
Towards Process-Oriented Modelling

and Creation of Multi-Agent Systems

Tobias Küster, Axel Heßler, and Sahin Albayrak

DAI-Labor, Technische Universität Berlin, Germany
tobias.kuester@dai-labor.de

Abstract. Different ways of integrating business processes and agents
have been proposed, but using restricted process models or targeting
only single agents, none of them is truly convincing. Nevertheless, busi-
ness processes have many notions in common with agents and would be
well suited for modelling complex multi-agent systems. In this paper, we
combine concepts of two existing approaches to a mapping from business
process diagrams to readily executable agent components. The results are
well-structured and extensible, and at the same time account for nearly
the entire expressiveness of the process modelling notation.

Keywords: Technological, Methodological.

1 Introduction

In recent times, different approaches for modelling agents and multi-agent sys-
tems using business process diagrams and related notations have been introduced
(e.g., [6], [10], [18]). However, none of these approaches is really compelling. Of-
ten, very simple workflow models are used, or if a more expressive process mod-
elling notation is chosen, then only a limited subset of the language is covered.
Furthermore, usually only single agents are targeted, while interactions between
agents – which could very well be modelled using many process notations – are
not regarded.

This is unfortunate, since process diagrams share many concepts and abstrac-
tions with multi-agent systems – in particular sophisticated notations such as
the Business Process Model and Notation (BPMN) [22]. Those notations can
be used for modelling the intertwined workflows of different participants in a
process, as well as their interactions and communication, or their reactions to
external events. The focus lies much more on what has to be done and less on
how it is implemented. Thus, despite the shortcomings of existing approaches,
BPMN and related notations appear to be very well suited for modelling agents
and particularly multi-agent systems.

In this paper we take a look at some of the existing approaches – particularly
the WADE extension to the JADE agent framework [10], and a mapping from
BPMN to the agent-oriented scripting language JADL [18] – and combine the
strong sides of both into a new approach. The result is a mapping from BPMN
diagrams to behaviour components for the JIAC multi-agent framework [19].

F. Dalpiaz et al. (Eds.): EMAS 2014, LNAI 8758, pp. 163–180, 2014.
c© Springer International Publishing Switzerland 2014



164 T. Küster, A. Heßler, and S. Albayrak

In this way, the core components of the agents can easily be modelled with
and generated from BPMN process diagrams. Thus, we are helping to close the
gap between design and implementation of multi-agent systems [8]. The resulting
Java classes are similarly structured and as extensible as those of WADE, but
they exhibit the expressiveness of BPMN, including communication between
agents and event-handling, both as part of the workflow and for triggering the
process.

The remainder of this paper is structured as follows: First, we discuss some re-
lated work, most notably the WADE framework and the mapping from BPMN to
JADL, with their benefits and shortcomings. Then, in Section 3, we take a closer
look at BPMN and the JIAC framework, and how they fit together, Thereafter,
we describe how BPMN processes can be mapped to semantically equivalent
JIAC Agent Beans (Section 4), and how the transformation was implemented
(Section 5). In Section 6, the mapping is illustrated using an example, before we
finally wrap up and discuss our results.

2 Related Work

Different approaches for combining process modelling and agent-oriented
software development have been devised. Some using BPMN, others using sim-
pler notations; some using code generations, others employing interpreting ap-
proaches. Each of those have their strengths and weaknesses.

In the following we discuss several works that are highly relevant to the ap-
proach described in this paper: The original mapping from BPMN to BPEL, a
mapping from BPMN to JIAC’s scripting language JADL, the WADE frame-
work, mapping workflows to JADE behaviours, and GO-BPMN, a combination
of BPMN and goal hierarchies.

2.1 Transformation from BPMN to BPEL

One of the motivations for developing BPMN was to provide a standardised
graphical notation for BPEL, the Business Process Executable Language. Con-
sequently, a mapping from BPMN to BPEL is part of the BPMN specifica-
tion [22, Chapter 14], and a number of alternative or extended mappings have
been proposed by various other authors (see for example [20], [23]).

In many aspects, the mapping is very straightforward: Each pool is mapped to
a BPEL process (which can be deployed as a Web service), and the several events
and activities within are mapped to the workflow of the process. The process is
made up mostly of Web service calls, assignments and flow control, but can also
contain, e.g., event handling based on timing and incoming messages. Given a
sufficiently detailed BPMN diagram, the resulting BPEL process can be readily
executable.

Still, there are enough elements in BPMN for which no mapping to BPEL is
given. Thus, while BPMN was created with the mapping to BPEL in
mind, it is not just a visualisation for BPEL but a distinct, self-contained lan-
guage – and in fact more expressive than BPEL itself. Among the elements that



Towards Process-Oriented Modelling and Creation of Multi-Agent Systems 165

are not mapped to BPEL are somewhat obscure elements such as the ad-hoc
subprocess, or the complex gateway, but also many types of events and tasks.

2.2 Transformation from BPMN to JADL

In prior work of mapping BPMN to agents [14], JIAC’s service-oriented scripting
language JADL [15] was used as the target of the transformation.

Being conceptually close to BPEL, the mapping is similar, and the process can
be mapped very directly to different language elements of JADL. For instance,
like BPEL, JADL has dedicated language elements for complex actions such
as invoking other services, or for sending and receiving messages, making the
generated code compact and easy to comprehend.

Each pool in the BPMN process is mapped to a JADL service, and the service’s
input parameters and result types are derived from the pool’s start- and end
events [18]. Further, for each start event, a Drools rule is created, starting the
respective JADL service on the occurrence of the given event (e.g., an incoming
message, or a given time). Also, for each participant in the BPMN process, an
agent configuration file is created, setting up the individual agents, each equipped
with an Interpreter Bean and Rule Engine Bean, together with the generated
JADL services and Drools rules.

Alternatively, the JADL services and rules created from the BPMN processes
can be added to a running JIAC agent, thus dynamically changing its behaviour.

2.3 WADE: Workflows for JADE

A different approach, from which some of the concepts in this work have been
drawn, is WADE (Workflows and Agents Development Environment), which is
an extension to the JADE multi-agent framework [3]. Using WADE, certain as-
pects of the behaviour of a JADE agent can be modelled using a simple workflow
notation [10,9]. The workflows basically consist of only two elements: Activities
and Transitions.

Using theWolf tool [11], JADE behaviour classes can be generated from those
workflowmodels. The generated Java classes show a clear distinction between the
workflow (the order of the activities, together with conditions and guards) and
the several activities. Each of them is mapped to an individual Java method that
can either refer to existing functionalities or be implemented by the developer.
Using this separation, generated workflows can safely be altered or extended.

However, the expressiveness of WADE is restricted by the simplistic workflow
notation, which allows only the most basic workflows to be modelled. While the
transitions can be annotated with guards (conditions), it seems impossible to
model parallel execution and synchronisation, let alone more advanced concepts
such as event handling or messaging. In fact, each workflow diagram covers only
the behaviour of an isolated agent; to our knowledge, interactions between agents
can not be modelled.



166 T. Küster, A. Heßler, and S. Albayrak

Later, WADE has been extended to provide better support for long-running
business processes, event handling, user-interaction and Web-service integra-
tion [5,4] and as of today appears to be a very mature product used in many
projects.

2.4 GO-BPMN and Go4Flex

In GO-BPMN (Goal-oriented BPMN), process models are combined with a goal-
hierarchy and executed by agents [12]. The authors highlight the high flexibility
of the system, and the prospects of parallelisation, but they also write that test-
ing the system is difficult due to possible side-effects of the processes regarding
other goals [7].

The individual processes (the “leafs” in the goal hierarchy) are described
as BPMN processes; however, only a subset of BPMN is used. Particularly,
each diagram shows only a single pool, and thus, as in the case of WADE, no
communication and interaction can be modelled, but just the behaviour of a
single agent. While using goals for connecting the individual processes is quite
promising, in our opinion process diagrams can more efficiently be used at a
higher level of abstraction, e.g., for providing an overview of the system as a
whole, instead of for isolated behaviours of individual agents.

A similar approach is Go4Flex, or GPMN [6]. Like GO-BPMN, Go4Flex uses
goal hierarchies with BPMN processes being the leafs. Both the goals and the
processes are interpreted by Jadex agents [25]. The authors also present a map-
ping from FIPA/AUML interaction diagrams [2] to BPMN processes [24].

2.5 Other Approaches

While those are the works most similar to our own, there are of course other,
slightly different approaches, that shall not go unmentioned.

Agent UML, or AUML as already mentioned above, extends the UML with
several agent-specific diagram types, most prominently interaction diagrams [2].
However, while serving very well for describing the interactions among agents,
interaction diagrams – following the principles of UML – show just this single
aspect of multi-agent systems. BPMN diagrams, on the other hand, can be seen
as a combination of AUML interaction and activity diagrams and thus seem to be
better suited for conveying the whole picture of the behaviours and interactions.

In another approach, multi-agent systems are modelled as ‘electronic institu-
tions’ [27], describing their common ontologies, roles, interactions and norms.
Those norms are monitored and enforced by the agent runtime, facilitating the
operation of open systems, where agents might try to break those rules. Similar
to this, in 2COMM, interaction protocols are represented as artefacts, not only
encapsulating the different roles and commitments involved in the interaction,
but also providing for functionalities such as logging, auditing, etc. [1].

Finally, there are numerous agent development methodologies, many of which
also make use of sophisticated graphical notations for one end or another. One
of those is i∗, which is used in the TROPOS Methodology, among others [30].



Towards Process-Oriented Modelling and Creation of Multi-Agent Systems 167

The focus here lies particularly on modelling the social relationships of the sev-
eral actors involved in the systems: Their goals, intentions, and mutual ‘strategic
dependencies’. While i∗ itself is not used for modelling processes, it could well be
used complementary to, e.g., BPMN to model the rationale behind the agents’
behaviours and interactions.

3 A Closer Look at BPMN and JIAC

As we have seen, there are numerous approaches for combining process modelling
and multi-agent system engineering, but to the best of our knowledge none of
them makes full use of the expressiveness of BPMN or a similarly powerful
process notation. This is unfortunate, since BPMN provides many notions that
could very well be used for modelling high-level multi-agent behaviour.

In the following, we will take a closer look at the BPMN language and the
JIAC agent framework, being the domain and co-domain of the mapping dis-
cussed in the next section of this paper.

3.1 BPMN

The Business Process Model and Notation [22] is a workflow representation that
can be used both as a description language for real-world processes, and as
a high-level modelling language for computer programs. It can be seen as a
combination of UML’s Activity Diagrams and Sequence Diagrams, depicting
both the actors’ internal processes and their interactions. An example diagram
is shown in Figure 1.

Fig. 1. Example BPMN Diagram: Taxi Request Service



168 T. Küster, A. Heßler, and S. Albayrak

BPMN diagrams can be understood at three levels of abstraction:

1. The diagrams are made up of a few easily recognisable elements, i.e. events
(circles), activities (boxes) and gateways (diamonds), connected by sequence-
and message flows and situated in one or more pools.

2. These basic elements are further distinguished using sets of marker icons,
e.g., message, timer, and error events, or parallel and exclusive gateways.

3. Each element features a number of additional attributes that are hidden
from the diagram and contain most of the information that is necessary for
automated code generation, e.g., properties and assignments.

Consequently, the essence of a BPMN diagram is easily understood by all
business partners, including those who have great knowledge in their domain but
little understanding of programming and multi-agent systems. At the same time,
BPMN diagrams provide enough information for the generation of executable
programs.

A variety of notational elements make BPMN diagrams well suited for the
design of distributed systems in general and multi-agent systems in particular.
The process diagrams are subdivided into pools, each representing one partici-
pant in the process. Using message flows for communication between pools, even
complex interaction protocols can be modelled clearly. Further, the notation
supports features such as event- and error handling, compensation, transactions
and ad-hoc behaviour.

In fact, one could argue that BPMN is too expressive, featuring many elements
that are rarely used in practice [21] as well as redundancies w.r.t. how certain
concepts can be modelled. Also, the semantics of some elements of BPMN –
particularly those not covered in the official mapping from BPMN to BPEL [22,
Chapter 14] – are not very clearly defined; however, there is an increasing number
of approaches describing the semantics of BPMN using, e.g., Petri nets [13], and
version 2.0 of the specification made things clearer, too.

The reason why Petri nets are not used in the first place is: While Petri
nets have very clear semantics, and basically everything can be expressed as
a Petri net, some high-level constructs that are directly supported by BPMN
(e.g., event handling and cancellation) would require huge, incomprehensible
Petri nets. Thus, while Petri nets are well suited for the formal specification of
a workflow, they are not the best choice for modelling.

BPMN is neither the first process modelling notation, nor will it be the last.
However, given its high level of adoption in practical process modelling [26], it
has proven to be a good choice for modelling distributed computing systems,
combining a high-level overview of the system with all the necessary details
about its implementation and execution.

3.2 JIAC

JIAC V (Java-based Intelligent Agent Componentware, version 5) is a multi-
agent development framework and runtime environment [19]. Among others,



Towards Process-Oriented Modelling and Creation of Multi-Agent Systems 169

JIAC features message-based inter-agent communication, tuple-space based
agent memory, transparent distribution of agents and services, and provides
support for dynamic reconfiguration in distributed environments, such as com-
ponent exchange at runtime. Individual JIAC agents are situated within Agent
Nodes, i.e. runtime containers, which also provide support for migration. The
agents’ behaviours and capabilities are defined in a number of so-called Agent
Beans that are controlled by the agent’s life cycle. The different structures and
elements of a JIAC multi-agent system are shown in Figure 2.

Fig. 2. Components of a JIAC multi-agent system and individual agents

Each JIAC agent is equipped with a Communication Bean, allowing agents
to send and receive messages to and from other agents or groups of agents
(multi-casting to message channels). The messages are not restricted to FIPA1

messages and can have any serialisable data as payload. Other commonly used
Agent Beans are the Rule Engine Bean, integrating a Drools2 rule engine into
the agent’s memory for reactive behaviour, and the Interpreter Bean, providing
an interpreter for the service-oriented scripting language JADL [15].

Besides these and other predefined Agent Beans, the developer is free to add
application-specific Beans to the agent. Each such Agent Bean can:

– implement a number of life-cycle methods, which are executed when the
agent changes its life-cycle state, such as initialized, or started,

– implement an execute-method, which is called automatically at regular in-
tervals once the agent is running (i.e. cyclic behaviour),

– attach observers to the agent’s memory, being called, e.g., each time the
agent receives a message or its world model is updated, and

– contribute action-methods, or services, which are exposed to the directory
and can be invoked by other agents or other Beans of the same agent.

Using these four mechanisms, it is possible to define all of the agents’ capa-
bilities and behaviours. For details on programming JIAC Agent Beans, we refer
readers to the JIAC Programmers’ Manual [16].

1 Foundation for Intelligent Physical Agents: http://www.fipa.org/
2 JBoss Drools: http://www.jboss.org/drools/

http://www.fipa.org/
http://www.jboss.org/drools/


170 T. Küster, A. Heßler, and S. Albayrak

4 A Mapping from BPMN to JIAC Agent Beans

While the mapping from BPMN to JADL is well suited for modelling high-level
behaviour or services, traditional JIAC Agent Beans were still advantageous
– and often necessary – for defining the better part of the agent’s behaviour,
for instance when it comes to the integration with user interfaces or external
libraries. Consequently, complementary to the mapping to JADL, a mapping to
JIAC Agent Beans was developed [28].

The mapping is conceptually close to WADE: Each Pool in the BPMN di-
agram is mapped to one Agent Bean, i.e. a Java class, with one method for
the workflow, and one method for each individual activity of the process.3 The
workflow method acts as an entry point to executing the process, while the sev-
eral activity methods are invoked by the workflow method in accordance with
the ordering of the activities in the process. The different workflow agent beans
created in this way for the several pools representing one participant then make
up the behaviour of the respective agent role.

Table 1 shows a high-level overview of the mapping. In the following, we will
describe the several aspects of the mapping in detail. Finally, we will briefly
illustrate how process modelling can be integrated into the overall development
method.

Table 1. Overview of Mapping from BPMN to Agent Beans

BPMN Element Agent Concept

participant agent role (implicit, not created)
pool workflow agent bean, holding all of the below
workflow structured workflow method
start events mechanisms to trigger workflow method
tasks activity methods, doing the actual work
subprocess nested class, same structure as workflow bean
boundary events event handler threads, interrupting the activity
properties variables, in appropriate scope

4.1 Workflow Method

The workflow method is made up of calls to several activity methods, being
arranged into sequences, if-else statements and loops. While this requires the
process to be structured properly (see Section 5), the result is structured and un-
derstandable, resembling manually written code, i.e. using conditions and loops
instead of goto-like successor-relations. Thus, if necessary, the generated code
can still be easily extended or altered by hand.

3 In the following, we will use the term “workflow” for the order the individual activ-
ities are executed in the process, and the term “process” for the whole ensemble of
activities and their ordering, events, variables, etc.



Towards Process-Oriented Modelling and Creation of Multi-Agent Systems 171

At the same time, BPMN allows for much more expressive workflows to be
modelled, compared to the rather minimalistic workflow notation used in WADE.
In particular, the following concepts of BPMN are covered by the mapping:

– Parallel execution (BPMN’s AND-Gateway) is mapped to multiple threads
being started and joined.

– Subprocesses (composite activities) are mapped to internal classes following
the same schema as the main class, with workflow- and activity methods for
the activities embedded into the subprocess.

– Event handler (intermediate events attached to an activity) are also mapped
to threads, running concurrently to the thread executing the activity itself,
and interrupting this thread in case the respective event occurs.

– The same pattern is applied to event-based XOR-gateways; in this case the
main thread will wait until one of the events has been triggered.

4.2 Properties and Assignments

BPMN specifies a number of non-visual attributes, such as properties (i.e. vari-
ables) and assignments. Properties can be declared in the scope of whole pro-
cesses or individual activities (both atomic tasks and composite subprocesses).
When declared in the scope of a process or subprocess, the property is visible to
all elements (transitively) contained therein.

Accordingly, properties are mapped to Java variables in different scopes in the
Agent Bean, reflecting their visibility in the BPMN diagram. Properties of the
process are mapped to variables in the scope of the Agent Bean class, properties
of a subprocess to variables in the scope of the embedded subprocess class, and
properties of an activity to local variables in the scope of the activity method.

Assignments are always bound to an activity or event, and are included in the
respective activity method. In BPMN, assignments can have an assign-time of
either ‘before’ or ‘after’, determining whether the assignment has to be applied
before or after the actual activity is executed (see below).

4.3 Activity Methods

The several activity methods have neither parameters nor a return value and
always follow the same schema:

1. Properties : First, for each property in the scope of the activity one Java
variable is declared, using the respective data type.

2. Start Assignments : Then, assignments of the activity with assign-time ‘be-
fore’ are applied, e.g., for setting the input parameters of a service call.

3. Activity Body: Now, the code corresponding to the actual activity is carried
out, e.g., invoking a service, sending a message, or executing a user-defined
code-snippet.

4. End Assignments : Finally, assignments with assign-time ‘after’ are applied,
e.g., for binding the return value of a service call to a local variable.



172 T. Küster, A. Heßler, and S. Albayrak

5. Loop: If the activity’s loop attribute is set, the content of the activity method
is repeated in a loop as long as a given condition is satisfied.

Similar to the mapping to JADL, we can make use of JIAC’s communication
infrastructure, by mapping message events and send and receive tasks to sending
and receiving JIAC messages, while service tasks are mapped to the invocation
of a JIAC action (i.e. a service). Script tasks allow the developer to attach a
custom snippet of Java code to the task. Further, timer events are mapped to a
temporary suspension of the execution.

There are more types of tasks and events in BPMN, for which no mapping has
been devised yet, but these are the most common and important ones. Elements
that will be covered in the near future include the rule event, evaluating a given
Java condition, as well as the user task, presenting a generic input dialogue to
the user.

4.4 Event Handler

As mentioned above, event handlers (i.e. intermediate events attached to an
activity’s boundary) are mapped to threads running in parallel to the actual
activity, interrupting it in case the event has been triggered. To realise this
behaviour, the activity itself is wrapped in another thread, and a reference is
passed to the event handler thread, running in a loop and periodically checking
whether the respective event has occurred (e.g., whether a message has arrived,
or whether a given time has passed). If so, a marker flag is set and the activity
thread is interrupted.

In the workflow method, both threads are started, and the activity thread
is joined. Finally, when the activity has been completed or aborted, the event
handler thread is stopped and the workflow is routed accordingly to whether the
event handler has been triggered or not.

4.5 Start Events and Starter Rules

Finally, the processes’ start events have to be mapped to mechanisms for start-
ing the process on the occurrence of the respective events. In the mapping to
JADL, a number of Drools rules are created for this purpose. Using Agent Beans,
these ‘starter rules’ can be integrated directly into the code, making use of the
mechanisms introduced in Section 3.2.

– If the process has a start event with unspecified type, or none type, then the
workflow method is invoked in the Agent Bean’s doStart() method (one of
the life-cycle methods), being called when the agent is started.

– For a timer start event, the Agent Bean is given an execute() method,
regularly checking the current time against the time the process was last
started, invoking the workflow method at a given time or interval.

– A message start event results in a message observer being attached to the
agent’s memory when the Agent Bean is started, which will then invoke the
workflow method every time a matching JIAC message is received.



Towards Process-Oriented Modelling and Creation of Multi-Agent Systems 173

– Finally, in case of a service start event, the workflow method is marked with
the annotation @Expose, exposing the workflow method as a JIAC action to
be discovered and invoked by other agents.4

Besides creating these mechanisms, a service start event also results in the
workflow method’s input parameters being updated to correspond to the speci-
fied service parameters. Analogously, a service end event results in the workflow
method’s return value being set accordingly.

4.6 Development Method

In previous work, we presented a method for integrating process modelling into
the overall multi-agent system development cycle [18], as shown in Figure 3.
While this was aimed at the mapping from BPMN to JADL, most of the ideas
and concepts can be carried over to the mapping to JIAC Agent Beans as well.

Fig. 3. Integration of process modelling into development method [18]

In a nutshell, we see process modelling as the next step after use case analysis.
For each of the previously identified use case diagrams, one BPMN process dia-
gram is created, holding one pool for each of the actors involved in the respective
use case. Those diagrams should describe the behaviour and particularly the in-
teraction of the several roles at a relatively high level of abstraction, illustrating
the system behaviour without cluttering the diagrams with algorithmic details.
The mapping then translates the pools to behaviours, encapsulated into Agent
Beans, while each of the actors corresponds to a different agent role exhibiting
those behaviours. Next, the generated JIAC Agent Beans can be extended with
additional code not suited for inclusion in the process diagrams, and the agent
roles are aggregated to concrete agents and the multi-agent system is set up.

4 There is, as such, no service start event in BPMN. We use this term to distinguish
message start events, where the message is in fact a service request.



174 T. Küster, A. Heßler, and S. Albayrak

5 Implementation

The first version of the mapping was implemented in the course of a diploma
thesis [28] as an extension to the BPMN editor VSDT (Visual Service Design
Tool). The VSDT was developed with the goal in mind, to provide transforma-
tions from BPMN to diverse executable languages [17]. It also allows for the
import of existing services, simulation/interpretation of process diagrams, and
the generation of descriptive texts in written English from the process. Besides
being a BPMN editor, it can also be used for creating the use case diagrams for
connecting the different process diagrams that make up the entire system.

For exporting BPMN diagrams into different target languages, the VSDT
uses a generic transformation framework [17]. The process can be subdivided
into several stages, being executed one after the other:

1. Validation and Normalization: Check validity of BPMN diagrams and bring
diagram into ‘normalized’ form to facilitate later stages.

2. Structure Mapping: Use pattern-matching to identify different structures,
such as blocks and loops, and bring the diagram into a tree-like form.

3. Element Mapping: Tree-traversal of the structured process, performing the
actual mapping to the target language (JIAC, JADL, BPEL, etc.)

4. Clean Up and Storage: Clean up generated code, merge with existing files,
if any, write to output directory.

The first steps in mapping BPMN to Agent Beans – or any structured pro-
gramming language – is to structure the process graph to a tree of sequences,
decision blocks, loops, etc. [20]. To this end, a number of pattern matching
rules are used, identifying different structures in the workflow and substituting
them with dedicated structural elements. This functionality is provided by the
VSDT’s transformation framework and can be reused for the different target
languages [17]. Thus, only the actual mapping of individual process elements to
fragments of Java code, as specified in the previous section, had to be imple-
mented.

This element mapping has been separated into two stages. First, the struc-
tured process model is translated to an intermediate model, being a high-level
representation of the structure of a JIAC Agent Bean. This is done by travers-
ing the process model, which now has a tree-structure, and thereby creating and
assembling the respective elements of the Agent Bean model. Then, this model
can be translated straightforwardly to executable Java code using a number of
templates for the JET framework.5 Using JET and JMerge, parts of the gen-
erated Agent Bean code can safely be modified and merged in case the process
model changes and has to be re-generated.

5 JET (Java Emitter Templates) is part of the Eclipse Model To Text (M2T) project:
http://www.eclipse.org/modeling/m2t/

http://www.eclipse.org/modeling/m2t/


Towards Process-Oriented Modelling and Creation of Multi-Agent Systems 175

6 Example

In this section we will illustrate several aspects of the mapping by means of the
simple example diagram from Section 3, shown in Figure 1.

The BPMN diagram consists of two pools, each representing an agent role:
Client, and Taxi. The client’s process is exposed and started as a service, ex-
pecting a customer ID, current location, desired destination and time of arrival,
and returning the ID of the taxi selected for the tour, if any.

The interaction between the two starts by the client sending a request (cus-
tomer ID, location, destination, desired time of arrival) to all available taxis,
which evaluate the request and decide whether to accept it. If so, they send a re-
sponse (taxi ID, estimated time of arrival, price) back to the client. Meanwhile,
the client enters a looping subprocess, listening to responses and memorising
the best response, until after 30 seconds the subprocess is interrupted by the
attached timer event. The client then sends a notification to the selected taxi.
The taxis listen to incoming message, either preparing to pick up the guest if
the notification is received, or ending the process after waiting for a few more
seconds. Note that the several properties (variables) and assignments are not
visible in the diagram.

The resulting Agent Bean for the Client role is shown in Figure 4, along
with the client’s part of the process diagram for reference. The entire code was
automatically generated and only slightly shortened to improve readability and
to better fit into the figure. The full code also contains JavaDoc comments (not
shown here) with descriptions of the bean class and each of the activity methods,
taken from the description attribute of the respective BPMN elements.

As can be seen, the control-flow of the process is reflected in the workflow()

method, which is also exposed as a JIAC action, or service. The workflowmethod
is dominated by the threads for running the subprocess and the attached event
handler, but also contains an if-else-statement for the gateway at the end of the
process. The activities send request and notify taxis are mapped to two similar
methods for sending JIAC messages to the specified message groups.

The code for, e.g., sending and receiving messages is quite extensive, and
there are several components, such as the event handler classes, that are needed
again and again for different workflows. Consequently, these parts are provided
by the superclass AbstractWorkflowBean, allowing the generated code to be
much more compact and readable.

The subprocess is mapped to the inner class WaitForReplies Sub, also form-
ing a new variable scope for its properties. The class follows the same schema
as the outer workflow class. It features another workflow method (run() in this
case) and three activity methods, most notably the receiveResponse method,
where the client checks its memory for messages arriving at the specified message
group channel. In accordance with the loop-condition of the original subprocess,
the content of the workflow method is executed in an infinite loop. The subpro-
cess itself is run in a thread, which will eventually be interrupted by the event
handler thread, thus breaking out of the loop.



176 T. Küster, A. Heßler, and S. Albayrak

Fig. 4. Example: Taxi Request Service. Corresponding parts in the process diagram
and the code are numbered correspondingly.

The Agent Bean for the Taxi role is similarly structured, and thus is not
shown here. The main difference is that its workflow method is not exposed as
an action, but is invoked by a memory observer listening for the request messages
sent by the client role. The observer is attached to the agent’s memory in the
doStart() method (one of the life-cycle methods, which is started when the
agent is started). The workflow method itself is rather straightforward, with an
if-statement representing the first gateway, and an event-handler for the second.
The logic for the evaluate request task can either be provided via the task’s script
attribute, or it can be implemented in the generated Java code.

6.1 Discussion

Using the domain-specific scripting language JADL, agent behaviours can be
expressed in a very compact and readable way, but the overall expressiveness



Towards Process-Oriented Modelling and Creation of Multi-Agent Systems 177

(e.g., the supported event types) is limited by the scripting language. JIAC
Agent Beans, on the other hand, have the full expressiveness of the Java language
at their disposal. Thus, basically everything that can be modelled in a BPMN
diagram can be mapped to an Agent Bean.

While the resulting workflow method for complex processes can become some-
what bulky – particularly if event handling is used – its structured form as well
as the separation into workflow methods and activity methods keeps the result-
ing code reasonably clear. Like in WADE, individual activity methods can be
altered or extended without risk of losing the changes after the code is generated
anew. The reason why this is important is that while BPMN is well suited for
high-level behaviour, graphically modelling low-level algorithms and such would
be too laborious. This way, those can be added to the generated code.

One potential problem might be raised by the extensive use of Java threads
for event handling. We are currently investigating ways of integrating the event
handling into the agent’s main thread. Another alternative would be to move
away from the current workflow methods towards a more interpreter-like ap-
proach, memorizing the current state of the process and executing one activity
method in each step of the agent’s execution cycle. Particularly for long-running
processes this might be beneficial.

Regarding the high expressiveness of the generated Agent Beans and the good
performance of compiled Java code when compared to the interpreted JADL
scripts, the mapping from BPMN to JIAC Agent Beans is suited best for mod-
elling and generating core components of the multi-agent system, while the map-
ping to JADL is of much use for creating dynamic behaviours and services to be
deployed and changed at runtime.

7 Conclusion

In this paper, we have presented an approach for creating multi-agent systems
from process models, combining the mapping from BPMN to JADL [18] with
ideas borrowed from WADE [10]. The result is a transformation from BPMN
process diagrams to JIAC Agent Beans, generating one method for the workflow
as a whole, and one method for each individual activity. The resulting Agent
Bean classes are highly expressive and at the same time well structured and
readable. Being based on the wide-spread Business Process Model and Notation,
the process diagrams are easy to understand and the mapping also supports
important aspects such as communication and interaction and event handling,
which are particularly suited for being modelled visually.

Comparing our approach with related works, our impression is that using a
powerful yet high-level notation like BPMN provides for more expressive agent
behaviours, in particular w.r.t. communication and event handling. On the other
hand, we acknowledge that a simpler notation that is more streamlined to the
requirements of agent engineering may be easier to learn, somewhat balancing
the benefit of using an established industry standard.

Of course, it depends on the application to be developed whether process
modelling in general and BPMN in particular are appropriate ways for designing



178 T. Küster, A. Heßler, and S. Albayrak

the system: Particularly when intensive communication and event handling is
involved, graphical process modelling notations have their benefits, but visually
depicting every detail of a complex algorithm can become rather cumbersome.

Our work has not yet reached the maturity of some of the related approaches.
Still, using the mapping proposed and exemplified in this paper, it is possible to
model complex and distributed multi-agent systems by means of BPMN and to
generate readily executable agent behaviours from the process diagrams. Also,
while we decided to use JIAC in this work, the bulk of the mapping could be
applied to other agent frameworks, as well.

7.1 Future Work

While the mapping can already be used for generating useful agent behaviours, it
is not yet completed. First, there are still aspects of BPMN that are not covered
by the mapping, such as some of the less common event types. Second, there are
aspects of agents that can not yet be modelled adequately with BPMN.

One such issue that we want to tackle in the future is the modelling of goals
and other kinds of dynamic behaviour by means of BPMN. Without those, the
resulting agent systems, strictly following the process diagram, are rather pro-
cedural and inflexible. One promising approach is to use the ad-hoc subprocess
for this task, executing a certain set of activities in no predefined order until a
given completion condition is met. However, this is still work in progress.

Complementary to the transformation to JIAC code, we are currently working
on a process interpreter agent bean. Similar to the JADL interpreter agent, this
will allow to pass processes to the agent at runtime and to have that agent
execute one or more of the roles in that process [29]. Without the additional
layer of abstraction of the scripting language, this approach is expected to have
the same expressive power as the generated JIAC bean while at the same time
being more dynamic. Also, this will allow for monitoring and visualizing the
current state of the running process by linking the process interpreting agent to
the modelling tool.

The downside of the interpreter approach is that the entire behaviour has
to be modelled in the process diagram or has to be made available as callable
services, since there is no possibility to manually extend the generated code.
Thus, we see the upcoming interpreter as a way to dynamically deploy very
high-level processes to the running agent, while the core behaviours of the agent
would still be created in a combination of process modelling, code generation,
and manually extending and refining the generated code.

References

1. Baldoni, M., Baroglio, C., Capuzzimati, F.: 2COMM: A commitment-based MAS
architecture. In: Cossentino, M., El Fallah Seghrouchni, A., Winikoff, M. (eds.)
EMAS 2013. LNCS (LNAI), vol. 8245, pp. 38–57. Springer, Heidelberg (2013)

2. Bauer, B., Müller, J.P., Odell, J.: Agent UML: A formalism for specifying mul-
tiagent software systems. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000.
LNCS, vol. 1957, pp. 91–103. Springer, Heidelberg (2001)



Towards Process-Oriented Modelling and Creation of Multi-Agent Systems 179

3. Bellifemine, F., Poggi, A., Rimassa, G.: JADE – a FIPA-compliant agent frame-
work. Internal technical report, Telecom Italia (1999), part of this report has been
also published in Proceedings of PAAM 1999, London, pp. 97–108 (April 1999)

4. Bergenti, F., Caire, G., Gotta, D.: Interactive workflows with WADE. In: 2012
IEEE 21st International Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises, pp. 10–15 (2012)

5. Bergenti, F., Caire, G., Gotta, D., Long, D., Sacchi, G.: Enacting BPM-oriented
workflows with Wade. In: Proceedings of the 12th Workshop on Objects and
Agents, Rende, CS, Italy, pp. 112–116 (July 2011)

6. Braubach, L., Pokahr, A., Jander, K., Lamersdorf, W., Burmeister, B.: Go4Flex:
Goal-oriented process modelling. In: Essaaidi, M., Malgeri, M., Badica, C. (eds.)
Intelligent Distributed Computing IV. SCI, vol. 315, pp. 77–87. Springer, Heidel-
berg (2010)

7. Burmeister, B., Arnold, M., Copaciu, F., Rimassa, G.: BDI-agents for agile goal-
oriented business processes. In: Proc. of 7th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2008), pp. 37–44. International Foundation for
Autonomous Agents and Multiagent Systems, Richland (2008)

8. Cabri, G., Puviani, M., Quitadamo, R.: Connecting methodologies and infrastruc-
tures in the development of agent systems. In: Proceedings of the International
Multiconference on Computer Science and Information Technology (IMCSIT 2008),
pp. 17–23. IEEE, Wisla (2008)

9. Caire, G.: WADE User Guide, Version 2.6. Telecom Italia (July 2010),
http://jade.tilab.com/wade/doc/WADE-User-Guide.pdf

10. Caire, G., Gotta, D., Banzi, M.: WADE: A software platform to develop mission
critical applications exploiting agents and workflows. In: Berger, M., Burg, B.,
Nishiyama, S. (eds.) Proc. of 7th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2008) – Industry and Applications Track, pp. 29–36 (May 2008)

11. Caire, G., Quarantotto, E., Porta, M., Sacchi, G.: WOLF – An Eclipse plug-in for
WADE. In: Proceedings of the ACEC 2008 (2008)

12. Calisti, M., Greenwood, D.: Goal-oriented autonomic process modeling and execu-
tion for next generation networks. In: van der Meer, S., Burgess, M., Denazis, S.
(eds.) MACE 2008. LNCS, vol. 5276, pp. 38–49. Springer, Heidelberg (2008)

13. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Information & Software Technology 50(12), 1281–1294 (2008)

14. Endert, H., Küster, T., Hirsch, B., Albayrak, S.: Mapping BPMN to agents: An
analysis. In: Baldoni, M., Baroglio, C., Mascardi, V. (eds.) Agents, Web-Services,
and Ontologies Integrated Methodologies (AWESOME), pp. 43–58 (2007)

15. Hirsch, B., Konnerth, T., Burkhardt, M., Albayrak, S.: Programming service ori-
ented agents. In: Calisti, M., Dignum, F.P., Kowalczyk, R., Leymann, F., Unland,
R. (eds.) Service-Oriented Architecture and (Multi-)Agent Systems Technology.
Dagstuhl Seminar Proceedings, vol. 10021, Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Germany (2010)

16. JIAC Development Team: JIAC – Java Intelligent Agent Componentware, Version
5.1.5. DAI-Labor, TU Berlin (February 2014), http://www.jiac.de

17. Küster, T., Heßler, A.: Towards transformations from BPMN to heterogeneous
systems. In: Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008 Workshops.
LNBIP, vol. 17, pp. 200–211. Springer, Heidelberg (2009)

18. Küster, T., Lützenberger, M., Heßler, A., Hirsch, B.: Integrating process modelling
into multi-agent system engineering. Multiagent and Grid Systems 8(1), 105–124
(2012)

http://jade.tilab.com/wade/doc/WADE-User-Guide.pdf
http://www.jiac.de


180 T. Küster, A. Heßler, and S. Albayrak

19. Lützenberger, M., et al.: A multi-agent approach to professional software engineer-
ing. In: Winikoff, M., El Fallah Seghrouchni, A., Winikoff, M. (eds.) EMAS 2013.
LNCS (LNAI), vol. 8245, pp. 156–175. Springer, Heidelberg (2013)

20. Mendling, J., Lassen, K.B., Zdun, U.: Transformation strategies between blockori-
ented and graph-oriented process modelling languages (2005)

21. Muehlen, M.z., Recker, J.: How much language is enough? Theoretical and practical
use of the business process modeling notation. In: Bellahsène, Z., Léonard, M. (eds.)
CAiSE 2008. LNCS, vol. 5074, pp. 465–479. Springer, Heidelberg (2008)

22. Object Management Group: Business process model and notation (BPMN) version
2.0. Specification formal/2011-01-03, Object Management Group (August 2011)

23. Ouyang, C., Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M., Mendling,
J.: From business process models to process-oriented software systems. ACM Trans-
actions on Software Engineering and Methodology 19(1), 1–37 (2009)

24. Pokahr, A., Braubach, L.: Reusable interaction protocols for workflows. In: Work-
shop on Protocol Based Modelling of Business Interactions (2010)

25. Pokahr, A., Braubach, L., Jander, K.: Unifying agent and component concepts –
Jadex active components. In: Dix, J., Witteveen, C. (eds.) MATES 2010. LNCS
(LNAI), vol. 6251, pp. 100–112. Springer, Heidelberg (2010)

26. Recker, J.C.: BPMN modeling – who, where, how and why. BPTrends 5(3), 1–8
(2008)

27. Sierra, C., Rodŕıguez-Aguilar, J.A., Blanco-Vigil, P.N., Arcos-Rosell, J.L., Esteva-
Vivancos, M.: Engineering multi-agent systems as electronic institutions. UP-
GRADE: European Journal for Informatics Professional V (4), 33–39 (2004)

28. Tan, P.S.: Automated Generation of JIAC AgentBeans from BPMN Diagrams.
Diploma thesis, Technische Universität Berlin (November 2011)

29. Voß, M.: Orchestrating Multi-Agent Systems with BPMN by Implementing a Pro-
cess Executing JIAC Agent Using the Visual Service Design Tool. Master thesis,
Humboldt Universität Berlin, realized with support of DAI-Labor, TU Berlin (May
2014)

30. Yu, E.S.: Social modeling and i*. In: Borgida, A.T., Chaudhri, V.K., Giorgini,
P., Yu, E.S. (eds.) Conceptual Modeling: Foundations and Applications. LNCS,
vol. 5600, pp. 99–121. Springer, Heidelberg (2009)


	Towards Process-Oriented Modelling
and Creation of Multi-Agent Systems


	1 Introduction
	2 Related Work
	2.1 Transformation from BPMN to BPEL
	2.2 Transformation from BPMN to JADL
	2.3 WADE: Workflows for JADE
	2.4 GO-BPMN and Go4Flex
	2.5 Other Approaches

	3 A Closer Look at BPMN and JIAC
	3.1 BPMN
	3.2 JIAC

	4 A Mapping from BPMN to JIAC Agent Beans
	4.1 Workflow Method
	4.2 Properties and Assignments
	4.3 Activity Methods
	4.4 Event Handler
	4.5 Start Events and Starter Rules
	4.6 Development Method

	5 Implementation
	6 Example
	6.1 Discussion

	7 Conclusion
	7.1 Future Work

	References




