The AORTA Architecture:
Integrating Organizational Reasoning in Jason

Andreas Schmidt Jensen', Virginia Dignum?, and Jgrgen Villadsen®

! Technical University of Denmark, Kongens Lyngby, Denmark
{ascje, jovi}@dtu.dk
2 Delft University of Technology, Delft, The Netherlands
m.v.dignum@tudelft.nl

Abstract. Open systems are characterized by a diversity of heteroge-
neous and autonomous agents that act according to private goals, and
with a behavior that is hard to predict. They can be regulated through
organizations similar to human organizations, which regulate the agents’
behavior space and describe the expected behavior of the agents. Agents
need to be able to reason about the regulations, so that they can act
within the expected boundaries and work towards the objectives of the
organization. In this paper, we describe the AORTA (Adding Organi-
zational Reasoning to Agents) architecture for making agents organi-
zation-aware. It is designed such that it provides organizational reasoning
capabilities to agents implemented in existing agent programming lan-
guages without being tied to a specific organizational model. We show
how it can be integrated in the Jason agent programming language, and
discuss how the agents can coordinate their organizational tasks using
AORTA.

1 Introduction

Open systems rely on organizational structures to guide and regulate agents, be-
cause these systems have no control over the internal architecture of the agents.
This means that the agents must be able to reason about the organizational
structures in order to know what to do in the system and how to do it. Reg-
ulations are often specified as organizational models, usually using roles that
abstract away from specific agent implementations such that any agent will be
able to enact a given role. Roles may restrict enacting agents’ behavior space,
such that it coincides with the expectations of the system.

Agents that can reason about organizations are organization-aware [20]. Or-
ganizational reasoning includes understanding the organizational specification,
acting using organizational primitives, and cooperating with other agents in the
organization to complete personal or organizational objectives. From the agent’s
perspective, there are two sides of organizational reasoning. First, how can it
contribute to the objectives of the organization, and second, how can it take
advantage of the organization, once it is a part of it.

From the organizational perspective, the system can be regulated, for exam-
ple, by blocking certain actions (for example through a middleware, such as

F. Dalpiaz et al. (Eds.): EMAS 2014, LNAI 8758, pp. 127-145, 2014.
© Springer International Publishing Switzerland 2014

128 A.S. Jensen, V. Dignum, and J. Villadsen

<
'_
Organization —| Agent Organization k— g Agent
<
(a) Typical connection between orga- (b) AORTA is part of an agent and
nization and agent provides it with an interface to the

organization.

Fig. 1. How AORTA differs from other approaches to program agents that can partic-
ipate in an organization

S-MoIsE™ [13], or governors in ISLANDER [10]), or by enabling the agents
to reason about the expectations of the system. In these cases, agents are thus
connected to the organizational entity via a bridge, as shown in figure 1(a).
Here, everything related to the organization is controlled and regulated by the
organization; the agent has little or no control over what happens.

AORTA (Adding Organizational Reasoning to Agents) [16] is an organiza-
tional reasoning component that can be integrated into the agent’s reasoning
mechanism, allowing it to reason about (and act upon) regulations specified by
an organizational model using simple reasoning rules. AORTA assumes a preex-
isting organization, is independent from the agent, and focuses on reasoning rules
that specify how the agent reasons about the specification. The organization is
completely separated from the agent, as shown in figure 1(b), meaning that the
architecture of the agent is independent from the organizational model, and the
agent is free to decide on how to use AORTA in its reasoning. The separation
is possible because AORTA is tailored based on an organizational metamodel,
designed to support different organizational models.

In this paper, we describe the AORTA architecture for making agents organiza-
tion-aware!. It is designed such that it can provide organizational reasoning
capabilities to agents implemented for existing agent platforms. We present an
integration of AORTA in the well-known agent platform Jason [2], and show
how it lets Jason-agents decide how to use their capabilities to achieve their
organizational objectives, and furthermore, how they are able to coordinate their
tasks.

We consider software architecture as the highest level of abstraction of a soft-
ware system. The AORTA architecture is designed as a component that can be
integrated into existing agent platforms. Existing agents are extended with an
AORTA component, which features an organizational reasoning cycle that per-
forms organizational reasoning, providing the existing agent with organizational
reasoning capabilities. Furthermore, the organizational reasoning is specified in
an AORTA-program in which organizational actions and coordination mecha-
nisms for each agent can be defined by the developer.

! The implementation of the AORTA architecture is available as open source at
http://www2.compute.dtu.dk/~ascje/AORTA/.

http://www2.compute.dtu.dk/~ascje/AORTA/

The AORTA Architecture 129

The rest of the paper is organized as follows. We begin, in section 2, with a de-
scription of the organizational metamodel, and briefly discuss a simple scenario,
which we later implement in AORTA and Jason. In section 3, we present the
AORTA architecture. Section 4 describes the integration with Jason. We discuss
related work in section 5 and conclude the paper in section 6.

2 Organizational Modeling

Organizational models are used in multi-agent systems to give agents an explicit
representation of an organization. Similarly to [7] we use concepts from Organi-
zational Theory (OT), which, even though it lacks formality, has been studied
for years and has been applied successfully. OT defines an organization as an en-
tity in which individuals have roles, and use these roles to accomplish collective
goals. Organizations are furthermore defined with a purpose; individuals in the
organization have intentions and objectives, which lead to the overall collective
goals.

Different models are proposed in the literature (e.g. MOISET[13], OperA (8],
ISLANDER [9]). These models typically use concepts from OT as well, especially
the notion of roles, abstracting implementation details away from expectations,
and objectives, defining the desired outcome of the organization.

2.1 Organizational Metamodel

AORTA uses an organizational metamodel, which is based on roles and objec-
tives.

Definition 1 (Organizational metamodel). The organizational metamodel
of AORTA is defined by the following predicates:

role(r, O) r is the role name, and O is a set of objectives.
objective(o) o 1s the name of an objective.

dependency(r1,72,0) Role 1 depends on role ro for completion of objective o.
order (o1, 02) Objective o1 should be completed before objective 0.
rea(a, r) Agent a enacts role r.

active(o) Objective o is currently active?.

Agents can reason about the organizational structure to make organizational
decisions. For example, if an agent enters an organization with the purpose of
completing a certain objective o;, it can reason about which roles to enact based
on that objective:

roles = {r | role(r,O) A o; € O}

Given such a set of possible roles, the agent can decide which role(s) to enact
based on the organizational structure. In particular: what are the other objec-
tives of a given role, do they coincide with the agent’s own objectives and is the

2 An objective is active if it has not yet been completed and all objectives it depends
on have been completed.

130 A.S. Jensen, V. Dignum, and J. Villadsen

role(medic,{ injuredFound,injuredSaved,removeBlocker}).
role(officer,{ fight Found,fightStopped }).

dependency(medic,officer,removeBlocker).

order(injured Found,injuredSaved).
order(fightFound, fightStopped).
objective(injuredFound).
objective(injuredSaved).
objective(removeBlocker).
objective(fightFound).
objective(fightStopped).

Fig. 2. Organizational specification of the crisis response scenario

agent capable of completing them? Will the agent depend on other agents; or
conversely, will other agents depend on this agent for completion of their objec-
tives? Once a role is enacted it is furthermore useful to reason about the order of
the objectives; it provides a starting point and enables the agent to “plan ahead”
(e.g., after the completion of objective 01, objective 0o, must be completed).

2.2 The First Responders Scenario

We consider a scenario of first responders at a fight between groups of people,
some of them being injured and requiring medical attention.

After a match between two sports teams, fans are fighting and some of
them are badly hurt. The authorities have been contacted, and a group
number of medics and police officers (the first-responders) have arrived.
The medics are supposed to help the injured, while the police officers are
supposed to break up the fight. The fans may try to prevent medics from
rescuing injured fans from the other team.

The organizational specification is shown in figure 2. For this paper, we as-
sume that the agents entering the organization are cooperative, that is, they
will pursue organizational objectives and cooperate with the other agents in the
organization. It is, however, simple enough to consider self-interested agents as
well; they will just be more likely to pursue their personal objectives rather than
those of the organization.

An agent entering the system will then need to decide which role(s) to enact,
for example, by comparing role objectives to its own objectives and reasoning
about the requirements of the role.

3 The AORTA Architecture

Agents are often based on the belief-desire-intention (BDI) model [18], where
each agent has beliefs about the state of the world, desires are possible states
of affairs that the agent might want to realize, and intentions are those states

The AORTA Architecture 131

Organizational Reasoning Component BDI Agent

Options BELIEFS

! «— DESIRES

Organizational) : :
beliefs Actions
INTENTIONS
Coordination i
Mailbox

Fig. 3. The Organizational Reasoning Component of AORTA

of affairs that the agent has committed to (attempt to) realize. AORTA pro-
vides organizational reasoning capabilities to agents, and extends classical BDI
reasoning, allowing the agents to reason about organizational matters. Organiza-
tional reasoning is divided into organizational option generation, organizational
action deliberation and organizational coordination. An organizational option is
something that the agent should consider, such as an active objective, or a role
that can be enacted or deacted [15]. For instance, initially in the scenario, the
medics will only search for injured people. When all areas have been searched,
this objective has been completed and a new objective, rescuing the injured, will
be possible. An organizational action is the execution of an organizational op-
tion: actually enacting a role or committing to an organizational objective. This
creates the expectation (for the organization) that the agent should somehow
believe it is able to (help) achieve it, either by itself, by cooperating with other
agents, or by delegating it to one or more agents in the dependency relation of
its role. Note that self-interested or deceitful agents might know that they can-
not achieve an organizational objective, but will commit to it anyway to disturb
the organization. Organizational coordination is organization-level coordination,
which is based on the agent’s mental state.

AORTA puts organizational reasoning into a separate organizational reasoning
component inside the agent, which is connected to the mental state of the agent
(see figure 3). The component lets the agent hold beliefs about the organization
(its specification and instantiation) and can use that for reasoning about orga-
nizational objectives that are possible to achieve (or required to be achieved),
roles that can be enacted, norms that are enforced, and so on. An integration
of the organization within the agent makes the agent more likely to take both
the organization and its own beliefs into account in its reasoning. Furthermore,
by representing the organization as beliefs, the organizational structure can be
changed, if necessary. For example, if the organization changes (reorganization),
or if the agent finds out that it has wrong beliefs about the organization.

132 A.S. Jensen, V. Dignum, and J. Villadsen

Based on the agent’s mental state, AORTA can determine which organizational
options to choose, and the organizational actions might change the mental state.
For instance, in order to consider the available organizational options, AORTA
uses the agent’s capabilities and intentions. Furthermore, intentions may influ-
ence the reasoning, e.g., when the intention to coordinate a task requires use
of the organizational model. Finally, AORTA lets agents commit to objectives:
an organizational action leads to change in the agent’s intentions, corresponding
to the fact that the agent commits to the objective. The coordination compo-
nent sends messages using the mailbox, and incoming messages can change the
organizational structure.

3.1 Mental State

BDI agents usually have knowledge bases containing their beliefs and intentions.
In this paper, we consider agents that contain an AORTA-component, which
means that they not only have belief and intention bases, they also have knowl-
edge bases for the organizational aspect. Each knowledge base will hold different
kinds of formulas depending on their purpose.

Definition 2 (Knowledge bases). The AORTA knowledge bases are based on
a predicate language, L, with typical formula ¢ and operators N, —,V. The agent’s
belief base and intention base are denoted X, and I, respectively. The language
of the organization is denoted L°™8, and L°® C L. The organizational specifica-
tion and options are denoted X, and I, respectively. We then have the following
knowledge bases:

o, I, C L8 Yo, I, C L

We define different kinds of formulas for each knowledge base, which allows
us to target specific knowledge bases in different situations.

Definition 3 (Formulas). AORTA uses reasoning formulas, Lr, with typical
element p, which are based on organizational formulas, option formulas, belief
formulas and goal formulas.

p == T | org(¢) | opt(¢) | bel(¢) | goal(g) | —p | p1 A p2

Organizational formulas, org(¢), queries the organizational specification, op-
tion formulas, opt(¢), queries the options base, belief formulas, bel(¢), queries
the belief base and goal formulas, goal(¢), queries the intention (or goal) base.
We can use the formulas to specify things such as:

org(objective(injuredFound)) A —bel(injuredFound),

where the first part of the conjunction queries the organizational specification,
X,, and the second part queries the agent’s belief base, X,. The formula queries
whether there is an organizational objective (to find victims), which the agent
currently does not believe it has achieved.

The AORTA Architecture 133

Definition 4 (Mental state). The AORTA mental state MS is a tuple of
knowledge bases:
MS = <EaaFaa207FO>'

The implementation of the mental state is based on tuProlog [6], which is
a Java-based lightweight implementation of ISO-Prolog. We chose tuProlog be-
cause of its efficiency and straightforward interface in Java, allowing us to query
a Prolog knowledge base without requiring any external system-dependent li-
braries. The AORTA component of each agent has its own instance of tuProlog,
comprising its entire mental state. That is, all knowledge bases of an agent are
implemented in a single Prolog instance by wrapping each rule in a predicate de-
pending on its nature. For example, the reasoning formula bel(a A b)A—org(c A d)
is converted to the following Prolog query:

bel(a), bel(b), \+ (org(c), org(d))

This translation makes querying straightforward, while still keeping the dis-
tinction between the different knowledge bases.

Note that the AORTA component contains its own copy of the agent’s mental
state, rather than integrating AORTA into the knowledge bases of the agent in
an existing platform. This means that the belief base and goal base of AORTA
must be synchronized with the agent, which could lead to pitfalls in an integra-
tion process (especially if the knowledge bases are not properly synchronized).
However, our aim is to enable AORTA to be integrated with most of the existing
agent platforms, and since it requires only that formulas must be converted be-
tween the language of AORTA and the agent platform in question, we find that
it makes the implementation of AORTA simpler to understand.

3.2 Acting and Coordinating

At the center of agents in AORTA are the organization-specific actions. While
the agent will have access to a number of domain-specific actions (such as a
medic performing a life-saving action), the AORTA component will furthermore
make it possible to consider certain organizational options (what happens by
enacting a certain role, pursuing an objective), or performing organizational
actions (enacting a role, committing to an objective).

Definition 5 (Organization-specific actions). The set of options with typ-
ical element ao is denoted Opt and the set of actions with typical element a4 is
denoted Act.

ao := consider(¢) | disregard(¢)
aa = enact(p) | deact(p) | commit(¢) | drop(¢)

Actions are executed using a transition function, 7o and T4, respectively. Each
action is only applicable in certain states. For example, consider(¢) can only be
applied if X, = ¢ in the current state, and the effect is that ¢ is added to I.

134 A.S. Jensen, V. Dignum, and J. Villadsen

Role enactment, enact(p), is applicable only when p is the name of a role and the
agent does not currently enact that role. Committing to an objective, commit(¢),
is possible only if ¢ is an organizational objective and ¢ is not already a belief or
a goal®. disregard(¢), deact(p) and drop(¢) simply remove the respective formula
from the appropriate knowledge base.

Notice the correspondence between elements in Opt and Act: if the agent
considers enacting a role, the enact action allows it to enact that role. However,
once the role is enacted, the option is no longer an option. Since the agent now
enacts the role, it seems appropriate to remove the option from I',. This is done
using an option remowval function, O, which removes options, when they are no
longer applicable (that is, when their respective organizational action would be
undefined).

We are now in a position to introduce organizational reasoning rules: option
and action rules. These rules enable the agent to decide which organization-
specific actions to perform.

Definition 6 (Reasoning rules). The sets of option rules Ro and action rules
Ra are defined as follows.

Roz{p — ao‘pEﬁR,aoeopt}
Ra={p = aa|p€Lpr,an € Act}

Finally, since each agent has its own organizational state, they need to be able
to coordinate and synchronize their organizational knowledge. While such coor-
dination can happen in different ways, we choose to use organizational messages.
In order to determine whether a message is intended for AORTA, organizational
messages are wrapped in an organizational wrapper, om, which is an unary pred-
icate with the message as a single term.

Definition 7 (Organizational messages). An organizational message is de-
fined as
msg(a, om(M)),

where om is the organizational wrapper, and M is the message. In outgoing
messages, a corresponds to the set of recipient agents, and in incoming messages,
« s the sender.

Each agent can then specify how to coordinate using a set of coordination
rules, which specifies certain criteria for when and with whom to coordinate.

Definition 8 (Coordination rules). A coordination rule is a triple,

(C’ ¢’ m)’

where ¢ is the trigger for coordination and is a set of positive or megative rea-
soning formulas, ¢ defines the set of agents to coordinate with, and m is the
message.

3 The correspondence between goals and beliefs is based on achievement goals in the
GOAL agent programming language [11], which are defined such that ¢ is an achieve-
ment goal iff ¢ is a goal and ¢ is not currently believed.

The AORTA Architecture 135

The coordination trigger ¢ can, e.g., be the set {bel(injuredFound)}, which will
trigger at a point where X, = injuredFound is true and X, | —injuredFound
was true in the previous state.

3.3 AORTA Reasoning Cycle

The configuration of the AORTA component consists of the agent’s knowledge
bases, a number of option, action and coordination rules, and a message box
for incoming (inbox) and outgoing (outbox) organizational messages. The ini-
tial state consists of a set of initial beliefs and goals, and the organizational
specification.

The agent has a number of state transition rules available, which can be used
to change its state. A reasoning cycle in AORTA is executed using a strategy that
decides which transition rules to execute.

The agent has transition rules for execution of option and action rules, called
OptT and AcCT, a transition rule for external updates, EXT, and two rules for
coordination, COORD and CHK.

OPT can be applied to an option rule in a given state, p = ao, if p is entailed
and the option transition function, 7o, is defined for ao.

AcT can be applied to an action rule in a given state, p = aa, if p is entailed
and the action transition function, T4, is defined for a4. The option removal
function O is applied after a successful application of ACT.

EXT changes the agent’s mental state to accommodate updates from outside
AORTA. For example, if the agent perceives something, EXT adds the percept
to the belief base.

COORD is applied to coordination rules, (¢, ¢, m), when c is triggered by the
state, and the set of agents entailed by ¢ is not empty. The message m is
then sent to each agent.

CHK checks for new organizational messages by adding messages from the in-
coming message queue to the appropriate knowledge base?.

For the purpose of this paper, we use a single linear strategy, which executes
the state transition rules in a predefined order.

Definition 9 (Linear strategy). The linear strategy is defined as follows:
(CHK)*(EXT)(OPT)(AcCT)(COORD)",

where (RULE)* denotes that RULE is executed until the agent’s state no longer
changes.

The strategy executes each of the transition rules, as explained above, chang-
ing the agent’s state. The linear strategy is rather simple, but it is possible
to implement strategies, which e.g. allows the agent to explore different paths
before choosing one.

4 For simplicity, we assume that the agents will not consider whether a sender is
trustworthy, and thus whether a message is reliable.

136 A.S. Jensen, V. Dignum, and J. Villadsen

options {
[org(role(R,0s)), bel(me(Me), member(0,0s), cap(0))] => consider(role(R,0s))
[bel(me(Me)), org(role(R,0s), rea(Me,R), member(0,0s), objective(0), active(0))]
=> consider(objective(0))
}
actions {
[opt(role(R,_))] => enact(R)
[opt (objective(0)), bel(me(Me)), org(role(R,0s), member(0,0s), rea(Me,R))] => commit(0)

coordination {
[+bel(visited(R))] : [org(rea(A,medic))] => send(A,bel(visited(R)))
[+goal(X)] : [bel(me(Me)), org(rea(Me,R1), dependency(R1,R2,X), rea(A,R2))]
=> send(A, goal(X))
[+bel(0)] : [org(role(R,0s), objective(0), member(0,0s), rea(A,R))] => send(A, bel(D))
[+org(rea(A,R))] : [bel(agent(Ag))] => send(Ag, org(rea(A,R)))

Fig. 4. An example of an AORTA program

3.4 AORTA Programs

An AORTA program consists of three sections: options, actions and coordination.
An example program, which can be used in the first responders scenario, is shown
in figure 4.

Options and actions are of the form [¢] => a, where ¢ consists of a comma-
separated list of reasoning formulas. The content of each reasoning formula (i.e.,
the query) is Prolog code. For example, the action rule

[opt(role(R,_))] => enact(R),

states that if role (R,) is an option (i.e. entailed by I,), the agent should enact
R. Note that this is a simplification of the reasoning process required by agents to
decide whether or not to enact a role in an organization. It is, however, possible
to incorporate more sophisticated reasoning, e.g., by using the notion of social
power. For example, in [4], various forms of power agents may have over each
other are identified and formalized as rules. These power relations can be used
in the reasoning process by adding the rules to the agents’ organizational state.
The coordination section consists of coordination triples, of the form [c] : [¢]
=> send(Ag, ©), where ¢ is a list of reasoning formulas, with either + or - in front
of each, denoting that the trigger or its negation is now entailed by the agent’s
mental state. ¢ is identical to ¢ in option and action rules. Ag corresponds to a
variable in ¢ or ¢, and 1 is the message to be sent. Thus, the following rule

[+org(rea(A,R))] : [bel(me(A),agent(Ag))] => send(Ag, org(rea(A,R)))

states that when the agent enacts a role, it should inform all other agents in the
system.

The implementations of OPT and ACT are deterministic: the rules in each
section are simply processed linearly, and the first matching rule is executed.
COORD is implemented such that every triggered triple in a state will be executed
in a single step.

The AORTA Architecture 137

AortaAgent ——» Strategy

'agent'.aorta «—— AgentState <€«— Linear
insert Chk
send
remove Ext
nsert Transition Opt
remove
Act incoming msgs
l Coord
MentalState external beliefs
| Ik
| ExternalAgent external goals
assert)
retract insert
query remove

send

v
Prolog k—) AortaBridge

Fig. 5. Implementation overview with the most important components. A filled arrow-
head indicates an association between components. An unfilled arrowhead indicates
inheritance.

3.5 Implementation Overview

The architecture is depicted in figure 5. Each agent is associated with an instance
of AortaAgent, which contains the agent’s state, AgentState, and in which
the reasoning cycle is implemented. The reasoning cycle performs two steps:
executing the strategy and sending messages from the outbox.

3.6 Integration Considerations

The agent state contains the agent’s the knowledge bases, rules and message
boxes. Furthermore, it contains an ExternalAgent and an AortaBridge. The
external agent corresponds to the message box and knowledge bases of the agent
using AORTA. That is, whenever the agent commits to a new goal or updates its
beliefs, these changes are propagated via the external agent into AORTA using
EXT. The bridge lets AORTA manipulate the agent’s mental state. For example,
successful execution of commit(¢) will add ¢ to the agent’s goal base using the
bridge.

When integrating AORTA into an existing agent platform, there are thus three
things to take care of.

Bridge. AORTA uses the bridge to send updates to the agent’s goal and belief
bases, so an agent platform-specific bridge should be implemented (by im-
plementing the AortaBridge interface), such that the knowledge bases can
be synchronized.

External agent. When the agent updates its goal or belief base, it should
inform AORTA by invoking the appropriate methods of ExternalAgent.

138 A.S. Jensen, V. Dignum, and J. Villadsen

Translation. AORTA makes use of tuProlog, so the contents of the agent’s
knowledge bases should be translated into Java objects supported by tuPro-
log.

4 Evaluation of AORTA in Jason

We now show how AORTA can be implemented in an existing agent platform,
the Jason platform [2]. Jason is a Java-based interpreter for an extended version
of AgentSpeak. Jason is based on the BDI model, is open source and highly
extensible, making it a reasonable choice for the integration of AORTA.

The AgentSpeak language is a Prolog-like logic programming language, which
allows the developer to create a plan library for each agent in a system. A plan
in AgentSpeak is of the form

+triggering event : context <- body.

If an event matches a trigger, the context is matched with the current state of the
agent. If the context matches the current state, the body is executed; otherwise
the engine continues to match contexts of other plans with the same trigger. If
no plan is applicable, the event fails. Triggering events can amongst other things
be addition or deletion of beliefs (+] and -I) and addition or deletion of goals
(+!7 and -!1). The body contains a sequence of actions the agent should perform
and goals to adopt. When adopting a goal in the body of a plan, the agent will
attempt to achieve the new goal before continuing executing the current plan.

Note that when a plan for a goal has been completed, the goal is considered
finished. This means that it will be removed from the agent’s mental state. Since
commit(¢) is only defined if ¢ is not already a goal and is not believed by the
agent, the agent will be able to commit to a goal multiple times, until it believes
it has been achieved.

4.1 Jason+AORTA

The AORTA integration in Jason is shown in figure 6. The integration consists
of an extended agent architecture, which implements the actual integration with
AORTA, and an infrastructure, which makes it possible to create an AORTA-
project in Jason without having to deal with the specifics of the integration.
This is done by specifying the infrastructure as follows:

MAS projectname {
infrastructure: AORTA(organization(location, type))

}

The infrastructure takes two parameters: location refers to the location of
the organizational specification, and type refers to the type of organizational
model (currently, a generic organization based on the metamodel is supported).

The AORTA Architecture 139

F AortaFactory ﬂ

AortaMASLauncherAnt AortaRuntimeServices
............ AORTA J l
: I AortaLauncher

AortaBridge <1— AortaJasonBridge
: update mental

ExternalAgent siate
A :
: J— AortaAgentArch w
AortaJasonAgent AortaBB

insert goals

AortaGoalListener
remove goals

\-incoming messages

__ insert beliefs
remove beliefs

Fig. 6. Jason+AORTA. A filled arrowhead indicates an association between compo-
nents. An unfilled arrowhead indicates inheritance.

AORTA does not make any changes to the Jason language, and any existing
implementations of multi-agent systems in Jason should be compatible with Ja-
son+AORTA. The integration does two things: (1) when the belief base or goal
base in the AORTA component changes, these changes are propagated to the
Jason-agent (via AortaJasonBridge), and an addition/deletion event is trig-
gered and (2) when the Jason-agent’s mental state changes, AORTA receives
those changes (via the ExternalAgent). The Jason-agent is connected to the
ExternalAgent in three places:

AortaAgentArch Organizational messages are filtered and sent to AORTA for
processing. The normal procedure for checking an agent’s mailbox is ex-
tended to check whether incoming messages are wrapped in the organiza-
tional wrapper.

AortaBB Whenever the Jason-agent’s belief base is changed (i.e., a belief is
added or removed), the changes are sent to AORTA to ensure synchrony
between the mental states.

AortaGoalListener When a goal changes state (i.e., when a plan for it has
started, failed, or stopped), the goal listener is responsible for sending the
changes to AORTA.

Furthermore, Jason formulas are converted to AORTA formulas. Note that
while Jason supports annotations on literals (e.g., denoting the source of a be-
lief, injuredFound[source(alice)]), they are lost in conversion to AORTA
formulas, since they are not supported. This should generally not be a problem,

140 A.S. Jensen, V. Dignum, and J. Villadsen

since formulas will not propagate back and forth between the systems. That is,
if a belief originates from Jason, it will be sent to AORTA, which will not send it
back to Jason, e.g. +injuredFound [source(alice)] — bel(injuredFound) —
+injuredFound does not happen.

The AORTA reasoning cycle is executed in Jason via the method reasoning-
CycleStarted() in AortaAgentArch, which is called in the beginning of a Jason
reasoning cycle. This means that the agent will execute the AORTA reasoning
strategy in the beginning of each cycle.

4.2 The First Responders Scenario

We now discuss how AORTA can be used to let agents participate in the first
responders scenario. We use the Blocks World for Teams [17] testbed to simulate
the first responders scenario by considering the drop zone being the ambulance,
colored blocks being injured fans, and agents playing the roles of fans, medics
and police officers. Fans are fighting just outside some of the rooms and they
can stop the medic from rescuing injured fans by entering a room just before the
medic does so. Police officers will look for areas where fans are standing, while
medics will check the rooms to find injured fans.

Consider an agent, Bob, playing the role of a medic (X, |= rea(bob, medic)),
using the program in figure 4. He is considering the objective injuredFound
(I, = objective(injuredFound)), to which he has not yet committed. The fol-
lowing action rule can then be executed.

[opt (objective(0)), bel(me(Me)),
org(role(R,0s), member(0,0s), rea(Me,R))] => commit(0)

In the resulting state, injuredFound is added as a goal (I, | injuredFound), and
is sent via the bridge to the Jason-agent. This will trigger an event, +!injured-
Found, and if the agent has a plan matching this trigger, it will execute the body
of the plan. Bob has the following simplified plan library, making him capable
of searching for injured fans.
+!injuredFound : room(R) & not(visited(R)) <- !visited(R).
+!injuredFound <- +injuredFound.

+lvisited(R) : in(R) <- +visited(R).
+lvisited(R) : not(state(traveling)) <- goTo(R); !visited(R).

Bob is situated in an environment with a single room, roomI. The flow of the
execution is shown in figure 7. Bob commits to finding the injured, which leads
to the subgoal of visiting room1. When he believes he has visited the room (when
he is inside the room), both goals will finish, since !injuredFound waited on the
completion of !wvisited(room1). Since the main goal, injuredFound, has not yet
been completed, Bob can execute the same action rule again, thus committing
to the goal once more. Since there are no more rooms to visit, only the second
plan is applicable, and he believes that all the injured fans have been found.

When injuredFound is achieved, several things happen. First, the following
coordination mechanism is triggered:

The AORTA Architecture 141

AORTA Jason
commit(injuredFound)
1
goal(injuredFound) ———— +'injuredFound

1
goal(visited(room1)) «———— +!visited(room1)

bel(visited(room1)), l
not(goal(visited(room1))), «—— +visited(room1)
not(goal(injuredFound))

commit(injuredFound)
1
goal(injuredFound) ———— +'injuredFound

!

bel(injuredFound) «————— +injuredFound

Fig. 7. The flow of execution starting when Bob performs the organizational action
commit(injuredFound). not means that the formula is removed from the mental state.

[+bel(0)]
[org(role(R,0s), objective(0), member(0,0s), rea(A,R))]
=> send(A, bel(0))

Since bel(injuredFound) is added to the agent’s mental state, and injuredFound
is an objective, the agent will inform all agents responsible for that objective,
that it has been completed. Second, the next objective, injuredSaved, becomes
an option, and Bob will then commit to completing it. The flow of execution is
similar to that of figure 7 and will not be described in detail.

If, during the rescue, a room is blocked by a fan, the agent may adopt a goal,
removeBlocker, which will trigger the following coordination mechanism:

[+goal(X)]
[bel(me(Me)), org(rea(Me,R1), dependency(R1,R2,X), rea(A,R2))]
=> send(A, goal(X))

Since the agent commits to a goal for which there is a dependency, he sends
a request to the agents enacting the role R2 (in this case the officer role). An
officer should then commit to achieving the goal, and inform the medic when it
has been done.

Notice that while it may seem like the agent is compelled to commit to the
objectives given the organizational rules, it is important to emphasize that in the
example this is the only rule. In other cases there will be more rules to choose
between; rules that may influence the agent in different directions.

The agent can furthermore deliberately choose not to complete an objective.
In Jason, the intention selection function can be changed to, e.g., prioritize the
agent’s own goals. This, of course, is only valid in the current integration; other
frameworks may not have this possibility. However, the agent can deliberately

142 A.S. Jensen, V. Dignum, and J. Villadsen

skip parts of an objective, or even the entire objective, simply by marking the
objective as done (i.e., a belief addition in Jason). This is a deliberate violation
of the expectations of the role, but nothing prevents the agent from doing so.

Consider, for example, a different situation with two rooms, and in one of
the rooms, the lights do not work. If the agent is scared of the dark, it may
choose to simply skip that room, while convincing the organization that it has
completed the objective. It is also possible that one of the medics is a fan of one
of the soccer teams, and therefore deliberately chooses to only save injured fans
from his own team. While this is in clear violation of the expectations from the
organization, the agent is free to do so, since AORTA does not force the agent
to perform certain actions, leading to, e.g., entering a dark room or saving fans
from another team.

5 Related Work

There has been other work extending the BDI-architecture with organizational
concepts, especially norms and obligations. This work differs from AORTA in that
they modify the BDI-model, whereas AORTA extends the BDI reasoning with a
component for the organizational reasoning. For example, the BOID architecture
[3] imposes a strict ordering between beliefs, obligations, intentions and desires.

An abstract architecture for organizational reasoning is suggested in [20,1]. In
this architecture, they suggest that organizational reasoning is done in a separate
layer with a connection to the agent’s cognitive layer (e.g., the BDI agent’s beliefs
and plans). The AORTA architecture is based on the same idea, that reasoning
should be done within the agent, with a strong connection to the the cognitive
layer of the agent. It is noted that several concrete architectures have been
proposed that allow agents to understand and reason about organizations, e.g.
[3,13,5].

The MoISE" model is based on three organizational dimensions: the struc-
tural, functional and deontic dimensions [13]. Development of organized multi-
agent systems using the MOISET model is separated into a system and an agent
level. The system level, S-MOISE™, provides an interface (a middleware) be-
tween the agents and the organization using a special agent, the OrgManager, to
change the organizational state, ensuring organizational consistency. The agent
level, J-MOISE™T, joins Jason and MOISET, by making organizational actions
available to agents, such that they can reason about (and change, using the
OrgManager) an organization.

Similar to agents with an AORTA component, agents in J-MOISE™T receive
objectives (missions) that they can achieve using Jason plans. The main differ-
ence is that in J-MOISET, the organization-oriented reasoning is done as a part
of the agent’s normal reasoning process, whereas agents using AORTA perform
the organizational reasoning inside the AORTA component, and then decides how
to complete their objectives at a different level. The main advantage of keeping
the reasoning apart in AORTA is that it allows agents on different agent plat-
forms to perform the same kind of organizational reasoning without any extra
development required.

The AORTA Architecture 143

The AMELI middleware for electronic institutions (EIs) specified in
ISLANDER [9] “mediates agents’ interaction while enforcing institutional roles”
[10]. EIs specified in ISLANDER are based on dialogs; agents play roles in scenes
in which they participate in interaction protocols to fulfill their goals (e.g., agents
in an auction market use an interaction protocol for bidding on goods, where
certain criterias decide whether the agent has bid on an item). The agents inter-
act with the EI via a so-called governor using a predefined set of messages the
governor will understand. These messages concern among other things entering
the institution, moving to a scene, and say something in a scene. The governor
can then agree to process the message (e.g. executing an action which can ei-
ther succeed or fail) or refuse it. The governors of AMELI are similar to the
middleware of S-MOISE™; the control of the institution lays on the institution
side. Our approach is to let the agents decide by themselves whether they can
enter the institution or move to a different scene. Furthermore, if the agents
want to utter something in a scene, they should be free to do so, even if it means
unintentionally bidding for an item, or getting themselves kicked out.

The responsibility of deciding of whether an agent is allowed to enter an orga-
nization should not be put on the organizational entity but on the agents within
that entity. In [19] it was shown that it is possible for agents to 1) reason about
their own capabilities and 2) use this information to engage in an interaction
with a gatekeeper in the organization (i.e. another agent) to determine whether
the agent should be allowed to enter the organization. Such reasoning keeps the
agents in control while still ensuring that the agents are capable of playing their
roles in the organization.

Instead of putting mediators between the organization and the agents, or
providing agents with a reasoning component, a third option is proposed in [12]:
The ORA4MAS (Organizational Artifacts for Multi-Agent Systems) approach is
another attempt to build a bridge between an organization and the agents in
it. It is a general approach suitable for different kinds of organizational models,
however in [12], MOISET is used as organizational model. They use artifacts,
which they claim bring the control back to the agents (as compared to using a
middleware), since the agents can, via their autonomy, choose whether to interact
with the organizational artifacts of the system. We argue that the ultimate way
of bringing the control back to the agents is to allow the agents themselves to
perform the organizational reasoning. By integrating AORTA in agents, they are
provided with organizational reasoning capabilities, but are still able to, e.g.,
decide not to commit to certain organizational objectives.

6 Conclusion and Future Work

We have described the AORTA architecture and have shown how it can be inte-
grated in the Jason platform. The example shows how Jason-agents gain capa-
bilities to reason about which organizational objectives to commit to, and how
to coordinate completing them.

AORTA lets the developer focus on implementing the agents’ domain-specific
capabilities, while commitment to organizational objectives, coordination, and

144 A.S. Jensen, V. Dignum, and J. Villadsen

communication can be done entirely by AORTA. Furthermore, since AORTA
can be integrated in different agent platforms, the same AORTA programs can
be used for several different implementations in different agent programming
languages. The use of the simple, generic language makes it possible to show
how AORTA can be used to extend BDI-agents with organizational reasoning,
however, the support of an existing, and more powerful, organizational language,
such as MOISET or OperA, is a natural extension to the architecture, and would
make it readily useful for more complex systems.

The decoupling of AORTA and the agent platform means that synchronization
is required. However, the linear strategy makes sure that external changes are
synchronized before options and actions are considered (via the EXT transition
rule). As mentioned, the requirement is a translation between AORTA formulas
and the formulas of the connected agent (e.g. AgentSpeak formulas). Further-
more, organizational reasoning is done in AORTA and is thus separated from the
agent’s normal reasoning. This is because the organizational state is only avail-
able to AORTA, as it is not shared with the agent. This means that the agent
cannot reason about organizational matters, such as role enactment and orga-
nizational objectives without using the rules of AORTA. However, if necessary,
in the case of Jason, it is possible to allow this kind of reasoning by introducing
an internal action, e.g. .org(Fml) which succeeds if Fml can be translated to
an AORTA formula and is entailed by the organizational state.

In the future, we plan to investigate other strategies that could improve the
reasoning, such as a strategy that explores different paths of execution, and
makes a decision based on this. Furthermore, since agents may have objectives
that do not coincide with the organizational objectives, they need a way to
decide which objectives to pursue, for example using a preference ordering [3] or
individual agent preferences [14].

We are also investigating how to incorporate norms in the semantics, such
that the agents are able to deliberately follow paths that violate the organiza-
tion, while possibly being sanctioned by other agents in the organization. Finally,
the scenario used in this paper was rather simple, so we are also working on eval-
uating the system on more advanced scenarios, and using other agent platforms
(e.g. GOAL [11]) to show that the integration process is straightforward.

References

1. Boissier, O., van Riemsdijk, M.B.: Organisational Reasoning Agents. Agreement
Technologies, 309-320 (2013)

2. Bordini, R.H., Hiibner, J.F., Wooldridge, M.: Programming multi-agent systems
in AgentSpeak using Jason. John Wiley & Sons (2007)

3. Broersen, J., Dastani, M., Hulstijn, J., Huang, Z., van der Torre, L..: The BOID
architecture: Conflicts between beliefs, obligations, intentions and desires. In: Pro-
ceedings of the Fifth International Conference on Autonomous Agents, pp. 9-16

2001

4. E]arab)elea, C., Boissier, O., Castelfranchi, C.: Using Social Power to Enable Agents
to Reason About Being Part of a Group. In: Gleizes, M.-P., Omicini, A., Zam-
bonelli, F. (eds.) ESAW 2004. LNCS (LNAI), vol. 3451, pp. 166-177. Springer,
Heidelberg (2005)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

The AORTA Architecture 145

Castelfranchi, C., Dignum, F., Jonker, C.M., Treur, J.: Deliberate Normative
Agents: Principles and Architecture. In: Jennings, N.R., Lespérance, Y. (eds.) In-
telligent Agents VI. LNCS (LNAI), vol. 1757, pp. 364-378. Springer, Heidelberg
(2000)

Denti, E., Omicini, A., Ricci, A.: tuProlog: A light-weight Prolog for Internet ap-
plications and infrastructures. In: Ramakrishnan, I.V. (ed.) PADL 2001. LNCS,
vol. 1990, pp. 184-198. Springer, Heidelberg (2001)

Dignum, V., Dignum, F.: A logic of agent organizations. Logic Journal of the
IGPL 20(1), 283-316 (2011)

Dignum, V.: A model for organizational interaction: based on agents, founded in
logic. PhD thesis, Utrecht University (2004)

Esteva, M., de la Cruz, D., Sierra, C.: Islander: An electronic institutions editor.
In: Proc. AAMAS 2002 (2002)

Esteva, M., Rosell, B., Rodriguez-Aguilar, J.A., Arcos, J.L.: Ameli: An agent-based
middleware for electronic institutions. In: Proceedings of the Third International
Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2004,
vol. 1, pp. 236-243. IEEE Computer Society, Washington, DC

Hindriks, K.V.: Programming Rational Agents in GOAL. In: Multi-Agent Pro-
gramming: Languages, Tools and Applications, pp. 119-157 (2009)

Hiibner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent organ-
isations with organisational artifacts and agents. Autonomous Agents and Multi-
Agent Systems 20(3), 369-400 (2009)

Hiibner, J.F.,; Sichman, J.S., Boissier, O.: Developing organised multiagent systems
using the MOISE+ model: programming issues at the system and agent levels.
International Journal of Agent-Oriented Software Engineering 1(3), 370-395 (2007)
Jensen, A.S.: Deciding between conflicting influences. In: Cossentino, M., El Fallah
Seghrouchni, A., Winikoff, M. (eds.) EMAS 2013. LNCS (LNAI), vol. 8245, pp.
137-155. Springer, Heidelberg (2013)

Jensen, A.S., Aldewereld, H., Dignum, V.: Dimensions of organizational coordina-
tion. In: Proceedings of the 25th Benelux Conference on Artificial Intelligence, pp.
80-87. Delft University of Technology (2013)

Jensen, A.S., Dignum, V.: AORTA: Adding Organizational Reasoning to Agents.
In: Proceedings of the 13th International Conference on Autonomous Agents and
Multiagent Systems, pp. 1493-1494 (2014)

Johnson, M., Jonker, C., van Riemsdijk, B., Feltovich, P.J., Bradshaw, J.M.: Joint
activity testbed: Blocks world for teams (BW4T). In: Aldewereld, H., Dignum, V.,
Picard, G. (eds.) ESAW 2009. LNCS, vol. 5881, pp. 254-256. Springer, Heidelberg
(2009)

Rao, A.S., Georgeff, M.P.: BDI Agents: From Theory to Practice. In: Proc. ICMAS
1995 (1995)

van Riemsdijk, M.B., Dignum, V., Jonker, C.M., Aldewereld, H.: Programming
Role Enactment through Reflection. In: 2011 IEEE/WIC/ACM International Con-
ferences on Web Intelligence and Intelligent Agent Technology, vol. 2, pp. 133-140.
IEEE Computer Society (August 2011)

van Riemsdijk, M.B., Hindriks, K., Jonker, C.: Programming organization-aware
agents. In: Aldewereld, H., Dignum, V., Picard, G. (eds.) ESAW 2009. LNCS
(LNAI), vol. 5881, pp. 98—-112. Springer, Heidelberg (2009)

	The AORTA Architecture:
Integrating Organizational Reasoning in Jason

	1 Introduction
	2 Organizational Modeling
	2.1 Organizational Metamodel
	2.2 The First Responders Scenario

	3 The AORTA Architecture
	3.1 Mental State
	3.2 Acting and Coordinating
	3.3 AORTA Reasoning Cycle
	3.4 AORTA Programs
	3.5 Implementation Overview
	3.6 Integration Considerations

	4 Evaluation of AORTA in
	4.2 The First Responders Scenario

	5 Related Work
	6 Conclusion and Future Work
	References

