0 such that

ˇ0 6 lim inf
�!C1

fl.z; �/� � pF.z; �/
��

uniformly for almost all z 2 ˝I (1.4)

(iii) we have lim
�&0

fu.z; �/

�p�1 D 0 uniformly for almost all z 2 ˝;

(iv) for every % > 0, there exists 	% > 0 such that for almost all z 2 ˝, the
function � 7! F.z; �/C 	%�

p is convex on Œ0; %�.
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Remark 1.5. Since we are looking for positive solutions and all the above hypothe-
ses concern the positive semiaxis .0;C1/, without any loss of generality, we may
assume that f .z; �/ D 0 for almost all z 2 ˝ and all � 6 0. Then fl.z; �/ D
fu.z; �/ D 0 for almost all z 2 ˝ and all � < 0, hence @F.z; �/ D f0g for almost
all z 2 ˝ and all � < 0. Hypothesis H1.i i/ implies that for almost all z 2 ˝, the
potential F.z; �/ is p-superlinear. Note that hypothesis H1.i i/ implies that

lim
�!C1

fl.z; �/

�p�1 D C1 uniformly for almost all z 2 ˝:

Nevertheless, we do not employ the usual, in such cases, Ambrosetti–Rabinowitz
condition (the unilateral version since f .z; �/j.�1;0� D 0), which says that there
exist 
 > p and M1 > 0 such that

0 < 
F.z; �/ 6 fl.z; �/� for almost all z 2 ˝; all � > M1 (1.5)

and

ess sup
˝

F.�;M1/ > 0: (1.6)

From (1.5)–(1.6) it follows that

c1�

 6 F.z; �/ for almost all z 2 ˝; all � > M1; (1.7)

with c1 > 0 (see [5, p. 298]). From (1.7) we infer the much weaker condition

lim
�!C1

F.z; �/

�p
D C1 uniformly for almost all z 2 ˝:

In our setting, this p-superlinear condition is coupled with (1.4), which is weaker
than the Ambrosetti–Rabinowitz condition (1.5)–(1.6). Indeed, suppose that the
Ambrosetti–Rabinowitz condition holds. We may assume that 
 > .r � p/

maxfN
p

� 1g. Then

fl.z; �/� � pF.z; �/
�


D fl.z; �/� � 
F.z; �/
�


C .
 � p/F.z; �/
�


> .
 � p/c1
(see (1.5)–(1.7)), so condition (1.4) is satisfied.

Note that (1.4) incorporates in our framework p-superlinear potentials with
“slower” growth near C1 which fail to satisfy the Ambrosetti–Rabinowitz con-
dition (see (1.5)–(1.6)). The next simple example illustrates this.
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Example 1.6. The following locally Lipschitz potential F satisfies hypotheses H1:

F.�/ D

8̂̂
<
ˆ̂:
0 if � < 0;

�
 � 2�# if 0 6 � 6 1;

�p.ln � C 1/ if 1 < �;

with 1 < p < 
 < # < C1. Note that F fails to satisfy Ambrosetti–Rabinowitz
condition.

For every � > 0, let '�WW 1;p
0 .˝/ ! R be the energy functional for problem

.P�/ defined by

'�.u/ D 1

p
krukpp � �

q
kuCkqq �

Z
˝

F.z; u.z// d z for all u 2 W 1;p
0 .˝/:

From [3], we know that '� is locally Lipschitz.

Proposition 1.7. If hypotheses H1 hold and � > 0, then '� satisfies the Cerami
condition.

Proof. Let fungn>1 � W
1;p
0 .˝/ be a sequence such that

j'�.un/j 6 M2 for all n > 1; (1.8)

for some M2 > 0 and

.1C kunk/m'�.un/ ! 0 as n ! C1: (1.9)

Since @'�.un/ � W �1;p0

.˝/ is weakly compact and the norm functional in a
Banach space is weakly lower semicontinuous, by the Weierstrass theorem, we can
find u�

n 2 @'�.un/ such that

ku�
nk� D m'�.un/ for all n > 1:

From (1.9) we haveˇ̌̌
ˇhA.un/; hi � �

Z
˝

.uC
n /

p�1h d z �
Z
˝

g�
nh d z

ˇ̌̌
ˇ 6 "nkhk

1C kunk for all h 2 W 1;p
0 .˝/;

(1.10)
with " & 0 and with

g�
n .z/ 2 �fl.z; un.z//; fu.z; un.z//

�
for almost all z 2 ˝:
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Hence g�
n 2 Lr

0

.˝/ ( 1
r

C 1
r 0

D 1) and g�
n > 0 for all n > 1. In (1.10) we choose

h D �u�
n 2 W 1;p

0 .˝/. Then

kru�
n kpp 6 "n for all n > 1;

so

u�
n ! 0 in W 1;p

0 .˝/: (1.11)

Next we show that the sequence fuC
n gn>1 � W

1;p
0 .˝/ is bounded. To this end, in

(1.10) we choose h D uC
n 2 W 1;p

0 .˝/. Then

� kruC
n kpp C �kuC

n kqq C
Z
˝

g�
nuC

n d z 6 "n for all n > 1: (1.12)

From (1.8) and (1.11), we have

kruC
n kpp � �p

q
kuC

n kqq �
Z
˝

pF.z; uC
n / d z 6 pM2 for all n > 1: (1.13)

We add (1.12) and (1.13) and obtain

Z
˝

�
g�
nuC

n � pF.z; uC
n /
�
d z 6 M3 C �

�p
q

� 1�kuC
n kqq for all n > 1; (1.14)

for some M3 > 0. By virtue of hypotheses H1.i/ and .i i/, we can find ˇ1 2 .0; ˇ0/
and c2 > 0 such that

ˇ1�
� � c2 6 fl.z; �/� � pF.z; �/ for almost all z 2 ˝; all � > 0;

so

ˇ1�
��c2 6 u��pF.z; �/ for almost all z 2 ˝; all � > 0; u 2 @j.z; �/: (1.15)

Using (1.15) and (1.14), we obtain

ˇ1kuC
n k�� 6 M4 C �

�p
q

� 1�kuC
n kqq

6 c3
�
1C �

�p
q

� 1�kuC
n kq�

�
for all n > 1; (1.16)
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for some M4; c3 > 0 (recall that � > q; see hypothesis H1.i i/). From (1.16) and
since �;p > q, we infer that

the sequence fuC
n gn>1 � L�.˝/ is bounded: (1.17)

First assume that N ¤ p. From hypothesis H1.i i/, it is clear that without any loss
of generality we may assume that � 6 r < p�. So, we can find t 2 .0; 1/ such that

1

r
D 1 � t

�
C t

p� :

Using the interpolation inequality (see e.g., [6, p. 905]) we have

kuC
n kr 6 kuC

n k1�t� kuC
n ktp� for all n > 1;

so

kuC
n krr 6 M5kuC

n kt r for all n > 1;

for some M5 > 0 (use (1.17) and the Sobolev embedding theorem). In (1.10) we
choose h D uC

n 2 W 1;p
0 .˝/ and obtain

kruC
n kpp � �kuC

n kqq �
Z
˝

g�
nuC

n d z 6 "n for all n > 1: (1.18)

By virtue of hypothesis H1.i/, we have

u� 6 c4.1C �r / for almost all z 2 ˝; all � > 0; u 2 @F.z; �/ (1.19)

for some c4 > 0. Using (1.19) in (1.18) and recalling that g�
n .z/ D 0 for almost all

z 2 fun < 0g we have

kruC
n kpp 6 c5 C �kuC

n kqq C c6kuC
n krr

6 c5 C c7.�kruC
n kqp C kruC

n kt rp / for all n > 1 (1.20)

for some c5; c6; c7 > 0. The hypothesis on � (see H1.i i/) implies that t r < p. So,
from (1.20) and since q < p, we infer that

the sequence fuC
n gn>1 � W

1;p
0 .˝/ is bounded. (1.21)

If N D p, then by definition p� D C1, but from the Sobolev embedding theorem
we know thatW 1;p

0 .˝/ is embedded (compactly) inL�.˝/ for all � 2 Œ1;C1/. So,
in order for the above argument to work in the present setting, we have to replace
p� by � > r big such that t r D �.r��/

��� < p (recall that r � � < p). So, again we
obtain (1.21).
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From (1.11) and (1.21) it follows that the sequence fungn>1 � W
1;p
0 .˝/ is

bounded. So, passing to a subsequence if necessary, we may assume that

un ! u weakly in W 1;p
0 .˝/; (1.22)

un ! u in Lr.˝/: (1.23)

In (1.10) we choose h D un � u 2 W 1;p
0 .˝/, pass to the limit as n ! C1 and use

(1.22). We obtain

lim
n!C1hA.un/; un � ui D 0;

so

un ! u in W 1;p
0 .˝/

(see Proposition 1.3).
This proves that '� satisfies the Cerami condition. �

In the next two propositions we show that for all � > 0 small, the function '�
satisfies the mountain pass geometry (see Theorem 1.1).

Proposition 1.8. If hypotheses H1 hold, then there exists O� > 0 such that for every
� 2 .0; O�/ we can find %� > 0 for which we have

inff'�.u/ W kuk D %�g D m� > 0:

Proof. By virtue of hypotheses H1.i/ and .i i i/, for a given " > 0 we can find
c" > 0 such that

u 6 ".�C/p�1 C c".�
C/r�1 for almost all � 2 R and all u 2 @F.z; �/

(recall that @F.z; �/ D f0g for almost all z 2 ˝, all � < 0).
Using Lebourg’s mean value theorem (see [3, p. 41]), we have

F.z; �/ 6 "

p
.�C/p C c"

r
.�C/r for almost all z 2 ˝; all � 2 R: (1.24)

For every u 2 W 1;p
0 .˝/, we have

'�.u/ D 1

p
krukpp � �

q
kuCkqq �

Z
˝

F.z; u/ d z

> 1

p

�
1 � "

O�1
�kruCkpp � �

q
c8kruCkqp � c9kruCkrp
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for some c8 > 0, c9 D c9."/ > 0 (see (1.3) and (1.24)). Choosing " 2 .0; O�1/,
we have

'�.u/ >
�
c10 � ��

q
c8kuCkq�p C c9kuCkr�p��kuCkp (1.25)

for some c10 D c10."/ > 0. Let

	.t/ D �

q
c8t

q�p C c9t
r�p for all t > 0:

Evidently 	 2 C1.0;C1/ and since q < p < r , we have

	.t/ ! C1 as t & 0

and

	.t/ ! C1 as t ! C1:

Therefore, we can find t0 > 0 such that

	.t0/ D min
RC

	;

where RC D Œ0;C1/. Hence 	 0.t0/ D 0, so

�

q
.q � p/c8tq�p�1

0 C .r � p/c9t r�p�1
0 D 0;

thus

.r � p/c9t r�q0 D �

q
.p � q/c8

and hence

t0 D t0.�/ D ��
q

p � q
r � p

c8

c9

� 1
r�q : (1.26)

We see that 	.t0.�// ! 0 as � & 0 (see (1.26)). Therefore, we see that we can find
O� > 0 such that

	.t0.�// < c10 for all � 2 .0; O�/;



16 L. Gasiński and N.S. Papageorgiou

so

'�.u/ > m� > 0 for all u 2 W 1;p
0 .˝/;

with kuk D t0.�/ D '� (see (1.25)). �

Hypothesis H1.i i i/ and the fact that Ou1 2 intCC imply that the following result
holds.

Proposition 1.9. If hypotheses H1 hold and � > 0, then '�.t Ou1/ ! �1 as
t ! C1.

With Propositions 1.8 and 1.9 we have verified the mountain pass geometry for
'� when � 2 .0; O�/. This leads to the nonemptiness of the set

L D ˚
� > 0 W problem .P�/ has a positive solution

�
:

Proposition 1.10. If hypotheses H1 hold, then L ¤ ;.

Proof. Propositions 1.7–1.9 allow the use of the mountain pass theorem (see
Theorem 1.1). So, for every � 2 .0; O�1/ we can find u0 2 W 1;p

0 .˝/ such that

'�.0/ D 0 < m� 6 '�.u0/ (1.27)

and

0 2 @'�.u0/: (1.28)

From (1.27) we see that u0 ¤ 0. From (1.28) we have

A.u0/ D �.uC
0 /

q�1 C g�
0 ; (1.29)

with g�
0 2 Lr 0

.˝/, g�
0 .z/ 2 @F.z; u0.z// for almost every z 2 ˝.

On (1.29) we act with �u�
0 2 W 1;p

0 .˝/ and obtain

kru�
0 kpp 6 0

(recall that g�
0 > 0; see hypothesis H1.i/), so u0 > 0, u0 ¤ 0. Then from (1.29) we

have

��pu0.z/ D �u0.z/
q�1 C g�

0 .z/ for almost all z 2 ˝: (1.30)

The nonlinear regularity theory (see e.g., [6, pp. 737–738]) implies that u0 2 CC n
f0g. From (1.30) we have

�pu0.z/ 6 0 for almost all z 2 ˝;

so u0 2 intCC and .0; O�/ � L (see [6, p. 738]). �
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Remark 1.11. Let SC.�/ denote the set of positive solutions for problem .P�/.
From the above proof, we see that for every � 2 L, we have SC.�/ � intCC.

Proposition 1.12. If hypotheses H1 hold, �0 2 L and � 2 .0; �0/, then � 2 L.

Proof. Since �0 2 L, we can find u0 2 intCC and g�
0 2 Lr 0

.˝/ such that g�
0 .z/ 2

@F.z; u0.z// for almost all z 2 ˝, and

A.u0/ D �0u
q�1
0 C g�

0 in W 1;p
0 .˝/: (1.31)

We introduce the following measurable function

h�.z; �/ D

8̂̂
<
ˆ̂:
0 if � < 0;

��q�1 C f .z; �/ if 0 6 � 6 u0.z/;

�u0.z/q�1 C g�
0 .z/ if u0.z/ < �:

(1.32)

Let

H�.z; �/ D
Z �

0

h�.z; s/ ds

and consider the locally Lipschitz functional  �WW 1;p
0 .˝/ ! R defined by

 �.u/ D 1

p
krukpp �

Z
˝

H�.z; u.z// d z for all u 2 W 1;p
0 .˝/:

From (1.32) it is clear that  � is coercive. Also, it is sequentially weakly lower
semicontinuous. So, we can find u0 2 W 1;p

0 .˝/ such that

 �.u0/ D inf
u2W 1;p

0 .˝/

 �.u/: (1.33)

Since u0 2 intCC, Lemma 1.4 implies that we can find t 2 .0; 1/ small such that
t Ou1 6 u0. So we have

 �.t Ou1/ 6 tp

p
O�1 � t q

q
�kOu1kqq

(see (1.32) and hypothesis H1.i/). Recall that 1 < q < p. So, choosing t 2 .0; 1/

even smaller if necessary, we have  �.t Ou1/ < 0, so

 �.u0/ < 0 D  �.0/

(see (1.33)), hence u0 ¤ 0. From (1.33) we have  0
�.u0/ D 0, so

A.u0/ D Ov�; (1.34)
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with Ov� 2 Lr
0

.˝/, Ov�.z/ 2 @H�.z; u0.z// for almost all z 2 ˝. On (1.34) we act
with �u�

0 2 W 1;p
0 .˝/. Using (1.32) we obtain

kru�
0 kpp D 0;

hence u0 > 0, u0 ¤ 0. Also, on (1.34) we act with .u0 � u0/C 2 W 1;p
0 .˝/. Then

hA.u0/; .u0 � u0/
Ci D

Z
˝

Ov�.u0 � u0/
Cd z

D
Z
˝

.�uq�1
0 C g�

0 /.u0 � u0/
Cd z

<

Z
˝

.�0u0 C g�
0 /.u0 � u0/

Cd z

D hA.u0/; .u0 � u0/
Ci

(see (1.32), (1.31) and recall that � < �0, u0 2 intCC), so

Z
fu0>u0g

�kru0kp�2
RN

ru0 � kru0kp�2
RN

ru0; ru0 � ru0
�
RN
d z 6 0;

thus jfu0 > u0gjN D 0, hence u0 6 u0. So, we have proved that u0 2 Œ0; u0� D fu 2
W

1;p
0 .˝/ W 0 6 u.z/ 6 u0.z/ for almost all z 2 ˝g.
Then from (1.32) and (1.34), we have

A.u0/ D �uq�1
0 C Og�;

with Og� 2 Lr 0

.˝/, Og�.z/ 2 @F.z; u0.z// for almost all z 2 ˝, so

��pu0.z/ D �u0.z/
q�1 C Og�.z/ for almost all z 2 ˝

and thus u0 2 SC.�/ � intCC, i.e., � 2 L. �

Let �� D supL.

Proposition 1.13. If hypotheses H1 hold, then �� < C1.

Proof. By virtue of hypotheses H1.i/ and .i i/ and since 1 < q < p, we can find
� > 0 such that

��q�1 C fl.z; �/ > O�1�p�1 for almost all z 2 ˝; all � > 0: (1.35)

Suppose that � 2 L. Then we can find u 2 SC.�/ � intCC. Let # > 0 be the
biggest positive real such that # O�1 6 u (see Lemma 1.4). We have
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��pu.z/ D �u.z/q�1 C g�.z/ > O�1u.z/p�1

> O�1.# Ou1.z//p�1 D ��p.# Ou1.z// for almost all z 2 ˝;

(see (1.36) and using the fact that # Ou1 6 u), with g� 2 Lr 0

.˝/, g�.z/ 2 @F.z; u.z//
for almost all z 2 ˝. Invoking Proposition 2.2 of [10], we obtain

u � # Ou1 2 intCC

which contradicts the maximality of # > 0. This means that � 62 L and so �� 6
� < C1. �

Proposition 1.14. If hypotheses H1 hold and � 2 .0; ��/, then problem .P�/ has
at least two positive solutions.

Proof. Let O� 2 .�; ��/ \ L and let Ou 2 SC. O�/ � intCC. We can find Og� 2 Lr 0

.˝/

with Og�.z/ 2 @F.z; Ou.z// for almost all z 2 ˝ such that

��p Ou.z/ D O�Ou.z/C Og�.z/ for almost all z 2 ˝: (1.36)

Reasoning as in the proof of Proposition 1.12, we can find u0 2 Œ0; Ou� \ SC.�/. So,
there exists g�

0 2 Lr 0

.˝/ with g�
0 .z/ 2 @F.z; u0.z// for almost all z 2 ˝ such that

��pu0.z/ D �.z/u0.z/
q�1 C g�

0 .z/ for almost all z 2 ˝: (1.37)

Let % D kOuk1 and let 	% > 0 be as postulated by hypothesis H1.iv/. Then

Og�.z/C 	% Ou.z/p�1 > g�
0 .z/C 	%u0.z/

p�1 for almost all z 2 ˝: (1.38)

So, we have

��pu0.z/C 	%u0.z/
p�1 D �u0.z/

q�1 C g�
0 .z/C 	%u0.z/

p�1

6 �Ou.z/q�1 C Og�.z/C 	% Ou.z/p�1

< O�Ou.z/q�1 C Og�.z/C 	% Ou.z/p�1

D ��p Ou.z/C 	% Ou.z/p�1

(see (1.37), (1.38), (1.36) and recall that u0 6 Ou, � < O� and Ou 2 intCC).
From Proposition 2.6 of [2], we have

Ou0 � u0 2 intCC: (1.39)
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Without loss of generality, we may assume that SC.�/ \ Œ0; Ou� D fu0g; otherwise,
we already have a second positive solution and so we are done.

We introduce the following measurable function

Og�.z; �/ D
(
�u0.z/q�1 C g�

0 .z/ if � 6 u0.z/;

��q�1 C fl.z; �/ if u0.z/ < �:
(1.40)

We set

OG�.z; �/ D
Z �

0

Og�.z; s/ ds

and consider the locally Lipschitz function O'�WW 1;p
0 .˝/ ! R defined by

O'�.u/ D 1

p
krukpp �

Z
˝

OG�.z; u.z// d z for all u 2 W 1;p
0 .˝/:

Claim 1. O'� satisfies the Cerami condition.

Let fungn>1 � W
1;p
0 .˝/ be a sequence such that

j O'�.un/j 6 M6 for all n > 1 (1.41)

for some M6 > 0 and

.1C kunk/m O'�.un/ ! 0 as n ! C1: (1.42)

As before (see the proof of Proposition 1.7), we can find u�
n 2 @ O'�.un/ such that

m O'�.un/ D ku�
nk� for all n > 1 and u�

n D A.un/ � v�
n with v�

n 2 Lr
0

.˝/, v�
n .z/ 2

@ OG�.z; un.z// for almost all z 2 ˝, all n > 1.
From (1.41) we have

krunkpp �
Z
˝

p OG�.z; un/ d z 6 pM6 for all n > 1: (1.43)

Also, from (1.42) we have

jhu�
n ; hij 6 "nkhk

1C kunk for all h 2 W 1;p
0 .˝/;

with "n & 0, so

ˇ̌̌
ˇhA.un/; hi �

Z
˝

v�
n h d z

ˇ̌̌
ˇ 6 "nkhk

1C kunk for all n > 1:
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Choosing h D un 2 W 1;p
0 .˝/, we have

� krunkpp C
Z
˝

v�
nund z 6 "n for all n > 1: (1.44)

Adding (1.43) and (1.44), we obtain

Z
˝

�
v�
nun � p OG�.z; un/

�
d z 6 M7 for all n > 1 (1.45)

for some M7 > 0. From [3, pp. 39 and 42], we have

@ OG�.z; �/ �

8̂̂
<
ˆ̂:
�u0.z/q�1 C g�

0 .z/ if � < u0.z/;

f
.�u0.z/q�1 C @F.z; u0.z///g
2Œ0;1� if � D u0.z/;

��q�1 C @F.z; �/ if u0.z/ < �:

(1.46)

Recalling that v�
n .z/ 2 @ OG�.z; un.z// for almost all z 2 ˝, from (1.45) and (1.46)

it follows that we can find g�
n 2 Lr

0

.˝/ with g�
n .z/ 2 @F.z; un.z// for almost all

z 2 ˝ for all n > 1 such thatZ
˝

�
g�
nun � pF.z; un/

�
d z 6 M8 C �

�p
q

� 1�kunkqq for all n > 1; (1.47)

for some M8 > 0. From (1.47) and reasoning as in the proof of Proposition 1.7 (see
the part of the proof after (1.14)), we conclude that O'� satisfies the Cerami condition.
This proves Claim 1.

Claim 2. u0 2 intCC is a local minimizer of O'�.

We consider the following truncation of the nonlinearity Og�.z; �/:

Qg�.z; �/ �
( Qg�.z; �/ if � 6 Ou0.z/;

Og�.z; Ou0.z// if Ou0.z/ < �:
(1.48)

This is a measurable function. We set

QG�.z; �/ D
Z �

0

Qg�.z; s/ ds

which is a potential function locally Lipschitz in the � 2 R variable. Let
Q'�WW 1;p

0 .˝/ ! R be the locally Lipschitz function defined by

Q'�.u/ D 1

p
krukpp �

Z
˝

QG�.z; u.z// d z for all u 2 W 1;p
0 .˝/:
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Evidently Q'� is coercive (see (1.48)) and sequentially weakly lower semicontinuous.
So, we can find Qu0 2 W 1;p

0 .˝/ such that

Q'�.Qu0/ D inf
u2W 1;p

0 .˝/

Q'�.u/;

so 0 2 @ Q'�.Qu0/, thus

A.Qu0/ D Qv�
0 ; (1.49)

with Qv�
0 2 Lr 0

.˝/, Qv�
0 .z/ 2 @ QG�.z; Qu0.z// for almost all z 2 ˝.

On (1.49) we act with .Qu0 � Qu0/C 2 W 1;p
0 .˝/. Then

hA.Qu0/; .Qu0 � Ou0/Ci D
Z
˝

Qv�
0 .Qu0 � Ou0/Cd z

D
Z
˝

Og�.z; Ou0/.Qu0 � Ou0/Cd z

D
Z
˝

�
�Ouq�1

0 C fl.z; Ou0/
�
.Qu0 � Ou0/Cd z

6 hA.Ou0/; .Qu0 � Ou0/Ci

(see (1.48), (1.40) and recall that fl.z; Ou0/ D inf @F.z; Ou0/, u0 6 Ou0 and � < O�), so

Z
fQu0>Ou0g

�kr Qu0kp�2
RN

r Qu0 � kr Ou0kp�2
RN

r Ou0; r Qu0 � r Ou0
�
RN
d z 6 0;

thus

jfQu0 > Ou0gjN D 0;

hence Qu0 6 Ou0. Also, on (1.49) we act with .u0 � Ou0/C 2 W 1;p
0 .˝/. Then

hA.Qu0; .u0 � Qu0/C/ D
Z
˝

Og�.z; u0/.u0 � Qu0/Cd z

D
Z
˝

�
�uq�1

0 � g�
0

�
.u0 � Qu0/Cd z

D hA.u0/; .u0 � Qu0/Ci

(see (1.48), (1.40), (1.37) and recall that u0 6 Ou0), soZ
fu0>Qu0g

�kr Qu0kp�2
RN

r Qu0 � kru0kp�2
RN

ru0; r Qu0 � ru0
�
RN
d z D 0;
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thus jfu0 > Qu0gjN D 0, hence u0 6 Qu0. So, we have proved that Qu0 2 Œu0; Qu0� D˚
u 2 W

1;p
0 .˝/ W u0.z/ 6 u.z/ 6 Ou0.z/ for almost all z 2 ˝

�
. From (1.48) and

(1.40) we see that (1.49) becomes

��p Qu0.z/ D �Qu0.z/q�1 C fl.z; Qu0.z// for almost all z 2 ˝;

so Qu0 2 SC.�/, hence Qu0 D u0 (recall that we have assumed Œ0; Ou0�\SC.�/ D fu0g).
Note that

Q'�jŒ0;Ou0� D O'�jŒ0;Ou0� (1.50)

(see (1.40) and (1.48)).
From (1.39) we know that Ou0 � u0 2 intCC. Also recall that u0 2 SC.�/ �

intCC. These facts and (1.50) imply that u0 is a local C1
0 .˝/-minimizer of O'�.

Invoking Theorem 1.2 we infer that u0 is a local W 1;p
0 .˝/-minimizer of O'�. This

proves Claim 2.
Claim 2 implies that u0 is a critical point of O'�. Moreover, as in the proof of

Claim 2, we can show that all the critical points u of O'� satisfy u > u0. So, we may
assume that u0 is an isolated critical point of O'�, or otherwise, we already have a
whole sequence of distinct positive solutions of .P�/ converging to u0 and so we are
done. Then, because u0 is also a local minimizer of O'� (see Claim 2), as in [7, Proof
of Theorem 2.12], we can find % 2 .0; 1/ small such that

O'�.u0/ < inf
˚ O'�.u/ W ku � u0k D %

� D Om�
%: (1.51)

Hypothesis H1.i i i/ implies that

O'�.t Ou/ ! �1 as t ! C1: (1.52)

From (1.51), (1.52) and Claim 1, we see that we can apply the mountain pass
theorem (see Theorem 1.1) and find Ou 2 W 1;p

0 .˝/, such that

O'�.u0/ < Om�
% 6 O'�.Ou/ (1.53)

and

0 2 @ O'�.Ou/: (1.54)

From (1.53) we see that Ou ¤ u0. From (1.54) we have Ou > u0 and so Ou 2 SC.�/.
This is the second positive solution of problem .P�/, � 2 .0; ��/. �

Finally, we examine what happens in the critical case � D ��.

Proposition 1.15. If hypotheses H1 hold, then �� 2 L and so L D .0; ���.
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Proof. Let f�ngn>1 � L be such that �n % � as n ! C1. Then we can find
un 2 SC.�n/ � intCC for all n > 1 such that

A.un/ D �nuq�1
n C g�

n for all n > 1; (1.55)

and

'�.un/ < 0 for all n > 1 (1.56)

(see the proof of Proposition 1.12), where g�
n 2 Lr

0

.˝/, g�
n .z/ 2 @F.z; un.z// for

almost all z 2 ˝. From (1.55) we have

krunkpp D �nkunkqq C
Z
˝

g�
nund z for all n > 1: (1.57)

From (1.56) we have

� �np

q
kunkqq �

Z
˝

pF.z; un/ d z 6 �krunkpp for all n > 1: (1.58)

Adding (1.57) and (1.58) we obtain

Z
˝

�
g�
nun � pF.z; un/

�
d z 6 �n

�p
q

� 1�kunkqq for all n > 1: (1.59)

From (1.59) and reasoning as in the proof of Proposition 1.7 (see the part of the
proof after (1.22)), we infer that the sequence fungn>1 � W

1;p
0 .˝/ is bounded. So,

passing to a subsequence if necessary, we may assume that

un ! u� weakly in W 1;p
0 .˝/; (1.60)

un ! u� in Lr.˝/: (1.61)

On (1.55) we act with un � u� 2 W 1;p
0 .˝/, pass to the limit as n ! and use (1.60).

Then

lim
n!C1hA.un/; un � u�i D 0;

so

un ! u� in W 1;p
0 .˝/ (1.62)

(see Proposition 1.3). Also, fg�
n gn>1 � Lr

0

.˝/ and so we may assume that

g�
n ! g� weakly in Lr

0

.˝/; (1.63)
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so

g�
n .z/ 2 conv lim sup

n!C1
fg�
n .z/g for almost all z 2 ˝ (1.64)

(see [18, p. 521]).
Recall that g�

n .z/ 2 @F.z; un.z// for almost all z 2 ˝, all n > 1 and that
� 7! @F.z; �/ is an upper semicontinuous multifunction (see [3]). So, from (1.64) it
follows that

g�.z/ 2 @F.z; u�.z// for almost all z 2 ˝:

If in (1.55) we pass to the limit as n ! C1 and use (1.62) and (1.63), we obtain

A.u�/ D ��.u�/q�1 C g�;

so u� 2 CC and it solves problem .P��/.
We need to show that u� ¤ 0 and then we will have u� 2 SC.��/, hence �� 2 L.
To this end let Q� < �1 < �2 < : : : < �n % ��. We consider the following

auxiliary Dirichlet problem

( ��pu.z/ D Q�uC.z/q�1 in ˝;

uj@˝ D 0:
(1.65)

The energy functional Q	WW 1;p
0 .˝/ ! R for problem (1.65) is given by

Q	.u/ D 1

p
krukpp �

Q�
q

kuCkqq for all u 2 W 1;p
0 .˝/:

Evidently Q	 2 C1.W
1;p
0 .˝// and it is coercive (since 1 < q < p) and sequentially

weakly lower semicontinuous. Therefore, by the Weierstrass theorem, we can find
Qu 2 W 1;p

0 .˝/ such that

Q	.Qu/ D inf
u2W 1;p

0 .˝/

Q	.u/: (1.66)

Since q < p, for t 2 .0; 1/ small, we have Q	.t Ou1/ < 0 D Q	.0/, so

Q	.Qu/ < 0 D Q	.0/

(see (1.66)), hence Qu ¤ 0. From (1.66), we have Q	 0.Qu/ D 0, so

A.Qu/ D ��.QuC/q�1: (1.67)



26 L. Gasiński and N.S. Papageorgiou

On (1.67) we act with �Qu� 2 W 1;p
0 .˝/ and obtain that Qu > 0, Qu ¤ 0. Moreover,

the nonlinearity regularity theory and the nonlinear maximum principle (see e.g.,
[6, pp. 737–738]), imply that Qu 2 intCC.

Since u0 2 intCC, we can find tn > 0 such that

tn Qu 6 un for all n > 1

(see Lemma 1.4). Let tn > 0 be the biggest such positive real. Suppose that tn 2
.0; 1/. Then

��pun.z/ D �nun.z/
q�1 C g�

n .z/ > �nun.z/
q�1

> �n.tn Qu/q�1 > Q�tp�1
n Quq�1

D ��p.tn Qu/.z/ for almost all z 2 ˝

(since g�
n > 0, tn Qu 6 un and Q� < �1 6 �n for all n > 1, tn 2 .0; 1/, q < p), so

un � tn Qu 2 intCC

(see [10]). But this contradicts the maximality of tn. Therefore tn > 1 for all n > 1

and so Qu 6 un for all n > 1, thus Qu 6 u� (see (1.62)). Hence u� ¤ 0 and so
u� 2 SC.��/ � intCC, �� 2 L. �

Summarizing the situation for problem .P�/, we can formulate the following
bifurcation type result.

Theorem 1.16. If hypotheses H1 hold, then there exists �� > 0 such that

(a) for all � 2 .0; ��/ problem .P�/ has at least two positive solutions u0; Ou 2
intCC;

(b) for � D �� problem .P��/ has at least one positive solution u� 2 intCC;
(c) for all � > �� problem .P�/ has no positive solutions.

1.4 Problem .B/

In this section we focus on problem .B/ and again we provide a bifurcation type
result, but now for large values of � > 0.

Again, due to the discontinuous character of the reaction f .z; �/, to study problem
.B/ we consider the elliptic inclusion

.Q�/

( ��pu.z/ 2 �@F.z; u.z// in ˝;

uj@˝ D 0; u > 0 in ˝; � > 0:
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By a positive solution of this problem we mean a function u 2 W
1;p
0 .˝/, u ¤ 0,

u.z/ > 0 for almost all z 2 ˝ such that

Z
˝

krukp�2
RN

.ru;rh/RN d z D �

Z
˝

g�hd z for all h 2 W 1;p
0 .˝/;

with g� 2 Lp
0

.˝/, g�.z/ 2 @F.z; u.z// D �
fl.z; u.z//; fu.z; u.z//

�
for almost all

z 2 ˝. So, again we fill in the gaps at the discontinuity points of f .z; �/.
The hypotheses on the reaction f are the following.

H2 f W˝ � R ! R is a measurable function, such that for almost all z 2 ˝,
f .z; 0/ D 0, f .z; �/ > 0 for all � > 0 and

(i) for every % > 0, there exist a% 2 L1.˝/C such that

f .z; �/ 6 a%.z/ for almost all z 2 ˝, all � 2 Œ0; %�;

(ii) lim
�!C1

fu.z; �/

�p�1 D 0 uniformly for almost all z 2 ˝;

(iii) lim
�!0

fu.z; �/

�p�1 D 0 uniformly for almost all z 2 ˝;

(iv) for every % > 0, there exists 	% > 0 such that for almost all z 2 ˝, the function

� 7! F.z; �/C 	%�
p

is convex on Œ0; %� (recall that F.z; �/ D R �
0
f .z; s/ ds);

(v) there exists Qv 2 L1.˝/ such that
R
˝
F.z; Qv.z// d z > 0.

Remark 1.17. As before (see Sect. 1.3) without any loss of generality we assume
that f .z; �/ D 0 for almost all z 2 ˝ and all � 6 0.

Example 1.18. The following locally Lipschitz potential F satisfies hypothesesH2:

F.�/ D

8̂̂<
ˆ̂:
0 if � < 0;

�
 � �� if 0 6 � 6 1;

�q ln � if 1 < �;

with 1 < q < p < 
 < � < C1.

As before let

OL D ˚
� > 0 W problem .Q�/ admits a positive solution

�
:
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Also for � > 0 by OSC.�/ we denote the set of positive solutions of .Q�/. Finally let

�� D inf OL
(if OL D ;, then �� D C1).

Proposition 1.19. If hypotheses H2 hold, then for every � 2 OL, OSC.�/ � intCC
and �� > 0.

Proof. Let � 2 OL and u 2 OSC.�/. Then

��pu.z/ D �g�.z/ for almost all z 2 ˝;

with g� 2 Lp
0

.˝/, g�.z/ 2 @F.z; u.z// for almost all z 2 ˝. Then nonlinear
regularity theory implies u 2 CC n f0g and we have

�pu.z/ 6 0 for almost all z 2 ˝

(since g� > 0), so u 2 intCC (by the nonlinear maximum principle; see e.g.,
[6, p. 738]), thus

OSC.�/ � intCC:

By virtue of hypotheses H2.i/; .i i/ and .i i i/, we can find c11 > 0 such that

0 6 fu.z; �/ 6 c11�
p for almost all z 2 ˝; all � > 0:

Let � 2 .0;
O�1
c11
/ and suppose that � 2 OL. Then we can find u� 2 OSC.�/ � intCC

such that

��pu�.z/ D �g�
� .z/ for almost all z 2 ˝;

with g�
� 2 Lp0

.˝/, g�
� .z/ 2 @F.z; u�.z// for almost all z 2 ˝. Then

kru�kpp D �

Z
˝

g�
�u�d z 6 �c11ku�kpp < O�1ku�kpp;

which contradicts (1.3). Therefore �� > O�1
c11
> 0. �

Proposition 1.20. If hypotheses H2 hold, then OL ¤ 0 and if � 2 OL and � > �,
then � 2 OL.

Proof. By virtue of hypotheses H2.i/; .i i/, for a given " > 0 we can find c12 D
c12."/ > 0 such that

F.z; �/ 6 "

p
.�C/p C c12 for almost all z 2 ˝; all � 2 R:
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Then for all � > 0 and all u 2 W 1;p.˝/ we have

'�.u/ D 1

p
krukpp � �

Z
˝

F.z; u.z// d z > 1

p

�
1 � "

O�1
�krukpp � c12j˝jN

(see (1.47) and (1.22)).
So, choosing " 2 .0; O�1/we see that '� is coercive. Also, it is sequentially weakly

lower semicontinuous. Thus, we can find u0 2 W 1;p
0 .˝/ such that

'�.u0/ D inf
u2W 1;p

0 .˝/

'�.u/: (1.68)

Consider the integral functional KWLp.˝/ ! R defined by

K.u/ D
Z
˝

F.z; u.z// for all u 2 Lp.˝/:

Evidently K is continuous. Since C1
c .˝/ is dense in L1.˝/, using hypothesis

H1.v/, we see that we can find v 2 C1
c .˝/ such that K.v/ > 0. Then we have

'�.v/ D 1

p
krvkpp � �

Z
˝

F.z; v/ d z:

Then for � > 0 big we see that '�.v/ < 0, so

'�.u0/ < 0 D '�.0/

(see (1.68)), hence u0 ¤ 0. From (1.68) we have 0 2 @'�.u0/, so

A.u0/ D �g�
0 ; (1.69)

with g�
0 2 Lr 0

.˝/, g�
0 .z/ 2 @F.z; u0.z// for almost all z 2 ˝. On (1.69) we act with

�u�
0 2 W 1;p

0 .˝/. Since g�
0 > 0, we obtain

kru�
0 kpp 6 0;

hence u0 > 0, u0 ¤ 0. We have

��pu0.z/ D �g�
0 .z/ for almost all z 2 ˝;

so

u0 2 OSC.�/ for all � > 0 big,
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and thus

OL ¤ ;:

Next let � 2 OL and � > �. We can find u� 2 OSC.�/. Then

��pu�.z/ D �g�.z/ for almost all z 2 ˝; (1.70)

with g� 2 Lp0

.˝/, g�.z/ 2 @F.z; u�.z// for almost all z 2 ˝.
We now introduce the following truncation of the reaction f .z; �/:

h.z; �/ D
(
g�.z/ if � 6 u�.z/;

f .z; �/ if u�.z/ < �:
(1.71)

This is a measurable function and we set

H.z; �/ D
Z �

0

h.z; s/ ds

which is locally Lipschitz in � 2 R variable. We introduce the locally Lipschitz
function  �WW 1;p

0 .˝/ ! R defined by

 �.u/ D 1

p
krukpp � �

Z
˝

H.z; u.z// for all u 2 W 1;p
0 .˝/:

Hypothesis H2.i i/ implies that for a given " > 0, we can find M9 D M9."/ >

ku�k1 such that

f .z; �/ 6 "�p�1 for almost all z 2 ˝; all � > M9;

so

h.z; �/ 6 "�p�1 for almost all z 2 ˝; all � > M9 (1.72)

(see (1.71)). From (1.72), (1.71) and hypothesis H2.i/, it follows that

H.z; �/ 6 "

p
�p C c13 for almost all z 2 ˝; all � 2 R (1.73)

for some c13 > 0. Hence for all u 2 W 1;p
0 .˝/ we have

 �.u/ > 1

p

�
1 � �"

O�1
�krukpp � c14
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for some c14 > 0 (see (1.73) and 1.3). Thus for " 2 .0; O�1
�
/,  � is coercive. Also, it

is sequentially weakly lower semicontinuous. So, we can find u� 2 W
1;p
0 .˝/ such

that

 �.u�/ D inf
u2W 1;p

0 .˝/

 �.u/:

Then,

0 2 @ �.u�/;

so

A.u�/ D � Og�; (1.74)

with Og� 2 Lp0

.˝/, Og�.z/ 2 @H.z; u�.z// for almost all z 2 ˝.
Recall that

@H.z; �/ �

8̂̂<
ˆ̂:
g�.z/ if � < u�.z/;

f
@F.z; u�.z//g
2Œ0;1� if � D u�.z/;

@F.z; �/ if u�.z/ < �

(1.75)

(see [3, p. 42]). So, acting with .u� � u�/C 2 W 1;p
0 .˝/ in (1.74), we obtain

hA.u�/; .u� � u�/
Ci D

Z
˝

� Og�.u� � u�/
Cd z

>
Z
˝

�g�.u� � u�/
Cd z

D hA.u�/; .u� � u�/
Ci

(see (1.75) and (1.70)). SoZ
fu�>u�g

�kru�kp�2
RN

ru� � kru�kp�2
RN

ru�;ru� � ru�
�
RN

> 0:

Therefore,

jfu� > u�gjN D 0I

hence u� 6 u�. Then from (1.71) and (1.74), we have

��pu�.z/ 6 �@F.z; u�.z// for almost all z 2 ˝;
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so

u� 2 OSC.�/

and so � 2 OL. �

Proposition 1.21. If hypotheses H2 hold and � > ��, then problem .Q�/ admits
at least two positive solutions

u0; Ou 2 intCC; u0 ¤ Ou:

Proof. Let # 2 .��; �/ \ OL. We can find u# 2 OSC.#/ � intCC. Reasoning as in
the proof of Proposition 1.20, we can find u0 2 OSC.�/ 2 intCC such that

u# 6 u0 and  �.u0/ D inf
u2W 1;p

0 .˝/

 �.u/: (1.76)

Here  �WW 1;p
0 .˝/ ! R is the locally Lipschitz functional as in the proof of

Proposition 1.20, resulting from the lower truncation of f .z; �/ at u#.z/ (see (1.71)).
Let

C.u#/ D ˚
u 2 W 1;p

0 .˝/ W u#.z/ 6 u.z/ for almost all z 2 ˝�:
From (1.71) we see that

 �jC.u# / D '�jC.u# / � O	; (1.77)

where

O	 D
Z
˝

F.z; u#.z// d z �
Z
˝

g�.z/u#.z/ d z;

with g� 2 Lp
0

.˝/, g�.z/ 2 @F.z; u#.z// for almost all z 2 ˝. Recall that
'�WW 1;p

0 .˝/ ! R is the locally Lipschitz energy functional for problem .Q�/

defined by

'�.u/ D 1

p
krukpp � �

Z
˝

F.z; u.z// d z for all u 2 W 1;p
0 .˝/:

Let % D ku0k1 and let 	% > 0 be as postulated by hypothesis H2.iv/. Then for
some g�

0 ; g
�
# 2 Lp0

.˝/ with g�
0 .z/ 2 @F.z; u0.z//, g�

#.z/ 2 @F.z; u#.z// for almost

all z 2 ˝ and with O	% > 	%, we have

��pu0.z/C O	%u0.z/p�1 D �g�
0 .z/C O	%u0.z/p�1

> �g�
# .z/C O	%u#.z/p�1
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> #g�
# .z/C O	%u#.z/p�1

D ��pu#.z/C O	%u#.z/p�1 for almost all z 2 ˝

(see hypothesis H2.iv/), so

u0 � u# 2 intCC (1.78)

(see [2]). From (1.76)–(1.78), it follows that u0 is a local C1
0 .˝/-minimizer of '�.

Invoking Theorem 1.2, we conclude that u0 is also a localW 1;p
0 .˝/-minimizer of '�.

By virtue of hypothesis H2.i i i/, for a given " > 0, we can find ı D ı."/ > 0

such that

f .z; �/ 6 "�p�1 for almost all z 2 ˝; all � 2 Œ0; ı�;

so

F.z; �/ 6 "

p
j�jp for almost all z 2 ˝; all j�j 6 ı (1.79)

(recall that f .z; �/j.�1;0� � 0).
Let u 2 C1

0 .˝/ with kukC10 .˝/ 6 ı. We have

'�.u/ D 1

p
krukpp � �

Z
˝

F.z; u.z// d z > 1

p

�
1 � �"

O�1
�krukpp (1.80)

(see (1.79) and (1.22)).

Choosing " 2 .0; O�1
�
/ from (1.80) we infer that u D 0 is a local C1

0 .˝/-minimizer

of '�, hence by Theorem 1.2, u D 0 is a local W 1;p
0 .˝/-minimizer of '�.

Without any loss of generality we may assume that 0 D '�.0/ 6 '�.u0/ (the
analysis is similar if the opposite inequality holds). Also, we may assume that u0 is
an isolated critical point of '�. Indeed, if this not the case, we can find a sequence
fungn>1 � W

1;p
0 .˝/ such that

un ! u0 in W 1;p
0 .˝/ and 0 2 @'�.un/ for all n > 1: (1.81)

From (1.81) we have

A.un/ D �g�
n ;

with g�
n 2 Lp0

.˝/, g�
n .z/ 2 @F.z; un.z// for almost all z 2 ˝. We have( ��pun.z/ D �g�

n .z/ in ˝;

unj@˝ D 0;
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for n > 1. From nonlinear regularity theory (see e.g., [6, pp. 737–738]), we know
that we can find ˇ 2 .0; 1/ and M10 > 0 such that

un 2 C1;ˇ
0 .˝/ and kunkC1;ˇ0 .˝/

6 M10 for all n > 1: (1.82)

From (1.82) and since C1;ˇ
0 .˝/ is embedded compactly in C1

0 .˝/, we infer that

un ! u0 in C1
0 .˝/

(see (1.81)). Since u0 2 intCC, we see that we can find n0 > 1 such that fungn>n0 �
intCC are all distinct positive solutions of .Q�/ and we are done.

So, we assume that u0 is an isolated critical point of '�. Since u0 is a local
minimizer of '�, as in [7] (see the proof of Theorem 2.12), we can find % > 0

small such that

0 D '�.0/ 6 '�.u0/ < inf
˚
'�.u/ W ku � u0k D %

� D m%: (1.83)

From the proof of Proposition 1.20 we know that '� is coercive. So, it satisfies
the Cerami condition. This fact and (1.83) permit the use of Theorem 1.1 and find
Ou 2 W 1;p

0 .˝/ such that

m% 6 '�.Ou/ and 0 2 @'�.Ou/: (1.84)

From the inequality in (1.84) and (1.83) we have Ou 62 f0; u0g. From the inclusion in
(1.84) it follows that Ou 2 OSC.�/ � intCC. �

Finally we deal with the critical case � D ��.

Proposition 1.22. If hypotheses H2 hold, then �� 2 OL, i.e., OL D Œ��;C1/.

Proof. Let f�ngn>1 � OL and �n & ��. Let un 2 OSC.�n/ for n > 1. We can find
fg�
n gn>1 � Lp

0

.˝/ such that g�
n .z/ 2 @F.z; un.z// for almost all z 2 ˝ and

A.un/ D �ng
�
n for all n > 1; (1.85)

so

krunkpp 6 �1

Z
˝

g�
nund z for all n > 1: (1.86)

Using hypotheses H2.i/ and .i i/, for a given " > 0 we can find c15 D c15."/ > 0

such that

fu.z; �/� 6 "�p C c15 for almost all z 2 ˝; all � > 0: (1.87)
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Returning to (1.86) and using (1.87) and (1.3) we obtain

�
1 � �1"

O�1
�krunkpp 6 �1c15j˝jN : (1.88)

Choosing " 2 .0; O�1
�1
/ from (1.88) we infer that the sequence fungn>1 � W

1;p
0 .˝/ is

bounded. So, we may assume that

un ! u� weakly in W 1;p
0 .˝/; (1.89)

un ! u� in Lp.˝/: (1.90)

On (1.85) we act with un � u� 2 W
1;p
0 .˝/, pass to the limit as n ! C1 and use

(1.89). We obtain

lim
n!C1hA.un/; un � u�i D 0;

so

un ! u� in W 1;p
0 .˝/ (1.91)

(see Proposition 1.3). Also note that the sequence fg�
n gn>1 � Lp

0

.˝/ is bounded
(see (1.87) and (1.91)). So, we may assume that

g�
n ! g� weakly in Lp

0

.˝/ (1.92)

and as in the proof of Proposition 1.15, we have

g�.z/ 2 @F.z; u�.z// for almost all z 2 ˝: (1.93)

Passing to the limit as n ! C1 in (1.85) and using (1.91) and (1.92), we obtain

A.u�/ D ��g�

so u� is a solution of .Q�/ (see (1.93)).
We need to show that u� ¤ 0 in order to conclude that �� 2 OL.
Arguing indirectly, suppose that u� D 0. We set yn D unkunk for all n > 1. Then

kunk D 1 for all n > 1 and so we may assume that

yn ! y weakly in W 1;p
0 .˝/;

yn ! y in Lp.˝/:
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Hypotheses H2.i/–.i i i/ imply that we can find c16 > 0 such that

0 6 fu.z; �/ 6 c16j�jp�1 for almost all z 2 ˝; all � 2 R: (1.94)

Then, from (1.85) we have

A.yn/ D �n
g�
n

kunkp�1 for all n > 1: (1.95)

From (1.94) it is clear that the sequence
˚ g�

n

kunkp�1

�
n>1 � Lp

0

.˝/ is bounded. Using
hypothesis H2.i i i/, we have (at least for a subsequence)

g�
n

kunkp�1 ! 0 in Lp
0

.˝/: (1.96)

Acting on (1.95) with yn � y 2 W
1;p
0 .˝/, passing to the limit as n ! C1 and

using (1.96), we obtain

lim
n!C1hA.yn/; yn � yi D 0;

so

yn ! y in W 1;p
0 .˝/ (1.97)

(see Proposition 1.3), hence kyk D 1. Therefore, from (1.95) in the limit as n !
C1, we obtain

A.y/ D 0

(see (1.96) and (1.97)), thus y D 0 (see Proposition 1.3) which contradicts (1.97).
Therefore u� ¤ 0 and so �� 2 OL. �

Summarizing the situation for problem .Q�/, we can formulate the following
bifurcation type theorem for large values of � > 0.

Theorem 1.23. If hypotheses H2 hold, then there exists �� such that

(a) for all � > �� problem .Q�/ has at least two positive solutions u0; Ou 2 intCC,
u0 ¤ Ou;

(b) for � D �� problem .Q��
/ has at least one positive solution u� 2 intCC;

(c) for all � 2 .0; ��/ problem .Q�/ has no positive solutions.
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Chapter 2
Evolutionary Inclusions and Hemivariational
Inequalities

Stanisław Migórski, Anna Ochal, and Mircea Sofonea

Abstract We consider a class of abstract nonlinear evolutionary inclusions of
first order with a multivalued Clarke subgradient term. We use a surjectivity
result for pseudomonotone multivalued operators in order to prove existence and
uniqueness of solutions. Next, we use the Banach fixed point theorem and establish
the unique solvability to evolutionary inclusion with history-dependent operators.
We apply this result to second order evolutionary inclusions governed by two
history-dependent operators, which depend on the solution and its time derivative,
respectively. Finally, we specify existence and uniqueness results for nonlinear first
and second order hemivariational inequalities with or without history-dependent
operators.

Keywords Evolutionary inclusion • Hemivariational inequality • Clarke
subdifferential • Pseudomonotone operator • History-dependent operator • Weak
solution

AMS Classification. 34G25, 35L86, 47J20, 47J35, 35L90, 47J22

2.1 Introduction

In this chapter we study abstract evolutionary inclusions of first and second order
involving a multivalued term in the form of the Clarke subdifferential of a locally
Lipschitz functional. We also investigate the first and second order evolutionary
hemivariational inequalities with integral functionals defined on the boundary of a
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given domain. Our main results concern the existence and uniqueness of solutions
to several classes of nonlinear inclusions and hemivariational inequalities.

We recall that hemivariational inequalities, introduced and studied in the early
1980s by Panagiotopoulos in [19, 20], are closely related to nonlinear inclusions
of subdifferential type. During the last three decades the number of contributions
to this area was enormous, both in the theory and applications of hemivariational
inequalities, see, e.g., [4,7,8,10–18,21,22] to mention only a few, and the references
therein.

The first order evolutionary inclusions we study in this chapter are governed by
a time dependent pseudomonotone operator and are considered in the framework of
evolution triple of spaces. First, we provide results on the existence and uniqueness
of solutions to the Cauchy problem for this class of inclusions. Existence is
established by employing a surjectivity result for multivalued L-pseudomonotone
operator (cf. Proposition 2.2). The uniqueness of a solution is obtained in a case
when the operator is strongly monotone, the subdifferential of the superpotential
satisfies a relaxed monotonicity condition, and a smallness hypothesis holds.
In comparison to our earlier results on the first order evolutionary subdifferential
inclusions, the main result we present here, Theorem 2.6, does not require the
introduction of an additional intermediate space to the problem. Next, using a
fixed point argument, we provide a result on the unique solvability of the class of
first order evolutionary subdifferential inclusions with history-dependent operators.
Subsequently, based on our results for first order problems, we derive several results
on the unique solvability of the Cauchy problems for second order evolutionary
inclusions involving history-dependent operators. In this way we obtain some
generalizations of the results obtained in [10,12–14,16,22]. Finally, we give results
on the existence and uniqueness of solutions to various evolutionary hemivari-
ational inequalities of first and second order with or without history-dependent
operators.

The results of this chapter find many applications in carrying out the varia-
tional analysis of various contact models of mechanics. The systematic studies
of problems in Contact Mechanics by exploiting results on inclusions and hemi-
variational inequalities can be found in recent monograph [16]. Applications of
results of this chapter to the study of nonlinear problems which describe the contact
between a deformable body and a foundation are illustrated in Chap. 14 of this
volume.

The chapter is organized as follows. In Sect. 2.2 we recall some notation
and present some auxiliary material. In Sects. 2.3 and 2.4 we treat, respectively,
abstract evolutionary inclusions of first and second order both without and with
history-dependent operators. Results on existence and uniqueness of solutions to
hemivariational inequalities of first and second order are delivered in Sect. 2.5.
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2.2 Notation and Preliminaries

In this section we present the notation and recall some definitions from nonlinear
analysis needed in the sequel. For further details, we refer e.g. to [6, 24].

Given a reflexive Banach space X we denote by k � kX its norm, by X� its
topological dual and by h�; �iX��X the duality pairing ofX andX�. For a set U � X

we define kU kX D supfkukX j u 2 U g, and we denote by L.X; Y / a space of linear
and bounded operators between the Banach spaceX with values in the Banach space
Y with the usual norm k � kL.X;Y /.

Let AWX ! 2X
�

be a multivalued operator. We say it is pseudomonotone, if the
following conditions are satisfied:

(a) for all u 2 X the set Au is a nonempty, bounded, closed, and convex, subset
of X�.

(b) A is upper semicontinuous from each finite dimensional subspace of X to X�
endowed with the weak topology.

(c) if fung � X , un ! u weakly in X and u�
n 2 Aun is such that the following

inequality holds lim sup hu�
n ; un � uiX��X � 0, then for every y 2 X , there

exists u�.y/ 2 Au such that

hu�.y/; u � yiX��X � lim inf hu�
n ; un � yiX��X :

An operator AWX ! 2X
�

is called bounded, if it maps bounded sets into bounded
ones. It is called coercive if either the domain D.A/ of A is bounded or D.A/ is
unbounded and

lim
kukX!1; u2D.A/

inf f hu�; uiX��X j u� 2 Au g
kukX D C1:

The following version of the notion of pseudomonotonicity of multivalued
operators will be useful in what follows. Let LWD.L/ � X ! X� be a linear,
maximal monotone operator. We say that AWX ! 2X

�

is pseudomonotone with
respect to D.L/ or L-pseudomonotone, if the conditions (a) and (b) hold and, in
addition,

(d) if fung � D.L/, un ! u weakly in X , Lun ! Lu weakly in X�, u�
n 2 Aun is

such that u�
n ! u� weakly inX� and, in addition, lim sup hu�

n ; un�uiX��X � 0,
then u� 2 Au and hu�

n ; uniX��X ! hu�; uiX��X .

The class of multivalued bounded L-pseudomonotone operators is closed
under addition of mappings. We have the following result which corresponds to
Proposition 2 of [4].

Proposition 2.1. LetX be a reflexive Banach space,LWD.L/ � X ! X� a linear,
maximal monotone operator andA1,A2WX ! 2X

�

multivaluedL-pseudomonotone
operators. If A1 or A2 is bounded, then A1 C A2 is L-pseudomonotone.
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We also need the following surjectivity result (Theorem 1.3.73 of [6]) for
operators which are pseudomonotone with respect to D.L/.

Proposition 2.2. Let X be a reflexive and strictly convex Banach space, let
LWD.L/ � X ! X� be a linear and maximal monotone operator. If AWX ! 2X

�

is bounded, coercive, and pseudomonotone with respect to D.L/, then L C A is
surjective, i.e., .LC A/.D.L// D X�.

Next, we recall some definitions for single-valued operators. A single-valued
operator AWX ! X� is said to be pseudomonotone if it is bounded (i.e., it maps
bounded subsets of X into bounded subsets of X�) and satisfies the inequality

hAu; u � viX��X � lim inf hAun; un � viX��X for all v 2 X;

whenever fung converges weakly in X towards u with

lim sup hAun; un � uiX��X � 0:

Let LWD.L/ � X ! X� be a linear, maximal monotone operator. An operator
AWX ! X� is said to beL-pseudomonotone, if for any sequence fung inD.L/with
un ! u weakly inX ,Lun ! Lu weakly inX� and lim sup hAun; un�uiX��X � 0,
it follows that Aun ! Au weakly in X� and hAun; uniX��X ! hAu; uiX��X . For
characterizations of pseudomonotonicity we refer to [6, 24].

Given an operator AW .0; T / �X ! X�, its Nemitsky (superposition) operator is
the operator AWL2.0; T IX/ ! L2.0; T IX�/ defined by .Av/.t/ D A.t; v.t// for
v 2 L2.0; T IX/ and t 2 .0; T /.

Next, we provide the definitions of the generalized directional derivative and the
generalized gradient of Clarke for a locally Lipschitz function hWE ! R, where
E is a Banach space (see [3, 5, 16]). The generalized directional derivative of h at
x 2 E in the direction v 2 E, denoted by h0.xI v/, is defined by

h0.xI v/ D lim sup
y!x; t#0

h.y C tv/ � h.y/
t

:

The generalized gradient of h at x 2 E, denoted by @h.x/, is a subset of a dual
space E� given by

@h.x/ D f� 2 E� j h0.xI v/ 	 h�; viE��E for all v 2 Eg:

The locally Lipschitz function h is called regular (in the sense of Clarke) at x 2 E
if for all v 2 E the one-sided directional derivative h0.xI v/ exists and satisfies
h0.xI v/ D h0.xI v/ for all v 2 E.

Finally, we recall the following fixed point type result (see Lemma 7 in [9] or
Proposition 3.1 in [23]).
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Lemma 2.3. Let E be a Banach space and 0 < T < 1. Let �WL2.0; T IE/ !
L2.0; T IE/ be an operator such that

k.��1/.t/ � .��2/.t/k2E � c

Z t

0

k�1.s/ � �2.s/k2E ds

for every �1, �2 2 L2.0; T IE/, a.e. t 2 .0; T / with a constant c > 0. Then � has a
unique fixed point in L2.0; T IE/, i.e., there exists a unique �� 2 L2.0; T IE/ such
that ��� D ��.

Lemma 2.3 is a consequence of the Banach Contraction Principle applied to the
nth iteration of operator � for sufficiently large n 2 N. This lemma will be used in
various places in the rest of this chapter.

2.3 First Order Inclusions

In this section we present an existence result for an abstract inclusion of first order.
We treat the inclusion within the setting of an evolution triple of spaces.

Let V � H � V � be an evolution triple of spaces, i.e., V is a reflexive
separable Banach space, H is a separable Hilbert space, the embedding V � H

is continuous, and V is dense in H . Let 0 < T < C1. We set V D L2.0; T IV /
and introduce the space W defined by W D fw 2 V j w0 2 V�g, where the time
derivative w0 D @w=@t is understood in the sense of vector-valued distributions and
V� D L2.0; T IV �/ is the dual space to V . Recall that for any Banach space Y the
space L2.0; T IY / of vector-valued functions consists of all measurable functions
uW .0; T / ! Y for which

R T
0

ku.t/k2Y dt is finite. It is well known that the space
W endowed with the graph norm kwkW D kwkV C kw0kV� is a Banach space
which is separable and reflexive, due to the separability and reflexivity of V and
V�. Furthermore, let H D L2.0; T IH/. Identifying H with its dual, we have the
following continuous embeddings W � V � H � V�. It is also well known that the
embedding W � C.0; T IH/ is continuous, where C.0; T IH/ denotes the space of
continuous functions on Œ0; T � with values in H . If, in addition, we suppose that
the embedding V � H is compact, then by the Lions–Aubin lemma (cf. Theorem
3.4.13 of [6]), we know that the embedding W � H is also compact. The duality
pairing between V� and V is given by

hw; viV��V D
Z T

0

hw.t/; v.t/iV ��V dt for w 2 V�; v 2 V;

where h�; �iV ��V stands for the duality brackets for the pair .V �; V /. Moreover, let
X be a separable and reflexive Banach space.
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Let AW .0; T / � V ! V � be a nonlinear operator, M WV ! X be a linear and
continuous operator, and J W .0; T / � X ! R be a functional. We denote by M �
the adjoint operator to M and by @J the Clarke generalized subdifferential of the
functional J with respect to its second variable. Denote by v0 2 V an initial value.
With these data we consider the following evolutionary inclusion.

Problem 2.4. Find w 2 W such that

w0.t/C A.t;w.t//CM �@J.t;Mw.t// 3 f .t/ a.e. t 2 .0; T /;
w.0/ D v0:

)

In the study of Problem 2.4 we introduce the following definition.

Definition 2.5. A function w 2 W is called a solution of Problem 2.4 if there exists
� 2 V� such that

w0.t/C A.t;w.t//C �.t/ D f .t/ a.e. t 2 .0; T /;
�.t/ 2 M �@J.t;Mw.t// a.e. t 2 .0; T /;
w.0/ D v0:

9>>=
>>;

We consider the following the hypotheses on the data.

AW .0; T / � V ! V � is such that

.a/ A.�; v/ is measurable on .0; T / for all v 2 V:

.b/ A.t; �/ is pseudomonotone on V for a.e. t 2 .0; T /:

.c/ kA.t; v/kV � � a0.t/C a1kvkV for all v 2 V; a.e. t 2 .0; T /
with a0 2 L2.0; T /; a0 	 0 and a1 > 0:

.d/ hA.t; v/; viV ��V 	 ˛kvk2V for all v 2 V; a.e. t 2 .0; T /
with ˛ > 0:

.e/ A.t; �/ is strongly monotone for a.e. t 2 .0; T /; i.e., there
is m1 > 0 such that for all v1; v2 2 V; a.e. t 2 .0; T /
hA.t; v1/ � A.t; v2/; v1 � v2iV ��V 	 m1kv1 � v2k2V :

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

(2.1)

M 2 L.V;X/ is such that its Nemytski operator
MWW � L2.0; T IV / ! L2.0; T IX/ is compact:

�
(2.2)
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J W .0; T / �X ! R is such that

.a/ J.�; v/ is measurable on .0; T / for all v 2 X:

.b/ J.t; �/ is locally Lipschitz on X for a.e. t 2 .0; T /:

.c/ k@J.t; v/kX� � c0.t/C c1kvkX for all v 2 X;
a.e. t 2 .0; T / with c0 2 L2.0; T /; c0; c1 	 0:

.d/ hz1 � z2; v1 � v2iX��X 	 �m2kv1 � v2k2X for all
zi 2 @J.t; vi /; zi 2 X�; vi 2 X; i D 1; 2; a.e. t 2 .0; T /
with m2 	 0:

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

(2.3)

One of the following conditions is satisfied

.a/ ˛ > 2
p
2 c1 kMk2; where kMk D kMkL.V;X/:

.b/ J 0.t; vI �v/ � d0 .1C kvkX/ for all v 2 X; a.e. t 2 .0; T /
with d0 	 0:

9>>>>=
>>>>;

(2.4)

m1 	 m2 kMk2: (2.5)

f 2 V�; v0 2 V: (2.6)

We have the following existence and uniqueness result.

Theorem 2.6. Assume that hypotheses (2.1)(a)–(d), (2.2), (2.3)(a)–(c), (2.4) and
(2.6) hold. Then Problem 2.4 has at least one solution. If, in addition, conditions
(2.1)(e), (2.3)(d) and (2.5) hold, then the solution to Problem 2.4 is unique.

Proof. We begin with the proof of the existence part. To this end, we start by
providing an equivalent form to Problem 2.4 which is given by an operator inclusion.
Let AWV ! V� and N WV ! 2V

�

be the Nemitsky (superposition) operators
corresponding to the translations of A and M � ı @J.t;M �/, i.e.,

.Aw/.t/ D A.t;w.t/C v0/;

.Nw/.t/ D f � 2 V� j �.t/ 2 M � .@J.t;M.w.t/C v0/// g

for w 2 V and a.e. t 2 .0; T /. Using these operators, we formulate the inclusion

w0 C Aw C Nw 3 f;
w.0/ D 0:

)
(2.7)
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We note that w 2 W is a solution to Problem 2.4 if and only if w � v0 2 W solves
inclusion (2.7).

Next, we introduce the operator LWD.L/ � V ! V� given by

Lv D v0 for all v 2 D.L/

with its domain defined by D.L/ D fw 2 W j w.0/ D 0g. Recall that the operator
L is linear and maximal monotone (cf. Proposition 32.10 in [24]). Let the operator
T WV ! 2V

�

be given by T w D Aw C Nw for w 2 V . Then, problem (2.7) takes
the form

find w 2 D.L/ such that Lw C T w 3 f: (2.8)

In order to show the existence of a solution to problem (2.8), we consider the
following claims that are state below and proved later in this section.

Claim 1. T is a bounded operator.

Claim 2. T is coercive.

Claim 3. T is L-pseudomonotone.

From these claims, by using Proposition 2.2, it follows that problem (2.8) has a
solution w 2 D.L/, so w�v0 solves (2.7). This concludes the proof of the existence
part in Theorem 2.6.

To prove the uniqueness part we assume that w1, w2 are solutions to Problem 2.4.
Then, by Definition 2.5, there exist �1, �2 2 V� such that

w0
i .s/C A.s;wi .s//C �i .s/ D f .s/ a.e. s 2 .0; T /;
�i .s/ 2 M �@J.s;Mwi .s// a.e. s 2 .0; T /;
wi .0/ D v0

9>=
>; (2.9)

for i D 1, 2. Subtracting the two equations in (2.9), taking the result in duality with
w1.s/ � w2.s/ and integrating by parts, we obtain

1

2
kw1.t/ � w2.t/k2H C

Z t

0

hA.s;w1.s// � A.s;w2.s//;w1.s/ � w2.s/iV ��V ds

C
Z t

0

h�1.s/ � �2.s/;w1.s/ � w2.s/iV ��V ds D 0

for all t 2 Œ0; T �. We also have �i .s/ D M �zi .s/ with zi .s/ 2 @J.s;Mwi .s// for
a.e. s 2 .0; T / and i D 1, 2. Therefore, using condition (2.3)(d) yields

Z t

0

h�1.s/ � �2.s/;w1.s/ � w2.s/iV ��V ds



2 Evolutionary Inclusions and Hemivariational Inequalities 47

D
Z t

0

hz1.s/ � z2.s/;Mw1.s/ �Mw2.s/iX��Xds

	 �m2

Z t

0

kMw1.s/ �Mw2.s/k2Xds

	 �m2 kMk2
Z t

0

kw1.s/ � w2.s/k2V ds (2.10)

for all t 2 Œ0; T �. We combine now (2.10) with hypothesis (2.1)(e) to obtain

1

2
kw1.t/ � w2.t/k2H Cm1

Z t

0

kw1.s/ � w2.s/k2V ds

� m2 kMk2
Z t

0

kw1.s/ � w2.s/k2V ds � 0

for all t 2 Œ0; T �. From this inequality and hypothesis (2.5), we deduce that w1 D w2
on Œ0; T �. This completes the proof of the uniqueness part in Theorem 2.6. �

We turn now to prove of the three claims used in the proof of Theorem 2.6.

Proof of Claim 1. We prove that T is a bounded operator. Let w 2 V and w� 2 T w.
By the definition, we have w� 2 Aw C Nw. From hypothesis (2.1)(a)–(d) and
Lemma 11 in [10], it follows that kAwkV� � a0 C a1 kwkV with a0 	 0 and
a1 > 0. By an argument of Lemma 13 in [10], we have k�kV� � c0 C c1 kwkV for
all � 2 Nw with c0, c1 	 0. Hence, we deduce that kw�kV� � b0 C b1 kwkV with
b0, b1 	 0. This inequality entails the boundedness of the operator T . �

Proof of Claim 2. We prove that T is coercive. First, we assume that condition
(2.4)(a) holds. Let w 2 V and w� 2 T w, i.e., w� D Aw C � with � 2 Nw.
From (2.1)(c), (d) and the inequality ja C bj2 	 1

2
a2 � b2, valid for a, b 2 R, we

have

hAw;wiV��V

D
Z T

0

	
hA.t;w.t/C v0/;w.t/C v0iV ��V � hA.t;w.t/C v0/; v0iV ��V



dt

	 ˛

Z T

0

�
1

2
kw.t/k2V � kv0k2V

�
dt � T kv0kV ka0kL2.0;T /

� a1 kv0kV
Z T

0

kw.t/C v0kV dt

	 ˛

2
kwk2V � ˛1kwkV � ˛2 (2.11)
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with ˛1, ˛2 > 0. Since � 2 Nw, we have �.t/ D M �z.t/ with z.t/ 2
@J.t;M.w.t/ C v0// for a.e. t 2 .0; T /. From (2.3)(c), using the inequality
.aC b/2 � 2 .a2 C b2/ for a, b 2 R, we obtain

kz.t/k2X� � 2 c21 kMk2 kw.t/k2V C 2 .c0.t/C c1 kMk kv0kV /2

and

kzk2
L2.0;T IX�/

D
Z T

0

kz.t/k2X� dt � 2 c21 kMk2 kwk2V C d2

with d 	 0. Using this inequality, we deduce that

jh�;wiV��V j � k�kV�kwkV � kM �k kzkL2.0;T IX�/ kwkV
� c1

p
2 kMk2 kwk2V C d kwkV

which implies that

h�;wiV��V 	 �c1
p
2 kMk2 kwk2V � d kwkV : (2.12)

The coercivity of T is now a consequence of (2.11), (2.12) and hypothesis (2.4)(a),
that is

hw�;wiV��V D hAw;wiV��V C h�;wiV��V

	
	˛
2

� c1
p
2 kMk2



kwk2V � .˛1 C d/ kwkV � ˛2:

Secondly, we suppose condition (2.4)(b). As before, let w 2 V and w� 2 T w,
which means that w� D Aw C � with � 2 Nw. Hence �.t/ D M �z.t/ with z.t/ 2
@J.t;M.w.t/C v0// for a.e. t 2 .0; T /. By (2.4)(b), we obtain

�hz.t/;M.w.t/C v0/iX��X � J 0.t;M.w.t/C v0/I �M.w.t/C v0//

� d0 .1C kMk kv0kV C kMk kw.t/kV /

for a.e. t 2 .0; T /. On the other hand, from (2.3)(c), we get

hz.t/;Mv0iX��X � kz.t/kX�kMv0kX
� kMkkv0kV .c0.t/C c1kM.w.t/C v0/kX/
� kMkkv0kV .c0.t/C c1kMkkv0kV C c1kMkkw.t/kV / :
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Therefore,

h�;wiV��V D
Z T

0

hM �z.t/;w.t/iV ��V dt

D
Z T

0

	
hz.t/;M.w.t/C v0/iX��X � hz.t/;Mv0iX��X



dt

	
Z T

0

	
� d0 .1C kMkkv0kV / � d0kMkkw.t/kV

�kMkkv0kV .c0.t/C c1kMkkv0kV / � c1 kv0kV kMk2 kw.t/kV


dt

	 �d1kwkV � d2
with d1, d2 	 0. Hence and from inequality (2.11), we deduce

hw�;wiV��V D hAw;wiV��V C h�;wiV��V

	 ˛

2
kwk2V � .˛1 C d1/ kwkV � .˛2 C d2/

which implies the coercivity of T and concludes the proof of Claim 2. �

Proof of Claim 3. We prove that T is L-pseudomonotone. We start with the
properties of the operator N and show that it is L-pseudomonotone.

It is well known (see Proposition 2.1.2 of Clarke [3]) that the values of @J.t; �/
are nonempty, weakly compact and convex subsets of X� for a.e. t 2 .0; T /. Hence
for every w 2 V the set Nw is nonempty and convex in V�. To show that Nw is
weakly compact in V�, we prove that it is closed in V�. Let f�ng � Nw, �n !
� in V�. Then, passing to a subsequence if necessary, we have �n.t/ ! �.t/ in
V � for a.e. t 2 .0; T /. Since for every n 2 N, �n.t/ 2 M �@J.t;M.w.t/ C v0//

for a.e. t 2 .0; T / and the latter is a closed subset of V �, we deduce that �.t/ 2
M �@J.t;M.w.t/C v0// for a.e. t 2 .0; T /. Hence � 2 Nw. Consequently, the set
Nw is closed in V� and convex, so it is also weakly closed in V�. Since Nw is a
bounded set in a reflexive Banach space V�, we obtain that Nw is weakly compact
in V�.

Now we prove that N is upper semicontinuous from V into 2V
�

where V� is
endowed with the weak topology. For this purpose (cf. Proposition 4.1.4 of [5]),
we show that if a set D is weakly closed in V�, then the set N�.D/ D fw 2 V j
Nw \ D 6D ;g is closed in V . Let fwng � N�.D/ be such that wn ! w in V .
Then, we may assume that wn.t/ ! w.t/ in V for a.e. t 2 .0; T /. So, we can find
�n 2 Nwn \ D for n 2 N. Since fwng is bounded in V and N is a bounded map
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(cf. Claim 1), we have that the sequence f�ng is bounded in V�. Therefore, we may
suppose that

�n ! � weakly in V� (2.13)

and, since D is weakly closed in V�, we have � 2 D. From relation �n 2 Nwn, we
have

�n.t/ D M �zn.t/ a:e: t 2 .0; T / (2.14)

and

zn.t/ 2 @J.t;M.wn.t/C v0// a:e: t 2 .0; T /: (2.15)

Next, similarly as in Claim 2, by (2.3)(c), we have

kznkL2.0;T IX�/ � c1
p
2 kMk kwnkV C d;

where d 	 0. Passing to a subsequence, if necessary, we may assume that

zn ! z weakly in L2.0; T IX�/: (2.16)

Note that M.wn.t/ C v0/ ! M.w.t/ C v0/ in X for a.e. t 2 .0; T / and the
generalized gradient @J.t; �/ is upper semicontinuous from X to X� endowed
with the weak topology (cf. Proposition 5.6.10 of [5]) with convex values for a.e.
t 2 .0; T /. Therefore, from the Convergence Theorem (cf. Theorem 5.4 in [1]), due
to (2.15) and (2.16), we have

z.t/ 2 @J.t;M.w.t/C v0// a:e: t 2 .0; T /:

Exploiting (2.13) and (2.16), we pass to the limit in (2.14) to get �.t/ D M �z.t/
for a.e. t 2 .0; T /. Subsequently, we obtain � 2 Nw \ D, i.e., w 2 N�.D/. This
shows that N�.D/ is closed in V and proves the upper semicontinuity of N from
V into the subsets of V� equipped with the weak topology.

To show that N is L-pseudomonotone, it remains to check condition (d) on
page 41. Let fwng � D.L/, wn ! w weakly in W , �n 2 Nwn, �n ! � weakly
in V� and assume that lim suph�n;wn � wiV��V � 0. Since N WV ! 2V

�

is a
bounded map (cf. Claim 1), we infer that f�ng belongs to a bounded subset of V�,
where

�n.t/ D M �zn.t/ a:e: t 2 .0; T / (2.17)

and

zn.t/ 2 @J.t;M.wn.t/C v0// a:e: t 2 .0; T /: (2.18)
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From hypothesis (2.2), we have M.wn C v0/ ! M.w C v0/ in L2.0; T IX/. This
entails that, passing to a subsequence again denoted by fwng, we have

M.wn.t/C v0/ ! M.w.t/C v0/ in X for a:e: t 2 .0; T /: (2.19)

Using now condition (2.3)(c) and (2.18), we deduce that fzng is bounded in
L2.0; T IX�/ and so we may suppose that

zn ! z weakly in L2.0; T IX�/: (2.20)

As before, using (2.20) and the convergence �n ! � weakly in V�, from (2.17) we
obtain that �.t/ D M �z.t/ for a.e. t 2 .0; T /. Moreover, taking into account (2.19)
and (2.20), we apply again the Convergence Theorem of [1] to inclusion (2.18).
We get

z.t/ 2 @J.t;M.w.t/C v0// a:e: t 2 .0; T /:

Therefore, � 2 Nw. Combining convergence (2.20) and Mwn ! Mw in
L2.0; T IX/, we have

h�n;wniV��V D
Z T

0

hM �zn.t/;wn.t/iV ��V dt

D hzn;MwniL2.0;T IX�/�L2.0;T IX/

! hz;MwiL2.0;T IX�/�L2.0;T IX/

D
Z T

0

hM �z.t/;w.t/iV ��V dt D h�;wiV��V :

This completes the proof that N is L-pseudomonotone.
Next, from hypothesis (2.1) it follows by Theorem 2 of Berkovits and Mustonen

[2] that the operator AWV ! V� isL-pseudomonotone. Exploiting the boundedness
of A and L-pseudomonotonicity of both A and N , we deduce from Proposition 2.1
that the operator T D ACN WV ! 2V

�

is L-pseudomonotone. This completes the
proof of Claim 3. �

We are now in a position to study the following perturbation of the inclusion in
Problem 2.4.

Problem 2.7. Find w 2 W such that

w0.t/C A.t;w.t//C .Sw/.t/CM �@J.t;Mw.t// 3 f .t/ a.e. t 2 .0; T /;
w.0/ D v0:

)
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We assume that the perturbation operator satisfies the following hypothesis.

SWV ! V� is such that

k.Sv1/.t/ � .Sv2/.t/kV � � LS

Z t

0

kv1.s/ � v2.s/kV ds
for all v1; v2 2 V; a:e: t 2 .0; T / with LS > 0:

9>>>=
>>>;

(2.21)

Note that condition (2.21) is satisfied for the operator SWV ! V� given by

.Sv/.t/ D R

 Z t

0

v.s/ ds C v0

!
for all v 2 V; a:e: t 2 .0; T /; (2.22)

whereRWV ! V � is a Lipschitz continuous operator and v0 2 V . It is also satisfied
for the Volterra operator SWV ! V� given by

.Sv/.t/ D
Z t

0

R.t � s/ v.s/ ds for all v 2 V; a:e: t 2 .0; T /; (2.23)

where now R 2 L2.0; T IL.V; V �//. Clearly, in the case of the operators (2.22)
and (2.23) the current value .Sv/.t/ at the moment t depends on the history of the
values of v at the moments 0 � s � t and, therefore, we refer the operators of
form (2.22) or (2.23) as history-dependent operators. We extend this definition to
all the operators SWV ! V� which satisfy condition (2.21) and, for this reason, we
say that the subdifferential inclusion in Problem 2.7 represents a history-dependent
subdifferential inclusion. Its main feature consists in the fact that they contain
operators which, at any moment t 2 .0; T / depend on the history of the solution
up to the moment t , see the term .Su/.t/. This feature makes the difference with
respect to the time-dependent subdifferential inclusions studied in literature in
which, usually, the operators involved in are assumed to depend on the current value
of the solution, u.t/.

We have the following existence and uniqueness result.

Theorem 2.8. Assume that hypotheses (2.1)–(2.6) and (2.21) hold. Then
Problem 2.7 has a unique solution.

Proof. The proof is carried out in three steps and it is based on Theorem 2.6
combined with a fixed-point argument.
Step 1. We fix � 2 V� and consider the following intermediate problem.

Find w� 2 W such that

w0
�.t/C A.t;w�.t//CM � @J.t;Mw�.t// 3 f .t/ � �.t/

a.e. t 2 .0; T /;
w�.0/ D v0:

9>>>>=
>>>>;

(2.24)
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By Theorem 2.6, problem (2.24) has a unique solution w� 2 W .
Step 2. Let �WV� ! V� be the operator defined by

�� D Sw� for all � 2 V�;

where w� 2 W is the unique solution to (2.24). We prove that the operator � has a
unique fixed point. To this end, let �1, �2 2 V� and let wi D w�i , for i D 1, 2 be the
corresponding solutions to (2.24). We have

w0
1.s/C A.s;w1.s//C �1.s/ D f .s/ � �1.s/ a.e. s 2 .0; T /; (2.25)

w0
2.s/C A.s;w2.s//C �2.s/ D f .s/ � �2.s/ a.e. s 2 .0; T /; (2.26)

�i .s/ 2 M �@J.s;Mwi .s// a.e. s 2 .0; T /; i D 1; 2; (2.27)

w1.0/ D w2.0/ D v0: (2.28)

Subtracting (2.26) from (2.25), multiplying the result in duality by w1.s/ � w2.s/
and integrating by parts with initial conditions (2.28), we obtain

1

2
kw1.t/ � w2.t/k2H

C
Z t

0

hA.s;w1.s// � A.s;w2.s//;w1.s/ � w2.s/iV ��V ds

C
Z t

0

h�1.s/ � �2.s/;w1.s/ � w2.s/iV ��V ds

D
Z t

0

h�2.s/ � �1.s/;w1.s/ � w2.s/iV ��V ds (2.29)

for all t 2 Œ0; T �. Note also that from (2.27) we have �i .s/ D M �zi .s/ with zi .s/ 2
@J.s;Mwi .s// for a.e. s 2 .0; t/ and i D 1, 2. Therefore, by using hypothesis
(2.3)(d), similarly as in (2.10), we have

Z t

0

h�1.s/ � �2.s/;w1.s/ � w2.s/iV ��V ds

	 �m2kMk2
Z t

0

kw1.s/ � w2.s/k2V ds (2.30)

for all t 2 Œ0; T �. We combine now (2.29), (2.30), use hypotheses (2.1)(e) and (2.5)
to obtain
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1

2
kw1.t/ � w2.t/k2H C Qc

Z t

0

kw1.s/ � w2.s/k2V ds

�
Z t

0

k�1.s/ � �2.s/kV �kw1.s/ � w2.s/kV ds

for all t 2 Œ0; T � with Qc D m1 �m2kMk2 > 0. Hence, by the Hölder inequality, we
have

Qc kw1 � w2k2L2.0;t IV / � k�1 � �2kL2.0;t IV �/ kw1 � w2kL2.0;t IV /

for all t 2 Œ0; T �, which implies that

kw1 � w2kL2.0;t IV / � 1

Qc k�1 � �2kL2.0;t IV �/ (2.31)

for all t 2 Œ0; T �.
Next, by the definition of the operator S , hypothesis (2.21), the Hölder

inequality and (2.31), we have

k.��1/.t/ � .��2/.t/k2V � D k.Sw1/.t/ � .Sw2/.t/k2V �

� L2S T

Z t

0

kw1.s/ � w2.s/k2V ds

� L2S T

Qc2
Z t

0

k�1.s/ � �2.s/k2V �ds

for a.e. t 2 .0; T /. Applying Lemma 2.3 we deduce that the operator� has a unique
fixed point �� 2 V� such that �� D ���.
Step 3. Let �� 2 V� be the unique fixed point of �. Then w�� is a solution to
Problem 2.7, which concludes the proof of the existence part of the theorem.

To prove the uniqueness part let w 2 W be a solution to Problem 2.7 and define
the element � 2 V� by

� D Sw:

It follows that w is the solution to problem (2.24) and, by the uniqueness of solution
to (2.24), we obtain w D w�. This implies �� D � and, by the uniqueness of the
fixed point of �, we have � D ��. Therefore, w D w�� , which concludes the proof
of the uniqueness part of the theorem. �
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2.4 Second Order Inclusions

In this section we study second order evolutionary inclusions for which we provide
results on the unique solvability. Consider the following problem.

Problem 2.9. Find u 2 V such that u0 2 W and

u00.t/C A.t; u0.t//C .Su0/.t/CM �@J.t;Mu0.t// 3 f .t/ a.e. t 2 .0; T /;
u.0/ D u0; u0.0/ D v0:

)

We need the following hypothesis on the initial condition.

u0 2 V: (2.32)

We have the following existence and uniqueness result.

Theorem 2.10. Assume that hypotheses (2.1)–(2.6), (2.21) and (2.32) hold. Then
Problem 2.9 has a unique solution.

Proof. We note that if u 2 V with u0 2 W is a solution to Problem 2.9, then
w D u0 solves Problem 2.7. Vice versa, if w 2 W solves Problem 2.7 and u0 satisfies
condition (2.32), then the function u defined by

u.t/ D u0 C
Z t

0

w.s/ ds for all t 2 .0; T /

is a solution to Problem 2.9. Hence, Theorem 2.10 is a direct consequence of
Theorem 2.8. �

In the following problem we consider the second order evolutionary inclusion
with two history-dependent operators.

Problem 2.11. Find u 2 V such that u0 2 W and

u00.t/C A.t; u0.t//C .Pu0/.t/C .Ru/.t/CM �@J.t;Mu0.t// 3 f .t/
a.e. t 2 .0; T /;

u.0/ D u0; u0.0/ D v0:

9>=
>;

In the study of Problem 2.11 we consider the following hypothesis.

P;RWV ! V� are operators which satisfy (2.21)

with positive constants LP and LR; respectively:

)
(2.33)

We have the following existence and uniqueness result.
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Theorem 2.12. Assume that hypotheses (2.1)–(2.6), (2.32) and (2.33) hold. Then
Problem 2.11 has a unique solution.

Proof. We define the operator SWV ! V� by

.Sw/.t/ D .Pw/.t/C R
�Z t

0

w.s/ ds C u0

�
for all w 2 V; a.e. t 2 .0; T /:

Note that hypothesis (2.33) implies that S is a history-dependent operator, i.e., it
satisfies (2.21). Indeed, for all w1, w2 2 V and a.e. t 2 .0; T /, we have

k.Sw1/.t/ � .Sw2/.t/kV � D k.Pw1/.t/ � .Pw2/.t/kV �

C kR
�Z t

0

w1.s/ ds C u0

�
� R

�Z t

0

w2.s/ ds C u0

�
kV �

� LP

Z t

0

kw1.s/ � w2.s/kV ds

C LR

Z t

0

k
Z s

0

w1.
/ d
 C u0 �
Z s

0

w2.
/ d
 � u0kV ds

� LP

Z t

0

kw1.s/ � w2.s/kV ds C LR

Z t

0

Z s

0

kw1.
/ � w2.
/kV d
ds

� LP

Z t

0

kw1.s/ � w2.s/kV ds C LRt

Z t

0

kw1.
/ � w2.
/kV d


� .LP C TLR/

Z t

0

kw1.s/ � w2.s/kV ds:

Hence, it follows that for u 2 V such that u0 2 W , we have Su0 D Pu0 C Ru. The
conclusion of the theorem follows from Theorem 2.10. �

We conclude this section with two particular cases of Problem 2.11. First,
we consider the following second order inclusion which involves a Volterra-type
operator.

Problem 2.13. Find u 2 V such that u0 2 W and

u00.t/C A.t; u0.t//C B.t; u.t//C
Z t

0

C.t � s/u.s/ ds
CM �@J.t;Mu0.t// 3 f .t/ a.e. t 2 .0; T /;

u.0/ D u0; u0.0/ D v0:

9>>>=
>>>;
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We consider the following hypotheses.

BW .0; T / � V ! V � is such that

.a/ B.�; v/ is measurable on .0; T / for all v 2 V:

.b/ B.t; �/ is Lipschitz continuous with constant LB > 0
for a.e. t 2 .0; T /:

9>>>>=
>>>>;

(2.34)

C 2 L2.0; T IL.V; V �//: (2.35)

We have the following existence and uniqueness result.

Theorem 2.14. Assume that hypotheses (2.1)–(2.6), (2.32), (2.34) and (2.35) hold.
Then Problem 2.13 has a unique solution.

Proof. Let us consider two operators P , RWV ! V� given by

.Pw/.t/ D B

�
t;

Z t

0

w.s/ ds C u0

�
C
Z t

0

C.t � s/
�Z s

0

w.
/ d
 C u0

�
ds

for all w 2 V , a.e. t 2 .0; T / and R � 0. It is clear from (2.34) and (2.35) that

k.Pw1/.t/ � .Pw2/.t/kV � � c

Z t

0

kw1.s/ � w2.s/kV ds

for all w1, w2 2 V , a.e. t 2 .0; T / with c D LB C p
T kCkL2.0;T IL.V;V �//, i.e.,

hypothesis (2.33) holds. Note that for u 2 V such that u0 2 W , we have

.Pu0/.t/ D B.t; u.t//C
Z t

0

C.t � s/u.s/ ds a:e: t 2 .0; T /:

We now use Theorem 2.12 to complete the proof. �

Note that Theorem 2.14 represents an extension of Theorem 5.17 in [16]. There,
the operator B was assumed to be time-independent, linear, continuous, monotone
and symmetric.

Finally, we consider the following problem.

Problem 2.15. Find u 2 V such that u0 2 W and

u00.t/C A.t; u0.t//C B.t; u.t//CM �@J.t;Mu0.t// 3 f .t/ a.e. t 2 .0; T /;
u.0/ D u0; u0.0/ D v0:

)
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The following existence and uniqueness result represents a direct consequence
of Theorem 2.14.

Corollary 2.16. Assume that hypotheses (2.1)–(2.6), (2.32) and (2.34) hold. Then
Problem 2.15 has a unique solution.

2.5 Hemivariational Inequalities

In this section we formulate results on existence and uniqueness of solutions to
hemivariational inequalities of first and second order. These results represent a
consequence of the existence and uniqueness results proved in Sects. 2.3 and 2.4,
in the study of evolutionary inclusions of first and second order, respectively.

Let ˝ � R
d be a bounded domain with a Lipschitz boundary � and let �C be a

measurable part of � , �C � � . Let V be a closed subspace ofH1.˝IRd / andH D
L2.˝IRd /. It is well known that V � H � V � form an evolution triple of spaces,
cf. e.g., Section 3.4 of [6]. We introduce the trace operator � WV ! L2.� IRd / and
its adjoint ��WL2.� IR d / ! V �.

We consider the following hemivariational inequality of first order.

Find w 2 W such that

hw0.t/C A.t;w.t//; viV ��V C
Z
�C

j 0.x; t; �w.t/I �v/ d�
	 hf .t/; viV ��V for all v 2 V; a:e: t 2 .0; T /;

w.0/ D v0:

9>>>>>>=
>>>>>>;

(2.36)

In the study of this hemivariational inequality we consider the following hypothe-
ses on the data.

j W�C � .0; T / � R
d ! R is such that

.a/ j.�; �; 	/ is measurable for all 	 2 R
d and there exists

e 2 L2.�C IRd / such that j.�; �; e.�// 2 L1.�C � .0; T //:
.b/ j.x; t; �/ is locally Lipschitz for a.e. .x; t/ 2 �C � .0; T /:
.c/ k@j.x; t; 	/kRd � b0.x; t/C b1k	kRd for all 	 2 R

d ;

a.e. .x; t/ 2 �C � .0; T / with b0 2 L2.�C � .0; T //;
b0; b1 	 0:

.d/ .�1 � �2; 	1 � 	2/Rd 	 �m2 k	1 � 	2k2
Rd

for all �i 2 @j.x; t; 	i /; 	i 2 R
d ; i D 1; 2 with m2 	 0:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

(2.37)
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One of the following conditions is satisfied

.a/ ˛ > 2
p
2 b1 k�k2; where k�k D k�kL.V;L2.� IRd //:

.b/ j 0.x; t; 	I �	/ � d0 .1C k	kRd / for all 	 2 R
d ; a.e.

.x; t/ 2 �C � .0; T / with d0 	 0:

9>>>>=
>>>>;

(2.38)

m1 	 m2 k�k2: (2.39)

j W�C � .0; T / � R
d ! R is such that

either j.x; t; �/ or � j.x; t; �/ is regular on R
d

for a.e. .x; t/ 2 �C � .0; T /:

9>=
>; (2.40)

Note that in hypotheses (2.37) and (2.38) the symbols @j and j 0 denote the
Clarke generalized gradient of j.x; t; �/ and its directional derivative, respectively.

We consider the integral functional J W .0; T / � L2.�C IR d / ! R defined by

J.t; v/ D
Z
�C

j.x; t; v.x// d� for v 2 L2.�C IR d /; a.e. t 2 .0; T /: (2.41)

We recall the following result whose proof can be found in Theorem 3.47 of [16].

Lemma 2.17. Assume that (2.37) holds. Then the functional J given by (2.41)
satisfies (2.3) and for all u, v 2 L2.�C IR d /, a.e. t 2 .0; T /, we have

J 0.t; uI v/ �
Z
�C

j 0.x; t; u.x/I v.x// d�; (2.42)

where J 0.t; uI v/ denotes the directional derivative of J.t; �/ at a point u 2
L2.�C IRd / in the direction v 2 L2.�C IRd /. If, in addition, j W�C �.0; T /�R

d !
R satisfies condition (2.38)(b), then condition (2.4)(b) holds.

We now use Theorem 2.6 and Lemma 2.17 to obtain the following existence and
uniqueness result.

Theorem 2.18. Assume that hypotheses (2.1)(a)–(d), (2.6), (2.37)(a)–(c) and (2.38)
hold. Then the hemivariational inequality (2.36) has at least one solution. If, in
addition, conditions (2.1)(e), (2.37)(d), (2.39) and (2.40) hold, then the solution to
(2.36) is unique.

Proof. We begin with the existence part. Let X D L2.�C IR d / and M D � WV !
X . We introduce the Nemitsky operator corresponding to the trace operator � and
denote it by the same symbol � WV D L2.0; T IV / ! L2.0; T IX/. This operator
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satisfies hypothesis (2.2). Indeed, let vn ! v weakly in W . Since W is compactly
embedded in L2.0; T IH1�ı.˝// with ı 2 .0; 1=2/ (which is a consequence of
the compact embedding H1.˝/ � H1�ı.˝/, cf. [6, 24]), we have vn ! v in
L2.0; T IH1�ı.˝//. Next, from the fact that

� WL2.0; T IH1�ı.˝// ! L2.0; T IH1�ı�1=2.� // � L2.0; T IL2.� IR d //

is linear and continuous, we deduce that �vn ! �v in L2.0; T IX/.
We denote by w 2 W the solution of Problem 2.4 with the functional J given by

(2.41). The existence and uniqueness of this solution is guaranteed by Theorem 2.6
combined with Lemma 2.17. According to Definition 2.5, we have

w0.t/C A.t;w.t//C �.t/ D f .t/ for a.e. t 2 .0; T /; (2.43)

where �.t/ D ��z.t/ 2 V � and z.t/ 2 @J.t; �w.t// for a.e. t 2 .0; T /. The last
inclusion is equivalent to

hz.t/;wiL2.�C IRd / � J 0.t; �w.t/I w/ (2.44)

for all w 2 L2.�C IRd / and a.e. t 2 .0; T /. We now combine (2.42)–(2.44) to obtain

hf .t/ � w0.t/ � A.t;w.t//; viV ��V D h�.t/; viV ��V
D hz.t/; �viL2.�C IRd /
� J 0.t; �w.t/I �v/

�
Z
�C

j 0.x; t; �w.t/I �v/ d�

for all v 2 V , a.e. t 2 .0; T /. It follows from the last inequality that w is a solution
to (2.36), which concludes the proof of existence part of the theorem.

We now proceed with the proof of the uniqueness part and, to this end, we denote
by w 2 W a solution to (2.36) obtained in the first part of the theorem. It is well
known (cf. Theorem 2.7.2 of [3]) that under the regularity hypothesis (2.40), that
either J.t; �/ or �J.t; �/ is regular for a.e. t 2 .0; T /, respectively, and (2.42) holds
with equality. Therefore, using the equality in (2.42), we have

hw0.t/C A.t;w.t// � f .t/; viV ��V C J 0.t; �w.t/I �v/ 	 0

for all v 2 V and a.e. t 2 .0; T /. Also, by Proposition 3.37 in [16], we obtain

hf .t/ � w0.t/ � A.t;w.t//; viV ��V � .J ı �/0.t;w.t/I v/
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for all v 2 V and a.e. t 2 .0; T /. Using now the definition of the subdifferential
and Proposition 3.37 in [16], it is straightforward to see that the previous inequality
implies that

f .t/ � w0.t/ � A.t;w.t// 2 @.J ı �/.t;w.t// D ��@J.t; �w.t//

for a.e. t 2 .0; T /. Therefore, we find that w is a solution to Problem 2.4.
The uniqueness of solution to (2.36) follows now from the uniqueness part in
Theorem 2.6, which concludes the proof. �

We consider now the following hemivariational inequality of first order with the
history-dependent operator.

Find w 2 W such that

hw0.t/C A.t;w.t//C .Sw/.t/; viV ��V C
Z
�C

j 0.x; t; �w.t/I �v/ d�
	 hf .t/; viV ��V for all v 2 V; a:e: t 2 .0; T /;

w.0/ D v0:

9>>>>>>=
>>>>>>;

(2.45)

Exploiting the argument used in the proof of Theorem 2.18, from Theorem 2.8
and Lemma 2.17, we deduce the following result.

Corollary 2.19. Assume that (2.1), (2.6), (2.21), and (2.37)–(2.39) hold. Then the
hemivariational inequality (2.45) has at least one solution. If, in addition (2.40)
holds, then the solution to (2.45) is unique.

Next, we pass to the hemivariational inequalities of second order. We consider
the following problem.

Find u 2 V such that u0 2 W and

hu00.t/C A.t; u0.t//C .Su0/.t/; viV ��V C
Z
�C

j 0.x; t; �u0.t/I �v/ d�
	 hf .t/; viV ��V for all v 2 V; a:e: t 2 .0; T /;

u.0/ D u0; u0.0/ D v0:

9>>>>>>=
>>>>>>;

(2.46)

Using Theorem 2.10, Lemma 2.17 and Theorem 2.18, we deduce the following
existence and uniqueness result.

Corollary 2.20. Assume that (2.1), (2.6), (2.21), (2.32), and (2.37)–(2.39) hold.
Then the hemivariational inequality (2.46) has at least one solution. If, in addition
(2.40) holds, then the solution to (2.46) is unique.

Subsequently, we consider hemivariational inequalities with two history-
dependent operators. The first problem in which our interest is can be formulated as
follows.
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Find u 2 V such that u0 2 W and

hu00.t/C A.t; u0.t//C .Pu0/.t/C .Ru/.t/; viV ��V

C
Z
�C

j 0.x; t; �u0.t/I �v/ d� 	 hf .t/; viV ��V

for all v 2 V; a:e: t 2 .0; T /;
u.0/ D u0; u0.0/ D v0:

9>>>>>>>>>>=
>>>>>>>>>>;

(2.47)

Using Theorem 2.12, Lemma 2.17 and arguments similar to those used in the
proof of Theorem 2.18, we obtain the following result.

Corollary 2.21. Assume that (2.1), (2.6), (2.32), (2.33), and (2.37)–(2.39) hold.
Then the hemivariational inequality (2.47) has at least one solution. If, in addition
(2.40) holds, then the solution to (2.47) is unique.

Next, we consider hemivariational inequalities involving a Volterra-type
operator. The problem can be formulated as follows.

Find u 2 V such that u0 2 W and

hu00.t/C A.t; u0.t//C B.t; u.t//C
Z t

0

C.t � s/u.s/ ds; viV ��V

C
Z
�C

j 0.x; t; �u0.t/I �v/ d� 	 hf .t/; viV ��V

for all v 2 V; a:e: t 2 .0; T /;
u.0/ D u0; u0.0/ D v0:

9>>>>>>>>>>=
>>>>>>>>>>;

(2.48)

From Theorem 2.14, Lemma 2.17 and Theorem 2.18, we deduce the following
existence and uniqueness result.

Corollary 2.22. Assume that (2.1), (2.6), (2.32), (2.34), (2.35), and (2.37)–(2.39)
hold. Then the hemivariational inequality (2.48) has at least one solution. If, in
addition (2.40) holds, then the solution to (2.48) is unique.

We end this chapter with the study of a particular case of the hemivariational
inequality (2.48). The problem under consideration is the following

Find u 2 V such that u0 2 W and

hu00.t/C A.t; u0.t//C B.t; u.t//; viV ��V

C
Z
�C

j 0.x; t; �u0.t/I �v/ d� 	 hf .t/; viV ��V

for all v 2 V; a:e: t 2 .0; T /;
u.0/ D u0; u0.0/ D v0:

9>>>>>>>>>=
>>>>>>>>>;

(2.49)

The following result represents a direct consequence of Corollaries 2.16 and 2.22.
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Corollary 2.23. Assume that (2.1), (2.6), (2.32), (2.34), and (2.37)–(2.39) hold.
Then the hemivariational inequality (2.49) has at least one solution. If, in addition
(2.40) holds, then the solution to (2.49) is unique.

The existence and uniqueness results in Theorem 2.18 and Corollaries 2.19–
2.23 are useful in the study of various dynamic or quasistatic contact problems
with viscoelastic and viscoplastic materials, as illustrated in Chap. 14 of this book.
Indeed, a large number of such problems leads to evolutionary hemivariational
inequalities of first and second order, in which the unknown is the displacement
or the velocity field.
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Chapter 3
Location Results
for Variational–Hemivariational Inequalities

Dumitru Motreanu and Viorica Venera Motreanu

Abstract The chapter presents a general method, based on approximation of spaces
and operators, to solve certain nonsmooth problems. The method allows us to obtain
location properties of the solutions, for instance the inclusion of the solutions in
prescribed sets. This is achieved through an approximation approach by means
of sequences of associated problems formulated in a simpler setting, possibly on
finite dimensional spaces. The abstract results are applied to various classes of
hemivariational and variational–hemivariational inequalities. An essential tool is
represented by pseudomonotone operators.

Keywords Variational–hemivariational inequality • Hemivariational inequality
• Generalized gradient • Pseudomonotone operator • Approximation method •
Location result

AMS Classification. 47H05, 47J20, 49J52, 41A65

3.1 Introduction

The aim of this chapter is to present a general method for studying certain
nonsmooth problems. Consider a general problem of the form

�
Find u 2 C such that
hT .u/; v � ui C f .u; v � u/ 	 0 8 v 2 C; (3.1)
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involving the following data:

• .X; k�k/ is a real reflexive Banach space, its dual space is denoted by .X�; k�k�/,
and the duality pairing .X�; X/ is denoted by h�; �i;

• C � X is a nonempty subset;
• f W C �X ! R is a given function and T W C ! X� a given operator.

A solution of this problem is necessarily located in the set C . In fact, our method
enables us to derive some more location properties of the solutions. For instance,
our setting incorporates variational–hemivariational inequalities of the form

8<
:

Find u 2 @C such that

hT .u/; v � ui C
Z
˝

j 0.x; uI v � u/ dx 	 0 8 v 2 C; (3.2)

and �
Find u 2 C such that
hT .u/; vi C R

˝
j 0.x; uI v/ dx 	 0 8 v 2 X: (3.3)

Problems (3.2) and (3.3) involve the following data:

• ˝ � R
N is a bounded domain;

• the real reflexive Banach space .X; k � k/ is compactly embedded in Lq.˝/, for
some q 2 .1;C1/; for instance X D W 1;p.˝/ (or X D W

1;p
0 .˝/) with p 2

.1;C1/ such that q < p�, where p� 2 .1;C1� stands for the Sobolev critical
exponent for the Sobolev space W 1;p.˝/;

• C � X is nonempty, closed, convex; for instance C D fu 2 X W kuk � g
( 2 .0;C1/) or C D fu 2 X W u� � u � uC a.e. in ˝g with u�; uC 2 Lq.˝/
(provided C is nonempty); by @C we denote the boundary of C ;

• T W C ! X� is a bounded pseudomonotone operator; for instance, in the case
where X D W 1;p.˝/ (or X D W

1;p
0 .˝/), the operator T can be the negative

p-Laplacian ��pu D �div.jrujp�2ru/;
• j W ˝ � R ! R is a function satisfying the following conditions:

(i) j.�; s/ 2 L1.˝/ for all s 2 R and j.x; �/ is locally Lipschitz for a.a. x 2 ˝;
(ii) (growth condition) jzj � k.x/ C cjsjp�1 for a.e. x 2 ˝, all s 2 R, all

z 2 @j.x; s/.
Hereafter, by j 0.x; sI t / we denote the generalized directional derivative of j.x; �/
at s in the direction t , and by @j.x; s/ we denote the generalized gradient of
j.x; �/ at s, in the sense of Clarke [2] (see (3.18)–(3.19) below). In the case where
j.x; �/ is continuously differentiable, j 0.x; sI t / coincides with the usual directional
derivative while @j.x; s/ is the singleton fj 0.x; �/.s/g.
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Problem (3.2) can be seen as a location problem with respect to the
variational–hemivariational inequality

�
Find u 2 C such that
hT .u/; v � ui C R

˝
j 0.x; uI v � u/ dx 	 0 8 v 2 C; (3.4)

whereas problem (3.3) can be viewed as a location problem with respect to the
hemivariational inequality

�
Find u 2 X such that
hT .u/; vi C R

˝
j 0.x; uI v/ dx 	 0 8 v 2 X:

Our result shows the following alternative.

Theorem 3.1. Let ˝;X;C; T; j be as above. Then one of the problems (3.2)
and (3.3) admits a solution.

For instance, assume that X D W
1;p
0 .˝/ with p 2 .1;C1/, T D ��p ,

j.x; s/ D � �
p

jsjp where � 2 R is not an eigenvalue of ��p , and 0 … C . Then,
problem (3.3) reads as the eigenvalue problem

(
Find u 2 C such that
��pu D �jujp�2u in .W 1;p

0 .˝//�;

which has no solution (due to the assumption on �). Therefore, in this situation, we
can conclude from Theorem 3.1 that problem (3.2) has a solution.

Theorem 3.1 is proved in Sect. 3.5. In fact, our results go beyond the setting of
Theorem 3.1. Specifically, our aim is to develop an abstract setting in which (3.1)
can be solved by approximating it with a sequence of related problems. The abstract
setting is presented in Sects. 3.2–3.3. The abstract result that we obtain (established
in Sect. 3.4) will be shown to lead to various existence and approximation results
for classes of hemivariational and variational–hemivariational inequalities (see
Sects. 3.5–3.8).

3.2 Abstract Setting

Let us describe our abstract setting. For every n 2 N, we consider a subset Cn � X ,
a function fn W Cn �X ! R, and an operator Tn W Cn ! X�, and we formulate the
corresponding problem

�
Find un 2 Cn such that
hTn.un/; v � uni C fn.un; v � un/ 	 0 8 v 2 Cn : (3.5)
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Then, assuming that problem (3.5) admits a solution un for every n 2 N, our
goal is to study the existence of a solution of problem (3.1) obtained as a weak
limit of the sequence .un/ (or at least of a subsequence). Specifically, our main
abstract result (formulated in Theorem 3.14) provides an abstract setting where this
approximation principle is fulfilled. This abstract setting consists of the following
set of hypotheses:

.H1/ (i) for every subsequence .Cnk / of .Cn/ and every sequence .uk/ with uk 2
Cnk , 8 k 2 N, and uk * u in X , we have u 2 C ;

(ii) there exist a subset C dense in C and a sequence of mappings rn W C !
Cn, n 2 N, with

lim
n!1 krn.v/ � vk D 0 8 v 2 C I

.H2/ (i) for every u 2 C , the function f .u; �/ W X ! R is subadditive and there
exists a constant a D a.u/ > 0 such that

f .u; v/ � akvk 8 v 2 X I

(ii) for every subsequence .fnk / of .fn/ and every sequence .uk/ with uk 2
Cnk , 8k 2 N, and uk * u in X , we have

lim sup
k!1

fnk .uk; rnk .v/ � uk/ � f .u; v � u/ 8 v 2 C I

.H3/ (i) for every subsequence .Tnk / of .Tn/ and every bounded sequence .uk/
with uk 2 Cnk , 8k 2 N, the sequence .Tnk .uk// is bounded;

(ii) for every subsequence .Tnk / of .Tn/ and every sequence .uk/ with uk 2
Cnk , 8k 2 N, and uk * u in X and

lim sup
k!1

hTnk .uk/; uk � ui � 0;

we have

hT .u/; u � vi � lim sup
k!1

hTnk .uk/; uk � vi 8 v 2 C :

Hereafter, the notation* stands for the weak convergence in X . We also consider a
further hypothesis under which we will be able to guarantee the strong convergence
of a sequence of solution of (3.5) to a solution of (3.1):

.H4/ for every subsequence .Tnk / of .Tn/ and every sequence .uk/ with uk 2 Cnk ,
8k 2 N, and uk * u, for some u, and

lim sup
k!1

hTnk .uk/; uk � ui � 0

we have uk ! u in X .
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The setting corresponding to (H1)–(H4) is quite natural, in particular, it is well-suited
for studying hemivariational and variational–hemivariational inequalities. This is
explained in Sect. 3.3.

3.3 Preliminary Observations

This section contains some preliminaries concerning the hypotheses stated previ-
ously for a nonempty subset C of X , a sequence of subsets Cn of X , n 2 N,
functions f W C �X ! R and fn W Cn �X ! R, and operators T W C ! X� and
Tn W Cn ! X�.

Hypothesis .H1/ is fulfilled under usual conditions in approximation of varia-
tional inequalities (see, e.g., [3, Section I.4.4]). The next result gives an example
where .H1/ holds true.

Lemma 3.2. Assume that C is a (nonempty) separable, closed and convex subset
of X . Let a countable dense subset fwngn2N of C and denote

Cn D C \ spanfw1;w2; : : : ;wng 8n 2 N:

Then assumption .H1/ is satisfied with C D C and the mappings rn W C ! Cn
characterized by

krn.u/ � uk D min
w2Cn

kw � uk 8 u 2 C: (3.6)

Proof. As the set C is convex and closed, it is weakly closed in X , hence condition
.H1/ (i) is verified. To check .H1/ (ii) with C D C , let u 2 C and " > 0. Since
C D [1

mD1Cm, we find some v 2 [1
mD1Cm with kv � uk < ". Let m0 2 N be such

that v 2 Cm0 . Then, for every n 	 m0 we have v 2 Cn, thus

krn.u/ � uk D min
w2Cn

kw � uk � kv � uk < ":

Consequently, .H1/ (ii) is fulfilled, which completes the proof. ut
Next, we discuss conditions .H2/ and .H3/. The following lemma is immediate.

Lemma 3.3. If f W C �X ! R satisfies .H2/ (i), then for every u 2 C , the function
f .u; �/ W X ! R is Lipschitz continuous with the Lipschitz constant a D a.u/.

Proof. From .H2/ (i), for every v;w 2 X we have

f .u;w/ � f .u; v/ � f .u;w � v/ � akw � vk:

Reversing the roles of v and w we infer that jf .u;w/ � f .u; v/j � akw � vk. ut
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Lemma 3.4. Let f W C �X ! R be a function satisfying

.H5/ for each u 2 C , f .u; �/ is subadditive, positively homogeneous, continuous
and f .u; 0/ D 0.

Then .H2/ (i) is satisfied.

Proof. Since f .u; �/ is convex and continuous, it is locally Lipschitz on X , so there
exist constants r D r.u/ > 0 and a D a.u/ > 0 such that

f .u; v/ � jf .u; v/ � f .u; 0/j � akvk 8 v 2 X; kvk � r:

Taking into account that f .u; �/ is positively homogeneous, we obtain that f .u; v/ �
akvk ; 8 v 2 X , whence .H2/ (i). ut
Lemma 3.5. Assume that T W C ! X� and Tn W Cn ! X� (n 2 N) satisfy the
following property:

.H6/ for every subsequence .Tnk / of .Tn/ and every sequence .uk/ with uk 2 Cnk ,
8 k 2 N, and uk ! u, we have Tnk .uk/ * T .u/.

If .Tn/ satisfies .H4/, then .H3/ (ii) holds.

Proof. Let .Tnk / be an arbitrary subsequence of .Tn/ and let .uk/ be a sequence
such that uk 2 Cnk , 8k 2 N, and satisfying uk * u in X and lim sup

k!1
hTnk .uk/; uk �

ui � 0. By .H4/ and .H6/, we see that uk ! u and Tnk .uk/ * T .u/ in X . Then
lim
k!1hTnk .uk/; uk � vi D hT .u/; u � vi, 8v 2 C, whence .H3/ (ii). ut

We recall that T W C ! X� is bounded if it maps bounded subsets of C into
bounded sets of X�. The operator T W C ! X� is said to be pseudomonotone
if for every sequence .un/ � C such that un * u, for some u 2 C , and
lim sup
n!1

hT .un/; un � ui � 0 we have

hT .u/; u � vi � lim inf
n!1 hT .un/; un � vi 8 v 2 X:

The operator T W C ! X� satisfies condition .S/C if every sequence .un/ � C

such that un * u and lim sup
n!1

hT .un/; un � ui � 0, for some u 2 C , is strongly

convergent to u in X .
Recall that a function f W C � X ! R is said to be sequentially weakly upper

semicontinuous if for every sequences .un/ � C and .vn/ � X such that un * u,
vn * v, for some u 2 C , v 2 X , we have lim sup

n!1
f .un; vn/ � f .u; v/.

In the case of constant sequences of functions, we have:

Lemma 3.6. (a) Assume that the sets C and .Cn/ satisfy .H1/ (ii) and assume that
f D fn W .C [ .[1

mD1Cm// �X ! R (for all n 2 N). If either
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f is sequentially weakly upper semicontinuous

or

f is upper semicontinuous, Cn � C , 8n 2 N, and C is compact,

then .H2/ (ii) is satisfied.
(b) If T D Tn W C [ .[1

mD1Cm/ ! X� (for all n 2 N) is bounded and
pseudomonotone, then T satisfies the properties (i) and (ii) stated in .H3/,
respectively. In addition, T is demicontinuous.

(c) If Tn D T W C [ .[1
mD1Cm/ ! X� (for all n 2 N), then property .H4/ reduces

to condition .S/C for T , while property .H6/ reduces to the demicontinuity
of T .

Now, we study some situations related to which problem (3.5) has a solution.
First we recall from [4] the following result extending [8, Corollary 1] (for the sake
of completeness we give the proof). This situation is done in the context of finite
dimensional Banach spaces.

Lemma 3.7. Assume that C is a nonempty, compact, convex subset of a real finite
dimensional Banach space X and let f W C �X ! R be an upper semicontinuous
function such that f .u; �/ is convex and f .u; 0/ D 0 for all u 2 C . If T W C ! X�
is continuous, then the problem

�
Find u 2 C such that
hT .u/; v � ui C f .u; v � u/ 	 0 8 v 2 C

has at least one solution.

Proof. Arguing by contradiction, assume that for every u 2 C we can find v.u/ 2 C
such that

hT .u/; v.u/ � ui C f .u; v.u/ � u/ < 0: (3.7)

Given v 2 C , set

N.v/ D fu 2 C W hT .u/; v � ui C f .u; v � u/ < 0g:
By (3.7) we know that

C �
[
v2C

N.v/:

As f is upper semicontinuous and T is continuous, each set N.v/ is open in C .
Since C is compact, we find v1; v2; : : : ; vk 2 C such that

C �
k[

jD1
N.vj /: (3.8)
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For all j D 1; : : : ; k and u 2 C , let j .u/ D dist.uIC nN.vj // and set

 j .u/ D j .u/Pk
iD1 i .u/

:

Relation (3.8) ensures that the map  j W C ! R is well defined and continuous.
Let p W C ! C be defined by

p.u/ D
kX

jD1
 j .u/vj 8 u 2 C:

The mapping p takes values in C (since C is convex) and is continuous. Applying
Brouwer’s fixed point theorem, there exists an u0 2 C such that p.u0/ D u0.

Next, we define a function q W C ! R by

q.u/ D hT .u/; p.u/ � ui C f .u; p.u/ � u/ 8 u 2 C:

Since f .u; �/ is convex, we derive

q.u/ �
kX

jD1
 j .u/

�hT .u/; vj � ui C f .u; vj � u/
� 8 u 2 C:

By (3.8) and the definition of N.vj /, we infer that q.u/ < 0, 8u 2 C . On the
other hand, we have q.u0/ D 0 because p.u0/ D u0 (since f .u0; 0/ D 0). This
contradiction completes the proof. ut

Another way to guarantee the solvability of problem (3.5) is through the
minimization method. Here we consider a real Banach space .X; k � k/ which is
compactly embedded in another real Banach spaceZ. LetC0 be a nonempty, closed,
convex subset of X . Let J W X ! R be a Gâteaux differentiable functional and
F W Z ! R be a locally Lipschitz function. Denote by J 0 the Gâteaux differential
of J and by F 0 the generalized directional derivative of F . Recall that F 0.uI v/ is
the generalized directional derivative of F at u in the direction v, i.e.,

F 0.uI v/ D lim sup
w!u
t!0C

F.w C tv/ � F.w/
t

(see Clarke [2]). We consider the following variational–hemivariational inequality:

�
Find u 2 C0 such that
hJ 0.u/; v � ui C F 0.uI v � u/ 	 0 8 v 2 C0: (3.9)
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Let ˚ W X ! R be defined by

˚ D F jX C J: (3.10)

We associate to (3.9) the minimization problem

�
Find u 2 C0 such that
˚.u/ � ˚.v/ 8 v 2 C0: (3.11)

Lemma 3.8. If u is a solution of (3.11), then it is a solution of (3.9).

Proof. If u is a solution of (3.11), then

F.u C t .v � u// � F.u/C J.u C t .v � u// � J.u/ 	 0 8 v 2 C0; t 2 .0; 1�;

and thus F 0.uI v � u/C hJ 0.u/; v � ui 	 0, 8 v 2 C0. ut
We assume that J satisfies the following alternative:

.H7/ Either

J is convex

or

J 2 C1.X;R/ with J 0 W X ! X� pseudomonotone, bounded.

Remark 3.9. If the Gâteaux differentiable functional J W X ! X� satisfies .H7/,
then:

(a) J is sequentially weakly lower semicontinuous on X ;
(b) J is continuous on X .

Indeed, if J is convex and Gâteaux differentiable, part (a) is straightforward. In the
case where J is continuously differentiable with J 0 pseudomonotone and bounded,
part (a) follows from [10, Proposition 25.21]. Part (b) is a consequence of part
(a) (because either J is continuously differentiable or it is convex, hence locally
Lipschitz).

Remark 3.10. If the Gâteaux differentiable functional J W X ! X� satisfies .H7/,
then:

(a) ˚ is sequentially weakly lower semicontinuous on X ;
(b) ˚ is continuous on X .

Indeed, since J is sequentially weakly lower semicontinuous on X [see
Remark 3.9 (a)] and since X is compactly embedded in Z, we infer that F is
sequentially weakly lower semicontinuous on X , so ˚ is. Moreover, since J is
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continuous on X (see Remark 3.9 (b)) and F is locally Lipschitz on Z, we infer
that ˚ is continuous on X .

Remark 3.11. Assume that the Gâteaux differentiable functional J W X ! X�
satisfies the following condition:

.H8/ Either

J is convex with J 0 hemicontinuous (3.12)

or

J 2 C1.X;R/ with J 0 W X ! X� pseudomonotone. (3.13)

Then:

(a) J 0 satisfies .H3/ (ii) (with T D J 0jC and Tn D J 0jCn ).
(b) If, in addition, J 0 is bounded, then J 0 satisfies .H3/ (with T D J 0jC and Tn D

J 0jCn) and .H7/.

Indeed, we first observe that hypothesis .H8/ implies that J 0 W X ! X� is a
pseudomonotone operator. To see this, we note that this is clear if (3.13) holds.
In the case where (3.12) holds, the convexity of J ensures that J 0 W X ! X� is a
monotone operator, which in conjunction with the hemicontinuity of J 0 guarantees
that J 0 W X ! X� is pseudomonotone (see, e.g., [10, Proposition 27.6 (a)]).
Hence, J 0jC[.[1

mD1Cm/
is pseudomonotone, so hypothesis .H3/ (ii) is fulfilled (see

Lemma 3.6 (b)), which shows assertion (a). Part (b) is a consequence of part (a) and
Lemma 3.6 (b).

We have the following existence result of a solution of (3.11) (and, a fortiori,
of (3.9)).

Lemma 3.12. Assume that .H1/ holds and that ˚ in (3.10) is sequentially weakly
lower semicontinuous and coercive in the sense that

˚.v/ ! C1 as kvk ! 1:

Then problem (3.11) has at least one solution u 2 C0. In particular, u is a solution
of (3.9).

Proof. The sequential weak lower semicontinuity and the coercivity of ˚ ensure
the first part of the conclusion. The second part of the conclusion follows from
Lemma 3.8. ut
Remark 3.13. Lemma 3.12 also holds true if we assume that the set C0 is bounded
in place of the coercivity of ˚ .
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3.4 Abstract Existence Result

Let X be a real reflexive Banach space, let a nonempty subset C of X , a sequence
of subsets Cn of X , n 2 N, functions f W C � X ! R and fn W Cn � X ! R, and
operators T W C ! X� and Tn W Cn ! X�. We have the following convergence
result.

Theorem 3.14. Assume .H1/–.H3/ and that problem (3.5) admits a solution un for
each n 2 N.

(a) If the sequence .un/ is bounded, then it admits a subsequence .unk / that is
weakly convergent to a solution u 2 C of problem (3.1).

(b) If, in addition, .Tn/ satisfies .H4/, then the subsequence .unk / strongly con-
verges to u in X .

(c) Under the assumptions in part (b), if the solution of problem (3.1) is unique,
then the whole sequence .un/ is strongly convergent to u in X .

Proof. The assumption that the sequence .un/ is bounded implies that we can find
a subsequence .unk / of .un/ such that unk * u, for some u 2 X (using that X is
reflexive). Hypothesis .H1/ (i) implies that u 2 C .

We claim that

lim sup
k!1

hTnk .unk /; unk � ui � 0: (3.14)

To see this, by .H2/ (i) we have that

f .u;w/ � akwk 8 w 2 X:

Using .H3/ (i), we find a constant a0 > 0 such that

kTnk .unk /k� � a0 8 k 2 N: (3.15)

Let " > 0. Invoking the density of the subset C � C [cf. .H1/ (ii)], there exists some
v 2 C such that

kv � uk < min
n "

2a0
;
"

2a

o
:

Using (3.15) and the fact that unk is a solution of problem (3.5), we obtain

hTnk .unk /; unk � ui D hTnk .unk /; unk � rnk .v/i C hTnk .unk /; rnk .v/ � vi
C hTnk .unk /; v � ui

� fnk .unk ; rnk .v/ � unk /C a0krnk .v/ � vk
C a0kv � uk 8 k 2 N:
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Passing to the upper limit in the above inequality, by .H1/ (ii) and .H2/ (ii), it follows

lim sup
k!1

hTnk .unk /; unk � ui � lim sup
k!1

fnk .unk ; rnk .v/ � unk /C a0kv � uk

� f .u; v � u/C "

2
� akv � uk C "

2
< ":

As " > 0 is arbitrary, (3.14) holds true, as claimed.
Let us show that u is a solution of problem (3.1). To this end, take v 2 C arbitrary.

Applying .H3/ (ii) [due to (3.14)] and using the fact that unk is a solution of (3.5),
.H2/ (ii), (3.15) and .H1/ (ii), it follows that

hT .u/; u � vi � lim sup
k!1

hTnk .unk /; unk � vi

� lim sup
k!1

�hTnk .unk /; unk � rnk .v/i C hTnk .unk /; rnk .v/ � vi�
� lim sup

k!1
fnk .unk ; rnk .v/ � unk /

C lim sup
k!1

hTnk .unk /; rnk .v/ � vi

� f .u; v � u/C a0 lim
k!1 krnk .v/ � vk

D f .u; v � u/: (3.16)

As v is arbitrary in the dense subset C � C , taking Lemma 3.3 into account, we
conclude from (3.16) that u solves problem (3.1). This proves part (a).

Assume now that .Tn/ satisfies .H4/. Then from (3.14) and the fact that unk * u
we obtain that unk ! u in X , which proves part (b).

If, in addition, the solution of problem (3.1) is unique, then the sequence .un/ is
strongly convergent to u since the above reasoning can be done for any subsequence
of .un/, hence part (c) holds true. ut
Remark 3.15. The setting in [4] (and in particular [4, Theorem 2.1]) is recovered
for fn D f W .C [ .[1

mD1Cm// � X ! R and Tn D T W C [ .[1
mD1Cm/ ! X�

(for all n 2 N) and when the elements u and uk .k 2 N) in the hypotheses are taken
in the whole domain C [ .[1

mD1Cm/.

Next, we give a consequence of Theorem 3.14 that will be applied in Sect. 3.5 to
hemivariational inequalities (see [7]).

Let X be a real, reflexive Banach space and let C be a nonempty, bounded,
closed, convex, separable subset of X . Let fwngn2N be a countable dense subset of
C and let

Xn D spanfw1;w2; : : : ;wng and Cn D C \Xn; n 2 N:
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For functions f W C � X ! R and fn W Cn � X ! R (n 2 N), we formulate the
following condition:

.H9/ for every subsequence .fnk / of .fn/ and every sequences .uk/, .vk/ with
uk; vk 2 Cnk , 8 k 2 N, and uk * u in X , vk * v in X , we have

lim sup
k!1

fnk .uk; vk � uk/ � f .u; v � u/:

Corollary 3.16. Let X , C and Xn be as above, let functions f W C � X ! R and
fn W Cn � X ! R (n 2 N), let an operator T W C ! X� and let continuous
operators Tn W Cn ! X� (n 2 N). Assume that .H3/, .H9/ hold, that f satisfies
.H5/ (in Lemma 3.4), and that fn W Cn �X ! R (n 2 N) are upper semicontinuous
functions such that fn.u; �/ is convex and fn.u; 0/ D 0 for all u 2 Cn. Then:

(a) Problem

�
Find u 2 C such that
hT .u/; v � ui C f .u; v � u/ 	 0 8 v 2 C (3.17)

has a solution. Moreover, for each n 2 N, there is a solution un of (3.5), and
the sequence .un/ admits a subsequence .unk / that is weakly convergent to a
solution u of problem (3.17).

(b) If, in addition, .Tn/ satisfies .H4/, then the subsequence .unk / strongly con-
verges to u in X .

(c) Under the assumptions in part (b), if the solution of problem (3.17) is unique,
then the whole sequence .un/ is strongly convergent to u in X .

Proof. We aim to apply Theorem 3.14. By Lemma 3.2, propriety .H1/ is satisfied
with C D C and rn defined by means of (3.6). Lemma 3.4 guarantees that .H2/ (i)
is satisfied, whereas .H2/ (ii) follows from .H9/. Condition .H3/ is satisfied by
hypothesis. For each n 2 N , we obtain that (3.5) has a solution un 2 Cn by applying
Lemma 3.7 with .Xn; Cn/ in place of .X; C /, f jCn�Xn and i�n T jCn in place of f and
T , where i�n stands for the dual mapping of the inclusion map in W Xn ! X . The
sequence .un/ is bounded (since C is bounded), hence Theorem 3.14 can be applied
and the proof is complete. ut
Remark 3.17. Assume that f D fn W C �X ! R (for all n 2 N) is a function such
that f .u; �/ is subadditive, positively homogeneous, continuous and f .u; 0/ D 0

whenever u 2 C . In addition, suppose that either

f is a sequentially weakly upper semicontinuous on C �X ,

or

f is upper semicontinuous on C �X and the set C is compact.
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By Lemma 3.6, we see that Corollary 3.16 applies [providing a solution of
problem (3.17)] when each of the above cases is combined with the case where
T D Tn W C ! X� (for all n 2 N) is a bounded and pseudomonotone (thus,
demicontinuous) operator (note that then T is continuous on the compact set Cn).

3.5 Application to Hemivariational Inequalities

Our goal is to apply Corollary 3.16 to study the existence of solutions for
hemivariational inequalities.

Let ˝ be a bounded domain in R
N (N 	 1). Given M 	 1, we consider

functions j; jn W ˝ � R
M ! R (n 2 N) with the following properties:

.H10/ (i) j.�; y/; jn.�; y/ W ˝ ! R are measurable for all y 2 R
M and satisfy that

j.�; 0/; jn.�; 0/ 2 L1.˝/;
(ii) j.x; �/; jn.x; �/ W RM ! R is locally Lipschitz for a.e. x 2 ˝;

(iii) there exist q 2 .1;C1/, c 	 0, and k 2 L q
q�1 .˝/ such that

jzj � k.x/C cjyjq�1 for a.e. x 2 ˝, 8y 2 R
M , 8 z 2 @j.x; y/ [ @jn.x; y/

for all n 2 N.

Here, for x 2 ˝, we denote by @j.x; y/ the generalized gradient of the locally
Lipschitz function j.x; �/ at y 2 R

M , that is,

@j.x; y/ D fz 2 R
M W hz; 	i � j 0.x; yI 	/ 8 	 2 R

M g; (3.18)

where j 0.x; yI 	/ is the generalized directional derivative of j.x; �/ at y in the
direction 	 , i.e.,

j 0.x; yI 	/ D lim sup
�!y

t!0C

j.x; �C t	/ � j.x; �/
t

: (3.19)

As before, let X be a real, reflexive Banach space and let C � X be a nonempty,
bounded, closed, convex, separable subset. Let fwngn2N be a countable dense subset
of C and let

Xn D spanfw1;w2; : : : ;wng and Cn D C \Xn; n 2 N:

Let a linear continuous operator L W X ! Lq.˝IRM/ (for instance, X can be
the Sobolev space W 1;p.˝/ with p 2 .1;C1/, M D 1, and L the inclusion
W 1;p.˝/ ,! Lq.˝/ (which is continuous whenever q < p�, where p� is the
Sobolev critical exponent); or,X D W 1;q.˝/,M D N , and Lu D ru). We assume
moreover that
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.H11/ for every subsequence .jnk / of .jn/ and every sequences .uk/, .vk/ with
uk; vk 2 Cnk , 8k 2 N, and uk * u in X , vk * v in X , we have

lim sup
k!1

j 0nk .x; Luk IL.vk � uk// � j 0.x; LuIL.v � u//:

Given (as before) an operator T W C ! X�, we formulate the following problem in
terms of a hemivariational inequality

8<
:

Find u 2 C such that

hT .u/; v � ui C
Z
˝

j 0.x; LuILv � Lu/ dx 	 0 8 v 2 C: (3.20)

We have the following existence result for problem (3.20).

Theorem 3.18. LetX , C ,Xn, Cn,˝,L, j , jn be as above and satisfy .H10/, .H11/.
Let T W C ! X� and Tn W Cn ! X� (n 2 N) be continuous operators satisfying
.H3/. Then:

(a) Problem (3.20) has a solution. Moreover, for all n 2 N, the problem

8<
:

Find un 2 Cn such that

hTn.un/; v � uni C
Z
˝

j 0n .x; LunILv � Lun/ dx 	 0 8 v 2 Cn;
(3.21)

has a solution un, and the sequence .un/ admits a subsequence .unk / which is
weakly convergent to a solution u of problem (3.20).

(b) If, in addition, .Tn/ satisfies .H4/, then the subsequence .unk / strongly converges
to u in X .

(c) Under the assumptions in part (b), if the solution of problem (3.20) is unique,
then the whole sequence .un/ is strongly convergent to u in X .

Proof. We aim to apply Corollary 3.16 for the functions

f .u; v/ D
Z
˝

j 0.x; LuILv/ dx 8 u 2 C; 8 v 2 X;

and

fn.u; v/ D
Z
˝

j 0n .x; LuILv/ dx 8 u 2 Cn; 8 v 2 X

and the considered operators T; Tn. The hypotheses .H10/ and .H11/ imply that
the hypotheses of Corollary 3.16 are satisfied. The conclusions thus follow from
Corollary 3.16. ut
Remark 3.19. (a) Assume that j D jn W ˝ � R

M ! R (for all n 2 N) is a
function satisfying .H10/, that T D Tn W C ! X� (for all n 2 N) is a
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bounded and pseudomonotone operator. If in addition we assume that either C
is a compact set or L is a compact operator, then (using that j 0.x; �I �/ is upper
semicontinuous) .H11/ is satisfied, so that Theorem 3.18 applies providing a
solution of problem (3.20).

(b) Theorem 3.18 is an existence result of Hartman–Stampacchia type for hemi-
variational inequalities. It extends the corresponding result in [8].

Proof of Theorem 3.1. Applying Theorem 3.18 in the setting of Theorem 3.1, we
obtain that problem (3.4) has a solution u 2 C . This solution either belongs to the
boundary of C (in which case problem (3.2) admits a solution), or to the interior
of C . In the latter case, we can find an open set U � X such that u 2 U � C .
Choosing the test function v D u C tw in (3.4), for w 2 X and t > 0 small enough
so that v 2 U , we obtain

hT .u/; twi C
Z
˝

j 0.x; uI tw/ dx 	 0:

Since hT .u/; �i is linear and j 0.x; uI �/ is positively homogeneous, we conclude that

hT .u/;wi C
Z
˝

j 0.x; uI w/ dx 	 0 8 w 2 X:

This shows that u is a solution of (3.3). ut

3.6 Application to Variational–Hemivariational Inequalities

Let .X; k � k/ be a real reflexive Banach space, which is continuously embedded
in another real Banach space Z. Let C;Cn (n 2 N) be nonempty, closed, convex
subsets of X satisfying hypothesis .H1/. Let J; Jn W X ! R (n 2 N) be Gâteaux
differentiable functionals and F;Fn W Z ! R (n 2 N) be locally Lipschitz
functions.

Consider the following inequality problem

�
Find u 2 C such that
hJ 0.u/; v � ui C F 0.uI v � u/ 	 0 8 v 2 C: (3.22)

The inequality is a variational–hemivariational inequality in the sense of Motreanu–
Panagiotopoulos [5]. Let ˚;˚n W X ! R be defined by

˚ D F jX C J; ˚n D FnjX C Jn .n 2 N/: (3.23)
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Consider the following conditions on the functions ˚;˚n in (3.23):

.H12/ (i) for each n 2 N, ˚n is coercive in the sense that

˚n.v/ ! C1 as kvk ! 1I

(ii) for every subsequence .Cnk / of .Cn/ and every sequence .uk/ with uk 2 Cnk ,
8k 2 N, and kukk ! C1, we have ˚nk .uk/ ! C1;

(iii) for every subsequence .Cnk / of .Cn/ and every sequence .uk/ with uk 2 Cnk ,
8k 2 N, and uk * u, for some u, we have ˚.u/ � lim sup

k!1
˚nk .uk/;

(iv) for every sequence .un/ with un 2 Cn, 8n 2 N, and un ! u, for some u, we
have ˚n.un/ ! ˚.u/.

We consider the following condition on the generalized directional derivatives F 0,
F 0
n of the functions F , Fn, respectively:

.H13/ for every subsequence .Fnk / of .Fn/ and every sequences .uk/, .vk/ with
uk; vk 2 Cnk , 8 k 2 N, and uk * u in X , vk * v in X , we have

lim sup
k!1

F 0
nk
.uk I vk � uk/ � F 0.uI v � u/:

We also consider the following condition on the Gâteaux differentials J 0, J 0
n of the

functions J , Jn, respectively:

.H14/ (i) for every subsequence .Jnk / of .Jn/ and every bounded sequence .uk/
with uk 2 Cnk , 8 k 2 N, the sequence .J 0

nk
.uk// is bounded;

(ii) for every subsequence .Jnk / of .Jn/ and every sequence .uk/ with uk 2
Cnk , 8 k 2 N, uk * u in X , and

lim sup
k!1

hJ 0
nk
.uk/; uk � ui � 0;

we have

hJ 0.u/; u � vi � lim sup
k!1

hJ 0
nk
.uk/; uk � vi 8 v 2 C;

where C � C is as in (H1).

We formulate the minimization problem

�
Find u 2 C such that
˚.u/ � ˚.v/ 8 v 2 C: (3.24)

We have the following existence and approximation result of a solution u of (3.24)
[and, a fortiori, of (3.22)]. An essential aspect of this result is that the solution u and
its approximations un are required to belong to the prescribed closed and convex
sets C and Cn, respectively.



82 D. Motreanu and V.V. Motreanu

Theorem 3.20. Let X;Z;C; Cn; F; Fn; J; Jn be as above. Assume that .H1/

holds. Assume moreover that J; Jn (n 2 N) satisfy .H7/, that is, for every
K 2 fJ; Jn .n 2 N/g, we have either

K is convex (3.25)

or

K 2 C1.X;R/ with K 0 W X ! X� pseudomonotone and bounded. (3.26)

Assume that .H12/ (i) holds. Then:

(a) For each n 2 N, problem

�
Find un 2 Cn such that
˚n.un/ � ˚n.v/ 8 v 2 Cn (3.27)

has at least one solution un. Moreover, if .H12/ (ii), (iv) hold, then the sequence
.un/ is bounded in X .

(b) If .H12/ holds, then every subsequence of .un/ possesses a subsequence which
is weakly convergent to a solution u of (3.24). In particular, u is a solution of
problem (3.22) (see Lemma 3.8).

(c) If .H12/–.H14/ and .H4/ hold and if the solution of (3.24) is unique, then the
whole sequence .un/ is strongly convergent to u in X .

Proof. By Lemma 3.12 [using Remark 3.10 and the facts that Xn is of finite
dimension and that Jn satisfies (3.25) or (3.26)], for each n 2 N problem (3.27) has
a solution un. To show that the sequence .un/ is bounded, suppose by contradiction
that there exists a subsequence .unk / of .un/, with kunkk ! C1 as k ! 1.
Hypothesis .H12/ (ii) implies that ˚nk .unk / ! C1 as k ! 1. Fix v0 2 C,
where C is the set entering .H1/ (ii). Since unk solves problem (3.27) we have
˚nk .unk / � ˚nk .rnk .v0//, 8k 2 N, which gives

˚nk .rnk .v0// ! C1 as k ! 1: (3.28)

On the other hand, by .H1/ (ii), it is known that rn.v0/ ! v0. Then hypothesis
.H12/ (iv) ensures that ˚n.rn.v0// ! ˚.v0/ as n ! 1, contradicting (3.28). Hence
part (a) is verified.

To justify part (b), let .unk / be an arbitrary subsequence of the sequence .un/
consisting of solutions un of (3.27). By the reflexivity of X , we find a subsequence
of .unk /, denoted again by .unk /, converging weakly to some u 2 X . By hypothesis
.H1/ (i) we have that u 2 C . By .H12/ (iii), the fact that unk solves problem (3.27),
.H1/ (ii), and .H12/ (iv), we obtain

˚.u/ � lim sup
k!1

˚nk .unk / � lim sup
k!1

˚nk .rnk .v// D ˚.v/ 8 v 2 C: (3.29)



3 Location Results for Variational–Hemivariational Inequalities 83

Taking into account that ˚ is continuous on X (since J is continuous by virtue of
Remark 3.9) and C is dense in C , from (3.29) we derive that˚.u/ � ˚.v/, 8 v 2 C ,
hence u solves problem (3.24). Therefore part (b) holds true.

Now let us show part (c). Since un is a solution of problem (3.27) we have

hJ 0
n.un/; v � uni C F 0

n .unI v � un/ 	 0 8 v 2 Cn; (3.30)

for each n 2 N (see Lemma 3.8). In view of part (b), every arbitrary subsequence
.unk / of the sequence .un/ admits a subsequence that weakly converges to the
solution u of (3.24) (which is assumed to be unique by hypothesis). It follows that
the whole sequence .un/ weakly converges to u.

We prove that the hypotheses of Theorem 3.14 with f D F 0jC�X , fn D
F 0jCn�X , T D J 0jC , Tn D J 0jCn are satisfied. Assumption .H1/ is satisfied by
hypothesis. Note that .H2/ (i) is verified due to Lemma 3.4 and the properties of
the generalized directional derivative F 0. Conditions .H2/ (ii) and .H3/ follow from
.H13/ and .H14/, respectively. Since un solves (3.30), we can apply Theorem 3.14
which guarantees that .un/ is strongly convergent to u. The proof is complete. ut
Remark 3.21. Theorem 3.20 holds true if we assume that [1

nD1Cn is bounded in
place of hypotheses (H12) (i), (ii) (see Remark 3.13).

Remark 3.22. (a) If Fn D F W Z ! R is locally Lipschitz and Jn D J W X ! X�
(for all n 2 N) is Gâteaux differentiable and satisfies .H7/, then .H12/ (iv) holds
true (since ˚ D ˚n (for all n 2 N) is continuous as noted in Remark 3.10).

(b) If ˚n D ˚ (for all n 2 N) is coercive on X , then .H12/ (i), (ii) hold true.
(c) If the embedding X � Z is compact and Fn D F W Z ! R is locally

Lipschitz, then .H13/ is verified (by the properties of the generalized directional
derivative F 0).

(d) If Jn D J W X ! R (for all n 2 N) is Gâteaux differentiable and satisfies .H8/

and J 0 is bounded and satisfies condition .S/C, then .H4/ and .H14/ hold true
(see Lemma 3.6 and Remark 3.11).

3.7 Extension of Main Theorem on Pseudomonotone
Operators

LetX be a real, reflexive, separable Banach space. Let fwngn2N be a countable dense
subset of X and, for each n 2 N, denote

Xn D spanfw1;w2; : : : ;wng:

For a sequence of operators Tn W Xn ! X� (n 2 N), we consider the following
condition:

.H15/ for every sequence .un/ with un 2 Xn, 8n 2 N, and kunk ! C1 we have
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lim
n!1

hTn.un/; uni
kunk D C1:

Theorem 3.23. Let X , Xn be as above and let an operator T W X ! X�. Let
Tn W Xn ! X� (n 2 N) be demicontinuous operators which are coercive in the
sense that

lim
kuk!C1

hTn.u/; ui
kuk D C1:

Assume that .H3/ (with Cn D Xn) and .H15/ hold. Then:

(a) For each b 2 X� the problem

�
Find u 2 X such that
T .u/ D b

(3.31)

has a solution.
(b) For fixed b 2 X� and each n 2 N, the problem

�
Find un 2 Xn such that
hTn.un/; vi D hb; vi 8 v 2 Xn (3.32)

has a solution un and the sequence .un/ is bounded in X . Moreover, there
exists a subsequence .unk / of .un/ that is weakly convergent to a solution u
of problem (3.31).

(c) If .Tn/ satisfies property .H4/ (with Cn D Xn), then .unk / strongly converges to
u in X . In this case, if the solution of problem (3.31) is unique, then the whole
sequence .un/ is strongly convergent to u in X .

Proof. We aim to apply Theorem 3.14 with C D X and Cn D Xn, n 2 N.
Lemma 3.2 ensures that condition .H1/ is satisfied with C D X and rn, n 2 N,
as in (3.6). Let the function f W X �X ! R be given by

f .u; v/ D �hb; vi 8 u; v 2 X:

Clearly, .H2/ is satisfied with the above f and fn D f jXn , n 2 N, whereas .H3/ is
satisfied by hypothesis. Moreover, problem (3.5) becomes problem (3.32), which is
equivalent to finding un 2 Xn such that

i�n Tn.un/ D i�n b ;

where i�n stands for the dual mapping of the inclusion map in W Xn ! X . Since Xn
is finite dimensional, the demicontinuity of Tn W Xn ! X� implies the continuity
of i�n Tn W Xn ! X�

n . Since i�n Tn is also coercive, by a standard consequence of the
Brouwer’s fixed point theorem, problem (3.32) has at least one solution.



3 Location Results for Variational–Hemivariational Inequalities 85

We also observe that any sequence of solutions un of (3.32), n 2 N, is bounded
in X due to .H15/ and the inequality

hTn.un/; uni
kunk D hb; uni

kunk � kbk� whenever un 6D 0:

It suffices to apply Theorem 3.14 to complete the proof. ut
Remark 3.24. (a) If Tn D T W X ! X� (for all n 2 N) is coercive, that is,

lim
kvk!1

hT .v/; vi
kvk D C1;

then .H15/ is satisfied.
(b) In the case where Tn D T W X ! X� (for all n 2 N) in Theorem 3.23

is bounded and pseudomonotone, we have that T satisfies hypothesis .H3/

(see Lemma 3.6) and is demicontinuous (see [10, Proposition 27.7 (b)]). There-
fore Theorem 3.23 extends the main theorem on pseudomonotone operators due
to Brezis [1] (see also Zeidler [10, Theorem 27.A]), which deals with the case
where T D Tn W X ! X� (for all n 2 N).

3.8 Extension of Skrypnik’s Result for Equations
with Odd Operator

We start with a slightly modified version of [9, Lemma 5.1] that we recall from
[4] (for the sake of completeness we include the proof). The notation B.0;R/ and
S.0;R/ mean the open ball centered at the origin of radius R and its boundary in
the underlying space, respectively.

Lemma 3.25. Let Z be a finite dimensional real Banach space, A W B.0;R/ �
Z ! Z� be a continuous mapping and y 2 Z� which satisfy

(i) A.�z/ D �A.z/ 8 z 2 S.0;R/,
(ii) A.z/ ¤ ˛y 8˛ 2 Œ0; 1�; 8 z 2 S.0;R/.
Then the equation A.x/ D y has a solution x 2 B.0;R/.
Proof. As Z is finite dimensional, we may consider a linear isomorphism
˚ W Z� ! Z and introduce QA W B.0;R/ ! Z by QA D ˚A. The mapping
h W Œ0; 1� � B.0;R/ ! Z given by

h.˛; z/ D QA.z/ � ˛˚.y/ 8 .˛; z/ 2 Œ0; 1� � B.0;R/

is a homotopy between QA and QA � ˚.y/. By (ii), Brouwer’s topological degree
deg.h.˛; �/; B.0;R/; 0/ is well defined for all ˛ 2 Œ0; 1� (see, e.g., [6, Section 4.1]).
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The homotopy invariance property of Brouwer’s degree implies

deg. QA � ˚.y/; B.0;R/; 0/ D deg. QA;B.0;R/; 0/:

Hypothesis (i) enables us to apply Borsuk’s theorem (see, e.g., [6, Corollary 4.13]),
which implies that deg. QA � ˚.y/; B.0;R/; 0/ is an odd number. Thus the equation
QA.x/ D ˚.y/ is solvable in B.0;R/ (by the properties of Brouwer’s degree, see,

e.g., [6, Theorem 4.5 (e)]). The proof is complete. ut
Now, let X be a real, reflexive, separable Banach space. Let fwngn2N be a

countable dense subset of B.0;R/ and, for each n 2 N, denote

Xn D spanfw1;w2; : : : ;wng:

Theorem 3.26. Let X , Xn be as above and an operator T W B.0;R/ ! X�. Let
Tn W B.0;R/ \Xn ! X� (n 2 N) be demicontinuous operators such that

Tn.�v/ D �Tn.v/ 8 v 2 S.0;R/ \Xn; 8n 2 N (3.33)

and satisfying .H3/ (i), .H6/ (in Lemma 3.5) and .H4/ (with Cnk D B.0;R/\Xnk ).
Fix b 2 X� with

kbk� < kT .v/k� 8 v 2 S.0;R/: (3.34)

Then:

(a) The problem

�
Find u 2 B.0;R/ such that
T .u/ D b

(3.35)

has a solution in B.0;R/.
(b) For each n 2 N, the problem

�
Find un 2 B.0;R/ \Xn such that
hTn.un/; vi D hb; vi 8 v 2 Xn (3.36)

has a solution un 2 B.0;R/ \ Xn. Furthermore, there exists a subsequence
.unk / of .un/ which is weakly convergent to a solution u of problem (3.35).

(c) If .Tn/ satisfies property .H4/ (with Cn D B.0;R/\Xn), then the subsequence
.unk / strongly converges to u in X . In this case, if the solution of (3.35) is
unique, then the whole sequence .un/ strongly converges to u in X .

Proof. We aim to apply Theorem 3.14 with C D B.0;R/ and Cn D B.0;R/\Xn,
n 2 N. Let b 2 X� satisfy (3.34). By Lemma 3.2, we see that hypothesis .H1/ is
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satisfied with C D B.0;R/ and rn defined as in (3.6). Let f W B.0;R/�X ! X be
given by

f .u; v/ D �hb; vi 8 u 2 B.0;R/; 8 v 2 X:

It is clear that f satisfies .H2/ with fn D f jB.0;R/\Xn , n 2 N. Condition .H3/ (i) is
satisfied by hypothesis, whereas condition .H3/ (ii) follows from .H6/ and .H4/ (see
Lemma 3.5).

Let us show that Lemma 3.25 can be applied with Z D Xn , A D i�n TnjB.0;R/\Xn
and y D i�n b, where i�n stands for the dual mapping of the inclusion map in W
Xn!X . SinceXn is finite dimensional, the demicontinuity of Tn W B.0;R/\Xn !
X� implies the continuity of i�n Tn W B.0;R/ \ Xn ! X�

n . Condition (i) in
Lemma 3.25 follows from (3.33). We prove that condition (ii) in Lemma 3.25 holds
for all n sufficiently large, that is, there exists n0 2 N such that (ii) in Lemma 3.25
is true for n 	 n0. Arguing by contradiction, assume that we can find sequences
˛k 2 Œ0; 1�, uk 2 S.0;R/ \Xnk such that

hTnk .uk/; vi D ˛khb; vi 8 v 2 Xnk ; k 2 N: (3.37)

Taking into account that kukk D R, passing to a relabelled subsequence, we have
uk * u0 in X and ˛k ! ˛0 as k ! 1, for some u0 2 B.0;R/ and ˛0 2 Œ0; 1�.
Then from (3.37), .H1/ (ii) and .H3/ (i) we obtain

hTnk .uk/; uk � u0i D hTnk .uk/; rnk .u0/ � u0i C hTnk .uk/; uk � rnk .u0/i
D hTnk .uk/; rnk .u0/ � u0i C ˛khb; uk � rnk .u0/i ! 0

as k ! 1. Combining with hypothesis .H4/, this yields uk ! u0 in X , hence u0 2
S.0;R/. Let v 2 [k2NXnk . Then v 2 Xnk for all k sufficiently large, so from (3.37)
we have hTnk .uk/; vi D ˛khb; vi. Letting k ! 1 and using that uk ! u0 in X and
hypothesis .H6/, we obtain hT .u0/; vi D ˛0hb; vi. The density of [k2NXnk in X
implies

hT .u0/; vi D ˛0hb; vi 8 v 2 X:

It follows that T .u0/ D ˛0b , which contradicts the choice of b in (3.34), so
condition (ii) of Lemma 3.25 is satisfied.

By Lemma 3.25 it follows that for every n 	 n0 problem (3.36) has a
solution un 2 B.0;R/ \ Xn . The conclusions in the theorem follow by applying
Theorem 3.14, while the fact that u 2 B.0;R/ is a consequence of (3.34). The proof
is complete. ut
Remark 3.27. (a) If Tn D T W X ! X� (for all n 2 N) is bounded,

demicontinuous and satisfies condition .S/C, then .H3/ (i), .H6/ and .H4/ are
satisfied.



88 D. Motreanu and V.V. Motreanu

(b) Theorem 3.26 extends the existence result for equations with odd operator in
[9, Theorem 5.1], which deals with the case T D Tn W B.0;R/ ! X� (for all
n 2 N).
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Chapter 4
Nonconvex Variational Inequalities

Si-sheng Yao and Nan-jing Huang

Abstract In this chapter, we consider a nonconvex variational inequality defined on
proximally smooth set and star-shaped set. Based on arguments of the fixed point
theorem and the proximal normal method, some existence and uniqueness results
concerning the nonconvex variational inequality are proved under suitable condi-
tions. Some iterative algorithms for approximating the solutions of the nonconvex
variational inequality are constructed and the convergence results for the iterative
sequences generated by the algorithms are also given.

Keywords Nonconvex variational inequality • Proximally smooth set •
Star-shaped set

AMS Classification. 47J20, 49J40.

4.1 Introduction

Variational inequalities, introduced by Hartman and Stampacchia [13] in the early
1960s, are a very powerful tool of the current mathematical technology. These have
been extended and generalized to the study of a wide class of problems arising in
mechanics, physics, optimization and control, nonlinear programming, economics,
transportation equilibrium and engineering sciences, etc. The development trace of
variational inequality theory can be counted as the process to reveal some important
problems and the tool for developing highly efficient algorithms for solving the
relevant applied problems. Those numerical methods, such as the projection method
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and its variants, the finite element method, Wiener-Hopf skill and the auxiliary
principle, solve abundant interesting and important problems, see [11, 14].

The projection type technique, initially introduced by Lions and Stampacchia
[17] and developed later by many authors, is an important tool for finding the
approximating solutions of various kinds of variational inequalities (see, for exam-
ple, [20,29]). The main idea in this technique is to establish the equivalence between
a variational inequality and a fixed point problem [2,22]. In addition, the projection
method plays a significant role in the numerical solution of the problems mentioned
above. For more work concerned with the theory, algorithms and applications of the
projection type technique, we refer to [10, 29] and the references therein.

It is well known that the variational inequality problem and many other math-
ematical problems, such as optimization, control theory, dynamical systems and
differential inclusions etc., both the numerical algorithms and their theoretical
analysis rely heavily on the assumption of convexity. For example, many classical
algorithms in optimization use the fact that a local optimum is a global optimum;
consequently, almost all the techniques are based on the properties of the operators
over convex sets.

Clarke et al. [7,8] and Poliquin et al. [26] have introduced and studied two classes
of nonconvex sets, which are called prox-regular sets and proximally smooth sets.
It is known that proximally smooth sets may or may not be convex. This class of
proximally smooth sets has many useful properties and has played an important
role in many nonconvex applications. In 2003, Bounkhel et al. [4] used these
proximally smooth sets to consider the variational inequalities. They have shown
that nonconvex variational inequalities are equivalent to nonconvex variational
problems. Noor [19] introduced nonconvex variational inequalities based on the
proximally smooth sets. Moreover, he discussed the existence and algorithms of
the solution for nonconvex variational inequalities and nonconvex mixed variational
inequalities, and his research shows that the projection technique can be extended to
nonconvex sets. In 2010, Alimohammady et al. [2] constructed some new perturbed
finite step projection iterative algorithms with mixed errors for approximating the
solutions of a new class of general nonconvex set-valued variational inequalities.
Noor et al. [23] used the extragradient projection technique to solve the nonconvex
variational inequalities. In 2011, Wen [31] modified the projection methods to a
generalized system of nonconvex variational inequalities with different nonlinear
operators.

Since Brunn [5] introduced star-shaped sets in 1913, star-shaped sets have been
used naturally in many application fields, including integral geometry, computa-
tional geometry, mixed integer programming problem (see, for example, [3, 12]).
Because of the importance of those sets in structural and mechanical systems, a
considerable effort has been made in their theory and numerical analysis (see, for
example, [6] and the references therein). It is worth mentioning that some authors
discussed the developed mathematical modeling which plays an important role
for some practical problems. Naniewicz [18] used the hemivariational inequality
approach to establish the existence of solutions for a large class of star-shaped
with respect to a ball constrained problems in a reflexive Banach space. And some
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applications to nonconvex constrained variational problems were considered. In
2003, Lin et al. [16] suggested and analyzed a homotopy continuation method for
solving fixed points of self-mappings in a class of star-shaped subsets.

Motivated and inspired by the work mentioned above, in this chapter we
introduce and study the nonconvex variational inequality. By using the arguments
of Banach’s fixed point theorem, star-shaped set theory and proximally smooth set
methods, we prove the existence and uniqueness of a solution for the nonconvex
variational inequality under some suitable conditions. Furthermore, we consider
algorithms of the corresponding mathematical problem and give a convergence
result. The results presented in this chapter generalize and improve some known
results presented in [2, 20, 27].

This chapter is structured as follows. In Sect. 4.2, we list the preliminaries on
nonconvex sets, including proximally smooth sets and star-shaped sets, and some
useful results on the nonconvex variational inequality. We prove the existence and
uniqueness of a solution to the nonconvex variational inequality in Sect. 4.3. Finally,
in Sect. 4.4, we construct some iterative algorithms for finding the approximate
solutions of the nonconvex variational inequality and prove the convergence of
iterative sequence generated by the algorithms.

4.2 Preliminaries

Let X be a real Hilbert space which is equipped with an inner product h�; �i and
corresponding norm k�k, respectively. LetK be a nonempty subset ofX andCB.X/
denote the family of all closed and bounded subsets of X .

Assume that C is a nonempty closed convex subset of X . For a given nonlinear
operator T W X ! X , consider the problem of finding u 2 C such that

hT u; v � ui 	 0 8 v 2 C; (4.1)

which is called a variational inequality. This problem was introduced and studied by
Stampacchia in 1964 [30].

Now we recall some well known concepts and auxiliary results in nonsmooth
analysis [8, 26].

Definition 4.1 ([8]). Let K be a nonempty subset of X . The proximal normal cone
of K at u 2 X is given by

NP
K .u/ D f	 2 X j 9 t > 0 such that dK.u C t	/ D tk	kg;

where t is a constant and dK W X ! R is a distance function defined by

dK.u/ D inf
v2K kv � uk:
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Definition 4.2 ([8]). Let u 2 X be a point not lying in K, a nonempty subset of
X . A point v 2 K is called a closest point or a projection of u onto K if dK.u/ D
kv � uk: The set of all such closest points is denoted by PK.u/, that is,

PK.u/ D fv 2 K j dK.u/ D ku � vkg:

Lemma 4.3 ([8]). Let K be a nonempty subset in X . Then 	 2 NP
K .u/ if and only

if there exists a constant ı > 0 such that

h	; v � ui � ıkv � uk2 8 v 2 K:

Definition 4.4. A closed set K is prox-regular at x if and only if there exists " > 0
and  > 0 such that whenever y 2 K and 	 2 NP

K .y/ with ky � xk < " and
k	k < ", one has

h	; x0 � yi � 

2
kx0 � yk2 � 0 8 x0 2 K with kx0 � xk < ":

Definition 4.5 ([7]). For a given r 2 .0;C1�, a subset K is said to be normalized
uniformly r-prox-regular if and only if every nonzero proximal normal to K can be
realized by an r-ball, that is, for all u 2 K and 0 ¤ 	 2 NP

K .u/ with k	k D 1, one
has 

	

k	k ; v � u

�
� 1

2r
kv � uk2 8 v 2 K:

Remark 4.6. There are several interesting equivalence statements to characterize
the uniformly r-prox-regular sets. From [26], one can know that a closed set K is
proximally smooth with associated tube UK.r/ if and only if the set K is uniformly
prox-regular with constant 1

r 0
for every 0 < r 0 < r . Thus, we do not distinguish

the two definitions “uniformly r-prox-regular” and “proximally smooth” in this
chapter.

(i) Following the definition of Clarke et al. [7], a closed set K is said to be
proximally smooth if dK is (norm-to-norm-) continuously differentiable on an
open “tube” of the type

UK.r/ D fu 2 X j 0 < dK.u/ < rg

for some r > 0;
(ii) Clarke et al. [7] showed that K is proximally smooth if and only if there exists

r > 0 such that, for all u 2 UK.r/, the projection PK.u/ is nonempty and each
of its elements x belongs also to PK.x C v/ for v D r u�x

ku�xk ;
(iii) Clarke et al. [7] showed that a weakly closed setK is proximally smooth if and

only if PK is single-valued on a tube UK.r/.
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Lemma 4.7 ([26]). For a weakly closed set K � H and any point x 2 K, the
following statements are equivalent.

(i) K is prox-regular at x;
(ii) PK is single valued around x.

It is clear that the class of proximally smooth sets is sufficiently large to include
the class of convex sets, p-convex sets, C1;1 submanifolds (possibly with boundary)
of X , the images under a C1;1 diffeomorphism of convex sets and many other
nonconvex sets (see [26]). Obviously, if r D C1, then proximal smoothness
of K is equivalent to the convexity of C . It is known that the proximal normal
cone NP

K is a set-valued mapping with closed values if K is a proximally smooth
set. This class of proximally smooth sets have played an important part in many
nonconvex applications such as optimization, dynamic systems and differential
inclusions [21, 32].

Lemma 4.8 ([7,26]). LetK be a nonempty closed and proximally smooth subset of
X and r 2 .0;C1�. Then the following statements hold:

(i) For all u 2 K, PK.u/ ¤ ;;
(ii) For all r 0 2 .0; r/, PK is Lipschitz continuous with constant L D r

r�r 0
on

UK.r
0/;

(iii) The proximal normal cone is a set-valued mapping with closed values;
(iv) If K is weakly closed, then one can get the following to the list of equivalent

properties: K is proximally smooth with associated tube UK.r/ , PK is
single-valued on UK.r/.

Let x be a point of a vector space Z with x ¤ 0 and Rx D f�x 2 Z j � 	 0g.
We recall the definition of the star-shaped set as follows.

Definition 4.9 ([32]). Let A be a nonempty subset of Z.

(i) The set kernA of all a 2 A such that

fa 2 A; 0 � � � 1g ) aC �.x � a/ 2 A

is called the kernel of A;
(ii) The subset A is called a star-shaped set if kernA ¤ ;.

The totality of all star-shaped sets with respect to zero will be denoted by U .
Letting U 2 U , the function defined by

�U .x/ D inff� > 0 j x 2 �U g 8 x 2 Z

is called the Minkowski gauge of the set U .

Lemma 4.10 ([32]). Let p W Z ! R and U D fx 2 Z j p.x/ � 1g. Then the
following statements are equivalent.
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(i) p is positively homogeneous, nonnegative, l.s.c. and p.0/ D 0;
(ii) U is a nonempty star-shaped with respect to zero set and p D �U .

It is well known that the union of two disjoint intervals Œa; b� and Œc; d � is a
prox-regular set with r D c�b

2
and it is not a star-shaped set [1, 6]. Moreover, let

K D ˚
.t; z/ 2 R

2 j t 2 C .z � 2/2 	 4;�2 � t � 2; z 	 �2�
be a subset of the Euclidean plane, then K is a proximally smooth set and K is not
a star-shaped set [21].

Next we provide more examples of the nonconvex sets.

Example 4.11. Let K D ˚
.; �/ 2 R

2 j  � 1 � cos.�/; r 2 Œ0; 2�; � 2 Œ0; 2��� be
a subset of R2. By the definition, it is easy to see that K is a star-shaped set but it is
without proximally smoothness at .0; 0/.

Example 4.12. Let

K D
�
.p; q/ 2 R

2

ˇ̌̌
ˇ .p � 0:5/2

0:25
C q2

.0:5p C 0:001/2
� 1; 0 � p � 2; 0 � q � 1

�
:

Then we know that K is a star-shaped set. Moreover, it follows from Remark 4.6
(ii) that K is also a proximally smooth set.

If K is a nonconvex set, the classical variation inequality (4.1) can be extended
to the following form (4.2), which is called the nonconvex variational inequality
[19, 22].

For a nonempty closed subset K in X and a given nonlinear operator T W K !
K, consider the problem of finding u 2 K such that

hT u; v � ui C ıkv � uk2 	 0 8 v 2 K: (4.2)

To provide a concrete working example for later developments, we consider
an elastoplastic deformation model for geomaterials. In the past decades, some
researchers studied problems about geomaterials, and got many useful results.
Piccolroaz and Bigoni [25] proposed a new yield criteria within the class of isotropic
functions of the stress tensor, and studied the nonconvex field surface which is
the consequences of the new yield criteria. In 2010, Laydi [15] studied the yield
conditions of phase transformation problem in which he gave a counter-example to
show the convexity condition is not fulfilled for some field criteria case.

Convexity assumption, as a useful mathematical property, is not always sup-
ported by experiments in practical problem and some newly theoretical analysis
process [15, 25]. All these works show that the classical method for solving
elastoplastic deformation problems, especially in geomaterials constitutive models,
will lead to a result that likely violates thermomechanics laws under some stress
paths. In this chapter, we will not pay more attention to the fundamental details. The
fundamental assumptions and postulates of the theory of thermomechanics are well
known and can be found in [9, 33].
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The symbol ı presents the state increment, ıQ is the dissipation increment, which
defined per unit volume. And Q is a function of the inner state variables (the state
variables of the elastoplastic materials can usually be described as the following
four parameters: stress tensor � , strain tensor ", entropy density �, plastic increment
tensor "p). These four variables are related by the generalized Hooke’s law and the
laws of thermomechanics; only two variables can be the independent state variables
[33, 34].

Firstly, we give an example to show that the yield surface may be a nonconvex
set.

Example 4.13. Assume that the dissipative function is a simplified form of the case
(18) in Collins and Hilder [9], that is,

ıQ D
h
.ap C bp0/

2.d"pv /
2 C .cp C dp0/

2.d"p� /
2
i 1
2
;

where a; b; c; d are some experiment parameters, p0 is a known function of the
plastic volume strain and p; q are stress invariants. "pv is the plastic volume strain
increment and "p� is the plastic shear strain increment. Then the yield surface can be
derived from the yield function by the method mentioned above as follows:

.p � bp0/2
.ap C bp0/2

C q2

.cp C dp0/2
D 1:

The yield surface in the dissipative stress space is convex, while it is nonconvex
in the true stress space, see Fig. 4.1.

Let Rd be a d -dimensional Euclidean space and S
d be the space of second order

symmetric tensors on R
d . The canonical inner products and corresponding norms

on R
d and S

d are defined as follows:

u � v D ui vi ; kvk D .v � v/1=2 8 u; v 2 R
d ;

� W 
 D �ij 
ij ; j
 j D .
 W 
/1=2 8 �; 
 2 S
d :

0.25 0.50 0.75 1

0.2
0.4

0.2
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The elliptic yield surface in dissipative stress space The nonconvex yield surface in true stress space

Fig. 4.1 Convex and nonconvex yield surfaces in stress space
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Everywhere in the sequel the index i and j run between 1 and d and the summation
convention over repeated indices is implied.

Now, we consider an elastoplastic geomaterial deformation problem. Suppose
that the geomaterials occupies an open, connected and bounded domain ˝ � R

d

with a Lipschitz boundary � D @˝. Let the time interval of interest be Œ0; T � with
T > 0. Since the boundary is Lipschitz continuous, the outward normal vector
exists on � a.e. and we denote it by �. Assume that a volume force f .x; t/ with
f .x; 0/ D 0 acts in ˝ � Œ0; T �. We denote by u the displacement field, " the strain
tensor, "e the elastic strain tensor, "p the plastic strain tensor and � the stress tensor.

Since the yield surface may be nonconvex, the deformation body obeys a non-
normality plastic flow rule (see [33]). By Examples 4.12 and 4.13, we know that
the nonconvex setK is proximally smooth and star-shaped, which is called the star-
shaped set with the proximal smoothness.

Let

d"q 2 NP
K .�/; K D f� 2 S

d j f .�; "p/ � 0g; (4.3)

where K is the nonconvex closed set and d"q is the normal increment of the plastic
strain on the yield surface K, which is a nonlinear function of the variables ".u/,
"p.u/ and d"p.u/ under some suitable hypotheses. The boundary of K, denoted by
K, is the yield surface, the elastic region is

E D
n
� 2 S

d j f .�; "p/ < 0
o
:

From Lemma 4.3, we can rewrite (4.3) as follows: there exists a positive number
ı > 0 such that

d"q W .� 0 � �/ � ıj� 0 � � j2 � 0 8 � 0 2 K; (4.4)

which give the variational formulation of the elastoplastic geomaterials deformation
problem.

The nonconvexness of yield surface K implies that the considered elastoplastic
geomaterials deformation problem can be solved by employing the nonconvex
variational inequality method.

To solve the nonconvex variational inequality, we also need the following lemmas
and definitions.

Lemma 4.14 ([1]). Let X be a reflexive Banach space and fxng be a bounded
sequence of X . Then !w.xn/ ¤ ;, where

!w.xn/ D fx 2 H j xnj * x; fnj g � fngg:

Lemma 4.15 ([8]). Let K be a nonempty subset of X . For every x 2 X , a point
u 2 PK.x/ if and only if u is a solution of variational inequality

hx � u; v � ui � 1

2
kv � uk2 8 v 2 K: (4.5)
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Definition 4.16. LetK be a nonempty closed subset ofX . A mapping T W K ! K

is said to be

(i) �-strongly monotone if there exists a constant � > 0 such that

hT u � T v; u � vi 	 �ku � vk2 8 u; v 2 KI
(ii) �-Lipschitz continuous if there exists a constant � > 0 such that

kT u � T vk � �ku � vk 8 u; v 2 KI
(iii) .�; �/-relaxed co-coercive if there exist constants �; � > 0 such that

hT u � T v; u � vi 	 ��kT u � T vk2 C �ku � vk2 8 u; v 2 K:

Remark 4.17. It is easy to see that a �-strongly monotone mapping is .�; �/-relaxed
co-coercive, but the converse is not true in general.

4.3 Main Results

In this section, we use the fixed point theorem, projection technique, star-shaped
set and proximally smooth set method to suggest and analyze some properties of
the projection PK when K is nonconvex. The existence and uniqueness results for
nonconvex variational inequality (4.2) are also given.

Theorem 4.18. Let K be a nonempty subset of X . For a given nonlinear operator
T W K ! K, u 2 K is a solution of the nonconvex variational inequality (4.2) if and
only if u 2 K satisfies the relation u 2 PK.u � T u/, where PK is the projection of
X onto K.

Proof. “)” Suppose that (4.2) has a solution u 2 K. Then there exists ı > 0 such
that

hT u; v � ui C ıkv � uk2 	 0 8 v 2 K
and so

hu � .u � T u/; v � ui C 1

2
kv � uk2 	 0 8 v 2 K;

where ı D 1
2
. By Lemma 4.15, we have

u 2 PK.u � T u/:

“(” Let u 2 PK.u � T u/. Then it follows from Lemma 4.15 that

h.u � T u/ � u; v � ui � 1

2
kv � uk2 � 0 8 v 2 K;
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which implies that

hT u; v � ui C 1

2
kv � uk2 	 0 8 v 2 K

and so

hT u; v � ui C ıkv � uk2 	 0 8 v 2 K; ı D 1

2
:

Thus, u 2 K is a solution of (4.2). This completes the proof. ut
For u 2 PK.u � T u/, by Lemma 4.8 and Theorem 4.18, we know that 0 <

dK.u � T u/ < r when  < r
1CkT uk . Thus, we have the following result.

Corollary 4.19. Let K be a nonempty proximal smoothness on UK.r/. For a given
nonlinear operator T W K ! K, u 2 K is a solution of the nonconvex variational
inequality (4.2) if and only if u 2 K satisfies the relation u D PK.u � T u/, where
 < r

1CkT uk .

For u 2 PK.u � T u/, by Lemma 4.7 and Theorem 4.18, if K is prox-regular at
u, PK is single valued around u, that is, there exists � > 0 such that PK is single on
B.u; �/ (the neighbourhood of u). It is easy to see that 0 < dK.u � T u/ < � when
 <

�

1CkT uk . Thus, we can get the following result.

Corollary 4.20. Let K be a prox-regular set at u. For a given nonlinear operator
T W K ! K, u 2 K is a solution of the nonconvex variational inequality (4.2) if and
only if there exists � D �.u/ such that u 2 K satisfies the relation u D PK.u�T u/,
where  < �

1CkT uk .

Remark 4.21. If K is a nonempty closed convex subset of X , for a given nonlinear
operator T , it is well known that u 2 K is a solution of the variational
inequality (4.1) if and only if u 2 K satisfies the relation u D PK.u � T u/ for
all  > 0. Thus, Theorem 4.18, Corollaries 4.19 and 4.20 can be considered as the
extension of the classical result from the nonempty closed convex subset of X to
the nonempty subset of X , the nonempty proximally smooth subset of X and the
nonempty prox-regular set of X , respectively.

On the other hand, the Opial property is an abstract property of Banach spaces
that plays an important role in the study of weak convergence of iterates of mappings
in Banach spaces. The property is named after the Polish mathematician Opial. Let
.X; k �k/ be a Banach space. We say thatX has the Opial property if, whenever fxng
is a sequence in X converging weakly to some x0 2 X and x ¤ x0, it follows that

lim inf
n!1 kxn � x0k < lim inf

n!1 kxn � xk:

Lemma 4.22. Let X be a reflexive Banach space which satisfies Opial property, K
be a nonempty bounded weak closed subset of X and T W K ! K be nonexpansive.
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Then the mapping I �T is demiclosed onK, that is, if un * u with .I �T /un ! w,
then .I � T /u D w.

Proof. Suppose that fung in K satisfies un * u and .I � T /un ! w as n ! 1.
Since K is a weak closed set, we know that u 2 K. If we replace the mapping T by
the mapping Tw which defined by Twx D T x C w, then kun � Twunk ! 0 and Tw

is also nonexpansive.
Next we show that .I � T /u D w. If .I � T /u ¤ w, by Opial property, we have

lim inf
n!1 kun � uk < lim inf

n!1 kun � Twuk
D lim inf

n!1 kun � Œun � Twun� � Twuk
D lim inf

n!1 kTwun � Twuk
� lim inf

n!1 kun � uk;

which is a contradiction and so .I � T /u D w. This completes the proof of
Lemma 4.22. ut

It is well known that every Hilbert space has the Opial property [24].

Theorem 4.23. Let X be a Hilbert space, K be a nonempty weak closed bounded
star-shaped set with the proximal smoothness on UK.r/ and T be .�; �/-relaxed
co-coercive and �-Lipschitz continuous. For some r 0 2 .0; r/, if the following
conditions hold:

ˇ > 0; r 0 � r.1 � ˇ2/;  <
r 0

1C kT uk 8 u 2 K; (4.6)

with

ˇ D 1 � 2� C 2�2 C 2��2;

then the nonconvex variational inequality (4.2) has a solution u� 2 K.

Proof. For any u 2 K, by using  < r 0

1CkT uk for some r 0 2 .0; r/, we have

dK.u � T u/ � dK.u/C kT uk < r 0kT uk
1C kT uk < r

0:

It follows that, for u; v 2 K, u � T u 2 UK.r
0/ and v � T v 2 UK.r

0/. Now
Lemma 4.8 shows that

kPK.I � T /.u/ � PK.I � T /.v/k � r

r � r 0 ku � T u � .v � T v/k

D r

r � r 0 k.u � v/ � .T u � T v/k:
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Since T is .�; �/-relaxed co-coercive and �-Lipschitz continuous, we have

k.u � v/ � .T u � T v/k2 D ku � vk2 � 2hT u � T v; u � vi C 2kT u � T vk2
� .1 � 2�/ku � vk2 C .2 C 2�/kT u � T vk2
� .1 � 2� C 2�2 C 2��2/ku � vk2

and so

kPK.I � T /.u/ � PK.I � T /.v/k � ˛ku � vk; (4.7)

where

˛ D r

r � r 0
�
1 � 2� C 2�2 C 2��2

� 1
2 :

(I) If 0 < ˛ < 1, we know that ˇ > 0 and r 0 < r � rˇ2 with

ˇ D 1 � 2� C 2�2 C 2��2

and so PK.I�T / is a contraction mapping. It follows that there exists a unique
point u� 2 K such that PK.u� CT u�/ D u�. Now, Corollary 4.19 guarantees
that u� 2 K is a solution of the nonconvex variational inequality (4.2).

(II) If ˛ D 1, we know that r 0 D r � rˇ2 and so (4.7) implies that G is
nonexpansive mapping. In order to get the solution of the nonconvex variational
inequality (4.2), we need the proximal smoothness and the star-shapeness of the
nonempty bounded weakly closed set K. The star-shapeness of K guarantees
that there exists a u 2 K such that u 2 kernK. For every n 	 1, let
G D PK.I � T / and

Gn.x/ D G

�
1

n
u C .1 � 1

n
/x

�
8 x 2 K:

From the .�; �/-relaxed co-coerciveness and �-Lipschitz continuity of T , for
every x; y 2 K, Lemma 4.8 shows that

kGn.x/ �Gn.y/k

D
����PK.I � T /

�
1

n
u C .1 � 1

n
/x

�
� PK.I � T /

�
1

n
u C .1 � 1

n
/y

�����
� r

r � r 0

����.I � T /
�
1

n
u C .1 � 1

n
/x

�
� .I � T /

�
1

n
u C .1 � 1

n
/y

�����
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� r

r � r 0 � .1 � 1

n
/k.x � y/ � .T x � Ty/k

� r

r � r 0 � .1 � 1

n
/.1 � 2� C 2�2 C 2��2/

1
2 kx � yk;

where ˛ D 1. This shows that .1� 1
n
/˛ < 1 and soGn is a contraction mapping

for each n 2 N. Thus, for every n 2 N, there exists a unique xn 2 K such that
Gn.xn/ D xn.

On the other hand,

k.I �G/xnk D kGnxn �Gxnk

D
����G

�
1

n
u C .1 � 1

n
/xn

�
�Gxn

����
� r

n.r � r 0/
k.u � xn/ � .T u � T xn/k

� ˛

n
ku � xnk ! 0 .as n ! 1/:

By fxng � K and Lemma 4.14, we have !w.xn/ ¤ ;. Taking x 2 !w.xn/, there
exists a subsequence fxnj g � fxng such that xnj * x.j ! 1/. Since K is weak
closed, we know that x 2 K. Now Lemma 4.22 shows that Gx D x: Thus, that
exists x 2 K such that

PK.x C T x/ D x:

By Corollary 4.19, x 2 K is a solution of the nonconvex variational inequality (4.2).
Combining the cases of (I) and (II), we know that the nonconvex variational

inequality (4.2) has a solution when (4.6) holds, which completes the proof of
Theorem 4.23. ut

Taking the particular cases of the set K and the mapping T in Theorem 4.23, it
is easy to show the following result.

Corollary 4.24. Let K be a nonempty bounded weak closed star-shaped set of a
Hilbert space X and T be a nonexpansive mapping. Then F.T /, the fixed point set
of T , is nonempty.

Corollary 4.25. Let X be a Hilbert space, K be a nonempty weak closed bounded
set with the proximal smoothness on UK.r/ and T be .�; �/-relaxed co-coercive and
�-Lipschitz continuous. For some r 0 2 .0; r/, if the following conditions hold:

ˇ > 0; r 0 < r.1 � ˇ2/;  <
r 0

1C kT uk 8 u 2 K; (4.8)
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with

ˇ D 1 � 2� C 2�2 C 2��2;

then the nonconvex variational inequality (4.2) has a unique solution u� 2 K.

Proof. For any u 2 K, by using  < r 0

1CkT uk for some r 0 2 .0; r/, we have

dK.u � T u/ � dK.u/C kT uk < r 0kT uk
1C kT uk < r

0:

It follows that, for u; v 2 K, u � T u 2 UK.r
0/ and v � T v 2 UK.r

0/. Now
Lemma 4.8 shows that

kPK.I � T /.u/ � PK.I � T /.v/k � r

r � r 0 ku � T u � .v � T v/k

D r

r � r 0 k.u � v/ � .T u � T v/k:

Since T is .�; �/-relaxed co-coercive and �-Lipschitz continuous, one has

k.u � v/ � .T u � T v/k2 D ku � vk2 � 2hT u � T v; u � vi C 2kT u � T vk2

� .1 � 2�/ku � vk2 C .2 C 2�/kT u � T vk2

� .1 � 2� C 2�2 C 2��2/ku � vk2

and so

kPK.I � T /.u/ � PK.I � T /.v/k � ˛ku � vk; (4.9)

where

˛ D r

r � r 0 .1 � 2� C 2�2 C 2��2/
1
2 :

By the condition (4.8), we get 0 < ˛ < 1 and so PK.I � T / is a contraction
mapping. It follows that there exists a unique point u� 2 K such that PK.u� C
T u�/ D u�. Now, Corollary 4.19 guarantees that u� 2 K is a solution of the
nonconvex variational inequality (4.2), which completes the proof of Corollary 4.25.

ut
It is well known every nonexpansive mapping has a fixed point in the nonempty

bounded closed convex subset of Hilbert space X [28]. However, this conclusion
is not true for the nonconvex subset of X . Furthermore, the existence theorem of
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solutions for the nonconvex variational inequality (4.2) is meaningful for computing
the iterative sequences. In 2007, Singh [27] proved some fixed point theorems for
a class of generalized set-valued contraction mapping on nonconvex sets. Recently,
Alimohammady et al. [2] provided some existence theorems of solutions for an
extended nonconvex variational inequality problem by using the Hausdorff pseudo-
metric technique.

Remark 4.26. Corollary 4.24 generalizes the result Corollary 2.7 of Singh [27] and
Theorem 4.23 generalizes and improves Lemma 3.1 of Noor [20]. Moreover, we
would like to point out that the proof method of Theorem 4.23 and Corollary 4.25
can be also used in the one of Theorem 4.2 of Alimohammady et al. [2].

Theorem 4.27. Let X be a Hilbert space, K be a nonempty weak closed bounded
star-shaped set and T be .�; �/-relaxed co-coercive and �-Lipschitz continuous. If
F.T / ¤ ;, then F.T / is closed.

Proof. Let fung1
nD1 � F.T / be a sequence which converge to a point u 2 K. Since

T is .�; �/-relaxed co-coercive, one has

hT u � T un; un � ui � �kT u � T unk2 � �ku � unk2:

It is easy to check that

2hT u � T un; un � ui D kT u � uk2 � kT u � T unk2 � ku � unk2

and so

kT u � uk2 D 2hT u � T un; un � ui C kT u � T unk2 C ku � unk2

� .1C 2�/kT u � T unk2 C .1 � 2�/ku � unk2

� ˛1ku � unk2;

where

˛1 D 2��2 C �2 C 1 � 2�:

From the fact that kun � uk ! 0 as n ! 1, we know that

lim
n!1 kT u � uk D 0:

Thus, u 2 F.T /, which completes the proof of Theorem 4.27. ut
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4.4 Algorithms and Convergence

In this section, let X be a Hilbert space, K be a nonempty bounded weak closed
star-shaped subset with the proximal smoothness on UK.r/. We shall construct
some projection iterative algorithms for solving the nonconvex variational inequal-
ity (4.2). We also establish the convergence of the iterative sequences generated by
the iterative algorithms.

Algorithm 4.1. For a given u0 2 K, compute the approximate solution unC1 by the
iterative scheme

hT un C unC1 � un; v � unC1i C ıkv � unC1k2 	 0 8 v 2 K (4.10)

for n D 0; 1; � � � .

Algorithm 4.1 is called the proximal point algorithm for solving the nonconvex
variational inequality (4.2). Note that, if r D C1, then the proximally smooth set
K becomes to a convex set and Algorithm 4.1 reduces to an algorithm for solving
the convex variational inequality.

We now give the convergence criteria of Algorithm 4.1 as follows.

Theorem 4.28. LetK be a nonempty bounded weak closed star-shaped subset with
the proximal smoothness on UK.r/, the mapping T W K ! K be .�; �/-relaxed
co-coercive and �-Lipschitz continuous and funC1g be the approximate solution
sequences generated by Algorithm 4.1. If u 2 K is a solution of (4.2) and there
exists r 0 2 .0; r/ such that

 <
r 0

1C kT uk 8 u 2 K; ˇ > 0; r 0 � r � rˇ2; (4.11)

with

ˇ D 1 � 2� C 2�2 C 2��2;

then limn!1 un D u.

Proof. Let u 2 K be a solution of (4.2). Then

hT u; v � ui C ıkv � uk2 	 0 8 v 2 K

and Corollary 4.19 implies that

u D PK.u � T u/:

From (4.10), Lemmas 4.8 and 4.15, we get

unC1 D PK.un � T un/
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and so

kunC1 � uk D kPK.un � T un/ � PK.u � T u/k

� r

r � r 0 kun � u � .T un � T u/k;

where  < r 0

1CkT uk for all u 2 K: It follows from the .�; �/-relaxed co-coerciveness
and �-Lipschitz continuity of T that

kunC1 � uk

� r

r � r 0 � �.kun � uk2 � 2hT un � T u; un � ui C 2kT un � T uk2/� 12
D ˛kun � uk;

where

˛ D r

r � r 0
�
.1 � 2� C 2�2 C 2��2/

� 1
2 :

It is easy to see that

kunC1 � uk � ˛nku0 � uk:

By (4.9), we know that limn!1 un D u. This completes the proof. ut
It is well known that to apply the proximal point method, one has to compute

the approximate solution by a iterative scheme implicitly, we suggest the implicit
algorithm as follows.

Algorithm 4.2. For a given u0 2 K, calculate the approximate solution unC1 by
the iterative scheme

hT unC1 C unC1 � un; v � unC1i C ıkv � unC1k2 	 0 8 v 2 K:

We now give the convergence criteria of Algorithm 4.2 as follows.

Theorem 4.29. Let K be a nonempty totally bounded weak closed proximally
smooth subset of a Hilbert space X , the mapping T W K ! K be .�; �/-relaxed
co-coercive and �-Lipschitz continuous and funC1g be the approximate solution
sequences generated by Algorithm 4.2. If u 2 K is a solution of (4.2) and there
exist r 0 2 .0; r/ such that

 <
r 0

1C kT uk 8 u 2 K; .� � ��2/ D 1; ˇ > 0; r 0 < r � rˇ2; (4.12)
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with

ˇ D 1 � 2� C 2�2 C 2��2;

then limn!1 un D u.

Proof. Let u 2 K be a solution of (4.2). Then

hT u; v � ui C ıkv � uk2 	 0 8 v 2 K:

Since T is .�; �/-relaxed co-coercive, by condition (4.12), we have

�hT v; u � vi � ıku � vk2 	 hT u; v � ui C ıku � vk2

and so

� hT v; u � vi � ıku � vk2 	 0 8 v 2 K: (4.13)

Taking v D unC1 in (4.13), one has

� hT unC1; u � unC1i � ıku � unC1k2 	 0: (4.14)

Setting v D u in Algorithm 4.2, it follows from (4.14) that

hunC1 � un; u � unC1i 	 �hT unC1; u � unC1i � ıku � unC1k2
	 0: (4.15)

It is easy to see that

2hu; vi D ku C vk2 � kuk2 � kvk2 8u; v 2 H: (4.16)

Taking v D u � unC1 and u D unC1 � un in (4.16), we get

2hunC1 � un; u � unC1i D ku � unk2 � kun � unC1k2
�ku � unC1k2: (4.17)

It follows from (4.15) and (4.17) that

ku � unC1k2 � ku � unk2 � kun � unC1k2:

Thus, we know that the sequence fung is bounded and

1X
nD0

kun � unC1k2 � ku0 � uk2:
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This implies that

lim
n!1 kun � unC1k D 0: (4.18)

Since K is totally bounded and weak closed, it is easy to know that K is complete
and totally bounded and so K is compact. Let funi g be a subsequence of fung such
that uni ! Qu 2 K. Taking limit ni ! 1 in Algorithm 4.2 for the subsequence
funi g and using (4.18), we have

hT Qu; v � Qui C ıkv � Quk2 	 0 8 v 2 K;

which shows that Qu is a solution of the nonconvex variational inequality (4.2) and so

kQu � unC1k2 � kQu � unk2:

Since uni ! Qu, we know that limn!1 un D Qu. Now Corollary 4.25 guarantees that
u D Qu, which completes the proof of Theorem 4.29. ut
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Chapter 5
Numerical Methods for Evolution
Hemivariational Inequalities

Krzysztof Bartosz

Abstract We consider numerical methods of solving evolution subdifferential
inclusions of nonmonotone type. In the main part of the chapter we apply Rothe
method for a class of second order problems. The method consists in constructing
a sequence of piecewise constant and piecewise linear functions being a solution
of approximate problem. Our main result provides a weak convergence of a subse-
quence to a solution of exact problem. Under some more restrictive assumptions we
obtain also uniqueness of exact solution and a strong convergence result. Next, for
the reference class of problems we apply a semi discrete Faedo-Galerkin method as
well as a fully discrete one. For both methods we present a result on optimal error
estimate.

Keywords Evolution hemivariational inequalities • Rothe method • Faedo-
Galerkin method • Weak convergence • Strong convergence • Error estimate

AMS Classification. 34G25, 35L70, 35L85, 74M10, 74M15, 65P99, 65G99

5.1 Introduction

In this chapter we present recent results in numerical methods addressed to evolution
subdifferential inclusions of evolution type referred to as evolution hemivariational
inequalities (HVIs). The methods under consideration can be classified according to
several criteria.

• Type of the reference problem. We distinguish between two general classes of
evolution problems related to the order of time derivative of unknown function.
They are first and second order problems, known as parabolic and hyperbolic
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HVIs, respectively. The order of considered problem depends on the dynamics
of modelled physical or mechanical problems and has a crucial influence on the
choice of suitable numerical methods.

• Discretization method. There are two levels of discretization for time dependent
problems based on semidiscrete and a fully discrete schemes, respectively. The
semi-discrete schemes rely on replacing one of two variables (time or spatial)
by its discrete approximation, while the second variable is kept continuous. The
semi-discrete strategy consisting in time discretization is referred to as Rothe
method and the one based on space discretization is known as Faedo-Galerkin
method. Finally, a fully discrete scheme consists in replacing both time and
spatial variables by their discrete approximations.

• Convergence rate. Constructing a sequence of approximate solution for the
reference problem one can expect several possibilities concerning a quality of
convergence. A typical result provides a weak convergence of a subsequence to
a solution of the exact problem. Moreover, under some suitable assumptions (for
example SC property of involved operator) we can get also a strong convergence
of the sequence. Finally, the best which one can expect is to estimate an error
understood as a norm of difference between an exact solution and an approximate
one. In that case not only strong convergence is provided, but its rate can be
expressed in terms of spatial and time discretization mesh’s size.

Although the theory of HVIs has been developed broadly in last years, there
are still very few publications devoted to numerical methods for evolution HVIs.
The earliest one is probably [12], where Finite Element Method has been adopted
for parabolic HVIs. Those results have been extended into hyperbolic case in [8],
which has become the basic handbook for numerical methods for HVIs. Recently
the Rothe method has been applied for parabolic HVIs in [10]. The result obtained
there has been generalized in [11] by applying the � scheme. Moreover in [9] an
error estimate result has been obtained. Independently in [14] and [15], the time
discretization method has been applied for parabolic doubly nonlinear problems.
Moreover we refer to [4] for a result concerning Rothe method for evolution
variational-hemivariational inequalities of parabolic type.

In this chapter we present new results concerning semidiscrete and fully discrete
approach to second order evolution HVIs, as an example of typical strategy used
in that types of problems. In Sect. 5.4 we study the Rothe method, which relies on
constructing a sequence of piecewise constant and piecewise linear functions, which
converges weakly to a solution of second order HVIs. In this case the existence of
the solution is a consequence of applied method, so in fact we provide an alternative
existence result for whose obtained in [13]. In Sect. 5.5 we consider a semidiscrete
scheme based on Faedo-Galerkin approximation as well as a fully discrete scheme.
For both schemes we provide an optimal error rate bounds. The results obtained in
Sect. 5.5 come from [2] and they are generalization of [3]. In Sect. 5.6 we describe
a concrete mechanical problem, for which the results obtained in Sects. 5.4 and 5.5
are applicable.
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5.2 Preliminaries

In this section we recall some definitions and propositions which we will refer to in
the sequel. We start with the definitions of Clarke directional derivative and Clarke
subdifferential. LetX be a Banach space,X� its dual and let J WX ! R be a locally
Lipschitz functional.

Definition 5.1. Generalized directional derivative in the sense of Clarke at the point
x 2 X in the direction v 2 X , is defined by

J 0.x; v/ D lim sup
y!x;�&0

J.y C �v/ � J.y/
�

: (5.1)

Definition 5.2. Clarke subdifferential of J at x 2 X is defined by

@J.x/ D f	 2 X� j J 0.x; v/ 	 h	; viX��X for all v 2 Xg:

Now, we pass to the definition of a pseudomonotone operator.

Definition 5.3 (See [17], Chapter 27). Let X be a Banach space. A single valued
operator AWX ! X� is called pseudomonotone, if for any sequence fvng1

nD1 �
X such that vn ! v weakly in X and lim supn!1hAvn; vn � vi � 0 we have
hAv; v � yi � lim infn!1hAvn; vn � yi for every y 2 X .

Definition 5.4. Let X be a real Banach space. The multivalued operator AWX !
2X

�

is called pseudomonotone if the following conditions hold:

1) A has values which are nonempty, bounded, closed and convex,
2) A is usc from every finite dimensional subspace of X into X� furnished with

weak topology,
3) if vn ! v weakly in X and v�

n 2 Avn is such that
lim supn!1hv�

n ; vn � vi � 0 then for every y 2 X there exists u.y/ 2 A.v/
such that hu.y/; v � yi � lim infn!1hv�

n ; vn � yi.
The following result can be found, for example, in [13] (see Proposition 3.58).

Proposition 5.5. LetX be a real reflexive Banach space, and assume thatA W X !
2X

�

satisfies the following conditions

1) for each v 2 X we have that Av is a nonempty, closed and convex subset of X�,
2) A is bounded, i.e., it maps bounded sets into bounded ones,
3) If vn ! v weakly in X and v�

n ! v� weakly in X� with v�
n 2 Avn and if

lim supn!1hv�
n ; vn � vi � 0, then v� 2 Av and hv�

n ; vni ! hv�; vi.
Then the operator A is pseudomonotone.

The next proposition provides pseudomonotonicity of a multivalued operator
corresponding to a superposition of Clarke subdifferential with a compact operator.
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Proposition 5.6. Let X and U be two reflexive Banach spaces, �WX ! U be a
linear, continuous and compact operator and �� W U � ! X� be its adjoint operator.
Let J WU ! R be a locally Lipschitz functional and its Clarke subdifferential
satisfies

k	kU� � c.1C kvkU / for all 	 2 @J.v/ (5.2)

with c > 0. Then the multivalued operator M W X ! 2X
�

defined by

M.v/ D ��@J.�v/ 8v 2 X (5.3)

is pseudomonotone.

Proof. We use Proposition 5.5. To this end we recall (see [6]) that the Clarke
subdifferential of a locally Lipschitz functional is a nonempty, weakly closed and
convex set. So from the linearity of �we conclude that the values ofM are nonempty,
closed and convex subsets of X�. It follows from (5.2) that M is bounded. Now we
prove that M satisfies condition 3/ of Proposition 5.5. Let vn ! v weakly in U
and v�

n ! v� weakly in U � with v�
n 2 ��@J.�vn/. Thus we have v�

n D ���n where
�n 2 @J.�vn/ and for all x 2 X we obtain

h�n; �xiU��U D h���n; xiX��X D hv�
n ; xiX��X ! hv�; xiX��X : (5.4)

Since the sequence fvng converges weakly, it is bounded and so is f�ng. Thus, from
the reflexivity of U �, for a subsequence f�nk g, we have �nk ! � weakly in U �
with k ! 1 so in particular for all x 2 X , we get h�nk ; �xiU��U ! h�; �xiU��U .
Next, from (5.4) we have h�nk ; �xiU��U ! hv�; xiX��X and from the uniqueness
of limit we have hv�; xiX��X D h�; �xiU��U D h���; xiX��X for all x 2 X , so
v� D ���. Numerating the sequence nk by n again, we get vn ! v weakly in
X and �n ! � weakly in U � with �n 2 @J.�vn/. Since fvng is bounded and �
is compact we have for a subsequence �vnk ! u strongly in U . Since � is linear
and continuous, it is also weakly continuous so �vnk ! �v weakly in U . From
the uniqueness of weak limit we have that �vnk ! �v. Thus from the closedness
of graph of the Clarke subdifferential in Ustrong � U �

weak topology we deduce that
� 2 @J.�v/. Since v� D ���, it follows that v� 2 M.v/. It remains to show that
hv�
n ; vniX��X ! hv�; viX��X . Let us take any subsequence of fhv�

n ; vniX��Xg still
numerated by n. From the previous part of the proof, we can find a subsequence
hv�
nk
; vnk iX��X such that v�

nk
D ���nk and �nk ! � weakly in U � with v� D �� and

�vnk ! �v strongly in X . Thus, we have

hv�
nk
; vnk iX��X D h���nk ; vnk iX��X D h�nk ; �vnk iU��U

! h�; �viU��U D h��; viX��X D hv�; viX��X :

We conclude from here that whole sequence fhv�
n ; vniX��Xg converges to

hv�; viX��X as n ! 1, which completes the proof. ut
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The next proposition deals with a superposition of pseudomonotone operator
with an affine one.

Proposition 5.7. Let X be a reflexive Banach space and AWX ! 2X
�

be a
pseudomonotone operator. Then for a given v0 2 X and � > 0 the operator
M W X ! 2X

�

defined byMv D A.v0C�v/ for all v 2 X is also pseudomonotone.

Proof. Let vn ! v weakly in X and let v�
n 2 Mvn with lim supn!1hv�

n ; vn �
viX��X � 0. Taking wn WD v0 C �vn and w WD v0 C �v we have wn ! w weakly
in X , v�

n 2 Awn and

lim sup
n!1

hv�
n ;wn � wiX��X D � lim sup

n!1
hv�
n ; vn � viX��X � 0:

Since A is pseudomonotone, it implies that for all z 2 X there exists u.z/ 2 Aw
such that hu.z/;w � ziX��X � lim infn!1hv�

n ;wn � ziX��X . Lets take any y 2 X
and put z D v0 C �v � v C y. Taking u.y/ D u.z/ we have u.y/ 2 A.w/ D M.v/.
Moreover,

hu.y/; v � yiX��X D hu.z/;w � ziX��X
� lim inf

n!1 hv�
n ;wn � ziX��X

D lim inf
n!1 hv�

n ; �.vn � v/C v � yiX��X

� � lim sup
n!1

hv�
n ; vn � viX��X C lim inf

n!1 hv�
n ; v � yiX��X

� lim inf
n!1 hv�

n ; v � yiX��X :

This shows that M is a pseudomonotone operator. ut
We also recall a well known property for the sum of two pseudomonotone

operators.

Proposition 5.8. Let X be a reflexive Banach space. If A1;A2 W X ! 2X
�

are
pseudomonotone then so is A1 C A2.

In what follows we introduce the notion of coercivity.

Definition 5.9. Let X be a Banach space and AWX ! 2X
�

be an operator. We say
that A is coercive if either D.A/ is bounded or D.A/ is unbounded and

lim
kvkX!1 v2D.A/

inffhv�; viX��X j v� 2 Avg
kvkX D C1:

The following is the main surjectivity result for pseudomonotone and coercive
operator.
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Proposition 5.10. Let X be a reflexive Banach space and AWX ! 2X
�

be
pseudomonotone and coercive. Then A is surjective, i.e., for all b 2 X� there exists
v 2 X such that Av D b.

Let X be a Banach space and .0; T / be a time interval. We introduce the space
BV.0; T IX/ of functions of bounded total variation on .0; T /. Let � denotes any
finite partition of .0; T / by a family of disjoint subintervals f�i D .ai ; bi /g such
that Œ0; T � D [n

iD1� i . Let F denotes the family of all such partitions. Then for a
function xW .0; T / ! X we define its total variation by

kxkBV.0;T IX/ D sup
�2F

(X
�i2�

kx.bi / � x.ai /kX
)
:

As a generalization of the above definition, for 1 � q < 1, we define a seminorm

kxkqBV q.0;T IX/ D sup
�2F

(X
�i2�

kx.bi / � x.ai /kqX
)

and the space

BV q.0; T IX/ D fxW .0; T / ! X j kxkBV q.0;T IX/ < 1g:

For 1 � p � 1, 1 � q < 1 and Banach spaces X , Z such that X � Z, we
introduce the vector space

Mp;q.0; T IX;Z/ D Lp.0; T IX/ \ BV q.0; T IZ/:

Then, it is easy to see that Mp;q.0; T IX;Z/ is also a Banach space, endowed with
the norm k � kLp.0;T IX/ C k � kBV q.0;T IZ/.

The following proposition will play the crucial role for the convergence of Rothe
functions which will be constructed later. For its proof, we refer to [10].

Proposition 5.11. Let 1 � p; q < 1. Let X1 � X2 � X3 be real Banach spaces
such that X1 is reflexive, the embedding X1 � X2 is compact and the embedding
X2 � X3 is continuous. Then the embeddingMp;q.0; T IX1IX3/ � Lp.0; T IX2/ is
compact.

The following version of Aubin-Celina convergence theorem (see [1]) will be
used in what follows.

Proposition 5.12. Let X and Y be Banach spaces, and let F WX ! 2Y be a
multifunction such that

(a) the values of F are nonempty closed and convex subsets of Y
(b) F is upper semicontinuous from X into w � Y .
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Let xnW .0; T / ! X , ynW .0; T / ! Y , n 2 N, be measurable functions such that
xn converges almost everywhere on .0; T / to a function xW .0; T / ! X and yn
converges weakly in L1.0; T IY / to y W .0; T / ! Y . If yn.t/ 2 F.xn.t// for all
n 2 N and almost all t 2 .0; T / then y.t/ 2 F.x.t// for a.e. t 2 .0; T /.

For the convergence result obtained in next section we will apply Lemma 1 of
[10]. We present it without proof.

Lemma 5.13. Let AWV ! V � satisfies H.A/ (see below) and let A be its
Nemytskii operator defined by .Av/.t/ D Av.t/. Let a sequence fvng � V be
bounded in M2;2.0; T IV; V �/. If vn ! v weakly in V and lim supn!1hAvn; vn �
viV��V � 0, then Avn ! Av weakly in V�.

5.3 Problem Formulation

Let V be a reflexive and separable Banach space, V � its dual and H a separable
Hilbert space. Identifying H with its dual we consider an evolution triple V �
H � V � with dense, continuous and compact embeddings. We denote by h�; �i the
duality of V and V �, by .�; �/ the scalar product in H . Let i W V ! H be an
embedding operator (for v 2 V we will denote iv 2 H again by v). For all u 2 H
and v 2 V we have hu; vi D .u; v/. We denote by k � k and j � j the norms in V
and H , respectively. We also introduce a reflexive Banach space U and a linear,
continuous operator �WV ! U . By kik and k�k we always mean kikL.V;H/ and
k�kL.V;U /, respectively. For T > 0 we define the spaces V D L2.0; T IV /, V� D
L2.0; T IV �/, H D L2.0; T IH/, U D L2.0; T IU/ and W D fv 2 V j v0 2 V�g,
where the derivative is understood in the sense of distributions. We consider two
problems denoted by .P 1/ and .P 2/ which read as follows:

.Pm/

8̂̂<
ˆ̂:

Find u 2 V with u0 2 W such that

u00.t/C Au0.t/C Bu.t/C ��@J.�z.t// 3 f .t/ for a.e. t 2 .0; T /;
u.0/ D u0; u0.0/ D u1;

where m D 1; 2, AWV ! V �, BWV ! V �, f W .0; T / ! V �, J WU ! R,
@J.�/ denotes its Clarke subdifferential and we put z D u in the problem .P 1/

while z D u0 in the Problem .P 2/, respectively. We remark that each solution of
the problem .Pm/ is a solution of a corresponding second order hemivariational
inequality of the form

hu00.t/C Au0.t/C Bu.t/; vi C J ı.�z.t/I �v/ 	 hf .t/; vi 8 v 2 V; a.e. t 2 .0; T /:
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In fact if u is a solution of .Pm/ then for a.e. t 2 .0; T / there exists � 2 @J.�z.t//
such that

hf .t/ � u00.t/ � Au0.t/ � Bu.t/; vi D h���; viU��U D h�; �vi � J ı.�z.t/I �v/

for all v 2 V for a.e. t 2 .0; T /.
In what follows we will refer to the following equivalent formulation of Problem

.Pm/.

.Pm/�

8̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
:̂

Find .u;w; �/ 2 V � W � U such that

u0.t/ D w.t/ for a.e. t 2 .0; T /;
w0.t/C Aw.t/C Bu.t/C ���.t/ D f .t/ for a.e. t 2 .0; T /;
�.t/ 2 @J.�z.t// for a.e. t 2 .0; T /;
u.0/ D u0; w.0/ D u1;

where z D u in the problem .P 1/� while z D w in the Problem .P 2/�, respectively.

Remark 5.14. Note that time derivatives in .Pm/� are understood in the sense of
distributions. In particular (see Proposition 23.20 of [17]), the second equation of
.Pm/� is equivalent to

Z T

0

.w.t/; h/'0.t/dt D
Z T

0

hAw.t/C Bu.t/C ���.t/ � f .t/; hi'.t/dt

for all h 2 V , ' 2 C1
0 .0; T /.

We consider the following hypotheses on the data of the problem .Pm/.

H.A/: The operator AWV ! V � satisfies

(i) A is pseudomonotone;
(ii) kAvkV � � aC bkvk for all v 2 V with a 	 0, b > 0;

(iii) hAv; vi 	 ˛kvk2 � ˇjvj2 � � for all v 2 V with ˛ > 0, ˇ; � 	 0.

H.B/: The operator BWV ! V � is bounded, linear, monotone and symmetric,
i.e. B 2 L.V; V �/, hBv; vi 	 0 for all v 2 V , hBv;wi D hBw; vi for all
v;w 2 V .

H.J /: The functional J WU ! R satisfies

(i) J is locally Lipschitz;
(ii) k�kU� � c.1C kwkU / for all � 2 @J.w/, w 2 U with c > 0;

H0: f 2 V�, u0 2 V , u1 2 H .
H.�/: The operator � 2 L.V; U / is compact and its associated Nemytskii operator
� W M2;2.0; T IV; V �/ ! U defined by .�v/.t/ D �.v.t// for all v 2 V , a.e.
t 2 .0; T / is also compact.
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Haux : The triple of spaces V , H and U and the operator � satisfy: for all " > 0

there exists C."/ > 0 such that we have

k�ukU � "kuk C C."/juj for all u 2 V:

These hypotheses will be used in the next section, in the analysis of the
semidiscrete schemes associated to the problem .Pm/.

5.4 Rothe Method

In this section we consider a semidiscrete approach to Problem .Pm/�, m D 1; 2

based on a time discretization method known as the Rothe method. To this end, we
divide the time interval .0; T / by means of a sequence ftkgNnkD0 � .0; T / defined as
follows:

tk D k
n where 
n D T=Nn for k D 0; : : : ; Nn:

In the above notation Nn denotes the number of time steps in n-th division of Œ0; T �,
so we have Nn ! 1 and 
n ! 0 as n ! 1. For the convenience we will omit
the subscript n and write N; 
 instead of Nn; 
n. We define the piecewise constant
interpolant of f by

f
 .t/ D f k

 WD 1




Z k


.k�1/

f .s/ ds for t 2 ..k � 1/
; k
� ; k D 1; : : : ; N:

By Lemma 3.3 from [5], we know that f
 ! f strongly in V� as 
 ! 0. Finally,
we approximate the initial conditions u0 and u1 by elements of V . Namely, let
fu0
g; fu1
 g � V be sequences such that u0
 ! u0 weakly in V and u1
 ! u1 strongly
in H , and ku1
k � C=

p

 for some constant C > 0.

For a given 
 > 0 and k D 1; : : : ; N we formulate the following two Rothe
problems denoted by .P 1


 / and .P 2

 /:

.Pm

 /

8̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂:

Find fuk
 gNkD0 � V; fwk
 gNkD0 � V; and f�k
 gNkD0 � U � such that

uk
 D u0
 C 

Pk

iD1 wi
 for k D 1; : : : ; N;

1


.wk
 � wk�1


 ; v/C hAwk
 ; vi
ChBuk
 ; vi C h�k
 ; �viU��U D hf k


 ; vi for all v 2 V; k D 1; : : : ; N;

�k
 2 @J.�zk
 / for k D 1; : : : ; N;

w0
 D u1
 :
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In Problem .P 1

 /we take zk
 D uk
 while in Problem .P 2


 / zk
 D wk
 for k D 1; : : : ; N .
Now, we study the existence of solutions to Problems .P 1


 / and .P 2

 /. First we define

two mappings L1;L2 W V ! 2V
�

by

L1w WD 1



i�iw C Aw C 
Bw C ��@J.�.u0
 C 


k�1X
iD1

wi
 C 
w// for w 2 V;
(5.5)

L2w WD 1



i�iw C Aw C 
Bw C ��@J.�w/ for w 2 V: (5.6)

We remark that for existence of solution to the problems .P 1

 / and .P 2


 /, it is
enough to examine the surjectivity of L1 and L2 respectively. To this end we use
the following lemmas.

Lemma 5.15. If the assumptionsH.A/,H.B/,H.J / hold then there exists 
0 > 0
such that for all 0 < 
 < 
0 the mapping L1 is coercive. Moreover if Haux holds
then L2 is also coercive.

Proof. We deal with the operator L1 first. Let w 2 V and w� 2 L1w. It means that
w� D 1



i�iw C Aw C Bw C ���, where

� 2 @J.�.u0
 C 


k�1X
iD1

wi
 C 
w//: (5.7)

Using H.A/.iv/ and H.B/ we obtain

hw�;wi D 1



jwj2 C hAw;wi C 
hBw;wi C h�; �wiU��U

	 1



jwj2 C ˛kwk2 � ˇjwj2 � � C h�; �wiU��U : (5.8)

Using H.J /.i i/, we estimate the last term of (5.8) from below,

h�; �wiU��U 	 �k�kk�kU�kwk

	 �c
 
1C k�k.ku0k C 


k�1X
iD1

kwi
k C 
kwk/
!

k�kkwk

	 �ckkwk � c
k�k2kwk2;

where ck > 0. Combining the latter with (5.8), we obtain

hw�;wi 	 .˛ � c
k�k/ kwk2 � ckkwk C
	1



� ˇ


jwj2 � �:
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Let us take 
1 WD ˛=ck�k and 
2 WD 1=ˇ. It is clear that L1 is coercive for 
 < 
0 D
minf
1; 
2g. For the operator L2 we take w 2 V , w� 2 L2w and obtain (5.8) again.
Instead of (5.7), we now assume that � 2 @J.�w/. From H.J /.i i/ and Haux , we
infer that for any " > 0 we can find C."/ > 0 such that

h�; �wiU��U 	 �"kwk2 � C."/jwj2 � C."/: (5.9)

From (5.8) and (5.9), we get

hw�;wi 	 .˛ � "/kwk2 C
�
1



� ˇ � C."/

�
jwj2 � � � C."/:

Taking " D 1
2
˛, we see that L2 is coercive for 
 small enough. This completes the

proof. ut
Now we formulate an existence results for the Rothe problems .Pm


 /mD1;2.

Theorem 5.16. If the assumptionsH.A/;H.B/;H.J / andH.�/ hold then, for 
 >
0 small enough, there exists a solution of problem .P 1


 /. Moreover, if Haux holds
then, for 
 > 0 small enough, there exists a solution of problem .P 2


 /.

Proof. From H.A/ and H.B/ we deduce that the mapping V 3 w ! 1


i�iw C

Ak
w C 
Bw 2 V � is pseudomonotone. By H.�/ and Proposition 5.6, we know
that the mapping V 3 w ! ��@J.�w/ 2 2V

�

is pseudomonotone, and by H.�/,
Propositions 5.6 and 5.7 so is the mapping

V 3 w ! ��@J.�.u0
 C 


k�1X
iD1

wi
 C 
w// 2 2V �

:

Thus from Proposition 5.8 both operators L1 and L2 are pseudomonotone. From
Lemma 5.15, they are coercive for 
 > 0 small enough. Finally, from Proposi-
tion 5.10 it is clear that L1 and L2 are surjective. It means that, for any given
w0
 ;w

1

 ; : : :w

k�1

 , we can find wk
 such that .Pm


 /mD1;2 hold. So starting from a given
w0
 , we can construct the whole Rothe sequence. ut

5.4.1 A Priori Estimate

In this subsection we study an a priori estimate for the Rothe sequences being the
solutions of Problems .P 1


 / and .P 2

 /. We formulate the following lemma.

Lemma 5.17. Let the assumptions H.A/, H.B/, H.J /;H.�/ and Haux hold. Let
the triple

�fuk
 gNkD0; fwk
 gNkD0; f�k
 gNkD0
�

be a solution of Problem .P 1

 / or .P 2


 /. Then
we have
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max
kD1;:::;N jwk
 j � const; (5.10)

NX
kD1

jwk
 � wk�1

 j2 � const; (5.11)




NX
kD1

kwk
 k2 � const; (5.12)

max
kD1;:::;N kuk
 k � const; (5.13)

where const denotes a positive constant independent on 
 .

Proof. Consider Problems .Pm

 /mD1;2 and chose v D wk
 . By a property of scalar

product in Hilbert space, we have

.wk
 � wk�1

 ;wk
 / D 1

2
jwk
 j2 � 1

2
jwk�1

 j2 C 1

2
jwk
 � wk�1


 j2: (5.14)

From the assumption H.A/.i i i/, we obtain

hAwk
 ;w
k

 i 	 ˛kwk
 k2 � ˇjwk
 j2 � �: (5.15)

By the assumptions H.B/, we obtain


hBuk
 ;w
k

 i D hBuk
 ; u

k

 � uk�1


 i

D 1

2
hBuk
 ; u

k

 i � 1

2
hBuk�1


 ; uk�1

 i C 1

2
hB.uk
 � uk�1


 /; uk
 � uk�1

 i

	 1

2
hBuk
 ; u

k

 i � 1

2
hBuk�1


 ; uk�1

 i: (5.16)

Moreover, for any ı > 0, we have

hf k

 ;w

k

 i � kf k


 kV �kwk
 k � ıkwk
 k2 C 1

4ı
kf k


 k2V � (5.17)

Let �k
 2 @J.�zk
 /. Summing up the equations .Pm

 /mD1;2 with v D wk
 for k D

1; : : : n � N and using (5.14)–(5.17), we obtain

1

2
jwn
 j2 C 1

2

nX
kD1

jwk
 � wk�1

 j2 C

nX
kD1


.˛ � ı/kwk
 k2

C 1

2

hBun
 ; u

n

 i C 


nX
kD1

h�k
 ; �wk
 iU��U
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� 1

2
jw0
 j2 C 1

2
hBu0
 ; u

0

 i C 


nX
kD1

ˇjwk
 j2 C 


nX
kD1

1

4ı
kf k


 k2V � C 
 n�

� 1

2
jw0
 j2 C 1

2
hBu0
 ; u

0

 i C 


nX
kD1

ˇjwk
 j2 C 1

4ı
kf
k2V� C T �: (5.18)

Now we estimate the term 

Pn

kD1h�k
 ; �wk
 iU��U from below. To this end, we
consider two cases.

• Case 1: zk
 D wk
 . We use H.J /.i i/ and (5.9) with " D ı D 1
4
˛. Then

from (5.18), we obtain

.1 � 2
.ˇ C C."/// jwn
 j2 C
nX

kD1
jwk
 � wk�1


 j2 C
nX

kD1

˛kwk
 k2

� jw0
 j2 C hBu0
 ; u
0

 i C 2


n�1X
kD1
.ˇ C C."//jwk
 j2

C 2

˛
kf
k2V� C 2T � C C."/: (5.19)

• Case 2: zk
 D uk
 . In this case, using H.J /.i i/, we have




nX
kD1

jh�k
 ; �wk
 iU��U j � 


nX
kD1

c.1C k�uk
 kU /k�wk
 kU

� 


nX
kD1

c

 
1C k�u0kU C 


kX
iD1

k�wi
k
!

k�wk
 kU

� 


nX
kD1

ck�wk
 kU C 


nX
kD1

ck�u0kU k�wk
 kU

C 
2

 
nX

kD1
k�wk
 kU

!2
: (5.20)

In what follows, we use the inequality ab � 1
2
.a2 C b2/ for a; b 2 R and the fact

that 
N D T .




nX
kD1

ck�wk
 kU � 


nX
kD1

�
1

2
c2 C 1

2
k�wk
 k2U

�
� 1

2
c2T C 1

2



nX
kD1

k�wk
 k2U :
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Analogously we deduce that




nX
iD1

ck�u0kk�wk
 kU � 1

2
c2T k�u0k2U C 1

2



nX
kD1

k�wk
 k2U :

Moreover, for the last term of (5.20) we use inequality .a1C : : :Can/2 � n.a21C
: : :C a2n/ for ai 2 R, i D 1 : : : N , n 2 N and obtain


2

 
nX

kD1
k�wk
 kU

!2
� 
2n

nX
kD1

k�wk
 k2U � 
T

nX
kD1

k�wk
 k2U :

Thus, from (5.20) and Haux , for any " > 0 we get




nX
kD1

h�k
 ; �wk
 iU��U 	 �1
2
c2T .1C k�u0k2U / � 
.1C T /

nX
kD1

k�wk
 k2U

	 �1
2
c2T .1C k�u0k2U / � 
.1C T /

nX
kD1

"kwk
 k2

� 
.1C T /

nX
kD1

C."/jwk
 j2:

Then from (5.18), we obtain

.1 � 2
.ˇ C .1C T /C."/// jwn
 j2 C
nX

kD1
jwk
 � wk�1


 j2

C 2


nX
kD1
.˛ � ı � .1C T /"/kwk
 k2

� jw0
 j2 C hBu0
 ; u
0

 i C 2


n�1X
kD1
.ˇ C .1C T /C."//jwk
 j2

C 1

4ı
kf
k2V� C 2T � C 1

2
c2T .1C k�u0k2U /: (5.21)

In Case 1 we take 
 < 1
2
.ˇ C C."//�1. In Case 2 we take ı < ˛, " < ˛�ı

1CT and

 < 1

2
.ˇ C .1 C T /C."//�1. Since f
 ! f strongly in V�, it is bounded in V�.

Thus, we can apply a discrete Gronwall lemma for the sequence fjwk
 j2gkD1;:::;n and,
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since n D 1; : : : ; N is arbitrary, we deduce (5.10). From (5.10), (5.19) and (5.21)
we immediately get (5.11) and (5.12). From the definition of uk
 in .Pm


 /, we obtain

kuk
 k2V � 2ku0k2 C 2
2N

kX
iD1

kwi
k2 � 2ku0k2 C 2
T

NX
iD1

kwi
k2;

which together with (5.12) gives (5.13). ut

5.4.2 Convergence of Rothe Method

In this subsection we construct sequences of time dependent piecewise constant
and piecewise linear functions built on the solution of Rothe problem. Next we
study their convergence to the solutions of Problems .P 1/� and .P 2/�. Let the triple�fuk
 gNkD0; fwk
 gNkD0; f�k
 gNkD0

�
be a solution of Problem .P 1


 / or .P 2

 /.

We define the functions w
 ;w
 ; u
 ; u
 W Œ0; T � ! V by the formulas

w
 .t/ D
(

wk
 ; t 2 ..k � 1/
; k
� ;
w0
 D u1
 ; t D 0;

w
 .t/ D wk
 C
�
t



� k

�
.wk
 � wk�1


 / for t 2 ..k � 1/
; k
� ; k D 1; : : : ; N;

u
 .t/ D
(

uk
 ; t 2 ..k � 1/
; k
� ;
u0
 ; t D 0;

u
 .t/ D uk
 C
�
t



� k

�
.uk
 � uk�1


 / for t 2 ..k � 1/
; k
� ; k D 1; : : : ; N:

The piecewise constant function �
 W .0; T � ! U � is given by

�
 .t/ D �k
 for t 2 ..k � 1/
; k
� ; k D 1; : : : ; N:

We observe that w
 is the distributional derivative of u
 , namely u0

 .t/ D w
 .t/ for

a.e. t 2 .0; T /. Moreover, the distributional derivative of w
 is given by w0

 .t/ D

wk
�wk�1





for a.e. t 2 .0; T /, k D 1; : : : ; N . Thus, .Pm


 / is equivalent to

.w0

 .t/; v/C hAw
 .t/; viChBu
 .t/; vi C h�
 .t/; �viU��U D hf
.t/; vi

for all v 2 V; for all t 2 .0; T /; (5.22)

�
 .t/ 2 @J.�z
 .t// for all t 2 .0; T /: (5.23)
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where z
 D u
 in case m D 1 and z
 D w
 in case m D 2. We define the Nemytskii
operators A;B W V ! V� by .Av/.t/ D A.v.t//, .Bv/.t/ D B.v.t// for v 2 V and
� W V ! U by .�v/.t/ D �v.t/ for v 2 V and observe that problem (5.22), (5.23) is
now equivalent to

.w0

 ; v/H C hAw
 ; viV��VChBu
 ; viV��V C h�
 ; �viU��U

D hf
 ; viV��V for all v 2 V; (5.24)

�
 .t/ 2 @J..� z
 /.t// for all t 2 .0; T /: (5.25)

In what follows we deal with a priori estimates for the piecewise constant and
piecewise linear functions built on the solution of the Rothe problem.

Lemma 5.18. Under assumptions H.A/, H.B/, H.J /, H.�/, H0 and Haux , there
exists 
0 > 0 such that for all 
 2 .0; 
0/, we have

ku
kL1.0;T IV / � const; (5.26)

ku
kV � const; (5.27)

kw
kL1.0;T IH/ � const; (5.28)

kw
kC.0;T IH/ � const; (5.29)

kw
kV � const; (5.30)

kw
kV � const; (5.31)

kAw
kV� � const; (5.32)

k�
kU� � const; (5.33)

kw0

kV� � const; (5.34)

ku
kM2;2.0;T IV;V �/ � const; (5.35)

kw
kM2;2.0;T IV;V �/ � const; (5.36)

with a constant independent of 
 .

Proof. The estimate (5.26) follows directly from (5.13), while from (5.10), we
easily get (5.28) and (5.29). Moreover, kw
k2V D 


PN
kD1 kwk
 k2 so, from (5.12),

we obtain (5.30). The simple calculation shows that kw
k2V � 

PN

kD0 kwk
 k2. Thus
using (5.12) and the fact that kw0
k � C=

p

 , we get (5.31). Analogously, we have

ku
k2V � 


NX
kD0

kuk
 k2 � 
N max
kD0;:::;N kuk
 k2 D T max

kD0;:::;N kuk
 k2;

which, together with (5.13), gives (5.27). Using H.A/.i i/, we calculate
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kAw
kV� D
�Z T

0

kAw
 .t/k2V � dt

� 1
2

�
�Z T

0

2a2 C 2b2kw
 .t/k2 dt
� 1

2

� a
p
2T C p

2bkw
kV ;

and from (5.30) we obtain (5.32). Next, using H.J /.i i/ we get

k�
kU� D
�Z T

0

k�
 .t/k2U�dt

� 1
2

�
�Z T

0

2c2 C 2k�k2kz
 .t/k2U� dt

� 1
2

� c
p
2T C p

2k�kkz
kV ;

and we obtain (5.33) from (5.26) in case z
 D u
 and from (5.30) in case z
 D w
 .
We also have

kBu
kV� D
�Z T

0

kBu
 .t/k2V �dt

� 1
2

�
�Z T

0

kBkL.V;V �/ku
 .t/k2V � dt

� 1
2

D kBkL.V;V �/kukV � kBkL.V;V �/

p
T kukL1.0;T IV /: (5.37)

From (5.24), we get

kw0

kV� � kAw
kV� C kBu
kV� C k�
kU� C kf
kV�

and, using (5.32), (5.33), (5.37) and boundedness of f
 in V�, we obtain (5.34).
Finally in order to prove (5.36), let us assume that the seminorm in BV 2.0; T IV �/
of piecewise constant function w
 is realized by some division 0 D a0 < a1 < : : : <

an D T , and each ai is in different interval ..mi�1/
;mi
�, such that w
 .ai / D wmi

with m0 D 0, mn D N and miC1 > mi for i D 1; : : : ; N � 1. Thus

kw
k2BV 2.0;T IV �/
D

nX
iD1

kwmi
 � wmi�1
 k2V �

�
nX
iD1

0
@.mi �mi�1/

miX
kDmi�1C1

kwk
 � wk�1

 k2V �

1
A

�
 

nX
iD1
.mi �mi�1/

!0@ nX
iD1

miX
kDmi�1C1

kwk
 � wk�1

 k2V �

1
A

D N

NX
kD1

kwk
 � wk�1

 k2V � D T 


NX
kD1

����wk
 � wk�1






����
2

V �

D T

Z T

0

kw0

 .t/k2V � dt:
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The last term is bounded by (5.34) which, together with (5.30), completes the proof
of (5.36). Analogously we prove (5.35). ut
Theorem 5.19. Let assumptionsH.A/,H.B/,H.J /,H.�/,H0 andHaux hold and
let u
 ; u
 ;w
 ;w
 and �
 be piecewise linear and piecewise constant functions built
on a solution of Rothe problem .Pm


 / with m D 1; 2. Then, there exists a triple
.u;w; �/ which is a solution of the corresponding Problem .Pm/�. Moreover, for
a subsequence, we have u
 ! u weakly* in L1.0; T IV /, u
 ! u weakly in V ,
w
 ! w weakly in V and weakly* in L1.0; T IH/, w
 ! w weakly in W and
weakly* in L1.0; T IH/ and �
 ! � weakly in U�.

Proof. From (5.26)–(5.34) and reflexivity of spaces V;V�;U and U�; we can
assume, passing to the subsequence if necessary, that the following convergences
hold:

u
 ! u weakly* in L1.0; T IV /; (5.38)

u
 ! u weakly in V; (5.39)

w
 ! w weakly in V and weakly* in L1.0; T IH/; (5.40)

w
 ! w weakly in V and weakly* in L1.0; T IH/; (5.41)

w0

 ! w1 weakly in V�; (5.42)

Aw
 ! � weakly in V�; (5.43)

�
 ! � weakly in U�: (5.44)

First we show that u D u. To this end we calculate

ku
 � u
k2V D
NX
kD1

Z k


.k�1/

.k
 � t /2

����uk
 � uk�1






����
2

V

D 
2

3
ku0


k2V D 
2

3
kw
k2V ;

which means that u
 � u
 ! 0 strongly in V as 
 ! 0. On the other hand,
from (5.38) and (5.39) we also have u
 � u
 ! u � u weakly in V so from the
uniqueness of weak limit we get u D u. Analogously, we have

kw
 � w
k2V� D 
2

3
kw0


k2V� ;

which means that w
 � w
 ! 0 strongly in V�. Since w
 � w
 ! w � w weakly
in V and the embedding V � V� is continuous, we also have w
 � w
 ! w � w
weakly in V�. From uniqueness of the weak limit, we have w D w. Since w
 D u0




and u
 ! u weakly in V , we conclude that

w D u0: (5.45)
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Our goal is to pass to the limit in (5.24) and (5.25). By a standard argument
from (5.41) and (5.42) we have w0


 ! w0 weakly in V�. Thus, for all v 2 V , we
obtain

.w0

 ; v/H D hw0


 ; viV��V ! hw0; viV��V D .w0; v/H: (5.46)

From H.B/, it is clear that B is linear and continuous operator from V to V� and
thus also continuous from w � V to w � V�. Therefore, since u
 ! u weakly in V ,
we get Bu
 ! Bu weakly in V�. Thus, we have

hBu
 ; viV��V ! hBu; viV��V : (5.47)

From (5.44), we get

h�
 ; �viU��U ! h�; �viU��U : (5.48)

Since f
 ! f strongly in V�, it is clear that

hf
 ; viV��V ! hf; viV��V : (5.49)

It remains to show that

hAw
 ; viV��V ! hAw; viV��V : (5.50)

To this end we take any subsequence still denoted by fhAw
 ; viV��Vg. It is enough
to show that convergence (5.50) holds for its subsequence. We calculate

lim sup

!0

hAw
 ;w
 � wiV��V � lim sup

!0

hf
 ;w
 � wiV��V

� lim inf

!0

.w0

 ;w
 � w/H

� lim inf

!0

hBu
 ;w
 � wiV��V

� lim inf

!0

h�
 ; �w
 � �wiU��U : (5.51)

Since f
 ! f strongly in V� and w
 ! w weakly in V , we have

lim

!0

hf
 ;w
 � wiV��V D 0:

Next, we observe that

.w0

 ;w
 � w/H D .w0


 � w0;w
 � w
 /H C hw0

 ;w
 � w
 iV��V

C hw0;w
 � wiV��V
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D 1

2

�jw
 .T / � w.T /j2 � ju1
 � u1j2
�

C hw0

 ;w
 � w
 iV��V C hw0;w
 � wiV��V :

Since hw0

 ;w
�w
 iV��V 	 0, we have lim inf
!0.w0


 ;w
�w/H 	 0. Since u
 D w0



and w D u0, it follows that

hBu
 ;w
 � wiV��V D hBu
 ; u
0

 � u0iV��V

D hBu
 � Bu; u0

 � u0iV��V C hBu; u0


 � u0iV��V

C hBu
 � Bu
 ; u
0

 � u0iV��V : (5.52)

Since B is linear, symmetric and monotone, it follows that

hBu
 � Bu; u0

 � u0iV��V D 1

2
hB.u
 .T / � u.T //; u
 .T / � u.T /i

� 1

2
hB.u0
 � u0/; u0
 � u0i

	 �1
2

kBkL.V;V �/ku0
 � u0k2: (5.53)

Since u0

 ! u0 weakly in V , u
 ! u
 strongly in V and B is continuous, we get

lim

!0

hBu; u0

 � u0iV��V C hBu
 � Bu
 ; u

0

 � u0iV��V D 0: (5.54)

From (5.52)–(5.54), we see that lim inf
!0hBu
 ;w
 � wiV��V 	 0: Moreover,
since w
 ! w weakly in V and � is a compact operator, we have for a
subsequence �w
 ! �w strongly in U . Since �
 ! � weakly in U�, we
have lim
!0h�
 ; �w
 � �wiU��U D 0. Thus, from (5.51) we get

lim sup

!0

hAw
 ;w
 � wiV��V � 0: (5.55)

Since (5.36) holds and w
 ! w weakly in V , from Lemma 5.13 we deduce (5.50).
Using (5.47)–(5.50), we can pass to the limit in (5.24) and obtain

.w0; v/H C hAw; viV��VChBu; viV��V C h�; �viU��U D hf; viV��V

for all v 2 V : (5.56)

Let v D h' in (5.56) with h 2 V and ' 2 C1
0 .0; T /. Then, we obtain

�
Z T

0

hw0.t/; hi'.t/dt D
Z T

0

hAw.t/C Bu.t/C ���.t/ � f .t/; hi'.t/ dt:
(5.57)
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From Proposition 23.20 of [16] we deduce

�
Z T

0

hw0.t/; hi'.t/dt D
Z T

0

.w.t/; h/'0.t/ dt: (5.58)

Now we will pass to the limit with (5.23). First we recall that the multifunction
@J WU ! 2U

�

has nonempty, closed and convex values. Furthermore, by Proposi-
tion 5.6.10 of [7], it is also upper semicontinuous from U (equipped with the strong
topology) intoU � (equipped with the weak topology). We use (5.35) in case z
 D u

and (5.36) in case z
 D w
 to conclude from H.�/ that for a subsequence we have
� z
 ! �z strongly in U . Thus, for another subsequence, � z
 .t/ ! .�z/.t/ strongly in
U for a.e. t 2 .0; T /, where z D u or z D w, depending on which of two problems
.P 1/ or .P 2/ we deal with. Using also (5.44) we are now in a position to apply
Proposition 5.12 to find

�.t/ 2 @J..�z/.t// for a:e: t 2 .0; T /: (5.59)

Finally, we pass to the limit with the initial conditions on the functions u

and w
 . Since u
 ! u and u0


 ! u0 both weakly in V and the embed-
ding fv 2 Vj v0 2 Vg � C.0; T IV / is continuous, we have u
 ! u weakly in
C.0; T IV /, so also u0
 D u
 .0/ ! u.0/ weakly in V . Since by the hypothesis
u0
 ! u0 weakly in V , we conclude that u.0/ D u0. Similarly, since w
 ! w
weakly in V and w0


 ! w0 weakly in V� and the embedding W � C.0; T IH/ is
continuous, we have w
 ! w weakly in C.0; T IH/, so also w0
 D w
 .0/ ! w.0/
weakly in H . On the other hand, we assume that w0
 ! w0 strongly in H so
we conclude that w.0/ D w0. Concerning the above initial conditions together
with (5.45), (5.57), (5.58), Remark 5.14 and (5.59) we claim that the triple .u;w; �/
solves Problem .Pm/�. Moreover, the convergences required in the thesis, follow
directly from (5.38)–(5.44). This completes the proof of the theorem. ut

5.4.3 Uniqueness and Strong Convergence

In this section we study a problem of uniqueness of solution to the problem .P 2/ and
a strong convergence of the functions built on the solution of the Rothe problem to
the exact one. To this end, we impose more restrictive assumptions on the operator
A and the functional J .

H.A/1: H.A/ holds and hAv1 � Av2; v1 � v2i 	 m1kv1 � v2k2 � m2jv1 � v2j2
for all v1; v2 2 V with m1 	 0, m2 	 0,

H.A/2: H.A/ holds and the Nemytskii mapping AWV ! V� is of class .SC/
with respect to the space M2;2.0; T IV; V �/, i.e. if vn ! v weakly
in V , lim supn!1hAvn; vn � viV��V � 0 and vn is bounded in
M2;2.0; T IV; V �/ then vn ! v strongly in V ,
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H.J /1: H.J / holds and h�1��2; z1�z2iU��U 	 �m3kz1�z2k2U for all z1; z2 2 U
and �i 2 @J.zi /, i D 1; 2; with m3 	 0,

Hconst: either Haux holds or m1 	 m3k�k2.
Remark 5.20. By Proposition 5.11 and compactness of embedding V � H , it is
easy to observe thatH.A/1 is stronger thenH.A/2, namely,H.A/1 impliesH.A/2.

Now we give a theorem on the uniqueness of solution to the problem .P 2/�.

Theorem 5.21. Let assumptions H.A/1;H.B/;H.J /1;H0 and Hconst hold, and
.u1;w1; �1/, .u2;w2; �2/ be two solutions of problem .P 2/�. Then u1 D u2 and
w1 D w2.

Proof. Let .u1;w1; �1/, .u2;w2; �2/ be two solutions of problem .P 2/�. Then we
have

h.w0
1 � w0

2/.t/; vi C hAw1.t/ � Aw2.t/; vi C hBu1.t/ � Bu2.t/; vi

C h�1.t/ � �2.t/; �viU��U D 0 for all v 2 V; a.e. t 2 .0; T /: (5.60)

Taking v D w1.t/ � w2.t/ in (5.60), we get

1

2

d

dt
jw1.t/ � w2.t/j2 C hAw1.t/ � Aw2.t/;w1.t/ � w2.t/i

C 1

2

d

dt
hBu1.t/ � Bu2.t/; u1.t/ � u2.t/i

C h�1.t/ � �2.t/; �w1.t/ � �w2.t/iU��U D 0: (5.61)

From H.A/1 and H.J /1, we have

1

2

d

dt
jw1.t/ � w2.t/j2 Cm1kw1.t/ � w2.t/k2 �m2jw1.t/ � w2.t/j2

C 1

2

d

dt
hBu1.t/ � Bu2.t/; u1.t/ � u2.t/i �m3k�w1.t/ � �w2.t/kU � 0: (5.62)

Integrating (5.62) from 0 to t , for all t 2 .0; T / and using H.B/, we obtain

jw1.t/ � w2.t/j2 C 2.m1 �m3k�k2/kw1 � w2k2V � 2m2

Z t

0

jw1.s/ � w2.s/j2 ds

or, if in addition Haux holds,

jw1.t/ � w2.t/j2 C 2.m1 � "/kw1 � w2k2V

� 2.m2 C C."//

Z t

0

jw1.s/ � w2.s/j2 ds:
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From Hconst we conclude that there exists a constant C > 0 such that

jw1.t/ � w2.t/j2 � C

Z t

0

jw1.s/ � w2.s/j2 ds;

which by the Gronwall lemma gives w1.t/ D w2.t/ for all t 2 .0; T /. Since u1.t/�
u2.t/ D R t

0
.w1.s/ � w2.s// ds, we also get u1.t/ D u2.t/ for all t 2 .0; T /, which

completes the proof. ut
Theorem 5.22. Let u be a solution of Problem .P 1/� or .P 2/� and u
 be its Rothe
approximation defined in Sect. 5.4.2. If assumptions H.A/2, H.B/, H.J /, H0 and
Haux hold, and u0
 ! u0 strongly in V as 
 ! 0, then u
 ! u strongly inC.0; T IV /
as 
 ! 0.

Proof. Let u
 ; u
 ;w
 ;w
 and �
 be functions built on the solutions of the Rothe
problem .Pm


 / and let .u;w; �/ be a solution of the problem .Pm/ obtained in
Theorem 5.19. Then, for all v 2 V and a.e. t 2 .0; T /, we have

hw0

 .t/ � w0.t/; vi C hAw
 .t/ � Aw.t/; vi C hBu
 .t/ � Bu.t/; vi

C h�
 .t/ � �.t/; �viU��U D hf
 .t/ � f .t/; vi; (5.63)

where �
 .t/ 2 @J.�z
 .t// and �.t/ 2 @J.�z.t// for a.e. t 2 .0; T / and we choose
z
 D u
 , z D u in case m D 1 and z
 D w
 , z D w in case m D 2. Taking
v D w
 .t/ � w.t/ in (5.63) for a.e. t 2 .0; T / we get

1

2

d

dt
jw
 .t/ � w.t/j2 C hw0


 .t/ � w0.t/;w
 .t/ � w
 .t/i

C hAw
 .t/ � Aw.t/;w
 .t/ � w.t/i C 1

2

d

dt
hBu
 .t/ � Bu.t/; u
 � u.t/i

hBu
 .t/ � Bu
 .t/;w
 .t/ � w.t/i
� hf
 .t/ � f .t/;w
 .t/ � w.t/i

C h�
 .t/ � �.t/; �w
 .t/ � �w.t/iU��U : (5.64)

Since hw0

 .t/;w
 .t/ � w
 .t/i D jw0


 .t/j2.k
 � t / 	 0 for all t 2 ..k � 1/
; k
/, we
get for a.e. t 2 .0; T /

1

2

d

dt
jw
 .t/ � w.t/j2 C hAw
 .t/ � Aw.t/;w
 .t/ � w.t/i

C 1

2

d

dt
hBu
 .t/ � Bu.t/; u
 .t/ � u.t/i

� hf
.t/ � f .t/;w
 .t/ � w.t/i C h�
 .t/ � �.t/; �w
 .t/ � �w.t/iU��U
C hw0.t/;w
 .t/ � w
 .t/i C hBu
 .t/ � Bu
 .t/;w
 .t/ � w.t/i: (5.65)
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Integrating (5.65) and using H.B/, we get

jw
 .t/ � w.t/j2 C hAw
 ;w
 � wi

� hAw;w
 � wi C kBkL.V;V �/ku0
 � u0k2 C 2hf
 � f;w
 � wiV��V

C 2h�
 � �; �w
 � �wiU��U C 2hw0;w
 � w
 iV��V

C 2hBu
 � Bu
 ;w
 � wiV��V C ju1
 � u1j2: (5.66)

We remind that u0
 ! u0 strongly in V , f
 ! f strongly in V�, w
 ! w weakly
in V and from H.�/ also �w
 ! �w strongly in U . Also �
 ! � weakly in U� and
w
 ! w
 weakly in V . Moreover, u
 ! u
 strongly in V and, from the continuity
of B, also Bu
 ! Bu
 strongly in V�. Finally u1
 ! u1 strongly in H . From the
above convergences, we conclude that the right hand side of (5.66) converges to 0 as

 ! 0. It follows that lim sup
!0hAw
 ;w
 � wi � 0. Thus, since w
 ! w weakly
in V and (5.36) holds, we conclude from H.A/2, that w
 ! w strongly in V . Now,
for every t 2 .0; T /, using Hölder inequality we obtain

ku
 .t/ � u.t/k � ku0
 � u0k C
Z t

0

kw
 .t/ � w.t/k ds

� ku0
 � u0k C p
T kw
 � wk2V : (5.67)

From (5.67), we get u
 ! u strongly in C.0; T IV /, as 
 ! 0 which completes the
proof of the theorem. ut

5.5 Faedo-Galerkin Method

In this section we present the results obtained in [2] on the second order HVIs.
In that case only a dependence of subdifferential on the velocity is considered.
Moreover, the operator A is allowed to depend on time explicitly. Keeping the
notation introduced in Sect. 5.3, we define following problem.

.P 3/

8̂̂̂
<̂
ˆ̂̂̂:

Find .u; �/ 2 V � U such that u0 2 W;

u00.t/C A.t; u0.t//C Bu.t/C ���.t/ D f .t/ for a.e. t 2 .0; T /;
�.t/ 2 @J.�u0.t// for a.e. t 2 .0; T /;
u.0/ D u0; u0.0/ D u1:

We impose assumptions on the operator A.
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H.A/3: A W .0; T / � V ! V � is such that

(i) A.�; v/ is measurable on .0; T / for all v 2 V ;
(ii) A.t; �/ is pseudomonotone for a.e. t 2 .0; T /;

(iii) kA.t; v/kV � � a.t/C bkvk for all v 2 V with a 2 L2.0; T /; a 	 0, b > 0;
(iv) hA.t; v/; vi 	 ˛kvk2 for all v 2 V , a.e. t 2 .0; T / with ˛ > 0;
(v) hA.t; v1/ � A.t; v2/; v1 � v2iV ��V 	 mAkv1 � v2k2

for all v1; v2 2 V a.e. t 2 .0; T / with mA > 0;
(vi) kA.t; v1/ � A.t; v2/kV � � LAkv1 � v2k

for all v1; v2 2 V a.e. t 2 .0; T / with LA > 0.

Now we introduce the Faedo-Galerkin approximation for Problem .P 3/ and
formulate a result on the semidiscrete error estimates.

Let V h be a finite dimensional linear subspace of V equipped with the norm of
V , where h > 0 denotes the spatial discretization parameter. We use the projection
operator ˘h W V ! V h defined by the relation

.v �˘hv; vh/H D 0 for all vh 2 V h: (5.68)

The semidiscrete approximation of Problem .P 3/ has the following formulation.

.P 3
h /

8̂̂
ˆ̂<
ˆ̂̂̂:

Find .uh; �h/ 2 L2.0; T; V h/ � U such that

uh 00
.t/C A.t; uh 0

.t//C Buh.t/C ���h.t/ D f .t/ for a.e. t 2 .0; T /;
�h.t/ 2 @J.�uh 0

.t// for a.e. t 2 .0; T /;
u.0/ D uh0; u0.0/ D uh1;

where uh0 D ˘hu0 and uh1 D ˘hu1.
Now we formulate a theorem on existence and uniqueness of solution for

Problems .P 3/ and .P 3
h /. The proof of the theorem follows the line of the proof

of Theorem 5.15 in [13].

Theorem 5.23. If the assumptions H.A/1;H.B/;H.J /1;H.�/ and H0 hold, and

˛ > 2ck�k2; (5.69)

mA > m3k�k2; (5.70)

then Problems .P 3/ and .P 3
h / have unique solutions.

Next we provide a result on the error estimates between the solutions of Problems
.P 3/ and .P 3

h /.

Theorem 5.24. Assume that H.A/1, H.B/, H.J /1, H.f /, H0 and (5.70) hold.
Let u and uh be solutions of Problems .P 3/ and .P 3

h / respectively and vh 2
L2.0; T IV h/ \ W . Then there exists a positive constant M dependent only on the
data of the problem, such that
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ku � uhk2C.0;T IV / C ku0 � uh 0k2C.0;T IH/ C ku0 � uh 0k2V

� M.ku0 � uh0k2 C ju1 � uh1 j ju1 � vh.0/j

C ku0 � vhk2V C ku00 � vh 0k2H C k�u0 � �vhkL2.0;T IU //: (5.71)

Now we introduce a fully discrete scheme corresponding to Problem .P 3/ and
analyze the error of fully discrete approximation. First, we impose some additional
hypothesis on the data of the problem.

H.A/4: H.A/3 hold and A.�; v/ 2 C.0; T IV �/ for all v 2 V .
H.f /1: f 2 C.0; T IV �/.

We define a uniform partition of Œ0; T � denoted by 0 D t0 < t1 < : : : < tN D
T . Let k D T=N be a time step size and for a continuous function g we denote
gn D g.tn/. Finally for a sequence fzngNnD0 we denote by ızn D .zn � zn�1/=k for
n D 1; : : : ; N the divided difference. Thus using the backward Euler scheme the
fully discrete approximation of Problem .P 3/ is the following.

.P 3
hk/

8̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂̂
ˆ̂̂:

Find fuhkn gNnD0; fwhkn gNnD0 � V h and f	hkn gNnD0 � U such that

whkn D ıuhkn for n D 1; : : : ; N;

hıwhkn C A.tn;whkn /C Buhkn � fn; vhi
D h	hkn ; �vhiU��U for all vh 2 V h;

�	hkn 2 @J.�whkn / for n D 0; : : : ; N;

uhk0 D uh0; whk0 D uh1:

Note that fromH.A/4 andH.f /1 the valuesA.tn;whkn / and fn in Problem .P 3
kh/

are well defined.

Theorem 5.25. Assume that H.A/4, H.B/, H.J /1, H.f /1, H0 and (5.70) hold.
Let .u;w; 	/ be a solution of Problem .P 3/, which satisfy the additional regularity
assumptions

u 2 C2.0; T IH/ \ C1.0; T IV /; (5.72)

	 2 C.0; T IU/: (5.73)

Let fuhkn gNnD0; fwhkn gNnD0 and f	hkn gNnD0 be the solution of Problem .P 3
hk/. Then the

following estimate holds, for all fvhj gNjD1 � V h:

max
1�n�Nfjwn � whkn j2 C

nX
jD1

kkwj � whkj k2g

� k

NX
jD1

	
jw0
j � ıwj j2 C kwj � vhj k2



C c max

1�n�N k�w
 n � �vh
 nkU
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C 1

k

N�1X
jD1

jwj � vhj � .wjC1 � vhjC1/j2 C max
1�n�N kwn � vhnk2H

C ku0 � uh0k2 C k2kuk2
H2.0;T IV / C jw0 � wh0 j2: (5.74)

5.6 Applications

In this section we show an application of our results to a mechanical contact
problem. We denote by S

d the space of second order symmetric tensors on R
d

(d � 3), and use “ � ”, k � kRd and k � kSd for the inner product and the Euclidean
norm on R

d and S
d , respectively, i.e.,

u � v D ui vi ; kvkRd D .v � v/ 12 for all u; v 2 R
d ;

� � 
 D �ij 
ij ; k
kSd D .
 � 
/ 12 for all �; 
 2 S
d :

Here and below the indices i and j run between 1 and d , and the summation
convention over repeated indices is adopted.

Let˝ � R
d be a bounded domain with a Lipschitz boundary � and let � denote

the unit outer normal on � . We introduce the following function spaces:

H D L2.˝/d D f u D .ui / j ui 2 L2.˝/ g; H1 D f u D .ui / j ".u/ 2 Q g;
Q D f � D .�ij / j �ij D �ji 2 L2.˝/ g; Q1 D f � 2 Q j Div � 2 H g:

Here " W H1 ! Q and Div W Q1 ! H are the deformation and divergence
operators, respectively, defined by

".u/ D ."ij .u//; "ij .u/ D 1

2
.ui;j C uj;i /; Div � D .�ij;j /;

where the index following a comma indicates the partial derivative with respect to
the corresponding component of the independent variable. The spaces H , Q, H1

and Q1 are real Hilbert spaces endowed with the canonical inner products given by

.u; v/H D
Z
˝

ui vi dx; .�; 
/Q D
Z
˝

�ij 
ij dx;

.u; v/H1 D .u; v/H C .".u/; ".v//Q; .�; 
/Q1 D .�; 
/Q C .Div�;Div
/H :

The associated norms on these spaces are denoted by k � kH , k � kQ, k � kH1 and
k � kQ1 , respectively. Let H� D H1=2.� /d and let � W H1 ! H� be the trace
map. For every element v 2 H1 we still write v for the trace �v of v on � and we
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denote by v� and v
 the normal and tangential components of v on the boundary �
given by

v� D v � �; v
 D v � v��: (5.75)

Let H�
� be the dual of H� and let .�; �/ denote the duality pairing between H�

� and
H� . For every � 2 Q1 there exists an element �� 2 H�

� such that

.�; ".v//Q C .Div�; v/H D h��; �viH�

� �H� for all v 2 H1: (5.76)

Moreover, if � is a smooth (say C1) function, then

h��; �viH�

� �H� D
Z
�

�� � v d � for all v 2 H1: (5.77)

We also denote by �� and �
 the normal and tangential traces of � and we recall
that, when � is smooth enough, then

�� D .��/ � �; �
 D �� � ���: (5.78)

Now we pass to the description of the mechanical problem. A visco-elastic body
occupies an open bounded connected set ˝ � R

d with a Lipschitz boundary �
that is partitioned into three disjoint parts � 1, � 2 and � 3 with �1, �2 and �3 being
relatively open, and meas .�1/ > 0. Let Œ0; T � be a time interval of interest, T > 0.
We assume that the body is clamped on �1 and thus the displacement field vanishes
there. A volume force of density f0 acts in ˝ and a surface traction of density f2
acts on �2. The body is in frictional contact with an obstacle on �3. We assume that
there is no loss of contact during the process, i.e., the contact is bilateral. Thus, the
normal displacement u� vanishes on �3. We model the friction by a nonmonotone
friction law and the process is assumed to be dynamic.

The classical formulation of the mechanical problem is the following.

Problem PM . Find a displacement uW˝ � Œ0; T � ! R
d and a stress field � W˝ �

Œ0; T � ! S
d such that

� D C".u0/C G".u/ in ˝ � .0; T /; (5.79)

 u00 D Div � C f0 in ˝ � .0; T /; (5.80)

u D 0 on �1 � .0; T /; (5.81)

�� D f2 on �2 � .0; T /; (5.82)

u� D 0 on �3 � .0; T /; (5.83)
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k�
kRd � �.0/S if u0

 D 0

��
 D �.ku0

kRd /S u0


 =ku0

kRd if u0


 ¤ 0

)
on �3 � .0; T /; (5.84)

u.0/ D u0; u0.0/ D u1 in ˝: (5.85)

In (5.84), �.ku0

kRd /S represents the magnitude of the limiting friction traction

at which slip begins. Here, S 	 0 is a given constant. The friction bound and more
precisely, the friction coefficient �, depends on the magnitude of the slip, ku0


kRd .
The strict inequality in (5.84) holds in the stick zone and the equality holds in the
slip zone. Due to the basic properties of the Clarke subdifferential, the friction
condition (5.84) can be written as a subdifferential inclusion involving a locally
Lipshitz, possibly nonconvex superpotential j which depends on the tangential
velocity u0


 . In fact, if the function j W Rd ! R is defined by

j.	/ D S

Z k�k
Rd

0

�.s/ ds; for all 	 2 R
d ; (5.86)

then we can prove that under assumptions H.�/.a/; .b/, the condition (5.84) is
equivalent to the following subdifferential inclusion

� �
 2 @j.u0

 / on �3 � .0; T /: (5.87)

In the study of the frictional contact problem we need the following assumptions on
its data.

H.C/: the viscosity operator C W ˝ � Œ0; T � � S
d ! S

d satisfies

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂:

.a/ C.�; �; "/ is measurable on ˝ � Œ0; T � for all " 2 S
d I

.b/ C.x; t; �/ is continuous on S
d for a.e. .x; t/ 2 ˝ � Œ0; T �I

.c/ kC.x; t; "/kSd � a0.x; t/C a1k"kSd for all " 2 S
d ;

a.e. .x; t/ 2 ˝ � Œ0; T �with a0 2 L2.˝ � Œ0; T �/; a0 	 0 and a1 > 0I
.d/ C.x; t; "/W" 	 ˛k"k2

Sd
for all " 2 S

d ; a.e. .x; t/ 2 ˝�Œ0; T � with˛>0I
.e/ .C.x; t; "1/ � C.x; t; "2// W ."1 � "2/ 	 mCk"1 � "2k2

Sd

for all "1; "2 2 S
d ; a.e. .x; t/ 2 ˝ � Œ0; T � with mA > 0I

.f / kC.x; t; "1/ � C.x; t; "2/kSd � LCk"1 � "2kSd
for all "1; "2 2 S

d ; a.e. .x; t/ 2 ˝ � Œ0; T � with LC > 0I
.g/ C.x; �; "/ is continuous on Œ0; T � for all x 2 ˝; " 2 S

d :
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H.G/: the elasticity operator GW˝ � S
d ! S

d is a bounded symmetric
nonnegative definite fourth order tensor, i.e.

8̂̂
<
ˆ̂:
.a/ Gijkl 2 L1.˝/; 1 � i; j; k; l � d I
.b/ G� � 
 D � � G
 for all �; 
 2 S

d ; a.e. in ˝I
.c/ G
 � 
 	 0 for all 
 2 S

d ; a.e. in ˝:

H.f /: the force and the traction densities satisfy

f0 2 L2.˝/d ; f2 2 L2.�2/d :

H.�/: the friction bound �W Œ0;1/ ! R satisfies

8̂̂
<
ˆ̂:
.a/ � is continuousI
.b/ j�.s/j � c�.1C s/ for all s 	 0; with c� > 0I
.c/ �.s1/ � �.s2/ 	 ��.s1 � s2/ for all s1 > s2 	 0with � > 0:

We now turn to the variational formulation for Problem PM . To this end, we
introduce a closed subspace of H1 defined by

V D fv 2 H1 j v D 0 on �1; v� D 0 on �3g

with norm defined by kvkV D k".v/kQ for all v 2 V . Let U D L2.�3IRd / and let
� D � W V ! U be the trace operator. Define the operators AW .0; T / � V ! V �
and BWV ! V � by

hA.t; u/; vi D .C.t; ".u//; ".v//Q for u; v 2 V and t 2 .0; T /; (5.88)

hBu; vi D .G".u/; ".v//Q for u; v 2 V (5.89)

and the functional J WU ! R by

J.v/ D
Z
�3

j.v.x// d� for v 2 U: (5.90)

We also consider the function f W .0; T / ! V � given by

hf .t/; vi D
Z
˝

f0.t/ � v dx C
Z
�2

f2.t/ � v d� (5.91)

for a.e. t 2 .0; T / and for all v 2 V . Let V , H, U and W denote the spaces
introduced in Sect. 5.3 and let the Nemytskii operators A;B W V ! V� and



5 Numerical Methods for Evolution Hemivariational Inequalities 141

� W V ! U be defined by .Av/.t/ D A.t; v.t//, .Bv/.t/ D B.v.t// and
.�v/.t/ D �v.t/ for all v 2 V . Then, we see that as a weak formulation of Problem
PM , we obtain Problem .P 3/ formulated in Sect. 5.6. Moreover if the operator A
does not depend explicitly on time, namely .Av/.t/ D A.v.t//, then Problem .P 3/

is equivalent with Problem .P 2/ introduced in Sect. 5.3. The following lemmas
allow to apply theorems formulated in that chapter to Problem PM .

Lemma 5.26. If operator C satisfies assumptions H.C/ .a/–.f / then the operator
A satisfies assumptions H.A/3 with the function a.t/ D p

2ka0.t/kL2.˝/ and
the constants b D p

2a1, mA D mC and La D LC . If operator C satisfies
assumptions H.C/ .a/–.g/ then the operator A satisfies assumptions H.A/4-in
particular H.A/1 with the function a.t/ and the constants defined above. If the
operator C satisfies assumptions H.C/ .a/–.e/ and moreover it does not depend on
time explicitly, namely C.x; t; "/ D C.x; "/, then the operatorA satisfiesH.A/1 with
the constants a D p

2ka0kL2.˝/, b D p
2a1, ˇ D � D 0, m1 D mC and m2 D 0.

Lemma 5.27. If the operator G satisfies assumptions H.G/ then the operator B
satisfies assumptions H.B/.

Lemma 5.28. If the function � satisfies assumptions H.�/ then the functional J
satisfies assumptionsH.J /1 with the constants c D S

p
2c� maxf1;pmeasd�1.�3/g

and m3 D S�.

Lemma 5.29. The operator � satisfies assumption H.�/.

Proof. Let " 2 .0; 1
2
/. Then V � H1�".˝/ and the embedding i WV ! H1�".˝/

is compact. The trace operator �1 W H1�".˝/ ! H
1
2�".�3/ is linear and

continuous and, finally, the embedding j W H 1
2�".�3/ ! L2.�3IRd / D U is

also linear and continuous. Thus � D j ı �1 ı i is linear, continuous and compact.
Moreover the spaces V � H1�".˝/ � V � satisfy assumptions of Proposition 5.11
so the embedding M2;2.0; T IV; V �/ � L2.0; T IH1�".˝// is compact. Since
the embedding L2.0; T IH1�".˝// � U is continuous the Nemytskii operator
corresponding to � is compact. ut
Lemma 5.30. The space U satisfies assumption H.U /.

Proof. As in the proof of Lemma 5.29 we take " 2 .0; 1
2
/. Since the embedding

V � H1�".˝/ is compact and H1�".˝/ � H is continuous, we can apply the
Ehrling Lemma (cf. Lemma 3.1.3 of [18]). Thus for any " > 0 there is C."/ > 0

such that for all v 2 V

kvkH1�".˝/ � "kvk C C."/jvj: (5.92)

Using notation from the proof of Lemma 5.29, we have for all v 2 V

k�vkU D kj ı �1vkH1�".˝/ � ckvkH1�".˝/;

with c > 0. This together with (5.92) completes the proof. ut
From Lemmas 5.26–5.30, we have the following
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Corollary 5.31. If the assumptions H.C/, H.G/ .a/–.e/, H.�/ and H0 hold, then
the statements of Theorem 5.19 and Theorem 5.21 are valid. Moreover if H.G/ .f /
holds and

˛ > 2S
p
2c� maxf1;

p
measd�1.�3/gk�k2

and

mC > S�k�k2;

then so is the statement of Theorem 5.24. Moreover if H.G/.g/ and H.f /1 hold
then so is the statement of Theorem 5.25.

We note that Theorems 5.24 and 5.25 are the starting points to derive the error
rate for the concrete discretization method. In particular let V h be the space of
continuous piecewise affine functions, that is,

V h D fvh 2 ŒC.˝/�d W vhjT 2 ŒP1.T /�d 8T 2 T h; vh D 0 on �1; v
h
� D 0 on �3g;

where ˝ is assumed to be a polygonal domain, T h denotes a finite element
triangulation of ˝, and P1.T / represents the space of polynomials of total degree
less or equal to one in T . Then we have following two corollaries.

Corollary 5.32. Let assumptions of Theorem 5.24 hold and let u and uh be
solutions of Problems .P 3/ and .P 3

h /, respectively. Then, under the regularity
condition

u; u0 2 L2.0; T IH2.˝IRd //; u0

 2 L2.0; T IH2.�3IRd //;

we have

ku � uhkC.0;T IV / C kPu � PuhkC.0;T IH/ C kPu � PuhkV � ch; (5.93)

with c > 0:

Proof. For any u 2 V we have the approximation properties

inf
vh2V h

ku � vhk � chkukH2.˝IRd /;

inf
vh2V h

ju � vhj � ch2kukH2.˝IRd /;

inf
vh2V h

ku
 � vh
 kL2.�3IRd / � ch2ku
kH2.�3IRd /;

k Pw � Pvhk2V� � ch2; (5.94)
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with c > 0. Taking in (5.68) the function vh defined by vh.t/ D ˘hu.t/ for all
t 2 .0; T / and using the inequalities above we obtain (5.93). ut
Corollary 5.33. Let the assumptions of Theorem 5.25 hold and let .u;w; �/ and�fuhkn gNnD0; fwhkn gNnD0; f 	hkn gNnD0

�
be solutions of Problem .P 3/ and .P 3

kh/, respec-
tively. Then, under the regularity conditions

u 2 C1.0; T IH2.˝IRd // \H3.0; T IH/; w
 2 C.0; T IH2.�3IRd //;

we have

max
1�n�Nfkun � uhkn k C jwn � whkn jg � c.hC k/; (5.95)

with c > 0.

Proof. We have the following approximation properties of the finite element
space V h:

max
1�n�N inf

vh2V h
kun � vhnk � chkukC.0;T IH2.˝IRd //;

max
1�n�N inf

vh2V h
jwn � vhn j � ch2kukC1.0;T IH2.˝IRd //;

max
1�n�N inf

vh2V h
kwn
 � vhn
kL2.�3IRd / � ch2kw
kC.0;T IH2.�3IRd //;

where c > 0. Moreover, from the definition of the finite element interpolation
operator ˘h, it follows that

ku0 � uh0k � chkukC.0;T IH2.˝IRd //;

jw0 � wh0 j � ch2kukC1.0;T IH2.˝IRd //;

k

NX
jD1

�j Pwj � ıwj j2� � ck2kuk2
H2.0;T IH/

and

1

k

N�1X
jD1

jwj � vhj � .wjC1 � vhjC1/j2 � ch2kuk2
H2.0;T IV /:

Using the above properties we obtain (5.95) from (5.74). ut
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Chapter 6
Some Extragradient Algorithms for Variational
Inequalities

Changjie Fang and Shenglan Chen

Abstract We present some extragradient algorithms for solving variational
inequalities including classical variational inequality, multivalued variational
inequality and general variational inequality. The global convergence of the
proposed method is established, provided the mapping is continuous and
pseudomonotone. Preliminary computational experience is also reported.

Keywords Variational inequality • Single-valued mapping • Multivalued
mapping • Extragradient method • Pseudomonotone • Epiconvergence

AMS Classification. 47H04, 47H10, 49J40

6.1 Introduction

It is well known that many problems in nonlinear analysis and optimization can be
formulated as the variational inequality problem. Variational inequalities theory has
been witnessed to relish an explosive growth in theoretical advances, algorithmic
development and applications across all disciplines of pure and applied sciences,
see [1, 4, 5, 8–11, 13, 15, 17–20, 22, 23, 25–27, 29, 31] and the references therein.

In 1966, Hartman and Stampacchia [16] introduce the classical variational
inequality, denoted by VI.A;K/: to find x� 2 K such that

hA.x�/; y � x�i 	 0 8y 2 K; (6.1)

where K is a nonempty closed convex set in R
d , A W K ! R

d is a single-valued
mapping, and h�; �i and k � k denote the inner product and norm in R

d , respectively.
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Projection-type algorithms have been extensively studied in the literature; see
[7,8,11,13,18,21,28–30]. An important projection algorithm for solving variational
inequality problem (6.1) is the Extragradient Method proposed by Korpelevich [21];
see also [9]. Given the current iterate xi ,calculate

yi D PK.xi � 
A.xi //; (6.2)

xiC1 D PK.xi � 
A.yi //; (6.3)

where 
 is a positive parameter. In [21], there is the need to calculate two projections
onto K, and convergence is proved under the assumption of Lipschitz continuity
and pseudomonotonicity of A. We note that the projection onto a closed convex set
K is related to a minimum distance problem. If K is a general closed convex set,
this might be computationally expensive. To overcome the difficulty, [27] suggests
a projection method for solving the variational inequality problem. In [27], the
next iterative point is the projection of the current iteration onto a hyperplane
which separates strictly the current iteration from the solution set of the variational
inequality problem; see also [17]. Paper [8] proposes the subgradient extragradi-
ent algorithm for the single-valued variational inequality in which the Lipschitz
continuity assumption is required; see also [7]. Various algorithms for solving the
multivalued variational inequality have been extensively studied in the literature
[4, 5, 10–12, 14, 22–25, 30]. The well-known proximal point algorithm [23] requires
the multivalued mapping T to be monotone. Li [22] proposes a projection algorithm
for solving a multivalued variational inequality with pseudomonotone mapping in
which choosing wi 2 T .xi / requires solving a single-valued variational inequality.
Fang [10] presents a double projection algorithm, which is an improvement of the
algorithm in [22], so that wi 2 T .xi / can be taken arbitrarily. In [10], the hyperplane
strictly separates the current iterate from the solution set of the variational inequality
problem. However, choosing the hyperplane needs computing the supremum in this
algorithm, and hence is computationally expensive. To overcome this difficulty,
Fang [11] introduces an extragradient algorithm for solving multivalued variational
inequality in which computing the supremum is avoided. In this method, the next
iterate is a projection onto the feasible set K.

In this chapter, we present some extragradient algorithms for solving variational
inequalities. In our method, the current iterate belongs to the set Ki which
epiconverge to the feasible set K, and the next iteration is the projection onto the
intersection of the hyperplane and the set KiC1. In addition, our Armijo-type line
search procedure is also different from those in [10, 11, 14, 17, 22, 27]. We obtain
the global convergence of the generalized iteration sequence, assuming that A is
pseudomonotone on K with respect to the solution set. We also present numerical
results of the proposed method.

This chapter is organized as follows. In Sect. 6.2, we present the algorithm
details, some lemmas and preliminary results for convergence analysis for the
classical variational inequality. In Sect. 6.3, we suggest the algorithm details for the
multivalued variational inequality. The main results for convergence analysis is also
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provided. Section 6.4, we establish convergence results of algorithms for solving
the general variational inequality. Numerical results are reported in the last section.

6.2 The Classical Variational Inequality

In this section, we study the extragradient method for solving the variational
inequality problem (6.1). We first recall some basic concepts and lemmas.
A is called pseudomonotone on K in the sense of Karamardian [19], if for any

x; y 2 K,

hA.y/; x � yi 	 0 ) hA.x/; x � yi 	 0:

Let S1 be the solution set of (6.1), that is, those points x� 2 K satisfying (6.1).
Throughout this chapter, we assume that the solution set S1 of the problem (6.1) is
nonempty and A is pseudomonotone on K with respect to the solution set S1, i.e.,

hA.y/; y � xi 	 0 8y 2 K; 8 x 2 S1: (6.4)

The property (6.4) holds if A is pseudomonotone on K.
Let PK denote the orthogonal projection onto K and let � > 0 be a parameter.

Proposition 6.1. x 2 K solves the problem (6.1) if and only if

r�.x/ WD x � PK.x � �A.x// D 0:

Lemma 6.2 ([32]). Let K be a closed convex subset of Rd . For any x; y 2 R
d and

z 2 K, the following statements hold:

(i) hx � PK.x/; z � PK.x/i � 0.
(ii) kPK.x/ � PK.y/k2 � kx � yk2 � kPK.x/ � x C y � PK.y/k2.

Following [26], we denote by NCCS.Rd / the family of all nonempty, closed and
convex subsets of Rd . Let fKig be a sequence of sets in NCCS.Rd /.

For any x 2 R
d ; and � > 0, we denote

ri�.x/ WD x � PKi .x � �A.x//:

The proof of the following lemma is similar to that of Lemma 3.1 in [6]. For the
sake of completeness, we provide the proof.

Lemma 6.3. For any x 2 R
d and � > 0,

minf1; �gkri1.x/k � kri�.x/k � maxf1; �gkri1.x/k: (6.5)
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Proof. Suppose that �2 	 �1 > 0. We first prove that

�1

�2
kri�2.x/k � kri�1.x/k � kri�2.x/k: (6.6)

Let c WD kri�1 .x/k
kri�2 .x/k

, then we only need to prove that

�1

�2
� c � 1: (6.7)

Since x � ri�1.x/ D PKi .x � �1A.x//, it follows from 6.2(i) that

hy � .x � ri�1.x//; x � �1A.x/ � .x � ri�1.x//i � 0; 8y 2 Ki : (6.8)

Since x � ri�2.x/ 2 Ki , by (6.8), we have

h.x � ri�2.x// � .x � ri�1.x//; x � �1A.x/ � .x � ri�1.x//i � 0;

i.e.,

hri�1.x/ � ri�2.x/; r i�1.x/ � �1A.x/i � 0: (6.9)

Similarly, we have

hri�2.x/ � ri�1.x/; r i�2.x/ � �2A.x/i � 0: (6.10)

Multiplying (6.9) and (6.10) by �2 and �1, respectively, and then adding them, we
get

hri�1.x/ � ri�2.x/; �2ri�1.x/ � �1ri�2.x/i � 0

and consequently

�1kri�2.x/k2 C �2kri�1.x/k2 � .�1 C �2/hri�1.x/; r i�2.x/i: (6.11)

Using the Cauchy–Schwarz inequality, by (6.11), we obtain

�1kri�2.x/k2 C �2kri�1.x/k2 � .�1 C �2/kri�2.x/kkri�1.x/k: (6.12)

Dividing (6.12) by kri�2.x/k2, we have

�1 C �2c
2 � .�1 C �2/c

and thus (6.7) holds. From (6.6), it is easy to see that (6.5) holds. ut
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Definition 6.4 ([2]). Let K and fKig be sets in NCCS.Rd /. The sequence fKig is

said to epiconverge to K (denoted by Ki

epi! K) if

(i) for every x 2 K, there exists a sequence fxig such that xi 2 Ki for all i 	 0,
and limi!1 xi D x;

(ii) xij 2 Kij for all j 	 0 and limj!1 xij D x imply x 2 K.

Proposition 6.5 ([26]). Let K and fKig be a set and a sequence of sets in

NCCS.Rd /, respectively. If Ki

epi! K and limi!1 xi D x; then

lim
i!1PKi .xi / D PK.x/:

Algorithm 6.6. Let fKig be a sequence of sets in NCCS.Rd / such that Ki

epi! K.
Choose x1 2 K1 and two parameters �; � 2 .0; 1/. Set i D 1.

Step 1. Let ki be the smallest nonnegative integer k satisfying

�kkA.xi / � A.PKi .xi � �kA.xi ///k � �kri
�k
.xi /k: (6.13)

Set �i D �ki and

yi D PKi .xi � �iA.xi //:

Step 2. Compute xiC1 WD PHi\KiC1
.xi � �iA.yi //; where

Hi WD fx 2 R
d W h.xi � �iA.xi // � yi ; x � yi i � 0g:

Let i WD i C 1 and go to Step 1.

Remark 6.7. In view of Lemma 6.2(i) and the definition of Hi , we have

8 x 2 Ki ; hxi � �iA.xi / � yi ; x � yi i � 0:

Therefore, Ki � Hi .

First we show that Algorithm 6.6 is well defined and implementable.

Proposition 6.8. Suppose that Ki � K for all i 	 0. Then there exists a
nonnegative integer ki satisfying (6.13).

Proof. If ri�n0 .xi / D 0 for some n0 	 0, we take ki D n0 which satisfies (6.13).
Assume now that ri�n1 .xi / ¤ 0 for some n1 	 0. Suppose for all k and yk D

PKi .xi � �kA.xi //,

�kkA.xi / � A.yk/k > �kri
�k
.xi /k;
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i.e.,

kA.xi / � A.yk/k > �

�k
kri
�k
.xi /k

	 �

�k
minf1; �kgkri1.xi /k

D �kri1.xi /k; (6.14)

where the second inequality follows from Lemma 6.3 and the equality follows from
� 2 .0; 1/ and k 	 0. Since PKi .�/ is continuous and xi 2 Ki , yk D PKi .xi �
�kA.xi // ! xi .k ! 1/. Since r�n1 .xi / ¤ 0, it follows from Lemma 6.3 that

0 < kri�n1 .xi /k � maxf1; �n1gkri1.xi /k D kri1.xi /k;

where the last equality follows from �n1 � 1. Letting k ! 1 in (6.14), we have

0 D kA.xi / � A.xi /k 	 �kri1.xi /k > 0:

This contradiction completes the proof. ut
Lemma 6.9. Suppose that S1 � Ki � K for all i 	 1, that Ki

epi! K, and that the
assumption (6.4) holds. Let fxig be the sequence generated by Algorithm 6.6 and let
x� 2 S1. Then

kxiC1 � x�k2 � kxi � x�k2 � .1 � �2/�2i kri1.xi /k2: (6.15)

Proof. Since x� 2 S1, it follows from assumption (6.4) that

hA.yi /; yi � x�i 	 0:

Thus,

hA.yi /; xiC1 � x�i 	 hA.yi /; xiC1 � yi i: (6.16)

By Step 2, we have

hxiC1 � yi ; .xi � �iA.xi // � yi i � 0:

Therefore,

hxiC1 � yi ; .xi � �iA.yi // � yi i D hxiC1 � yi ; xi � �iA.xi / � yi i
C �i hxiC1 � yi ; A.xi / � A.yi /i

� �i hxiC1 � yi ; A.xi / � A.yi /i: (6.17)

Denoting zi D xi � �iA.yi /, we obtain
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kxiC1 � x�k2 D kPHi\KiC1
.zi / � x�k2

D hPHi\KiC1
.zi / � zi C zi � x�;PHi\KiC1

.zi / � zi C zi � x�i
D kzi � x�k2 C kzi � PHi\KiC1

.zi /k2
C 2hPHi\KiC1

.zi / � zi ; zi � x�i:

Since

2kzi � PHi\KiC1
.zi /k2 C 2hPHi\KiC1

.zi / � zi ; zi � x�i
D 2hzi � PHi\KiC1

.zi /; x
� � PHi\KiC1

.zi /i � 0;

we have

kzi � PHi\KiC1
.zi /k2 C 2hPHi\KiC1

.zi / � zi ; zi � x�i � �kzi � PHi\KiC1
.zi /k2:

Therefore,

kxiC1 � x�k2 � kzi � x�k2 � kzi � PHi\KiC1
.zi /k2

D k.xi � �iA.yi // � x�k2 � k.xi � �iA.yi // � PHi\KiC1
.zi /k2

D kxi � x�k2 � kxi � xiC1k2 C 2�i hx� � xiC1; A.yi /i
� kxi � x�k2 � kxi � xiC1k2 C 2�i hyi � xiC1; A.yi /i;

where the last inequality follows from (6.16). Hence,

kxiC1 � x�k2 � kxi � x�k2 � kxi � xiC1k2 C 2�i hyi � xiC1; A.yi /i
D kxi � x�k2 � hxi � yi C yi � xiC1; xi � yi C yi � xiC1i

C 2�i hyi � xiC1; A.yi /i
D kxi � x�k2 � kxi � yik2 � kyi � xiC1k2

C 2hxiC1 � yi ; xi � �iA.yi / � yi i
� kxi � x�k2 � kxi � yik2 � kyi � xiC1k2

C 2�i hxiC1 � yi ; A.xi / � A.yi /i
� kxi � x�k2 � kxi � yik2 � kyi � xiC1k2

C 2�kxiC1 � yikkxi � yik; (6.18)

where the second inequality follows from (6.17) and the last one follows from the
Cauchy–Schwarz inequality and (6.13).
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Since

.�kxi � yik � kxiC1 � yik/2

D �2kxi � yik2 � 2�kxiC1 � yikkxi � yik C kyi � xiC1k2
	 0;

we obtain

2�kxiC1 � yikkxi � yik � �2kxi � yik2 C kyi � xiC1k2: (6.19)

Combining (6.18) and (6.19), we get

kxiC1 � x�k2 � kxi � x�k2 � .1 � �2/kxi � yik2

D kxi � x�k2 � .1 � �2/kri�i .xi /k2: (6.20)

By Lemma 6.3,

kri�i .xi /k 	 minf1; �igkri1.xi /k D �ikri1.xi /k: (6.21)

It follows from (6.20) and (6.21) that (6.15) holds. ut
Theorem 6.10. Suppose that S1 � Ki � K for all i 	 1, that Ki

epi! K, and that
the assumption (6.4) holds. If A W K ! R

d is continuous on K , then the sequence
fxig generated by Algorithm 6.6 converges to a solution x of the problem (6.1).

Proof. Let x� 2 S1. Since 0 < � < 1, we have .1 � �2/ 2 .0; 1/. It follows from
Lemma 6.9 that

.1 � �2/�2i kri1.xi /k2 � kxi � x�k2 � kxiC1 � x�k2:

It follows that the sequence fkxiC1 � x�k2g is nonincreasing, and hence is a
convergent sequence. Therefore, fxig is bounded and

0 � .1 � �2/�2i kri1.xi /k2 � kxi � x�k2 � kxiC1 � x�k2 ! 0 as i ! 1;

which implies that

lim
i!1 �ikri1.xi /k D 0: (6.22)

We consider two possible cases. Suppose first that lim supi!1 �i > 0. Then,
by (6.22), lim infi!1 kr1.xi /k D 0. Since fxig is bounded, by the continuity of
A, there exists an accumulation point x of fxig such that r1.x/ D 0, i.e., x is a
solution of the problem (6.1). We show next that the whole sequence fxig converges
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to x. Replacing x� by x in the preceding argument, we obtain that the sequence
fkxi � xkg is nonincreasing and hence converges. Since x is an accumulation point
of fxig, some subsequence of fkxi � xkg converges to zero. This shows that the
whole sequence fkxi � xkg converges to zero, hence limi!1 xi D x.

Suppose now that limi!1 �i D 0: By the choice of �i , we have, for all ki 	 1;

kA.xi / � A.PKi .xi � �ki�1A.xi ///k > �

�ki�1
kxi � PKi .xi � �ki�1A.xi //k

D �

�ki�1
kri
�ki�1

.xi /k

	 �kri1.xi /k;

where the second inequality follows from Lemma 6.3. Therefore,

kA.xi / � A.PKi .xi � ��1�iA.xi ///k > �kri1.xi /k: (6.23)

Let x be any accumulation point of fxig and fxij g be the corresponding subsequence
converging to x. It follows from (6.23) that

kA.xij / � A.PKij .xij � ��1�ij A.xij ///k > �krij1 .xij /k: (6.24)

Letting j ! 1, by Proposition 6.5 and the continuity of A, we have

0 D kA.x/ � A.x/k 	 �kr1.x/k:

Therefore, r1.x/ D 0. This implies that x solves the variational inequality (6.1).
Similar to the preceding proof, we obtain that limi!1 xi D x. ut
Algorithm 6.11. Let fKig be a sequence of sets in NCCS.Rd / such that Ki

epi! K.
Choose x1 2 K1 and two parameters �; � 2 .0; 1/. Set i D 1.

Step 1. Let ki be the smallest nonnegative integer k satisfying

�kkA.xi / � A.PKi .xi � �kA.xi ///k � �kri
�k
.xi /k: (6.25)

Set �i D �ki and

yi D PKi .xi � �iA.xi //:

Step 2. Compute

xiC1 WD PKi .xi � �iA.yi //: (6.26)

Let i WD i C 1 and go to Step 1.
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First we show that Algorithm 6.11 is well defined and implementable.

Proposition 6.12. Suppose that Ki � K for all i 	 0. Then there exists a
nonnegative integer ki satisfying (6.25).

The proof is similar to that of Proposition 6.8, and it is omitted.

Lemma 6.13. Suppose that S1 � Ki � K for all i 	 1, that Ki

epi! K, and that
the assumption (6.4) holds. Let fxig be the sequence generated by Algorithm 6.11
and let x� 2 S1. Then

kxiC1 � x�k2 � kxi � x�k2 � .1 � �2/�2i kri1.xi /k2:

Proof. Since x� 2 S1, it follows from assumption (6.4) that

hA.yi /; yi � x�i 	 0:

Therefore,

hA.yi /; xiC1 � x�i 	 hA.yi /; xiC1 � yi i:

Since xiC1 2 Ki , it follows from (6.26) and Lemma 6.2(i) that

hxiC1 � yi ; .xi � �iA.xi // � yi i � 0:

Thus,

hxiC1 � yi ; .xi � �iA.yi // � yi i D hxiC1 � yi ; xi � �iA.xi / � yi i
C �i hxiC1 � yi ; A.xi / � A.yi /i

� �i hxiC1 � yi ; A.xi / � A.yi /i:

The rest of the proof is similar to that of Lemma 6.9 with PHi\KiC1
replaced by PKi

and we omit the detail. ut
Theorem 6.14. Suppose that S1 � Ki � K for all i 	 1, that Ki

epi! K, and that
the assumption (6.4) holds. If A W K ! R

d is continuous on K, then the sequence
fxig generated by Algorithm 6.11 converges to a solution x of (6.1).

The proof is similar to that of Theorem 6.10, and it is omitted.
IfKi � K for all i , then the above two algorithms become the following method

for solving the variational inequality problem (6.1).

Algorithm 6.15. Choose x0 2 K and two parameters �; � 2 .0; 1/. Set i D 1:

Step 1. Let ki be the smallest nonnegative integer k satisfying

�kkA.xi / � A.PK.xi � �kA.xi ///k � �kr�k .xi /k:
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Set �i D �ki and

yi D PK.xi � �iA.xi //:

If r�i .xi / D 0, stop.
Step 2. Compute

xiC1 WD PK.xi � �iA.yi //:

Let i WD i C 1 and go to Step 1.

As a consequence of Theorem 6.10 or 6.14, we have the following convergence
result.

Theorem 6.16. IfA W K ! R
d is continuous onK and the assumption (6.4) holds,

then the sequence fxig generated by Algorithm 6.15 converges to a solution x of the
problem (6.1).

Remark 6.17. In [21], the mapping A is required to be Lipschitz continuous and
pseudomonotone. In Theorem 6.16, the mapping A is assumed to be continuous.
Since the assumption (6.4) is weaker than pseudomonotonicity, our assumptions of
the mapping A are more general.

6.3 The Multivalued Variational Inequality

We consider the following multivalued variational inequality, denoted by
MVI.A;K/: find x� 2 K and w� 2 A.x�/ such that

hw�; y � x�i 	 0 8y 2 K; (6.27)

where K is a nonempty closed convex set in R
d , and A W K ! 2R

d
is a multivalued

mapping.
Let us recall the definition of a continuous multivalued mapping. A is said to be

upper semicontinuous at x 2 K if for every open set V containing A.x/, there is an
open set U containing x such that A.y/ � V for all y 2 K \ U . A is said to be
lower semicontinuous at x 2 K if given any sequence xk converging to x and any
y 2 A.x/, there exists a sequence yk 2 A.xk/ that converges to y. A is said to be
continuous at x 2 K if it is both upper semicontinuous and lower semicontinuous
at x. If A is single-valued, then both upper semicontinuity and lower semicontinuity
reduce to the continuity of A.
A is called pseudomonotone on K, if for any x; y 2 K;

hv; x � yi 	 0 for some v 2 A.y/ ) hu; x � yi 	 0 for all u 2 A.x/:
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Let S2 be the solution set of the problem (6.27), that is, those points x� 2 K,
w� 2 A.x�/ satisfying (6.27). Throughout this chapter, we assume that the solution
set S2 of the problem (6.27) is nonempty and A is continuous on K with nonempty
compact convex values satisfying the following property:

hw; y � xi 	 0 8y 2 K; w 2 A.y/; x 2 S2: (6.28)

The property (6.28) holds if A is pseudomonotone on K.

Proposition 6.18. x 2 K and w 2 A.x/ solve the problem (6.27) if and only if

r�.x;w/ WD x � PK.x � �w/ D 0:

For any x 2 R
d , w 2 A.x/ and � > 0, we denote

ri�.x;w/ WD x � PKi .x � �w/:

Lemma 6.19. For any x 2 R
d ;w 2 A.x/ and � > 0,

minf1; �gkri1.x;w/k � kri�.x;w/k � maxf1; �gkri1.x;w/k:

The proof is similar to that of Lemma 6.3.

Algorithm 6.20. Let fKig be a sequence of sets in NCCS.Rd / such that Ki

epi! K.
Choose x1 2 K1 and two parameters �; � 2 .0; 1/. Set i D 1:

Step 1. Choose ui 2 A.xi / and let ki be the smallest nonnegative integer k
satisfying

vi 2 A.PKi .xi � �kui //; (6.29)

�kkui � vik � �kri
�k
.xi ; ui /k: (6.30)

Set �i D �ki and

yi D PKi .xi � �iui /:

Step 2. Compute xiC1 WD PHi\KiC1
.xi � �ivi /; where

Hi WD fx 2 R
d W hxi � �iui � yi ; x � yi i � 0g:

Let i WD i C 1 and go to Step 1.

The following proposition shows that Algorithm 6.20 is well defined.

Proposition 6.21. Suppose that Ki � K for all i 	 1. Then there exists a
nonnegative integer ki satisfying (6.29) and (6.30).
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Proof. If ri�n0 .xi ; ui / D 0 for some n0 	 0, we take ki D n0 and vi D ui which
satisfy (6.29) and (6.30).

Assume now that ri�n1 .xi ; ui / ¤ 0 for some n1 	 0. Suppose for all k and all
v 2 A.PKi .xi � �kui //,

�kkui � vk > �kri
�k
.xi ; ui /k;

i.e.,

kui � vk > �

�k
kri
�k
.xi ; ui /k

	 �

�k
minf1; �kgkri1.xi ; ui /k

D �kri1.xi ; ui /k;

where the second inequality follows from Lemma 6.19 and the equality follows from
� 2 .0; 1/ and k 	 0. Since PKi .�/ is continuous and xi 2 Ki , PKi .xi ��kui / ! xi
.k ! 1/. Since A is lower semicontinuous, ui 2 A.xi / and PKi .xi � �kui / ! xi
.k ! 1/, there is vk 2 A.PKi .xi ��kui // such that vk ! ui .k ! 1/. Therefore,

kui � vkk > �kri1.xi ; ui /k 8 k: (6.31)

Since ri�n1 .xi ; ui / ¤ 0, it follows from Lemma 6.19 that

0 < kri�n1 .xi ; ui /k � maxf1; �n1gkri1.xi ; ui /k D kri1.xi ; ui /k;

where the last equality follows from �n1 � 1. Let k ! 1 in (6.31), we have

0 D kui � uik 	 �kri1.xi ; ui /k > 0:

This contradiction completes the proof. ut
Lemma 6.22. Suppose that S2 � Ki � K for all i 	 1, that Ki

epi! K, and that
the assumption (6.28) holds. Let fxig be the sequence generated by Algorithm 6.20
and let x� 2 S2. Then

kxiC1 � x�k2 � kxi � x�k2 � .1 � �2/�2i kri1.xi ; ui /k2: (6.32)

Proof. Since vi 2 A.yi / and x� 2 S2, it follows from assumption (6.28) that

hvi ; yi � x�i 	 0:
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Therefore,

hvi ; xiC1 � x�i 	 hvi ; xiC1 � yi i: (6.33)

In view of Step 2, we have

hxiC1 � yi ; xi � �iui � yi i � 0:

Thus,

hxiC1 � yi ; xi � �ivi � yi i D hxiC1 � yi ; xi � �iui � yi i
C �i hxiC1 � yi ; ui � vi i

� �i hxiC1 � yi ; ui � vi i: (6.34)

Denoting zi D xi � �ivi , we have

kxiC1 � x�k2 D kPHi\KiC1
.zi / � x�k2

D hPHi\KiC1
.zi / � zi C zi � x�;PHi\KiC1

.zi / � zi C zi � x�i
D kzi � x�k2 C kzi � PHi\KiC1

.zi /k2
C 2hPHi\KiC1

.zi / � zi ; zi � x�i:
Since

2kzi � PHi\KiC1
.zi /k2 C 2hPHi\KiC1

.zi / � zi ; zi � x�i
D 2hzi � PHi\KiC1

.zi /; x
� � PHi\KiC1

.zi /i
� 0;

we obtain

kzi � PHi\KiC1
.zi /k2 C 2hPHi\KiC1

.zi / � zi ; zi � x�i � �kzi � PHi\KiC1
.zi /k2:

Hence,

kxiC1 � x�k2 � kzi � x�k2 � kzi � PHi\KiC1
.zi /k2

D kxi � �ivi � x�k2 � kxi � �ivi � PHi\KiC1
.zi /k2

D kxi � x�k2 � kxi � xiC1k2 C 2�i hx� � xiC1; vi i
� kxi � x�k2 � kxi � xiC1k2 C 2�i hyi � xiC1; vi i;

where the last inequality follows from (6.33). Therefore,

kxiC1 � x�k2 � kxi � x�k2 � kxi � xiC1k2 C 2�i hyi � xiC1; vi i
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D kxi � x�k2 � hxi � yi C yi � xiC1; xi � yi C yi � xiC1i
C 2�i hyi � xiC1; vi i

D kxi � x�k2 � kxi � yik2 � kyi � xiC1k2
C 2hxiC1 � yi ; xi � �ivi � yi i

� kxi � x�k2 � kxi � yik2 � kyi � xiC1k2
C 2�i hxiC1 � yi ; ui � vi i

� kxi � x�k2 � kri�i .xi ; ui /k2 � kyi � xiC1k2

C 2�kxiC1 � yikkri�i .xi ; ui /k; (6.35)

where the second inequality follows from (6.34) and the last one follows from the
Cauchy–Schwarz inequality and (6.30).

Since

2�kxiC1 � yikkr�i .xi ; ui /k � �2kr�i .xi ; ui /k2 C kyi � xiC1k2; (6.36)

by combining (6.35) and (6.36), we have

kxiC1 � x�k2 � kxi � x�k2 � .1 � �2/kr�i .xi ; ui /k2: (6.37)

By Lemma 6.19,

kri�i .xi ; ui /k 	 minf1; �igkri1.xi ; ui /k D �ikri1.xi ; ui /k: (6.38)

It follows from (6.37) and (6.38) that (6.32) holds. ut
Theorem 6.23. Suppose that S2 � Ki � K for all i 	 1, that Ki

epi! K, and that
the assumption (6.28) holds. If A W K ! 2R

d
is continuous with nonempty compact

convex values on K, then the sequence fxig generated by Algorithm 6.20 converges
to a solution x of the problem (6.27).

Proof. Let x� 2 S2. Since 0 < � < 1, we have .1 � �2/ 2 .0; 1/. It follows from
Lemma 6.22 that

0 � .1 � �2/�2i kri1.xi ; ui /k2 � kxi � x�k2 � kxiC1 � x�k2: (6.39)

Thus, the sequence fkxiC1 � x�k2g is nonincreasing, and hence, it is a convergent
sequence. Therefore, fxig is bounded. Letting i ! 1 in (6.39), we obtain

lim
i!1 �ikr1.xi ; ui /k D 0: (6.40)

By the boundedness of fxig, there exists a convergent subsequence fxij g converging
to x.
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If x is a solution of the problem (6.27), we show next that the whole sequence
fxig converges to x. Replacing x� by x in the preceding argument, we obtain
that the sequence fkxi � xkg is nonincreasing and hence converges. Since x is an
accumulation point of fxig, some subsequence of fkxi �xkg converges to zero. This
shows that the whole sequence fkxi �xkg converges to zero, hence limi!1 xi D x.

Suppose that x is not a solution of the problem (6.27). We show first that ki
in Algorithm 6.20 cannot tend to 1. Since A is continuous with compact values,
Proposition 3.11 in [3] implies that fA.xi / W i 2 N g is a bounded set, and so the
sequence fuig is bounded. Therefore, there exists a subsequence fuij g converging
to u. Since A is upper semicontinuous with compact values, Proposition 3.7 in [3]
implies that A is closed, and so u 2 A.x/. By the definition of ki , we have

�ki�1kui � vk > �kri
�ki�1

.xi ; ui /k 8 v 2 A.PKi .xi � �ki�1ui //;

i.e.,

kui � vk > �

�ki�1
kri
�ki�1

.xi ; ui /k

	 �

�ki�1
minf1; �ki�1gkri1.xi ; ui /k

D �kri1.xi ; ui /k 8 v 2 A.PKi .xi � �ki�1ui //;8 ki 	 1;

where the second inequality follows from Lemma 6.19 and the equality follows
from � 2 .0; 1/.

If kij ! 1, then by Proposition 6.5 and x 2 K, PKij .xij � �
kij �1uij / ! x.

The lower semicontinuity of A, in turn, implies the existence of uij 2 A.PKij .xij �
�
kij �1uij // such that uij converges to u. Therefore

kuij � uij k > �kri1.xij ; uij /k:

Letting j ! 1, by Proposition 6.5 , we obtain the contradiction

0 	 �kr1.x; u/k2 > 0:

Therefore, fkig is bounded and so is f�ig.
By the boundedness of f�ig and (6.40), limi!1 kri1.xi ; ui /k D 0: Since the

sequences fxig and fuig are bounded, it follows from Proposition 6.5 that there
exists an accumulation point .x; u/ of f.xi ; ui /g such that r1.x; u/ D 0. This implies
that x solves the variational inequality (6.27). Similar to the preceding proof, we
obtain that limi!1 xi D x. ut
Algorithm 6.24. Let fKig be a sequence of sets in NCCS.Rd / such that Ki

epi! K.
Choose x1 2 K0 and two parameters �; � 2 .0; 1/. Set i D 1:
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Step 1. Choose ui 2 A.xi / and let ki be the smallest nonnegative integer
satisfying

vi 2 A.PKi .xi � �ki ui //; (6.41)

�ki kui � vik � �kri
�ki
.xi ; ui /k: (6.42)

Set �i D �ki and

yi D PKi .xi � �iui /;

Step 2. Compute

xiC1 WD PKi .xi � �ivi /: (6.43)

Let i WD i C 1 and go to Step 1.

First we show that Algorithm 6.24 is well defined and implementable.

Proposition 6.25. Suppose that Ki � K for all i 	 1. Then there exists a
nonnegative integer ki satisfying (6.41) and (6.42).

The proof is similar to that of Proposition 6.21.

Lemma 6.26. Suppose that S2 � Ki � K for all i 	 1, that Ki

epi! K, and that
the assumption (6.28) holds. Let fxig be the sequence generated by Algorithm 6.24
and let x� 2 S2. Then

kxiC1 � x�k2 � kxi � x�k2 � .1 � �2/�2i kri1.xi ; ui /k2:

Proof. Since vi 2 A.yi / and x� 2 S2, it follows from assumption (6.28) that

hvi ; yi � x�i 	 0:

Thus,

hvi ; xiC1 � x�i 	 hvi ; xiC1 � yi i: (6.44)

Since yi 2 Ki , it follows from (6.44) and Lemma 6.2(i) that

hxiC1 � yi ; .xi � �iui / � yi i � 0:

Therefore,

hxiC1 � yi ; .xi � �ivi / � yi i D hxiC1 � yi ; xi � �iui � yi i
C �i hxiC1 � yi ; ui � vi i

� �i hxiC1 � yi ; ui � vi i: (6.45)
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The rest of the proof is similar to that of Lemma 6.22 with PHi\KiC1
replaced by

PKi and we omit it. ut
Next we conclude the global convergence of Algorithm 6.24.

Theorem 6.27. Suppose that S2 � Ki � K for all i 	 1, that Ki

epi! K, and that
the assumption (6.28) holds. If A W K ! 2R

d
is continuous with nonempty compact

convex values on K, then the sequence fxig generated by Algorithm 6.24 converges
to a solution x of the problem (6.27).

Proof. We only need to show the result for the case in which x is not a solution of
the problem (6.27). The rest of the proof is similar to that of Theorem 6.23.

Suppose that x is not a solution of the problem (6.27). We show first that ki
in Algorithm 6.24 cannot tend to 1. Since A is continuous with compact values,
Proposition 3.11 in [3] implies that fA.xi / W i 2 N g is a bounded set, and so the
sequence fuig is bounded. Therefore, there exists a subsequence fuij g converging
to u. Since A is upper semicontinuous with compact values, Proposition 3.7 in [3]
implies that A is closed, and so u 2 A.x/. By the definition of ki , we have

�ki�1kui � vk > �kri
�ki�1

.xi ; ui /k 8 v 2 A.PKi .xi � �ki�1ui //;

i.e.,

kui � vk > �

�ki�1
kri
�ki�1

.xi ; ui /k

	 �

�ki�1
minf1; �ki�1gkri1.xi ; ui /k

D �kri1.xi ; ui /k;8 v 2 A.PKi .xi � �ki�1ui // 8 ki 	 1;

where the second inequality follows from Lemma 6.19 and the equality follows
from � 2 .0; 1/.

If kij ! 1, then by Proposition 6.5 and x 2 K, PKij .xij � �
kij �1uij / ! x.

The lower semicontinuity of A, in turn, implies the existence of uij 2 A.PKij .xij �
�
kij �1uij // such that uij converges to u. Therefore

kuij � uij k > �kri1.xij ; uij /k:

Letting j ! 1, by Proposition 6.5, we obtain the contradiction

0 	 �kr1.x; 	/k2 > 0:
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Therefore, fkig is bounded and so is f�ig. By the boundedness of f�ig, it follows
from (6.39) that

lim
i!1 kri1.xi ; 	i /k D 0:

Since the sequences fxig and fuig are bounded, it follows from Proposition 6.5
that there exists an accumulation point .x; u/ of f.xi ; ui /g such that r1.x; u/ D 0.
This implies that x solves the variational inequality (6.1). Similar to the proof of
Theorem 6.23, we obtain that limi!1 xi D x. ut

6.4 The General Variational Inequality

Let K be a nonempty closed convex set in R
d , A and h be single-valued mappings

from K to R
d with nonempty values. We consider the following general variational

inequality problem (GVIP): find x� 2 K, h.x�/ 2 K such that

hA.x�/; h.y/ � h.x�/i 	 0 8y 2 K: (6.46)

Definition 6.28. Let A and h be single-valued mappings from K to R
d with

nonempty values.

(i) A is called h-pseudomonotone on K, if for any x; y 2 K;
hA.y/; h.x/ � h.y/i 	 0 ) hA.x/; h.x/ � h.y/i 	 0:

(ii) h is ˛-strongly monotone with respect to one solution x 2 S , if for any x 2 K,

hh.x/ � h.x/; x � xi 	 ˛kx � xk2:

(iii) h�1 W Rd ! 2R
d

is locally bounded on K, if it maps bounded subsets of K
into bounded sets.

For any x 2 K; and � > 0, we denote

Ri�.x/ WD h.x/ � PKi .h.x/ � �A.x//;
R�.x/ WD h.x/ � PK.h.x/ � �A.x//:

Lemma 6.29. x 2 K solves the problem (6.46) if and only if

R�.x/ WD h.x/ � PK.h.x/ � �A.x// D 0:

Lemma 6.30. For any x 2 K and � > 0,

minf1; �gkRi1.x/k � kRi�.x/k � maxf1; �gkRi1.x/k:
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The proof is similar to the proof of Lemma 6.3.

Algorithm 6.31. Let fKig be a sequence of sets in NCCS.Rd / such that Ki

epi! K.
Choose x1 2 K1 and two parameters �; � 2 .0; 1/. Set i D 1:

Step 1. Let ki be the smallest nonnegative integer k satisfying

�kkA.h.xi // � A.PKi .h.xi / � �kA.xi ///k � �kRi
�k
.xi /k: (6.47)

Set �i D �ki and

yi D PKi .h.xi / � �iA.xi //:

Step 2. Find xiC1 such that h.xiC1/ WD PHi\KiC1
.h.xi / � �iA.yi //; where

Hi WD fx 2 R
d W hh.xi / � �iA.h.xi // � h.yi /; x � h.yi /i � 0g:

Let i WD i C 1 and go to Step 1.

Let S3 be the solution set of the problem (6.46), that is, those points x� 2
K; h.x�/ 2 K satisfying the problem (6.46). Throughout this chapter, we
assume that the solution set S3 of the problem (6.46) is nonempty and A is h-
pseudomonotone on K with respect to the solution set S3, i.e.,

hA.y/; h.y/ � h.x/i 	 0 8y 2 K; 8 x 2 S3: (6.48)

The property (6.48) holds if A is h-pseudomonotone on K.
First we show that Algorithm 6.31 is well defined and implementable.

Proposition 6.32. Suppose that Ki � K for all i 	 0. Then there exists a
nonnegative integer ki satisfying (6.47).

Proof. If Ri�n0 .xi / D 0 for some n0 	 0, we take ki D n0 which satisfies (6.47).
Assume now that Ri�n1 .xi / ¤ 0 for some n1 	 0. Suppose for all k and yk D

PKi .h.xi / � �kA.xi //,

�kkA.h.xi // � A.yk/k > �kRi
�k
.xi /k;

i.e.,

kA.h.xi // � A.yk/k > �

�k
kRi

�k
.xi /k

	 �

�k
minf1; �kgkRi1.xi /k

D �kRi1.xi /k; (6.49)
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where the second inequality follows from Lemma 6.30 and the equality follows
from � 2 .0; 1/ and k 	 0. Since PKi .�/ and h are continuous and h.xi / 2 Ki ,
yk D PKi .h.xi / � �kA.xi // ! h.xi / .k ! 1/. Since R�n1 .xi / ¤ 0, it follows
from Lemma 6.30 that

0 < kRi�n1 .xi /k � maxf1; �n1gkRi1.xi /k D kRi1.xi /k;

where the last equality follows from �n1 � 1. Letting k ! 1 in (6.49), we have

0 D kA.h.xi // � A.h.xi //k 	 �kRi1.xi /k > 0;

being A continuous on K. This contradiction completes the proof. ut
Theorem 6.33. Suppose that S3 � Ki � K for all i 	 1, that Ki

epi! K, and that
the assumption (6.48) holds. Let fxig be the sequence generated by Algorithm 6.31
and let x� 2 S3. Then

kh.xiC1/ � h.x�/k2 � kh.xi / � h.x�/k2 � .1 � �2/�2i kRi1.xi /k2: (6.50)

Proof. Since x� 2 S3, it follows from assumption (6.48) that

hA.yi /; h.yi / � h.x�/i 	 0:

Thus,

hA.yi /; h.xiC1/ � h.x�/i 	 hA.yi /; h.xiC1/ � h.yi /i: (6.51)

In view of Step 2 of Algorithm 6.31, we have

hh.xiC1/ � h.yi /; h.xi / � �iA.h.xi // � h.yi /i � 0:

Therefore,

hh.xiC1/ � h.yi /; h.xi / � �iA.yi // � h.yi /i
D hh.xiC1/ � h.yi /; h.xi / � �iA.h.xi // � h.yi /i

C �i hh.xiC1/ � h.yi /; A.h.xi // � A.yi /i
� �i hh.xiC1/ � h.yi /; A.h.xi // � A.yi /i: (6.52)

Denoting zi D h.xi / � �iA.yi /, we obtain

kh.xiC1/ � h.x�/k2

D kPHi\KiC1
.zi / � h.x�/k2
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D hPHi\KiC1
.zi / � zi C zi � h.x�/;PHi\KiC1

.zi / � zi C zi � h.x�/i
D kzi � h.x�/k2 C kzi � PHi\KiC1

.zi /k2
C 2hPHi\KiC1

.zi / � zi ; zi � h.x�/i:

Since

2kzi � PHi\KiC1
.zi /k2 C 2hPHi\KiC1

.zi / � zi ; zi � h.x�/i
D 2hzi � PHi\KiC1

.zi /; h.x
�/ � PHi\KiC1

.zi /i � 0;

we obtain

kzi � PHi\KiC1
.zi /k2 C 2hPHi\KiC1

.zi / � zi ; zi � h.x�/i
� �kzi � PHi\KiC1

.zi /k2:

Hence,

kh.xiC1/ � h.x�/k2

� kzi � h.x�/k2 � kzi � PHi\KiC1
.zi /k2

D k.h.xi / � �iA.yi // � h.x�/k2 � k.h.xi / � �iA.yi // � PHi\KiC1
.zi /k2

D kh.xi / � h.x�/k2 � kh.xi / � h.xiC1/k2 C 2�i hh.x�/ � h.xiC1/; A.yi /i
� kh.xi / � h.x�/k2 � kh.xi / � h.xiC1/k2 C 2�i hh.yi / � h.xiC1/; A.yi /i;

where the last inequality follows from (6.51). Therefore,

kh.xiC1/ � h.x�/k2

� kh.xi / � h.x�/k2 � kh.xi / � h.xiC1/k2 C 2�i hh.yi / � h.xiC1/; A.yi /i
D kh.xi / � h.x�/k2 � hh.xi / � h.yi /C h.yi / � h.xiC1/; h.xi / � h.yi /

C h.yi / � h.xiC1/i C 2�i hh.yi / � h.xiC1/; A.yi /i
D kh.xi / � h.x�/k2 � kh.xi / � h.yi /k2 � kh.yi / � h.xiC1/k2

C 2hh.xiC1/ � h.yi /; h.xi / � �iA.yi / � h.yi /i
� kh.xi / � h.x�/k2 � kh.xi / � h.yi /k2 � kh.yi / � h.xiC1/k2

C 2�i hh.xiC1/ � h.yi /; A.h.xi // � A.yi /i
� kh.xi / � h.x�/k2 � kh.xi / � h.yi /k2 � kh.yi / � h.xiC1/k2

C 2�kh.xiC1/ � h.yi /kkh.xi / � h.yi /k; (6.53)
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where the second inequality follows from (6.52) and the last one follows from the
Cauchy–Schwarz inequality and (6.47).

Since

0 � .�kh.xi / � h.yi /k � kh.xiC1/ � h.yi /k/2 D �2kh.xi / � h.yi /k2

� 2�kh.xiC1/ � h.yi /kkh.xi / � h.yi /k C kh.yi / � h.xiC1/k2;

we have

2�kh.xiC1/ � h.yi /kkh.xi / � h.yi /k
� �2kh.xi / � h.yi /k2 C kh.yi / � h.xiC1/k2: (6.54)

Combining (6.53) and (6.54), we have

kh.xiC1/ � h.x�/k2 � kh.xi / � h.x�/k2 � .1 � �2/kh.xi / � h.yi /k2

D kh.xi / � h.x�/k2 � .1 � �2/kRi�i .xi /k2: (6.55)

By Lemma 6.30,

kRi�i .xi /k 	 minf1; �igkRi1.xi /k D �ikRi1.xi /k: (6.56)

It follows from (6.55) and (6.56) that (6.50) holds. ut
Theorem 6.34. Suppose that S3 � Ki � K for all i 	 1, that Ki

epi! K, and that
the assumption (6.48) holds. If A; h W K ! R

d are continuous onK, h is ˛-strongly
monotone with respect to one solution of GVIP and h�1 W R

d ! 2R
d

is locally
bounded on K, then the sequence fxig generated by Algorithm 6.31 converges to a
solution x of (6.46).

Proof. Let x� 2 S3. Since 0 < � < 1, we have .1 � �2/ 2 .0; 1/. It follows from
Theorem 6.33 that

.1 � �2/�2i kRi1.xi /k2 � kh.xi / � h.x�/k2 � kh.xiC1/ � h.x�/k2:

Thus, the sequence fkh.xiC1/ � h.x�/k2g is nonincreasing, and hence is a conver-
gent sequence. Therefore, fh.xi /g is bounded and

0 � .1 � �2/�2i kRi1.xi /k2 ! 0 as i ! 1;

which implies that

lim
i!1 �ikRi1.xi /k D 0: (6.57)
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We consider two possible cases. Suppose first that lim supi!1 �i > 0. Then, by
(6.57), lim infi!1 kRi1.xi /k D 0. Since h�1 is locally bounded, it follows that the
sequence fxig is bounded. By Proposition 6.5 and the continuity of A and h, there
exists an accumulation point x of fxig such that R1.x/ D 0, i.e., x is a solution
of the problem (6.46). We show next that the whole sequence fxig converges to x.
Replacing x� by x in the preceding argument, we obtain that the sequence fkh.xi /�
h.x/kg is nonincreasing and hence converges. Since x is an accumulation point of
fxig, by the continuity of h, some subsequence of fkh.xi / � h.x/kg converges to
zero. This shows that the whole sequence fkh.xi / � h.x/kg converges to zero. By
considering the strong monotonicity of h with respect to x 2 S , we have

0 � ˛kxi � x�k � kh.xi / � h.x�/k ! 0 as i ! 1:

This shows that the whole sequence fkxi � x�kg converges to zero, hence
limi!1 xi D x.

Suppose now that limi!1 �i D 0: By the choice of �i , we have, for all ki 	 1;

kA.h.xi // � A.PKi .h.xi / � �ki�1A.xi ///k > �

�ki�1
kRi

�ki�1
.xi /k

	 �kRi1.xi /k; (6.58)

where the second inequality follows from Lemma 6.30. Let x be any accumulation
point of fxig and fxij g is the corresponding subsequence converging to x. It follows
from (6.58) that

kA.h.xij // � A.PKij .h.xij / � ��1�ij A.xij ///k > �kRij1 .xij /k:

Letting j ! 1, by Proposition 6.5 and the continuity of A and h, we have

0 D kA.h.x// � A.h.x//k 	 �kR1.x/k:

Therefore, R1.x/ D 0. This implies that x solves the variational inequality (6.46).
Similar to the preceding proof, we obtain that limi!1 xi D x. ut
Algorithm 6.35. Let fKig be a sequence of sets in NCCS.Rd / such that Ki

epi! K.
Choose x1 2 K1 and two parameters �; � 2 .0; 1/. Set i D 1:

Step 1. Let ki be the smallest nonnegative integer k satisfying

�kkA.h.xi // � A.PKi .h.xi / � �kA.xi ///k � �kRi
�k
.xi /k:

Set �i D �ki and

yi D PKi .h.xi / � �iA.xi //:
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Table 6.1 The number of
iteration under the different
choice of �

� 0.1 0.2 0.3 0.5 0.8

" D 10�7 213 119 82 48 39

" D 10�5 142 81 56 34 28

" D 10�3 71 43 31 20 17

Step 2. Find xiC1 such that h.xiC1/ WD PKi .h.xi / � �iA.yi //:
Let i WD i C 1 and go to Step 1.

Remark 6.36. Convergence analysis of Algorithm 6.35 is similar to that of
Algorithm 6.31 and we omit it.

6.5 Numerical Experiments

In this section, we present some numerical experiments for Algorithm 6.20. The
MATLAB codes are run on a PC (with CPU Intel P-T2390) under MATLAB Version
7.0.1.24704(R14) Service Pack 1. The integers in Table 6.1 denote the number of
iterations. The tolerance " means when kr�.x;w/k � "; the procedure stops.

Example 6.37. Let d D 3,

K WD fx 2 R
dC W

dX
iD1

xi D 1g

and A W K ! 2R
d

be defined by

A.x/ WD f.t; t � x1; t � x2/ W t 2 Œ0; 1�g:

Then the set K and the mapping A satisfy the assumptions of Theorem 6.23 and
.0; 0; 1/ is a solution of the multivalued variational inequality. We choose Ki �
K; � D 0:8 for our algorithm. We use .0; 1; 0/ 2 K as the initial point.

From the above table we observe that the larger � is, the smaller the number of
iteration.
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Proximal Methods for the Elastography Inverse
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Equation Error Approach
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Abstract In this chapter, we study a nonlinear inverse problem in linear elasticity
relating to tumor identification by an equation error formulation. This approach
leads to a variational inequality as a necessary and sufficient optimality condition.
We give complete convergence analysis for the proposed equation error method.
Since the considered problem is highly ill-posed, we develop a stable computational
framework by employing a variety of proximal point methods and compare their
performance with the more commonly used Tikhonov regularization.
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7.1 Introduction

Parameter identification inverse problems in partial differential equations are highly
ill-posed and regularization is often needed for an effective solution. Since these
problems can be solved most conveniently in an optimization setting, many authors
have relied on an optimization framework with variants of Tikhonov regularization
among the most widely used. For the tumor identification inverse problem (outlined
below), many optimization frameworks have been proposed (output least squares
(OLS) [25], modified output least squares (MOLS) [20], energy output least squares
(EOLS) [10], and equation error (EE) [8]), where the EOLS and OLS functionals
provide nonconvex frameworks and the MOLS and EE functionals provide a convex
approach.

For convex frameworks, smooth regularization gives a unique solution to the
associated variational inequality, which in turn is a necessary and sufficient opti-
mality condition for solving the inverse problem. For nonconvex frameworks,
the variational inequality is only a necessary condition, but a large enough reg-
ularization parameter can be chosen to ensure uniqueness. The downside of this
approach is that the choice of regularization parameter is largely heuristic and
can often introduce error through over-regularization. Thus the proper selection of
regularization parameter is of vital interest for practical applications.

Proximal methods are another approach to regularization that seem well-suited
for nonlinear inverse problem of parameter identification in partial differential
equation. Their general outline consists of the progressive replacement of a single
convex optimization by a sequence of strongly convex optimization problems.
However, from a theoretical point of view, the proximal approach differs from the
Tikhonov approach in one important aspect. For convex problems using Tikhonov
regularization, under suitable conditions, the regularized solutions are known to
converge to a minimal-norm solution. On the other hand, for proximal point
methods, no such characterization concerning the recovered solution is available
beforehand. Nonetheless, it is natural to ask whether proximal point methods can
be competitive to the more commonly used Tikhonov regularization for nonlinear
inverse problems. The use of the proximal methods will allow to put less emphasis
on the selection of an optimal regularization parameter. This work addresses this
issue for the tumor identification inverse problem for the first time.

We emphasize that besides testing proximal methods for a highly nonlinear
inverse problem of tumor identification, we present a new treatment of the equation
error approach which is shown to be stable under the H1-regularization. This is
in contrast with the earlier works on the equation error approach (studied only for
simpler PDEs) where the H2 regularization have been used, see Acar [1].

7.1.1 Problem Background

In this work, we will employ the proximal methods for solving a nonlinear inverse
problem in linear elasticity relating to tumor identification. As an optimization
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framework, we use the so-called equation error approach. This inverse problem,
known also as the elastography or elasticity imaging inverse problem, arises from
a relatively new method for detecting tumors inside the human body using the
differing elastic properties between healthy and unhealthy tissue. In elastography, a
small external quasi-static compression force is applied to the body and the tissue’s
axial displacement field or overall motion are measured. A tumor can then be
identified from this measurement by recovering the tissue’s underlying elasticity.
Many researchers have proposed similar elastic imaging methods and some of the
details can be found in [2, 4, 5, 9, 11, 24, 25] and the cited references therein.

The underlying mathematical model for the elastography inverse problem is the
following system of partial differential equations which describe an isotropic elastic
object’s response to known body forces and traction applied along its boundary:

� r � � D f in ˝; (7.1a)

� D 2��.u/C �div u I; (7.1b)

u D f1 on �1; (7.1c)

�n D f2 on �2: (7.1d)

The domain ˝ is a subset of R2 or R3 and @˝ D �1 [ �2 is its Lipschitz boundary.
In (7.1), the vector-valued function u D u.x/ represents the displacement of the
elastic object, f is the body force being applied, n is the unit outward normal, and
�.u/ D 1

2
.ru C ru>/ is the linearized strain tensor. The stress tensor � and the

stress-strain law (7.1b) hold given the assumption that the elastic object is isotropic
and the displacement is small enough to maintain a linear relationship. The Lamé
parameters, � and �, represent the object’s variable elastic properties.

The direct problem in (7.1) is to find the displacement u when the functions f1;
f2; the coefficients � and �, and f are all known. For the elastography inverse
problem, we seek to find the parameter � when a certain measurement z of the
displacement u is known. We note that the corresponding inverse problem for many
engineering applications is to find both � and �, which typically vary in a small
range (see [12,19] and the included citations). However, given that the human body
is comprised of mostly water (an incompressible material) it follows that the tissue
under consideration is likewise nearly incompressible, i.e. � 
 �. Thus the tumor
identification inverse problem seeks to recover the parameter � alone.

To introduce the equation error concept, we first consider an exemplar elliptic
problem with suitable boundary conditions:

� r � .aru/ D f in ˝: (7.2)

The output least-squares (OLS) approach for determining the parameter a consists
of minimizing the functional

JOLS.a/ D ku.a/ � zk2; (7.3)
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with z a measurement of u, k � k an appropriate norm, and where u.a/ solves the
variational problem paired with (7.2). In contrast, the equation error (EE) method
for identifying a would be to minimize the residual error between the left and right
hand sides of (7.2) given a measurement z of u:

JEE.a/ D 1

2
kr � .ar z/C f k2

H�1.˝/
: (7.4)

The OLS approach requires the solution of the weak form of (7.2) to obtain u.a/
for any evaluation of JOLS, a significant performance hit for most optimization
algorithms. The EE functional does not depend on u and therefore does not require
the solution of the underlying variational problem at any point, making it more
computationally appealing. We also note that the functional JEE is quadratic in a.
Thus the minimization of JEE reduces to the solution of a positive (semi-)definite
linear system after discretization, subsequently leading to a convex optimization
problem. However, the rz term in JEE necessitates the differentiation of the
measured data, leaving the EE approach highly susceptible to noise. (See Acar [1],
Gockenbach and Khan [15], Al-Jamal and Gockenbach [3] for more on (7.2), and
Gockenbach et al. [16] for general elliptic inverse problems.) [7, 13, 14]

Given the advantages of the equation error approach, it is natural to extend it to
the tumor identification inverse problem. However, due to the near incompressibility
of human tissue as outlined above, standard finite element techniques become
ineffective for both the direct and inverse problems.

To better describe the difficulties associated with near incompressibility, we must
first introduce some notation. The dot product of two tensors �1 and �2 will be
denoted by �1 � �2: Given a sufficiently smooth domain ˝ � R

2; the L2-norm of a
tensor-valued function � D � .x/ is provided by

k� k2
L2

D k� k2
L2.˝/

D
Z
˝

� � � D
Z
˝

�
� 2
11 C � 2

12 C � 2
21 C � 2

22

�
:

Alternatively, for a vector-valued function u.x/ D .u1.x/; u2.x//>, the L2-norm is
given by

kuk2
L2

D kuk2
L2.˝/

D
Z
˝

�
u21 C u22

�
;

whereas the H1-norm by

kuk2
H1 D kuk2

H1.˝/
D kuk2

L2
C kruk2

L2
:

For the sake of simplicity, we take f1 D 0 throughout the following. The space
of test functions, denoted by V ; is then given by

V D fv 2 H1.˝/ �H1.˝/ W v D 0 on �1g: (7.5)
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Using Green’s identity and applying the boundary conditions from (7.1c) and
(7.1d), we get the following weak form of (7.1): Find u 2 V such that

Z
˝

2��.u/ � �.v/C
Z
˝

�.div u/.div v/ D
Z
˝

f v C
Z
�2

vf1; for every v 2 NV :
(7.6)

Continuing, we define � W V � V ! R by

�.u; v/ D
Z
˝

2��.u/ � �.v/C
Z
˝

�.div u/.div v/:

Assuming that both� and�C� are bounded away from zero, it can be shown that
there are two positive constants  1 > 0 and  2 > 0 with  1 � � and  2 	 �C �

such that

 1kvk2
V

� �.v; v/ �  2kvk2
V
; for every v 2 V :

From the tissue’s near incompressibility, we have � 
 �, and thus the ratio
 3 D  2= 1 is large. Yet, since the constant �3 determines the error estimates (as
defined by Céa’s lemma), it follows that the actual error could easily outweigh the
optimal approximation error. This unfortunate situation is well known and has been
dubbed the “locking effect” (see Braess [6]).

A variety of approaches have been proposed to overcome the locking effect with
one of the most popular being the use of mixed finite elements, an approach which
we adopt in this work. By introducing a “pressure” term p 2 Q D L2.˝/ with

p D � div u; (7.7)

the weak formulation of (7.7) then becomes:Z
˝

.div u/q �
Z
˝

1

�
pq D 0; for every q 2 Q: (7.8)

Using (7.7), the weak form (7.6) then transforms into the following: Find u 2 V
such thatZ

˝

2��.u/ � �.v/C
Z
˝

p.div v/ D
Z
˝

f v C
Z
�2

vf1; for every v 2 V ; (7.9)

where p is also an unknown.
Thus we have moved from finding u 2 V fulfilling (7.6) to finding .u; p/ 2

V �Q satisfying both (7.8) and (7.9). Throughout the remainder of this chapter, we
will study this transformed problem within the ready framework of a saddle point
problem.
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The remainder of this chapter is organized into four sections. Section 7.2
introduces the equation error optimization formulation for the elastography inverse
problem and analyzes the method’s convergence. In Sect. 7.3, we present several
proximal point approaches for solving the optimization problem arising in Sect. 7.2.
Numerical examples and performance analysis are presented in Sect. 7.4, and we
conclude with a brief discussion of subsequent directions.

7.2 Equation Error Optimization Framework

In this section we introduce the equation error functional and consider the recovery
of the parameter � within an optimization framework along with an analysis of this
method’s convergence.

We define the sets

OV D ˚
u 2 H1.˝/ W u D 0 on �2

�
;

V D OV 2;

V D V � L2.˝/;
A D f� 2 L1.˝/ W � 	 �0 in ˝g ;

where �0 > 0 is a given constant. For the analysis given below, we will also need
the space

V1 D W 1;1.˝/ � L1.˝/

with

kukV1 D max fkukW 1;1 ; kpkL1g ;

where u D .u; p/ 2 V1.
As detailed in Sect. 7.1, the BVP described in Eq. (7.1) is equivalent to the

following saddle point problem: Find u D .u; p/ 2 V such that

Z
˝

2��.u/ � �.v/C
Z
˝

p .r � v/ D
Z
˝

f � v C
Z
�2

f2 � v for all v 2 V ;
Z
˝

.r � u/ q �
Z
˝

1

�
pq D 0 for all q 2 L2.˝/:

(7.10)

We define E1 W L1.˝/ � V ! V
�

and E2 W V ! L2.˝/� by
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E1.�; u/v D
Z
˝

2��.u/ � �.v/C
Z
˝

p .r � v/ for all v 2 V ;

E2.u/v D
Z
˝

.r � u/ q �
Z
˝

1

�
pq for all q 2 L2.˝/;

where u D .u; p/. We also define m 2 V �
by

m.v/ D
Z
˝

f � v C
Z
�2

f2 � v for all v 2 V :

It is important to notice that, while we have defined E1.�; u/ for � 2 L1.˝/,
u 2 V , the functional is also well-defined for � 2 L2.˝/ and u 2 V1; that is, we
can give up some regularity in � by requiring more of u. We will take advantage
of this below (abusing notation by continuing to write E1.�; u/ when � does not
necessarily belong to L1.˝/).

Here are some preliminary results that we will need below.

Lemma 7.1. There exist C1; C2 > 0 such that

kE1.�; u/kV � � .C1k�kL2 C C2/ kukV1 for all � 2 L1.˝/; u 2 V1 \ V:

Proof. We have

jE1.�; u/vj � 2

ˇ̌̌
ˇ
Z
˝

��.u/ � �.v/
ˇ̌̌
ˇC

ˇ̌̌
ˇ
Z
˝

p .r � v/
ˇ̌̌
ˇ

� 2k��.u/kL2k�.v/kL2 C kpkL2kr � vkL2 :

We have

k��.u/k2
L2

D
Z
˝

�2
�

u21;1 C 1

2
.u1;2 C u2;1/

2 C u22;2

�

� 4kuk2
W 1;1

Z
˝

�2 D 4kuk2
W 1;1k�k2

L2
;

and hence k��.u/kL2 � 2kukV1k�kL2 . Also,

kpk2
L2

D
Z
˝

p2 � j˝jkpk2L1 ) kpkL2 � j˝j1=2kpkL1 � j˝j1=2kukV1 :

Since

k�.v/kL2 � kvkH1 � kvkV and kr � vkL2 � p
2kvkH1 � p

2kvkV ;

it follows that
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jE1.�; u/vj � 4kukV1k�kL2kvkV C p
2j˝j1=2kukV1kvkV

D
	
4k�kL2 C p

2j˝j1=2



kukV1kvkV ;

which proves the desired result (with C1 D 4 and C2 D p
2j˝j1=2). ut

Lemma 7.2. Assuming � is bounded away from 0, there exists C3 > 0 with

kE2.u/kV � � C3kukV1 :

Proof. We have

E2.u/v D
Z
˝

.r � u/ q �
Z
˝

1

�
pq

) jE2.u/vj � kr � ukL2kqkL2 C k��1kL1kpkL2kqkL2 ;

where u D .u; p/, v D .v; q/. Since kpkL2 � j˝j1=2kukV1 , and

kr � uk2
L2

D
Z
˝

.u1;1 C u2;2/
2 � 2

Z
˝

�
u21;1 C u22;2

�

� 2

Z
˝

�kuk2
W 1;1 C kuk2

W 1;1

� D 4j˝jkuk2
W 1;1 ;

and hence kr � ukL2 � 2j˝j1=2kukV1 . It follows that

jE2.u/vj � �
2j˝j1=2 C j˝j1=2k��1kL1

� kukV1kqkL2 � C3kukV1kvkV ;
with C3 D 2j˝j1=2 C j˝j1=2k��1kL1 . This proves the desired result. ut
Lemma 7.3. Suppose u 2 V1, � 2 L2.˝/, and �n 2 L2.˝/ for all n 2 Z

C.
If �n ! � in L2.˝/, then E1.�n; u/ ! E1.�; u/ in V �.

Proof. We have

.E1.�n; u/ �E1.�; u// v D
Z
˝

2�n�.u/ � �.v/C
Z
˝

p .r � v/

�
Z
˝

2��.u/ � �.v/ �
Z
˝

p .r � v/

D 2

Z
˝

.�n � �/�.u/ � �.v/;

and therefore

j.E1.�n; u/ �E1.�; u// vj � 2k�.u/kL1k�n � �kL2kvkV
� 2kukV1k�n � �kL2kvkV :
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It follows that kE1.�n; u/ � E1.�; u/kV � � 2kukV1k�n � �kL2 , and the result
follows. ut

7.2.1 The Equation Error Method

The equation error method aims to estimate �� from a measurement z of u� by
minimizing

J.�I z; ˇ/ D kE1.�; z/ �mk2V � C ˇk�k2
H1 : (7.11)

Here we assume that �� 2 A and u� D .u�; p�/ 2 V satisfy (7.10).1

We first prove that J.�I z; ˇ/ has a unique minimizer in H1.˝/ for each ˇ > 0,
provided z belongs to V1.

Theorem 7.4. Suppose z 2 V1. Then, for each ˇ > 0, there exists a unique �ˇ
satisfying

J.�ˇI z; ˇ/ � J.�I z; ˇ/ for all � 2 H1.˝/:

Proof. Since J is bounded below, there exists a minimizing sequence f�ng for J .
We have

ˇk�nk2H1 � J.�nI z; ˇ/ for all n

) k�nk2H1 � ˇ�1J.�nI z; ˇ/ for all n:

Since the right-hand side is bounded, so is the left. Hence f�ng is bounded inH1.˝/

and there exists �ˇ 2 H1.˝/ and a subsequence of f�ng (still denoted by f�ng)
such that �n ! �ˇ weakly inH1.˝/ and, by Rellich’s theorem, strongly inL2.˝/.
Since z 2 V1 and �n ! �ˇ in L2.˝/ imply, by Lemma 7.3, that E1.�n; z/ !
E1.�ˇ; z/ and since the norm is weakly lower semicontinuous, it follows that

inf
�2H1.˝/

J.�I z; ˇ/ D lim
n!1J.�nI z; ˇ/

D lim
n!1

�kE1.�n; z/ �mk2V � C ˇk�nk2H1

�

1It would be natural to define J by

J.�I z; ˇ/ D kE1.�; z/�mk2V � C kE2.z/k2V � C ˇk�k2
H1 :

However, kE2.z/k2V � is constant with respect to � and therefore it makes no difference if this term
is included or not.
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	 kE1.�ˇ; z/ �mk2V � C ˇk�ˇk2
H1

D J.�ˇI z; ˇ/:

This shows that �ˇ is a minimizer of J.�I z; ˇ/. The two terms defining this
functional are both convex and the second (the regularization term) is strictly
convex; hence �ˇ is the unique minimizer of J.�I z; ˇ/. ut

The last inequality in the above proof must actually hold as an equality (since
J.�ˇI z; ˇ/ 	 inf�2H1.˝/ J.�I z; ˇ/) and hence limn!1 k�nkH1 D k�ˇkH1 must
hold. Since �n ! �ˇ weakly in H1.˝/, this shows that f�ng actually converges
to �ˇ strongly in H1.˝/. It follows that any minimizing sequence of J.�I z; ˇ/
converges in H1.˝/ to the unique minimizer �ˇ of J.�I z; ˇ/.

7.2.2 Convergence of the Equation Error Method

Recall that �� 2 A and u� D .u�; p�/ 2 V are assumed to satisfy (7.10).
We do not assume that �� is unique in this regard, so let us define S D˚
� 2 H1.˝/ W E1.�; u�/ D m

�
. Since E1 is affine in �, S is convex.

We can now prove the convergence of the equation error method.

Theorem 7.5. Suppose u� 2 V1, �� 2 H1.˝/ satisfy the saddle point problem
(7.10). Let fzng � V1 be a sequence of observations of u� that satisfy, with the
sequences f�ng, fˇng, the conditions

1. �2n � ˇn � �n for all n 2 Z
C;

2. �2n=ˇn ! 0 as n ! 1;
3. kzn � u�kV1 � �n for all n 2 Z

C;
4. �n ! 0 as n ! 1.

For each n 2 Z
C, let �n be the unique solution of

min
�2H1.˝/

J.�I zn; ˇn/:

Then there exists Q� 2 S such that �n ! Q� in H1.˝/. Moreover, Q� satisfies
k Q�kH1 � k�kH1 for all � 2 S .

Proof. For each � 2 S , we have

ˇnk�nk2H1 � J.�I zn; ˇn/ D kE1.�; zn/ �mk2V � C ˇnk�k2
H1

D kE1.�; zn � u�/k2V � C ˇnk�k2
H1

� .C1k�kL2 C C2/
2 kzn � u�k2V1 C ˇnk�k2

H1 :
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Therefore, for all � 2 S , we have

k�nk2H1 � .C1k�kL2 C C2/
2 �

2
n

ˇn
C k�k2

H1 : (7.12)

In particular, we have

k�nk2H1 � �
C1k��kL2 C C2

�2 �2n
ˇn

C k��k2
H1 � �

C1k��kL2 C C2
�2 C k��k2

H1 ;

since �2n � ˇn by assumption. This shows that f�ng is bounded in H1.˝/. Hence,
by Rellich’s lemma, there exists Q� 2 H1.˝/ and a subsequence f�nk g such that
�nk ! Q� weakly in H1.˝/ and strongly in L2.˝/.

We now show that E1. Q�; u�/ D m, that is, that Q� 2 S . We have

kE1.�nk ; u�/ �mk2V � D kE1.�nk ; u�/ �E1.�nk ; znk /CE1.�nk ; znk / �mk2V �

� 2kE1.�nk ; u� � znk /k2V � C 2kE1.�nk ; znk / �mk2V �

� 2
�
C1k�nkkL2 C C2

�2 kznk � u�k2V1

C 2kE1. Q�; znk / �mk2V � C 2ˇnkk Q�k2
H1

� 2
�
C1k�nkkL2 C C2

�2
�2nk C 2

	
.C1k Q�kL2 C C2/

2 �2nk C ˇnkk Q�k2
H1



� 2

�
C1k�nkkL2 C C2

�2
�2nk C 2

	
.C1k Q�kL2 C C2/

2 C k Q�k2
H1



�nk :

(Here we used �2nk � ˇnk � �nk and the inequality

kE1. Q�; znk / �mk2V � C ˇnkk Q�k2
H1 � .C1k Q�kL2 C C2/

2 �2nk C ˇnkk Q�k2
H1

that was derived above.) Since fk�nkkL2g is bounded and �nk ! 0 as k ! 1,
this shows that kE1.�nk ; u�/ � mkV � ! 0. Since we also have E1.�nk ; u

�/ !
E1. Q�; u�/ by Lemma 7.3, this shows that E1. Q�; u�/ D m and hence that Q� 2 S .

Since �nk ! Q� weakly in H1.˝/, we have k Q�kH1 � lim infk!1 k�nkkH1:

Moreover, by (7.12),

ˇnkk�nkk2H1 � .C1k Q�kL2 C C2/
2 �2nk C ˇnkk Q�k2

H1 ;

which implies that

k�nkk2H1 � .C1k Q�kL2 C C2/
2
�2nk
ˇnk

C k Q�k2
H1 :
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Since �2nk =ˇnk ! 1 as k ! 1, this shows that lim supk!1 k�nkkH1 � k Q�kH1:

Therefore,

k Q�kH1 � lim inf
k!1 k�nkkH1 � lim sup

k!1
k�nkH1 � k Q�kH1;

which proves that k�nkkH1 ! k Q�kH1 , and hence that �nk ! Q� strongly in H1.˝/

as k ! 1.
Next, by (7.12),

k Q�k2
H1 � lim

k!1 k�nkk2H1 � lim
k!1

 
.C1k�kL2 C C2/

2
�2nk
ˇnk

C k�k2
H1

!
D k�k2

H1

holds for all � 2 S .
Finally, since S is a convex set, its element of smallest H1 norm is unique, and

we have shown that every convergent subsequence of f�ng converges to this unique
element Q�. Thus f�ng itself must converge to Q�. This completes the proof. ut

7.2.3 Discrete Formulas

Before describing the proximal methods which we intend to use, we briefly recall
the discretization procedure. We assume that Th is a triangulation on ˝; Lh is the
space of all piecewise continuous polynomials of degree d� relative to Th; U h is the
space of all piecewise continuous polynomials of degree du relative to Th, and Qh

is the space of all piecewise continuous polynomials of degree dq relative to Th.
To represent the discrete saddle point problem in a computable form we

proceed as follows. We represent bases for Lh, Uh and Qh by f'1; '2; : : : ; 'mg,
f 1;  2; : : : ;  ng ; and f�1; �2; : : : ; �kg; respectively. The space Lh is then isomor-
phic to R

m and for any � 2 Lh, we define ` 2 R
m by `i D �.xi /; i D

1; 2; : : : ; m; where the nodal basis f'1; '2; : : : ; 'mg corresponds to the nodes
fx1; x2; : : : ; xmg. Conversely, each L 2 R

m corresponds to � 2 Lh defined by
� D Pm

iD1 `i'i : Analogously, u 2 Uh will correspond to U 2 R
n, where

U i D u.yi /; i D 1; 2; : : : ; n; and u D Pn
iD1 U i i ; where y1; y2; : : : ; yn are the

nodes of the mesh defining Uh. Finally, q 2 Qh will correspond to Q 2 R
k , where

Qi D q.zi /; i D 1; 2; : : : ; k; and q D Pk
iD1 Qi�i ; where z1; z2; : : : ; zk are the

nodes of the mesh defining Qh.
We next define S W Rm ! RnCk to be the finite element solution operator

that assigns to each coefficient �h 2 Ah; the unique approximate solution uh D
.uh; ph/ 2 Uh �Qh. Then S.`/ D U , where U is defined by

K.`/U D F; (7.13)
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whereK.`/ 2 R.nCk/�.nCk/ is the stiffness matrix and F 2 RnCk is the load vector.
With the above preparation, we have the following discrete version of the

equation error functional (7.11) (see Crossen et al. [8] for details):

J.`/ D 1

2

D OL.Z/`C BTP � F; .K CM/�1
	 OL.Z/`C BTP � F


E
;

where OL is the so-called adjoint stiffness matrix, K is the stiffness matrix, M is the
mass matrix, and Z is the data for u (see [8]).

Moreover, for first derivative of J.`/ is given by:

DJ.`/.ı`/ D
D OL.Z/ı`; .K CM/�1. OL.Z/`C BTP � F /

E
;

implying that the gradient of J.`/ is given by

rJ.`/ D OL.Z/T .K CM/�1. OL.Z/`C BTP � F /: (7.14)

For the second derivative we then have

D2J.`/.ı`/. Qı`/ D
D OL.Z/ı`; .K CM/�1 OL.Z/ Qı`

E
D
D OL.Z/T .K CM/�1 OL.Z/ı`; Qı`

E
;

which implies that the Hessian of J.`/ is

r2J.`/ D OL.Z/T .K CM/�1 OL.Z/: (7.15)

We note that the Hessian does not depend on `, making the coupling of Newton
methods with the equation error approach particularly appealing from a computa-
tional perspective.

7.3 Proximal Methods

In the previous section, we posed the elastography inverse problem as a convex
optimization problem. In this section, our objective is to test the feasibility of the
equation error formulation by solving this inverse problem numerically. Evidently,
there are numerous methods which can be used to solve the optimization problem at
hand. However, as mentioned earlier, due to the stabilizing feature of the proximal
methods, we apply several proximal-like optimization algorithms to numerically
solve the equation error formulation. We particularly examine several variations on
the self-adaptive, inexact Hager and Zhang proximal-point algorithms developed
in [17]. We remark that for clarity, the forgoing discussion uses the continuous
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formulation. However, for computational purposes we use the discrete counterpart
given in the previous section. We also note that in our numerical experiments, we
often ignore the simple constraints given in the feasible set A and hence solve
the unconstrained equation error formulation. This simplification brings us to the
framework of [17] where details of the convergence analysis of the used algorithms
can be found. We begin with a review of the classical proximal-point algorithm.
Drawing on (7.11), we seek the solution to our fundamental constrained convex
minimization problem:

min
�2A J.�/ D kE1.�; z/ �mk2V � C ˇk�k2

H1 (7.16)

where A is a closed and convex set representing our feasible set of parameters.
We now consider the related functional

JP .�/ D J.�/C 1

2�k
k� � �kk2; (7.17)

where �k is a positive number and �k 2 A. We note that JP .�/ is strictly
convex since J and the introduced quadratic term 1

2�k
k� � �kk22, known as the

proximal regularization term, are both also strictly convex. Thus, we have the
related, uniquely-solvable subproblem

min
�2A JP .�/ (7.18)

for which the necessary and sufficient optimality conditions in turn yield the
following variational inequality problem: Find �� 2 A such that

hrJP .��/; � � ��i 	 0; 8� 2 A: (7.19)

In this context, the classical proximal-point algorithm generates a sequence f�kg
such that

�kC1 D arg min
�2A

�
J.�/C 1

2�k
k� � �kk2

�
(7.20)

where f�kg is a sequence of positive numbers.
Rockafellar [27] showed that if J is strongly convex at a solution of (7.16),

then the proximal point method converges linearly when �k remains bounded and
superlinearly when �k ! 1: Subsequently, we will consider several variations on
the above proximal approach coupled with the method of accelerated convergence
outlined by Hager and Zhang [17]. For further details on these methods and their
history, we refer the interested reader to [18, 22, 26, 27, 29] and the cited references
therein. We note that the so-called auxiliary problem principle which generalizes the
proximal point methods have been explored in [23] for elliptic inverse problems.
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7.3.1 Hager and Zhang’s Proximal Point Method

Hager and Zhang [17] introduced (with A WD R
n) two criteria between subsequent

iterates of (7.20) for the solution of the subproblem (7.18). One of the criteria that
we will be focusing on is that �kC1 is acceptable when

JP .�kC1/ � J.�k/

krJP .�kC1/k � �kkrJ.�k/k;

where �k D 1=�k:

As they detail, taking the proximal regularization parameter as

�k D 
krJ.�k/k�;

where � 2 Œ0; 2/ and 
 > 0 are constants, gives quadratic convergence of the iterates
to the solution set of (7.18). This gives rise to the following algorithm:

ALGORITHM 1:

Initialization Step: Choose an initial guess �0, initialize 
 and �, and take k D
0. Let �k D 
krJ.�k/k� and let � D 1.

Step 1: Find �kC1 satisfying

krJP .�kC1/k � �k�krJ.�k/k: (7.21)

Step 2: If �kC1 satisfies

JP .�kC1/ � J.�k/; (7.22)

go to Step 3;
else,
set � D 0:1� and go to Step 1.

Step 3: Let

�k D �kC1:

Step 4: Set k D k C 1 and go to Step 1.

There are many reasonable stopping criteria to terminate the above algorithms.
The particular one that we use is that the gradient norm is bounded by the given
tolerance, see Sect. 7.4.1 for details. In Step 1, the subproblem was solved using an
unconstrained conjugate-gradient trust-region method to find the subsequent iterate
�kC1. The numerical results for this method are given in Fig. 7.1 and Table 7.1. Con-
vergence analysis of the above scheme can be found in [17, Theorems 3.1 and 4.2].
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Fig. 7.1 Hager–Zhang method

Table 7.1 Numerical results

Method J evals rJ evals r2J evals Iter. L2 error

Hager and Zhang 14; 556 13; 908 – 8 3.556e�05

'-Divergence 17; 365 16; 593 – 9 2.853e�05

Bregman 24; 292 23; 213 – 12 2.444e�05

Quadratic-' 21 19 19 3 3.896e�08
TR using Tikhonov 24;345 24;345 – 9 7.185e�04

TR using Tikhonov (second-order) 9 9 9 8 7.185e�04

7.3.2 Hager and Zhang’s Proximal Point Method Using
'-Divergence

The first variant of the classical proximal algorithm we examine replaces the
proximal regularization term in (7.17) by what are known as '-divergences (see
Kanzow [21] for further details). For their definition, let ˚ denote the class of
closed, proper and convex functions ' W R ! .�1;1� which have domain.'/ �
Œ0;1/ and which possess the following properties:

1. ' is twice continuously differentiable on int.domain.'// D .0;C1/:

2. ' is strictly convex on its domain.
3. lim

t!0C'
0.t/ D �1:

4. '.1/ D '0.1/ D 0 and '00.1/ > 0:
5. There exists � 2 � 1

2
'00.1/; '00.1/

�
such that
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�
1 � 1

t

� �
'00.1/C �.t � 1/� � '0.t/ � '00.1/.t � 1/ 8 t > 0:

Then for some ' 2 ˚ , the '-divergence between two x; y 2 R
nC is given by

d'.x; y/ D
nX
iD1

yi'

�
xi

yi

�
: (7.23)

A few examples of suitable ' functions are

'1.t/ D t log t � t C 1;

'2.t/ D � log t C t � 1;

'3.t/ D
	p

t � 1

2
:

Taking '1 above yields the '-divergence

d'1 .x; y/ D
nX
iD1

xi log
xi

yi
C yi � xi : (7.24)

We now replace the proximal regularization term in (7.17) with (7.24) giving

J'1.�/ D J.�/C �kd'1.�; �
k/ (7.25)

and subsequently the proximal-like iteration

�kC1 D arg min
�2A J'1.�/: (7.26)

Substituting J'1.�/ for JP .�/ into Algorithm 1 yields the '-divergence
proximal-like algorithm. Numerical results using J'1 are provided in Fig. 7.2 and
in Table 7.1.

7.3.3 Hager and Zhang’s Proximal Point Method Using
Bregman Functions

Continuing in the manner of '-divergences above, the next modified algorithm
replaces the proximal regularization term with another strictly convex distance
function defined by

D .x; y/ D  .x/ �  .y/ � r .y/T .x � y/; (7.27)
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Fig. 7.2 Hager–Zhang method using '-divergence

where  is a so-called Bregman function.
We now review the definition of a Bregman function. Let S be an open and

convex set and a let  W S ! R be a given mapping. If  is a Bregman function, it
must satisfy the following criteria:

1.  is strictly convex and continuous on S .
2.  is continuously differentiable in S .
3. The partial level set

L˛ D fy 2 S jD .x; y/ � ˛g

is bounded for every x 2 S:
4. If fykg � S converges to x, then lim

k!1D .x; y
k/ D 0:

A few examples of Bregman functions are given below:

 1.x/ D 1

2
kxk2 with S D R

n;

 2.x/ D
nX
iD1

xi log xi � xi with S D R
nC;

 3.x/ D �
nX
iD1

log xi with S D R
nC:
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We note that the corresponding distance function for  1 is

D 1.x; y/ D 1

2
kx � yk2;

which recovers the original proximal regularization term introduced in (7.17).
Similarly, for  2 we have

D 2.x; y/ D
nX
iD1

xi log
xi

yi
C yi � xi

which is equivalent to the '-divergence given by (7.24).
Taking

D 3.x; y/ D
nX
iD1

xi

yi
� log

xi

yi
� 1

we can again replace the proximal regularization term to get the functional

J 3.�/ D J.�/C �kD 3.�; �
k/ (7.28)

and the corresponding subproblem

�kC1 D arg min
�2A J 3.�/: (7.29)

We present numerical results using the functional J 3 in Fig. 7.3 and in Table 7.1.

7.3.4 Proximal-Like Methods Using Modified '-Divergence

To solve the subproblem (7.21) in Algorithm 1 using the '-divergence method, we
made use of a fast conjugate-gradient-based trust-region method.

To avoid possible ill-conditioning of the Hessian (see [21] for a full discussion),
we replace the original '-divergence function with

Qd'.x; y/ D
nX
i�1

y2i '

�
xi

yi

�
(7.30)

giving

r2
xx

Qd'.x; y/ D
nX
iD1

'00
�
xi

yi

�
ei e

T
i (7.31)
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Fig. 7.3 Hager–Zhang method using Bregman function

where ei is the i th unit basis vector of Rn.
Again taking

J Q'1.�/ D J.�I zIˇ/C Qd'1.�; �k/ (7.32)

we have the iteration

�kC1 D arg min
�2A J Q'1.�/: (7.33)

However, now equipped with the Hessian of J Q'1.�/, we can apply a full Newton-
type method to solve the associated subproblem. The numerical performance of this
approach is shown in Fig. 7.4.

7.4 Numerical Experiments

In this section we consider a representative example of an elastography inverse
problem for the recovery of a variable � on a two dimensional isotropic domain
˝ D .0; 1/� .0; 1/ with boundary @˝ D �1[�2. �1, where the Dirichlet boundary
conditions hold, is taken as the top boundary of the domain while �2, where the
Neumann conditions hold, is taken as the union of the remaining boundary points.
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Fig. 7.4 Hager–Zhang using quadratic '-divergence

The inverse problem is solved on a 50 � 50 quadrangular mesh with 2,601
quadrangles and 69,254,226 total degrees of freedom (see [8] for a more thorough
discussion of the discretization and the use of mixed finite element methods).

In keeping with the near incompressibility inherent in the problem, � is taken as
a large constant, particularly � D 106.

The functions defining the coefficient, load, and boundary conditions are as
follows:

� .x; y/ D 2:5C 1

4
cos .2�xy/ ; f .x; y/ D

�
1C 1

10
x2

1
10
y

�
;

f1 .x; y/ D
�
0

0

�
on �1; f2 .x; y/ D

�
1
2

C x2

0

�
on �2:

7.4.1 Comparative Performance Analysis

For all the numerical results shown in Table 7.1 and in the various figures (Figs. 7.5
and 7.6), we take a constant �0.x; y/ D 1. For the proximal methods, we take

 D 10�4 and � D 1:99. For the experiments using Tikhonov regularization, we take
the regularization parameter ˇ D 10�4. Equivalent stopping criteria were applied
to both the experiments using proximal methods (rJ � 10�10) and Tikhonov
regularization (rJ � 10�10).
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Fig. 7.5 Trust-region using Tikhonov regularization

Fig. 7.6 Trust-region using Tikhonov regularization (quadratic)

As the table shows quite dramatically, the second-order Newton method outper-
forms the other proximal point methods in the solution of the elastography inverse
problem. We note, however, that although the cost of calculating the Hessian is
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small, given that it does not depend on the parameter �, the inversion of the term
.KCM/ in (7.15) destroys any sparsity structure inherent in the mass and stiffness
matrices and thus places some practical limits on the scale of this method.

Furthermore, the same example was run using Tikhonov regularization and a
trust-region dogleg optimization method. For a complete comparison with the other
methods, both a quasi-Newton method and a full second-order Newton method
were applied to the optimization problem. As can again be seen from Table 7.1,
the proximal methods yield results readily comparable to those using Tikhonov
regularization. Overall, the proximal methods perform largely better than their
Tikhonov counterparts, with fewer function and gradient evaluations and lower
error for similar algorithmic stopping criteria. Of particular note is that, although
the second-order proximal algorithm has a slightly higher computational cost over
its counterpart, the Tikhonov method produces error several orders of magnitude
larger.

7.5 Conclusion

In this work, we have examined the equation error approach to the solution of the
tumor identification inverse problem and investigated the performance of several
proximal-like algorithms for solving the related optimization problem. Several
numerical experiments were performed that demonstrate the potential advantages
of proximal methods over other commonly-used approaches such as those using
Tikhonov regularization, and in particular, where the choice of an optimal regular-
ization parameter is unlikely or impossible.

Given the significant performance advantages afforded by proximal algorithms
using full the Newton methods, these preliminary results suggest the exploration
of improvements based on these techniques. In future work, the authors seek to
apply and perform in-depth analysis of hybrid proximal techniques such as those
outlined in [28] for the tumor identification inverse problem, as well as explore
second-order methods for solving the proximal subproblem that can overcome the
scaling problems inherent in the calculation of the objective function’s Hessian.
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Chapter 8
Discontinuous Galerkin Methods for an Elliptic
Variational Inequality of Fourth-Order

Fei Wang, Weimin Han, Jianguo Huang, and Tianyi Zhang

Abstract Discontinuous Galerkin (DG) methods are studied for solving an elliptic
variational inequality of fourth-order. Numerous discontinuous Galerkin schemes
for the Kirchhoff plate bending problem are extended to the variational inequality.
Numerical results are presented to illustrate convergence orders of the different
methods.
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8.1 Introduction

In this chapter, we introduce and study several discontinuous Galerkin (DG)
methods for solving an elliptic variational inequality of fourth-order.

8.1.1 Discontinuous Galerkin Methods

Discontinuous Galerkin methods form an important family of nonconforming
finite element methods for boundary value or initial-boundary value problems of
hyperbolic, parabolic and elliptic partial differential equations. We refer to [10]
for a historical account about DG methods. Discontinuous Galerkin methods use
piecewise smooth functions without much global smoothness to approximate the
problem solution, and connect the information between two neighboring elements
by the so-called numerical traces. The practical interest in DG methods is due
to their flexibility in mesh design and adaptivity, in that they allow elements of
arbitrary shapes, irregular meshes with hanging nodes, and the discretionary local
shape function spaces. In addition, the increase of the locality in discretization
enhances the degree of parallelizability.

There are two basic approaches to construct DG methods for linear elliptic
boundary value problems. The first approach is to choose an appropriate bilinear
form that contains penalty terms to penalize jumps across neighboring elements to
make the scheme stable. The second approach is to choose appropriate numerical
fluxes to make the method consistent, conservative and stable. In [1, 2], Arnold,
Brezzi, Cockburn, and Marini provided a unified error analysis of DG methods for
linear elliptic boundary value problems of second-order and succeeded in building
a bridge between these two families of DG methods, establishing a framework to
understand their properties, differences and the connections between them. In [21],
numerous DG methods were extended for solving elliptic variational inequalities of
second-order, and a priori error estimates were established, which are of optimal
order for linear elements. DG methods for the Signorini problem and a quasistatic
contact problem were also studied in [22, 23], respectively. In this chapter, we
study DG methods to solve an elliptic variational inequality of fourth-order for the
Kirchhoff plates. The novel difficulty in constructing stable DG methods for such
problems is caused by their high order of four. The major known DG methods for
the biharmonic equation in the literature are primal DG methods, namely variations
of interior penalty (IP) methods [4, 5, 7, 12, 16–18, 20]. Fully discontinuous IP
methods, which cover meshes with hanging nodes and locally varying polynomial
degrees, ideally suited for hp-adaptivity, were investigated systematically in [16–
18, 20] for biharmonic problems. In [12], a C0 IP formulation was introduced
for Kirchhoff plates and quasi-optimal error estimates were obtained for smooth
solutions. Unlike fully discontinuous Galerkin methods, C0 type DG methods do
not “double” the degrees of freedom at element boundaries. To consider the C0 IP
method under a weak regularity assumption on the solution, a rigorous error analysis
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was presented in [7]. A weakness of this method is that the penalty parameter can not
be precisely quantified a priori, and the penalty parameter must be chosen suitably
large to guarantee stability. However, a large penalty parameter has a negative
impact on accuracy. Based on this observation, a C0 DG (CDG) method was
introduced in [24], where the stability condition can be precisely quantified. In [15],
a consistent and stable CDG method, called the LCDG method, was derived for the
Kirchhoff plate bending problem, which can be viewed as an extension of the LDG
method studied in [8, 9]. We will extend these three methods and propose two other
new CDG methods to solve the elliptic variational inequality of fourth-order.

8.1.2 Kirchhoff Plate Bending Problem

We now describe a Kirchhoff plate bending problem. Let ˝ � R
2 be a bounded

polygonal domain with boundary � . The boundary value problem of a clamped
Kirchhoff plate under a given scaled vertical load f 2 L2.˝/ is (cf. [19])

( P2
i;jD1Mij;ij .u/C f D 0 in ˝;

u D @�u D 0 on �;
(8.1)

where

Mij .u/ WD �.1 � �/@ij u � �
2X

kD1
@kkuıij ; 1 � i; j � 2;

ıij is the usual Kronecker delta, � 2 .0; 0:5/ denotes the Poisson ratio of an elastic
thin plate occupying the region ˝ and � stands for the unit outward normal vector
on � . As in [15], we introduce an auxiliary matrix-valued function by

� WD �.1 � �/r2u � � tr.r2u/I ; (8.2)

where I is the identity matrix of order 2 and tr.�/ is the trace operation on matrices.
Here, we denote the gradient of v by rv and the Hessian of v by r2v, i.e.,

r2v WD r.rv/ D r..@1v; @2v/t / D
�
@11v @12v

@21v @22v

�
:

Then, the problem (8.1) can be rewritten as

8̂̂
<̂
ˆ̂̂:

1

1 � � � � �

1 � �2 .tr� /I D �r2u in ˝;

� r � .r � � / D f in ˝;

u D @�u D 0 on �:

(8.3)
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For a vector-valued function v D .v1; v2/
t and a matrix-valued function � D

.�ij /2�2, we define their divergences by

r � v WD v1;1 C v2;2; r � � WD .�11;1 C �21;2; �12;1 C �22;2/
t :

We denote the normal and tangential components of a vector v on the boundary
by v� D v � � and v
 D v � v��. Similarly, for a tensor � , we define its normal
component �� D �� � � and tangential component � 
 D �� � ���. We have the
decomposition formula

.��/ � v D .��� C � 
 / � .v�� C v
 / D ��v� C � 
 � v
 :

For two matrices � and � , their double dot inner product and corresponding norm
are � W � D P2

i;jD1 �ij 
ij and j�j D .� W �/1=2.
The following result is very useful for the analysis of DG methods, which can be

verified directly by integration by part.

Lemma 8.1. Let D be a bounded domain with a Lipschitz boundary @D. For a
symmetric matrix-valued function � and a scalar function v, the following two
identities holdZ

D

vr � .r � �/ dx D
Z
D

r2v W � dx �
Z
@D

rv � .�n/ ds C
Z
@D

v n � .r � �/ ds;

Z
D

r2v W � dx D �
Z
D

rv � .r � �/ dx C
Z
@D

rv � .�n/ ds;

whenever the terms appearing on both sides of the above identities make sense. Here
n is the unit outward normal to @D.

Multiplying the second equation in (8.3) by a test function v 2 H2
0 .˝/ and

noticing v D @�v D 0, we get the following equation by applying Lemma 8.1,

�
Z
˝

� W r2v dx D
Z
˝

f v dx: (8.4)

With the definition of � , the weak formulation of the problem (8.3) can be derived
from (8.4) as follows:

Find u 2 H2
0 .˝/ W a.u; v/ D .f; v/ 8 v 2 H2

0 .˝/; (8.5)

where the bilinear form is

a.u; v/ D
Z
˝

�
�u�vC .1��/ .2 @12u @12v�@11u @22v�@22u @11v/

�
dx; (8.6)
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and the linear form is

.f; v/ D
Z
˝

f v dx:

In this chapter, we consider an elliptic variational inequality (EVI) of the fourth-
order for Kirchhoff plates [11]:

Find u 2 K W a.u; v � u/ 	 .f; v � u/ 8 v 2 K: (8.7)

Here,

K D ˚
v 2 H2.˝/ \H1

0 .˝/ W @�v 	 0 on �
�
: (8.8)

Applying the standard theory on elliptic variational inequalities (e.g., [3, 13]), we
know the problem (8.7) has a unique solution u 2 K. This variational inequality
describes a simply supported plate. The displacement u is held fixed on the
boundary, and the rotation of the plate is unilateral on the boundary.

In error analysis of numerical solutions for the problem (8.7), we need to take
advantage of pointwise relations satisfied by the solution u.

Proposition 8.2. Assume the solution of the problem (8.7) has the regularity u 2
H3.˝/. Then,

�r � .r � � / D f a:e: in ˝;
� 
 D 0; �� � 0; @�u 	 0; ��@�u D 0 a:e: on �:

(8.9)

Proof. Note that � is defined by (8.2). Then � 2 H1.˝/2�2. We rewrite (8.7) as

Z
˝

��� W r2.v � u/ � f .v � u/
�
dx 	 0 8 v 2 K:

Take v D u ˙ ' for any ' 2 C1
0 .˝/ to obtain

�
Z
˝

� W r2' dx D
Z
˝

f ' dx 8' 2 C1
0 .˝/:

Thus,

�r � .r � � / D f in the sense of distribution:

Since f 2 L2.˝/, we deduce that r � .r � � / 2 L2.˝/ and

�r � .r � � / D f a:e: in ˝:

This is the first relation in (8.9).
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Since r � � 2 L2.˝/2 and r � .r � � / 2 L2.˝/, we have

�
Z
˝

r � .r � � / v dx D
Z
˝

.r � � / � rv dx 8 v 2 C1
0 .˝/:

From this relation, we obtain

�
Z
˝

r � .r � � / v dx D
Z
˝

.r � � / � rv dx 8 v 2 H1
0 .˝/:

Therefore, for any v 2 H1
0 .˝/ \H2.˝/,

�
Z
˝

r � .r � � / v dx D
Z
˝

.r � � / � rv dx

D
Z
�

.��/ � rv ds �
Z
˝

� W r2v dx;

i.e.,

a.u; v/ D
Z
˝

f v dx �
Z
�

.��/ � rv ds 8 v 2 H1
0 .˝/ \H2.˝/:

Recalling the inequality (8.7), we then have

�
Z
�

r.v � u/ � .��/ ds 	 0 8 v 2 K: (8.10)

In (8.10), we choose v D 0 and 2u in turn to obtainZ
�

ru � .��/ ds D 0: (8.11)

Hence, Z
�

rv � .��/ ds � 0 8 v 2 K: (8.12)

By the arbitrariness of v 2 K, it follows that � 
 D 0. Then we get

Z
�

��@�v ds � 0 8 v 2 K: (8.13)

By the arbitrariness of @�v 	 0 on � for v inK, we have �� � 0 a.e. on � . Back to
(8.11), we further deduce ��@�u D 0 a.e. on � . So the relations on the boundary �
in (8.9) hold. ut
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Throughout the chapter, we assume the solution of the problem (8.7) has the
regularity u 2 H3.˝/. In [14, pp. 323–327], one can find regularity results u 2
H3.˝/ for solutions of some variational inequalities of fourth-order.

The rest of the chapter is as follows. In Sect. 8.2, we introduce some notations
and derive some C0 discontinuous Galerkin methods for solving the Kirchhoff
plate bending problem, and extend them to solve the elliptic variational inequality
of fourth-order. In Sect. 8.3, consistency of the CDG methods, boundedness and
stability of the bilinear forms are presented. In the final section, we report results
from a numerical example.

8.2 DG Methods for Kirchhoff Plate Problem

8.2.1 Notations

We introduce some notations frequently used later on. For a given function space B ,
let .B/2�2s WD ˚

� 2 .B/2�2 W �t D �
�
. Given a bounded set D � R

2 and a positive
integer m, Hm.D/ is the usual Sobolev space with the corresponding norm k � km;D
and semi-norm j � jm;D , which are abbreviated by k � km and j � jm, respectively, when
D is chosen as ˝. k � kD is the norm of the Lebesgue space L2.D/. We assume ˝
is a polygonal domain and denote by fThgh a family of triangulations of˝, with the
minimal angle condition satisfied. Let hT D diam.T / and h D maxfhT W T 2 Thg.
For a triangulation Th, let Eh be the union of all edges. We have the non-overlapping
decomposition Eh D E ih [ Ebh , where E ih � Eh is the union of all interior edges,
i.e., the union of all edges in Eh that do not lie on � , and similarly, Ebh � Eh is the
union of the edges on � . For any e 2 Eh, denote by he its length. Related to the
triangulation Th, let

˙ WD
n
� 2 �L2.˝/�2�2

s
W 
ij jT 2 H1.T / 8T 2 Th; i; j D 1; 2

o
;

V WD ˚
v 2 H1

0 .˝/ W vjT 2 H2.T / 8T 2 Th
�
:

The corresponding finite element spaces are

˙ h WD
n
�h 2 �L2.˝/�2�2

s
W 
hij jT 2 Pl.T / 8T 2 Th; i; j D 1; 2

o
;

Vh WD ˚
vh 2 H1

0 .˝/ W vhjT 2 P2.T / 8T 2 Th
�
:

Here, for a triangle T 2 Th, Pl.T / and P2.T / are the polynomial spaces of degrees
l and 2, respectively, with l D 0, 1. Note that we have the following property

r2
hVh � ˙ h;

1

1 � �˙ h � �

1 � �2 .tr˙ h/ I � ˙ h; (8.14)
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where r2
hVhjT WD r2.VhjT / for any T 2 Th. �hv is defined by the relation �hv D

�v on any element T 2 Th. Considering the CDG methods for the variational
inequality (8.7), we introduce the corresponding finite element set

Kh WD fvh 2 Vh W @�vh 	 0 at all vertex nodes on � g :

On each element T , vhjT is a quadratic polynomial function, so @�vh is a linear
polynomial on each edge. With the constraint that @�vh 	 0 at all vertex nodes on
� , we know

@�vh 	 0 on �: (8.15)

For a function v 2 L2.˝/ with vjT 2 Hm.T / for all T 2 Th, define broken
norm and seminorm by

kvkm;h D
� X
T2Th

kvk2m;T
�1=2

; jvjm;h D
� X
T2Th

jvj2m;T
�1=2

:

The above symbols are used in a similar manner when v is a vector or matrix-
valued function. Throughout this chapter, C denotes a generic positive constant
independent of h and other parameters, which may take different values at different
occurrences. To avoid writing these constants repeatedly, we use “x . y” to mean
that “x � Cy”. For two vectors u and v, u ˝ v is a matrix with ui vj as its .i; j /th
component.

Consider two elements TC and T � with a common edge e 2 E ih and let nC
and n� be their outward unit normals on e. For a scalar-valued function v, set its
restriction on T˙ by v˙ D vjT˙ . Similarly, for a matrix-valued function �, write
�˙ D �jT˙ . Then define averages and jumps on e 2 E ih as follows:

fvg D 1

2
.vC C v�/; Œv� D vCnC C v�n�;

frvg D 1

2
.rvC C rv�/; Œrv� D rvC � nC C rv� � n�;

f�g D 1

2
.�C C ��/; Œ�� D �CnC C ��n�:

For e 2 Ebh , the above definitions are modified:

fvg D v; Œv� D v�;

frvg D rv; Œrv� D rv � �;

f�g D �; Œ�� D ��:
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The jump ��� of the vector rv is

�rv� D 1

2
.rvC ˝ nC C nC ˝ rvC C rv� ˝ n� C n� ˝ rv�/ on e 2 E ih;

�rv� D 1

2
.rv ˝ � C � ˝ rv/ on e 2 Ebh :

Define a global lifting operator r i W �L2.E ih/�2�2s
! ˙ h by

Z
˝

r i .�/ W � dx D �
Z
E ih

� W f�g ds 8 � 2 ˙ h; � 2 �L2.E ih/�2�2s
: (8.16)

Moreover, for each e 2 Eh, introduce a local lifting operator re W �L2.e/�2�2
s

!
˙ h by

Z
˝

re.�/ W � dx D �
Z
e

� W f�g ds 8 � 2 ˙ h; � 2 �L2.e/�2�2
s

: (8.17)

It is easy to check that the following identity holds

r i .�/ D
X
e2E ih

re.�je/ 8 � 2 �L2.E ih/�2�2s
;

so we have

kr i .�/k2 D k
X
e2E ih

re.�je/k2 � 3
X
e2E ih

kre.�je/k2: (8.18)

8.2.2 Discontinuous Galerkin Formulations

We first present the derivation of a general primal formulation of CDG methods
for the problem (8.5). By the first equation in (8.3), the first relation in (8.9) and
Lemma 8.1, we have

Z
T

�
1

1 � � � W � � �

1 � �2 tr� tr�

�
dx D

Z
T

ru � .r � �/ dx �
Z
@T

ru � .�nT / ds

for any smooth second-order tensor-valued function �, and

�
Z
T

f v dx D
Z
T

r2v W � dx �
Z
@T

rv � .�nT / ds C
Z
@T

nT � .r � � /v ds
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for any smooth scalar-valued function v. Thus, consider a CDG approximate
solution .� h; uh/ 2 ˙ h � Vh governed by

Z
T

�
1

1 � � � h W �h � �

1 � �2 tr� htr�h

�
dx

D
Z
T

ruh � .r � �h/ dx �
Z
@T

cruh � .�hnT / ds; (8.19)

�
Z
T

f vh dx D
Z
T

r2
hvh W � h dx �

Z
@T

rvh � . O� hnT / ds; (8.20)

for all .�h; vh/ 2 ˙ h � Vh and all T 2 Th. Here we take dr � � h D 0 in
the last equation for sake of simplicity. To derive numerous CDG methods, we
first introduce an identity. For a scalar function v and a symmetric matrix-valued
function �, smooth on each element of the partition Th, after a direct manipulation,
we have

X
T2Th

Z
@T

rv � .�nT / ds D
X
e2E ih

Z
e

Œ�� � frvg ds C
X
e2Eh

Z
e

f�g W �rv� ds:

(8.21)
We now sum Eqs. (8.19) and (8.20) over all T 2 Th and apply Lemma 8.1 and

(8.21) to obtain

Z
˝

�
1

1 � � � h W �h � �

1 � �2 tr� htr�h

�
dx

D �
Z
˝

r2
huh W �h dx C

Z
E ih

fruh � cruhg � Œ�h� ds

C
Z
Eh

�ruh � cruh� W f�hg ds; (8.22)

�
Z
˝

f vh dx D
Z
˝

r2
hvh W � h dx �

Z
E ih

frvhg � Œ O� h� ds �
Z
Eh

�rvh� W f O� hg ds:
(8.23)

Taking �h D .1 � �/r2
hvh C � tr

�r2
hvh

�
I in (8.22), we have

Z
˝

r2
hvh W � h dx D �

Z
˝

.1 � �/r2
huh W r2

hvh dx �
Z
˝

� tr
�r2

huh
�

tr
�r2

hvh
�
dx

C
Z
E ih

fruh � cruhg � �.1 � �/Œr2
hvh�C �Œtr

�r2
hvh

�
�
�
ds

C
Z
Eh

�ruh � cruh� W �.1 � �/fr2
hvhg C � tr

�fr2
hvhg

�
I
�
ds:
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Combining the last equation and (8.23), we obtain an equation which does not rely
on � h explicitly:

Bh.uh; vh/ D
Z
˝

f vh dx 8 vh 2 Vh; (8.24)

where

Bh.uh; vh/ WD
Z
˝

.1 � �/r2
huh W r2

hvh dx C
Z
˝

� tr
�r2

huh
�

tr
�r2

hvh
�
dx

C
Z
E ih

fcruh � ruhg � �.1 � �/Œr2
hvh�C �Œtr

�r2
hvh

�
�
�
ds

C
Z
Eh

�cruh � ruh� W �.1 � �/fr2
hvhg C � tr

�fr2
hvhg

�
I
�
ds

C
Z
E ih

frvhg � Œ O� h� ds C
Z
Eh

�rvh� W f O� hg ds: (8.25)

CDG methods for the problem (8.5) can be obtained from (8.24)–(8.25) by proper
choices of numerical traces O� h and cruh.

The relations (8.24) and (8.25) are also the starting point for designing CDG
methods for solving the variational inequality (8.7) through choice of suitable
numerical traces to guarantee consistency and stability. For example, taking

8̂̂
ˆ̂<
ˆ̂̂̂:

cruh D fruhg on e 2 Eh;

O� h D �.1 � �/fr2
huhg � � tr

�fr2
huhg

�
I C �

he
�ruh� on e 2 E ih;

O� 
 D 0; O�h� � 0; O�h�@�uh D 0 on e 2 Ebh ;

we obtain from (8.24) and (8.25) that

B
.1/

1;h.uh; vh/ D
Z
˝

f vh dx �
Z
�

O�h�@�vh ds; (8.26)

where

B
.1/

1;h.uh; vh/ D
Z
˝

.1 � �/r2
huh W r2

hvh dx C
Z
˝

� tr
�r2

huh
�

tr
�r2

hvh
�
dx

�
Z
E ih

�ruh� W �.1 � �/fr2
hvhg C � tr

�fr2
hvhg

�
I
�
ds

�
Z
E ih

�rvh� W �.1 � �/fr2
huhg C � tr

�fr2
huhg

�
I
�
ds

C
Z
E ih
�h�1

e �ruh� W �rvh� ds: (8.27)
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Here � is a function, which is equal to a constant �e on each e 2 E ih, with f�ege2E ih
having a uniform positive bound from above and below. In (8.26), let vh D wh � uh
with wh 2 Kh. Since O�h� � 0, O�h�@�uh D 0 on e 2 Ebh , we obtain

B
.1/

1;h.uh;wh � uh/ 	
Z
˝

f .wh � uh/ dx 8 wh 2 Kh: (8.28)

For a compact formulation, we can use lifting operator r i to get

B
.1/

2;h.uh; vh/ D
Z
˝

.1 � �/r2
huh W �r2

hvh C r i .�rvh�/
�
dx

C
Z
˝

� tr
�r2

huh
�

tr
�r2

hvh C r i .�rvh�/
�
dx

C
Z
˝

r i .�ruh�/ W �.1 � �/r2
hvh C � tr

�r2
hvh

�
I
�
dx

C
Z
E ih
�h�1

e �ruh� W �rvh� ds: (8.29)

This is the C0 interior penalty (IP) formulation. A similar C0 IP method was
studied in [7].

The two formulas (8.27) and (8.29) are equivalent on the finite element spaces Vh,
so either form can be used to compute the finite element solution uh. In this chapter,
we give a priori error estimates strictly based on the first formula B.1/

1;h. Because of
the equivalence of these two formulations on Vh, we will prove the stability for the
second formula B.1/

2;h on Vh, which ensures the stability for the first formulation B.1/

1;h

on Vh. This comment is valid for the rest of the CDG methods.
We now introduce four more CDG methods for the variational inequality (8.7).

The methods are all of the form (8.28), and so we will only list the corresponding
bilinear form.

Comparing with the DG methods for the second order elliptic problem, we can
give the C0 non-symmetric interior penalty (NIPG) formulations,

B
.2/

1;h.uh; vh/ D
Z
˝

.1 � �/r2
huh W r2

hvh dx C
Z
˝

� tr
�r2

huh
�

tr
�r2

hvh
�
dx

C
Z
E ih

�ruh� W �.1 � �/fr2
hvhg C � tr

�fr2
hvhg

�
I
�
ds

�
Z
E ih

�rvh� W �.1 � �/fr2
huhg C � tr

�fr2
huhg

�
I
�
ds

C
Z
E ih
�h�1

e �ruh� W �rvh� ds;
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or equivalently,

B
.2/

2;h.uh; vh/ D
Z
˝

.1 � �/r2
huh W �r2

hvh C r i .�rvh�/
�
dx

C
Z
˝

� tr
�r2

huh
�

tr
�r2

hvh C r i .�rvh�/
�
dx

�
Z
˝

r i .�ruh�/ W �.1 � �/r2
hvh C � tr

�r2
hvh

�
I
�
dx

C
Z
E ih
�h�1

e �ruh� W �rvh� ds:

That is, we solve the variational inequality

B
.2/

1;h.uh;wh � uh/ 	
Z
˝

f .wh � uh/ dx 8 wh 2 Kh: (8.30)

Using the local lifting operator re , we can give the third example. Taking

8̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂̂
ˆ̂̂:

cruh D fruhg on e 2 Eh;

O� h D � .1 � �/fr2
huhg � � tr.fr2

huhg/I � .1 � �/fr i .�ruh�/g
� �ftr.r i .�ruh�//Ig
� .1 � �/f� re.�ruh�/g � �f� tr.re.�ruh�//gI on e 2 E ih;

O� 
 D 0; O�h� � 0; O�h�@�uh D 0 on e 2 Ebh ;

we get from (8.25) that

B
.3/

1;h.uh; vh/ D
Z
˝

.1 � �/r2
huh W r2

hvh dx C
Z
˝

� tr
�r2

huh
�

tr
�r2

hvh
�
dx

�
Z
E ih

�ruh� W �.1 � �/fr2
hvhg C � tr

�fr2
hvhg

�
I
�
ds

�
Z
E ih

�rvh� W �.1 � �/fr2
huhg C � tr

�fr2
huhg

�
I
�
ds

C
Z
˝

r i .�rvh�/ W �.1 � �/r i .�ruh�/C � tr.r i .�ruh�//I
�
dx

C
X
e2E ih

Z
˝

�. .1 � �/re.�ruh�/ W re.�rvh�/

C � tr.re.�ruh�//tr.re.�rvh�// / dx;
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or equivalently,

B
.3/

2;h.uh; vh/ D
Z
˝

.1 � �/ �r2
huh C r i .�ruh�/

� W �r2
hvh C r i .�rvh�/

�
dx

C
Z
˝

� tr
�r2

huh C r i .�ruh�/
�

tr
�r2

hvh C r i .�rvh�/
�
dx

C
X
e2E ih

Z
˝

�. .1 � �/re.�ruh�/ W re.�rvh�/

C � tr.re.�ruh�//tr.re.�rvh�// / dx;

which is the CDG formulation proposed in [24]. That is, we solve the variational
inequality

B
.3/

1;h.uh;wh � uh/ 	
Z
˝

f .wh � uh/ dx 8 wh 2 Kh: (8.31)

With the choice of8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
:

cruh D fruhg on e 2 Eh;

O� h D � .1 � �/fr2
huhg � � tr.fr2

huhg/I � .1 � �/f� re.�ruh�/g
� �f� tr.re.�ruh�//gI on e 2 E ih;

O� 
 D 0; O�h� � 0; O�h�@�uh D 0 on e 2 Ebh ;

we obtain

B
.4/

1;h.uh; vh/ D
Z
˝

.1 � �/r2
huh W r2

hvh dx C
Z
˝

� tr
�r2

huh
�

tr
�r2

hvh
�
dx

�
Z
E ih

�ruh� W �.1 � �/fr2
hvhg C � tr

�fr2
hvhg

�
I
�
ds

�
Z
E ih

�rvh� W �.1 � �/fr2
huhg C � tr

�fr2
huhg

�
I
�
ds

C
X
e2E ih

Z
˝

�. .1 � �/re.�ruh�/ W re.�rvh�/

C � tr.re.�ruh�//tr.re.�rvh�// / dx;

or equivalently,
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B
.4/

2;h.uh; vh/ D
Z
˝

.1 � �/r2
huh W �r2

hvh C r i .�rvh�/
�
dx

C
Z
˝

� tr
�r2

huh
�

tr
�r2

hvh C r i .�rvh�/
�
dx

C
Z
˝

r i .�ruh�/ W �.1 � �/r2
hvh C � tr

�r2
hvh

�
I
�
dx

C
X
e2E ih

Z
˝

�. .1 � �/re.�ruh�/ W re.�rvh�/

C � tr.re.�ruh�//tr.re.�rvh�// / dx;

which is the CDG formulation extended from the DG method of [6] for elliptic
problem of second order. That is, we solve the variational inequality

B
.4/

1;h.uh;wh � uh/ 	
Z
˝

f .wh � uh/ dx 8 wh 2 Kh: (8.32)

Choosing

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
:

cruh D fruhg on e 2 Eh;

O� h D � .1 � �/fr2
huhg � � tr.fr2

huhg/I � .1 � �/fr i .�ruh�/g
� �ftr.r i .�ruh�//Ig C �h�1

e �ruh� on e 2 E ih;

O� 
 D 0; O�h� � 0; O�h�@�uh D 0 on e 2 Ebh ;

we get the LCDG method [15],

B
.5/

1;h.uh; vh/ WD
Z
˝

.1 � �/r2
huh W r2

hvh dx C
Z
˝

� tr
�r2

huh
�

tr
�r2

hvh
�
dx

�
Z
E ih

�ruh� W �.1 � �/fr2
hvhg C � tr

�fr2
hvhg

�
I
�
ds

�
Z
E ih

�rvh� W �.1 � �/fr2
huhg C � tr

�fr2
huhg

�
I
�
ds

C
Z
˝

r i .�rvh�/ W �.1 � �/r i .�ruh�/C � tr.r i .�ruh�//I
�
dx

C
Z
E ih
�h�1

e �ruh� W �rvh� ds;

or equivalently,
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B
.5/

2;h.uh; vh/ WD
Z
˝

.1 � �/ �r2
huh C r i .�ruh�/

� W �r2
hvh C r i .�rvh�/

�
dx

C
Z
˝

� tr
�r2

huh C r i .�ruh�/
�

tr
�r2

hvh C r i .�rvh�/
�
dx

C
Z
E ih
�h�1

e �ruh� W �rvh� ds:

That is, we solve the variational inequality

B
.5/

1;h.uh;wh � uh/ 	
Z
˝

f .wh � uh/ dx 8 wh 2 Kh: (8.33)

In the following sections, we will study CDG methods for the EVI (8.7) defined as
follows: Find uh 2 Kh such that

Bh.uh; vh � uh/ 	 .f; vh � uh/ 8 vh 2 Kh; (8.34)

where the bilinear form Bh.w; v/ D B
.j /

1;h .w; v/ with j D 1; � � � ; 5.

8.3 Consistency, Boundedness and Stability

We present some properties of the five DG methods introduced in Sect. 8.2. First,
we address the consistency of the methods (8.34).

Lemma 8.3. Assume u 2 H3.˝/ is the solution of the problem (8.7). For all the
five CDG methods Bh.w; v/ D B

.j /

1;h .w; v/ with j D 1; � � � ; 5, we have

Bh.u; vh � u/ 	 .f; vh � u/ 8 vh 2 Kh:

Proof. Noting �ru� D 0 on each edge e 2 E ih, we use (8.2) to get

Bh.u; vh � u/ D
Z
˝

.1 � �/r2u W r2
h.vh � u/ dx

C
Z
˝

� tr
�r2u

�
tr
�r2

h.vh � u/
�
dx

�
Z
E ih

�r.vh � u/� W �.1 � �/r2u C � tr
�r2u

�
I
�
ds

D �
X
T2Th

Z
T

� W r2
h.vh � u/ dx C

Z
E ih

�r.vh � u/� W � ds:
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Using Lemma 8.1 and noticing Œ� � D 0 on each edge e 2 E ih, we have

X
T2Th

Z
T

� W r2
h.vh � u/ dx D �

X
T2Th

Z
T

r.vh � u/ � .r � � / dx

C
X
T2Th

Z
@T

r.vh � u/ � .�nT / ds

D �
Z
˝

r.vh � u/ � .r � � / dx

C
Z
Eh

�r.vh � u/� W � ds:

Combining the above two equations,

Bh.u; vh � u/ D
Z
˝

r.vh � u/ � .r � � / dx �
Z
�

�r.vh � u/� W � ds:

Since vh � u D 0 on � and @�vh 	 0 on � for all vh 2 Kh, we use Lemma 8.1 and
(8.9) to obtain

Bh.u; vh � u/ D �
Z
˝

.vh � u/r � .r � � / dx �
Z
�

r.vh � u/ � .��/ ds

D
Z
˝

f .vh � u/ dx �
Z
�

��@�vh ds

	
Z
˝

f .vh � u/ dx:

So the stated result holds. ut
Let V.h/ WD Vh C H1

0 .˝/ \ H3.˝/ and define two mesh-dependent energy
norms by

jvj2� D jvj22;h C
X
e2E ih

h�1
e k�rv�k20;e; �v�2 D jvj2� C

X
T2Th

h2T jvj23;T ; v 2 V.h/:

To show these formulas define norms, we only need prove that jvj� D 0 and v 2
V.h/ imply v D 0. From jvj2;h D 0, we have vjT 2 P1.T / and so rv is piecewise
constant. Let e be a common edge of two elements TC and T �. From k�rv�k0;e D
0, we obtain .rv/C D .rv/�. Thus, rv is constant in ˝ and so v 2 P1.˝/. Since
v D 0 on � , we conclude v D 0 in ˝.

Before presenting boundedness and stability results of the bilinear forms, we give
a useful estimate for the lifting operator re .
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Lemma 8.4. For any v 2 V.h/ and e 2 E ih,

C1h
�1
e k�rv�k20;e � kre.�rv�/k20;h � C2h

�1
e k�rv�k20;e: (8.35)

Proof. The second inequality was proved in [15]. For v 2 H3.˝/, �rv� D 0 on
e 2 E ih. So we only need to consider the case v 2 Vh. By the formula between (4.4)
and (4.5) in [2], we know

h�1
e k'k20;e . kr�

e .'/k20;˝ . h�1
e k'k20;e 8 ' 2 ŒP1.e/�2; (8.36)

where the lifting operator r�
e W .L2.e//2 ! Wh is defined by

Z
˝

r�
e .v/ � wh dx D �

Z
e

v � fwhg ds 8 wh 2 Wh:

Here, Wh WD
n
wh 2 �L2.˝/�2 W whjK 2 ŒPl .K/�2 8K 2 Th

o
.

For two matrix-valued functions � D .�ij /2�2 and � D .
ij /2�2, let �1 D
.�11; �21/

t , �2 D .�12; �22/
t , �1 D .
11; 
21/

t , �2 D .
12; 
22/
t , so that � D

.�1;�2/, � D .�1;�2/. Then

Z
˝

re.�/ W � dx D �
Z
e

� W f�g ds D �
Z
e

�1 � f�1g ds �
Z
e

�2 � f�2g ds

D
Z
˝

r�
e .�1/ � �1 dx C

Z
˝

r�
e .�2/ � �2 dx

D
Z
˝

.r�
e .�1/; r

�
e .�2// W � dx;

for all � 2 � h. So re.�/ D .r�
e .�1/; r

�
e .�2//, kre.�/k20;˝ D kr�

e .�1/k20;˝ C
kr�

e .�2/k20;˝ , and

h�1
e k�k20;e D h�1

e .k�1k20;e C k�2k20;e/
. kr�

e .�1/k20;˝ C kr�
e .�2/k20;˝ D kre.�/k20;˝:

Let � D �rv�, the first inequality is proved. ut
From (8.35) and (8.18), we have

kr i .�rv�/k20;h D k
X
e2E ih

re.�rv�/k20;h � 3C2
X
e2E ih

h�1
e k�rv�k20;e:
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For the boundedness of the primal forms B.j /

1;h with j D 1; � � � ; 5, first notice that
ktr.�/k0;h . k�k0;h. By the Cauchy–Schwarz inequality and Lemma 8.4, we get the
following inequalities:

Z
˝

r2
hw W r2

hv dx � jwj2;hjvj2;h; (8.37)

Z
˝

r i .�rw�/ W r i .�rv�/ dx

.

0
@X
e2E ih

h�1
e k�rw�k20;e

1
A
1=20
@X
e2E ih

h�1
e k�rv�k20;e

1
A
1=2

; (8.38)

Z
E ih
�h�1

e �rw� W �rv� ds

� sup
e2E ih

�e

0
@X
e2E ih

h�1
e k�rw�k20;e

1
A
1=20
@X
e2E ih

h�1
e k�rv�k20;e

1
A
1=2

; (8.39)

X
e2E ih

Z
˝

� re.�rw�/ W re.�rv�/ dx

. sup
e2E ih

�e

0
@X
e2E ih

h�1
e k�rw�k20;e

1
A
1=20
@X
e2E ih

h�1
e k�rv�k20;e

1
A
1=2

: (8.40)

Using the trace inequality kr2vk0;e . h�1
e jvj22;K C hejvj23;K with e an edge of K,

we haveZ
E ih

�rw� W fr2
hvg ds D

X
e2E ih

Z
e

�rw� W fr2
hvg ds

�
0
@X
e2E ih

h�1
e k�rw�k20;e

1
A
1=20
@X
e2E ih

hekfr2
hvgk20;e

1
A
1=2

.

0
@X
e2E ih

h�1
e k�rw�k20;e

1
A
1=20
@X
T2Th

.jvj22;T C h2T jvj23;T /
1
A
1=2

:

(8.41)

The inequalities (8.37) and (8.41) are needed by all bilinear forms. For the CDG
methods with the bilinear form B

.j /

1;h , j D 1; 2; 5, the inequality (8.39) is needed.
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The inequality (8.38) is needed by the formulas B.j /

1;h with j D 3; 5. The methods

with the bilinear forms B.j /

1;h , j D 3; 4, need the inequality (8.40). Then we have
the following result.

Lemma 8.5 (Boundedness). Let Bh D B
.j /

1;h with j D 1; � � � ; 5. Then

Bh.w; v/ . �w � �v � 8 .w; v/ 2 V.h/ � V.h/: (8.42)

For stability over Vh, note that �v� D jvj� for any v 2 Vh. Formulations B.j /

1;h

and B.j /

2;h are equivalent on Vh, so we just need to prove the stability for B.j /

2;h based
on j � j�. We use the Cauchy–Schwarz inequality and Lemma 8.4 to get

B
.1/

2;h.v; v/ D .1 � �/
Z
˝

r2
hv W r2

hv dx C �

Z
˝

�
tr.r2

hv/
�2
dx

C 2.1 � �/
Z
˝

r2
hv W r i .�rv�/ dx

C 2�

Z
˝

tr
�r2

hv
�

tr .r i .�rv�// dx C
Z
E ih
�h�1

e j�rv�j2ds

	 .1 � �/jvj22;h C �k�hvk20;h � .1 � �/
�
�jvj22;h C 1

�
kr i .�rv�/k20;h

�

� � �k�hvk20;h C ktr .r i .�rv�// k20;h
�C �0

X
e2E ih

h�1
e k�rv�k20;e

	 .1 � �/.1 � �/jvj22;h
C
�
�0 � 3.1 � �/C2

�
� 6C2�

�X
e2E ih

h�1
e k�rv�k20;e;

where 0 < � < 1 is a constant and C2 is the generic positive constant in (8.35).
Therefore, stability is valid for C0 IP method when mine2E ih �e D �0 > 3.1 �
�/C2 C 6C2� D 3.1C �/C2.

B
.2/

2;h.v; v/ D
Z
˝

.1 � �/r2
hv W r2

hv dx C
Z
˝

�
�
tr.r2

hv/
�2
dx

C
Z
E ih
�h�1

e .�rv�/2 ds

	 .1 � �/jvj22;h C �0
X
e2E ih

h�1
e k�rv�k20;e:



8 DGMs for EVI of Fourth-Order 219

So stability is valid for the C0 NIPG method for any �0 > 0. This property is the
reason why the method with the bilinear form B

.2/

2;h is useful even though B.2/

2;h is not
symmetric.

B
.4/

2;h.v; v/ 	 .1 � �/jvj22;h C �k�hvk20;h C 2.1 � �/
Z
˝

r2
hv W r i .�rv�/ dx

C 2�

Z
˝

�hv tr .r i .�rv�// dx

C �0
X
e2E ih

�
.1 � �/kre.�rv�/k20;h C �ktr.re.�rv�//k20;h

�

	 .1 � �/jvj22;h C �k�hvk20;h � .1 � �/
�
�jvj22;h C 1

�
kr i .�rv�/k20;h

�

� �k�hvk20;h � �ktr .r i .�rv�// k20;h
C �0C1.1 � �/

X
e2E ih

h�1
e k�rv�k20;e C �0�

X
e2E ih

ktr.re.�rv�//k20;h

	 .1 � �/.1 � �/jvj22;h C .1 � �/
�
�0C1 � 3C2

�

�X
e2E ih

h�1
e k�rv�k20;e

C .�0� � 3�/
X
e2E ih

ktr.re.�rv�//k20;h:

Since C2 > C1, �0 > 3 is guaranteed from �0 > 3C2=C1. Thus, stability is valid
for this CDG formulation when �0 > 3C2=C1. For the method of Wells–Dung
corresponding to the form B

.3/

2;h and the LCDG method corresponding to the form

B
.5/

2;h, stability can be analyzed by a similar argument (cf. [15,24], respectively), with
�0 > 0.

Lemma 8.6 (Stability). Let Bh D B
.j /

2;h with j D 1; � � � ; 5. Assume

min
e2E ih

�e > 3 .1C �/C2 for j D 1

and

min
e2E ih

�e > 3C2=C1 for j D 4;

with C1 and C2 the constants in the inequality (8.35). Then,

� v�2 . Bh.v; v/ 8 v 2 Vh: (8.43)
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It follows from Lemma 8.6 that under the stated conditions, the stability property
is also valid for B.j /

1;h with j D 1; � � � ; 5.

8.4 Numerical Results

In this section, we present a numerical example on the five methods studied in
solving the elliptic variational inequality (8.7). To solve the discretized variational
inequality, we use the optimization toolbox in MATLAB for the associated quadratic
optimization problem. Let ˝ D .�1; 1/ � .�1; 1/, � D 0:3. Choose the right hand
side function to be

f .x; y/ D 24.1 � x2/2 C 24.1 � y2/2 C 32.3x2 � 1/.3y2 � 1/:

We use uniform triangulations Th of the region ˝ and piecewise quadratic polyno-
mials, i.e.,

Vh D fvh 2 H1
0 .˝/ W vhjT 2 P2.T / 8T 2 Thg:

Since the domain is rectangular, the outward normal is not defined at the four corner
points, .�1;�1/, .�1; 1/, .1;�1/, and .1; 1/. So in terms of the restriction in the
optimization problem, at each of the four corners, we specify the constraint @�vh 	
0 twice (corresponding to the two sides intersecting at the corner).

Tables 8.1, 8.2, 8.3, 8.4 and 8.5 provide numerical solution errors in the energy
norm � �� for the five DG methods discussed in this chapter. Since the true solution
of the variational inequality (8.7) is not known, we use the numerical solution
corresponding to the meshsize h D 0:0625 as the true solution in computing the
errors.

We observe that all the five DG methods perform well, and the methods 1, 2,
and 5 converge faster than the methods 3 and 4. For the methods 1, 2, and 5,

Table 8.1 Error �u � uh�
for C0 IP method (8.28)

h 1 0.5 0.25 0.125

� D 1 6.1327 3.6713 1.7921 0.8921

� D 10 4.4264 2.0188 1.0202 0.5076

� D 100 2.7621 1.1607 0.5767 0.2860

� D 1;000 1.5772 0.6544 0.3245 0.1628

Table 8.2 Error �u � uh�
for NIPG method (8.30)

h 1 0.5 0.25 0.125

� D 1 5.5212 3.2523 1.7682 0.8987

� D 10 4.3318 2.0225 1.0215 0.5082

� D 100 2.7521 1.1610 0.5767 0.2860

� D 1;000 1.5766 0.6545 0.3245 0.1628
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Table 8.3 Error �u � uh�
for Wells–Dung DG
formulation (8.31) as in [24]

h 1 0.5 0.25 0.125

� D 1 5.1659 3.1617 2.3018 1.6206

� D 10 4.2043 2.3618 1.6532 1.1411

� D 100 2.9413 1.4600 0.9954 0.7116

� D 1;000 1.7224 0.9311 0.5570 0.3836

Table 8.4 Error �u � uh�
for Baker-DG formulation
(8.32) as in [5]

h 1 0.5 0.25 0.125

� D 1 5.1509 3.1566 2.3016 1.6204

� D 10 4.1924 2.3418 1.6425 1.1408

� D 100 2.8889 1.4448 0.9818 0.6774

� D 1;000 1.7181 0.9300 0.5569 0.3837

Table 8.5 Error �u � uh�
for LCDG method (8.33)

h 1 0.5 0.25 0.125

� D 1 5.4865 3.0717 1.7165 0.8831

� D 10 4.2776 1.9847 1.0158 0.5071

� D 100 2.7463 1.1584 0.5764 0.2859

� D 1;000 1.5762 0.6543 0.3244 0.1608

the numerical convergence order in the norm �u � uh� is around 1, whereas for
the methods 3 and 4, the numerical convergence order in the norm �u � uh� is
around 1/2.
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Chapter 9
Dynamic Gao Beam in Contact with a Reactive
or Rigid Foundation

Kevin T. Andrews, Kenneth L. Kuttler, and Meir Shillor

Abstract This chapter constructs and analyzes a model for the dynamic behavior of
nonlinear viscoelastic beam, which is acted upon by a horizontal traction, that may
come in contact with a rigid or reactive foundation underneath it. We use a model,
first developed and studied by D.Y. Gao, that allows for the buckling of the beam
when the horizontal traction is sufficiently large. In contrast with the behavior of the
standard Euler–Bernoulli linear beam, it can have three steady states, two of which
are buckled. Moreover, the Gao beam can vibrate about such buckled states, which
makes it important in engineering applications. We describe the contact process
with either the normal compliance condition when the foundation is reactive, or
with the Signorini condition when the foundation is perfectly rigid. We use various
tools from the theory of pseudomonotone operators and variational inequalities to
establish the existence and uniqueness of the weak or variational solution to the
dynamic problem with the normal compliance contact condition. The main step is
in the truncation of the nonlinear term and then establishing the necessary a priori
estimates. Then, we show that when the viscosity of the material approaches zero
and the stiffness of the foundation approaches infinity, making it perfectly rigid, the
associated solutions of the problem with normal compliance converge to a solution
of the elastic problem with the Signorini condition.
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9.1 Introduction

In this chapter we analyze a model for the dynamic evolution of nonlinear
viscoelastic beam that may contact a rigid or reactive foundation that is situated
below it. The beam is subject to a general horizontal traction at one end. We use a
model for the motion of the beam that was first developed and studied by D.Y. Gao
in a series of papers [5, 7, 8]. This model exhibits several interesting and novel
features that contrast with the behavior of the standard Euler–Bernoulli linear beam.
Among other things, there are nonzero steady states present when the lateral traction
exerted on one end of the beam is sufficiently compressive. These so-called buckled
steady states are stable, being the minima of the stored elastic energy, while the
unbuckled zero steady state is unstable, being a local maximum of the stored energy.
Consequently, the Gao beam may vibrate about its buckled states. By contrast, the
Euler–Bernoulli beam only vibrates around its zero steady state.

The process of contact between deformable bodies is usually modeled with either
the normal compliance condition that assumes reactive contact surfaces or with the
Signorini condition or unilateral contact condition which assumes that one of the
contacting surfaces is perfectly rigid (see explanations in [9, 20] and the numerous
references therein). The second condition may be viewed as an idealization of the
first, obtained in the limit as the stiffness of the foundation increases to infinity. In
this chapter, we prove that the dynamic contact problem involving a viscoelastic
Gao beam and a reactive foundation has a unique weak solution. We do so by
writing the evolution equation in abstract variational form and using truncation,
approximations, a priori estimates and results for evolution problems; in particular,
the basic existence result for pseudomonotone operators [12] underlies the proof.
With viscosity present we have sufficient regularity and compactness to obtain the
necessary a priori estimates. We obtain two other existence results by passing to the
limit in two different ways. In the first case, we let the viscosity tend to zero so that
the beam is now purely elastic. In this process, as expected, we lose some regularity
but still obtain an existence result, now without the assertion of uniqueness. In the
second, we let the stiffness tend to infinity and so obtain an existence result for the
dynamic contact problem of a viscoelastic Gao beam and a rigid foundation. Once
again, there is a loss of regularity which prevents us from establishing uniqueness
and which is consistent with the expectation that contact with a rigid foundation may
cause discontinuity in the velocity. It is very likely that this possible nonuniqueness
is related to the need to include a coefficient of restitution that measures the energy
loss during the contact process.

Other recent work involving the viscoelastic Gao beam and dynamic contact with
a reactive foundation may be found in [14], which considers a setting where the
beam is subject to damage caused by the growth of a crack, leading to eventual
breaking of the beam. In [15] the setting includes a stochastic force input and
a random gap. Here, we complement that study with the full analysis that, in
particular, includes the limiting cases of a purely elastic beam, and the completely
rigid obstacle. All of this work has been done with longer term aim of investigating
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computationally how contact with the obstacle affects the various vibrational modes
of the buckled beam. Indeed, some preliminary results show that very complicated
types of behavior may take place. However, there is intrinsic mathematical interest
in the analysis of the model presented here. Additional analysis and simulations of
dynamic problems involving the Gao beam can be found in [1–4, 16, 19] and the
references therein.

We note that when this work was essentially complete, the article [17] came to
our attention, where a draft version of one of our results can be found.

The rest of this chapter is organized as follows. The model is presented
in Sect. 9.2 where the classical formulations of the problems with the normal
compliance (reactive obstacle) and the Signorini (perfectly rigid obstacle) contact
conditions are given. The variational formulations of the two models are described in
Sect. 9.3 where the assumptions on the problem data and the statements of our main
results on the existence of the unique weak solution to the problem with viscosity
and normal compliance, Theorem 9.5, and the existence of a weak solution to the
problem without viscosity and the Signorini condition, Theorem 9.6, are presented.
Section 9.4 deals with the truncated problem, where the cubic nonlinearity present
in the Gao beam is modified. Proposition 9.8 guarantees that, for each truncation
ceiling R, there exists a unique weak solution. The proof is based on the existence
results for pseudomonotone operators to be found in [12]. Then, in Sect. 9.5 the
necessary a priori estimates are derived that allow us to pass to the limit R ! 1
and obtain Theorem 9.5. In Sect. 9.6 we obtain the estimates and pass to the inviscid
limit, as the viscosity coefficient approaches zero and obtain the existence of a
weak solution to the purely elastic problem with the normal compliance condition,
Theorem 9.14. In the final section, Sect. 9.7, we pass to the limit in which the
obstacle becomes rigid, when the normal compliance constant tends to infinity, and
obtain the existence of a weak solution to the problem without viscosity, purely
elastic beam and perfectly rigid obstacle.

9.2 The Model

We derive a model for the vibrations of the dynamic Gao beam in contact with a
rigid or reactive foundation. The beam is assumed to be viscoelastic and of moderate
thickness, and its motion is restricted by an obstacle, the so-called foundation, that is
situated below it. This is the setting depicted in Fig. 9.1. We denote by w D w.x; t/
the displacement of the beam’s central axis at location x and time t and the model
is scaled so that the reference configuration occupies 0 � x � 1 and the density
(per unit length) is 1. The beam is subjected to a distributed transverse load f , and a
horizontal traction p D p.t/ that is acting at the end x D 1 that may cause buckling.
We say that when p < 0 the end x D 1 is being compressed and when p > 0 it
is under tension. We let g D g.x/ � 0 denote the gap between the central axis of
the beam (in its reference configuration Œ0; 1�) and the foundation. The beam is in
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Fig. 9.1 The beam, foundation, gap g, and traction p

contact with the foundation when the vertical displacement satisfies w � g. In the
case when the foundation is reactive, it is possible for w < g.

When the beam is not in contact, the motion of the beam is governed by

wt t � �x D f; (9.1)

where the viscoelastic shear stress � [5, 8], is given by

� D �kwxxx � �wtxxx C 1

3
aw3x � �pwx: (9.2)

Here k is the scaled elasticity modulus, � the viscosity coefficient, a the Gao
coefficient that allows for buckling, and � is the scaled stiffness coefficient for lateral
compression or tension. All four of these coefficients are assumed to be positive
constants. The cubic term in wx is the novelty in this model since it creates a double-
well elastic potential energy with one or three steady states. When the traction p is
sufficiently large there are three steady states: the steady state w D 0 is unstable and
the other two are stable buckled states. (See [4, 6, 8] for further details.)

The initial displacement and velocity of the beam are given by

w.x; 0/ D w0.x/; wt .x; 0/ D v0.x/; (9.3)

and the beam is assumed to be clamped at both ends, so

w.0; t/ D wx.0; t/ D 0; w.1; t/ D wx.1; t/ D 0: (9.4)

We now describe the contact between the beam and the reactive foundation.
When w > g the beam is not in contact, thus,

w > g H) wt t � �x D f: (9.5)
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When w � g the beam is in contact with the foundation, and the interpenetration of
the surface asperities makes w < g possible. However, the foundation reacts to the
interpenetration with a force � that is directed upward, i.e., � 	 0. The force balance
equation in this case is

wt t � �x D f C �:

We assume that the reaction force � depends on the interpenetration, i.e., � D q.g�
w/, where q.�/ is the normal compliance function, to be described shortly. Therefore,

w � g H) wt t � �x D f C q.g � w/: (9.6)

We assume that the normal compliance function is such that q.r/ D 0 when
r � 0, with a typical choice in the literature [11, 13, 18, 20] being

q.g � w/ D �.g � w/C;

where .r/C D maxf0; rg is the positive part function and � is the normal compliance
stiffness constant, a measure of the stiffness of the foundation. The use of .g � w/C
guarantees that the reaction vanishes when there is no contact, i.e., when w 	 g, and
that the reaction is proportional to the interpenetration when in contact, i.e., when
w < g. A perfectly rigid obstacle is obtained in the limit � ! 1, as we describe
below.

The classical formulation of the problem of the dynamic frictionless vibrations
of the Gao beam in contact with a reactive foundation is thus as follows.

Problem 9.1. Find the displacement field w D w.x; t/, for x 2 .0; 1/ and t 2
.0; T /, such that

wt t � �x D f C q.g � w/; (9.7)

� D �kwxxx � �wtxxx C 1

3
aw3x � �pwx; (9.8)

w.0; t/ D wx.0; t/ D 0; (9.9)

w.1; t/ D wx.1; t/ D 0; (9.10)

w.x; 0/ D w0.x/; wt .x; 0/ D v0.x/: (9.11)

The nonlinear term 1
3
aw3x in (9.7) makes buckling possible but introduces

mathematical difficulties since it prevents us from obtaining the necessary estimates
in the usual way, and so it adds a layer of complexity to the problem. We will
deal with this issue by truncating the term, and this truncated variational problem is
considered in Sect. 9.4. We then derive estimates needed to pass to the limit in the
truncated problem so as to establish a unique solution to the above problem.
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When the foundation is assumed to be perfectly rigid, then it is always true
that g � w and the reaction force � acts only when w D g, at which time we
must have � 	 0. This leads to the so-called Signorini nonpenetration condition
or unilateral contact condition. The classical formulation of the problem of the
dynamic frictionless vibrations of the Gao beam in contact with a perfectly rigid
foundation is as follows.

Problem 9.2. Find the displacement field w D w.x; t/, for x 2 .0; 1/ and t 2
.0; T /, such that

wt t � �x D f C �; (9.12)

� D �kwxxx � �wtxxx C 1

3
aw3x � �pwx; (9.13)

w 	 g; � 	 0; �.g � w/ D 0; (9.14)

w.0; t/ D wx.0; t/ D 0; (9.15)

w.1; t/ D wx.1; t/ D 0; (9.16)

w.x; 0/ D w0.x/; wt .x; 0/ D v0.x/: (9.17)

Formally, if we replace q with 1
�
q in (9.7), then one obtains the Signorini

condition (9.14) in the limit � ! 0. We show below that we actually can pass to
the limit and obtain the variational solution to Problem 9.2 in the limit � ! 0 of
solutions to Problem 9.1, so the statement is not only formal.

9.3 Variational Formulations

In this section we present the variational formulations of Problems 9.1 and 9.2, list
the assumptions on the problem data and state our existence results. We denote by
.�; �/ the inner product on L2.0; 1/. We use standard notation for Sobolev spaces, in
particular,H2.0; 1/ is the space of functions that are square integrable and have first
and second square integrable distributional derivatives.

Let V be a closed subspace of H2.0; 1/, given by

V D fu 2 H2.0; 1/ W u D ux D 0 at x D 0; 1g:

We seek solutions w such that w;wt 2 V � L2.0; T IV / and wt t 2 V� �
L2.0; T IV �//, where V � denotes the dual of V . Let H D L2.0; 1/, then, since
C1
c .0; 1/ is dense in V and inH , we have that .V;H; V �/ is a Gelfand or evolution

triple, and if we let H D L2.0; T IH/, then .V;H;V�/ is also a Gelfand triple. We
denote the respective duality pairings by h�; �iV and h�; �iV . On V we use the norm
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kuk2V D .uxx; uxx/, which is equivalent to the usual H2.0; 1/ norm. We will also
denote by W the closure of V in H1 .0; 1/ and let W D L2 .0; T IW /. We can then
consider the spaces

V � W � H D H� � W� � V�;

where each space is densely embedded in the following one. Below we will use the
prime to denote the (distributional) time derivative, and let v D wt D w0.

We consider Problem 9.1 first. Applying (9.7), with (9.8), to a test function u 2 V
gives, for t 2 .0; T /,

hv0.t/; uiV C h�.t/; uxiV D hf .t/; uiV C hq.g � w/; uiV :

Using the usual manipulations and the boundary conditions, we obtain the
following variational formulation of the problem of dynamic contact of a Gao beam
with a reactive foundation.

Problem 9.3. Find a displacement field w W Œ0; T � ! V and a velocity field v W
Œ0; T � ! V , with v0 2 V�, such that for a.a. t 2 Œ0; T � and all u 2 V ,

hv0.t/; uiV C k.wxx.t/; uxx/C �.vxx.t/; uxx/C 1

3
a.w3x.t/; ux/

� �p.t/.wx.t/; ux/ D hf .t/; uiV C .q.g � w/; u/; (9.18)

w.t/ D w0 C
Z t

0

v.
/ d
; v.0/ D v0: (9.19)

To obtain the variational formulation of the problem with a rigid foundation, we
let K be the following closed and convex set in V where we seek w.t/,

K D f 2 V W  	 gg:

We select u 2 K and apply (9.12), together with (9.13), to the test function
u � w.t/. We use integration by parts and the boundary conditions, and obtain

hv0.t/; u � w.t/iV C k.wxx.t/; uxx � wxx.t//C �.vxx.t/; uxx � wxx.t//

C 1

3
a.w3x.t/; ux � wx.t// � �p.t/.wx.t/; ux � wx.t//

D hf .t/; u � w.t/iV C h�; u � w.t/iV : (9.20)

Next, we consider the last term on the right-hand side. If w.x; t/ > g.x/ there
is no contact between the beam and the foundation at x, therefore, � D 0, which
implies that h�; u � w.t/iV D 0. If w.x; t/ D g.x/, the beam is in contact with the
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foundation, which reacts with a reactive force � 	 0, and since u 2 K, we have
u 	 g, therefore

h�; u � w.t/iV 	 0:

The last observation allows us to drop this term and upon integration on Œ0; t �, and
dropping the viscosity term, i.e., setting � D 0, we have the following variational
inequality formulation of the problem of contact between an elastic Gao beam and
a rigid foundation.

Problem 9.4. Find the displacement field w W Œ0; T � ! K and the velocity field
v W Œ0; T � ! V , such that for all u 2 V such that u0 2 L1 .0; T IH/ and u.t/ 2 K
for each t ,

.v .t/ ;w .t/ � u .t//

�
Z t

0

�
v .s/ ;w0 .s/ � u0 .s/

�
ds C k

Z t

0

.wxx.s/;wxx.s/ � uxx.s// ds

C1

3
a

Z t

0

.w3x.s/;w.s/ � u.s// ds � �
Z t

0

p.s/.wx.s/;wx.s/ � ux.s// ds

�
Z t

0

hf .s/;w.s/ � u.s/iV ds C .v0;w .0/ � u .0// ; (9.21)

together with (9.19).

To state our main existence results we make the following assumptions on the
data:

f 2 V�; (9.22)

p 2 W 1;1.0; T /; jpj; jp0j � p0; p0 > 0; (9.23)

w0; v0 2 V: (9.24)

We also assume that the normal compliance function q W R ! R satisfies the
following conditions:

8̂̂<
ˆ̂:

jq.r1/ � q.r2/j � kqjr1 � r2j; kq > 0;

.q.r1/ � q.r2//.r1 � r2/ 	 0;

q.r/ D 0; r � 0:

(9.25)

The main results of this work are the following two theorems.

Theorem 9.5. Assume that conditions (9.22)–(9.25) hold. Then, there exists a
unique solution .w; v/ of Problem 9.3 such that
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w 2 L1.0; T IV /; v 2 L1.0; T IH/ \ V; v0 2 V�: (9.26)

The proof of the theorem is given in Sect. 9.5, and is based on the truncated
problem that is studied in Sect. 9.4.

Next, we have the following result for the rigid foundation problem without
viscosity.

Theorem 9.6. Assume that the conditions (9.22)–(9.24) hold and that additionally
w0 2 K and f 2 H. Then, there exists a solution .w; v/ of Problem 9.4 such that,

w 2L1.0; T IV /; v 2 L1.0; T IH/ \ C �0; T IV 0� ;
w.t/ 2 K for a:a: t 2 Œ0; T �: (9.27)

The proof of the theorem is given in Sect. 9.7, and is based on passing to the limits
in the normal compliance and the viscosity terms in Problem 9.3. We note that we
do not assert that the solution is unique. This question is unresolved, and uniqueness
seems to be unlikely without additional assumptions, such as the addition of a
coefficient of restitution that measures the energy loss during the contact process.
We also note that we do not claim any additional regularity for v0, except that it is a
distribution.

9.4 The Truncated Problem

The two nonlinearities present in the model are the cubic term in the stress function
and the contact condition. These do not fit into any of the usual nonlinear formats
and so we must use methods adapted to this particular situation to treat them. To
deal mathematically with the cubic term, we introduce the truncation operator �R,

�R.r/ D

8̂̂
<
ˆ̂:

R for R � r;

r for jr j � R;

�R for r � �R;
(9.28)

where R is a large number. Then, we replace the term w3x with �2
R.wx/wx . This

yields the following truncated variational problem.

Problem 9.7. Find the displacement field w W Œ0; T � ! V and the velocity field
v W Œ0; T � ! V , with v0 2 V�, such that for a.a. t 2 Œ0; T � and all ' 2 V ,

hv�.t/; 'iV C k.wxx.t/; 'xx/C �.vxx.t/; 'xx/C 1

3
a.�2

R.wx.t//wx.t/; 'x/

� �p.t/.wx.t/; 'x/ D hf .t/; 'iV C .q.g � w/; '/; (9.29)
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w.t/ D w0 C
Z t

0

v.
/ d
; v.0/ D v0: (9.30)

We have the following existence and uniqueness result for this truncated problem.

Proposition 9.8. Assume that (9.22)–(9.25) hold. Then, for each R > 0 and T > 0
there exists a unique solution .w; v/ D .wR; vR/ to Problem 9.7 on Œ0; T � such that

w 2 C.Œ0; T �IV /; v 2 V; v0 2 V�: (9.31)

To prove this result, we rewrite Problem 9.7 in an abstract form and use the
existence results in [10, 12]. To that end, we define the operators B;K;KR; J W
V ! V�, for w; � 2 V , by

hB.w/; �iV D
Z T

0

Z 1

0

p.t/wx�x dxdt; (9.32)

hK.w/; �iV D
Z T

0

Z 1

0

wxx�xx dxdt; (9.33)

hKR.w/; �iV D
Z T

0

Z 1

0

�2
R.wx/wx�x dxdt; (9.34)

hJ.w/; �iV D
Z T

0

Z 1

0

q.g � w/� dx dt; (9.35)

The abstract formulation of (9.29) and (9.30) now can be given as:

Problem 9.9. Find a pair .w; v/ 2 V � V such that

v0 C kK.w/C �K.v/C 1

3
aKR.w/ � �B.w/ � J.w/ D f in V�; (9.36)

together with (9.30).

We now rewrite this problem as a first order abstract system. To that end, we let
Y D V � V and Y D V �V , and use the product norm kykY D k�kV C k kV , for
y D .�;  / 2 Y , and similarly for Y . We define the operator A W Y ! Y� by

A

�
w
v

�
D
 

�kK.v/
kK.w/C �K.v/C 1

3
aKR.w/ � �B.w/ � J.w/

!
; (9.37)

and D W Y ! Y� by

D

�
w
v

�
D
�
kK.w/
v

�
: (9.38)
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Let F D .0; f / and u0 D .w0; v0/, and let Z D fu 2 Y W .Du/0 2 Y�g with
norm given by kzkZ D kzkY C k.Dz/0kY� . We may now rewrite Problem 9.9 as
follows.

Problem 9.10. Find u D .w; v/ 2 Z such that

.Du/0 C Au D F; in Y� (9.39)

Du.0/ D Du0; in Y �: (9.40)

The first order system above is an implicit evolution problem of the type
considered in [10, 12]. To use the existence results of these papers it suffices to
show that, for all sufficiently large � , the following three conditions hold true:

(i) There exist constants C0 and C1, which depend on the data but are independent
of u 2 Y , such that jjAujjY 0 � C0 C C1jjujjY for all u 2 Y .

(ii) lim
jjujjY!1

h�Du; uiY C hAu; uiY
jjujjY D 1.

(iii) u ! Au is a pseudomonotone map from Z to Z 0.

We now derive the necessary estimates needed to establish these conditions in
the following three lemmas. We set u D .w; v/ 2 Y and denote by C , C0 and C1
generic positive constants whose values may change from line to line but which are
independent of u.

Lemma 9.11. The operator A is bounded, i.e., it satisfies condition (i).

Proof. We consider in turn the various terms which appear in hA.u/; yiY where
y D .�;  / 2 Y . First, we have that

jhK.v/; �iV j �
Z T

0

Z 1

0

jvxxjj�xxj dxdt � kvkVk�kV � kukYkykY :

Similarly, jhK.w/;  iV j � kukYkykY . Next,

jhKR.w/;  iV j � R2
Z T

0

Z 1

0

jwxjj xj dxdt � R2kwkVk kV � R2kukYkykY :

This is where the truncation is used. Next, using jp.t/j � p�, we obtain

jhB.w/;  iV j �
Z T

0

Z 1

0

jp.t/jjwxjj xj dxdt � p�kwkVk kV � p�kukYkykY :

Finally,

jhJ.w/;  iV j Dj
Z T

0

Z 1

0

q.g � w.x; t// .x; t/ dx dt j
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�.C0 C C1kwkV/k kV � .C0 C C1kukY/k kY :

Collecting these estimates shows that

jhA.u/; yiY j � .C0 C C1kukY/k kY ;

as desired. ut
We now show that condition (ii) holds:

Lemma 9.12. The operator .�D C A/ is coercive for all sufficiently large �, i.e.,

lim
jjujjY!1

h�Du; uiY C hAu; uiY
jjujjY D 1: (9.41)

Proof. We have,

h�Du; uiY D �hK.w/;wiV C �hv; viV D �kwk2V C �kvk2H;

and

hAu; uiY D h�K.v/;wiV C khK.w/; viV C �hK.v/; viV

C 1

3
ahKR.w/; viV � �hpB.w/; viV C hJ.w/; viV :

We deal with each term which appears on the right in turn. We use the Hölder
inequality as we did in the previous lemma and the Cauchy inequality with � in
most of the estimates. First, we note that

h�K.v/;wiV 	 �kvkVkwkV 	 ��
8

kvk2V � 2

�
kwk2V :

Similarly,

khK.w/; viV 	 �kkvkVkwkV 	 ��
8

kvk2V � 2k2

�
kwk2V :

We also have that

�hK.v/; viV D �kvk2V :

Next,

1

3
ahKR.w/; viV 	 �1

3
aR2kwxkHkvxkH
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	 ��
8

kvk2V � 2a2R4

9�
kwk2V :

Also,

��hB.w/; viV 	 ��p�kwxkHkvxkH

	 ��
8

kvk2V � 2�2p�2

�
kwk2V :

Finally, we have that

hJ.w/; viV 	 .�C1 � C0kwkV/kvkV

	 ��
8

kvk2V � 2C 2
0

�
kwk2V � C:

Collecting these estimates and rearranging the constants yields

h�Du; uiY C hAu; uiY 	 .� � C/kwk2V C �kvk2H C 1

4
�kvk2V � C:

Dividing this estimate by jjujjY D jjwjjV C jjvjjV and letting jjujjY ! 1 leads
to (9.41), for each sufficiently large �. ut

We note that the presence of the viscosity term is essential to obtaining the
previous result. We now show that condition (iii) holds.

Lemma 9.13. The operator A W Z ! Z 0 is pseudomonotone.

Proof. We note that we may write A D A1 C A2 where

A1

�
w
v

�
D
 

�kK.v/
kK.w/C �K.v/

!
; (9.42)

and

A2

�
w
v

�
D
 

0

1
3
aKR.w/ � �B.w/C J.w/

!
: (9.43)

Since it is easy to check that the operator A1 is linear, bounded and monotone, we
only need to prove that the operator A2 is completely continuous to conclude that
the sum A1 C A2 is pseudomonotone (see, e.g., [22, Proposition 27.6]). This, in
turn, follows from examining the operators KR, B and J . To that end, let fumg D
f.wm; vm/g be a sequence which converges weakly to u D .w; v/ in Z . Then, wm !
w and vm ! v weakly in L2.0; T IV /, and also w0

m ! w0 and v0
m ! v0 weakly in

L2.0; T IV �/. It follows from Corollary 4 of [21], that fwmg and fvmg are relatively
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compact in L2.0; T IH1.0; 1//. By passing to subsequences we may assume that
fwmg and fvmg converge strongly in L2.0; T IH1.0; 1// and pointwise a.a. to w and
v, respectively. Now we have, for � 2 V , that

jhB.wm/ � B.w/; �iV j � p�kwmx � wxkHk�xkH:

Since k�xkL2.0;T IH/ � k�kV , we obtain

kB.wm/ � B.w/kV� � Ckwmx � wxkH ! 0 as m ! 1:

Next,

jhKR.wm/ �KR.w/; �iV j � R2kwmx � wxkL2.0;T IH/k�xkH
C k.�2

R.wmx/ � �2
R.wx//wxkHk�xkH:

Now, since the truncation function �R is Lipschitz continuous and bounded it
follows that k.�2

R.wmx/��2
R.wx//wxkL2.0;T IH/ ! 0 by the dominated convergence

theorem. It follows that

kKR.wm/ �KR.w/kV� ! 0 as m ! 1:

Finally, using the assumptions on the operator q and straightforward manipula-
tions, we obtain

jhJ.wm/ � J.w/; �iV j � Ckwm � wkL2.0;T IH1.0;1//k�kL2.0;T IH1.0;1//:

Then, dividing both sides by k�kV , we obtain

kJ.wm/ � J.w/kV� � Ckwm � wkL2.0;T IH1.0;1// ! 0

as m ! 1. We conclude that the operator A2 W Z ! Z� is completely continuous.
ut

We now have all the ingredients to provide the proof of Proposition 9.8.

Proof. Since the conditions (i)–(iii) on page 235 have now been established we
may apply the abstract existence theorem in [10] to conclude that a time shifted
version of the above system has a solution. Specifically, in the shifted system the
new dependent variable Qu is given by Qu D ue��t . The above conditions are sufficient
to conclude existence for the shifted system and thus we have existence of a solution
u D .w; v/ 2 Z for the original system. This implies that w; w0 D v 2 V and so w 2
C.Œ0; T �IV /, which completes the proof of the existence part in Proposition 9.8.
Thus, for each R sufficiently large, there exists a solution .wR; vR/ to Problem 9.7.

We now consider the question of uniqueness. The function x ! �2
R .x/ x is

clearly Lipschitz continuous. Let CR be the Lipschitz constant. Then,
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ˇ̌̌
ˇ
Z t

0

Z 1

0

�
�2
R.w1x/w1x � �2

R.w1x/w1x
�
.v1x � v2x/ dxdt

ˇ̌̌
ˇ

� CR

Z t

0

Z 1

0

jw1x � w2xj jv1x � v2x j dxds:

Thus,

�Z t

0


1

3
aKR.w1/ � 1

3
aKR.w2/; v1 � v2

�
ds

�

� 1

3
aCR

Z t

0

kw1 � w2kW kv1 � v2kW ds:

Similarly, but with less trouble,

Z t

0

h.��B.w1/C J.w1// � .��B.w2/C J.w2// ; v1 � v2i ds

� C

Z t

0

kw1 � w2kW kv1 � v2kW ds:

Here, and to the end of this section, C depends on R. Hence,

Z t

0


A2

�
w1
v1

�
� A2

�
w2
v2

�
;

�
w1
v1

�
�
�

w2
v2

��
ds

� C

Z t

0

kw1 � w2kW kv1 � v2kW ds

and so

�


D

�
w1
v1

�
�D

�
w2
v2

�
;

�
w1
v1

�
�
�

w2
v2

��

C

A

�
w1
v1

�
� A

�
w2
v2

�
;

�
w1
v1

�
�
�

w2
v2

��

	 �k kw1 � w2k2V C � jv1 � v2j2H C � kv1 � v2k2V
� C kw1 � w2kW kv1 � v2kW

	 �k kw1 � w2k2V C � jv1 � v2j2H C � kv1 � v2k2V
� C

	
kw1 � w2k2W C kv1 � v2k2W



then it follows from compactness of the embedding of V into W , that
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	 �k kw1 � w2k2V C � jv1 � v2j2H C � kv1 � v2k2V
� CR

�
kw1 � w2k2W C �

2CR
kv1 � v2k2V C C .�; CR/ jv1 � v2j2H

�

> 0;

if � is chosen large enough. Therefore, the operator �D C A is strictly monotone
for such �s and this proves that the solution in Proposition 9.8 is unique, which
concludes the proof. ut

9.5 Proof of Theorem 9.5

We have obtained in Proposition 9.8 the solution of the abstract equation

v0 C kK.w/C �K.v/C 1

3
aKR.w/ � �B.w/ � J.w/ D f in V�; (9.44)

where the operators are given in (9.32)–(9.35), the truncation operator �R in (9.28),
and v and w are related by

w .t/ D w0 C
Z t

0

v .s/ ds in V:

Consider now the function �R .x/
2 x, whose graph is a monotone function of the

form depicted in Fig. 9.2 below. We now define

˚R .w .t// D
Z t

0

�R .w .s//
2 w .s/w0 .s/ ds:

We note that ˚R is a convex and positive function. Furthermore,

Fig. 9.2 The function �R .x/
2
x



9 Dynamic Gao Beam in Contact with a Reactive or Rigid Foundation 241

˚R .x/ D x4

4
if jxj < R; and lim

R!1˚R .x/ D x4

4
:

for each x. Moreover, ˚R is increasing in R. We now observe that

ˇ̌̌
ˇ
Z t

0

Z 1

0

p.t/wxvx dxdt

ˇ̌̌
ˇ D

ˇ̌̌
ˇ12
Z 1

0

Z t

0

p .t/
d

ds

�
w2x
�
dsdx

ˇ̌̌
ˇ

D
ˇ̌̌
ˇ12
Z 1

0

�
w2xpjt0 �

Z t

0

w2x .s/ p
0 .s/ ds

�ˇ̌̌
ˇ

� 1

2

Z 1

0

�
w2x .t/ p0 C w20xp .0/

�

C 1

2
p0

Z t

0

jwx .s/j2H ds:

Moreover,

Z t

0

�J .w/ vds D
Z t

0

Z 1

0

q.g � w/ .�v/ dx dt

D
Z 1

0

Z t

0

d

dt
Q .g � w/ dsdx

D
Z 1

0

Q .g � w/ dx;

where Q0 D q. Since q is given to be monotone (see assumption (9.25)), we can
take Q 	 0.

Now we apply both sides of (9.44) to v and integrate from 0 to t . Then, using the
results just derived, we obtain an expression of the form

1

2
jv .t/j2H � 1

2
jv0j2 C k

2
kw .t/k2V � k

2
kw0k2H

C �

Z t

0

kvk2V ds C 1

3
a

Z 1

0

˚R .wx .t// dx

� �
�
1

2

Z 1

0

�
w2x .t/ p0 C w20xp .0/

�C 1

2
p0

Z t

0

jwx .s/j2H ds
�

C
Z 1

0

Q .q � w/ dx �
Z t

0

jf jH jvjH ds:

Ignoring the two nonnegative terms with Q and a, we obtain,
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jv .t/j2H C k kw .t/k2V � p0� kw .t/k2W C �

Z t

0

kvk2V ds

� C .w0; p0; v0; f /C
Z t

0

jvj2H ds C p0�

Z t

0

jjw .s/jj2W ds:

We note that the estimate depends on the problem data but does not depend on R.
Now, we use the compactness of the embedding of V into W to obtain

p0� kwk2W � k

2
kwk2V C Ck jwj2H D k

2
kwk2V C 2Ck jw0j2H C 2CkT

Z t

0

jvj2H :

This leads to the inequality

jv .t/j2H C k

2
kw .t/k2V C �

Z t

0

kvk2V ds

� C .w0; p0; v0; f; k/C C .k; T /

Z t

0

jvj2H ds C p0�

Z t

0

jjw .s/jj2W ds:

Then, Gronwall’s inequality implies that

jv .t/j2H C k

2
kw .t/k2V C �

Z t

0

kvk2V ds � C .w0; p0; v0; f; k; T / : (9.45)

The constant on the right-hand side is independent of � and R. Now, by the
continuous embedding of H1 .0; 1/ into C .Œ0; 1�/, it follows that, for large enough
R, the solution of the truncated problem satisfies jwx .t; x/j < R and so the
constraint imposed by the truncation �R is never in operation. Thus, the solution
to Problem 9.7, for R sufficiently large, is also a solution to Problem 9.3. Since the
solution to Problem 9.7 is unique, so is the solution to Problem 9.3. This completes
the proof of Theorem 9.5.

9.6 The Elastic Beam with the Normal Compliance
Condition

Next we consider obtaining the existence of a solution in the case when the beam
is elastic, so that � D 0. In this case, uniqueness is lost. From the estimate (9.45),
it follows from the equation solved and the boundedness of the operators that there
also exists an estimate of the form

��v0��2
V�

C jv .t/j2H C k

2
kw .t/k2V C �

Z t

0

kvk2V ds � C .w0; p0; v0; f; k; T / :
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Now let the solution in the above viscoelastic problem be denoted by .w� ; v� /. By
the above estimate, there exists a subsequence, still denoted with the subscript � ,
such that, as � ! 0,

v� ! v weakly in L1 .0; T IH/ ;
w� ! w strongly in C .Œ0; T � IZ/ ;

�Kv� ! 0 weakly in V�;

v0
� ! v0 in V�;

Kw� ! Kw weakly in V�;

Bw� ! Bw weakly in V�:

Here Z is an intermediate space satisfying the conditions that the embedding of V
into Z is compact and that the embedding of Z into C .Œ0; 1�/ is continuous. For
example, one could take for Z the closure of V in H

11
6 .Œ0; 1�/.

These convergences are easily enough to pass to a limit in the equation solved
by
�
w� ; v�

�
, including the nonlinear term involving w3x . This yields a solution to the

equation

hv0.t/; uiV C k.wxx.t/; uxx/C 1

3
a.w3x.t/; ux/ � �p.t/.wx.t/; ux/

D hf .t/; uiV C .q.g � w/; u/ 8 u 2 V: (9.46)

Because of the manner of obtaining this solution, it is not at all clear that it is unique.
All that is clear is that it exists and satisfies the regularity implied by the above
convergences. This yields the following existence theorem for the inviscid problem.

Theorem 9.14. There exists a solution .v;w/ to the inviscid problem (9.46) along
with the initial condition v .0/ D v0 and the relation between v and w given by

w .t/ D w0 C
Z t

0

v .s/ ds; w0 2 H2 .Œ0; 1�/ :

This solution satisfies v0 2 V�; v 2 V .

9.7 The Elastic Beam with the Signorini Condition

Now we will pass to a limit in the elastic beam as the normal compliance condition
becomes increasingly stiff. Thus, we replace q with 1

"
q and consider the solution to

the abstract beam equation given below which we denote with a subscript of ":

v0
" C kK.w"/C 1

3
aw3"x � �B.w"/ � 1

"
J.w"/ D f: (9.47)
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�

�
q

r

Fig. 9.3 The graph of the function �q.g � r/

We let this equation act on v", recall that we now assume that f 2 H, and integrate
from 0 to t to obtain

1

2
jv" .t/j2H � 1

2
jv0j2 C k

2
kw" .t/k2V � k

2
kw0k2H

C a

12

Z 1

0

w4"x.t/dx � a

12

Z 1

0

w40xdx � �
Z t

0

hB .w" .s// ; v" .s/i ds

C
Z t

0

Z 1

0

�
�1
"
q .g � w" .s//

�
v" .s/ dxds D

Z t

0

.f .s/ ; v" .s//ds: (9.48)

We now focus our attention on the term containing q. From the above assump-
tions, the graph of r ! �q .g � r/ is of the general form depicted above (Fig. 9.3)

for each x 2 Œ0; 1�. We define Q.x;w/ D R w
q.x/

.�q .g � ˛// dr . Then, Q.x;w/ 	
0 and

@Q .x; !/

@w
D �q .g .x/ � w/ ; Q .x;w0 .x// D 0;

the last equality holds since w0 	 g.x/. Then, using these facts in the term
containing q and rearranging terms, we obtain the inequality

1

2
jv" .t/j2H C k

2
kw" .t/k2V C a

12

Z 1

0

w4"xdx � �
Z 1

0

Z t

0

p .t/w"xv"xdsdx

C 1

"

Z 1

0

Q .x;w" .t; x// dx � C .f; v0;w0/C
Z t

0

jv".s/j2H ds: (9.49)

We now consider the term containing p. It can be written as

Z 1

0

Z t

0

p .s/
d

dt
jw"xj2 dsdx D

Z 1

0

�
p .s/ jw"x j2 jt0 �

Z t

0

jw"x .s/j2 p0 .s/ ds
�
dx;
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and so it is dominated by an expression of the form

p0 kw" .t/k2W C p0

Z t

0

kw" .s/k2W ds C C .w0/ :

Using this result in (9.49), we obtain the estimate

1

2
jv" .t/j2H C k

2
kw" .t/k2V C a

12

Z 1

0

w4"xdx C 1

"

Z 1

0

Q .x;w" .t; x// dx

� C .f; v0;w0/C p0 kw" .t/k2W C p0

Z t

0

kw" .s/k2W ds C
Z t

0

jv".s/j2H ds:

Using the compactness of the embedding of V into W and the relationship between
w" and v", we have that

1

2
jv" .t/j2H C k

4
kw" .t/k2V C a

12

Z 1

0

w4"xdx C 1

"

Z 1

0

Q .x;w" .t; x// dx

� C .f; v0;w0/C C

Z t

0

jv" .s/j2H ds C p0

Z t

0

kw" .s/k2W ds:

Therefore, by Gronwall’s inequality, there is a constant C .f; v0;w0/, independent
of ", such that

jv" .t/j2H C kw" .t/k2V C
Z 1

0

w4"xdx C C

"

Z 1

0

Q .x;w" .t; x// dx � C .f; v0;w0/ :

(9.50)

It follows that there exists a subsequence, still denoted with ", such that, as " ! 0,

v" ! v weak* in L1 .0; T IH/ ;
w" ! w strongly in C .Œ0; T � IZ/ ;
w" ! w weak � in L1 .0; T IV / ;

Kw" ! Kw weakly in V�;

Bw" ! Bw weakly in V�;

�1
"
q .g � w"/ ! 	 weakly in V�:

Here, Z is the intermediate space between V and C Œ0; 1� described in the previous
section. We also note that multiplication of (9.50) by " and then passing to a limit
as " ! 0 implies that

Z 1

0

Q .x;w .t; x// dx D 0;
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and so, for each t ,

g .x/ � w .t; x/ :

We now return to (9.47). We let this equation act on u 2 V with u0 2
L1 .0; T IH/. The above convergences are enough to pass to a limit in this equation
and obtain the following

.v .t/ ; u .t// � .v0; u .0// �
Z t

0

�
v .s/ ; u0 .s/

�
ds C k

Z t

0

hKw; u .s/i ds

C 1

3
a

Z t

0

.w3x .s/ ; u .s//ds � �
Z t

0

hBw .s/ ; u .s/i ds C
Z t

0

h	; uiV ds

D
Z t

0

.f .s/ ; u .s//ds: (9.51)

It only remains to consider the term containing 	 . Since the graph of r 7! �q .g � r/
shows that it is monotone and since we have now shown that w .t; x/ 	 g .x/ for
each x, it follows that, for each t , and any u .t/ 2 V with u .t; x/ 	 g .x/,

�1
"
q .g � w" .t; x// .w" .t; x/ � u .t; x// 	 0:

It follows that for such u,

Z t

0

Z 1

0

�1
"
q .g � w" .t; x// .w" .t; x/ � u .t; x// dxds

D
Z t

0


�1
"
q .g � w"/ ;w" � u

�
V

ds 	 0:

Then, passing to the limit, we obtain

Z t

0

h	;w � uiV ds 	 0: (9.52)

In (9.51), we now replace u with w � u where w is as described in the above limit
and u .t; x/ 	 g .x/ ; u 2 V , and u0 2 L1 .0; T IH/, thus,

.v .t/ ;w .t/ � u .t// � .v0;w .0/ � u .0//

�
Z t

0

�
v .s/ ;w0 .s/ � u0 .s/

�
ds C k

Z t

0

hKw;w .s/ � u .s/i ds
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C 1

3
a

Z t

0

.w3x .s/ ;w.s/ � u.s//ds � �
Z t

0

hBw .s/ ;w .s/ � u .s/i ds

C
Z t

0

h	;w � ui dt D
Z t

0

.f .s/;w.s/ � u.s//ds:

Thus, replacing the various operators with their definitions and using (9.52), we
obtain the variational inequality (9.21) that is valid for all u 2 V such that
u0 2 L1 .0; T;H/ and u .t; x/ 	 g .x/ for each t . This concludes the proof of
Theorem 9.6.
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Chapter 10
A Hyperelastic Dynamic Frictional Contact
Model with Energy-Consistent Properties

Mikael Barboteu, David Danan, and Mircea Sofonea

Abstract In this chapter we present an energy-consistent numerical model for
the dynamic frictional contact between a hyperlastic body and a foundation. Our
contribution has two traits of novelty. The first one arises from the specific frictional
contact model we consider, which provides intrinsic energy-consistent properties.
The contact is modeled with a normal compliance condition of such a type that the
penetration is limited with unilateral constraint and, the friction is described with
a version of Coulomb’s law of dry friction. The second trait of novelty consists in
the construction and the analysis of an energy-consistent scheme, based on recent
energy-controlling time integration methods for nonlinear elastodynamics. Some
numerical results for representative impact problems are provided. They illustrate
both the specific properties of the contact model and the energy-consistent properties
of the numerical scheme.

Keywords Contact and friction • Normal compliance • Unilateral constraint •
Coulomb friction • Nonlinear elastodynamics • Hyperelasticity • Time integra-
tion schemes • Energy-conserving algorithms

AMS Classification. 74M15, 74M20, 74M10, 74B20, 74H15, 74S30, 49M15,
90C53

10.1 Introduction

An important topic concerning the modelling of dynamic frictional contact problems
is the enforcement of suitable contact interface conditions with energy-consistent
properties. This leads to consideration of acceptable physical models and of
numerical schemes with long term time integration accuracy and stability properties.
During the last 20 years, many works have been devoted to the construction of
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energy-conserving methods for elastodynamic contact problems, see [2, 4, 6, 18–
20,26,29,30], for instance. Consistent energy dissipation extensions can be found in
[4,6,20,30] and [5], in the study of models with friction and viscosity, respectively.

In this current work we consider new frictional contact conditions between a
hyperelastic body and a foundation, which take into account the asperities of the
contact surface and some energy-consistent properties, as well. More precisely,
we consider a specific frictional contact model which provides intrinsic energy-
consistent properties, characterized by a conserving behaviour for frictionless
impacts and admissible dissipation for friction phenomena. In our model the contact
is described with a normal compliance condition of such a type that the penetration
is limited with unilateral constraint. This penetration can be assimilated to the
flattening of the asperities on the contact surface of the foundation. The associated
model of friction, which represents a generalization of the models introduced in
[10,11], is based on a version of Coulomb’s law in which we assume that the friction
bound depends on both the depth of the penetration and the slip rate.

In order to provide numerical energy-consistent properties related to the specific
frictional contact, a crucial issue is to focus on computational aspects with long
term time integration accuracy and stability properties. To this end, we consider
an energy-consistent scheme based on recent energy-controlling time integration
methods for nonlinear elastodynamics, developed in [2,4,6,18–20,26,30]. In partic-
ular, we use a Newton continuation method and augmented Lagrangian arguments,
already used in [4]. Next, to obtain additional energy conserving properties,
we combine the specific penalized methods considered in [4, 17, 19], with the
procedure of equivalent mass matrix introduced in [26]. We also provide some
numerical experiments of representative impact problems which illustrate, in terms
of conservation of energy, the good properties of both the frictional contact model
and the numerical scheme. More precisely, we compare our numerical results with
results obtained by using time integration schemes used in [4,19,26] and we discuss
issues related to energy conservation properties.

The rest of the chapter is structured as follows. In Sect. 10.2 we introduce
the notation as well as some preliminary material used for the physical setting
of hyperelastic contact problems. In Sect. 10.3 we describe the specific contact
model, including the associated Coulomb’s law of friction. In Sect. 10.4, we present
the classical formulation of the dynamic frictional contact problem and derive
its variational formulation. Then, in Sect. 10.5 we introduce the fully discrete
approximation of the problem. Section 10.6 is devoted to the analysis of the
energy-consistent approach used to solve nonlinear elastodynamic frictional contact
problems. Thus, after presenting the usual energy-conserving frameworks used,
we focus on the analysis of the discrete energy evolution of the method. Finally,
in Sect. 10.7 we present numerical results in the study of two representative two-
dimensional examples with linear elastic and hyperelastic materials, respectively.
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10.2 Notation and Physical Setting

In this section we present the notation we shall use and some preliminary material.
Everywhere in this chapter we use N for the set of positive integers and R� will
represent the set of non positive real numbers, i.e. R� D .�1; 0�. We denote by
M
d the space of second order tensors on R

d or, equivalently, the space of square
matrices of order d . The inner product and norm on R

d and M
d are defined by

u � v D ui vi ; kvk D .v � v/
1
2 8 u; v 2 R

d ;

˘ W � D ˘ji
ij ; k�k D .� W �/
1
2 8 ˘ ;� 2 M

d :

Let ˝ � R
d (d D 1; 2; 3) be an open bounded connected set with a Lipschitz

boundary � . We use the notation x D .xi / for a typical point in ˝ [ � and we
denote by � D .�i / the outward unit normal at � . Here and below the indices i , j ,
k, l run between 1 and d and, unless stated otherwise, the summation convention
over repeated indices is used. An index that follows a comma represents the partial
derivative with respect to the corresponding component of the spatial variable, e.g.
ui;j D @ui =@xj . We consider the spaces

V D fv 2 H1.˝IRd / W v D 0 on �1g; H D L2.˝IRd /:

These are real Hilbert spaces endowed with their standard inner products .u; v/V
and .˘ ;�/H and their associated norms k � kV and k � kH , respectively. Note that
V � H � V � is an evolution triple, with all embeddings being continuous, compact
and dense. The duality pairing between V � and V will be denoted by hu; viV ��V .

For an element v 2 V we still write v for its trace and we denote by v� and
v
 the normal and tangential components of v on � , given by v� D v � � and
v
 D v�v��, respectively. Also, for a regular stress function ˘ we use the notation
˘� and ˘ 
 for its normal and tangential components, i.e. ˘� D .˘ �/ � � and
˘ 
 D ˘ � � ˘��. Moreover, we recall that the divergence operator is defined by
the equality Div ˘ D .˘ij;j / and, finally, the following Green’s formula holds:

Z
˝

˘ W rv dx C
Z
˝

Div ˘ � v dx D
Z
�

˘ � � v d� 8 v 2 V: (10.1)

In the rest of the chapter we consider the time interval of interest Œ0; T � with
T > 0. We denote by t 2 Œ0; T � the time variable and, as already mentioned,
x 2 ˝ [ � will represent the spatial variable. In order to simplify the notation, we
do not indicate the dependence of the functions on x and t . Moreover, we use the
dots above to represent the derivatives with respect to the time. We also use u for
the displacement field and ˘ for the first Piola-Kirchoff stress tensor.

We consider a dynamic contact problem between a deformable body and a
foundation in the framework of finite deformations theory. The material’s behavior
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Fig. 10.1 A deformable
body in dynamic contact with
a foundation

is described with a hyperelastic constitutive law. We recall that hyperelastic con-
stitutive laws are characterized by the first Piola-Kirchoff tensor ˘ which derives
from an internal hyperelastic energy density W.F/, i.e. ˘ D @FW.F/. Here F is
the deformation gradient defined by F D I C ru and @F represents the differential
with respect to the variable F, see [12] for details. The deformable body occupies
the domain ˝ with the boundary partitioned into three disjoint parts � 1, � 2 and
� 3 with �1, �2 and �3 being relatively open. The part �1 is the part in which the
displacement field is prescribed. A volume force of density f 0 acts in ˝ � .0; T /,
and we assume that a density of traction forces, denoted by f 2, acts on the part
�2, i.e.

˘ � D f 2 on �2 � .0; T /:

On the part �3 the body can arrive in frictional contact with an obstacle, the so-called
foundation, as shown in Fig. 10.1.

Various contact boundary conditions have been used to model contact
phenomena, both in engineering and mathematical literature, see for instance
[1, 14, 16, 27, 28, 33, 34, 36, 37, 39–41] and the references therein. One of the most
popular is the Signorini condition, introduced in [38], which describes the contact
with a perfectly rigid foundation. Expressed in terms of unilateral constraints for
the displacement field, this condition leads to highly nonlinear and nonsmooth
mathematical problems. The unilateral contact conditions with a gap between a
deformable body and a rigid foundation are given by

u� �G � 0; ˘� � 0; ˘�.u� �G/ D 0 on �3 � .0; T /; (10.2)
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where the gap function G measures the distance between a point on �3 and its
projection onto the rigid obstacle. In the following, for simplicity, we consider that
the gap function vanishes, i.e. we use condition (10.2) with G D 0. The Signorini
contact condition is idealistic since a foundation is never perfectly rigid, due to
the presence of microscopic asperities on its surface. Furthermore, it induces non
negligible dissipation of energy during impacts, as explained in [2, 29]. For this
reason, an unilateral contact condition expressed in terms of velocity field has been
considered in the literature. Its form is given by

Pu� � 0; ˘� � 0; ˘� Pu� D 0 on �3 � .0; T /: (10.3)

Even if it induces good properties of conservation of energy, condition (10.3) is not
realistic, since it could lead to non controlled penetrations.

The contact with a deformable foundation is modelled by the so-called normal
compliance contact condition. It assigns a reactive normal pressure that depends
on the interpenetration of the asperities on the body’s surface and those on the
foundation. The normal compliance contact condition was first introduced in
[33, 36] in the study of dynamic contact problems with elastic and viscoelastic
materials. A general expression for the normal compliance condition with a zero
gap function is

�˘� D p.u�/ on �3 � .0; T /; (10.4)

where p.�/ is a nonnegative prescribed function which vanishes for negative
argument. This condition can be viewed as a regularization of the Sigorini unilateral
condition. It is obvious to see that the normal compliance condition is characterized
by a non limited penetration.

In the case of the frictional contact, the contact condition is usually associated to
Coulomb’s law of dry friction, given by

(
k˘ 
k � ��˘� if Pu
 D 0;
�˘ 
 D ��˘�

Pu
kPu
k if Pu
 ¤ 0;
on �3 � .0; T /: (10.5)

Here � is a positive variable, the coefficient of friction.
As noted in [35], the tribological laws (10.2) and (10.5) can be written in the form

of subdifferential inclusions which derive from non-differentiable convex potentials:

˘� 2 @IR�.u�/ and � ˘ � 2 ��˘�@kPu
k on �3 � .0; T /:

Here @IR� and @kPu
k denote the subdifferential of the indicator function IR� of the
negative half-line of R and the subdifferential of the norm of the slip rate, kPu
k,
respectively. Furthermore, in the case of large deformations, we can refer to [14] for
the definition of objective quantities related to contact mechanics.
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10.3 A Specific Frictional Contact Model

The purpose of this section is to present a specific frictional contact model
which provides intrinsic energy-consistent properties. The contact is modeled with
a normal compliance condition of such a type that the penetration is limited
with unilateral constraint and the friction is modeled with a specific version of
Coulomb’s law.

In order to obtain energy conservation properties, the work of normal contact
reactions, denoted by Wc D R

�3
˘� Pu�d� , has to vanish. Therefore, for energy

conservation purposes, as explained in [2, 29], the following persistency condition
has to be added:

Pu�˘� D 0 on �3 � .0; T /: (10.6)

This condition means that normal contact reactions can appear only during persis-
tent contact. Note that the unilateral contact condition (10.3), expressed in terms
of velocity, could lead to displacements which do not satisfy the non penetration
condition. Furthermore, as explained in [4, 6], it is impossible to enforce, at a given
moment, both the complementarity condition in displacement and in velocity.

To overcome this drawback, in order to take into account the deformability
of the foundation (arising from the existence of micro asperities on its surface),
we consider the following normal compliance condition restricted by unilateral
constraint: 8<

:
˘� C p.u�/ � 0;

u� � g � 0;

.˘� C p.u�//.u� � g/ D 0;

on �3 � .0; T /: (10.7)

This condition was introduced for an elastic-visco-plastic problem in [23]. In this
model, the contact follows a normal compliance condition with penetration but up to
the limit g and then, when this limit is reached, the contact follows a Signorini-type
unilateral condition with the gap g and without any additional penetration in the
foundation. We conclude from above that condition (10.7) models the contact with
a foundation which is composed by a thin deformable layer of asperities of thickness
g which covers a perfect rigid material. This contact model has two intrinsic advan-
tages: the adequation with energy conservation properties during penetrations for
the impact phase (�˘� D p.u�/ for 0 � u� < g), on one hand, and the limitation
of penetration into the foundation (˘� � 0; u� � g � 0; ˘�.u� � g/ D 0), on the
other hand. Note that the energy conservation property during penetrations comes
from the specific form of the normal compliance function p. Indeed, let us consider
a normal compliance function p defined by

p.u�/ D ruC
� with uC

� D max.0; u�/ D distR�.u�/; (10.8)
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where r is a positive constant which represents the deformability of the foundation.
Then, with (10.8), the persistency condition is no longer necessary to obtain energy
conservation properties and the work Wc of contact reactions takes the form

Wc D
Z
�3

˘� Pu� d� D �
Z
�3

ruC
� Pu� d� D �

Z
�3

r

2

d

dt
fuC

� g2 d�: (10.9)

If we consider the Gonzalez approach, [15], then the conservation of the energy
for a contact system with a normal compliance condition of the form (10.8) is
provided by the following energy assessment on Œ0; t �:

E.t/ �E.0/ D
Z t

0

Z
˝

f � Pu d˝ C
Z t

0

Z
�2

g � Pu d�

� r

2

Z
�3

�
.uC

� .t//
2 � .uC

� .0//
2
�
d�: (10.10)

Here E.t/ represents the internal energy of the body ˝ at time t and is defined by

E.t/ D 1

2

Z
˝

 Pu2d˝ C
Z
˝

W.F/ d˝: (10.11)

We refer to Sect. 10.6.2 or [19] for more details about this energy assessment
properties for a normal compliance condition of the form (10.8). The same statement
can be established for the angular and the linear momentum, as shown in [39].

We turn now to the friction conditions. Our goal is to consider a friction model
suited to the previous contact conditions. To this end, we introduce a specific version
of Coulomb’s law of dry friction in which the friction bound depends both on the
depth of the penetration for 0 � u� � g and on the normal contact stress ˘� .
Therefore, we consider the following friction condition:

(
k˘ 
k � ��.u�/˘� if Pu
 D 0;
�˘ 
 D ��.u�/˘�

Pu
kPu
k if Pu
 ¤ 0;
on �3 � .0; T /: (10.12)

Here � denotes the coefficient of friction and is assumed to depend on the
penetration u� as long as u� < g. When there is penetration, as far as the normal
displacement does not reach the bound g (i.e. 0 � u� < g), the contact is described
with a normal compliance condition associated to the classical Coulomb’s law of
dry friction with the friction bound �.u�/p.u�/. Details on the normal compliance
contact condition associated to Coulomb’s law of dry friction can be found in
[16, 37, 40], for instance. After the complete flattening of the asperities, i.e. when
the normal displacement reaches the bound g, the magnitude of the normal stress
is larger than p.g/ and, moreover, friction follows a Coulomb’s law associated to
unilateral contact, with the friction bound ��.g/˘� . Note that the friction bound
is characterized by the friction coefficient � which depends on the depth of the
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penetration u� and on the size of the asperities g. In what follows, we consider two
examples, namely

�1.�/ D

8̂̂
<
ˆ̂:
0 for � � 0;
�

g
�0 for � 2 .0; g/;
�0 for � 	 g:

�2.�/ D

8̂̂
<
ˆ̂:
0 for � � 0;

.2 � �

g
/�0 for � 2 .0; g/;

�0 for � 	 g:

(10.13)

Here �0 D �.g/ denotes a given coefficient of friction associated to the unilateral
contact (u� D g). In the case of function �1, we remark that the friction bound
increases with respect to the flattening of the asperities. In contrast, in the case of
the function �2, the friction bound decreases with respect to the flattening of the
asperities. Several experimental studies have demonstrated the dependence of the
friction coefficient with respect to the normal compression load and the flattening
of asperities. This behavior is generated by the wear of asperities on the contact
surfaces. References on this matter include [22, 31, 32], among others.

10.4 Mechanical Problem and Variational Formulation

10.4.1 Mechanical Problem

With these preliminaries the formulation of hyperelastodynamic frictional contact
problem is the following.

Problem PM . Find a displacement field u W ˝ � Œ0; T � ! R
d and a stress field

˘ W ˝ � Œ0; T � ! M
d such that

˘ D @FW.F/ in ˝ � .0; T /; (10.14)

 Ru � Div ˘ � f 0 D 0 in ˝ � .0; T /; (10.15)

u D 0 on �1 � .0; T /; (10.16)

˘ � D f 2 on �2 � .0; T /; (10.17)�
u� � g; ˘� C p.u�/ � 0;

.u� � g/.˘� C p.u�// D 0
on �3 � .0; T /; (10.18)

(
k˘ 
k � ��.u�/˘� if Pu
 D 0;
�˘ 
 D ��.u�/˘�

Pu
kPu
k if Pu
 ¤ 0;
on �3 � .0; T /; (10.19)

u.0/ D u0; Pu.0/ D u1 in ˝: (10.20)

We recall that Eq. (10.14) is the hyperelastic constitutive law. Equation (10.15)
represents the equation of motion in which  denotes the density of the material and
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is assumed to be constant, for the sake of simplicity. Conditions (10.16) and (10.17)
are the displacement and traction boundary conditions, respectively. Finally, (10.20)
represent the initial conditions in which u0 and u1 are the initial displacement and
velocity, respectively.

Next, conditions (10.18) and (10.19) represent the frictional contact condi-
tions, already introduced in Sect. 10.3. We recall that (10.18) represents a contact
condition with normal compliance contact and unilateral constraint, in which the
penetration is limited to the value g. Condition (10.19) represents a version of
Coulomb’s law of dry friction in relation with the contact conditions (10.18). Note
that the condition (10.18) is equivalent to

�˘� 2 p.u�/C @I.�1;g�.u�/ on �3 � .0; T /; (10.21)

where @ represents the subdifferential operator in the sense of the convex analysis
and IA denotes the indicator function of the setA � R. In the same way, we observe
that the condition (10.19) is equivalent to

� ˘ 
 2 ��.u�/˘�@kPu
k on �3 � .0; T /: (10.22)

In the rest of the chapter, we will consider the frictional contact conditions in their
subdifferential form (10.21), (10.22).

10.4.2 Variational Formulation

We now introduce a hybrid variational formulation of Problem PM in which the
dual variables corresponding to Lagrange multipliers are related to the contact
stress and the friction force. In this case, the Lagrange multipliers verify extended
subdifferential inclusions derived from the pointwise subdifferential inclusions
defined in (10.21) and (10.22). To this end we consider the trace spaces X� D
f v� j�3 W v 2 V g and X
 D f v
 j�3 W v 2 V g, equipped with their usual norms.
We denote byX 0

� andX 0

 the duals of the spacesX� andX
 , respectively. Moreover,

we denote by h�; �iX 0

� ;X�
and h�; �iX 0


 ;X

the corresponding duality pairing mappings.

To establish the variational formulation, we need additional notations. Thus, we
consider the function f W .0; T / ! V � and the operator B W V ! V � defined by

hf .t/; viV ��V D .f 0.t/; v/H C .f 2.t/; v/L2.�2IRd /; (10.23)

hBu; viV ��V D
Z
˝

˘ .u/ W rv dx (10.24)

for all t 2 .0; T /, u; v 2 V . For the contact conditions, we introduce a function
'� W X� ! .�1;C1� and an operator L W X� ! X 0

� defined by
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'�.u�/ D
Z
�3

I.�1;g�.u�/ d� 8 u� 2 X�;

L W X� ! X 0
�; hLu�; v�iX 0

� ;X�
D
Z
�3

p.u�/v� d� 8 u�; v� 2 X�:

We note that, for all t 2 .0; T /, condition (10.21) leads to the subdifferential
inclusion

�˘�.t/ 2 @'�.u�.t//C Lu�.t/ in X 0
�: (10.25)

To reformulate the friction law, we introduce the function '
 W L2.�3IRd / !
.�1;C1� defined by

'
.u
 / D
Z
�3

ku
k d� 8 u
 2 L2.�3IRd /:

We note that for all t 2 .0; T /, condition (10.22) leads to the subdifferential
inclusion

� ˘ 
 .t/ 2 ��.u�.t//˘�@'
 . Pu
 .t// in X 0

 : (10.26)

Inclusions (10.25) and (10.26) suggest to introduce two new unknowns, the
Lagrange multipliers, which represent the normal and tangential stresses on the
contact surface, and which will be denoted in what follows by 	� and �
 , respec-
tively. Therefore, multiplying the equation of motion (10.15) by the test function v,
integrating the result over ˝ � .0; T / and using the Green formula (10.1) and the
inclusions (10.25)–(10.26), we obtain the following hybrid variational formulation
of Problem PM , in terms of three unknown fields.

Problem PV . Find a displacement field u W Œ0; T � ! V , a normal stress field
	� W Œ0; T � ! X 0

� and a tangential stress field �
 W Œ0; T � ! X 0

 such that

h Ru.t/C Bu.t/; viV ��V D hf .t/; viV ��V C h	�.t/; v�iX 0

� ;X�

C h�
 .t/; v
 iX 0


 ;X

8 v 2 V; (10.27)

�	�.t/ 2 @'�.u�.t//C Lu�.t/; (10.28)

��
 .t/ 2 ��.u�.t//	�@'
 .. Pu
 .t//; (10.29)

for all t 2 Œ0; T � and, moreover,

u.0/ D u0; Pu.0/ D u1: (10.30)
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We note that the existence and uniqueness of weak solution of Problem PV
represents, at the best of our knowledge, an open mathematical problem. Never-
theless, the solvability of a dynamic viscoelastic frictional contact problem with
a regularized version of the frictional contact conditions (10.28)–(10.29) has been
established in [9], in the case of small deformations theory. We also recall that the
question of weak solvability for several contact problems is discussed in detail in
the books [16, 34, 40].

10.5 Discretization and Variational Approximation

This section is devoted to the discretization of the variational problem PV , based on
arguments similar to those used in [4, 5, 7–11].

First, we recall some preliminary material concerning the time discretization
step. Let N be an integer, let k D T

N
be the time step and define

tn D n k; 0 � n � N:

Below, for a continuous function f .t/ with values in a function space, we use the
notation fj D f .tj /, for 0 � j � N . In what follows, we consider a collection of
discrete times ftngNnD0 which define a uniform partition of the time interval Œ0; T � DSN
nD1Œtn�1; tn� with t0 D 0, tn D tn�1 C k and tN D T . Finally, for a sequence

fwngNnD1, we denote the midpoint divided differences by

ıwn� 1
2

D .wn � wn�1/=k D 1

2
.ıwn C ıwn�1/; (10.31)

and, equivalently, we have ıwn D �ıwn�1 C 2
k
.wn � wn�1/. In the rest of the paper,

we use the notation �n� 1
2

D 1
2
.�nC�n�1/, where �n represents the approximation

of �.tn/. Note that the time integration scheme we use is based on the implicit
second order midpoint rule given in (10.31).

We now present some material concerning the spatial discretization step. Let
˝ be a polyhedral domain. Moreover, let fT hg be a regular family of triangular
finite element partitions of ˝ that are compatible with the boundary decomposition
� D �1 [ �2 [ �3, i.e., if one side of an element T r 2 T h has more than one point
on � , then the side lies entirely on �1, �2 or �3. The space V is approximated by
the finite dimensional space V h � V of continuous and piecewise affine functions,
that is,

V h D f vh 2 ŒC.˝/�d W vhjT 2 ŒP1.T r/�d 8T r 2 T h;

vh D 0 at the nodes on �1 g;
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where P1.T r/ represents the space of polynomials of degree less or equal to one in
T r . For the discretization of the normal contact terms, we consider the space

Xh
� D f vh�j�3 W vh 2 V h g

equipped with its usual norm. Let us consider the discrete space of piecewise
constant functions Y h� � L2.�3/ related to the discretization of the normal stress
	� . Then, we note that the contact condition (10.28) leads to the following discrete
subdifferential inclusion at time tn� 1

2
:

�	�hkn� 1
2

2 @'�.u�hkn� 1
2

/C Lu�
hk

n� 1
2

in Y h� :

For the discretization of the tangential friction terms, let us consider the space

Xh

 D f vh
 j�3 W vh 2 V h g

equipped with its usual norm. We also consider the discrete space of piecewise
constants Y h
 � L2.�3/

d related to the discretization of the friction density �
 .
In a similar way, we note that the friction condition (10.29) leads to the following
discrete subdifferential inclusion at time tn� 1

2

��

hk

n� 1
2

2 ��.uh�/	�hkn� 1
2
@'
 .ıu
 hkn� 1

2

/ in Y h
 :

More details about the discretization step can be found in [24, 25, 41].
Let uh0 2 V h and uh1 2 V h be finite element approximations of u0 and u1,

respectively. Then, using the previous notations and the midpoint scheme (10.31),
the fully discrete approximation of the Problem PV at the time tn� 1

2
is the following.

Problem Phk
V . Find a discrete displacement field uhk D fuhkn gNnD0 � V h, a discrete

normal stress field 	hk� D f	�hkn gNnD0 � Y h� and a discrete tangential stress field
�hk
 D f�
 hkn gNnD0 � Y h
 such that, for all n D 1; : : : ; N ,

h
k

�
ıuhkn � ıuhkn�1

�C Buhk
n� 1

2

; vhiV ��V D hf hk

n� 1
2

; vhiV ��V

C h	�hkn� 1
2
; vh� iY h� ;Xh� C h�
 hkn� 1

2

; vh
 iY h
 ;Xh
 8 v 2 V h; (10.32)

�	�hkn� 1
2

2 @'�.u�hkn� 1
2

/C Lu�
hk

n� 1
2

; (10.33)

��

hk

n� 1
2

2 ��.u�hkn� 1
2

/	�
hk

n� 1
2
@'
 .ıu
 hkn� 1

2

/; (10.34)

uhk0 D uh0; ıuhk0 D uh1: (10.35)
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Note that the discrete frictional contact conditions (10.33) and (10.34) are
considered at the time tn� 1

2
. As a consequence the solution uhkn does not verify the

contact conditions at the desired time tn and the scheme does not control penetration.
In order to overcome this drawback, several authors impose the contact conditions at
the time tn, see [4, 5, 15, 19, 24, 30], for instance. Here we use an implicit backward
divided difference for the discretization of the tangential velocity Pu
 .t/ given by
ıu
 n D .u
 n � u
 n�1/=k, which leads to the following discrete problem.

Problem Phk

V . Find a discrete displacement field uhk D fuhkn gNnD0 � V h, a discrete
normal stress field 	hk� D f	�hkn gNnD0 � Y h� and a discrete tangential stress field
�hk
 D f�
 hkn gNnD0 � Y h
 such that, for all n D 1; : : : ; N ,

h
k

�
ıuhkn � ıuhkn�1

�C Buhk
n� 1

2

; vhiV ��V D hf hk

n� 1
2

; vhiV ��V

C h	�hkn ; vh� iY h� ;Xh� C h�
 hkn ; vh
 iY h
 ;Xh
 8 v 2 V h; (10.36)

�	�hkn 2 @'�.u�hkn /C Lu�
hk
n ; (10.37)

��

hk
n 2 ��.u�hkn /	�hkn @'
 .ıu
 hkn /; (10.38)

uhk0 D uh0 in ıuhk0 D uh1: (10.39)

Note that the specific discretization used in Problem Phk

V represents the starting
point to develop improved energy-conserving algorithms for the solution of elasto-
dynamic contact problems with long term time integration accuracy and stability.
Some details on the energy-conserving framework can be found in the next section.

10.6 Numerical Solution with Energy-Consistent Properties

10.6.1 Usual Discrete Energy-Conserving Framework

We start by recalling some preliminaries concerning the usual discrete energy-
conserving framework in the case without contact. In the rest of the section, to
simplify the notation and the readability, we do not indicate the dependence of
various variables with respect to the discretization parameters k and h, i.e., for
example, we write u instead of uhk .

In order to solve a nonlinear elastodynamic problem, we have to use adapted
time integration schemes. When nonlinear dynamic problems are considered,
the standard implicit schemes (� -method, Newmark schemes, midpoint or HHT
methods) lose their unconditional stability, as explained in [21, 28]. Therefore,
there is a need to use implicit energy conservative schemes as those used in
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[3, 15, 17, 28, 39], which are appropriate, due to their long term time integration
accuracy and stability. In all these methods the corresponding discrete mechanical
conservation properties are satisfied. To establish these discrete energy conservative
properties, one of the most used implicit time integration scheme is the second order
midpoint scheme given by

ıun D �ıun�1 C 2

k
.un � un�1/: (10.40)

Moreover, according the time integration scheme of Gonzalez [15], the variational
inequality (10.36) is characterized by the operator B defined by

hBun� 1
2
; viV ��V D

Z
˝

˘ algo W rv dx for v 2 V h; (10.41)

in which the discrete tensor ˘ algo is introduced in order to satisfied exact discrete
energy properties. This tensor defined by Gonzalez in [15] takes the form

8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

˘ algo D Fn� 1
2
†algo;

†algo D 2@
QW
@C .Cn� 1

2
/C 2Œ QW .Cn/ � QW .Cn�1/

� @ QW
@C .Cn� 1

2
/ W �Cn�1� �Cn�1

�Cn�1W�Cn�1
;

(10.42)

where �Cn�1 D Cn � Cn�1 and Cn�1 D tFn�1Fn�1. As shown in [12], the axiom
of frame indifference implies that W.F/ D QW .C/. Then, using the arguments
in [15], it follows that (10.42) verifies exactly the energy conservation condition
characterized by

˘ algo W .run � run�1/ D QW .Cn/ � QW .Cn�1/: (10.43)

For more details on standard energy-conserving framework, we refer the reader to
[3, 15, 17, 28, 39].

10.6.2 An Improved Energy-Consistent Approach

Many works have been devoted to extend the previous conservative properties to
frictionless impact; more precisely, Laursen and Chawla [29] and Armero and
Petocz [2] have shown the benefit of the persistency condition to conserve the
energy in the discrete framework. Nevertheless, in all these works the numerical
method shows that the interpenetration vanishes only when the time step tends
towards zero. In order to overcome this drawback, Laursen and Love [30] have
developed an efficient method, by introducing a discrete jump in velocity; however,
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this method requires the solution of an auxiliary system in order to compute the
velocity update results. Furthermore, Hauret and Le Tallec [19] have considered a
specific penalized enforcement of the contact conditions which allows to provide
energy conservation properties. Then, Khenous, Laborde and Renard [26] have
introduced the Equivalent Mass Matrix method (EMM), based on a procedure of
redistribution of the mass matrix. Interpretations and extensions of this method
can be found in [18]. The resulting problem exhibits Lipschitz regularity in time
and achieves good energy evolution properties, due to the fact that the persistency
condition is automatically satisfied. This equivalent mass matrix approach was
studied and used in many works; for instance, theoretical and computational aspects
related to this model can be found in [17, 20, 26].

In what follows, we present an improved energy-conserving method for hyper-
elastodynamic contact problems with its extension to frictional dissipation phe-
nomena. This method permits to enforce the normal compliance with unilateral
constraint during each time step with controlled contact penetrations and with
energy-consistent properties. The strategy developed is based on the solution of
the system (10.36) by taking into account only the normal compliance condition
with friction, in the first step, then the normal compliance restricted by unilateral
constraint with friction, in the second step. This strategy is employed successively
when passing from the time moment tn�1 to the time moment tn. To this end,
we developed an adapted continuation Newton method, decomposed in two steps,
which could be summarized as follows:

step (a): Newton scheme to solve the nonlinear system (10.36)

with

(
�	�n D Lu�n on �3;

��
 n 2 ��.u�n/	�n'
 .ıu
 n/ on �3:
(10.44)

step (b): Continuation of the Newton scheme to solve (10.36)

with

8̂̂<
ˆ̂:

if u�
.a/
n < g � 	�n D Lu�n on �3;

if u�
.a/
n 	 g � 	�n 2 @'�.u�n/C Lg on �3;

��
 n 2 ��0	�n'
 .ıu
 n/ on �3:

(10.45)

According the work of Hauret and Le Tallec [19], we reproduce in the discrete
framework the conservation properties described in (10.10) by taking into account
a specific form of the normal contact reaction 	�n defined by

� 	�n D Lu�n D rp.u�n/ with p.u�n/ D Œ.u�n/C�2 � Œ.u�n�1/C�2

2.u�n � u�n�1/
: (10.46)

Note that p.u�n/ represents a specific form of the normal compliance function at
tn. Here r is a penalization parameter interpreted as the stiffness coefficient of
the asperities of the foundation. In the following, the continuation Newton method



264 M. Barboteu et al.

with the normal compliance form (10.46) will be called the Improved Penalized
Method (IPM). To keep this paper in reasonable length, we skip the details of the
solution of the nonlinear system (10.36) with conditions (10.44) and (10.45), and we
restrict ourselves to recall that the presentation of the algorithms together with their
numerical implementation can be found in [4, 9]. Details on the discretization step
and Computational Contact Mechanics, including algorithms similar to that used
here, can be found in [1, 4, 5, 24, 25, 28, 41].

10.6.3 Analysis of the Discrete Energy Evolution

This section is devoted to establish energy-consistent properties induced by the
improved penalized method described in the previous Sect. 10.6.2. Below we use
the notation En and En�1 for the energy E of the hyperelastic frictional contact
system at times tn and tn�1, respectively. For instance, the discrete energy En can
be written as follows:

En D 1

2

Z
˝

 Œıun�
2 dx C

Z
˝

QW .Cn/ d�: (10.47)

The notation E.a/
n , E.b/

n , E.a/
n�1 and E.b/

n�1 have similar significance, being related to
the steps .a/ and .b/ of the numerical method introduced in Sect. 10.6.2.

The general assessment of the discrete energy of the frictional contact

Problem Phk

V between times tn�1 and tn is based on the following proposition.

Proposition 10.1. The following equality holds:

En �En�1 D khf n� 1
2
;un� 1

2
iV ��V

C k

Z
�3

�
	�nıu�n C ��n

� ıu�n

�
d�: (10.48)

HereEn andEn�1 denote the internal energyE of the hyperelastic frictional contact
system at times tn and tn�1, respectively.

Proof. We use the variational formulation (10.36) with

v D ıun� 1
2

D un � un�1
k

D ıun C ıun�1
2

:

Then, we use (10.42) to get the hyperelastic energy conservation. As a consequence
we obtain the equality

1

2k

Z
˝

.ıun � ıun�1/:.ıun C ıun�1/dx C 1

k

Z
˝

…algo W r.un � un�1/dx

D hf n� 1
2
;un� 1

2
iV ��V C

Z
�3

Œ	�nıu�n C ��n
� ıu�n �d�:
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Furthermore, using the identity

.ıun � ıun�1/.ıun C ıun�1/ D Œıun�
2 � Œıun�1�2

and the conservation property of the Gonzalez scheme given in (10.43), we obtain
that

1

2k

Z
˝

.Œıun�
2 � Œıun�1�2/ dx C 1

k

Z
˝

QW .Cn/ � QW .Cn�1/ dx

D hf n� 1
2
;un� 1

2
iV ��V C

Z
�3

Œ	�nıu�n C ��n
:ıu�n � d�:

Finally, using the definition (10.47) of the discrete energy we obtain the identity
(10.48). ut
Remark 10.2. Similar results for the discrete angular and linear momenta can also
be established, see for instance [17, 19].

Based on the Proposition 10.1, we can state, at the end of the step (a), the
assessment of the discrete energy for the specific normal compliance contact.

Proposition 10.3. The following equality holds:

E.a/
n �E.a/

n�1 D hf n� 1
2
;un� 1

2
iV ��V �

Z
�3

r

2

	
Œ.u�n/C�2 � Œ.u�n�1/C�2



d�

C k

Z
�3

��n � ıu�nd�: (10.49)

Proof. We use similar arguments as those used in the proof of Proposition 10.1, in
particular equality (10.46) combined with equality ıu�n D .u�n � u�n�1/=k. ut

We remark that the form (10.46) of the normal contact reaction allows, in
the frictionless case, an energy assessment which is agreement with the formula
(10.10). In addition, when the external forces vanishes, the energy statements in
Propositions 10.1 and 10.3 during the steps .a/ and .b/, respectively, allow us to
obtain the following situations.

Case without friction

step (a): 	�nıu�n � 0 ) E
.a/
n � E

.a/
n�1;

step (b): 	�nıu�n � 0 ) E
.b/
n � E

.b/
n�1:

Case with friction

step (a): 	�nıu�n � 0; ��n � ıu�n � 0 ) E
.a/
n � E

.a/
n�1;

step (b): 	�nıu�n � 0; ��n � ıu�n � 0 ) E
.b/
n � E

.b/
n�1:
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In the case without friction (��n D 0), we remark that during step .a/, the energy
of the system is almost conserved. Indeed, the difference Œ.u�n�1/C�2 � Œ.u�n/C�2
is very small since the penetrations .u�n�1/C and .u�n/C are small. During the step
.b/, the enforcement of the unilateral constraint allows to limit the penetrations
obtained in step .a/ by the value g, which represents a small given value. On the
other hand, we can easily prove that the product 	�nıu�n is always negative and this
represents an unacceptable physical behavior, since it generates energy dissipation.
However, this energy dissipation is low because the impact has occurred during the
step .a/. Furthermore, when the friction case is considered, in both steps .a/ and
.b/ we observe an admissible dissipation of energy. Indeed, in this case the inner
product ��n

� ıu�n is always negative. In other words, this strategy limits the energy
dissipation between times tn and tn�1, in the frictionless case, and allows the energy
dissipation, in the frictional one. To resume, the advantages of the method arise in
the fact that both the dissipation of energy and the penetrations are limited during
the impact.

10.7 Numerical Experiments

In order to recover the theoretical numerical behaviour of the fully discrete scheme
discussed in Sect. 10.6.3, we carried out some numerical simulations based on two
representative dynamic contact problems: the impact without friction of a linearly
elastic ball against a foundation (Sect. 10.7.1) and the impact with friction of a
hyperelastic ring against a foundation (Sect. 10.7.2).

10.7.1 Impact of a Linearly Elastic Ball Against a Foundation

This representative benchmark problem describes the frictionless impact of a
linearly elastic ball against a foundation (see [24]). The elastic ball is thrown with an
initial velocity (u1 D .0;�10/m=s) toward the foundation

˚
.x1; x2/2R

2 W x2 � 0
�
.

The material’s behavior is described by an elastic linear constitutive law defined by
the energy function

W.�/ D E�

2.1C �/.1 � 2�/.tr�/
2 C E

2.1C �/
tr.�2/ 8 � 2 M

n:

Here E and � are Young’s modulus and Poisson’s ratio of the material and tr.�/
denotes the trace function, respectively. Note that � D 1

2
.ruT C ru/ represents the

linearized strain tensor in the framework of the small deformations theory (kuk <<
1 and kruk << 1 in ˝).
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Fig. 10.2 Discretization of
the elastic ball in contact with
a foundation

The physical setting is depicted in Fig. 10.2. There,

˝ D ˚
.x1; x2/ 2 R

2 W .x1 � 100/2 C .x2 � 100/2 � 100
�
;

�1 D ;; �2 D ;;
�3 D ˚

.x1; x2/ 2 R
2 W .x1 � 100/2 C .x2 � 100/2 D 100

�
:

The domain ˝ represents the cross section of the ball, under the assumption of the
plane stress. No volume forces are assumed to act on the body during the process.
For the discretization of the contact problem depicted we use 7,820 elastic nodes and
128 Lagrange multiplier nodes. For the numerical experiments, we use the following
data:

 D 1;000 kg=m3; T D 2 s; k D 0:001;

u0 D .0; 0/m; u1 D .0;�10/m=s;

E D 100GPa; � D 0:35; f 0 D .0; 0/Pa;

g D 5:10�4 m; r D 1;000Pa; � D 0:

Note that we consider a very small value for g in order to limit (or to neglect) the
penetration. This value represents 0.005 % of the radius of the ball.

In Fig. 10.3, the sequence of the deformed ball together with contact forces are
presented before, during and after the impact. The interest of this representative
example is to compare the numerical results obtained by using the continuation
method (presented in Sect. 10.6.2) with numerical results obtained by using some
classical methods. To this end, we consider five existing methods:

– The solution of the problem with g D 0m which corresponds to a classical
method with Signorini contact condition.
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Fig. 10.3 Sequence of the deformed ball and contact forces before, during and after the impact

– The solution with a large value for g (g D 1;000m) which corresponds to
a classical method with a normal compliance condition of the form 	�n D
�r.u�n/C.

– The specific penalization method developed by Hauret and Le Tallec [19] in
which the normal compliance condition is given by (10.46).

– The Equivalent Mass Matrix (EMM) method proposed by Khenous et al. [24],
which represents a specific distribution of the mass matrix with no inertia of the
contact nodes. This method is characterized by relevant stability properties of the
contact stress.

– The adapted Newton continuation method developed by Ayyad and Barboteu [4],
which is characterized by the enforcement following two steps of the unilateral
contact law and the persistency condition (10.6) during each time increment.

In what follows we analyze the methods in terms of discrete energy evolution.
To this end, the total discrete energy at time tn is defined by the following formula:

En D 1

2

Z
˝

 Pu2ndx C
Z
˝

� n W ".un/ dx;

where � D @W.�/

@�
denotes the stress tensor for infinitesimal deformations.

Figure 10.4 represents the evolution of the total discrete energy of the dynamic
system. According to it, we note that after the impact (i.e. for t 	 1:52) and for
the considered time step k D 0:001, the classicals method with Signorini law
(curve (�)) as well as the method with standard normal compliance condition
(curve (ˇ)) are characterized by a non conservation of the energy, which is not
realistic from the physical point of view. We also remark that the EMM method
(curve H) strongly reduces the dissipation of the energy, without obtaining the exact
conservation. Furthermore, the scheme developed by Ayyad and Barboteu [4] (curve
(•)) and the specific penalized method (curve (�)) conserve the energy after the
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Fig. 10.4 Discrete energy behaviour of selected time integration schemes during the impact

impact. However, for the penalized method we find some energy fluctuations which
disappear after the impact. Furthermore, both for this method and the method used
in [4], the unilateral contact is not exactly satisfied. Indeed, the specific penalized
method generates a maximal error on the normal contact displacement of 0:0034m,
and 0:0051m for the method of Ayyad and Barboteu [4].

In order to correct these drawbacks, we considered the Improved Penalized
Method (curve (N)) based on the combination of the specific penalized method
with the normal compliance law with finite penetration introduced in Sect. 10.6.2.
According to Fig. 10.5, we can see that the Improved Penalized Method (IPM)
enables to obtain a better conservation of the energy and, in addition, it limits the
penetration. Nevertheless, this method generates some fluctuations of the discrete
energy during the impact. For this reason, we considered an improvement of the
IPM method, obtained by adding the EMM procedure (curve (�)). This last strategy
(IPM C EMM) enables to conserve almost the discrete energy and to limit the
penetration. Indeed, we obtain: 0:1% of dissipation and 0:005% of penetration.
In Fig. 10.6, we analyze the discrete energy behaviour of the Improved Penalized
Method with EMM (IPM C EMM) according to the depth g of the penetration. For
g D 0:001, the IPM C EMM method recovers the same behaviour as the Specific
Penalized Method with EMM procedure. We can also note that the numerical results
obtained by using the IPM C EMM method approach the numerical results obtained
by using the EMM method, as g tends to zero.
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Fig. 10.5 Discrete energy behaviour of variants of the improved penalized method (IPM) during
the impact
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Fig. 10.6 Discrete energy behaviour of the improved penalized method with EMM with respect
to the depth g of the penetration

10.7.2 Impact of a Hyperelastic Ring Against a Foundation

In order to highlight the conservative or the dissipative behaviour of the method in
the hyperelastic case we consider a second representative application, introduced by
Laursen in [28]. This application concerns an academic frictional impact problem
with a hyperelastic constitutive behavior of the material: the impact with friction of
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Fig. 10.7 Sequence of the deformed hyperelastic ring during and after impact

the ring against a foundation. The compressible material response, considered here,
is governed by an Ogden constitutive law (see [13]) defined by the energy density

W.C/ D c1.I1 � 3/C c2.I2 � 3/C a.I3 � 1/ � .c1 C 2c2 C a/ ln I3:

Here I1; I2 and I3 represent the three invariants of the tensor C. This example allows
us to assess the performance and to check the conservative or dissipative behavior
of the methods. We implemented the IPM method and we compared it to various
time integration schemes. Details on the physical setting of the problem are given
below:

˝ D ˚
.x1; x2/ 2 R

2 W 81 � .x1 � 100/2 C .x2 � 100/2 � 100
�
;

�1 D ;; �2 D ;;
�3 D ˚

.x1; x2/ 2 R
2 W .x1 � 100/2 C .x2 � 100/2 D 100

�
:

As for the first numerical example, the domain ˝ represents the cross section
of a three-dimensional deformable body under the plane stress hypothesis. The
elastic ring is thrown with an initial velocity at 45ı angle toward a foundation as
depicted in Fig. 10.7. The foundation is given by

˚
.x1; x2/ 2 R

2 W x2 � 0
�
. For the

discretization, we use 1,664 elastic nodes and 128 Lagrange multiplier nodes. For
the numerical experiments, the data are:
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Fig. 10.8 Discrete energy behavior of selected time integration schemes during the impact
(frictionless case)

 D 1;000 kg=m3; T D 10 s; k D 1
300
;

u0 D .0; 0/m; u1 D .10;�10/m=s;

c1 D 0:5MPa; c2 D 0:5 � 10�2 MPa; a D 0:35MPa;

g D 0:002m; r D 1;000Pa; �0 D 0:2

In Fig. 10.8 we present the evolution of the total discrete energy of the dynamic
system without friction for various time integration schemes considered in the
previous numerical example, i.e. the specific penalized method (curve (�)), the
EMM method (curve H), the scheme developed by Ayyad and Barboteu [4] (curve
(•)) and the Improved Penalized Method with the EMM procedure (IPM + EMM
illustrated by curve (�)). Let us consider the discrete energy at time tn defined as
follows,

En D 1

2

Z
˝

 Pu2nd˝ C
Z
˝

QW .Cn/d˝:

In the frictionless case (see Fig. 10.8), we observe that the IPM+EMM method
reduces dissipation, when compared with the EMM procedure. Furthermore, this
method is characterized by a small penetration (g D 0:002m). In contrast, the
specific penalized method and the method presented in [4] generate a maximal error
on the normal contact displacement (0:058 and 0:071m, respectively).

In the frictional case, we consider two cases for the friction function � which
defines the friction bound ��.u�/˘� of the friction law (10.12). Note that during
the flattening of the asperities, i.e. 0 � u� < g, the friction follows a Coulomb’s
law associated to normal compliance contact and, therefore, the friction bound is
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Fig. 10.9 Discrete energy behavior of selected time integration schemes during the impact with
friction

equal to �.u�/p.u�/. In the numerical experiments, we consider the two examples
of function � given in (10.13). Note that the values of the decreasing function �2.�/
are larger than the values of the increasing function �1.�/ for a penetration u� such
that 0 < u� < g. According to Fig. 10.9, we observe that the use of the function
�1 permits to limit the energy dissipation induced by the friction while the use
of the function �2 is characterized by a strong energy dissipation. In conclusion,
the IPM+EMM method allows the energy dissipation. This seems to be reasonable
from a physical point of view, due to the complex phenomena which appear during
the flattening and wearing of the asperities. Recall that the numerical modelling of
contact surfaces with asperities was one of the main objectives of the present work.
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Chapter 11
A Non-clamped Frictional Contact Problem
with Normal Compliance

Oanh Chau, Daniel Goeleven, and Rachid Oujja

Abstract In this chapter we study a dynamic frictional contact problem with
normal compliance and non-clamped contact conditions, for thermo-viscoelastic
materials. The weak formulation of the problem leads to a general system defined
by a second order quasivariational evolution inequality coupled with a first order
evolution equation. We state and prove an existence and uniqueness result, by using
arguments on parabolic variational inequalities, monotone operators and fixed point.
Then, we provide a numerical scheme of approximations and various numerical
computations.

Keywords Thermo-viscoelasticity • Dynamic frictional process • Non-clamped
condition • Normal compliance • Evolution inequality • Fixed point • Weak
solution • Numerical simulations

AMS Classification. 74M15, 74M10, 74F05; 74S05, 74S20, 74H20, 74H25,
47J22

11.1 Introduction

Contact problems are omnipresent in mechanics, civil engineering, industry and
everyday life, and represent a challenging topic, due to their important applications
and various open questions they involve. In order to describe the behavior of
deformable bodies subjected to various nonlinear and non-smooth solicitations such
as contact, friction and thermal effects, mathematical models are necessary. They are
useful in the study of a large number of problems related to impacts, cracks, packing,
transport, process engineering and heat transfer. For this reason, the engineering
and mathematical literature devoted to dynamic and quasistatic frictional contact
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problems, including their mathematical modeling, mathematical analysis, numerical
analysis and numerical simulations, is continuously increasing.

An early study of contact problems within the mathematical analysis framework
was done in the pioneering references [6,11,15]. For the error estimates analysis and
numerical approximation, we refer the reader to [5, 7, 9, 19]. Functional nonlinear
analysis results useful in the study of contact problems could be found in [2–4,
12,20]. Mathematical models of frictional contact with viscoelastic and viscoplastic
plastic materials have been studied in [10,17,18]. One of the purpose of these works
was to show the cross-fertilization between various new and nonstandard models
arising in contact mechanics and the abstract theory of variational inequalities.
Further extensions to nonconvex contact conditions with nonmonotone and possible
multivalued constitutive laws led to the recent domain of non-smooth mechanics
within the framework of the so-called hemivariational inequalities. References in
the field include [8, 13, 16].

This chapter is a companion work of our previous paper [1]. There, we studied a
dynamic contact problem with friction, for thermo-viscoelastic materials with long
memory and subdifferential boundary conditions. The model led to a system defined
by a second order evolution inequality coupled with a first order evolution equation.
An existence and uniqueness result for the displacement and the temperature fields
has been established. Finally, a fully discrete scheme for numerical approximations
was introduced and various numerical computations in dimension two have been
provided.

In contrast, in this current work we investigate a dynamic contact problem
with normal compliance and friction for thermo-viscoelastic materials with short
memory. As in [1], the usual clamped condition has been deleted. This leads to a
new and non-standard model of system defined by a second order quasi-variational
inequality, coupled with a first order evolution equation. The main difficulties in the
analysis of this model arise from the fact that Korn’s inequality cannot be applied
any more. Moreover, the model presents a strong nonlinearity due to the fact that the
process is assumed to be frictional. Such kind of semi-coercive problems were first
studied in [6] for Coulomb’s friction models where the inertial term of the dynamic
process has been used in order to compensate the loss of coerciveness in the a priori
estimates. By a change of variable, we bring the coupled second order evolution
inequality into a classical first order evolution inequality. Then, using a fixed point
method frequently used in [10, 17], combined with monotonicity and convexity
arguments, we prove the existence and uniqueness of the displacement and the
temperature fields. Finally, to complete our study, we introduce a numerical scheme
for the approximation of the solution and we perform numerical computations.

The chapter is organized as follows. In Sect. 11.2 we describe the mechanical
problem, list the assumptions on the data, derive the variational formulation and
then we state our main existence and uniqueness result, Theorem 11.1. In Sect. 11.3
we give the proof of the claimed result. In Sect. 11.4 we present several numerical
simulations in the study of a two dimensional problem, which illustrate the evolution
of the displacement and temperature fields.
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11.2 The Contact Problem

The physical setting is as follows. A thermo-viscoelastic body occupies a bounded
domain ˝ � R

d .d D 2; 3/ with a Lipschitz boundary � that is partitioned into
two disjoint measurable parts, �F and �C . Let Œ0; T � be the time interval of interest,
where T > 0. We assume that a volume force of density f 0 acts in ˝ � .0; T /

and that surface tractions of density f F apply on �F � .0; T /. The body may come
in contact with an obstacle, the foundation, over the potential contact surface �C .
The contact is described with a normal compliance condition, with friction and
heat exchange. Our aim is to study the dynamic evolution of the body, by using
an appropriate mathematical model.

To this end, let us recall some classical notations, see e.g. [6, 10, 14] for further
details. We denote by S

d the space of second order symmetric tensors on R
d , while

“�” and k � k will represent the inner product and the Euclidean norm on S
d and R

d .
Let � denote the unit outer normal on � . Everywhere in the sequel, the indices i , j ,
k, h run from 1 to d , summation over repeated indices is implied and the index that
follows a comma represents the partial derivative with respect to the corresponding
component of the independent variable. We use standard notation for continuous,
Lp and Sobolev spaces of functions defined on ˝ and � . In addition, we use the
following notation:

H D L2.˝/d ; H D f � D .�ij / j �ij D �ji 2 L2.˝/; 1 � i; j � d g;
H1 D f u 2 H j ".u/ 2 H g; H1 D f � 2 H j Div � 2 H g:

Here " W H1 ! H and Div W H1 ! H are the deformation and the divergence
operators, respectively, defined by

".u/ D ."ij .u//; "ij .u/ D 1

2
.ui;j C uj;i /; Div � D .�ij;j /:

The spaces H , H, H1 and H1 are real Hilbert spaces endowed with the canonical
inner products given by

.u; v/H D
Z
˝

ui vi dx; .� ;�/H D
Z
˝

�ij 
ij dx;

.u; v/H1 D .u; v/H C .".u/; ".v//H; .� ;�/H1 D .� ;�/H C .Div � ;Div �/H :

The mechanical problem is then formulated as follows.

Problem P . Find a displacement field u W ˝ � Œ0; T � �! R
d , a stress field � W

˝ � Œ0; T � �! S
d and a temperature field � W ˝ � Œ0; T � �! RC such that

� .t/ D ".u0.t//C B".u.t// � �.t/ Ce in ˝; (11.1)
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u00.t/ D Div � .t/C f 0.t/ in ˝; (11.2)

� .t/� D f F .t/ on �F ; (11.3)

���.t/ D c� .u�.t/ � g/C on �C ; (11.4)

k� 
 .t/k � �
 c� .u�.t/ � g/C;
k� 
 .t/k < �
 c� .u�.t/ � g/C H) u0


 .t/ D 0;
k� 
 .t/k D �
 c� .u�.t/ � g/C

H) u0

 .t/ D �� � 
 .t/ for some � 	 0;

9>>=
>>; on �C ; (11.5)

� 0.t/ � div.Kc r�.t// D �cij @ u0
i

@ xj
.t/C q.t/ on ˝; (11.6)

�kij @ �
@ xj

.t/ ni D ke .�.t/ � �R/ on �C ; (11.7)

�.t/ D 0 on �F ; (11.8)

for all t 2 Œ0; T � and, moreover,

u.0/ D u0; u0.0/ D v0; �.0/ D �0 in ˝: (11.9)

Here, (11.1) represents the thermo-visco-elastic constitutive law of the material
in which A is the viscosity tensor, B is the elasticity operator and Ce denotes
the thermal expansion tensor. Equation (11.2) represents the equation of motion in
which we assume the mass density % � 1. Condition (11.3) represents the traction
boundary condition. Next, relation (11.4) represents the normal compliance contact
condition in which �� denotes the normal stress, c� is a positive constant related
to the hardness of the foundation, u� represents the normal displacement and g
is the initial gap between the foundation and the body. Here, the term u�.t/ � g

represents, when it is positive, the penetration of the surface asperities in those
of the foundation. Conditions (11.5) represent a version of Coulomb’s dry friction
law, where � 
 is the tangential stress, �
 represents the coefficient of friction and,
finally, u0


 denotes tangential velocity. The differential equation (11.6) describes the
evolution of the temperature field, where Kc represents the thermal conductivity
tensor and q is the density of volume heat sources. The associated temperature
boundary condition is given by (11.7) and (11.8), where �R is the temperature of
the foundation, and ke is the heat exchange coefficient between the body and the
obstacle. Finally, the data u0; v0; �0 in (11.9) represent the initial displacement, the
initial velocity, and the initial temperature, respectively.

In order to derive the variational formulation of the mechanical problem (11.1)–
(11.9), we need additional notation. Let V D H1 be the space of admissible
displacement fields, endowed with the inner product given by

.u; v/V D .".u/; ".v//H C .u; v/H 8 u; v 2 V;
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and let k � kV be the associated norm, i.e.

kvk2V D k".v/k2H C kvk2H 8 v 2 V:

It follows that k � kH1 and k � kV are equivalent norms on V and, therefore, .V; k � kV /
is a real Hilbert space. Moreover, by the Sobolev’s trace theorem, there exists a
constant c0 > 0 depending on ˝ such that

kvkL2.�C / � c0 kvkV 8 v 2 V: (11.10)

Next, let

E D f� 2 H1.˝/ j � D 0 on �F g

be the space of admissible temperature fields, endowed with the canonical inner
product of H1.˝/. We also need two Gelfand evolution triples (see e.g. [20] II/A,
p. 416), given by

V � H � H 0 � V 0; E � L2.˝/ � .L2.˝//0 � E 0;

where the inclusions are dense and continuous, and we denote by h�; �iV 0�V ,
h�; �iE0�E the corresponding duality pairing mappings.

In the study of the mechanical problem (11.1)–(11.9), we assume that the tensor
A D .aijkh/ W ˝ � S

d ! S
d satisfies the usual properties of symmetry and

ellipticity, i.e.

.i/ aijkh D akhij D aijhk 2 W 1;1.˝/I

.ii/ there exists mA > 0 such that
A� � � 	 mA k�k2 8 � 2 S

d ; a.e. in ˝:

9>=
>; (11.11)

We also suppose that the elasticity operator B W ˝ � S
d ! S

d and the thermal
tensor Ce D .cij / W ˝ � S

d ! S
d satisfy the following conditions.

.i/ there exists LB > 0 such that
kB.x; "1/ � B.x; "2/k � LBk"1 � "2k
8 "1; "2 2 S

d ; a:e: x 2 ˝ I
.ii/ x 7! B.x; "/ is Lebesgue measurable on ˝; 8 " 2 S

d I
.iii/ the mapping x 7! B.x; 0/ 2 H:

9>>>>>=
>>>>>;

(11.12)

cij D cj i 2 L1.˝/: (11.13)

In addition, the body forces, surface tractions and the heat sources density have
the regularity
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f 0 2 L2.0; T IH/; f F 2 L2.0; T IL2.�F /d /; (11.14)

q 2 L2.0; T IL2.˝// (11.15)

where, here and below, we use the standard notation for functions defined on Œ0; T �
with values in a Hilbert space.

The coefficients c� and �
 verify

c� 2 L1.�C IRC/; �
 2 L1.�C IRC/ (11.16)

and, moreover, the boundary thermal data satisfy the regularity

ke 2 L1.˝I RC/; �R 2 W 1;2.0; T IL2.�C //: (11.17)

We also suppose that the thermal conductivity tensorKc D .kij / W ˝�R
d ! S

d

verifies the usual properties of symmetry and ellipticity, i.e.

.i/ kij D kji 2 L1.˝/I

.ii/ there exists ck > 0 such that
kij 	i 	j 	 ck	i 	i 8 	 D .	ij / 2 R

d ; a.e. in ˝:

9>=
>; (11.18)

Finally, we assume that the initial data satisfy the conditions

u0 2 V; v0 2 V; �0 2 E: (11.19)

Next, using Green’s formula, we obtain the following weak formulation of the
mechanical Problem P .

Problem PV . Find a displacement field u W Œ0; T � ! V and a temperature field
� W Œ0; T � ! E such that

hu00.t/C Au0.t/C Bu.t/C C�.t/;w � u0.t/iV 0�V
Cj�.u.t/;w � u0.t//C j
 .u.t/;w/ � j
 .u.t/;u0.t//

	 hf .t/;w � u0.t/iV 0�V 8 w 2 V;
� 0.t/CK�.t/ D Ru0.t/CQ.t/;

a.e. t 2 .0; T / and, moreover,

u.0/ D u0; u0.0/ D v0; �.0/ D �0: (11.20)

Note that in the statement Problem PV we use various operators and functions,
which are defined as follows: A;B W V ! V 0, C W E ! V 0, j�; j
 W V � V ! R,
K W E ! E 0, R W V ! E 0, f W Œ0; T � ! V 0 and Q W Œ0; T � ! E 0,
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hAv;wiV 0�V D .A".v/; ".w//H;

hBv;wiV 0�V D .B".v/; ".w//H;

hC�;wiV 0�V D �.� Ce; ".w//H;

j�.v;w/ D
Z
�C

c�.v� � g/Cw� da;

j
 .v;w/ D
Z
�C

�
c�.v� � g/Ckw
k da;

hf .t/;wiV 0�V D .f 0.t/;w/H C .f F .t/;w/.L2.�F //d ;

hK�; �iE0�E D
dX

i;jD1

Z
˝

kij
@�

@xj

@�

@xi
dx C

Z
�C

ke� � � da;

hRv; �iE0�E D �
Z
˝

cij
@vi

@xj
� dx;

hQ.t/; �iE0�E D
Z
�C

ke�R.t/ � dx C
Z
˝

q.t/ � dx;

8 v 2 V , 8 w 2 V , 8 � 2 E, 8 � 2 E, a.e. t 2 .0; T /.
Our main existence and uniqueness result that we state here and prove in the next

section is the following.

Theorem 11.1. Assume that (11.11)–(11.19) hold. Then there exists a positive
constant c˝ depending on ˝ such that there exists a unique solution fu; �g to
Problem PV , if k�
 c�kL1.�C / < c˝ . Moreover, the solution has the regularity

u 2 C1.0; T IH/ \W 1;2.0; T IV / \W 2;2.0; T IV 0/I
� 2 C.0; T IL2.˝// \ L2.0; T IE/ \W 1;2.0; T IE 0/:

)
(11.21)

Note that Theorem 11.1 states the unique weak solvability of the thermo-
mechanical Problem P , under a smallness assumption on the coefficient of friction.

11.3 Proof of Theorem 11.1

The proof is based on monotonicity, convexity and fixed point arguments and will
be carried out in several steps. Everywhere in this section we denote by c > 0 a
generic constant which value may change from line to line. We start by introducing
the velocity variable v D u0. Then, Problem PV leads to the following problem.
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Problem QV . Find a velocity field v W Œ0; T � ! V and a temperature field � W
Œ0; T � ! E such that

hv0.t/C Av.t/C Bu.t/C C�.t/;w � v.t/iV 0�V

C j�.u;w � v.t//C j
 .u;w/ � j
 .u; v.t//
	 hf .t/; w � v.t/iV 0�V 8 w 2 V;

� 0.t/CK �.t/ D R u0.t/CQ.t/;

a.e. t 2 .0; T / and, moreover,

v.0/ D v0; �.0/ D �0: (11.22)

Here, u W Œ0; T � ! V is the function defined by

u.t/ D u0 C
Z t

0

v.s/ ds 8 t 2 Œ0; T �:

We start with the following result.

Lemma 11.2. For all � 2 L2.0; T IV 0/, there exists a unique function

v� 2 C.0; T IH/ \ L2.0; T IV / \W 1;2.0; T IV 0/ (11.23)

which satisfies

hv0
�.t/C Av�.t/;w � v�.t/iV 0�V C h�.t/;w � v�.t/iV 0�V
Cj
 .u�.t/;w/ � j
 .u�.t/; v�.t// 	 hf .t/;w � v�.t/iV 0�V ;

8 w 2 V; a:e: t 2 .0; T /I
v�.0/ D v0;

9>>>>=
>>>>;

(11.24)

where

u�.t/ D u0 C
Z t

0

v�.s/ ds:

Moreover, there exists a positive constant c˝ , which depends on ˝, with the
following property: if k�
 c�kL1.�C / < c˝ , then there exists c > 0 such that

kv�2.t/ � v�1.t/k2H C
Z t

0

kv�2.s/ � v�1.s/k2V � c

Z t

0

k�1 � �2k2V 0 :

8 �1;�2 2 L2.0; T IV 0/; 8 t 2 Œ0; T �: (11.25)
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Proof. Given � 2 L2.0; T IV 0/ and � 2 C.0; T IV /, by using a general result on
parabolic variational inequalities (see e.g. [7, Chap. 3]), we obtain the existence of
a unique function v� 	 2 C.0; T IH/\L2.0; T IV /\W 1;2.0; T IV 0/ which satisfies

hv0
� 	.t/C Av� 	.t/;w � v� 	.t/iV 0�V C h�.t/;w � v� 	.t/iV 0�V
Cj
 .�.t/;w/ � j
 .�.t/; v� 	.t// 	 hf .t/;w � v� 	.t/iV 0�V ;

8 w 2 V; a.e. t 2 .0; T /;
v� 	.0/ D v0;

9>>>>=
>>>>;

(11.26)

Now let us fix � 2 L2.0; T IV 0/ and consider the operator �� W C.0; T IV / !
C.0; T IV / defined by

8 � 2 C.0; T IV /; ��	.t/ D u0 C
Z t

0

v� 	.s/ ds:

We use some algebraic manipulation to see that

j
 .u1;w2/ � j
 .u1;w1/C j
 .u2;w1/ � j
 .u2;w2/ � c ku2 � u1kV kw2 � w1kV ;

for all u1;u2;w1;w2 2 V . Here c > 0 is a positive constant proportional to
c0k�
 c�kL1.�C / where c0 is defined in (11.10).

Let �1; �2 2 C.0; T IV / be given. We use inequality (11.26) with � D �1 and
w D v� 	2 , then with � D �2 and w D v� 	1 , add the resulting inequalities and
integrate the result over Œ0; t �, for all t 2 Œ0; T �. In this way we obtain

kv� 	2.t/ � v� 	1.t/k2H C
Z t

0

kv� 	2.s/ � v� 	1.s/k2V ds

� c

Z t

0

k�2.s/ � �1.s/k2V ds C c

Z t

0

kv� 	2.s/ � v� 	1.s/k2Hds

for all t 2 Œ0; T �. Next, using Gronwall’s inequality, we deduce that

k��.	2/.t/ ���.�1/.t/k2V � c

Z t

0

k�2.s/ � �1.s/k2V ds

for all t 2 Œ0; T �. Thus, by Banach’s fixed point principle we know that the operator
�� has a unique fixed point, denoted ��. We then verify that

v� D v� 	�

is the unique solution of (11.24) with regularity (11.23).
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Now let �1;�2 2 L2.0; T IV 0/. We use (11.24) with � D �1 and w D v�2 , then
with � D �2 and w D v�1 . We add the resulting inequalities and integrate their sum
to obtain

kv�2.t/ � v�1.t/k2H C
Z t

0

kv�2.s/ � v�1.s/k2V ds

� c

Z t

0

k�2.s/ � �1.s/k2V 0ds C c

Z t

0

ku�2.s/ � u�1.s/k2V ds

C c

Z t

0

kv�2.s/ � v�1.s/k2Hds:

for all t 2 Œ0; T �. Here, again, c > 0 is a positive constant which is proportional to
c0k�
c�kL1.�C /. Let ı > 0 be a given constant and let c˝ D ı

c0
. It is clear that c˝

depends on ˝ and, moreover, if k�
c�kL1.�C / � c˝ , then c0k�
c�kL1.�C / � ı.
Therefore, choosing ı small enough we can assume that 2 c < 1. Then, using
Gronwall’s inequality we deduce (11.25), which concludes the proof. ut

We proceed with the following result.

Lemma 11.3. For all � 2 L2.0; T IV 0/, there exists a function

�� 2 C.0; T IL2.˝// \ L2.0; T IE/ \W 1;2.0; T IE 0/ (11.27)

which satisfies

� 0
�.t/CK ��.t/ D R v�.t/CQ.t/ in E 0; a.e. t 2 .0; T /;
��.0/ D �0:

)
(11.28)

Moreover, if k�
c�kL1.�C / < c˝ , then there exists c > 0 such that for all �1;�2 2
L2.0; T IV 0/ the following inequality holds:

k��1.t/ � ��2.t/k2L2.˝/ � c

Z t

0

k�1 � �2k2V 0 8 t 2 Œ0; T �: (11.29)

Proof. We verify that the operator K W E ! E 0 is linear continuous and strongly
monotone, and from the expression of the operator R, we have

v� 2 L2.0; T IV / H) R v� 2 L2.0; T IE 0/:

Now, since Q 2 L2.0; T IE 0/ it follows that R v� CQ 2 L2.0; T IE 0/. Therefore,
the existence part of the lemma follows from a classical result on first order
evolution equation.

Now, to provide the estimate (11.29), consider �1;�2 2 L2.0; T IV 0/. We have
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h� 0
�1
.t/ � � 0

�2
.t/; ��1.t/ � ��2.t/iE0�E

C hK��1.t/ �K��2.t/; ��1.t/ � ��2.t/iE0�E

D hRv�1.t/ �Rv�2.t/; ��1.t/ � ��2.t/iE0�E a:e: t 2 .0IT /:

We then integrate this inequality over Œ0; t � and use the strong monotonicity of K
and the Lipschitz continuity of R W V ! E 0 to deduce that

k��1.t/ � ��2.t/k2L2.˝/ � c

Z t

0

kv�1 � v�2k2V 8 t 2 Œ0; T �:

Inequality (11.29) follows then from Lemma 11.2. ut
Lemmas 11.2 and 11.3 allow to consider the operator � W L2.0; T IV 0/ !

L2.0; T IV 0/ defined, for all � 2 L2.0; T IV 0/, by the equality

h��.t/;wiV 0�V D hBu�.t/C C��.t/;wiV 0�V C j�.u�.t/;w/;

8 w 2 V; a.e. t 2 .0; T /:

Here

u�.t/ D u0 C
Z t

0

v�.s/ ds 8 t 2 Œ0; T �

where v� and �� are the functions defined in Lemmas 11.2 and 11.3.
We have the following result.

Lemma 11.4. Assume that k�
c�kL1.�C / < c˝ . Then � has a unique fixed point
�� 2 L2.0; T IV 0/.

Proof. Let �1;�2 2 L2.0; T IV 0/ be given. Then, it is easy to check that

k��2.t/ ���1.t/kV 0 � c kBu�2.t/ � Bu�1.t/kV 0 C c k��2.t/ � ��1.t/kL2.˝/
C c ku�2.t/ � u�1.t/kV

a.e. t 2 .0; T /. We combine (11.12), (11.25) and (11.29) to deduce that there exists
c > 0 such that

k��2.t/ ���1.t/k2V 0 � c

Z t

0

k�2.s/ � �1.s/k2V 0ds 8 t 2 Œ0; T �:

Lemma 11.4 is a consequence of the previous inequality combined with the Banach
fixed point principle. ut

We now have all the ingredients to prove Theorem 11.1.
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Proof of Theorem 11.1. Let u, v and � the functions defined by

u.t/ WD u0 C
Z t

0

v��.s/ ds; v.t/ WD v��.t/; �.t/ WD ���.t/ 8 t 2 Œ0; T �:

Then, using (11.24) and (11.28), it is easy to see that the couple .v; �/ is a solution
to Problem QV and, therefore .u; �/ is a solution to Problem PV . Moreover, the
regularity (11.21) follows from the regularity of the functions v� and �� in Lemmas
11.2 and 11.3, see (11.23) and (11.27), respectively. This proves the existence part
of the theorem. The the uniqueness part follows from the uniqueness of the solution
in Lemmas 11.2 and 11.3. ut

11.4 Numerical Computations

In this section, we provide a fully-discrete numerical approximation scheme for the
variational Problem PV , and the associated numerical simulations in the study of
two dimensional tests by using MATLAB computation codes. To this end we denote
by fu; �g the unique solution of the Problem PV and consider the velocity variable
defined by

v.t/ D u0.t/ 8 t 2 Œ0; T �:

We make the following additional assumptions on the solution and data:

f 2 C.Œ0; T �IV 0/I Q 2 C.Œ0; T �IE 0/I

v 2 C.0; T IV /I v0 2 C.0; T IH/I

� 2 C.0; T IE/I � 0 2 C.0; T IL2.˝//:

Now let V h � V and Eh � E be a family of finite dimensional subspaces,
defined by finite elements spaces of piecewise linear functions, where h > 0 is a
discretization parameter which may be the maximal diameter of the elements. We
divide the time interval Œ0; T � into N equal parts: tn D n k, n D 0; 1; : : : ; N , with
the uniform time step k D T=N . For a continuous function w 2 C.Œ0; T �IX/ with
values in a space X , we use the notation wn D w.tn/ 2 X .

Then, Problem QV implies

hv0.t/C Av.t/C Bu.t/C C�.t/CDu.t/;w � v.t/iV 0�V
C j
 .u;w/ � j
 .u; v.t// 	 hf .t/; w � v.t/iV 0�V 8 w 2 V;

h� 0.t/CK�.t/ �Rv.t/ �Q.t/; �iE0�E D 0 8 � 2 E;
v.0/ D v0; �.0/ D �0;

9>>>>=
>>>>;
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for all t 2 Œ0; T �, where

hDu.t/;wiV 0�V D j�.u.t/;w/;

hv0.t/;wiV 0�V D .v0.t/;w/H ;

h� 0.t/; �iE0�E D .� 0.t/; �/L2.˝/:

This suggests to introduce the following fully-discrete scheme.

Problem Phk . Find a discrete velocity field vhk D fvhkn gNnD0 � V h and a discrete
temperature field �hk D f�hkn gNnD0 � Eh such that

vhk0 D vh0; �hk0 D �h0 ; (11.30)

and for n D 1; � � � ; N ,

hvhkn � vhkn�1
k

C Avhkn ;w
h � vhkn iV 0�V

C hBuhkn�1 C C�hkn�1 CDuhkn�1;wh � vhkn iV 0�V

C j
 .uhkn�1;wh/ � j
 .uhkn�1; vhkn /

	 hf n;w
h � vhkn iV 0�V 8 wh 2 V h; (11.31)	�hkn � �hkn�1

k
; �h



L2.˝/

C hK�hkn ; �hiE0�E

D hRvhkn ; �
hiE0�E C hQn; �

hiE0�E; 8 �h 2 Eh: (11.32)

Here

uhkn D uhkn�1 C k vhkn ; uhk0 D uh0: (11.33)

Moreover, uh0 2 V h, vh0 2 V h and �h0 2 Eh represent suitable approximations of the
initial values u0, v0, �0, respectively.

For n D 1; : : : ; N , once uhkn�1, vhkn�1 and �hkn�1 are known, we compute vhkn , �hkn
and uhkn by using (11.31)–(11.33) and classical result on variational inequality (see
e.g. [10]). Therefore, the discrete scheme has a unique solution by starting with
initial values on displacement, velocity and temperature fields. Moreover, under
additional regularity of solution and using arguments similar as those used in [19],
we can prove that the errors estimate order is proportional to the discretization
parameters h and k.

In view of the numerical simulations, we consider the domain˝, the partition of
its boundary, the elasticity tensor and the viscosity operator as follows:
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˝ D .0; L1/ � .0; L2/I
�F D .f0g � Œ0; L2�/ [ .Œ0; L1� � fL2g/ [ .fL1g � Œ0; L2�/I �C D Œ0; L1� � f0gI

.B �/ij D E �

1 � �2 .
11 C 
22/ ıij C E

1C �

ij ; 1 � i; j � 2; � 2 S

2I

.A�/ij D � .
11 C 
22/ ıij C � 
ij ; 1 � i; j � 2; � 2 S
2:

Here E is the Young’s modulus, � is the Poisson’s ratio of the material, ıij denotes
the Kronecker symbol and � and � are viscosity constants.

We refer to the previous numerical scheme, and use spaces of continuous
piecewise affine functions V h � V and Eh � E as families of approximating
subspaces. For our computations, we consider also the following data (IS unity):

L1 D L2 D 1; T D 1;

� D 10; � D 10; E D 2; � D 0:1;

cij D kij D ke D 1; 1 � i; j � 2;

f 0.x; t / D .0; �1:5/; q.x; t / D 1 8 x 2 ˝; t 2 Œ0; T �;
f F .x; t / D .0; 0/; 8 x 2 f0g � Œ0; L2�; t 2 Œ0; T �;
f F .x; t / D .0:5; 0:4/; 8 x 2 .Œ0; L1� � fL2g/ [ .fL1g � Œ0; L2�/; t 2 Œ0; T �;
u0.x/ D .0; 0/; v0.x/ D .0; 0/; �0.x/ D 0 8 x 2 ˝:

In Figs. 11.1 and 11.2 we show the deformed configurations at final time, for
two different values of the normal compliance coefficient. We see that for a larger
coefficient, penetration is less important. In Figs. 11.3 and 11.4, we show the
deformed configurations at final time, for two different values of coefficients of
friction. We note that for a smaller coefficient the slip phenomenon appears on the
contact surface. In Figs. 11.5 and 11.6, we plot the deformed configurations at final
time, for two values of the gap. In Figs. 11.7, 11.8, 11.9, 11.10, 11.11 and 11.12 we
represent the Von Mises norm of the stress, corresponding to the numerical values
in Figs. 11.1, 11.2, 11.3, 11.4, 11.5 and 11.6, respectively. These figures show that
when penetration is more important then the norm of the stress on the contact surface
is larger. In particular, the norm of the stress is minimal in the case where there is
loss of contact with the foundation. Finally, in Figs. 11.13 and 11.14, we show the
influence of the different temperatures of the foundation on the temperature field
of the body. We observe that a high temperature of the foundation leads to a high
temperature in the neighborhood of the contact surface.
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Fig. 11.1 Deformed configuration at final time, �R D 0, g D 0, �
 D 0:1, c� D 10
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Fig. 11.2 Deformed configuration at final time, �R D 0, g D 0, �
 D 0:1, c� D 20
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Fig. 11.3 Deformed configuration at final time, �R D 0, g D 0, c� D 20, �
 D 0:30
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Fig. 11.4 Deformed configuration at final time, �R D 0, g D 0, c� D 20, �
 D 0:05
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Fig. 11.5 Deformed configuration at final time, �R D 0, c� D 20, �
 D 0:1, g D 0:03
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Fig. 11.6 Deformed configuration at final time, �R D 0, c� D 20, �
 D 0:1, g D 0:06
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Fig. 11.7 Von Mises norm of the stress in deformed configurations, �R D 0, g D 0, �
 D 0:1,
c� D 10
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Fig. 11.8 Von Mises norm of the stress in deformed configuration, �R D 0, g D 0, �
 D 0:1,
c� D 20
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Fig. 11.9 Von Mises norm of the stress in deformed configuration, �R D 0, g D 0, c� D 20,
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Fig. 11.10 Von Mises norm of the stress in deformed configuration, �R D 0, g D 0, c� D 20,
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 D 0:05
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Fig. 11.11 Von Mises norm of the stress in deformed configuration, �R D 0, c� D 20, �
 D 0:3,
g D 0:03

0.5

1

1.5

2

2.5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 11.12 Von Mises norm of the stress in deformed configuration, �R D 0, c� D 20,�
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Fig. 11.13 Temperature field at final time, c� D 20, g D 0, �
 D 0:1, �R D 0
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Fig. 11.14 Temperature field at final time, c� D 20, g D 0, �
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Chapter 12
On Large Time Asymptotics for Two Classes
of Contact Problems

Piotr Kalita and Grzegorz Łukaszewicz

Abstract We consider two classes of evolution contact problems on two
dimensional domains governed by first and second order evolution equations,
respectively. The contact is represented by multivalued and nonmonotone boundary
conditions that are expressed by means of Clarke subdifferentials of certain locally
Lipschitz and semiconvex potentials. For both problems we study the existence and
uniqueness of solutions as well as their asymptotic behavior in time. For the first
order problem, that is governed by the Navier–Stokes equations with generalized
Tresca law, we show the existence of global attractor of finite fractal dimension
and existence of exponential attractor. For the second order problem, representing
the frictional contact in antiplane viscoelasticity, we show that the global attractor
exists, but both the global attractor and the set of stationary states are shown to have
infinite fractal dimension.
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12.1 Introduction

Large time behaviour of solutions of problems in contact mechanics is an important
though somewhat neglected part of the theory. In fact, remarking on future directions
of research in the field of contact mechanics, in their book [18], the authors
wrote: “The infinite-dimensional dynamical systems approach to contact problems
is virtually nonexistent. (: : :) This topic certainly deserves further consideration”.

From the mathematical point of view, a considerable difficulty in analysis of the
contact problems, and dynamical ones in particular, comes from the presence of
involved boundary constraints which are often modeled by multivalued boundary
conditions of a subdifferential type and lead to a formulation of the considered
problem in terms of a variational or hemivariational inequality with, frequently,
nondifferentiable boundary functionals.

Our aim in this paper is to contribute to the topic of large time dynamics in
problems of contact mechanics.

We consider examples belonging to two classes of evolutionary contact problems
governed by equations of the form

u0 C Au C Bu D f (12.1)

or

u00 C Au0 C Bu D f; (12.2)

in a two-dimensional bounded domain ˝, with @˝ D � D [ � C [ � L, where �D ,
�C , and �L are the top, bottom and lateral parts of the boundary, respectively.

We supplement the equations with appropriate initial and boundary conditions.
In particular, the boundary conditions on the bottom part of the boundary �C are of
subdifferential type, with semiconvex and locally Lipschitz superpotentials.

The problems can be written in the form of hemivariational inequalities or
evolutionary differential inclusions. Since the superpotentials are semiconvex, the
solutions (the existence of which we shall prove) are unique. Moreover, they exist
on the whole time semiaxis RC D Œ0;C1/.

Our aim is to study the large time asymptotics of solutions, that is the behavior
of solutions after a large time of evolution, of chosen problems from the two above
classes.

More precisely, we consider two specific examples of contact problems as
representatives of the classes of problems governed by the first order and the second
order equations, respectively. First, in Sect. 12.3, we consider the Navier–Stokes
system and a corresponding problem that comes from the theory of lubrication,
with a generalized Tresca law, where the friction bound depends on the tangential
velocity. Then, in Sect. 12.4, we consider a second order model problem from the
theory of antiplane viscoelasticity.
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In both cases there exists a subset of the phase space of solutions (same as that of
initial conditions) called global attractor. It is a compact, invariant set which attracts
all solution trajectories as time goes to infinity. Existence of the global attractors
follows from the dissipativity of the considered problems.

For the first order problem the attractor has an additional important property,
namely, its fractal dimension is finite. Moreover, there exists an object, called
exponential attractor. It contains the global attractor, has finite fractal dimension
and attracts the trajectories exponentially fast in time. This property allows, among
other things, to locate the exponential and thus the global attractor in the phase space
by using numerical analysis.

Finally, in Sect. 12.4.4 we present a special case of our second order problem
where there are no exponential attractors. For this case the global attractor has
infinite fractal dimension and contains an infinite dimensional set of stationary
states. This situation might have the following physical interpretation, namely, each
stationary state is such that the body does not move and friction force equilibrates
the inner stresses originating from the displacement u. The set of displacements
corresponding to these stationary states must be relatively compact (since the
attractor is compact). Intuitively with the presence of friction the body can stop
in a large number of configurations—here we show that the set of equilibrium
configurations can have infinite dimension.

The spatial domain ˝ in the problems we consider is two-dimensional not only
for the sake of simplicity. For the first order problem governed by the Navier–Stokes
equation, where we need the uniqueness of solution, it is a crucial assumption.

Of course, one can extend our results to many other problems of contact
mechanics governed by Eq. (12.1) or (12.2) under similar assumptions, and several
extensions are also possible to problems without uniqueness of solutions, cf. e.g.,
[8, 20].

12.2 Preliminaries from the Theory of Dynamical Systems

Let us consider an abstract autonomous evolutionary problem

dv.t/

dt
D F.v.t// in Z for a.e. t 2 R

C; (12.3)

v.0/ D v0:

where Z is a Banach space, F is a nonlinear operator, and v0 is in a Banach space
X that embeds in Z. We assume that the above problem has a global in time unique
solution R

C 3 t 7! v.t/ 2 X for every v0 2 X . In this case one can associate with
the problem a semigroup fS.t/gt�0 of (nonlinear) operators S.t/ W X ! X setting
S.t/v0 D v.t/, where v.t/, t > 0, is the unique solution of (12.3).
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From properties of the semigroup of operators fS.t/gt�0 we may then conclude
the basic features of the behavior of solutions of problem (12.3), in particular, their
time asymptotics. One of the objects existence of which characterize the asymptotic
behavior of solutions is the global attractor. It is a compact and invariant with respect
to operators S.t/ subset of the phase space X (in general, a metric space) that
uniformly attracts all bounded subsets of X .

Definition 12.1. A global attractor for a semigroup fS.t/gt�0 in a Banach space X
is a subset A of X such that

• A is compact in X.
• A is invariant, i.e., S.t/A D A for every t 	 0.
• For every " > 0 and every bounded set B in X there exists t0 D t0.B; "/ such

that
S
t�t0 S.t/B is a subset of the "-neighborhood of the attractor A (uniform

attraction property).

The global attractor defined above is uniquely determined by the semigroup
fS.t/gt�0. Moreover, it is connected and also has the following properties: it is the
maximal compact invariant set and the minimal set that attracts all bounded sets.
The global attractor may have a very complex structure. However, as a compact set
(in an infinite dimensional Banach space) its interior is empty.

We provide a theorem that guarantees the global attractor existence for a
semigroup fS.t/gt�0 (see for example Theorem 18 in [3] where more general,
multivalued, case is considered).

Theorem 12.2. Let fS.t/gt�0 be a semigroup of operators in a Banach space X
such that

• For all t 	 0 the operator S.t/ W X ! X is continuous.
• fS.t/gt�0 is dissipative, i.e. there exists a bounded set B0 � X such that for

every bounded set B � X there exists t0 D t0.B/ such that
S
t�t0 S.t/B � B0.

• fS.t/gt�0 is asymptotically compact, i.e. for every bounded set B � X and every
sequences tn ! 1 and yn 2 S.tn/B , the sequence fyng is relatively compact
in X .

Then fS.t/gt�0 has a global attractor A.

For many dynamical systems the global attractor has a finite fractal dimension
(defined below) which has a number of important consequences for the behaviour
of the flow generated by the semigroup [15, 16].

Definition 12.3. The fractal dimension of a compact set K in a Banach space X is
defined as

dXf .K/ D lim sup
"!0

logNX
" .K/

log. 1
"
/

where NX
" .K/ is the minimal number of balls of radius " in X needed to cover K.
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Another important property that holds for many dynamical systems is the
existence of an exponential attractor.

Definition 12.4. An exponential attractor for a semigroup fS.t/gt�0 in a Banach
space X is a subset M of X such that

• M is compact in X.
• M is positively invariant, i.e., S.t/M � M for every t 	 0.
• Fractal dimension of M is finite, i.e., dXf .M/ < 1.
• M attracts exponentially all bounded subsets of X , i.e., there exist a universal

constant c1 and a monotone function ˚ such that for every bounded set B in X ,
its image S.t/B is a subset of the ".t/-neighborhood of M for all t 	 t0, where
".t/ D ˚.jjBjjX/e�c1t (exponential attraction property).

Since the global attractor A is the minimal compact attracting set it follows that if
both global and exponential attractors exist, then A � M and the fractal dimension
of A must be finite. Moreover, in contrast to the global attractor, an exponential
attractor does not have to be unique.

In the following we will remind the abstract framework of [11] (see also [10])
that uses the so called method of l-trajectories (or short trajectories) to prove the
existence of global and exponential attractors.

Let X , Y , and Z be three Banach spaces such that

Y � X with compact imbedding and X � Z:

We assume, moreover, that X is reflexive and separable.
For 
 > 0, let

X
 D L2.0; 
 IX/;

and

Y
 D
�

u 2 L2.0; 
 IY /; du

dt
2 L2.0; 
 IZ/

�
:

By C.Œ0; 
�IXw/ we denote the space of weakly continuous functions from the
interval Œ0; 
� to the Banach space X , and we assume that the solutions of (12.3)
are at least in C.Œ0; T �IXw/ for all T > 0. Then by an l-trajectory we mean the
restriction of any solution to the time interval Œ0; l�. If v D v.t/; t 	 0, is the
solution of (12.3) then both � D vjŒ0;l� as well as all shifts Lt.v/jŒ0;l� D vjŒt;lCt � for
t > 0 are l-trajectories. Note that the mapping Lt is defined as Lt.v/.
/ D v.
C t /

for t > 0 and 
 2 Œ0; l�.
We can now formulate a theorem which gives criteria for the existence of a global

attractor A for the semigroup fS.t/gt�0 in X and its finite dimensionality. These
criteria are stated as assumptions .A1/–.A8/ in [11].
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.A1/ For any v0 2 X and arbitrary T > 0 there exists (not necessarily unique)
v 2 C.Œ0; T �IXw/ \ YT , a solution of the evolutionary problem on Œ0; T � with
v.0/ D v0. Moreover, for any solution v, the estimates of jjvjjYT are uniform
with respect to jjv0jjX .

.A2/ There exists a bounded set B0 � X with the following properties: if v is
an arbitrary solution with initial condition v0 2 X then (i) there exists t0 D
t0.jjv0jjX/ such that v.t/ 2 B0 for all t 	 t0 and (ii) if v0 2 B0 then v.t/ 2 B0

for all t 	 0.
.A3/ Each l-trajectory has among all solutions a unique continuation which

means that from an end point of an l-trajectory there starts at most one solution.
.A4/ For all t > 0,Lt W Xl ! Xl is continuous on Bl0—the set of all l-trajectories

starting at any point of B0 from .A2/.
.A5/ For some 
 > 0, the closure in Xl of the set L
.Bl0/ is included in Bl0.
.A6/ There exists a space Wl such that Wl � Xl with compact embedding, and

 > 0 such that L
 W Xl ! Wl is Lipschitz continuous on B1l —the closure of
L
.Bl0/ in Xl .

.A7/ The map e W Xl ! X , e.�/ D �.l/ is continuous on B1l .

.A8/ The map e W Xl ! X is Hölder-continuous on B1l .
Theorem 12.5. Let the assumptions .A1/–.A5/ and .A7/ hold. Then there exists a
global attractor A for the semigroup fS.t/gt�0 in X . Moreover, if the assumptions
.A6/, .A8/ are satisfied then the fractal dimension of the attractor is finite.

For the existence of an exponential attractor we need two additional properties to
hold, where now X is a Hilbert space (cf. [11]).

.A9/ For all 
 > 0 the operators Lt W Xl ! Xl are (uniformly with respect to
t 2 Œ0; 
�) Lipschitz continuous on B1l .

.A10/ For all 
 > 0 there exists c > 0 and ˇ 2 .0; 1� such that for all � 2 B1l and
t1; t2 2 Œ0; 
� it holds that

jjLt1� � Lt2�jjXl � cjt1 � t2jˇ: (12.4)

Theorem 12.6. Let X be a separable Hilbert space and let the assumptions .A1/–
.A6/ and .A8/–.A10/ hold. Then there exists an exponential attractor M for the
semigroup fS.t/gt�0 in X .

For the proofs of Theorems 12.5 and 12.6 we refer the readers to corresponding
theorems in [11].
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12.3 Exponential Attractor for Planar Shear Flow
with Generalized Tresca Type Friction Law

The problem considered in this section is based on the results of [10]. As we
show, arguments of [10] can be generalized to a class of problems with the friction
coefficient dependent on the slip rate.

12.3.1 Classical Formulation of the Problem

We will consider the planar flow of an incompressible viscous fluid governed by the
equation of momentum

vt � ��v C .v � r/v C rp D f in ˝ � R
C (12.5)

and the incompressibility condition

r � v D 0 in ˝ � R
C; (12.6)

in domain ˝ given by

˝ D fx D .x1; x2/ j 0 < x1 < L; 0 < x2 < h.x1/g;

with boundary @˝ D � D [ � C [ � L, where �D D f.x1; h.x1// j x1 2 .0; L/g,
�C D .0; L/ � f0g, and �L D f0;Lg � .0; h.0// and are the top, bottom and
lateral parts of @˝, respectively. The function h is smooth and L-periodic such that
h.x1/ 	 " > 0 for all x1 2 R with a constant " > 0. We will use the notation
e1 D .1; 0/ and e2 D .0; 1/ for the canonical basis of R2. Note, that on �C the outer
normal unit vector is given by � D �e2.

The unknowns are the velocity field v W ˝ � R
C ! R

2 and the pressure p W
˝ � R

C ! R, � > 0 is the viscosity coefficient and f W ˝ ! R
2 is the density of

volume forces.
We are interested in the solutions of (12.5)–(12.6) such that v.0; x2; t/ D

v.L; x2; t/,
@v2.0;x2;t/

@x1
D @v2.L;x2;t/

@x1
, and p.0; x2; t/ D p.L; x2; t/ for x2 2 Œ0; h.0/�

and t 2 R
C. The first condition represents the L-periodicity of velocities, while the

latter two ones, the L-periodicity of normal stresses in the space of divergence free
functions. Moreover we assume that

v D 0 on �D � R
C: (12.7)

On the contact boundary �C we decompose the velocity into the normal component
v� D v � �, where � is the unit outward normal vector and the tangential one v
 D
v �e1. Note, that since the domain˝ is two dimensional it is possible to consider the
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tangential components as scalars, for the sake of the ease of notation. Likewise, we
decompose the stress on the boundary �C into its normal component �� D �� � �
and the tangential one �
 D �� � e1. The stress tensor is related to the velocity and
pressure through the linear constitutive law �ij D �pıij C �.vi;j C vj;i /.

We assume that there is no flux across �C and hence we have

v� D 0 at �C � R
C: (12.8)

The boundary �C is assumed to be moving with the constant velocity U0e1 D
.U0; 0/ which, together with the mass force, produces the driving force of the flow.
The friction bound k is assumed to be related to the slip rate through the relation
k D k.jv
 �U0j/, where k W RC ! R

C. If there is no slip between the fluid and the
boundary then the friction force magnitude is bounded by friction threshold k.0/

v
 D U0 ) j�
 j � k.0/ at �C � R
C; (12.9)

while if there is a slip, then the friction force is given by the expression

v
 ¤ U0 ) ��
 D k.jv
 � U0j/ v
 � U0
jv
 � U0j at �C � R

C: (12.10)

Note that (12.9)–(12.10) generalize the Tresca law considered in [10], where k was
assumed to be a constant. Here k depends of the slip rate, this dependence represents
the fact that the kinetic friction is less then the static one, which holds if k is a
decreasing function. Similar friction law is used for example in the study of the
motion of tectonic plates, see [6, 14, 17] and the references therein. We make the
following assumptions on the friction coefficient k,

H.k/.i/ W k 2 C.Œ0;1/I Œ0;1//,
H.k/.ii/ W k.s/ � ˛.1C s/ for all s 2 R

C with ˛ > 0,
H.k/.iii/ W k.s/ � k.r/ 	 ��.s � r/ for all s > r 	 0 with � > 0.

Note that the assumption that k has values in R
C has a clear physical interpretation,

namely it means that the friction force is dissipative.
Finally, the initial condition for the velocity field is

v.x; 0/ D v0.x/ for x 2 ˝: (12.11)

In the next section we present a weak formulation of the problem in the form of an
evolutionary differential inclusion with a suitable superpotential corresponding to
the generalized Tresca condition.
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12.3.2 Weak Formulation of the Problem

To be able to define a weak solution of problem (12.5)–(12.11) we have to introduce
some notation.

Let

QV D fv 2 C1.˝/2 j div v D 0 in ˝; v is L-periodic in x1;

v D 0 at �D; v� D 0 at �C g

and

V D closure of QV in H1.˝/2; H D closure of QV in L2.˝/2:

We define scalar products in H and V , respectively, by

.u; v/ D
Z
˝

u.x/ v.x/ dx and .ru;rv/ D
Z
˝

ru.x/ � rv.x/ dx;

and their associated norms by

kvkH D .v; v/
1
2 and kvk D .rv;rv/ 12 :

We denote by V � the dual space to V and the duality pairing between V � and V
will be denoted by h�; �i. We denote the trace � W V ! L2.�C IR2/ and k�k D
k�kL.V IL2.�C IR2//. Moreover, let, for u; v and w in V ,

a.u; v/ D .ru;rv/ and b.u; v;w/ D ..u � r/v;w/:

Finally, we define the functional j W R ! R corresponding to the generalized
Tresca condition (12.9)–(12.10) by

j.v/ D
Z jv�U0j

0

k.s/ ds: (12.12)

The variational formulation of problem (12.5)–(12.11) can be derived by the
calculation analogous to the proof of Proposition 2.1 in [10].

Problem 12.7. Given v0 2 H and f 2 H , find v W RC ! H such that:

(i) v 2 C.RCIH/ \ L2loc.R
CIV /, with vt 2 L2loc.R

CIV �/.
(ii) for all � in V and for almost all t 2 R

C, the following equality holds

hvt .t/; �i C �a.v.t/;�/C b.v.t/; v.t/; �/C .	.t/; �
/L2.�C / D .f;�/;

(12.13)
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with 	.t/ 2 S2@j.v
 .t// for a.e. t 2 R
C, where for w 2 L2.�C / we denote by

S2@j.w/ the set of all functions � 2 L2.�C / such that �.x/ 2 @j.w.x// for a.e.
x 2 �C .

(iii) the following initial condition holds

v.0/ D v0: (12.14)

The above definition is justified by part (i) of the following lemma.

Lemma 12.8. Under assumptions H.k/ the functional j defined by (12.12) satis-
fies the following properties:

(i) j is locally Lipschitz and conditions (12.9)–(12.10) are equivalent to

� �
 2 @j.v
 /; (12.15)

where @j denotes the Clarke subdifferential of the functional j .
(ii) j	j � Q̨ .1C jwj/ for all w 2 R and 	 2 @j.w/, Q̨ > 0.

(iii) m.@j / 	 ��, where m.@j / is the one sided Lipschitz constant defined by

m.@j / D inf
u;v2R;u¤v

	2@j.u/;�2@j.v/

.	 � �/ � .u � v/
ju � vj2 :

(iv) for all w 2 R and 	 2 @j.w/ we have 	 � w 	 �ˇ.1 C jwj/ with a constant
ˇ > 0.

Proof. (i) The fact that j is locally Lipschitz follows from the continuity of k and
the direct calculation. To see that (12.9)–(12.10) is equivalent to (12.15) observe
that for v ¤ U0 the functional j is strictly differentiable at v and its derivative is
given as j 0.v/ D k.jv � U0j/ v�U0jv�U0j , whence (12.10) is equivalent to (12.15) by the
Proposition 5.6.15 (b) from [4]. Now, if v D U0, (12.9) is equivalent to (12.15) by
the characterization of the Clarke subgradient (see [4, Proposition 5.6.17])

@j.v/ D convf lim
n!1 j 0.vn/ j vn ! v; vn … S [Nj g;

where S is any Lebesgue-null set and Nj D fU0g is the set of points where j is not
differentiable.

Assertion (ii) follows in a straightforward way from H.k/.ii/.
Assertion (iii) can be obtained by a following computation. Let 	 2 @j.u/, � 2

@j.v/, where u ¤ U0 and v ¤ U0. Then

.	 � �/ � .u � v/ D
�
k.ju � U0j/ u � U0

ju � U0j � k.jv � U0j/ v � U0
jv � U0j

�
� .u � v/

D k.ju � U0j/ju � U0j � k.ju � U0j/ .u � U0/ � .v � U0/
ju � U0j
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� k.jv � U0j/ .u � U0/ � .v � U0/
jv � U0j C k.jv � U0j/jv � U0j

	 .k.ju � U0j/ � k.jv � U0j// .ju � U0j � jv � U0j/
	 ��.ju � U0j � jv � U0j/2 	 ��ju � vj2:

The calculation in the case when either u D U0 or v D U0 is analogous.
Proof of assertion (iv) is also straightforward. Indeed, for w D 0 the assertion

obviously holds. Let w ¤ 0 and 	 2 @j.w/. We have, by H.k/.i/–.ii/

	 � w D k.jw � U0j/ w � U0
jw � U0j .w � U0 C U0/

	 k.jw � U0j/jw � U0j � k.jw � U0j/jU0j 	 �˛.1C jwj C jU0j/jU0j;
and (iv) follows, which completes the proof. ut
Remark 12.9. Observe that the assertion (iii) of Lemma 12.8 is equivalent to the

claim that the functional j is semiconvex, i.e. the functional s ! j.s/ C �s2

2
is in

fact convex (see [2, Definition 10]).

12.3.3 Existence and Properties of Solutions

We begin with some estimates that are satisfied by the solutions of Problem 12.7. We
define the auxiliary operators A W V ! V � and B W V ! V � by hAu; vi D a.u; v/
and hBu; vi D b.u; u; v/.

Lemma 12.10. Let v be a solution of Problem 12.7. Then for all t 	 0 we have

max
s2Œ0;t � kv.s/k

2
H C

Z t

0

kv.s/k2ds � C.t; kv0kH/; (12.16)

Z t

0

kv0.s/k2V �ds � C.t; kv0kH/; (12.17)

where C.t; kv0kH/ is a nondecreasing function of t and kv0kH .

Proof. Take � D v.t/ in (12.13). Since b.v; v; v/ D 0 for v 2 V , we get, with an
arbitrary " > 0,

1

2

d

dt
kv.t/k2H C �kv.t/k2 � kf kHkv.t/kH C k	.t/kL2.�C /kv
 .t/kL2.�C /

� "kv.t/k2H C kf k2H
4"

C 3

2
Q̨ kv.t/k2

L2.�C /
C Q̨�.�C /;
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where we used (ii) of Lemma 12.8 and �.�C / D L is the one dimensional boundary
measure of �C .

Denoting Z D V \H1�ı.˝IR2/ with some small ı 2 �0; 1
2

�
equipped with the

norm H1�ı.˝IR2/ observe that the embedding V � Z is compact and the trace
map �C W Z ! L2.�C IR2/ is continuous. We denote k�C k D k�C kL.ZIL2.�C IR2//.
From the Ehrling lemma we get, for an arbitrary " > 0 independent on v 2 V and
C."/ > 0 that

kvk2Z � "kvk2 C C."/kvk2H :

Hence, noting that the Poincaré inequality

�1kvk2H � kvk2

is valid for v 2 V , we get

d

dt
kv.t/k2H C 2�kv.t/k2 � 2"

�1
kv.t/k2 C kf k2H

2"
C 3 Q̨ k�C k2"kv.t/k2

C 3 Q̨ k�C k2C."/kv.t/k2H C 2 Q̨L:

It is clear that we can choose " small enough such that

d

dt
kv.t/k2H C �kv.t/k2 � C1 C C2kv.t/k2H ;

with C1; C2 > 0. Using the Gronwall lemma we get (12.16).
For the proof of (12.17) observe, that proceeding like in Proposition 9.2 in

[15] we get kBukV � � CkukHkuk. Hence (12.17) follows by (12.16) and the
straightforward computation that uses the assertion (ii) of Lemma 12.8 to estimate
the multivalued term. ut

We formulate and prove the theorem on existence of solutions to Problem 12.7.

Theorem 12.11. For any u0 2 H , Problem 12.7 has at least one solution.

Proof. Since the proof of solution existence, based on the Galerkin method, is
standard and quite long, we provide only its main steps.

Let % 2 C1
0 .�1; 1/ be a mollifier such that

R 1
�1 %.s/ ds D 1 and %.s/ 	 0. We

define %n W R ! R by %n.x/ D n%.nx/ for n 2 N and x 2 R. Then supp %n ��� 1
n
; 1
n

�
. We consider jn W R ! R defined by the convolution

jn.r/ D
Z
R

%n.s/j.r � s/ ds for r 2 R: (12.18)
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Note that jn 2 C1.R/. From the proof of H.j /.iii/ in Lemma 5 in [7] it follows
that for all n 2 N and r 2 R we have jj 0

n.r/j � ˛.1Cjr j/, where ˛ is different from
Q̨ in (ii) of Lemma 12.8 above but independent of n.

Let us furthermore take the sequence Vn of finite dimensional spaces such
that Vn D spanfz1; : : : ; zng where fzig are orthonormal in H eigenfunctions of
the Stokes operator with the Dirichlet and periodic boundary conditions given
in the definition of the space V . Then fVng1

nD1 approximate V from inside, i.e.S1
nD1 Vn D V . We denote by Pn W V � ! Vn the orthogonal projection on Vn

defined as Pnu D Pn
iD1hu; zi izi .

We formulate the regularized Galerkin problems for n 2 N.
Find vn 2 C.RCIVn/ such that vn is differentiable for a.e. t 2 R

C and

hv0
n.t/; �i C �a.vn.t/; �/C b.vn.t/; vn.t/; �/

C.j 0
n.vn
 .t/.�//;�
 /L2.�C / D .f;�/; (12.19)

vn.0/ D Pnv0 (12.20)

for a.e. t 2 R
C and for all� 2 Vn. Note, that due to the fact that j 0

n; a; b are smooth,
the solution of (12.19)–(12.20), if it exists, is a continuously differentiable function
of time variable, with values in Vn.

We first show that if vn solves (12.19) then estimates analogous to the ones in
Lemma 12.10 hold.

Taking vn.t/ in place of � in (12.19) and using the argument similar to that in
the proof of (12.16) in Lemma 12.10 we obtain that, for a given T > 0,

kvnkL1.0;T IH/ � const; (12.21)

kvnkL2.0;T IV / � const: (12.22)

Now denoting � W V ! L2.�C / as �v D .�v/
 and �� adjoint to � we observe
that (12.19) is equivalent to the following equation in V �

v0
n.t/C �Avn.t/C PnB.vn.t//C Pn�

�j 0
n.vn
 .t/.�// D Pnf: (12.23)

Since (see Lemma 7.5 in [15]) for w 2 V � we have kPnwkV � � kwkV � , then from
Eq. (12.23) by using the estimate kBwkV � � CkwkHkwk valid for w 2 V , the
growth condition on j 0

n as well as (12.21) and (12.22), we get

kv0
nkL2.0;T IV �/ � const: (12.24)

The existence of the solution to the Galerkin problem (12.19) follows by the
Caratheodory theorem and estimates (12.21)–(12.22).

Since the bounds (12.21), (12.22), and (12.24) are independent of n then, for a
subsequence, we get
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vn ! v weakly � � in L1.0; T IH/; (12.25)

vn ! v weakly in L2.0; T IV /; (12.26)

v0
n ! v0 weakly in L2.0; T IV �/; (12.27)

vn
 ! v
 strongly in L2.0; T IL2.�C //; (12.28)

vn ! v strongly in L2.0; T IH/; (12.29)

where (12.28) is a consequence of the Lions–Aubin Lemma used for the spaces
V � Z � V � and (12.29) is a consequence of the Lions–Aubin Lemma used for
the spaces V � H � V �.

From (12.22) and the growth condition on j 0
n it follows that

kj 0
n.vn
 /kL2.0;T IL2.�C // � const:

Hence, perhaps for another subsequence, we have

j 0
n.vn
 / ! 	 weakly in L2.0; T IL2.�C //:

In a standard way (see for example Sections 7.4.3 and 9.4 in [15]) we can pass to the
limit in (12.23) and obtain that v and 	 satisfy (12.13) for a.e. t 2 .0; T /. The proof
that v satisfies the initial condition v.0/ D v0 is analogous to the one in Theorem 3.1
in [8].

The proof that 	.t/ 2 S2@j.v
 .t// is also analogous to the proof of Theorem 3.1
in [8].

Finally, the solution can be extended from Œ0; T � to the whole RC by concatenat-
ing the solutions on intervals Œ0; T � taking the value at the endpoint of the previous
interval as the initial condition for the following one (see for example [5, Theorem 2
in Section 9.2.1]). ut
Remark 12.12. The proof of Theorem 12.11 uses only assertions (i) and (ii) of
Lemma 12.8 and, therefore, the theorem holds for a class of potentials j that satisfy
these two conditions and are not necessarily given by (12.12). This is a new result
of independent interest since it weakens the conditions required for the existence
of solutions provided, for example, in [12]. Indeed, the sign condition (see H(j)(iv)
p. 583 in [12]) is not needed here for the existence proof.

Next theorem shows that assertion (iii) of Lemma 12.8 gives the Lipschitz
continuity of the solution map on bounded sets as well as the solution uniqueness.

Lemma 12.13. The solution of Problem 12.7 is unique and if v, w are two solutions
of Problem 12.7 with the initial conditions v0;w0, respectively, then for any t > s 	
0 we have

kv.t/ � w.t/kH � D.t; kw0kH/kv.s/ � w.s/kH ; (12.30)

where D.t; kw0kH/ > 0 is a nondecreasing function of t; kw0kH .
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Proof. Let v and w be two solutions of Problem 12.7 with the initial conditions v0
and w0, respectively. We denote u.t/ D v.t/ � w.t/. Subtracting (12.13) for v and
w and taking u.t/ as a test function we get, for a.e. t 2 R

C,

1

2

d

dt
ku.t/k2H C �ku.t/k2 C b.u.t/;w.t/; u.t//C .	.t/ � �.t/; v
 .t/ � w
 .t//L2.�C / D 0;

where 	.t/ 2 S2@j.v
 .t// and �.t/ 2 S2@j.w
 .t//.
Using the Ladyzhenskaya inequality [10],

jjvjjL4.˝/ � jjvjj1=2H jjvjj1=2 for v 2 V; (12.31)

(cf. also [15, Proposition 9.2]) to estimate the convective term and assertion (iii) in
Lemma 12.8 to estimate the multivalued one we get, for a.e. t 2 R

C,

1

2

d

dt
ku.t/k2H C�ku.t/k2 ��ku
 .t/k2L2.�C / � Cku.t/kHku.t/kkw.t/k: (12.32)

As in the proof of Lemma 12.10 we use the fact that the embedding V � Z is
compact and the trace �C W Z ! L2.�C IR2/ is continuous. We get, for a.e. t 2 R

C,

1

2

d

dt
ku.t/k2H C �ku.t/k2 � "ku.t/k2 C C."/ku.t/k2Hkw.t/k2

C �k�C k2."ku.t/k2 C C."/ku.t/k2H /; (12.33)

with an arbitrary " > 0 and the constant C."/ > 0 independent on u, w and t . By
choosing " > 0 small enough we get, for a.e. t 2 R

C,

d

dt
ku.t/k2H � ku.t/k2H .C1kw.t/k2 C C2/

with the constants C1; C2 > 0. The Gronwall lemma gives

ku.t/k2H � ku.s/k2H eC2.t�s/CC1
R t
s kw.
/k2d
 � ku.s/k2H eC2tCC1

R t
0 kw.
/k2d
 :

Using (12.16) we get

kv.t/ � w.t/kH � kv.s/ � w.s/kHe 12C2tC 1
2 C1C.t;R/; (12.34)

and the proof of (12.30) is complete. Taking s D 0 and v.0/ D w.0/ in (12.30) we
obtain the uniqueness. ut

Now we will prove that assertion (iv) of Lemma 12.8 gives additional, dissipative,
a priori estimates.
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Lemma 12.14. If v is a solution of Problem 12.7 with the initial condition v0, then
for all t 	 0 we have

kv.t/kH � kv0kHe�C1t C C2;

with positive constants C1; C2 independent of t; v0.

Proof. We proceed as in the proof of (12.16) in Lemma 12.8. Taking the test
function � D v.t/ in (12.13) we get

1

2

d

dt
kv.t/k2H C �kv.t/k2 C .	.t/; v
 .t//L2.�C / � kf kHkv.t/kH ;

for a.e. t 2 R
C. We use assertion (iv) of Lemma 12.8 and the Poincaré inequality

�1kvk2H � kvk2 to get

1

2

d

dt
kv.t/k2H C �kv.t/k2 � ˇL

�
1C 1

4"1

�
� ˇ"1kv
 .t/k2L2.�C /

� kf k2H
4"2

C "2

�1
kv.t/k2;

for a.e. t 2 R
C, with an arbitrary "1 > 0 and "2 > 0. Using the trace inequality and

the Poincaré inequality, again, we can choose "1 and "2 small enough to get

d

dt
kv.t/k2H C ��1kv.t/k2H � C;

for a.e. t 2 R
C, where C > 0 is a constant. Finally, lemma follows from the

Gronwall inequality. ut

12.3.4 Existence of Finite Dimensional Global Attractor

In this section we prove the following theorem.

Theorem 12.15. The semigroup fS.t/gt�0 associated with Problem 12.7 has a
global attractor A � H of finite fractal dimension in the space H .

Proof. In view of Theorem 12.5 we need to verify assumptions .A1/–.A8/. We set
Y D V , X D H , Z D V �, l > 0 Xl D L2.0; l IH/, and for T > 0, YT D fu 2
L2.0; T IV / j u0 2 L2.0; T IV �/g.

Assumption .A1/ From Theorem 12.11 it follows that for any u0 2 H there
exists at least one solution of Problem 12.7. This solution, restricted to the interval
.0; T /, belongs to YT and C.Œ0; T �IH/. Uniform bounds in YT follow directly from
Lemma 12.10.
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Assumption .A2/ In view of Lemma 12.14 the closed ballBH.0; C2C1/ absorbs in

finite time all bounded sets in H . Let B0 D S
t�0 S.t/BH .0; C2 C 1/

H
. Obviously

this set is closed in H (we will need this fact to verify the assumption .A5/ below).
From Lemma 12.14 it follows that B0 is bounded. Let us assume that u 2 B0 and
v D S.t/u. Then, for a sequence un 2 S.tn/BH .0; C2 C 1/ with certain tn we have
un ! u in H . From Lemma 12.13 it follows that S.t/un ! S.t/u D v in H .
But S.t/un 2 S.t C tn/BH .0; C2 C 1/ � B0. Hence, from the closedness of B0 it
follows that v 2 B0 and the assertion is proved.

In the rest of the proof the generic constant dependent on B0; l and the problem
data will be denoted by Cl;B0 .

Assumption .A3/ Recall that the l-trajectory is a restriction of any solution of
Problem 12.7 to the time interval Œ0; l�. The fact that assumption .A3/ holds follows
immediately from Lemma 12.13.

Assumption .A4/ Define the shift operator Lt W Xl ! Xl by .Lt�/.s/ D u.s C t /

for s 2 Œ0; l�, where u is the unique solution on Œ0; lCt � such that ujŒ0;l� D �. We will
prove that this operator is continuous on Bl0 for all t 	 0 and l > 0, where Bl0 is the
set of all l-trajectories with the initial condition in the set B0 from assumption .A2/.
Let u; v be two solutions with the initial conditions u0; v0 2 B0. By Lemma 12.13
we have

Z l

0

kv.s C t / � u.s C t /k2Hds � D2.t C l; kB0kH/
Z l

0

kv.s/ � u.s/k2Hds;

where kB0kH D supv2B0 kvkH . Hence, denoting �1 D ujŒ0;l� and �2 D vjŒ0;l�, we
get

kLt�1 � Lt�2k2Xl � D2.t C l; kB0kH/k�1 � �2k2Xl ; (12.35)

and the proof of .A4/ is complete.

Assumption .A5/ We need to prove that, for some 
 > 0, L
.Bl0/
Xl � Bl0. Let

u0 2 B0. From the fact that for all 
 > 0 we have S.
/u0 2 B0 it follows that
L
.Bl0/ � Bl0. To obtain the assertion we must show that Bl0 is closed in Xl . To this
end assume that un is a sequence of solutions to Problem 12.7 such that un.0/ 2 B0

and

�n ! � strongly in L2.0; l IH/; (12.36)

where �n D unjŒ0;l�. From .A1/ it follows that

�n ! � weakly in L2.0; l IV /; (12.37)
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�0
n ! �0 weakly in L2.0; l IV �/: (12.38)

We must show that � 2 Bl0. Let us first prove that �.0/ 2 B0. Indeed from (12.36) it
follows that, for a subsequence, �n.t/ ! �.t/ strongly in H for a.e. t 2 .0; l/. But,
since �n.t/ 2 B0 for all n 2 N and all t 2 Œ0; l�, then �.t/must belong to the closed
set B0 for a.e. t 2 .0; l/. The closedness of B0 and the fact that � 2 C.Œ0; l�IH/
imply that �.t/ 2 B0 for all t 2 Œ0; l� and, in particular �.0/ 2 B0. We need to
prove that � satisfies (12.13) for a.e. t 2 .0; l/. In view of Lemma 7.4 in [15] it is
enough to show that for all w 2 L2.0; l IV �/ we have

Z l

0

h�0.t/; v.t/i dt C �

Z l

0

hA�.t/;w.t/i dt

C
Z l

0

hB�.t/;w.t/i dt C
Z l

0

.	.t/;w
 .t//L2.�C / dt D
Z l

0

.f;w.t// dt; (12.39)

with 	.t/ 2 S2@j.�
 .t// for a.e. t 2 .0; l/. From the fact that �n satisfies (12.13) for
a.e. t 2 .0; l/ we have

Z l

0

h�0
n.t/; v.t/i dt C �

Z l

0

hA�n.t/;w.t/i dt

C
Z l

0

hB�n.t/;w.t/i dt C
Z l

0

.	n.t/;w
 .t//L2.�C / dt D
Z l

0

.f;w.t// dt;

(12.40)

with 	n.t/ 2 S2@j.�n
 .t// for a.e. t 2 .0; l/. From the growth condition (ii) in
Lemma 12.8 it follows that

k	nkL2.0;lIL2.�C // �
p
2lL Q̨ C p

2 Q̨ k�n
kL2.0;lIL2.�C //:

But, since �n is bounded in L2.0; l IV /, then �n
 must be bounded in
L2.0; l IL2.�C // and hence 	n is bounded in the same space. For a subsequence we
have

	n ! 	 weakly in L2.0; l IL2.�C //: (12.41)

Now (12.36), (12.37), and (12.41) are sufficient to pass to the limit in all the terms
in (12.40) and thus to prove (12.39). It remains to show that 	.t/ 2 S2@j.�n
 .t// for a.e.

t 2 .0; l/. Let Z D V \H1�ı.˝IR2/ be equipped with H1�ı topology, where ı 2�
0; 1

2

�
. Then for the triple V � Z � V � we can use the Lions–Aubin Compactness

lemma and conclude from (12.36) and (12.37) that �n ! � strongly in L2.0; l IZ/.
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Now, since the trace operator �C W Z ! L2.�C IR2/ is linear and continuous, and
so is the corresponding Nemytskii operator, we have

�n
 ! �
 strongly in L2.0; l IL2.�C //: (12.42)

From (12.41), (12.42) and the fact that for a.e. .x; t/ 2 �C � .0; l/ we have
	n.x; t/ 2 @j.�n
 .x; t// we can use the Convergence Theorem of Aubin and Cellina
(see [1, Theorem 7.2.2]) to deduce that for a.e. .x; t/ 2 �C � .0; l/ we have
	.x; t/ 2 @j.�
 .x; t//. This completes the proof of .A5/.

Assumption .A6/ We define W D H1
0 .˝IR2/ \ V , where we equip W with the

norm of V . Then V � � W �. By the Lions–Aubin Compactness lemma the space

Wl D f� 2 L2.0; l IV / j �0 2 L1.0; T IW �/g

is embedded compactly inXl . We must show that the shift operatorL
 W Xl ! Wl is

Lipschitz continuous on B1l D L
.Bl0/
Xl

for some 
 > 0. We will prove that L
 is
Lipschitz continuous on the larger set Bl0 for 
 D l . Indeed, take w; v to be two
solutions of Problem 12.7 starting from B0. Denote u D v � w. Then, by (12.33),
for a.e. t 2 R

C,

d

dt
ku.t/k2H C �ku.t/k2 � Cku.t/k2H .1C kw.t/k2/;

where the constant C depends only on the problem data. We fix s 2 .0; l/ and
integrate the last inequality over interval .s; 2l/. We obtain

ku.2l/k2H C �

Z 2l

s

ku.t/k2dt � C

Z 2l

s

ku.t/k2H .1C kw.t/k2/ dt C ku.s/k2H :

Using (12.34) we get

�

Z 2l

l

ku.t/k2 � ku.s/k2H
 
2Cl;B0 l C Cl;B0

Z 2l

0

kw.t/k2dt C 1

!
:

Since, by .A1/ we have

Z 2l

0

kw.t/k2dt � Cl;B0 ;

it follows that

Z 2l

l

ku.t/k2dt � Cl;B0ku.s/k2H :
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Integrating this inequality over the interval .0; l/ with respect to the variable s it
follows that

l

Z 2l

l

ku.t/k2dt � Cl;B0

Z l

0

ku.s/k2Hds

and, therefore,

kLl�1 � Ll�2kL2.0;lIV / �
r
Cl;B0

l
k�1 � �2kXl : (12.43)

It remains to prove that

k.Ll�1 � Ll�2/0kL1.0;lIW �/ � Cl;B0k�1 � �2kXl :

In view of (12.43) it is sufficient to prove that

k.�1 � �2/0kL1.0;lIW �/ � Cl;B0k�1 � �2kL2.0;lIV /:

To this end, we subtract (12.13) for w and v, and take as a test function � 2 W . We
get

hu0.t/; �i C �hAu.t/; �i C hBv.t/ � Bw.t/; �i D 0:

We have, for a constant k > 0 dependent only on the problem data,

hBv.t/ � Bw.t/; �i D b.u.t/;w.t/; �/C b.w.t/; u.t/; �/C b.u.t/; u.t/; �/

� k.ku.t/kkw.t/k C ku.t/k2/k�k
� k.2kw.t/k C kv.t/k/ku.t/kk�k;

whence, for a constant C > 0 dependent only on the problem data,

ku0.t/kW � D sup
�2W;k�kD1

j�hAu.t/; �i C hBv.t/ � Bw.t/; �ij

� �kAu.t/kV � C kBv.t/ � Bw.t/kV �

� C.1C kw.t/k C kv.t/k/ku.t/k:

It follows that

ku0kL1.0;lIW �/ � CkukL2.0;lIV /
sZ l

0

.1C kw.t/k C kv.t/k/2 dt :

The assertion follows from .A1/.
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Assumption .A7/ and .A8/ Since .A8/ implies .A7/, we prove only .A8/. We will
show that the mapping e W Xl ! X defined as e.�/ D �.l/ is Lipschitz on B0l .
Indeed, by (12.34), for any two solutions v;w of Problem 12.7 such that their initial
conditions belong to B0, we get

kw.l/ � v.l/kH � Cl;B0kw.s/ � v.s/kH
for all s 2 .0; l/. Integrating the square of this inequality over s 2 .0; l/ we obtain

lkw.l/ � v.l/k2H � C2
l;B0

kw � vk2Xl ;

whence

kw.l/ � v.l/kH � Cl;B0p
l

kw � vkXl ;

and .A8/ holds. ut
Theorem 12.15 is about the existence of the global attractor of a finite fractal

dimension. In the following subsection we shall prove the existence of an exponen-
tial attractor.

12.3.5 Existence of an Exponential Attractor

Our goal is to prove the following result.

Theorem 12.16. The semigroup fS.t/gt�0 associated with Problem 12.7 has an
exponential attractor in the space H .

Proof. Since we have shown, in the proof of Theorem 12.15, that assumptions
.A1/–.A8/ hold, in view of Theorem 12.6 it is enough to prove .A9/ and .A10/.

Assumption .A9/ Lipschitz continuity of Lt W Xl ! Xl , uniform with respect to
t 2 Œ0; 
� for all 
 > 0, follows immediately from inequality (12.35).

Assumption .A10/ It remains to prove that the inequality

kLt1� � Lt2�kXl � cjt1 � t2jı

holds for all t0 > 0, 0 � t2 � t1 � t0 and � 2 B1l with ı 2 .0; 1� and c > 0.

Since B1l D L
.B0l /
Xl

for certain 
 > 0, it is enough to prove the assertion for
� 2 L
.B0l /. Let v be the unique solution of Problem 12.7 on Œ0; 
 C l C t0� with
v.0/ 2 B0 such that vjŒ
;
Cl � D �. It is enough to obtain the uniform bound on v0 in
the space L1.
; 
 C l C t0IH/. Indeed,
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kLt1� � Lt2�kXl D
sZ l

0

kv.
 C s C t2/ � v.
 C s C t1/k2Hds

�
sZ l

0

�Z 
CsCt2


CsCt1
kv0.r/kH dr

�2
ds

� jt1 � t2j
p
lkv0kL1.
;
ClCt0IH/

The a priori estimate will be computed for the smooth solutions of the regularized
Galerkin problem (12.19)–(12.20) formulated in the proof of Theorem 12.11. We
will show that, for the Galerkin approximations vn, for any T > 
 , the functions v0

n

are bounded in L1.
; T IH/ independently of n and, in consequence, the desired
estimate will be preserved by their limit v, a solution of Problem 12.7.

The argument follows the lines of the proof of Theorem 6.1 in [10] (compare
[9]). First we take � D v0

n.t/ in (12.19) which gives us

kv0
n.t/k2H C �

1

2

d

dt
kvn.t/k2 C b.vn.t/; vn.t/; v

0
n.t//

C d

dt

Z
�C

jn.vn
 .x; t// d� D .f; v0
n.t//:

Estimating the convective term by using the Ladyzhenskaya inequality (12.31)
we get

kv0
n.t/k2H C �

d

dt
kvn.t/k2 C 2

d

dt

Z
�C

jn.vn
 .x; t// d�

� kf k2H C Ckvn.t/k
1
2

Hkvn.t/k 3
2 kv0

n.t/k
1
2

Hkv0
n.t/k

1
2 ; (12.44)

where C > 0 is a constant.
Now a straightforward and technical calculation that uses the Fatou lemma, the

Lebourg mean value theorem and the conditions (ii) and (iii) in Lemma 12.8 shows
that, for all r1; r2 2 R, we have

.j 0
n.r2/ � j 0

n.r1//.r2 � r1/ 	 ��jr2 � r2j2;

where the constant � is the same as in (iii) of Lemma 12.8. Hence, since vn is
a continuously differentiable function of time variable, we have for all .x; t/ 2
˝ � .0; T /,

�
d

dt
j 0
n.vn
 .x; t//

�
v0
n
 .x; t/ 	 ��jv0

n
 .x; t/j2: (12.45)
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We differentiate both sides of (12.19) with respect to time and take � D v0
n.t/,

which gives us

1

2

d

dt
kv0

n.t/k2H C �kv0
n.t/k2 C

Z
�C

�
d

dt
j 0
n.vn
 .x; t//

�
v0
n
 .x; t/ d�

C b.v0
n.t/; vn.t/; v

0
n.t//C b.vn.t/; v

0
n.t/; v

0
n.t// D 0:

Using (12.45) and the fact that b.vn.t/; v0
n.t/; v

0
n.t// D 0 we get

1

2

d

dt
kv0

n.t/k2H C �kv0
n.t/k2 � �kv0

n
 .t/k2L2.�C / C b.v0
n.t/; vn.t/; v

0
n.t// � 0:

Proceeding exactly as in the proof of (12.32) we get, for an arbitrary " > 0 and a
constant C."/ > 0,

1

2

d

dt
kv0

n.t/k2H C �kv0
n.t/k2 �C."/kvn.t/k2kv0

n.t/k2H
C "kv0

n.t/k2 C C."/kv0
n.t/k2H ;

whence

d

dt
kv0

n.t/k2H C �kv0
n.t/k2 � Ckv0

n.t/k2H .kvn.t/k2 C 1/:

Multiplying this inequality by t 2 we get

d

dt
.t2kv0

n.t/k2H /C �t2kv0
n.t/k2 � Ct2kv0

n.t/k2H .kvn.t/k2 C 1/C 2tkv0
n.t/k2H :

We add this inequality to inequality (12.44) multiplied by 2t to get, after simple
calculations that use the fact that

R
�C
jn.vn
 .x; t// d� � C.1C kvn.t/k2/,

d

dt

�
t 2kv0

n.t/k2H C 2tkv0
n.t/k2 C 4t

Z
�C

jn.vn
 .x; t// d�

�
C �t2kv0

n.t/k2

� C1kvn.t/k2.tkv0
n.t/kH/2 C C2.tkv0

n.t/kH/2 C C3 C C4kvn.t/k2

C C5kvn.t/k
1
2

Hkvn.t/k 3
2 .tkv0

n.t/kH/
1
2 .tkv0

n.t/k/
1
2 ;

with Ci > 0 for i D 1; : : : ; 5 independent on n and initial data. Denoting
yn.t/ D t 2kv0

n.t/k2H C 2tkv0
n.t/k2 C 4t

R
�C
jn.vn
 .x; t// d� , using the bound

of Lemma 12.14 for kvn.t/kH , Young inequality, and the fact that jn assumes
nonnegative values, we get



322 P. Kalita and G. Łukaszewicz

d

dt
yn.t/C �

2
t2kv0

n.t/k2 � �
C6kvn.t/k2 C C2

�
yn.t/C C3 C C7kvn.t/k2;

where C6; C7 > 0. Finally, an application of the Gronwall lemma as well as
the bound in (12.16) of Lemma 12.10 for

R T
0

kvn.s/k2 ds yields the uniform
boundedness of v0

n inL1.�; T IH/\L2.�; T IV / for all intervals Œ�; T �, 0 < � < T .
This completes the proof of .A10/ and shows the existence of an exponential
attractor for the semigroup fS.t/gt�0 associated with Problem 12.7. ut

12.4 Global Attractor for Dynamic Antiplane Contact
Problem

In this section we deal with the antiplane contact problem in dynamic Kelvin–Voigt
viscoelasticity formulated in [13].

12.4.1 Problem Formulation

The classical formulation of the problem under consideration will be the following

u00.x; t/ ��u0.x; t/ ��u.x; t/ D f0.x/ on ˝ � R
C;

u.x; 0/ D u0.x/ on ˝;

u0.x; 0/ D u1.x/ on ˝;

u.x; t/ D 0 on �D � R
C;

@u.x; t/

@�
C @u0.x; t/

@�
D f2.x/ on �L � R

C;

� @u.x; t/

@�
� @u0.x; t/

@�
2 @j.u0.x; t// on �C � R

C:

The mechanical interpretation of the equations and the boundary conditions present
in the problem can be found in [13].

Define V D fv 2 H1.˝/ j v D 0 on �Dg, H D L2.˝/, X D V � H ,
U D L2.�C / and �C W V ! U as the trace operator. We will denote k�C k WD
k�C kL.V IU /. The norm in V will be denoted by k � k, while all other norms will be
denoted by corresponding subscripts. Note that, for v 2 V , we have the Poincaré
inequality �1kvk2H � kvk2, and the inequality

kvk2U � "kvk2 C c."/kvk2H ; (12.46)
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with an arbitrary " > 0 and a constant c."/ > 0. The last inequality is a consequence
of the Ehrling lemma and the fact that if we defineZ D V \H1�ı.˝/ for ı 2 �0; 1

2

�
endowed with H1�ı topology, then the trace �ZC W Z ! U is continuous and V �
Z � H is an evolution triple with compact embedding V � Z. The duality pairing
between V and V � will be denoted by h�; �i, while the scalar product in H by .�; �/.
Moreover, we denote V.RC/ D L2loc.R

CIV /, V�.RC/ D L2loc.R
CIV �/, and

W.RC/ D fu 2 V.RC/ j u0 2 V�.RC/g:

We define the operator A W V ! V � as

hAv;wi D
Z
˝

rv � rw dx for v;w 2 V:

Finally, we assume that f0 2 L2.˝/ and f2 2 L2.�N /, which makes possible to
define the functional f 2 V � as

hf; vi D
Z
˝

f0v dx C
Z
�L

f2v d� for v 2 V:

Weak form of the above problem will be the following

Problem 12.17. Find u 2 V.RC/ with u0 2 W.RC/ such that for all v 2 V and
a.e. t 2 R

C,

hu00.t/C Au0.t/C Au.t/; vi C .�.t/; �C v/U D hf; vi; (12.47)

with �.t/ 2 S2
@j.�C u0.t//

for a.e. t 2 R
C and u0.0/ D u1 2 H , u.0/ D u0 2 V .

We will need the following assumptions on the potential j W R ! R

H.j / .i/ j W R ! R is locally Lipschitz,
.ii/ @j satisfies the growth condition j	j � c1 C c2jsj for all 	 2 @j.s/ for all

s 2 R with c1; c2 > 0,
.iii/ @j satisfies the dissipativity condition inf	2@j.s/ 	s 	 d1 � d2jsj2 for all

s 2 R with d1 2 R and d2 	 0 is such that d2k�C k2 < 1,
.iv/ m.@j / > �1, where m.@j / is the one sided Lipschitz constant defined

by

m.@j / D inf
r;s2R;r¤s

	2@j.r/;�2@j.s/

.	 � �/ � .r � s/
jr � sj2 :

In the following, we will show that H.j /.i/–.ii/ guarantee the solution exis-
tence, while, adding the assumption H.j /.iv/, we obtain uniqueness. In fact the
existence of weak solution for Problem 12.17 has been proved in [13]. We sketch the
proof here, however, since we use different technique than in [13] and, likewise, our
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assumptions on j are different. Moreover, we prove that all assumptions H.j /.i/–
.iv/ guarantee the existence of global attractor for associated semiflow. We remark
that global attractor existence can be proved without the condition H.j /.iv/ and
hence without solution uniqueness, using the method of multivalued semiflows (see
[19, 20]).

12.4.2 Existence and Uniqueness of Solutions

Lemma 12.18. The operator A W V ! V � is bilinear, symmetric, continuous and
coercive, with hAv;wi � kvkkwk for v;w 2 V and hAv; vi D kvk2 for v 2 V .

For .u; v/ 2 X we define the energy

E.u; v/ D 1

2

�kuk2 C kvk2H
�

and the auxiliary energy

E".u; v/ D E.u; v/C ".u; v/H ;

where " > 0 is a given parameter. Note that, for .u; v/ 2 X ,

j.u; v/H j � 1p
�1
E.u; v/

and hence we have, for all .u; v/ 2 X ,

�
1 � "p

�1

�
E.u; v/ � E".u; v/ �

�
1C "p

�1

�
E.u; v/ : (12.48)

Theorem 12.19. Under assumptions H.j /.i/–.ii/, Problem 12.17 has at least one
solution for any u0 2 V and u1 2 H .

Proof. The proof proceeds by the Galerkin method and mollification of the non-
smooth term, similarly to that of Theorem 12.11. We outline only main points of
the proof here. We pick a family of mollifier kernels f%ng and define jn by (12.18).
We furthermore define Vn D spanfz1; : : : ; zng where fzig are orthonormal in H
and orthogonal in V eigenfunctions of the operator A with the Dirichlet boundary
conditions given in the definition of the space V . Then fVng1

nD1 approximate V from

inside, i.e.
S1
nD1 Vn D V . We define the orthogonal projection Pn W V � ! Vn by

Pnw D Pn
iD1hw; zi izi for w 2 V �.

We can now define the regularized Galerkin problems for n 2 N as follows.
Find un 2 C1.RCIVn/ such that u0

n is differentiable for a.e. t 2 R
C and
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hu00
n.t/C Au0

n.t/C Aun.t/ � f;�i C .j 0
n.u

0
n.�; t //; �C�/U D 0; (12.49)

un.0/ D Pnu0; u0
n.0/ D Pnu1 (12.50)

for a.e. t 2 R
C and for all � 2 Vn. Note that, due to the fact that j 0

n are smooth,
the solution of (12.49)–(12.50), if it exists, is a twice continuously differentiable
function of time variable, with values in Vn. Taking u0

n.t/ in place of � in (12.49)
we obtain

1

2

d

dt

�ku0
n.t/k2H C kun.t/k2

�C ku0
n.t/k2

� "ku0
n.t/k2 C 1

4"
kf k2V � C

Z
�C

jj 0
n.u

0
n.x; t//jju0

n.x; t/j d�: (12.51)

Since, by H.j /.ii/, jj 0
n.s/j � Qc1 C Qc2jsj for all s 2 R with Qc1; Qc2 > 0 independent

of n, from (12.46) we get, for an arbitrary " > 0 and some C."/; C1; C2 > 0,

Z
�C

jj 0
n.u

0
n.x; t//jju0

n.x; t/j d� � C1 C C2k�C u0
n.t/k2U

� C1 C "ku0
n.t/k2 C C."/ku0

n.t/k2H : (12.52)

From (12.51) and (12.52) with " D 1
4

and from the Gronwall lemma we get, for a
given T > 0,

kunkL1.0;T IV / � const; (12.53)

ku0
nkL2.0;T IV / � const; (12.54)

ku0
nkL1.0;T IH/ � const; (12.55)

where the constants depend on T and the initial conditions but are independent
on n. Now, if ��

C W U � ! V � is the mapping adjoint to �C , we have that (12.49) is
equivalent to the following equation in V �,

u00
n.t/C Au0

n.t/C Aun.t/C Pn�
�
C j

0
n.�C u0

n.t/.�// D Pnf;

whence

ku00
nkL2.0;T IV �/ � const: (12.56)

The existence of the solution to the Galerkin problem (12.49)–(12.50) follows
from the Carathéodory theorem and estimates (12.53)–(12.56).

Since the bounds (12.53)–(12.56) are independent of n then, for a subsequence,
we get



326 P. Kalita and G. Łukaszewicz

un ! u weakly � � in L1.0; T IV / and weakly in L2.0; T IV /; (12.57)

u0
n ! u0 weakly � � in L1.0; T IH/ and weakly in L2.0; T IV /; (12.58)

u00
n ! u00 weakly in L2.0; T IV �/; (12.59)

�C u0
n ! �C u0 strongly in L2.0; T IU/; (12.60)

u0
n ! u0 strongly in L2.0; T IH/; (12.61)

where (12.60) is a consequence of the Lions–Aubin lemma used for the spaces V �
Z � V � and (12.61) is a consequence of the Lions–Aubin lemma used for the
spaces V � H � V �. Note that in (12.60) we use the symbol �C for the Nemytskii
trace operator �C W L2.0; T IV / ! L2.0; T IU/.

From (12.54) and the growth condition on j 0
n it follows that

kj 0
n.�C u0

n/kL2.0;T IU // � const:

Hence, perhaps for another subsequence, we have

j 0
n.�C u0

n/ ! � weakly in L2.0; T IU/:

In a standard way we can pass to the limit in (12.49) and obtain that u and �
satisfy (12.47) for a.e. t 2 .0; T /. The proof that u satisfies the initial conditions
u.0/ D u0 and u0.0/ D u1 is standard and it follows from the fact that from (12.57)–
(12.59) we must have un.0/ ! u.0/ weakly in V and u0

n.0/ ! u0.0/ weakly
in H . The proof that �.t/ 2 S2

@j.�C u0.t//
is analogous to the argument in the proof of

Theorem 3.1 in [8]. The solution can be extended from Œ0; T � to the whole positive
semiaxis by taking the values of u; u0 at T as initial conditions and concatenating
the solutions obtained in this way. ut
Theorem 12.20. Under assumptionsH.j /.i/–.ii/, .iv/, Problem 12.17 has exactly
one solution for any .u0; u1/ 2 X . Moreover the map .u.t1/; u0.t1// ! .u.t2/; u0.t2//
is Lipschitz continuous in X for all t2 > t1 	 0.

Proof. The existence part follows from Theorem 12.19. For the proof of uniqueness
and Lipschitz continuity, assume that u1; u2 solve Problem 12.17. Denote w.t/ D
u1.t/ � u2.t/. Let the functions � such that (12.47) for u1 and u2 holds, be denoted
by �1; �2, respectively. Subtracting (12.47) written for u1 and u2 we obtain for v 2 V
and a.e. t 2 R

C

hw00.t/C Aw0.t/C Aw.t/; vi C .�1.t/ � �2.t/; �C v/U D 0:

Taking v D w0.t/ and using Lemma 12.18 as well as H.j /.iv/ we get, for a.e.
t 2 R

C,
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1

2

d

dt
kw0.t/k2H C kw0.t/k2 C 1

2

d

dt
kw.t/k2 Cm.@j /k�Cw0.t/k2U � 0:

Using (12.46) and denoting M D jm.@j /j we obtain

1

2

d

dt

�kw0.t/k2H C kw.t/k2�C .1 �M"/kw0.t/k2 � Mc."/kw0.t/k2H :

It suffices to take " D M�1 (if M D jm.@j /j D 0 then any choice of " is fine) to
get, for some C1 > 0,

d

dt
E.w.t/;w0.t// � C1E.w.t/;w

0.t//:

As E.w.t/;w0.t// is a continuous function of time, we can apply the Gronwall
lemma to obtain, for t2 > t1 	 0,

E.w.t2/;w
0.t2// � eC1.t2�t1/E.w.t1/;w0.t1//;

whence the Lipschitz continuity follows. In particular if t1 D 0, u1.0/ D u2.0/ and
u0
1.0/ D u0

2.0/ then for all t > 0 we have u1.t/ D u2.t/ and u0
1.t/ D u0

2.t/, and the
proof is complete. ut

Observe that from Theorem 12.20 it follows that we can define a family fS.t/gt�0
of Lipschitz continuous mappings S.t/ W X ! X by S.t/.u0; u1/ D .u.t/; u0.t//,
where u solves Problem 12.17 with u.0/ D u0 and u0.0/ D u1. As S.t1 C t2/ D
S.t1/S.t2/ for all t1; t1 2 R

C, fS.t/gt�0 is a semigroup.

12.4.3 Existence of Global Attractor

The existence of global attractor, being the compact set in X , that is invariant
and attracts all bounded sets in X follows from the results of [19, 20] (see [19,
Theorem 2] and [20, Theorem 2.9, p. 88]). We repeat here some steps of the proof
for the completeness of exposition.

Lemma 12.21. Assume H.j /.i/–.iv/. There exist constants D1;D2;D3 > 0

dependent only on the problem data such that if u solves Problem 12.17 then for
all t 2 R

C we have

E.u.t/; u0.t// � E.u.0/; u0.0//D1e
�D2t CD3

Proof. The proof follows the lines of the proof of Lemma 2.15 in [20]. Let u solve
Problem 12.17. We have, for some �.t/ 2 S2

@j.�C u0.t//
and for a.e. t 2 R

C,



328 P. Kalita and G. Łukaszewicz

dE".u.t/; u0.t//
dt

D hu00.t/; u0.t/i C hAu.t/; u0.t/i C "hu00.t/; u.t/i C "ku0.t/k2H
D hf; u0.t/i � hAu0.t/; u0.t/i � .�.t/; �C u0.t//U

C "hf; u.t/i � "hAu0.t/; u.t/i � ".�.t/; �C u.t//U

� "hAu.t/; u.t/i C "ku0.t/k2H
� kf kV �ku0.t/k � ku0.t/k2 C d2k�C k2ku0.t/k2 � d1

C "kf kV �ku.t/k � "ku.t/k2 C "ku.t/kku0.t/k
C "k�C kku.t/k.c1

p
�.�C /C c2k�C kku0.t/k/C "ku0.t/k2H :

Using the relations xy � x2

2
C y2

2
and xy � "1x

2 C y2

4"1
valid for nonnegative x; y

with any constant "1 > 0 we obtain

dE".u.t/; u0.t//
dt

� � �
1 � d2k�C k2 � 3"1

� ku0.t/k2 C "ku0.t/k2H

� "
�
1 � " � "

4"1
.1C c22k�C k4/

�
ku.t/k2

C kf k2
V �

4"1
C kf k2

V �

2
� d1 C k�C k2c21�.�C /

2

valid for any "1 > 0. It is enough to take "1 D 1�d2k�C k2
6

to obtain

dE".u.t/; u0.t//
dt

� � .C1 � "/ ku0.t/k2H � " .1 � "C2/ ku.t/k2 C C3;

where C1; C2; C3 > 0 are constants dependent only on the problem data. We choose
" small enough to get

dE".u.t/; u0.t//
dt

� �C4E.u.t/; u0.t//C C3:

with a constant C4 > 0 dependent only on the problem data. We can use (12.48) to
obtain

dE".u.t/; u0.t//
dt

� �C5E".u.t/; u0.t//C C3;

with a constant C5 > 0, the latter inequality being valid for a.e. t 2 R
C. From the

Gronwall lemma we get
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E".u.t/; u
0.t// � E".u.0/; u

0.0//e�C5t C C3

C5
:

Hence, from (12.48) we obtain the assertion. ut
Lemma 12.22. Assume H.j /.i/–.iv/. The semigroup fS.t/gt�0 is asymptotically
compact, i.e. ifB � X is bounded and tn ! 1, then any sequence f.un; vn/gn � X

such that .un; vn/ 2 S.tn/B is relatively compact in the strong topology of X .

We do not provide the proof of the lemma, since, on one hand it is quite involved
and, on the other hand, it exactly follows the lines of the proof of Theorem 2.9 in
[20] (also compare the proof of Theorem 2 in [19]).

Theorem 12.2 together with Theorem 12.20, and Lemmata 12.21, 12.22 yield the
following theorem.

Theorem 12.23. Assume H.j /.i/–.iv/. Then the semigroup fS.t/gt�0 associated
with Problem 12.17 has a global attractor.

12.4.4 Infinite Dimensionality of Stationary Set

Our aim in this subsection is to analyze the global attractor of a special case of the
problem considered in the previous subsection and prove that its fractal dimension
is infinite.

We present the analysis for a very simple case: ˝ D .0; 1/2, �D D .0; 1/ � f1g,
�C D .0; 1/ � f0g and �L D f0; 1g � .0; 1/. In addition, we set j.s/ D jsj for
s 2 R. Then j satisfies H.j /.i/–.iv/. Moreover j is convex and @j.0/ D Œ�1; 1�.
This leads to the Tresca friction law (see [13, Example 5.1]).

One of the ways to prove that the global attractor has infinite fractal dimension is
to show that the stationary trajectories of the system, which are all contained in the
global attractor, constitute a set of infinite dimensionality.

Thus, let us look at stationary trajectories. They must satisfy the condition
u0.t/ D 0H , u.t/ D u D const . Define the set K D f	 2 U j j	.x/j � 1 a.e. x 2
�C g. If there exists � 2 K such that for all v 2 V we have

.ru;rv/L2.˝IR2/ C .�; v/U D hf; vi; (12.62)

then the solution u 2 V defines a stationary trajectory. We denote the set of all such
stationary points by S � V .

Now define an N � 1 dimensional simplex as

CN�1 D
(
	 2 R

N j 	k 	 0;

NX
kD1

	k D 1

)
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and CN�1
N

D CN�1 \ f	 2 R
N j 8k 2 f1; : : : ; N g 	k D j

N
for some j 2

f0; : : : ; N g g. If 	 2 CN�1, then the function �	 W �C ! R defined as �	.x1; 0/ DPN
kD1 	k sin.k�x1/ belongs to K. Moreover for 	 2 CN�1 we define v	 W ˝ ! R

as v	.x1; x2/ D .1 � x2/�	.x1; 0/. Note that v	 2 V and �C v	 D �	 .
By the Lax–Milgram lemma, for each 	 2 CN�1 we can find uniquely defined

u	 2 S , the solution of (12.62) with �	 2 K in place of �. We subtract (12.62) for
	1 and 	2 and test it by v	1 � v	2 . We get

k�	1 � �	2k2U D .r.u	2 � u	1 /;r.v	1 � v	2//L2.˝IR2/
� ku	1 � u	2kkr.v	1 � v	2/kL2.˝IR2/: (12.63)

As it is easy to compute we have k�	1 � �	2k2L2.�C / D 1
2
j	1 � 	2j2 (where j � j is

Euclidean norm in R
N ), and

r.v	1 � v	2/ D
 
.1 � x2/PN

kD1.	1k � 	2k/�k cos.�kx1/PN
kD1.	2k � 	1k/ sin.k�x1/

!
:

Hence

kr.v	1 � v	2/k2L2.˝IR2/ D 1

2

NX
kD1
.	1k � 	2k/2

�
1C k2�2

3

�
� 3CN2�2

6
j	1 � 	2j2:

For N 	 5 we have 3CN2�2 � 10N 2. In consequence, in this case, from (12.63)
we obtain

ku	1 � u	2kV 	 1

3N
j	1 � 	2j:

Now assume that 	1; 	2 2 CN�1
N

and 	1 ¤ 	2. Then 	1 and 	2 must differ on at least
one coordinate by at least 1

N
. Hence j	1�	2j 	 1

N
. In consequence, if 	1; 	2 2 CN�1

N

with 	1 ¤ 	2, then

ku	1 � u	2kV 	 1

3N 2
>

1

4N 2
:

We observe that the cardinality of CN�1
N

is equal to the number of partitions ofN
into the sum of N components, being the natural numbers (with zero). This number

of partitions is equal to

�
2N � 1
N

�
. Note that

�
2N � 1
N

�
D .NC1/.NC2/:::.2N�1/

1�2�:::.N�1/ >

2N�1:
Hence we have at least 2N�1 distinct points u	 2 S such that the distance between

each pair of them is greater then 1
4N2 .
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Hence, denoting by NV
" .S/ the minimal number of balls in V of radius " that

cover S we observe that NV
1=.8N2/

.S/ 	 2N�1 and we have

dVf .S/ D lim sup
"!0

lnNV
" .S/

ln
�
1
"

� 	 lim sup
N!1

lnNV
1=.8N2/

.S/
ln.8N 2/

	 lim sup
N!1

ln.2N�1/
ln.8N 2/

D 1:

Denoting the global attractor for our problem by A � X being the compact set
in the strong topology of X D V �H it must hold that f0H g�S � A. Hence, since
dVf .S/ D 1 it must be that dXf .A/ D 1. The proof is complete. In particular the
considered problem does not have exponential attractors.

To fully understand the dynamics of considered problem one needs to answer
the following open problem. It is easy to verify that the problem formulated in this
section has a Lyapunov function. Does the global attractor consist of the stationary
points only or does it also contain complete trajectories that connect different levels
of Lyapunov function?

Our analysis provided in this chapter shows that in a way similar contact
problems governed by the equations of the first and second order with respect to
the time variable, respectively, may exhibit very different dynamical characteristics.
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Chapter 13
Hemivariational Inequalities for Dynamic
Elastic-Viscoplastic Contact Problems

Anna Kulig

Abstract In this chapter we consider two mathematical models which describe the
contact between a body and a foundation. The contact is frictional whereas the
body is deformable and the process is dynamic. In both models the constitutive
law is elastic-viscoplastic and the frictional contact is modeled with subdifferential
boundary conditions. For the two problems we present their classical and variational
formulations. The latter has the form of a system which couples an evolutionary
hemivariational inequality with an integro-differential equation. Finally, we prove
the existence of unique weak solutions to both models.

Keywords Evolutionary inclusion • Viscoplastic contact • Clarke subgradient •
Multifunction • Hyperbolic • Contact problem • Hemivariational inequality

AMS Classification. 34G25, 35L90, 35R70, 45P05, 74C10, 47H04, 74H20,
74H25, 74M15

13.1 Introduction

In this chapter we consider two mechanical models which describe the frictional
contact between a body and a foundation. In both models the process is dynamic and
the body is deformable. We model the material behaviour with a nonlinear elastic-
viscoplastic constitutive law of the from

� .t/ D A.t; ".u0.t///C E.t; ".u.t///

C
Z t

0

G.s; � .s/ � A.s; ".u0.s///; ".u.s/// ds; (13.1)
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where u denotes the displacement field and u0 is the velocity field. The function �

denotes the stress tensor whereas " denotes the linearized strain tensor. The operator
A describes the purely viscous properties of the material, E is a nonlinear elasticity
operator and G is a nonlinear constitutive function which describes the viscoplastic
behavior of the material. Here and below, for simplicity, we skip the dependence of
various functions on the spatial variable x. Constitutive laws of the form (13.1) have
been used in the literature in order to describe the mechanical properties of various
materials such as rubber, metals, pastes and rocks.

One-dimensional constitutive laws of the form (13.1) can be constructed by
using rheological arguments. Indeed, for example, consider a dashpot connected
in parallel with a Maxwell model. In this case an additive formula holds

� D �V C �R; (13.2)

where � , �V and �R denote the total stress, the stress in the dashpot and the stress
in the Maxwell model, respectively. Moreover, we have

�V D A".u0/ (13.3)

and

.�R/0 D E".u0/ � E

�
�R; (13.4)

where E > 0 is the Young modulus of the Maxwell material, A and � are positive
viscosity coefficients and " denotes the strain. For t 2 Œ0; T �, we integrate (13.4) on
Œ0; t �. We use (13.2), (13.3) and the initial conditions �R.0/ D 0, ".u.0// D 0, and
we obtain

�.t/ D A".u0.t//CE".u.t// � E

�

Z t

0

.�.s/ � A".u0.s/// ds;

which represents a constitutive equation of the form (13.1). More details on the one-
dimensional models and the construction of rheological models can be found in [5]
and [6].

Note also that when G � 0, the constitutive law (13.1) reduces to a nonlinear
viscoelastic constitutive law with short memory

� .t/ D A.t; ".u0.t///C E.t; ".u.t///: (13.5)

Quasistatic contact problems for materials of the form (13.5) with time independent
elasticity and viscosity operators were investigated in a large number of papers,
see [6, 19] for a survey. There, both the variational analysis and the numerical
approach of the problems, including the study of semi-discrete and fully discrete
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schemes, were provided. Existence results for the dynamic problems with viscoelas-
tic materials of the form (13.5) can be found in [7, 9–14]. The related existence
and uniqueness results for hemivariational inequalities are provided in [12, 13, 16].
Quasistatic contact problems with elastic-viscoplastic materials were treated in
[1, 2, 6, 19], for instance.

In the present work we consider two frictional contact problems with subdiffer-
ential boundary conditions of the form

� ��.t/ 2 @j1.t;u.t/;u0.t/; u�.t//;

�� 
 .t/ 2 @j3.t;u.t/;u0.t/;u
 .t//; (13.6)

or

� ��.t/ 2 @j2.t;u.t/;u0.t/; u0
�.t//;

�� 
 .t/ 2 @j4.t;u.t/;u0.t/;u0

 .t// (13.7)

where �� and � 
 , u� and u
 , u0
� and u0


 denote the normal and the tangential
components of the stress tensor, the displacement and the velocity, respectively, and
@jk , k D 1; : : : ; 4 stands for the Clarke subdifferential of functions jk taken with
respect to their last arguments. Similar boundary conditions were studied in [7, 8].
The boundary conditions (13.6) and (13.7) are more general than those treated in
[15], due to the additional dependency of the functions jk with respect to u and u0.
Examples of such boundary conditions will be presented in Sect. 13.6.

The rest of the chapter is structured as follows. In Sect. 13.2 we introduce some
notation and recall an abstract existence result for evolutionary inclusions of second
order. The mathematical models of frictional contact are presented in Sect. 13.3,
together with the hypotheses on the data. Then, in Sect. 13.4 we present variational
formulations of the models whereas in Sect. 13.5 we state and prove our main
existence and uniqueness result, Theorem 13.4. Finally, in Sect. 13.6 we present
examples of subdifferential boundary conditions for which our main result works.

13.2 Preliminaries

In this section we recall the basic notations and a result on existence of solutions for
evolutionary inclusion of second order that will be needed in following sections.

Let .X; k � kX/ be a reflexive Banach space; the symbol w-X denotes the space X
endowed with the weak topology; if U � X , then we write kU kX D supf kxkX j
x 2 U g. Let T WX ! 2X

�

be a multivalued operator and let h�; �i be the duality
pairing for .X�; X/. We say that operator T is upper semicontinuous (usc) if set
T �.C / D fx 2 X j T x \ C ¤ ;g is closed in X for any closed subset C � X�.
We say it is coercive if there exists a function cWRC ! R with lim

r!C1 c.r/ D C1
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such that for all x 2 X and x� 2 T x, we have hx�; xi 	 c .kxkX/kxkX . A single
valued operator AWX ! X� is called hemicontinuous if the real-valued function
� 7! hA.u C �v/;wi is continuous on Œ0; 1� for all u, v, w 2 X .

The generalized directional derivative of Clarke of a locally Lipschitz function
hWX ! R at x 2 X in the direction v 2 X , denoted by h0.xI v/, is defined as
follows (cf. [3]):

h0.xI v/ D lim sup
y!x;�#0

h.y C �v/ � h.y/
�

:

The generalized gradient of the function hWX ! R at x 2 X , denoted by
@h.x/, is a subset of a dual space X� given by @h.x/ D f� 2 X� j h0.xI v/ 	
h�; viX��X for all v 2 Xg.

Let V and Z be a separable and reflexive Banach spaces with the duals V �
and Z�, respectively. Let H denote a separable Hilbert space and we identify H
with its dual. We suppose that V � H � V � and Z � H � Z� are evolution
triples of spaces where all embeddings are continuous, dense and compact (see e.g.
Chap. 23.4 of [20], Chap. 3.4 of [4]). Let k � k and j � j denote the norms in V
and H , respectively, and let h�; �i be the duality pairing between V � and V . We also
introduce the following spaces

V D L2.0; T IV /; Z D L2.0; T IZ/; OH D L2.0; T IH/;
Z� D L2.0; T IZ�/; V� D L2.0; T IV �/; W D fv 2 V j v0 2 V�g:

The linear space of second order symmetric tensors on R
d will be denoted by

S
d . The inner product and the corresponding norm on S

d is defined similarly to the
inner product on R

d , i.e.

u � v D ui vi ; kvkRd D .v � v/1=2 for all u; v 2 R
d ;

� W � D �ij 
ij ; k�kSd D .� W �/1=2 for all � ;� 2 S
d :

We recall now a result on the following evolutionary inclusion.

Problem P . Find u 2 V such that u0 2 W and8<
:

u00.t/C A.t; u0.t//C F.t; u.t/; u0.t// 3 f .t/ a:e: t 2 .0; T /;
u.0/ D u0; u0.0/ D u1:

A solution to Problem P is understood as follows.

Definition 13.1. A function u 2 V is a solution of Problem P if and only if u0 2 W
and there exists z 2 Z� such that
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8̂̂<
ˆ̂:

u00.t/C A.t; u0.t//C z.t/ D f .t/ a.e. t 2 .0; T /;
z.t/ 2 F.t; u.t/; u0.t// a.e. t 2 .0; T /;
u.0/ D u0; u0.0/ D u1:

We will need the following hypotheses.

H.A/ W The operator AW .0; T / � V ! V � is such that

(i) A.�; v/ is measurable on .0; T / for all v 2 V .
(ii) A.t; �/ is hemicontinuous for a.e. t 2 .0; T /.

(iii) kA.t; v/kV � � a0.t/ C a1kvk for all v 2 V , a.e. t 2 .0; T / with
a0 2 L2.0; T /, a0 	 0 and a1 > 0.

(iv) hA.t; v/; vi 	 ˛kvk2 for all v 2 V , a.e. t 2 .0; T / with ˛ > 0.
(v) A.t; �/ is strongly monotone for a.e. t 2 .0; T /, i.e. there exists m1 > 0 such

that hA.t; v/�A.t; u/; v � ui 	 m1kv � uk2 for all u, v 2 V , a.e. t 2 .0; T /.

H.F / W The multifunction F W .0; T / � V � V ! 2Z
�

has nonempty closed and
convex values and it is such that

(i) F.�; u; v/ is measurable on .0; T / for all u, v 2 V .
(ii) F.t; �; �/ is upper semicontinuous from V � V into w-Z� for a.e. t 2 .0; T /,

where V � V is endowed with .Z �Z/-topology.
(iii) kF.t; u; v/kZ� � d0.t/C d1kuk C d2kvk for all u, v 2 V , a.e. t 2 .0; T / with

d0 2 L2.0; T / and d0, d1, d2 	 0.
(iv) hF.t; u1; v1/�F.t; u2; v2/; v1�v2iZ��Z 	 �m2kv1�v2k2 �m3kv1�v2kku1�

u2k for all ui , vi 2 V , i D 1, 2, a.e. t 2 .0; T / with m2, m3 	 0.

.H0/ W f 2 V�, u0 2 V , u1 2 H .

.H1/ W ˛ > 2
p
3ce.d1T Cd2/, where ce > 0 is the embedding constant of V into

Z, i.e. k � kZ � cek � k.

.H2/ W m1 > m2 C 1p
2
m3T .

Then, we can state the following existence and uniqueness result.

Theorem 13.2. Assume that hypotheses H.A/, H.F /, .H0/, .H1/ and .H2/ hold.
Then Problem P has a unique solution which satisfies

kukC.0;T IV / C ku0kW � C
	
1C ku0k C ju1j C kf kV�



:

with a constant C > 0.

The proof of Theorem 13.2 can be found in [9].
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13.3 Problems Statement

In this section we introduce two mathematical models of contact and present
the hypotheses on the data. Let ˝ be a bounded domain in R

d , d D 2, 3,
which is occupied, in its reference configuration, by an elastic-viscoplastic body.
The boundary � of ˝ is assumed to be Lipschitz continuous and it is divided
into three mutually disjoint measurable parts �D , �N and �C in such a way
that meas.�D/ > 0. Let � denote the unit outward normal vector to � . We put
Q D ˝ � .0; T /, where 0 < T < C1. Volume forces of density f 0 act in ˝
and surface tractions of density f N are applied on �N . The body is clamped on
�D and, therefore, the displacement field vanishes there. The part �C is where the
body may come in contact with a foundation. By u D .u1; : : : ; ud /, � D .�ij / and
".u/ D ."ij .u//, i , j D 1; : : : ; d , we denote the displacement vector, the stress
tensor and linearized strain tensor, respectively. We assume that the mass density is
equal to 1 and re recall that sometimes we skip the dependence of various function
with respect to the spatial variable x. Moreover, we use the elastic-viscoplastic
constitutive law of the form (13.1).

In the models under consideration, the frictional contact is described by subdif-
ferential boundary conditions of the form (13.6) or (13.7). We note that functions
jk depend on both u and u0; moreover, in the first problem the subdifferential is
considered with respect to the displacement and in the second problem is considered
with respect to the velocity. All these ingredients represent traits of novelty of our
frictional contact models. Finally, the initial displacement and the initial velocity are
denoted by u0 and u1, respectively.

With this preliminaries, the classical formulation of the two contact problems can
be stated as follows.

Problem C1. Find a displacement field uWQ ! R
d and a stress field � WQ ! S

d

such that

u00.t/ � Div � .t/ D f 0.t/ in ˝; (13.8)

� .t/ D A.t; ".u0.t///C E.t; ".u.t///

C
Z t

0

G.s; � .s/ � A.s; ".u0.s///; ".u.s/// ds in ˝; (13.9)

u.t/ D 0 on �D; (13.10)

� .t/ � D f N on �N ; (13.11)

� ��.t/ 2 @j1.t;u.t/;u0.t/; u�.t// on �C ; (13.12)

� � 
 .t/ 2 @j3.t;u.t/;u0.t/;u
 .t// on �C ; (13.13)

u.0/ D u0; u0.0/ D u1 in ˝; (13.14)

for all t 2 .0; T /.
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Problem C2. Find a displacement field uWQ ! R
d and a stress field � WQ ! S

d

such that

u00.t/ � Div � .t/ D f 0.t/ in ˝; (13.15)

� .t/ D A.t; ".u0.t///C E.t; ".u.t///

C
Z t

0

G.s; � .s/ � A.s; ".u0.s///; ".u.s/// ds in ˝; (13.16)

u.t/ D 0 on �D; (13.17)

� .t/ � D f N on �N ; (13.18)

� ��.t/ 2 @j2.t;u.t/;u0.t/; u0
�.t// on �C ; (13.19)

� � 
 .t/ 2 @j4.t;u.t/;u0.t/;u0

 .t// on �C ; (13.20)

u.0/ D u0; u0.0/ D u1 in ˝; (13.21)

for all t 2 .0; T /.
In the study of Problems C1 and C2 we need the following hypotheses on the

data.

H.A/ W The viscosity operator AWQ � S
d ! S

d is such that

(i) A.�; �; "/ is measurable on Q for all " 2 S
d .

(ii) A.x; t; �/ is continuous on S
d for a.e. .x; t / 2 Q.

(iii) kA.x; t; "/kSd � ea1.x; t / C ea2 k"kSd for all " 2 S
d , a.e. .x; t / 2 Q withea1 2 L2.Q/, ea1, ea2 	 0.

(iv) .A.x; t; "1/ � A.x; t; "2// W ."1 � "2/ 	 ea4 k"1 � "2k2Sd for all "1, "2 2 S
d ,

a.e. .x; t / 2 Q with ea4 > 0.
(v) A.x; t; "/ W " 	 ea3 k"k2

Sd
for all " 2 S

d , a.e. .x; t / 2 Q with ea3 > 0.

H.E/ W The elasticity operator E WQ � S
d ! S

d is such that

(i) kE.x; t; "1/ � E.x; t; "2/kSd � LEk"1 � "2kSd for all "1; "2 2 S
d , a.e.

.x; t / 2 Q.
(ii) E.�; �; "/ is measurable on Q for all " 2 S

d .
(iii) E.�; �; 0/ 2 L2.Q;Sd /.
H.G/ W The operator GWQ � S

d � S
d ! S

d is such that

(i) kG.x; t; � 1; "1/ � G.x; t; � 2; "2/kSd � LG
�k� 1 � � 2kSd C k"1 � "2kSd / for

all � 1, � 2, "1, "2 2 S
d , a.e. .x; t / 2 Q.

(ii) G.�; �; � ; "/ is measurable on Q for all � ; " 2 S
d .

(iii) G.�; �; 0; 0/ 2 L2.Q;Sd /.
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Remark 13.3. Under the conditions H.E/(i), (iii) and H.G/(i), (iii), we have

kE.x; t; "/kSd � LEk"kSd C e.x; t / for all " 2 S
d ; a.e. .x; t / 2 Q;

kG.x; t; � ; "/kSd � LG.k�kSd C k"kSd /C g.x; t / for all "; � 2 S
d ; a.e. .x; t / 2 Q;

where e.x; t / D kE.x; t; 0/kSd , e 2 L2.Q/, e 	 0 and g.x; t / D
kG.x; t; 0; 0/kSd ; g 2 L2.Q/; g 	 0.

H.f / W f 0 2 L2.0; T IH/, f N 2 L2.0; T IL2.�N IRd //, u0 2 V , u1 2 H .
The functions jk for k D 1, 2 satisfy the following conditions.

H.jk/ W The function jk W�C � .0; T / � .Rd /2 � R ! R is such that

(i) jk.�; �; 	;
; r/ is measurable for all 	, 
 2 R
d , r 2 R, jk.�; �; v.�/;w.�/; 0/ 2

L1.�C � .0; T // for all v, w 2 L2.�C IRd /.
(ii) jk.x; t; �; �; r/ is continuous for all r 2 R, a.e. .x; t / 2 �C � .0; T /,

jk.x; t; 	;
; �/ is locally Lipschitz for all 	, 
 2 R
d , a.e. .x; t / 2 �C � .0; T /.

(iii) j@jk.x; t; 	;
; r/j � ck0 C ck1k	kRd C ck2k
kRd C ck3jr j for all 	, 
 2 R
d ,

r 2 R, a.e. .x; t / 2 �C � .0; T / with cki 	 0, i D 0, 1, 2, 3, where @jk denotes
the Clarke subdifferential of jk.x; t; 	;
; �/.

(iv) j 0k .x; t; �; �; �I s/ is upper semicontinuous on .Rd /2 � R for all s 2 R, a.e.
.x; t / 2 �C � .0; T /, where j 0k denotes the generalized directional derivative
of Clarke of jk.x; t; 	;
; �/ in the direction s.

(v) For k D 1 we have, j@jk.x; t; 	1;
1; r1/ � @jk.x; t; 	2;
2; r2/j �
Lk .k	1 � 	2kRd C k
1 � 
2kRd C jr1 � r2j/ and for k D 2, we have
j .@jk.x; t; 	1;
1; r1/ � @jk.x; t; 	2;
2; r2// .r1 � r2/ 	 �Lk .k	1 � 	2kRd
Ck
1 � 
2kRd C jr1 � r2j/ jr1 � r2j for all 	1, 	2, 
1, 
2 2 R

d , r1, r2 2 R,
a.e. .x; t / 2 �C � .0; T / with constants Lk 	 0.

The functions jk for k D 3, 4 satisfy conditions H.jk/(i)–(v) with the last
variable being in R

d .
Moreover, we need the following hypothesis.

H.j /reg W The functions jk for k D 1; : : : ; 4 are such that for all 	, 
 2 R
d , a.e.

.x; t / 2 �C � .0; T /, either all jk.x; t; 	;
; �/ are regular or all �jk.x; t; 	;
; �/
are regular for k D 1; : : : ; 4.

According to the comments and the mechanical interpretations presented in the
books [6, 18, 19] it follows that the above hypotheses are realistic from the physical
point of view.

13.4 Variational Formulation

We now turn to the variational formulations of Problems C1 and C2. Let V be the
closed subspace of H1.˝IRd / given by

V D f v 2 H1 j v D 0 on �D g :
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The space V is a closed subspace of H1 which means it is a Hilbert space with the
inner product and the corresponding norm defined by .u; v/V D .".u/; ".v//H and
kvk D k".v/kH for u; v 2 V . Due to Korn’s inequality

kvkH1 � c k".v/kH for all v 2 V with c > 0

(cf. Sect. 6.3 of [17]), we know that k � kH1 and k � k are the equivalent norms on V .
We identify H D L2.˝IR d / with its dual space and we obtain an evolution triple
of spaces .V;H; V �/ in which all embeddings are dense, continuous and compact.
The duality pairing between V � and V is denoted by h�; �i. We define the spaces

V D L2.0; T IV /; H D L2.0; T ISd /; OH D L2.0; T IH/;

V� D L2.0; T IV �/; W D fv 2 V j v0 2 V�g:

Next, let v 2 V . We define f 2 V� by

hf .t/; vi D hf 0.t/; viH C hf N .t/; viL2.�N IRd / for a.e. t 2 .0; T /:

Assuming that the functions involved in Problem C1 are sufficiently smooth,
using the equation of motion (8.37) and the Green formula, we obtain

hu00.t/; vi C h� .t/; ".v/iH �
Z
�

� .t/� � v d� D hf 0.t/; viH

for a.e. t 2 .0; T /. From the boundary conditions (8.39) and (8.40), we have

Z
�

� .t/� � v d� D
Z
�N

f N .t/ � v d� C
Z
�C

.� 
 .t/ � v
 C ��.t/v�/ d�:

On the other hand, the subdifferential boundary conditions (8.41) and (13.13)
imply

���.t/ r � j 01 .t;u.t/;u
0.t/; u�.t/I r/ for all r 2 R;

�� 
 .t/ � � � j 03 .t;u.t/;u
0.t/;u
 .t/I �/ for all � 2 R

d ;

a.e. on �3. Then, using the constitutive law (8.38) and the above relations, we obtain
the following variational formulation of Problem C1.
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Problem (HVI1). Find uW .0; T / ! V such that u 2 V , u0 2 W and

� .t/ D A.t; ".u0.t///C E.t; ".u.t///

C
Z t

0

G.s; � .s/ � A.s; ".u0.s///; ".u.s/// ds for a.e. t 2 .0; T /;
(13.22)

hu00.t/; vi C h� .t/; ".v/iH

C
Z
�C

	
j 01 .t;u.t/;u

0.t/; u�.t/I v�/C j 03 .t;u.t/;u
0.t/;u
 .t/I v
 /



d�

	 hf .t/; vi for all v 2 V; a.e. t 2 .0; T /; (13.23)

u.0/ D u0; u0.0/ D u1; (13.24)

In a similar way we find the following variational formulation of the Problem C2.

Problem (HVI2). Find uW .0; T / ! V such that u 2 V , u0 2 W and

� .t/ D A.t; ".u0.t///C E.t; ".u.t///

C
Z t

0

G.s; � .s/ � A.s; ".u0.s///; ".u.s/// ds for a.e. t 2 .0; T /;
(13.25)

hu00.t/; vi C h� .t/; ".v/iH

C
Z
�C

	
j 02 .t;u.t/;u

0.t/; u0
�.t/I v�/C j 04 .t;u.t/;u

0.t/;u0

 .t/I v
 /



d�

	 hf .t/; vi for all v 2 V; a.e. t 2 .0; T /; (13.26)

u.0/ D u0; u0.0/ D u1: (13.27)

Note that variational formulations (HVI1) and (HVI2) consist of a system
coupling the integro-differential equation (13.22) or (13.25) with second order
hemivariational inequality (13.23) or (13.26), and with the initial conditions (13.24)
or (13.27), respectively.

13.5 Existence and Uniqueness Results

In this section we prove the existence and uniqueness theorem for variational
problems (HVI1) and (HVI2). Our main result is the following.
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Theorem 13.4. Assume that the hypothesesH.A/,H.G/,H.E/,H.f /,H.jk/ for
k D 1; : : : ; 4, H.j /reg hold. Moreover, assume that

Qa3 > 4
p
15 c2e k�k2

	
T maxf max

1�k�4 ck1; c13; c33g C maxf max
1�k�4 ck2; c23; c43g




and

Qa4 > cek�k2
	

maxfL1; 2L2; L3; 2L4g C Tp
2

maxf2L1; L2; 2L3; L4g


:

Then, Problems (HVI1) and (HVI2) have unique solutions.

The proof of Theorem 13.4 is carried out in two main steps and it is based on
Theorem 13.2 and a fixed point argument. First we focus on Problem (HVI1).

Step 1. Let � 2 L2.0; T IH/ be fixed and consider the following auxiliary
problem.

Problem (HVI1�). Find uW .0; T / ! V such that u 2 V , u0 2 W and

� .t/ D A.t; ".u0
�.t///C h�.t/; ".t/iH for a.e. t 2 .0; T /; (13.28)

hu00
�.t/; vi C h� .t/; ".v/iH C

Z
�C

	
j 01 .t;u�.t/;u

0
�.t/; u��.t/I v�/

C j 03 .t;u�.t/;u
0
�.t/;u�
 .t/I v
 /



d�

	 hf .t/; vi for all v 2 V; a.e. t 2 .0; T /; (13.29)

u�.0/ D u0; u0
�.0/ D u1: (13.30)

To solve Problem (HVI1�) we substitute � � from (13.28) in (13.29) and
use (13.30) to obtain the following hemivariational inequality: find u�W .0; T / ! V

such that

hu00
�.t/; vi C hA.t; ".u0

�.t///; ".v/iH C h�.t/; ".v/iH

C
Z
�C

	
j 01 .t;u�.t/;u

0
�.t/; u��.t/I v�/C j 03 .t;u�.t/;u

0
�.t/;u�
 .t/I v
 /



d�

	 hf .t/; vi for all v 2 V a.e. t 2 .0; T /; (13.31)

u�.0/ D u0; u0
�.0/ D u1: (13.32)
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In what follows we need additional notation. Let the function gW�C � .0; T / �
.Rd /4 ! R be defined by

g.x; t; 	;
; �;�/ D j1.x; t; 	;
; 	�/C j3.x; t; 	;
; �
 /

for 	, 
, �, � 2 R
d and a.e. .x; t / 2 �C � .0; T / and let the functional GW .0; T / �

L2.�C IRd /4 ! R be given by

G.t;w; z;u; v/ D
Z
�C

g.x; t;w.x/; z.x/;u.x/; v.x// d�

for w, z, u, v 2 L2.�C IRd / and t 2 .0; T /. Note, that in this setupG is independent
of the variable v. Let Z D H1=2.˝IRd /. We introduce the operators RWZ � Z !
L2.�C IRd /2 and S WZ� �Z� ! Z� defined by

R.z1; z2/ D .�z1; �z2/; S.z�
1 ; z

�
2 / D z�

1 C z�
2

for all z1, z2 2 Z and z�
1 , z�

2 2 Z�. Then, the adjoint operator of R is the operator
R�WL2.�C IRd /2 ! Z� �Z� given by

R�.u; v/ D .��u; ��v/ for all u; v 2 L2.�C IRd /:

Next, we define the multivalued mapping F W .0; T / � V � V ! 2Z
�

by

F.t;u; v/ D S R� @G.t; R.u; v/; R.u; v// (13.33)

for u, v 2 V and a.e. t 2 .0; T /, where @G denotes the Clarke subdifferential of the
functional G D G.t;w; z;u; v/ with respect to the pair .u; v/.

From [8, Lemma 17] we have the following result.

Lemma 13.5. Assume that the hypotheses H.jk/ hold for k D 1; : : : ; 4 and
moreover,

either jk.x; t; 	;
; �/ are regular and jk satisfy H.jk/1 (13.34)

or � jk.x; t; 	;
; �/ are regular and �jk satisfy H.jk/1 (13.35)

for k D 1; : : : ; 4. Then the multifunction F W .0; T / � V � V ! 2Z
�

defined
by (13.33) satisfies the condition H.F / with m2 D cek1k�k2 and m3 D cek2k�k2.

Next, we derive the following result.

Lemma 13.6. Assume that the hypotheses H.A/, H.f /, H.jk/ for k D 1; : : : ; 4,
H.j /reg hold and, in addition, assume that either (13.34) or (13.35) hold. Moreover,
assume the following conditions
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Qa3 > 4
p
15 c2ek�k2

	
T maxf max

1�k�4 ck1; c13; c33g C maxf max
1�k�4 ck2; c23; c43g



(13.36)

and

Qa4 > cek�k2
	

maxfL1; 2L2; L3; 2L4g C Tp
2

maxf2L1; L2; 2L3; L4g


: (13.37)

Then, Problem (HVI1�) has a unique solution which satisfies

kukC.0;T IV / C ku0kW � C
	
1C ku0k C ju1j C kf kV�



with C > 0:

Proof. We define the operator AW .0; T / � V ! V � and the function f �W .0; T / !
V � by

hA.t;u/; vi D .A.x; t; ".u//; ".v//H; (13.38)

hf �.t/; vi D hf .t/; vi � h�.t/; vi (13.39)

for u, v 2 V , a.e. t 2 .0; T /. We associate to (13.31) and (13.32) the following
evolution inclusion: find u� 2 V such that u0

� 2 W and

8<
:

u00
�.t/C A.t;u0

�.t//C F.t;u�.t/;u0
�.t// 3 f �.t/ a.e. t 2 .0; T /;

u�.0/ D u0; u0
�.0/ D u1;

(13.40)

where A is given by (13.38), and F and f � are defined by (13.33) and (13.39),
respectively. It is easy to check that under the assumption H.A/ the operator A
satisfies H.A/ with a0.t/ D p

2 kea1.t/kL2.˝/, a1 D p
2 ea2, ˛ D ea3, and m1 D ea4

(cf. Lemma 8 in [8]). Due to H.f /, it is clear that f � 2 V� and

kf �kV� � p
2.kf kV� C k�kL2.0;T IH/:

Next, H.0/ follows from .H0/ whereas .H1/ and .H2/ are consequences
of (13.36) and (13.37), respectively. The assumption H.F / is satisfied due to
Lemma 13.5. Applying Theorem 13.2, we deduce that the problem (13.40) has a
unique solution u� 2 V such that u0

� 2 W which satisfies

kukC.0;T IV / C ku0kW � C.1C ku0k C ju1j C kf �kV�/

� C.1C ku0k C ju1j C kf kV� C k�kL2.0;T IH//:
(13.41)
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Applying Theorems 19 and 20 of [8] we deduce that u� 2 V , u0
� 2 W is the

unique solution to .HVI1�/, which completes the proof of the lemma. �

Step 2. From Step 1 we know that for every � 2 L2.0; T IH/, Problem (HVI1�)
has a unique solution u� 2 V such that u0

� 2 W . We consider the operator
�WL2.0; T IH/ ! L2.0; T IH/ defined by

.��/.t/ D E.t; ".u�.t///C
Z t

0

G.s; �.s/; ".u�.s/// ds (13.42)

for � 2 L2.0; T IH/, a.e. t 2 .0; T /, where u� 2 V is the unique solution to
.HVI1�/.

Lemma 13.7. Under the hypotheses of Theorem 13.4, the operator� has a unique
fixed point �� 2 L2.0; T IH/.
Proof. First, we observe that the operator � is well defined. Indeed, from
Remark 13.3, we have

kE.t; ".u�.t///kH � p
2 .L"ku�.t/k C je.t/j/;

kG.t;�.t/; ".u�.t///kH � 2LG.ku�.t/k C k�.t/kH C p
2jg.t/j/

for a.e. t 2 .0; T /. Hence

k.��/.t/kH � kE.t; ".u�.t///kH C
Z t

0

kG.s;�.s/; ".u�.s///kHds

� p
2 .LEku�.t/k C je.t/j/

C LG

Z t

0

.ku�.s/k C k�.s/kH/ ds C p
2

Z t

0

jg.s/j ds

for a.e. t 2 .0; T / and, subsequently,

k��k2
L2.0;T IH/ D

Z T

0

k .��/.t/k2H dt � c
�ku�k2V C k�k2

L2.0;T IH/ C 1
�
;

where c > 0. Keeping in mind the estimate (13.41), we deduce that the inte-
gral (13.42) is well defined and � takes values in L2.0; T IH/. Next, we will show
that the operator � has a unique fixed point. Let �1, �2 2 L2.0; T IH/ and let
u1 D u�1 and u2 D u�2 be the corresponding solutions to .HVI1�/ such that ui 2 V
and u0

i 2 W for i D 1, 2. We have

u00
1 .t/C A.t;u0

1.t//C z1.t/ D f .t/ � �1.t/ a.e. t 2 .0; T /; (13.43)

u00
2 .t/C A.t;u0

2.t//C z2.t/ D f .t/ � �2.t/ a.e. t 2 .0; T /; (13.44)
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z1.t/ 2 F.t;u1.t/;u0
1.t//; z2.t/ 2 F.t;u2.t/;u0

2.t// a.e. t 2 .0; T /;

u1.0/ D u2.0/ D u0; u0
1.0/ D u0

2.0/ D u1:

We subtract (13.44) from (13.43) and multiply the result by u0
1.t/� u0

2.t/. Using the
integration by parts formula, we obtain

1

2
ju0
1.t/ �u0

2.t/j2 C
Z t

0

hA.s;u0
1.s// � A.s;u0

2.s//;u
0
1.s/ � u0

2.s/i ds

C
Z t

0

hz1.s/ � z2.s/;u0
1.s/ � u0

2.s/i ds

D
Z t

0

h�1.s/ � �2.s/;u
0
1.s/ � u0

2.s/i ds (13.45)

for all t 2 Œ0; T �. Since u1, u2 2 H1.0; T IV / and V is reflexive, by Theorem 8.4.11
of [4], we know that u1 and u2 may be identified with absolutely continuous
functions with values in V and

u1.t/ D u1.0/C
Z t

0

u0
1.s/ ds; u2.t/ D u2.0/C

Z t

0

u0
2.s/ ds (13.46)

for all t 2 Œ0; T �. This implies

ku1.t/ � u2.t/k �
Z t

0

ku0
1.s/ � u0

2.s/k ds

for all t 2 Œ0; T �. Hence, by the Jensen inequality, we obtainZ t

0

ku1.s/ � u2.s/k2 ds �
Z t

0

�Z s

0

ku0
1.
/ � u0

2.
/k d

�2

ds

�
Z t

0

s ku0
1 � u0

2k2L2.0;T IV / ds

� T 2

2
ku0

1 � u0
2k2L2.0;T IV /

for all t 2 Œ0; T �. Therefore, exploitingH.F /(iv) and the Hölder inequality, we haveZ t

0

hz1.s/ � z2.s/;u0
1.s/ � u0

2.s/iZ��Z ds

	 �m2ku0
1 � u0

2k2L2.0;t IV / �m3ku0
1 � u0

2kL2.0;t IV /
	 Z t

0

ku1.s/ � u2.s/k2 ds

2

D �
	
m2 C m3 Tp

2



ku0

1 � u0
2k2L2.0;t IV /: (13.47)
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Hence, using (13.45), (13.47) and H.A/(vi), we obtain

1

2
ju0
1.t/ � u0

2.t/j2 C
	
m1 �m2 � m3 Tp

2



ku0

1 � u0
2k2L2.0;t IV / � 0

for all t 2 Œ0; T � which, together with .H2/, implies

ku0
1 � u0

2kL2.0;t IV / � 1

c
k�1 � �2kL2.0;t IV �/; (13.48)

where c D m1 �m2 � m3 Tp
2
> 0. We use (13.46) again and we obtain

ku1.t/ � u2.t/k �
Z t

0

ku0
1.s/ � u0

2.s/kds � p
tku0

1 � u0
2kL2.0;t IV / (13.49)

for all t 2 Œ0; T �. Combining (13.48) and (13.49), we deduce

ku1.t/ � u2.t/k �
p
t

Oc k�1 � �2kL2.0;t IH/ for all t 2 Œ0; T � (13.50)

with Oc > 0. On the other hand, from H.E/.i/ and H.G/.i/ it follows that

kE.t; "1/ � E.t; "2/kH � LEk"1 � "2kH for all "1; "2 2 H and t 2 Œ0; T �;

kG.t; � 1; "1/ � G.t; � 2; "2/kH � p
2LG.k� 1 � � 2kH C k"1 � "2kH/

for all � 1, � 2, "1, "2 2 H, t 2 Œ0; T �. Then, from (13.50), we have

k.��1/.t/ � .��2/.t/kH � kE.t; ".u1.t/// � E.t; ".u2.t///kH

C
Z t

0

kG.s;�1.s/; ".u1.t/// � G.s;�2.s/; ".u2.t///kH

� LEk".u1.t/// � ".u2.t///kH

C p
2LG

Z t

0

k�1.s/ � �2.s/kH ds C p
2LG

Z t

0

k".u1.s// � ".u2.s//kH ds

D LEku1.t/ � u2.t/k C p
2LG

Z t

0

.k�1.t/ � �2.t/kH C ku1.s/ � u2.s/k/ ds

� c k�1 � �2kL2.0;tIH/
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for all t 2 Œ0; T �, where c D .
p
2LG C LEC2LGT

Oc /
p
T . This implies

k.��1/.t/ � .��2/.t/k2H � c

Z t

0

k�1.s/ � �2.s/kH ds

for all t 2 Œ0; T �. From the above and Lemma 7 of [9], we deduce that � has a
unique fixed point, which completes the proof of Lemma 13.7. �

Now we are in a position to complete the proof of Theorem 13.4. Let �� 2
L2.0; T IH/ be the fixed point of the operator � and let .u�� ; � ��/ be a solution to
Problem (HVI1�� ). Since

� ��.t/ D A.t; ".u0
��.t///C ��.t/ for t 2 Œ0; T �

and

��.t/ D E.t; ".u��.t///C
Z t

0

G.s;��.s/; ".u��.s/// ds;

we have

� ��.t/ D A.t; ".u0
��.t///C E.t; ".u��.t///C

Z t

0

G.s;��.s/; ".u��.s/// ds;

for a.e. t 2 .0; T /. This concludes the proof of Theorem 13.4 in the case of
Problem (HVI1).

To prove Theorem 13.4 for Problem (HVI2) we proceed in the similar way. The
difference arises in Step 1 of the proof, where the function g is now defined by

g.x; t; 	;
; �;�/ D j2.x; t; 	;
; ��/C j4.x; t; 	;
;�
 /

for 	, 
, �, � 2 R
d and a.e. .x; t / 2 �C �.0; T /. Then, it follows that the functionG

is independent of the variable u. The rest of the proof is the same and we conclude
from here the proof of Theorem 13.4 in the case of Problem (HVI2).

13.6 Examples of Boundary Conditions

In this section we present three examples of boundary conditions of types (13.6)
and (13.7) for which our main existence and uniqueness result works.



350 A. Kulig

1. Contact with nonmonotone normal compliance. This multivalued contact
condition describes reactive foundation assigning a reactive normal traction or
pressure that depends on the interpenetration of the asperities on the body surface
and those on the foundation. We comment on it in a simple case when

� ��.t/ 2 @j1.u�.t// on �C � .0; T / (13.51)

with j1WR ! R defined by

j1.r/ D
Z r

0

p.s/ ds for r 2 R:

We assume the following hypothesis on the integrand of j1.

H.p/ W pWR ! R is a function such that

p 2 L1
loc.R/; jp.s/j � p1.1C jsj/ for s 2 R with p1 > 0:

Then it is well known that @j1.s/ D Op.s/ for s 2 R, where the multivalued
function OpWR ! 2R is given by Op.s/ D Œp.1/.s/; p.2/.s/� (Œ�; �� denotes an interval
in R) and

p.1/.r/ D lim
"!0C

ess inf
j
�r j�"

p.
/; p.2/.r/ D lim
"!0C

ess sup
j
�r j�"

p.
/:

Under the hypothesis H.p/, the function j1 is a locally Lipschitz and j@j1.r/j �
p1.1 C jr j/ for r 2 R. Therefore, it is easy to see that the function j1 satisfies
assumption H.j1/.

2. Friction contact between reinforcement and concrete. We consider boundary
conditions of the form

� � 
 .t/ 2 @j3.t;u.t/;u0.t/;u
 .t// on �C � .0; T /: (13.52)

This relation describes the tangential contact law between reinforcement
and concrete in a concrete structure. In literature, cf. Chap. 2.4 in Pana-
giotopoulos [18] (Fig. 2.4.1), Chap. 1.4 in Naniewicz and Panagiotopoulos [16]
(Fig. 1.4.3), one can find a couple of examples of the superpotential j3 which
describes such type of contact. We give an example of nonconvex function which
appears in this type of contact condition. The superpotential j3WR ! R is of the
following form.
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j3.r/ D

8̂̂
ˆ̂<
ˆ̂̂̂:

0 if r < 0;

2r2 if 0 � r < 1;

� 1
3
r3 C r2 C 3r � 5

3
if 1 � r < 3;

22
3

if r 	 3;

It is easy to check that the function j3 satisfies H.j3/ with c30 D 4 and c31 D
c32 D c33 D 0.

3. Nonmonotone friction depending on slip and slip rate. We consider the
nonmonotone friction conditions which depend on both the slip and the slip rate.
This is the case when the superpotential j4 D j4.x; t; 	;
;�/ depends on 	 and

, and it is nonconvex in � . As an example of this function we choose

j4.x; t; 	;
;�/ D  .x; t; 	;
/ h.�/ (13.53)

for 	; 
; � 2 R
d , a.e. .x; t / 2 �C � .0; T /, where  W�C � .0; T /� .Rd /2 ! R

satisfies8̂̂̂
<̂
ˆ̂̂̂:

 .�; �; 	;
/ is measurable for all 	, 
 2 R
d ;

 .x; t; �; �/ is continuous for a.e. .x; t / 2 �C � .0; T /;
0 �  .x; t; 	;
/ �  0.1C k	k C k
k/ for all 	;
 2 R

d ;

a.e. .x; t / 2 �C � .0; T / with  0 > 0

and hWRd ! R is a locally Lipschitz function such that h.0/ D 0 and

k@h.�/k � h0 for � 2 R
d with h0 > 0:

Under these hypotheses on  and h, the function j4 given by (13.53) satisfies
H.j4/(i)–(iii) with c40 D c41 D c42 D h0  0 and c43 D 0. The friction law (13.7)
takes now the form

� � 
 .t/ 2  .t;u.t/;u0.t// @h.u0

 .t// on �C � .0; T /: (13.54)

It is clear that j4.x; t; 	;
; �/ is regular if and only if h is regular. Next, let
.	n;
n;�n/ 2 .Rd /3, .	n;
n;�n/ ! .	;
;�/ and � 2 R

d . We have

lim sup j 04 .x; t; 	n;
n;�nI � / D lim sup  .x; t; 	n;
n/ h
0.�nI � /

D lim sup Œ. .x; t; 	n;
n/ �  .x; t; 	;
// h0.�nI � /C  .x; t; 	;
/ h0.�nI � /�

� h0k� kRd lim . .x; t; 	n;
n/� .x; t; 	;
//C .x; t; 	;
/ lim sup h0.�nI � /

�  .x; t; 	;
/ h0.�I � / D j 04 .x; t; 	;
;�I � /
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for a.e. .x; t / 2 �C � .0; T /. Hence H.j4/(iv) holds. Moreover, for instance,
if  .x; t; �; �/ is Lipschitz continuous for a.e. .x; t / 2 �C � .0; T / (i.e.
j .x; t; 	1;
1/ �  .x; t; 	2;
2/j � L .k	1 � 	2kRd C k
1 � 
2kRd / for all 	1,
	2, 
1, 
2 2 R

d , a.e. .x; t / 2 �C � .0; T /) and h is convex, then

.@j4.x; t; 	1;
1;�1/ � @j4.x; t; 	2;
2;�2/;�1 � �2/

D .. .x; t; 	1;
1/ �  .x; t; 	2;
2// @h.�1/;�1 � �2/

C .x; t; 	2;
2/ .@h.�1/ � @h.�2/;�1 � �2/

	 �L h0 .k	1 � 	2kRd C k
1 � 
2kRd / k�1 � �2kRd

for all 	1, 	2, 
1, 
2 2 R
d , a.e. .x; t / 2 �C�.0; T /, which implies that the condition

H.j4/.v/ is satisfied with L4 D L h0.
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Chapter 14
Two History-Dependent Contact Problems

Mircea Sofonea, Stanisław Migórski, and Anna Ochal

Abstract We consider two initial boundary value problems which describe the
evolution of a viscoelastic and viscoplastic body, respectively, in contact with a
piston or a device. In both problems the contact process is assumed to be dynamic
and the friction is described with a subdifferential boundary condition. Both the
constitutive laws and the contact conditions we use involve memory terms. For
each problem we derive a variational formulation which is in the form of a system
coupling a nonlinear integral equation with a history-dependent hemivariational
inequality. Then, we prove the existence of a weak solution and, under additional
assumptions, its uniqueness. The proofs are based on results for history-dependent
hemivariational inequalities presented in Chap. 2.

Keywords Dynamic frictional contact • Viscoelastic material • Viscoplastic
material • History-dependent operator • Hemivariational inequality

AMS Classification. 35L86, 47J20, 47J22, 74M15, 74H20, 74H25

14.1 Preliminaries

In this section we recall the notation and a result on history-dependent hemivaria-
tional inequalities of second order presented in Chap. 2.

Given a normed space .E; k � kE/ we denote by E� its dual space and h�; �iE��E
will represent the duality pairing ofE andE�. The space of all linear and continuous
operators from a normed space E to a normed space F is denoted by L.E; F /. Let
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hWE ! R be a locally Lipschitz function. The generalized directional derivative of
h at x 2 E in the direction v 2 E will be denoted by h0.xI v/ and the generalized
gradient of h at x 2 E will be denoted by @h.x/. Recall also that a locally Lipschitz
function h is called regular (in the sense of Clarke) at x 2 E if for all v 2 E the
one-sided directional derivative h0.xI v/ exists and satisfies h0.xI v/ D h0.xI v/ for
all v 2 E. Also, everywhere below we use bold face letters for vectors and tensors,
as it is usual in Contact Mechanics.

Let ˝ � R
d be a bounded domain with a Lipschitz boundary � and let �C be a

measurable part of � , �C � � . Let V be a closed subspace ofH1.˝IRd / andH D
L2.˝IRd /. It is well known that V � H � V � form an evolution triple of spaces,
cf. e.g., Section 3.4 of [5]. We introduce the trace operator � WV ! L2.� IRd / and
its adjoint ��WL2.� IR d / ! V �. We set V D L2.0; T IV / and introduce the space
W D fw 2 V j w0 2 V�g, where V� D L2.0; T IV �/ is the dual space to V and the
time derivative w0 D @w=@t is understood in the sense of vector-valued distributions.
The space W endowed with the graph norm kwkW D kwkV C kw0kV� is a Banach
space which is separable and reflexive due to the separability and reflexivity of V
and V�.

We consider the following hemivariational inequality of second order.

Find u 2 V such that u0 2 W and

hu00.t/C A.t; u0.t//C .Su0/.t/; viV ��V

C
Z
�C

j 0.x; t; �u0.t/I �v/ d� 	 hf .t/; viV ��V

for all v 2 V and a:e: t 2 .0; T /;
u.0/ D u0; u0.0/ D v0:

9>>>>>>>>=
>>>>>>>>;

(14.1)

In the study of the inequality (14.1) we need the following hypotheses on the
data.

AW .0; T / � V ! V � is such that

.a/ A.�; v/ is measurable on .0; T / for all v 2 V:

.b/ A.t; �/ is pseudomonotone on V for a.e. t 2 .0; T /:

.c/ kA.t; v/kV � � a0.t/C a1kvkV for all v 2 V; a.e. t 2 .0; T /
with a0 2 L2.0; T /; a0 	 0 and a1 > 0:

.d/ hA.t; v/; viV ��V 	 ˛kvk2V for all v 2 V; a.e. t 2 .0; T /
with ˛ > 0:

.e/ A.t; �/ is strongly monotone for a.e. t 2 .0; T /; i.e., there
is m1 > 0 such that for all v1; v2 2 V; a.e. t 2 .0; T /
hA.t; v1/ � A.t; v2/; v1 � v2iV ��V 	 m1kv1 � v2k2V :

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

(14.2)
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SWV ! V� is such that

k.Sv1/.t/ � .Sv2/.t/kV � � LS

Z t

0

kv1.s/ � v2.s/kV ds
for all v1; v2 2 V; a:e: t 2 .0; T / with LS > 0:

9>>=
>>; (14.3)

j W�C � .0; T / � R
d ! R is such that

.a/ j.�; �; 	/ is measurable for all 	 2 R
d and there exists

e 2 L2.�C IRd / such that j.�; �; e.�// 2 L1.�C � .0; T //:
.b/ j.x; t; �/ is locally Lipschitz for a.e. .x; t/ 2 �C � .0; T /:
.c/ k@j.x; t; 	/kRd � b0.x; t/C b1k	kRd for all 	 2 R

d ;

a.e. .x; t/ 2 �C � .0; T / with b0 2 L2.�C � .0; T //;
b0; b1 	 0:

.d/ .�1 � �2; 	1 � 	2/Rd 	 �m2 k	1 � 	2k2
Rd

for all 	i 2 R
d ;

�i 2 @j.x; t; 	i /; i D 1; 2 with m2 	 0:

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

(14.4)

f 2 V�; u0 2 V; v0 2 V: (14.5)

m1 	 m2 k�k2: (14.6)

One of the following conditions is satisfied

.a/ ˛ > 2
p
2 b1 k�k2; where k�k D k�kL.V;L2.� IRd //:

.b/ j 0.x; t; 	I �	/ � d0 .1C k	kRd / for all 	 2 R
d ; a.e.

.x; t/ 2 �C � .0; T / with d0 	 0:

9>>>=
>>>;

(14.7)

j W�C � .0; T / � R
d ! R is such that

either j.x; t; �/ or � j.x; t; �/ is regular on R
d for a.e.

.x; t/ 2 �C � .0; T /:

9>=
>; (14.8)

The following result on the existence and uniqueness of solution to the history-
dependent hemivariational inequality (14.1) was proved in Corollary 2.20, see
page 61.

Theorem 14.1. Assume that (14.2)–(14.7) hold. Then the hemivariational inequal-
ity (14.1) has at least one solution. If, in addition (14.8) holds, then the solution
to (14.1) is unique.

Using the terminology introduced in Chap. 2 on page 52 we refer to the operators
which satisfy (14.3) as history-dependent operators. For this reason, we say that
a hemivariational inequality of the form (14.1) represents a history-dependent
hemivariational inequality.
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14.2 Modeling of Contact Problems

The physical setting is as follows. A deformable body occupies a domain ˝ of Rd ,
d D 2, 3 in applications. The body is acted upon by volume forces and surface
tractions and, as a result, its state is evolving. The boundary � of ˝ is supposed
to be Lipschitz continuous and, therefore, the unit outward normal vector exists a.e.
on � . It is supposed that � is divided into three mutually disjoint measurable parts
�D , �N and �C such that the measure of �D is positive. We assume that the body is
clamped on �D , so the displacement field vanishes there. Volume forces of density
f0 act in˝ and surface tractions of density fN are applied on �N . On �C the body
is or could arrive in contact with an obstacle, the so-called foundation.

We are interested in mathematical models which describe the evolution of the
mechanical state of the body, in the physical setting above. To this end we use the
notation x D .xi / for a point in˝ [� and we denote by � D .�i / the outward unit
normal at � . Here and below, the indices i , j , k, l run between 1 and d and, unless
stated otherwise, the summation convention over repeated indices is used. Also, the
index that follows a comma indicates a partial derivative with the corresponding
component of the spatial variable x. We denote by u D .ui /, � D .�ij /, and
.u/ D ."ij .u// the displacement vector, the stress tensor, and linearized strain
tensor, respectively. These are functions which depend on the spatial variable x and
on the time variable t . Nevertheless, in what follows we do not indicate explicitly the
dependence of these quantities on x and t and for instance, we write � .t/ instead of
� .x/ or � .x; t /. We recall that the components of the linearized strain tensor ".u/
are given by

"ij .u/ D 1

2
.ui;j C uj;i /:

Everywhere below T is a positive constant, Œ0; T � denotes the time interval of
interest and primes will represent the derivatives with respect to time, i.e., u0 D
@u=@t and u00 D @2u=@t2.

We also use Rd for the d -dimensional real linear space and the symbol Sd stands
for the space of second order symmetric tensors on R

d or, equivalently, the space of
symmetric matrices of order d . The canonical inner products and the corresponding
norms on R

d and S
d are given by

u � v D ui vi ; kvkRd D .v � v/1=2 for all u D .ui /; v D .vi / 2 R
d ;

� � � D �ij 
ij ; k�kSd D .� � �/1=2 for all � D .�ij /; � D .
ij / 2 S
d ;

respectively. For a vector field, we use the notation v� and v
 for the normal and
tangential components of v on � given by v� D v � � and v
 D v � v��. Finally,
we recall that the normal and tangential components of the stress field � on the
boundary are defined by �� D .��/ � � and � 
 D �� � ���, respectively.
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To present a mathematical model for a specific contact process there is a need
to precise the constitutive law, the balance equation, the boundary conditions,
the contact conditions and, eventually, the initial conditions. A constitutive law
represents a relationship between the stress � , the strain " and their derivatives,
eventually, which characterizes a specific material. It describes the deformations of
the body resulting from the action of forces and tractions. Though the constitutive
laws must satisfy some basic axioms and invariance principles, they originate mostly
from experiments. We refer the reader to [4, 9, 10] for a general description of
several diagnostic experiments which provide information needed in constructing
constitutive laws for specific materials.

One of the most popular constitutive law for viscoelastic materials is the Kelvin-
Voigt constitutive law, i.e.,

� .t/ D A".u0.t//C B".u.t//: (14.9)

Here A and B represent the viscosity and the elasticity operators, respectively.
Quasistatic contact problems for viscoelastic materials of the form (14.9) have
been considered in [9, 16, 19, 20] and the references therein. There, the contact
was modeled with normal compliance with or without unilateral constraint and
with subdifferential boundary conditions, as well. Friction was described by ver-
sions of Coulomb’s law of dry friction and its regularization. The unique weak
solvability of the corresponding problems was proved by using arguments of vari-
ational and hemivariational inequalities with monotone operators and fixed point.
The numerical analysis of part of these models can be found in [9]. There, semi-
discrete and fully discrete scheme were considered, error estimates and convergence
results were proved and numerical simulation in the study of two-dimensional test
problems were presented. The analysis of various dynamic problems for materials
of the form (14.9), including existence and uniqueness results, has been carried out
in [7] and the references therein.

A large number of viscoplastic constitutive laws for viscoplastic materials used
in the literature can be cast on the general form

� 0.t/ D B".u0.t//C G.� .t/; ".u.t///: (14.10)

Here B and G represent the elasticity operator and the viscoplastic potential,
respectively. Existence and uniqueness results for quasistatic contact problems for
viscoelastic materials of the form (14.10) have been considered in [9, 19, 20] and
the references therein. The numerical analysis of part of these models can be found
in [9].

The boundary conditions on the contact surface are divided naturally into
conditions in the normal direction (called also contact conditions) and those in the
tangential directions (called also friction laws). The so-called normal compliance
contact condition describes a deformable foundation. It assigns a reactive normal
pressure that depends on the interpenetration of the asperities on the body surface
and those of the foundation. A general expression for the normal reactive pressure is

� �� D p�.u�/; (14.11)



360 M. Sofonea et al.

where p� is a prescribed nonnegative function which vanishes for negative
argument. Indeed, when u� < 0 there is no contact and the normal pressure
vanishes. When there is contact then u� is positive and it represents a measure of
the interpenetration of the asperities. Then, condition (14.11) shows that the
foundation exerts a pressure on the body which depends on the penetration.
The normal compliance contact condition was first introduced in [17] and since
then used in many publications, see e.g. [7,9,11–14] and the references therein. The
term normal compliance was first used in [12, 13].

In the case when the friction force � 
 does not vanish on the contact surface, the
contact is frictional. Frictional contact is usually modeled with the Coulomb law of
dry friction or its variants. It states that the magnitude of the friction force is bounded
by a function, the so-called friction bound, which is the maximal frictional resistance
that the surface can generate; also, once slip starts, the friction force opposes the
direction of the motion and its magnitude reaches the friction bound. Thus,

k� 
kSd � Fb; � 
 D �Fb u0



ku0

kRd

if u0

 ¤ 0 on �C ; (14.12)

where u0

 represents the tangential velocity or slip rate and Fb is the friction bound.

On a nonhomogeneous surface Fb depends explicitly on the position x on the
surface. It could also depend on the process variables. Nevertheless, when Fb
depends only on the spatial variable x, we refer to (14.12) as the Tresca friction
law.

Note that the Coulomb law (14.12) is characterized by the existence of stick-slip
zones on the contact boundary. Indeed, it follows from (14.12) that, if in a point
x 2 �C the inequality k� 
 .x/kSd < Fb.x/ holds, then u0


 .x/ D 0 and the material
point x is in the so-called stick zone; if k� 
 .x/kSd D Fb.x/ then the point x is in
the so-called slip zone. We conclude that the Coulomb friction law (14.12) models
the phenomenon that slip may occur only when the friction force reaches a critical
value, the friction bound Fb .

In variational formulation, frictional contact problems with Coulomb’s law
lead to variational inequalities involving nondifferentiable functionals and, for
this reason, their numerical analysis could present some difficulties. To avoid
these difficulties, several regularizations of Coulomb’s law (14.12) are used in the
literature. A simple example is given by

� 
 D �Fb u0

q

ku0

k2

Rd
C 2

on �C ; (14.13)

where  > 0 is a regularization parameter. Note that the friction law (14.13)
describes situation when slip appears even for small tangential shears which is
the case when the surfaces are lubricated by a thin layer of non-Newtonian fluid.
We remark that the Coulomb law (14.12) is obtained, formally, from the friction
law (14.13) in the limit as  ! 0.
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Everywhere in what follows we use the standard notation for Lebesgue and
Sobolev spaces associated to ˝ and � . We recall that if � denotes a smooth stress
tensor then the following Green formula holds

Z
˝

� � ".v/ dx C
Z
˝

Div � � v dx D
Z
�

� � � v d� (14.14)

for all v 2 H1.˝IRd /, where Div denotes the divergence operator given by
Div � D .�ij;j /.

Next, we introduce the spaces V and H, defined by

V D f v D .vi / 2 H1.˝IRd / j v D 0 a.e. on �D g;
H D f � D .
ij / j 
ij D 
j i 2 L2.˝/g D L2.˝ISd /:

The space H is a Hilbert space with the canonical inner product given by

.� ;�/H D
Z
˝

�ij .x/ 
ij .x/ dx; � ;� 2 H

and the associated norm k � kH. Also, since meas .�D/ > 0, it is well known that V
is a Hilbert space with the inner product

.u; v/V D .".u/; ".v//H D
Z
˝

"ij .u/"ij .v/ dx; u; v 2 V

and the associated norm k � kV . Finally, denote

Q D ˝ � .0; T /; ˙D D �D � .0; T /;
˙N D �N � .0; T /; ˙C D �C � .0; T /:

We shall use the notations above in the next sections of this chapter.

14.3 A Viscoelastic Contact Problem

In the first problem of contact we consider a viscoelastic body which is attached
to a piston or a device over the surface �C . Following the terminology used in
Contact Mechanics we refer to �C as the contact surface and, below, the device
will be refereed as the obstacle or the foundation. Note that, according to the
physical setting, no separation between the body and the obstacle is allowed, which
represents one of the novelties of the model we introduce in this section. Then, the
classical formulation of the problem is as follows.
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Problem P . Find a displacement field uWQ ! R
d and a stress field � WQ ! S

d

such that

� .t/ D A.t; ".u0.t///C B.t; ".u.t///

C
Z t

0

C.t � s/".u0.s// ds in Q; (14.15)

u00.t/ D Div � .t/C f 0.t/ in Q; (14.16)

u.t/ D 0 on ˙D; (14.17)

� .t/� D f N .t/ on ˙N ; (14.18)

���.t/ D p.t; u�.t//C
Z t

0

b.t � s/ u�.s/ ds on ˙C ; (14.19)

�� 
 .t/ 2 @j
 .t;u0

 .t// on ˙C ; (14.20)

u.0/ D u0; u0.0/ D v0 in ˝: (14.21)

We proceed with some explanations and comments on equations and boundary
conditions in (14.15)–(14.21).

First, Eq. (14.15) represents the viscoelastic constitutive law in which A is a
nonlinear operator which describes the viscous properties of the material, B is
a nonlinear operator which describes its elastic behavior, and C represents the
relaxation tensor. Various results, examples and mechanical interpretations in the
study of such kind of constitutive laws, can be found in [2] and the references
therein. Such kind of laws were used in the literature in order to model the behavior
of real materials like rubbers, rocks, metals, pastes and polymers. In particular,
Eq. (14.15) was employed in [1, 3] in order to model the hysteresis damping in
elastomers. Note that in the case when the relaxation tensor vanishes and the
viscosity and elasticity operators do not depend on time, Eq. (14.15) is reduced to
the Kelvin-Voigt constitutive Eq. (14.9).

Equation (14.16) represents the equation of motion in which, for simplicity, we
supposed that the mass density is equal to one. Conditions (14.17) and (14.18) are
the displacement and the traction boundary conditions, respectively. They model
the situation when the body is fixed on the part �D of its boundary and the Cauchy
stress vector is prescribed on �N , respectively.

Equation (14.19) is the contact condition in which �� denotes the normal
stress, u� is the normal displacement, and p and b are given functions which
describe the instantaneous and the memory reaction of the obstacle, respectively. It
follows from (14.19) that at each moment t , the reaction of the obstacle depends
both on the current value of the normal displacement (represented by the term
p.t; u�.t//) as well as on the history of the normal displacement (represented by
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the integral term in (14.19)). This reaction could be towards the body (when the
obstacle is in compression) or towards the obstacle (when the latter is in extension).
Condition (14.19) models situations when the memory effects of the obstacle are
taken into account. A similar contact condition was considered in [8,21] in the study
of frictionless contact problems for rate-type viscoplastic materials and viscoelastic
materials with long memory, respectively. Moreover, note that when the memory
function b vanishes, condition (14.19) reduces to the normal compliance contact
condition (14.11).

Condition (14.20) represents the friction law, where j
 is a given function and
symbol @j
 denotes the Clarke subdifferential of j
 with respect to its last variable.
Concrete examples of frictional conditions which lead to subdifferential boundary
conditions of the form (14.20) with the function j
 satisfying assumptions (14.27)
below can be found in [9,15,16]. Here, we only remark that these examples include
the nonmonotone friction law, the power-law friction, the Tresca friction law (14.12)
as well as its regularization (14.13).

Finally, (14.21) represents the initial conditions in which u0 and v0 denote the
initial displacement and the initial velocity, respectively.

In the study of problem (14.15)–(14.21) we consider the following assumptions
on the viscosity operator A, the elasticity operator B and the relaxation operator C.

AWQ � S
d ! S

d is such that

.a/ A.�; �; "/ is measurable on Q for all " 2 S
d :

.b/ A.x; t; �/ is continuous on S
d for a.e. .x; t / 2 Q:

.c/ .A.x; t; "1/ � A.x; t; "2// � ."1 � "2/ 	 mAk"1 � "2k2
Sd

for all "1; "2 2 S
d ; a.e. .x; t / 2 Q with mA > 0:

.d/ kA.x; t; "/kSd � a0.x; t /C a1k"kSd for all " 2 S
d ;

a.e. .x; t / 2 Q with a0 2 L2.Q/; a0 	 0 and a1 > 0:

.e/ A.x; t; 0/ D 0 for a.e. .x; t / 2 Q:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

(14.22)

BWQ � S
d ! S

d is such that

.a/ B.�; �; "/ is measurable on Q for all " 2 S
d :

.b/ kB.x; t; "1/ � B.x; t; "2/kSd � LBk"1 � "2kSd
for all "1; "2 2 S

d ; a.e. .x; t / 2 Q with LB > 0:

.c/ B.�; �; 0/ 2 L2.QISd /:

9>>>>>>=
>>>>>>;

(14.23)
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CWQ � S
d ! S

d is such that

.a/ C.x; t; "/ D .cijkl .x; t /"kl /

for all " D ."ij / 2 S
d ; a.e. .x; t / 2 Q:

.b/ cijkl .�; t / D cj ikl .�; t / D clkij .�; t / 2 L1.˝/ a.e. t 2 .0; T /:

.c/ t 7! cijkl .�; t / 2 L1.0; T IL1.˝//:

9>>>>>>=
>>>>>>;

(14.24)

The contact function p, the memory function b and the friction potential j

satisfy the following hypotheses.

pW˙C � R ! R is such that

.a/ p.�; �; r/ is measurable on ˙C for all r 2 R:

.b/ jp.x; t; r1/ � p.x; t; r2/j � Lpjr1 � r2j
for all r1; r2 2 R; a.e. .x; t / 2 ˙C with Lp > 0:

.c/ p.�; �; 0/ 2 L2.˙C /:

9>>>>>>=
>>>>>>;

(14.25)

bW˙C ! R is such that

.a/ b 2 L1.0; T IL1.�C //:

.b/ b.x; t / 	 0 for a.e. .x; t / 2 ˙C :

9>=
>; (14.26)

j
 W˙C � R
d ! R is such that

.a/ j
 .�; �; �/ is measurable on ˙C for all � 2 R
d and there

exists e 2 L2.�C IRd / such that j
 .�; �; e.�// 2 L1.˙C /:

.b/ j
 .x; t; �/ is locally Lipschitz on R
d for a.e. .x; t / 2 ˙C :

.c/ k@j
 .x; t; �/kRd � c0 C c1k�kRd for all � 2 R
d ;

a.e. .x; t / 2 ˙C with c0; c1 	 0:

.d/ .	1 � 	2/ � .�1 � �2/ 	 �m
k�1 � �2k2Rd for all
	i 2 @j
 .x; t; �i /; �i 2 R

d ; i D 1; 2; a.e. .x; t / 2 ˙C

with m
 	 0:

.e/ j 0
 .x; t; �I ��/ � d0 .1C k�kRd / for all � 2 R
d ;

a.e. .x; t / 2 ˙C with d0 	 0:

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

(14.27)

We also assume that the densities of the body forces and tractions have the regularity

f 0 2 L2.0; T IL2.˝IR d //; f N 2 L2.0; T IL2.�N IR d //; (14.28)

and, finally, the initial data are such that

u0 2 V; v0 2 V: (14.29)
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We now turn to the variational formulation of Problem P and, to this end, we
assume in what follows that .u; � / is a couple of sufficiently smooth functions which
solve (14.16)–(14.20). Let v 2 V and t 2 Œ0; T �. Then, using (14.14) and (14.16)
we deduce thatZ

˝

u00.t/ � v dx C
Z
˝

� .t/ � ".v/ dx D
Z
˝

f 0.t/ � v dx C
Z
�

� .t/� � v d�:

We now split the surface integral to three integrals on �D , �N and �C , then we use
the boundary conditions (14.17) and (14.18) to obtain

Z
˝

u00.t/ � v dx C
Z
˝

� .t/ � ".v/ dx D
Z
˝

f 0.t/ � v dx C
Z
�N

f N .t/ � v d�

C
Z
�C

� .t/� � v d�: (14.30)

Next, we use the identity � .t/� � v D ��.t/v� C � 
 .t/ � v
 a.e. on � , the frictional
contact conditions (14.19) and (14.20), and the definition of the subdifferential to
see that

� .t/� � v 	 �p.t; u�.t//v� �
	 Z t

0

b.t � s/ u�.s/ ds


v� � j 0
 .t;u0


 .t/I v
 /

a.e. on �C , which implies that

Z
�C

� .t/� � v d� C
Z
�C

p.t; u�.t//v�d� C
Z
�C

	 Z t

0

b.t � s/u�.s/ ds


v�d�

C
Z
�C

j 0
 .t;u
0

 .t/I v
 / d� 	 0: (14.31)

We consider also the function f W .0; T / ! V � given by

hf .t/; viV ��V D .f 0.t/; v/L2.˝IRd / C .f N .t/; v/L2.�N IRd / (14.32)

for all v 2 V and a.e. t 2 .0; T /. Then, exploiting (14.30)–(14.32), we infer that

hu00.t/; viV ��V C .� .t/; ".v//H

C
Z
�C

p.t; u�.t//v� d� C
Z
�C

	 Z t

0

b.t � s/u�.s/ ds


v� d�

C
Z
�C

j 0
 .t;u
0

 .t/I v
 / d� 	 hf .t/; viV ��V : (14.33)
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We now combine inequality (14.33) with the constitutive law (14.15) and
the initial conditions (14.21) to obtain the following variational formulation of
Problem P .

Problem PV . Find a displacement field uWQ ! R
d and a stress field � WQ ! S

d

such that

� .t/ D A.t; ".u0.t///C B.t; ".u.t///

C
Z t

0

C.t � s/".u0.s// ds for a:e: t 2 .0; T /; (14.34)

hu00.t/; viV ��V C .� .t/; ".v//H C
Z
�C

p.t; u�.t//v�d�

C
Z
�C

	 Z t

0

b.t � s/u�.s/ ds


v�d� C

Z
�C

j 0
 .t;u
0

 .t/I v
 / d�

	 hf .t/; viV ��V for all v 2 V; a:e: t 2 .0; T /; (14.35)

u.0/ D u0; u0.0/ D v0: (14.36)

Our main result in the study of Problem PV is the following.

Theorem 14.2. Assume that (14.22)–(14.26), (14.28) and (14.29) hold. If one of
the following hypotheses

i) (14.27).a/–.d/ and mA > max f2p2c1;m
g k�k2

ii) (14.27) and mA > m
k�k2

is satisfied, then Problem PV has at least one solution which satisfies

u 2 W 1;2.0; T IV /; � 2 L2.0; T IH/; Div � 2 L2.0; T IV �/: (14.37)

If, in addition,

either j
 .x; t; �/ or � j
 .x; t; �/ is regular on R
d for a.e. .x; t / 2 ˙C ; (14.38)

then the solution of Problem PV is unique.

Proof. First, we introduce the operator 	WV ! V defined by

	w.t/ D
Z t

0

w.s/ ds C u0 (14.39)
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for all w 2 V and t 2 .0; T /. Recall that V D L2.0; T IV / and V� represents its
dual. We denote by ��w.t/ and 	
w.t/ the normal and tangential components of the
element 	w.t/, i.e.,

��w.t/ D .	w.t//� D
Z t

0

w�.s/ ds C u0�; (14.40)

	
w.t/ D .	w.t//
 D
Z t

0

w
 .s/ ds C u0
 ;

where u0� and u0
 are the normal and the tangential components of the initial
displacement u0 2 V .

In what follows we apply Theorem 14.1. To this end, we insert (14.34)
into (14.35) to obtain the following problem.

Find u 2 V such that u0 2 W and

hu00.t/C A.t;u0.t//C .Su0/.t/; viV ��V

C
Z
�C

j 0.x; t; �u0.t/I �v/ d� 	 hf .t/; viV ��V

for all v 2 V and a:e: t 2 .0; T /;
u.0/ D u0; u0.0/ D v0;

9>>>>>>>>=
>>>>>>>>;

(14.41)

where AW .0; T / � V ! V �, SWV ! V� and j W˙C � R
d ! R are defined by

hA.t;u/; viV ��V D .A.t; ".u//; ".v//H (14.42)

for all u, v 2 V , a.e. t 2 .0; T /,

h.Sw/.t/; viV ��V D
4X
iD1

h.Siw/.t/; viV ��V (14.43)

for all w 2 V , v 2 V , a.e. t 2 .0; T /, with

h.S1w/.t/; viV ��V D
	
B
�
t; ".	w.t//

�
; ".v/



H
; (14.44)

h.S2w/.t/; viV ��V D
	 Z t

0

C.t � s/".w.s// ds; ".v/


H
; (14.45)

h.S3w/.t/; viV ��V D
Z
�C

p.t; ��w.t// v�d�; (14.46)

h.S4w/.t/; viV ��V D
Z
�C

	 Z t

0

b.t � s/��w.s/ ds


v�d� (14.47)
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for all w 2 V , v 2 V , a.e. t 2 .0; T /, and

j.x; t; �/ D j
 .x; t; �
 / for all � 2 R
d ; a.e. .x; t / 2 ˙C : (14.48)

We will check that the operators AW .0; T / � V ! V �, SWV ! V� and the
function j W˙C � R

d ! R satisfy the hypotheses of Theorem 14.1.
First, note that under assumption (14.22), the operator A satisfies (14.2) with

m1 D mA > 0, a0.t/ D p
2ka0.t/kL2.˝/ 	 0 and a1 D a1

p
2 > 0. Indeed, it

is clear that A.�;u/ is measurable on .0; T / for all u 2 V . By (14.22)(d) and the
Hölder inequality, we obtain

jhA.t;u/; viV ��V j �
Z
˝

kA.t; ".u//kSd k".v/kSd dx

�
�Z

˝

.a0.x; t /C a1k".u/kSd /2 dx
�1=2

kvkV

for all u, v 2 V and a.e. t 2 .0; T /. Hence kA.t;u/kV � � a0.t/ C a1kukV for all
u 2 V , a.e. t 2 .0; T / with a0 2 L2.0; T /, a0 	 0, a1 > 0 which means that A
satisfies (14.2)(c). The condition (14.2)(d) is an easy consequence of (14.22)(c) and
(d). From (14.22)(c), we get

hA.t;u1/ � A.t;u2/;u1 � u2iV ��V 	 mA

Z
˝

k".u1/ � ".u2/k2Sd dx

D mAku1 � u2k2V
for all u1, u2 2 V which implies that condition (14.2) of the strong monotonicity
of A.t; �/ for a.e. t 2 .0; T / holds. Next, we show that A.t; �/ is continuous for
a.e. t 2 .0; T /. Fix t 2 .0; T / and suppose that un ! u in V , i.e., ".un/ !
".u/ in L2.˝ISd /. Using Proposition 2.2.41 of [5], we know that there exist a
subsequence funk g and a function z 2 L2.˝/ such that ".unk /.x/ ! ".u/.x/ in S

d

and k".unk /.x/kSd � z.x/ for a.e. x 2 ˝. By hypothesis (14.22)(b), we have

A.x; t; ".unk /.x// ! A.x; t; ".u/.x// in S
d for a.e. x 2 ˝:

Exploiting (14.22)(d), we get

kA.x; t; ".unk /.x// � A.x; t; ".u/.x//k2
Sd

� 2
�
a0.x; t /C a1k".unk /.x/kSd

�2 C 2 .a0.x; t /C a1k".u/.x/kSd /2

� 8 a20.x; t /C 4 a21
�
z2.x/C k".u/.x/k2

Sd

�
:

Hence, by the Lebesgue theorem, we get
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kA.t; ".unk // � A.t; ".u//k2H D
Z
˝

kA.t; ".unk // � A.t; ".u//k2
Sd
dx ! 0

as nk ! 1. Hence, applying again the Hölder inequality, we have

hA.t;unk / � A.t;u/; viV ��V D
Z
˝

�
A.t; ".unk // � A.t; ".u//

� � ".v/ dx

� kA.t; ".unk // � A.t; ".u//kHk".v/kH
for all v 2 V . Thus A.t;unk / ! A.t;u/ in V � and subsequently we deduce that
the whole sequence A.t;un/ converges to A.t;u/ in V �, which shows that A.t; �/
is continuous for a.e. t 2 .0; T /. Since the operator A.t; �/ for a.e. t 2 .0; T / is
bounded [by (14.2)(c)], monotone (being strongly monotone) and hemicontinuous
(being continuous), from Proposition 27.6 of [23], it follows that it is pseudomono-
tone, i.e., (14.2)(b) holds. We deduce that the operator AW .0; T / � V ! V � given
by (14.42) satisfies (14.2).

Next, we prove that under the hypotheses (14.23)–(14.26), the operators Si , i D
1; : : : ; 4 defined by (14.44)–(14.47), respectively, satisfy

k.Siw1/.t/ � .Siw2/.t/kV � � Li

Z t

0

kw1.s/ � w2.s/kV ds (14.49)

for all w1, w2 2 V , a.e. t 2 .0; T / with Li > 0, which entails that the operator S
satisfies (14.3) with LS D P4

iD1 Li .
Let w1, w2 2 V , v 2 V and t 2 .0; T /. Using (14.23)(b) and the Hölder

inequality, we have

h.S1w1/.t/ � .S1w2/.t/; viV ��V

D
	
B
�
t; ".	w1.t//

� � B
�
t; ".	w2.t//

�
; ".v/



H

� kB�t; ".	w1.t//
� � B

�
t; ".	w2.t//

�kH kvkV
� LBk".	w1.t/ � 	w2.t//kH kvkV

� LB
	 Z t

0

kw1.s/ � w2.s/kV ds


kvkV :

Hence, the operator S1 satisfies (14.49) with L1 D LB. Next, from (14.24) and by
the Hölder inequality again, we obtain

h.S2w1/.t/ � .S2w2/.t/; viV ��V

D
	 Z t

0

C.t � s/ "
�
w1.s/ � w2.s/

�
ds; ".v/



H
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� k
Z t

0

C.t � s/"�w1.s/ � w2.s/
�
dskH kvkV

�
	 Z t

0

kC.t � s/kL1.˝ISd /kw1.s/ � w2.s/kV ds


kvkV ;

which implies

h.S2w1/.t/ � .S2w2/.t/; viV ��V

� kCkL1.QISd /
	 Z t

0

kw1.s/ � w2.s/kV ds


kvkV :

So, the operator S2 satisfies (14.49) with L2 D kCkL1.QISd /.
Using the continuity of the trace operator and the inequality j	� j � k�kRd for

� 2 R
d , by the definition of the operator 	, we have

k��w1.t/ � ��w2.t/kL2.�C / � k	w1.t/ � 	w2.t/kL2.�C IRd /
� k�kk	w1.t/ � 	w2.t/kV

� k�k
Z t

0

kw1.s/ � w2.s/kV ds: (14.50)

Now, making use of (14.25)(b) and (14.50), we have

h.S3w1/.t/ � .S3w2/.t/; viV ��V

D
Z
�C

�
p.t; ��w1.t// � p.t; ��w2.t//

�
v�d�

� kp.t; ��w1.t// � p.t; ��w2.t//kL2.�C / kvkL2.�C IRd /

� Lp k��w1.t/ � ��w2.t/kL2.�C /k�k kvkV

� Lp k�k2
	 Z t

0

kw1.s/ � w2.s/kV ds


kvkV :

Thus, the operator S3 satisfies (14.49) withL3 D Lpk�k2. From (14.26), the Hölder
inequality and (14.50), we get

h.S4w1/.t/ � .S4w2/.t/; viV ��V

D
Z
�c

	 Z t

0

b.t � s/ ���w1.s/ � ��w2.s/
�
ds


v� d�

� k
Z t

0

b.t � s/���w1.s/ � ��w2.s/
�
dskL2.�C / kvkL2.�C IRd /
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�
	 Z t

0

kb.t � s/kL1.�C /k��w1.s/ � ��w2.s/kL2.�C / ds


k�k kvkV

� k�k2
	 Z t

0

kb.t � s/kL1.�C /

	 Z t

0

kw1.
/ � w2.
/kV d



ds


kvkV

� k�k2kbkL1.0;T IL1.�C //

	 Z t

0

kw1.s/ � w2.s/kV ds



kvkV :

This means that the operator S4 satisfies condition (14.49) with L4D
k�k2 kbkL1.0;T IL1.�C //.

Moreover, it follows from (14.23) and (14.25) that

kB.x; t; "/kSd � Qb.x; t /C LBk"kSd for all " 2 S
d ; a.e. .x; t / 2 Q; (14.51)

jp.x; t; r/j � Qp.x; t /C Lpjr j for all r 2 R; a.e. .x; t / 2 ˙C ; (14.52)

where Qb.x; t / D kB.x; t; 0/kSd , Qb 2 L2.Q/ and Qp.x; t / D jp.x; t; 0/j,
Qp 2 L2.˙C /. Therefore, exploiting (14.43)–(14.47), (14.51), (14.52) and condi-

tion (14.49), we have

k.Sw/.t/kV � � LSkwkL1.0;t IV / C k.S 0/.t/kV �

� LSkwkL1.0;t IV / C Qb.t/C LBku0kV C Qp.t/
C Lpku0kV C kbkL1.0;T IL1.�c//ku0kV

for all w 2 V , a.e. t 2 .0; T /. Hence, we deduce

kSwkV� � c
	
kwkV C ku0kV C k QbkL2.Q/ C k QpkL2.˙C /




with c > 0. Therefore the operator S is well defined, takes values in V� and satisfies
the hypothesis (14.3).

Next, we observe that condition (14.5) follows easily from hypotheses (14.28)
and (14.29). It is clear that (14.27)(a)–(d) entails hypothesis (14.4). Also, the
conditions i) and ii) imply hypothesis (14.6) with m1 D mA and m2 D m
 .
Conditions (a) and (b) of (14.7) are consequences of the hypotheses i) and ii),
respectively.

Since conditions (14.2)–(14.7) hold, then applying Theorem 14.1, we infer that
problem (14.41) has at least one solution u 2 V such that u0 2 W . Furthermore, the
regularity condition (14.38) implies (14.8). Therefore, we infer from the uniqueness
part of Theorem 14.1 that under the additional hypothesis (14.38), the solution to
problem (14.41) is unique.

Finally, using the regularity of u and hypotheses (14.22)–(14.24), from condition
(14.34), we deduce that the pair .u; � / is a solution to Problem PV with the
regularity u 2 W 1;2.0; T IV /, � 2 L2.0; T IH/ and Div � 2 L2.0; T IV �/. This
concludes the proof of the theorem. ut
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A couple of functions .u; � / which satisfies (14.34)–(14.36) is called a weak
solution of the frictional contact problem (14.15)–(14.21). We conclude that, under
the hypotheses of Theorem 14.2, the frictional contact problem (14.15)–(14.21) has
at least one weak solution. If, in addition, the regularity condition (14.38) holds,
then the weak solution of Problem P is unique.

14.4 A Viscoplastic Contact Problem

The second problem of contact we consider is viscoplastic. The physical setting is
similar to that described in Sect. 14.3 but here we could have separation between the
body and the foundation. The classical formulation of the problem is as follows.

Problem Q. Find a displacement field uWQ ! R
d and a stress field � WQ ! S

d

such that

� .t/ D A.t; ".u0.t///C B.t; ".u.t///

C
Z t

0

G.s; � .s/ � A.s; ".u0.s///; ".u.s/// ds in Q; (14.53)

u00.t/ D Div � .t/C f 0.t/ in Q; (14.54)

u.t/ D 0 on ˙D; (14.55)

� .t/� D f N .t/ on ˙N ; (14.56)

���.t/ D k
	 Z t

0

u�.s/ ds


p.t; u�.t// on ˙C ; (14.57)

�� 
 .t/ 2 @j
 .t;u0

 .t// on ˙C ; (14.58)

u.0/ D u0; u0.0/ D v0 in ˝: (14.59)

The equations and boundary conditions in Problem Q have a similar meaning as
those in Problem P . Nevertheless, there are two major differences between these
two mathematical models. The first one arises in the fact that in Problem Q we
use the viscoplastic constitutive law (14.53), instead of the viscoelastic constitutive
law (14.15), used in Problem P . The second one consists in the fact that in
Problem Q we use a version of the normal compliance condition, (14.57), instead
of the contact condition (14.19). A short description of these new ingredients used
in Problem Q follows.

First, we note that concrete examples of constitutive laws of the form (14.53)
can be constructed by using rheological arguments presented in [6] and [9], for
instance. Here, we restrict ourselves to note that the stress field in (14.53) has an
additive decomposition of the form
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� .t/ D � V .t/C � VP .t/ (14.60)

where

� V .t/ D A.t; ".u0.t///; (14.61)

� VP .t/ D B.t; ".u.t///C
Z t

0

G.s; � VP .s/; ".u.s/// ds: (14.62)

Equation (14.61) represents the constitutive law for a nonlinear time-dependent
purely viscous material. Equation (14.62) represents a version of the constitutive law
for a nonlinear rate-type viscoplastic materials, (14.10), written under the assump-
tions that the elasticity operator and the viscoplastic function depend explicitly on
the time. We conclude from (14.60) that models of the form (14.53) are obtained
by connecting in parallel a purely viscous time-dependent damper with a rate-type
viscoplastic constitutive model. In addition, we note that when the operators A and
B do not depend on time and the function G vanishes, then (14.53) reduces, again,
to the Kelvin-Voigt constitutive law (14.9).

Next, we turn on the contact condition (14.57) which represents an extension
of the normal compliance contact condition (14.11). Here, k is a given positive
function, the stiffness coefficient of the obstacle and, again, p is a given function. If
we allow separation between the body and the foundation, we have to assume that
the function p vanishes when the second argument is negative. Indeed, when there
is separation between the body and the foundation, then the normal stress vanishes.
As the cycles of penetration proceed, the stiffness of the obstacle may be increasing
or decreasing, making it a function of the history of the contact process. In this way
we take into account the hardening or the softening of the foundation. Practical
examples of surface hardening or softening abound, see, e.g., [18]. A contact
condition similar to condition (14.57) was considered in [22] in the study of a
frictionless contact problems for rate-type viscoplastic. Finally, note that (14.57)
reduces to the normal compliance contact condition (14.11), when the stiffness
coefficient k is a constant and p does not depend explicitly on time.

In the study of problem (14.53)–(14.59) we assume that the viscosity oper-
ator A, the elasticity operator B and the friction potential j
 satisfy condi-
tions (14.22), (14.23) and (14.27), respectively. We also assume that the densities of
the body forces and tractions have the regularity (14.28), and the initial displacement
is such that (14.29) holds. Moreover, we assume that the constitutive function G, the
stiffness coefficient k and the contact function p satisfy the following conditions.
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GWQ � S
d � S

d ! S
d is such that

.a/ G.�; �; � ; "/ is measurable on Q for all � ; " 2 S
d :

.b/ kG.x; t; � 1; "1/ � G.x; t; � 2; "2/kSd �
� LG .k� 1 � � 2kSd C k"1 � "2kSd /

for all � 1; � 2; "1; "2 2 S
d ; a:e: .x; t / 2 Q with LG > 0:

.c/ G.�; �; 0; 0/ 2 L2.QISd /:

9>>>>>>>>>=
>>>>>>>>>;

(14.63)

kW�C � R ! RC is such that

.a/ k.�; r/ is measurable on �C for all r 2 R:

.b/ jk.x; r1/ � k.x; r2/j � Lk jr1 � r2j
for all r1; r2 2 R; a.e. x 2 �C with Lk > 0:

.c/ jk.x; r/j � k for all r 2 R; a.e. x 2 �C with k > 0:

9>>>>>>>=
>>>>>>>;

(14.64)

pW˙C � R ! R is such that

.a/ p.�; �; r/ is measurable on ˙C for all r 2 R:

.b/ jp.x; t; r1/ � p.x; t; r2/j � Lp jr1 � r2j
for all r1; r2 2 R; a.e. .x; t / 2 ˙C with Lp > 0:

.c/ jp.x; t; r/j � p for all r 2 R; a.e. .x; t / 2 ˙C with p > 0:

9>>>>>>=
>>>>>>;

(14.65)

We use the function f W .0; T / ! V � given by (14.32) and the Green for-
mula (14.14) to obtain the following variational formulation of Problem Q.

Problem QV . Find a displacement field uWQ ! R
d and a stress field � WQ ! S

d

such that

� .t/ D A.t; ".u0.t///C B.t; ".u.t///

C
Z t

0

G.s; � .s/ � A.s; ".u0.s///; ".u.s/// ds a.e. t 2 .0; T /; (14.66)

hu00.t/; viV ��V C .� .t/; ".v//H C
Z
�C

k
	 Z t

0

u�.s/ ds


p.t; u�.t//v�d�

C
Z
�C

j 0
 .t;u
0

 .t/I v
 / d� 	 hf .t/; viV ��V

for all v 2 V; a:e: t 2 .0; T /; (14.67)

u.0/ D u0; u0.0/ D v0: (14.68)

Our main result in the study of Problem QV is the following.
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Theorem 14.3. Assume that (14.22), (14.23), (14.28), (14.29) and (14.63)–(14.65)
hold. If one of the following hypotheses

i) (14.27).a/–.d/ and mA > max f2p2c1;m
g k�k2

ii) (14.27) and mA > m
 k�k2

is satisfied, then Problem QV has at least one solution which satisfies (14.37). If, in
addition, (14.38) holds, then the solution of Problem QV is unique.

Proof. The proof will be made in several steps. To present it, we use operator
	WV ! V defined by (14.39). Moreover, we need the following auxiliary result.

Lemma 14.4. Assume that (14.23) and (14.63) hold. Then, for all u 2 L2.0; T IV /,
there exists a unique function � I .u/ 2 L2.0; T IH/ such that

� I .u/.t/ D
Z t

0

G.s; � I .u/.s/C B.s; ".u.s///; ".u.s/// ds (14.69)

for a.e. t 2 .0; T /. Moreover, if u1;u2 2 L2.0; T IV /, then

k� I .u1/.t/ � � I .u2/.t/kH � c

Z t

0

ku1.s/ � u2.s/kV ds (14.70)

for a.e. t 2 .0; T / with c > 0.

Proof. Let u 2 V be given. We introduce the operator �WL2.0; T IH/ !
L2.0; T IH/ defined by

��.t/ D
Z t

0

G.s;�.s/C B.s; ".u.s///; ".u.s/// ds

for � 2 L2.0; T IH/, a.e. t 2 .0; T /. The operator � depends on u and, for
simplicity, we do not indicate explicitly this dependence. Let �1, �2 2 L2.0; T IH/
and t 2 .0; T /. Then

k��1.t/ ���2.t/kH � LG

Z t

0

k�1.s/ � �2.s/kH ds:

It is clear from the hypotheses on G and B that the operator � is well defined
and takes values in L2.0; T IH/. From Lemma 2.3 on page 42, we deduce that the
operator � has a unique fixed point, denoted by � I .u/ 2 L2.0; T IH/.

The proof of inequality (14.70) is a consequence of (14.69) combined with
a Gronwall type argument. Indeed, let u1, u2 2 V . We have
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k� I .u1/.t/ � � I .u2/.t/kH
� p

2LG

Z t

0

	
k� I .u1/.s/ � � I .u2/.s/kH

C kB.s; ".u1.s/// � B.s; ".u2.s///kH C k".u1.s/ � u2.s//kH


ds

� p
2LG

Z t

0

k� I .u1/.s/ � � I .u2/.s/kH ds

C p
2LG .1C LB/

Z t

0

ku1.s/ � u2.s/kV ds

for a.e. t 2 .0; T /. From the Gronwall inequality (cf. [16], Lemma 2.7), we infer
that

k� I .u1/.t/ � � I .u2/.t/kH � e
p
2LGT

p
2LG.1C LB/

Z t

0

ku1.s/ � u2.s/kV ds

for a.e. t 2 .0; T /. This completes the proof of the lemma. ut
We continue the proof of Theorem 14.3. In order to formulate an equivalent

form of Problem QV , we use Lemma 14.4 and the notation (14.39) and (14.40).
We consider the following intermediate problem.

Problem QQV . Find a displacement field uWQ ! R
d and a stress field � WQ ! S

d

such that

� .t/ D A.t; ".u0.t///C B.t; ".u.t///C � I .u/.t/ a:e: t 2 .0; T /; (14.71)

hu00.t/; viV ��V C .� .t/; ".v//H C
Z
�C

k
	 Z t

0

u�.s/ ds


p.t; u�.t//v�d�

C
Z
�C

j 0
 .t;u
0

 .t/I v
 / d� 	 hf .t/; viV ��V

for all v 2 V; a:e: t 2 .0; T /; (14.72)

u.0/ D u0; u0.0/ D v0;

where � I .u/ 2 L2.0; T IH/ is the unique function defined in Lemma 14.4.

Inserting (14.71) into (14.72), it is clear that Problem QQV is of the form (14.41),
where the operator AW .0; T / � V ! V �, the functions j W˙C � R

d ! R

and f W .0; T / ! V � are defined as before (see (14.42), (14.48) and (14.32),
respectively), and the operator SWV ! V� is now a sum of three operators S1,
S5, S6WV ! V� given, respectively, by (14.44),

h.S5w/.t/; viV ��V D �
� I .	w/.t/; ".v/

�
H;
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where � I .	w/ 2 L2.0; T IH/ is the unique function defined in Lemma 14.4, and

h.S6w/.t/; viV ��V D
Z
�C

k
	 Z t

0

��w.s/ ds


p.t; ��w.t// v� d�

for all w 2 V , v 2 V , a.e. t 2 .0; T /. It is enough to check that S5 and S6 satisfy
inequality (14.49) with some positive constants L5 and L6, respectively.

Let w1, w2 2 V , v 2 V and t 2 .0; T /. First, using (14.70) and the Hölder
inequality, we obtain

h.S5w1/.t/ � .S5w2/.t/; viV ��V D �
� I .	w1/.t/ � � I .	w2/.t/; ".v/

�
H

� k� I .	w1/.t/ � � I .	w2/.t/kHkvkV

� c
	 Z t

0

k	w1.s/ � 	w2.s/kV ds


kvkV

� c T
	 Z t

0

kw1.s/ � w2.s/kV ds


kvkV :

Hence, the operator S5 satisfies (14.49) with L5 D c T > 0. Next, since the
functions p and k are Lipschitz continuous and bounded by constants, by the Hölder
inequality and inequality (14.50), we get

h.S6w1/.t/ � .S6w2/.t/; viV �
�V

D
Z
�c

	
k
	 Z t

0

��w1.s/ ds


p.t; ��w1.t//�k

	 Z t

0

��w2.s/ ds


p.t; ��w2.t//



v� d�

� kk
	 Z t

0

��w1.s/ ds


p.t; ��w1.t//

�k
	 Z t

0

��w2.s/ ds


p.t; ��w2.t//kL2.�C / kvkL2.�C IRd /

�
	
kk
	 Z t

0

��w1.s/ ds

 �
p.t; ��w1.t// � p.t; ��w2.t//

�kL2.�C /
Ck
	
k
	 Z t

0

��w1.s/ ds



� k
	 Z t

0

��w2.s/ ds



p.t; ��w2.t//kL2.�C /



k�k kvkV

�
	
k Lpk��w1.t/ � ��w2.t//kL2.�C /

Cp Lk k
Z t

0

�
��w1.s/ � ��w2.s/

�
dskL2.�C /



k�k kvkV
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�
	
k Lp k�k

Z t

0

kw1.s/ � w2.s/kV ds C

Cp Lk
Z t

0

k�k
Z s

0

kw1.
/ � w2.
/kV d
 ds



k�kkvkV

� k�k2.kLp C pLkT /
	 Z t

0

kw1.s/ � w2.s/kV ds


kvkV :

This implies that the operator S6 satisfies (14.49) with constant L6 D k�k2.kLp C
pLkT / > 0. Hence, the operator S D S1 C S5 C S6 satisfies (14.49) with LS D
L1 C L5 C L6.

Using similar arguments as in the proof of Theorem 14.2, we infer that

kSwkV� � c
	
kwkV C ku0kV C k QbkL2.Q/ C k� I .u0/kL2.0;T IH/ C k p



for w 2 V with c > 0, which means that the operator S is well defined and takes
values in V�.

Since conditions (14.2)–(14.7) are satisfied, we are now in a position to apply
Theorem 14.1 and we infer that problem (14.41) has at least one solution u 2 V
such that u0 2 W . Furthermore, the regularity condition (14.38) implies (14.8).
Therefore, we infer from the uniqueness part of Theorem 14.1 that under the
additional hypothesis (14.38), the solution to problem (14.41) is unique.

Finally, using the regularity of u and hypotheses (14.22)–(14.24), from condi-
tion (14.34), we deduce that the pair .u; � / is a solution to Problem QV with the
regularity u 2 W 1;2.0; T IV /, � 2 L2.0; T IH/ and Div � 2 L2.0; T IV �/. This
concludes the proof of the theorem. ut

A couple of functions .u; � / which satisfies (14.66)–(14.68) is called a weak
solution of the frictional contact problem (14.53)–(14.59). We conclude that, under
the hypotheses of Theorem 14.3, the frictional contact problem (14.53)–(14.59) has
at least one weak solution. If, in addition, the regularity condition (14.38) holds,
then the weak solution of Problem Q is unique.
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