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Abstract. This paper proposes the Multi-Operation Patrol Scheduling
System (MOPSS), a new system to generate patrols for transit system.
MOPSS is based on five contributions. First, MOPSS is the first system
to use three fundamentally different adversary models for the threats of
fare evasion, terrorism and crime, generating three significantly differ-
ent types of patrol schedule. Second, to handle uncertain interruptions
in the execution of patrol schedules, MOPSS uses Markov decision pro-
cesses (MDPs) in its scheduling. Third, MOPSS is the first system to
account for joint activities between multiple resources, by employing the
well known SMART security game model that tackles coordination be-
tween defender’s resources. Fourth, we are also the first to deploy a new
Opportunistic Security Game model, where the adversary, a criminal,
makes opportunistic decisions on when and where to commit crimes.
Our fifth, and most important, contribution is the evaluation of MOPSS
via real-world deployments, providing data from security games in the
field.
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1 Introduction

Research in Stackelberg security games has led to several real-world deploy-
ments to aid security at ports, airports and air transportation [16]. Such sys-
tems generate unpredictable security allocations (e.g., patrols and checkpoints),
while carefully weighing each potential target, considering the scarcity of de-
fender resources and the adversary’s response. In a Stackelberg security game,
the defender (e.g., the security agency) commits to her strategy first, taking into
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account the attacker’s (e.g., a terrorist’s) ability to conduct surveillance before
launching his attack [5,6].

Among the different applications of security games, the problem of patrolling
a transit system has gathered significant interest [9,17]. Due to the large volume
of people using it every day, a transit system is a key target for illegal activities
such as fare evasion (FE), terrorism (CT) and crime (CR). The security of such a
system then, poses a number of challenges. The first challenge is multi-operation
patrolling. Whereas most previous work in security games has focused on single
threats which could be represented with a single adversary model (e.g., PRO-
TECT, TRUSTS and IRIS)[16], the comprehensive security of a transit system
requires different specialized security responses against three threats (FE, CT
and CR). The second challenge is execution uncertainty. Security resources are
often interrupted during their patrols (e.g., to provide assistance or arrest a sus-
pect). Thus, traditional patrol schedules are often difficult to complete. Current
research in security games has proposed the use of Markov decision processes
(MDPs) to plan patrols under uncertainty [9]. However, such schedules were not
actually deployed in the field, therefore, their real effectiveness has yet to be
verified in the real-world. The fourth challenge is accounting for joint activities.
In CT patrolling, security resources, such as explosive detective canine (EK9)
teams, often patrol train lines in cooperation with other resources. By doing
so, their effectiveness is increased. Recently, [14] proposed a new security game
model, SMART (Security games with Multiple coordinated Activities and Re-
sources that are Time-dependent), that explicitly represents jointly coordinated
activities between defender’s resources. [14]. Yet, similarly to the work of [9]
discussed earlier, this framework has still not been deployed in the real-world.
The fourth challenge is crime. Literature in criminology describes criminals as
opportunistic decision makers [15]. At a specific location, they decide whether
to commit a crime based on available opportunities and on the presence (or lack
thereof) of security officers. Thus far, this type of adversary—Iless strategic in
planning and more flexible in executing multiple attackes— has not been ad-
dressed in previous work, which has focused on strategic single shot attackers
[16].

The fifth and most important challenge is that, despite earlier attempts [13],
the actual evaluation of the deployed security games applications in the field
is still a major open challenge. The reasons are twofold. First, previous appli-
cations focused on counter-terrorism, therefore controlled experiments against
real adversaries in the field were not feasible. Second, the number of practical
constraints related to real-world deployments limited the ability of researchers
to conduct head-to-head comparisons

To address these challenges, this paper introduces five major contributions.
Our first contribution is MOPSS, the first Multi-Operation Patrol Scheduling
System for patrolling a train line. MOPSS provides an important insight: the
multiple threats (FE, CT and CR) in a transit system require such fundamen-
tally different adversary models that they do not fit into state-of-the-art multi-
objective or Bayesian security game models suggested earlier [18,4]. Instead,
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in MOPSS each of the three threats is modeled as a separate game with its
own adversary model. These three game formulations provide security for the
same transit system, require data from the same transit system as input, use
smart-phones to display the schedules and share several algorithmic insights.
Our second contribution addresses execution uncertainty. We deployed MDP-
based patrol schedules in the field, and used sampling-based cross-validation to
handle model uncertainty in such MDPs [8]. Similarly, our third contribution
is the deployment of coordinated schedules for CT patrolling. We incorporate
the framework in [14] to MOPSS, and use it to generate patrols for counter-
terrorism. Fourth, we address crime patrolling. Our contribution is the first ever
deployment of opportunistic security games (OSGs). We model criminals as op-
portunistic players who decide whether to commit a crime at a station based on
two factors, the presence of defender resources and the opportunities for crime
at the station.

Our fourth contribution is the real world evaluation of MOPSS. This eval-
uation constitutes the largest scale evaluation of security games in the field in
terms of duration and number of security officials deployed. As far as we know,
it constitutes the first evaluation of algorithmic game theory in the field at such
a scale. We carefully evaluated each component of MOPSS (FE, CT and CR)
by designing and running field experiments. In the context of fare evasion, we
ran a 21-day experiment, where we compared schedules generated using MOPSS
against competing schedules comprised of a random scheduler augmented with
officers providing real-time knowledge of the current situation. Our results show
that our schedules led to statistically significant improvements over the com-
peting schedules, despite the fact that the latter were improved with real-time
knowledge. For counter-terrorism, we organized a full-scale exercise (FSE), in
which 80 security officers (divided into 14 teams) patrolled 10 stations of a
metro line for 12 hours. The purpose of the exercise was a head-to-head compar-
ison of the MOPSS game-theoretic scheduler against humans. The comparison
was in terms of the schedule generation process, as well as provide a thorough
evaluation of the performance of both schedules as conducted by a number of
security experts. Our results show that MOPSS game-theoretic schedules were
able to perform at least equivalently to (and in fact better than those) generated
by human schedulers. Finally, we ran a two-day proof-of-concept experiment on
crime where two teams of officers patrolled 14 stations of a train line for two
hours. Our results validate our OSG model in the real world, thus showing its
potential to combat crime.

2 Transit Line Patrolling

The Los Angeles Sherift’s Department (LASD), the security agency responsible
for the security of the Los Angeles Metro System (LA Metro), requested a multi-
operation patrol scheduling system to improve and facilitate the comprehensive
security of each train line. This system should generate randomized schedules
for three different operations each addressing a fundamentally different threat:
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Fare Evasion Patrols (FE): This type of patrol covers both the trains and
the stations of a train line. The purpose is to capture as many fare evaders as
possible to improve the perception of order within an area. Thus, this type of
patrolling should favor the locations with a large volume of riders because it
would lead to a large number of fare evaders caught.

Counter-Terrorism Patrols (CT): This type of patrol covers the stations of
a train line. Each station concentrates a large number of people at a specific
place and time. In addition, in Los Angeles, several stations are located within
key economic and cultural areas of the city (e.g., tourist locations, business and
financial districts). Thus, the effects on society of any successful attack on the
metro system would be catastrophic. Terrorists are then strategic adversaries
who carefully study the weaknesses of a train line before committing an attack.
To optimize security, this type of patrol should cover the different stations while
favoring the stations either with large passenger volume and/or located in key
areas.

Crime: This type of patrol covers the stations of a train line. Crimes can be of
different types including robbery, assaults and drug dealing. Each of this crimes
is a symptom that the train line’s security is not sufficient. In addition, criminals
behave differently than terrorists or fare evaders. They are opportunistic decision
makers, they randomly traverse a train line, moving from station to station,
seeking opportunities for crime (e.g., riders with smart-phones) [2,15]. The key
purpose of crime patrolling is then to patrol each of these stations, while favoring
the stations representing “hot-spots” for crime (i.e., the most attractive stations
from a criminal’s perspective).

Given the three operations defined above, the LASD computes patrol sched-
ules, manually, on a daily basis. This task, however, introduces a significant
cognitive burden for the human expert schedulers. Thus, to generate more effec-
tive schedules in a timely fashion, we introduce MOPSS, described in the next
section.

3 MOPSS

MOPSS addresses the global security of a transit system. Hence, it presents two
key advantages for the LASD. First, it can be used to generate specialized patrols
for substantially different threats and second it concentrates all the information
relevant to the comprehensive security of each transit line (e.g., crime and rider-
ship statistics). MOPSS is comprised of a centralized planner and a smart-phone
application (shown as a demonstration in [11]). The system is shown in Figure
1. The core of MOPSS consits of the three game modules. Each module gen-
erates patrols for one operation (FE, CT or CR). Each operation deals with a
fundamentally different adversary model (fare evaders, terrorists or criminals),
therefore each operation is modeled as a different two-player security game (the
defender’s resources represent the security officers). Each module takes as input
the information about the requested patrol (i.e., the number of officers, the start-
ing time and the duration) and connects to a database to get the data necessary
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Fig.1. The MOPSS system

to build the security game model. Each game is cast as an optimization problem
and sent to the SOLVER which contains three algorithms, one for each game
[14,20,9]. Once the game is solved, the defender’s mixed strategy is sent to the
SAMPLER to produce the schedule which is uploaded into the application.

3.1 Fare Evasion Module

This module aims to generate the defender’s (i.e., security officers’) mixed strate-
gies against fare evaders [9]. The idea is to use such strategy to derive patrol
schedules that randomly favor the trains and the stations with a large volume
of riders. Fare evaders are modeled as daily riders based on statistics.

The key requirement of fare evasion patrolling is to be able to address ex-
ecution uncertainty. To do so, in the FE module, the mixed strategy for each
defender resource 7 is determined by an MDP denoted by a tuple (S;, A;, T;, R;)
where: (i) S; is a finite set of states (s; = (I,7) where [ is a train or a station and
7 is the time step); (ii) A; is a set of two actions: perform a train or a station
check (equivalently do a train or a station check) and (iii) T;(s;, a4, s;) is the
transition probability which can model execution uncertainty such as an officer
being delayed while trying to conduct a fare check (e.g., due to arrests) and (iv)
R; is the immediate reward for transition (s;, a;, s;). Although this reward could
potentially model more complex domains, it is unrelated to the game-theoretic
payoffs, and is not considered in the remainder of this work.

The FE game is then represented as a two player Bayesian zero-sum game
(see [9] for the definition of the linear program). Given a resource ¢ and rider
A € A (i.e., defined by their daily itinerary in the train line), the objective is to
maximize the expected utility of the defender, defined as max } . 4 paux where
each utility u) is the defender’s payoff against passenger type A, which has a prior
px calculated using ridership statistics (calculated using ridership statistics).
Each uy is calculated by the constraint uy < x”7UjyenVA, o where each utility
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Ux(si, a;, s}, o) represents the payoff that resource ¢ will get for executing action
a; in state s; and ending up in s}, while the attacker plays action « (defined
by the base vector e,) and x is the marginal probability that the resource will
actually go from s; to s;. In other words, x represents the probability that the
officer will overlap with a fare evader of type A playing action .

The optimization problem defined above is used by the SOLVER module to
produce a mixed strategy represented as a Markov policy m;. The SAMPLER
then generates a single MDP patrol schedule that is loaded onto the handheld
smartphone. An example of such a schedule is shown in Figure 2(a). The figure
shows the schedule as it is visualized by the mobile application. The schedule
contains two actions: train checks and station checks. Given that there is now
a full MDP policy on the smartphone, a schedule can be updated whenever a
security officer is delayed, by pushing the ”>" button shown in Figure 2(a).

We next turn to instantiating the parameters in this game model for deploy-
ment. Fortunately, given fixed train fares and penalties for fare evasion, popu-
lating the payoff matrices is straightforward. Furthermore, via observations, we
were able to set the transition function T;. However, the delay length, when-
ever an office was interrupted, seemed to vary significantly, and modeling this
variability became important. A continuous-time MDP or modeling multiple
fine-grained delays are both extremely expensive. As a practical compromise we
use a model considering a single delay whose value is chosen via cross-validation
[8]. First, we randomly generate N MDPs, each of which assumes that resource
1 can experience delays of five different lengths: 6, 12, 18, 24 and 30 minutes
(any delay longer than 30 minutes is considered to be beyond repair and a new
schedule is generated). Second, we solve each MDP and obtain N Markov poli-
cies ¥ corresponding to each M DP* which we cross validate by running 100000
Monte Carlo simulations. In each simulation, we sample one strategy for the de-
fender and calculate the resulting expected utility against all N MDPs. Finally,
we pick the policy that maximizes the minimum. If the officer gets into a state
not directly represented in the MDP, we pick the next available state at their
current action.

CURRENT ACTION: RRENT ACTION.

In Transit >
CURRENT ACTION: i E
_ T |

K
&o

Go North
UPCOMINGACTIONS: WILLOWBROOK (WILMINI
ERCOMING ACT:&NCShECk Transit Start Time: 17:20
Red Lie - Eastbound HW/V(S)->USB(PR) ~ ————— EndTime:17:30
Departing at: 15:34 Start Time: 14:15 Go South
Exit Station: CIVIC CENTER 103 ST
Station Check End Time: 14:45 & Start Time: 17:30
CIVIC CENTER i : .
e Observe End Time: 17:40
End Time: 15:48 USG(PR) Go North
Station Check WILLOWBROOK (WILMIN!
CIVIC CENTER Start Time: 14:45 & Start Time: 17:40
Start Time: 15:48 End Time: 15:00 End Time: 17:42
End Time: 16:08
(a) FE Schedule (b) CT Schedule (c) CR Schedule

Fig. 2. Three schedules for each threat of a transit system
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3.2 Counter Terrorism Module

The counter-terrorism module aims to generate a defender mixed strategy that
can be used to produce schedules that deter terrorists from attacking the stations
of a train line [14]. Since stations are often composed of multiple levels, these
schedules should then randomly patrol each of these stations while taking the
levels into account and while favoring the most important stations. Terrorists
are modeled as strategic adversaries who carefully observe the security of a train
line before executing an attack.

The key requirement of CT patrolling is to represent joint activities. We
achieve this by incorporating the SMART problem framework defined in [14]
in the CT component of MOPSS. A SMART problem is a Security Game [10]
such that each target t € T is assigned a reward Uj(t) and a penalty U} (t) if ¢ is
covered and uncovered by a defender’s resource. Similarly, each target is assigned
areward US(t) and a penalty U¥(t) for the attacker. The defender has a set of R
resources. Each resource chooses an activity from the set A = {a1,a0,... ax}
for each target ¢t € T. Each resource r € R is assigned a graph G, = (T, E,.),
where the set of vertices T represents the set of targets to patrol and the set of
edges F, represents the connectivity between such targets. Each edge e € E,. is
assigned a time value 7(e) representing the time that it takes to one defender
resource 7 to traverse e.

The attacker’s pure strategy space is the set of all targets, T'. A pure strategy
for the defender is a set of routes, one route X; for each resource. Each route
is defined as a sequence of activities «, conducted at a specific target ¢t with
specific duration . Joint activities are then represented when there exists two
routes X; and X; such that ¢; = t; and |y; — ;] < W, i.e. when two activities of
two different resources overlap in space and time (within a time window W). For
each activity o, eff(«;) represents the individual effectiveness of the activity «;,
which ranges from 0% to 100%, and measures the probability that the defender
will be able to successfully prevent an attack on target t. The effectiveness of
the joint activity (o, a;) is defined as eff(a;, a;).

Given these parameters, the expected utilities Ug(P;, t) and U, (P;, t) for both
players, when the defender is conducting pure strategy P; (defined as a joint
pure strategy for multiple defender resources), and when the attacker chooses to
attack target ¢ is given as follows:

w(P;) = max {eff(a),eff(ay, am)} (1)
(t,a,v)€EP;
{(tsalv'YI,)’(tsams'Ym)}gPi"'W*'Ym‘SW
Ua(Pi,t) = we(P:)Ug (1) + (1 — we(P:)) UG (t) (2)
Ua(Ps,t) = wi(Py)Ug (1) + (1 — we(Pi))Ug (1) (3)

Here w:(P;) defined in Equation (1) represents the effective coverage of the
defender on target ¢ when executing pure strategy P;.

To solve this problem, we use SMARTy, a branch-and-price, heuristic ap-
proach, which we incorporate in the SOLVER component of MOPSS. SMART g
is based on a branch-and-price framework, it constructs a branch-and-bound
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tree, where for each leaf of the tree, the attacker’s target is fixed to a different
t’. Due to the exponential number of defender pure strategies, the best defender
mixed strategy is determined using column generation, which is composed of
a master and slave procedure, where the slave iteratively adds a new column
(defender strategy) to the master. The objective of the pricing component is to
find the best defender mixed strategy x at that leaf, such that the best response
of the attacker to x is to attack target t’. The structure of the algorithm is il-
lustrated in Figure 3. In the figure, the master solves the non-zero-sum game to
get a defender mixed strategy over a small subset of joint patrol pure strategies.
After solving the master problem, the duals are retrieved and used as inputs for
the slave. The purpose of the slave is to generate a pure strategy which is then
added to the master and the entire process is iterated until the optimal solution
is found.

MASTER| , | SLAVE
E—
Non Zero-Sum Heuristic
Game pure Algorithm
strategies

Fig. 3. The column generation algorithm

An example counter-terrorism schedule, as visualized by the mobile applica-
tion, is shown in Figure 2(b). The schedule describes two actions, observe (patrol
a station) and transit (go to a station) each with a specific time and duration.
The key challenge to deploy CT schedules is to define an accurate SMART prob-
lem instance to accurately encompass the real-world problem. To achieve this,
we had to define three types of features. First, we had to define the payoffs of
the game!. We defined the payoffs for each target (32 in total) in discussions
with security experts from the LASD. Each set of payoffs for each station was
based on the number of people using the station every day and by the economic
impact that losing this station would have on the city. The different levels of a
single station had slightly different payoffs which were based on the number of
persons present at each specific level of the station every weekday. Second, we
had to define the defender different resources, i.e., the type of teams participat-
ing to the experiment, which we will refer to as type 1 to type 52. Third, we
had to define the single and joint effectiveness for both the observe and transit
actions. All Transit actions were given a 0 effectiveness, since moving from one
station to another (i.e., riding the trains or taking the car) will not have any
effect on the security of the stations. Most teams were assigned the same positive
individual effectiveness of 0.7, except one Type 3 which has a greater individual
effectiveness because it is composed of officers from multiple agencies carrying

! We are not able to reveal the value of these payoffs due to an agreement with the
LASD.

2 The real name of each type is omitted as requested by the agencies participating to
the FSE.
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heavy weapons. Resources of types 1, 2 and 3 typically work alone. Hence, to de-
fine their effectiveness values, their individual effectiveness is positive while their
joint effectiveness is null (any joint effectiveness value below 0.7 would induce
the same type of behavior, but we chose 0 since it is a clear indicator of the type
of behavior that we want to obtain). Resources of type 4 are assigned a joint
effectiveness greater then their individual effectiveness because they can perform
all type of activites, but, typically, they prefer joint over individual activities.
In contrast, resources of type 5 typically work only in cooperation with other
teams, therefore they are assigned a null individual effectiveness and a positive
joint effectiveness of 0.75.

3.3 Crime Module

The crime module aims to generate a defender mixed strategy to prevent crime
on a train line. The idea is to generate schedules that take criminal behavior into
account and attempt to predict the stations that are more likely to be affected
by crime. Crime statistics are used to characterize the behavior of criminals
and the attractiveness that they attribute to each station of the train line. The
key difference with the previous modules is that criminals behave differently
than fare evaders and terrorists. They are less strategic in planning crimes and
more flexible in committing them than is assumed in a Stackelberg game. They
opportunistically and repeatedly seek targets and react to real-time information
at execution-time, rather than strategically planning their crimes in advance.

Crime schedules are computed using an OSG [20]. An OSG is similar to a
Stackelberg game in that the defender commits to a patrol strategy first, after
which the criminal chooses the station(s) to attack given their belief about the
defender’s deployment. In an OSG, the defender’s actions are computed using
a Markov chain, which assigns probabilities for how the defender should move
through the train line. The criminal’s behavior is defined by a quantal-biased
random walk, i.e., the next station to visit for potentially committing a crime
is determined according the quantal response model [16]. This model takes as
input information the attractiveness Att(i) of each station ¢ and the criminal’s
belief about the defender’s strategy which is updated using real-time observa-
tions. Station attractiveness is a measure based on crime statistics about the
availability of opportunities for committing crime as well as how likely criminals
are to seize such opportunities. The behavior models for both the defender and
the criminal are combined to form a Markov chain with transition matrix Tj,
which along with the rewards to the defender, define an OSG that can be solved
to generate an optimal defender strategy. To solve an OSG, we iteratively calcu-
late the defender expected utility Vg over all the possible states of the Markov
chain for a number of crime opportunities &k as follows:

K
Obj = lim_ ;)Vd(k +1)

=ry-(I—(1—a)T,) Xy, (4)
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where Ry is a vector defining the utility of each state of the Markov chain in
terms of the payoff ug for the defender and the attractiveness Att(i); I is the
identity matrix; « is the probability of leaving the train line after an attack and
X is the initial coverage probability over all the possible states of the Markov
chain. By maximizing Obj (i.e., minimizing the total amount of crime in the
metro), we obtain a transition matrix 7. This matrix is then used to compute
the defender’s Markov strategy .

The maximization of Equation 4 is a nonlinear optimization problem. There-
fore, to scale up to the number of states necessary to represent a real train line
we use the Compact OPportunistic security game State algorithm (COPS) [20]
in the SOLVER module. COPS returns a number of coverage probabilities for
the different stations of the train line. These are then sent to the SAMPLER
module which generates a schedule. An example of a schedule for crime patrolling
is shown in Figure 2(c). It describes three actions, go north (i.e., take the next
northbound train), go south (i.e., take the next southbound train) and stay (i.e.,
patrol a specific station).

To deploy crime schedules, two key challenges had to be addressed. The first
challenge deals with defining of the attractiveness parameter. In our work, we
define the attractiveness Att(i) of station ¢ following the statistical model pre-
sented in [15]. Formally, Att(i) = 1—exp~*N(®) where N (i) is the number of past
crimes at station 4 (based on actual crime statistics received from the LASD)
and a is a weighting coefficient. The second challenge is the parameterization
of the criminal behavior model, which consists of defining the quantal-biased
random walk. In our crime tests (Section 4.3), we defined the criminal behavior
in collaboration with both security agencies and criminologists.

4 Real World Evaluation

In collaboration with the Los Angeles Sheriff’s Department (LASD), we designed
three types of real world tests, one for each of the three operations defined in
Section 2. Each of these tests allows us to evaluate different aspects of game-
theoretic patrolling. This evaluation introduces the following novelties: (i) in fare
evasion, we present the first real world deployment of game-theoretic schedules
and analyze their performance against real adversaries (fare evaders); similarly,
(ii) in counter-terrorism, we present the first real world head-to-head comparison
between game-theoretic and human generated schedules. Finally, (iii) in crime,
we introduce the first deployment of OSGs. The crime tests provide the first
real world data showing the benefits of game-theoretic scheduling when facing
opportunistic attackers.

4.1 Fare Evasion Experiment

This experiment took place over 21 days during the months of July and Au-
gust 2013. The organization of the experiment (e.g., train the security officers,
design and organize the experiment in collaboration with the LASD) required
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approximately two weeks. This experiment had two key purposes. The first was
to validate the MDP model of the Fare Evasion module (Section 3.1) in the real
world. The second was to run a head-to-head comparison between the game-
theoretic approach calculated using MOPSS and a Markov policy that takes
execution uncertainty into account, but that assign actions based on a uniform
random probability. The uniform random Markov strategy (Markov UR) assigns,
given a state s € .S; of the MDP defined in Section 3.1, a uniform probability to
all the actions taken in s leading to another state s € S;. It was chosen because
it constitutes is the approach that security agencies adopt when they are not
using a game-theoretic approach for randomization. This section discusses the
setup of the experiment and the results that we obtained.

e  Downtown
NorthHolywood  Los Angeles

Pacific Coast Highway

Anaheim

LACMTA

Metro Blue Line
Map is simpilified and not to scale.  Long Beach

Transit Mall

Fig. 4. The map of the blue line of the LA Metro

Experiment Setup. The fare evasion experiment took place on the Blue line
of the LA Metro system (see Figure 4 for the map of the metro line). Other lines
could not be tested, because the LASD only allowed us to use our strategies on
the Blue line during our real-world test. This line consists of 22 different stations
and is one of the biggest lines in the LA Metro system. It was selected by the
LASD, which helped to organize the experiment (e.g., assign security officers
and patrol times).

Each day, a team of two security officers (see Figure 5), was randomly selected
by the LASD, to patrol the line for a duration of at most 120 minutes. Patrols
were run during both the morning and the afternoon. Some days the tests ended
early due to the officers being reassigned. One of the two officers acted as the
leader of the team: he was given the smartphone, he had to read the schedule
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Fig. 5. Two security officers performing fare checks on a train

to the other officers, collect the data and eventually update it whenever a delay
occurred. An update could be made either during a station-check, i.e., when
checking riders at a station, or during a train-check, i.e., when checking riders
on the coach of a train. In the latter case, the officers were required to leave the
train at the next station to request an update. This was required because the
Markov strategy is defined over each state of the MDP (i.e., station, time). Thus
any new strategy has to be sampled from a specific state. Every week the team
was provided with one of two types of schedules:

Game-theoretic schedules (GT): This type of schedule was generated using
MOPSS’ fare evasion component (Section 3.1).

Markov UR schedules (UR): This type of schedule was generated by mod-
eling the problem as an MDP. However, the corresponding Markov strategy
Ts;,a;, fOr each state s; and action a; was calculated assuming a uniform
probability distribution.

The officers were not told which schedule they were using as not to bias their
performance. Before the experiment, we anticipated that the officers might view
some of the schedules as leading to low performance in terms of catching very
few fare evaders. In such situation, the officers, in order to avoid poor perfor-
mance, might end up voluntarily deviating from their given schedules to reach
a better location because they were unsatisfied with the current one. In antici-
pation of such voluntary deviations, we augmented both the game-theoretic and
UR schedules with the ability to perform updates. More specifically, we allowed
the officers to request VOLUNTARY or INVOLUNTARY updates. VOLUN-
TARY updates consisted of the officers updating the current schedule because
in their opinion, the current specified action was not fruitful as a venue to check
fares. Officers were allowed to choose a new location that they considered more
fruitful for catching fare evaders and request a new schedule from there. INVOL-
UNTARY updates consisted of the officers requesting a new schedule because
they were delayed (e.g., from issuing citations or arresting a suspect) and were
unable to perform the next action on their schedule. This type of update could
be requested anytime an officer was delayed. As we will see below the officers
used VOLUNTARY updates almost every day with the UR schedules, but never
in the GT schedules.
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Table 1. Patrol duration over each of the 21 days

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 total
GT 60 60 90 60 90 10 90 110 90 90 105 855
UR 60 60 60 60 60 75 100 100 100 90 765

Finally, it is important to notice that given the duration of our experiment, the
game-theoretic schedules are essentially testing a maximin strategy. As discussed
in Section 3.1, the fare evasion component computes a Stackelberg strategy, a
strategy based on the assumption that the riders will conduct surveillance and
observe the defender’s mixed strategy. However, considering only 21 days of pa-
trol whereby the officers could only patrol less than few hours per day, either
in the morning or the afternoon, we cannot assume that the riders had suffi-
cient time to conduct accurate surveillance, observe the mixed strategy and best
respond to it. Nonetheless, the FE component in Section 3.1 solves a zero-sum
game for which a Stackelberg equilibrium and the maximin strategy are known to
be equivalent [19]. Thus, since the maximin strategy provides a guaranteed level
of defender utility without making any assumption on the adversary’s surveil-
lance of the defender’s mixed strategy, these experiments compare the benefit
of using a maximin strategy against other (non-game-theoretic) approaches for
generating patrol schedules.

Results. During the 21 weekdays of our experiments, we were able to run GT
schedules for 11 days of testing while UR schedules were deployed for 10 days,
resulting in 855 and 765 patrol minutes, respectively. The schedules were com-
pared using two different metrics. First, we counted the number of passengers
checked and the number of captures at the end of each patrol. The captures were
defined as the sum of the number of warnings, citations, and arrests. Passengers
without a valid ticket could be given a warning or cited for a violation on the
discretion of the officer. This metric was chosen because it would allow us to
measure the performance of each schedule in the real world. Second, we counted
the number of times that the update function was used voluntarily and involun-
tarily. While involuntary updates helped determine the value of using MDPs as
discussed below, voluntary updates measured the human (officer) perception of
quality of the schedules — the more such voluntary updates, the more the officers
were dissatisfied with their given action. Table 1 shows the duration of each day
of patrol for both GT and UR schedules?.

As shown in the table, the actual duration of a daily patrol was often different
over the 21 days of the experiment, for both GT and UR schedules. For this
reason, providing a comparison normalized over the days of the experiment was
impossible. However, most of the days, we were able to collect data for multiples

3 As shown in Table 1, each day of patrol correspond to a 2-day test where GT
schedules were tested on the first day and UR schedules were tested on the second,
both at identical times.
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Table 2. Number of INVOLUNTARY (delays) deviations for each day of patrol

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 total
Gro 1 3 1 1 0 2 2 4 2 1 18
URO 2 1 1 1 2 2 2 3 2 16

Table 3. Number of VOLUNTARY (updates) deviations for each day of patrol

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 total
GIro o o 0 00O OO O O 0
UR1 0 1.1 1 0 1 1 1 1 8

of 30 minutes (e.g., 60, 90 minutes). Hence, to properly compare our results, we
divided our data in 30 minutes segments. More specifically, we considered all the
train and station checks within a time window of 30 minutes and collected the
data resulting from these actions*. Having defined the data points, we can now
proceed to analyze our results.

Validation of the MDP Model: As discussed at the beginning of this section
Both GT and UR schedules were calculated by solving an MDP. For this reason
both schedules could be updated to request a new schedule. Tables 2 and 3 then
show, for each day of patrol, the number of VOLUNTARY and INVOLUNTARY
deviations requested by the officers. In total, GT schedules were updated 18
times, all of which were involuntary deviations, i.e., delays. All these update
requests confirm that the MDP model was able to provide schedules that could
be updated whenever necessary.

All INVOLUNTARY deviations were due to the officers writing citations or
helping people. The average delay length was of 12 minutes (the largest delay
was of 20 minutes). In each case, as discussed at the beginning of this section,
a new schedule was provided starting at the officers’ current location and clos-
est time. Finally, Table 3 shows that voluntary deviations were used only with
UR schedules. This result strongly suggests that the officers were mostly satis-
fied with GT schedules. In addition, it means that GT schedules did not really
compete against UR schedules only. Rather, the comparison was between UR
schedules which were augmented with real-time human intelligence for most of
the time (8 out of 10 days). We discuss the results of such comparison next.

Game-Theory vs. Uniform Random: The results that we obtained are
shown in Figure 6 and in Table 4. Figure 6 shows eight boxplots depicting the

4 In so doing, the segments are also statistically independent. Within each segment
the officers will check different people who are unable to affect each other. Each
segment corresponds to a sample of different train riders taken at different times
and locations. Not only do the officers never check the same rider twice but most
importantly, during 30 minutes, they will visit different locations by riding the trains
(roughly, one train every 6 minutes in the blue line) and inspecting the stations (on-
station operations last no longer than 20 minutes).
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Fig. 6. Results of the Fare Evasion tests

data that we collected during each patrol, using both GT and UR schedules.
Respectively, the four figures present data collected on captures (Figure 6(a)),
warnings (Figure 6(b)), violations (Figure 6(c)), and passengers checked (Figure
6(d)) per 30 minutes of patrolling®. For each boxplot, the top and bottom of
the box represent the 75th and 25th percentiles, respectively, while the middle
line indicates the median of the collected data. The ”+” data points indicate
statistical outliers, while the whiskers show the most extreme non-outlier data
points. Each of the four figures (captures, warnings, violations and passengers
checked) shows that the data collected using GT schedules had higher values
than the data collected using UR schedules. As shown in Table 4, on average,
GT schedules led to, respectively 15.52 captures, 10.42 warnings and 5.03 vio-
lations issued every 30 minutes against, respectively against 9.55 captures, 6.48
warnings and 3.07 violations obtained using UR schedules. To confirm the statis-
tical significance of these results, we ran a number of weighted unpaired student
t-tests (p = 0.05) [7,1] and verified, for each metric, that the difference in the
results was statistically significant. We used a weighted t-test because some data
segments had a duration shorter than 30 minutes and we wanted to use all the

® GT schedules also led to two arrests on day 6. This is why the patrol only lasted 10
minutes.
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Table 4. Average captures (C), warnings (W), violations (V) and passengers (P) based
on the results obtained in Figure 6

Days avg. C avg. W avg. V avg. P
GT 11 1552 10.42 5.03 96.77
UR 10 9.55 6.48 3.07 60.85

available data for our analysis. As shown in Table 1, not all the patrol durations
could be properly divided into a finite number of 30 minutes segments (e.g., UR:
D6, D7, D8, D9 and GT: D6, D8, D11). Therefore, we calculated a weighted
average for each of the metric defined above, whereby each segment was given
a weight which was defined based on the segment’s duration (longer segments
corresponded to higher weights).

From a practical perspective, the magnitude of the difference between the two
approaches is significant: cumulatively over a period of 21 days GT would cap-
ture a much larger total number of fare evaders. This result can be emphasized
even further if we correlate it with the results shown in Tables 3 and 2. While
running UR schedules the officers were requesting INVOLUNTARY deviations
essentially every day, whereas no such deviations were requested while running
GT schedules. In other words, they were using real-time situation awareness
to augment the quality of the schedules, thus making the UR schedule more
compelling.

The results in Table 4 also indicate that GT schedules led to 96.77 passen-
gers checked every 30 minutes against 60.85 passengers checked by using UR
schedules. As discussed in [9], GT schedules are generated by leveraging all the
possible sequences of train and station checks and by taking into account key
dimensions such as the train schedules, the officers’ effectiveness and, most im-
portantly the daily ridership statistics. This means that stations or trains with
a higher presence of riders will be given a higher coverage probability since they
are more likely to contain fare evaders. Hence, these results confirm the accuracy
of the model as both Figure 6(d) and Table 4 show that GT schedules led the
officers to check more passengers than UR schedules.

This raises the question of whether a static type of schedule, which only
deploys the officers at the most crowded locations, would lead to similar or
even better results than those obtained with GT. Given the limited amount of
time that we had to conduct our experiments, we were unable to compare GT
schedules against a static deployment — where the key weakness is predictability
in the longer term. Indeed, effective randomization was one of the main reasons
for LASD to collaborate on these experiments — security agencies know that
static schedules become predictable in the long term®. After a certain amount of
time, the passengers would know where the officers are located and could exploit
this information to avoid paying the fare.

5 [16] discusses the benefits of randomization in detail.
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4.2 Counter-Terrorism Experiment

The purpose of this experiment is to run a head-to-head comparison between
MOPSS and a manual allocation, the standard methodology adopted by several
security agencies. Security agencies refer to this type of experiment as a mass
transit full scale exercise (FSE). A FSE is a training exercise where multiple
security agencies analyze the way their resources cooperate to secure a specific
area while simulating a critical scenario. This scenario typically describes a “high
level” threat, e.g., intelligence reports confirming that a terrorist attack might
take place in the Los Angeles Metro System. The FSE consists of simulating the
response to this threat, i.e., increasing the number of resources patrolling a train
line on a daily basis to improve the quality of the security.

Setup: The FSE consisted of patrolling 10 stations of one train line of the
LA Metro system for 12 hours. Each station on the train line is composed of
three levels (street level, platform level and mezzanine) except station 1 which
is composed of 5 levels (2 more platform levels). The exercise involved multiple
security agencies, each participating with a number of resources. Overall, 80
security personnel were involved. These resources were divided into 14 teams,
each with different abilities (see Section 3.2).

The exercise was divided into 3 different “sorties”, each consisting of three
hours of patrolling and one hour of debriefing. Human-generated schedules were
used during the first sortie while MOPSS schedules were used during the second
and the third sorties. The first two sorties were used to run the head-to-head
comparison. Hence, the sorties were ran under the same settings: the same num-
ber of officers had to cover the 10 stations for a cumulative time of 450 minutes.
The two sorties were ran during off-peak times (9h00 to 12h00 and 13h00 to
16h00, respectively), hence the type and the number of riders of the train lines
could be considered to be, approximately, the same. The purpose of Sortie 3
was to test whether the officers were capable of following MOPSS schedules for
a longer period (900 minutes instead of 450) and during peak time. We found
out that the officers were actually able to follow the schedules. Thus, since the
purpose of this Sortie was unrelated to our comparison, we will focus on Sorties
1 and 2 in the remainder of this section. Each type of schedule was generated as
follows:

MOPSS schedules: The schedules were generated by (i) instantiating a CT
game using the specifics of the FSE discussed earlier; (ii) solving this prob-
lem instance using the SOLVER and (iii) sampling a pure strategy in the
SAMPLER to generate the patrol schedule for each of the different resources
involved. Specifically, we ran the SMART 7 in the SOLVER component, con-
sidering 14 resources and 32 targets. The algorithm produced a mixed strat-
egy which was then sampled to generate a pure strategy in the SAMPLER.
This pure strategy contains a schedule for each resource.

Manual Schedules: The schedules were generated by human expert schedulers of
the LASD. They were generated using a two-step process. First, each

. . . . . th
station was assigned a coverage duration of 45 minutes (i.e., 110 of
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the time). The idea was to have the officers perform three observe actions at
each station. Second, the human expert schedulers assigned teams to each
station so that each station was covered for exactly 45 minutes. Joint team
activities were used 6 times in six different stations. This simple two-step
process was adopted to avoid the cognitive burden involved with leveraging
the effectiveness of each team to cover the different stations individually or
while coordinating with other teams. Despite its simplicity, this process was
difficult for the human expert schedulers. It involved several discussions and
required one entire day of work.

Results: We first analyze the type of schedules generated as a result of using
either MOPSS or manual scheduling. Then, we evaluate the results obtained by
deploying the schedules during Sorties 1 and 2 and measuring their performance
in the real-world.

Table 5. Count of Individual Activities

S1 S2 S3 S4 S5 Se¢ S7 Ss S9 S1o
Manual 3 3 3 2 3 2 2 2 2 2
MOPSS 2 2 3 3 2 2 2 3 3 2

Table 6. Count of Joint Activities

S1 S2 S3 S4 S5 S S7 Sg Sg Sio
Manual 0 0 0 1 0 1 1 1 1 1
MOPSS1 0 0 002 011 1

The numbers of individual and joint activities for both the schedules generated
during the FSE are shown in Tables 5 and 6. In both tables we can see that the
number of individual (IA) and joint (JA) activities for both approaches are the
same (TA: both 24; JA: both 6). All the joint activities in the MOPSS schedules
are performed by CRM and EK9 teams, i.e., the teams with a positive joint
effectiveness. This is similar to the behavior of the manual generated schedules,
where joint activities are mostly performed by resources of types 4 and 5 (once by
a team of resources of type 3). The remaining individual activities are performed
by resources of type 1, 2 and 3.

There are two important differences between the two types of schedules. First,
MOPSS sent the most effective type, type 3, to the most important stations be-
cause its individual effectiveness is greater than the effectiveness of other teams.
This was not seen in the human schedule. Second, the schedules generated us-
ing MOPSS assigned the different teams to cover all the different levels of the
different stations, whereas manual schedules did not specify such levels. The
reason for this is that human schedulers were not able to reach this level of
detail and thus they preferred to leave the decision of which level to patrol to
the teams once they were deployed. In addition, the effort required to generate
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the schedules using MOPSS was much lower than the effort required to generate
manual schedules, which required one day of work due to its significant cogni-
tive burden. Since typically such patrols would be conducted day-in and day-out
for several days in high-threat periods, the savings of human effort achieved by
game-theoretic schedulers are thus very significant.

Each type of security allocation (either manual or game-theoretic based on
MOPSS) was evaluated by security experts. A team of security experts (SEs)
was placed at each station for the entire length of the exercise. Their task was
to observe and evaluate the officers’ patrolling activity during each sortie, and
determine how their behavior was affecting the quality of the security within
each station. In what follows, we report the conclusions of their analysis. The
SEs did not know what type of schedules (so as to not bias their evaluation). To
translate the observers’ observations into a comparable value, each observer was
asked to fill out a questionnaire every 30 minutes. The objective was to define a
number of key sentences that could help to qualify the way in which the security
officers had been patrolling the station in the last 30 minutes. Each question-
naire contained 11 assertions about the level of security within the station. The
assertions were defined in collaboration with a team of SEs from the LASD and
with social scientists. Each SE had to determine his level of agreement with each
assertion, which was defined in the integer interval {0,6}, where 0 meant a strong
disagreement, whereas 6 meant a strong agreement.
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Fig. 7. Evaluation of the FSE: average agreement over the different questions and
stations

Figures 7(a) and 7(b) show the results that we obtained. Figure 7(a) shows
the weighted average agreement obtained for each assertion calculated over all
the stations (the average was calculated considering each station’s correspond-
ing weight). Figure 7(b) shows the average agreement obtained for each station
calculated over all the assertions. The error bars in both figures show the stan-
dard error of the mean calculated for each specific assertion (in Figure 7(a)) and
station (in Figure 7(b)). As we can see the difference between some data points
of the two approaches do not seem to be statistically significant. A student t-test
confirmed this trend. This is expected, since we were only able to collect data
for few hours of a single day. Nonetheless, we can still acquire some interesting
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information about the performance of game-theoretic schedules in the field, by
analyzing the results that are statistically significant.

In Figure 7(a), we can see that MOPSS schedules seem to yield a higher
level of agreement than manual schedules over all questions. As shown in the
figure, the difference is significant only for assertions @1, Q2, Qs and QJ9.These
four assertions correspond to very general statements about the security at each
station which address the efficiency of the schedules, their ability to provide a
strong feeling of safety and to allow the officers to patrol each area as much as
needed.

Similarly, in Figure 7(b), we can see that the average agreement is higher for
MOPSS schedules over Manual schedules for stations S, S, S3, S4, Ss, Sg and
S10. Some of these stations (S, Ss and Sy) are the ones assigned a higher set of
payoffs, as discussed above. Hence, they correspond to the ones given a higher
coverage by MOPSS.

These results indicate that game-theoretic schedules were evaluated as more
effective than manual schedules. By analyzing the differences between the sched-
ules, we can infer that this happened for two key reasons. First, as discussed
earlier, manual schedules were generated by leaving the decision of which level
of a station to patrol to each deployed team. The officers then, were not able to
properly coordinate over the different levels to patrol and therefore they ended
up patrolling the same levels. Second, MOPSS produced a schedule which more
effectively scheduled resources of type 3, i.e., the team with the highest effec-
tiveness (0.8) for covering each target. More specifically, the resources of type
3 patrolled all the most important stations at key levels. In contrast, manual
schedules assigned the same type of resources, without accounting for their ef-
fectiveness. This made an impact on the security evaluators, which considered
the game-theoretic allocation more effective than the manual allocation, because
it was leveraging the abilties of the resources in a way that human experts could
not achieve.

4.3 Crime Experiment

Our crime experiment was designed to be a proof-of-concept of MOPSS crime
component. As discussed in Section 3.3, OSGs are a new framework to represent
opportunistic adversaries. The purpose of our experiment is then to validate
this new framework in the real world to ascertain its ability to generate effective
schedules against crime. The experiment was organized as follows:

Setup: We ran tests for two days with each test consisting of a two hours
patrol involving two teams of two security officers. Each team had to patrol
seven stations of a particular LA Metro train line using schedules generated
using MOPSS. MOPSS generated the schedules by converting crime statistics
into a set of coverage probabilities for the different stations. Figure 8 shows
such probabilities and correlates them to the crime statistics for each of the 14
stations to patrol. In the figure, the x-axis enumerates the 14 stations to patrol.
The bar graphs (y-axis on the right) show, for each station, the total number
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of crimes that happened during 2012 and 2013. Finally, the line graph shows
the different coverage probabilities calculated for each station (y-axis on the
left). In the figure, the stations with a larger coverage probability (stations 5
to 10) are either the stations with a large number of crimes (stations 5 and 8)
or the adjacent stations (Stations 6, 7, 9 and 10). The latter stations are given
a large coverage probability because the OSG model anticipates the possibility
that criminals will choose stations 6, 7, 9 and 10 anticipating that stations 5
and 8 will be frequently patrolled by security officers [20]. Hence, these coverage
probabilities show how game theory allows to build real world patrol schedules.

Results: During the tests, the officers were able to write 5 citations and make 2
arrests. In general, they were able to understand and follow the schedule easily.
Overall, these tests indicate that the CR module in MOPSS can produce effective
schedules that would work in the real world.
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5 Lessons Learned

The work presented in this paper is the result of a long term collaboration
between university researchers and personnel from different security agencies in-
cluding decision makers, planners and operators. To interact with such security
agencies, we took inspiration from the lessons presented in [13]. We discussed
the strengths and weaknesses of every aspect of MOPSS and emphasized the
requirement of learning from the field to ascertain the performance of our sys-
tem. In addition, The field experience allowed us to discover two new insights
regarding real-world applied research in security games: (i) testing this research
in the field requires a period of “immersion” and (ii) users are a key factor when
when running field experiments.

The first insight is a key lesson for running field experiments. Any real world
test of a security game based system will involve real security officers protect-
ing a critical area for a long period of time. To succeed in such an experiment,
researchers should immerse themselves in order to deeply understand the way
officers and, more generally, a security agency operate every day. A period of
“immersion”, as we did for both the FE and the CT experiments, also ensures
that the security agencies do not think researchers as ivory tower occupants
leading to easier acceptance of technology. To test MOPSS, we spent several



124 F.M. Delle Fave et al.

months observing the different security agencies patrolling the LA Metro to
understand how they operate so as to set up effective field experiments.

The second insight comes from our interactions with the security personnel.
These officers are the end users of our system. Thus, it is critical that they un-
derstand exactly the benefits of game-theoretic scheduling. Not doing this could
severely affect the results of the evaluation. As an example, at the beginning of
our FE tests (Section 4.1), the officers required a number of days to understand
that their schedules could be updated without having to request a new allocation
to the dispatch.

6 Summary

This paper steps beyond deployment to provide results on security games in the
field, a challenge not addressed by existing literature in security games. Readers
will notice that the paper does not contain any simulation results as all of our
results are based on real world experiments. We presented MOPSS, a novel
game-theoretic scheduling system for patrolling a train line. MOPSS introduced
five contributions not addressed in previous applied systems, including both
TRUSTS [18] and the system in [17].

The first contribution is multi-operation patrolling. Thus far, all existing
game-theoretic scheduling systems [16] (in particular TRUSTS) and the sys-
tem in [17] were focused on a single mission. In contrast, MOPSS is the first
deployed system to use three significantly different adversary models to develop
three different patrol schedules for the threats of fare evasion, terrorism and
crime. In contrast with previous work suggesting such threats could be modeled
as a multi-objective security game [4], A fundamental contribution of this paper
is the insight that these different threat types lead to fundamentally different
adversary models that cannot be folded into a single security game framework.
MOPSS then is built upon these three adversary models. The second contri-
bution deals with uncertain interruptions in the execution of patrol schedules.
Existing systems, including TRUSTS [18], generated patrols that were often in-
terrupted and left incomplete. This led to the use of MDPs for planning defender
patrols in security games [9]. MOPSS exploits this idea to generate patrols for
fare evasion. The third contribution is that MOPSS is the first system to gener-
ate patrols for counter-terrorism which accounts for joint coordinated activities
between defender resources. This is achieved by incorporating the framework in
[14] within both the SOLVER and the CT-Game in MOPSS. As a fourth contri-
bution, MOPSS is the first system to deploy the Opportunistic Security Game
model, where the adversary makes opportunistic decisions to commit crimes.

Finally, the fifth, and most important, contribution is the evaluation of MOPSS
via real-world deployments. We ran three field experiments showing the benefits
of game-theoretic scheduling in the real world. To the best of our knowledge, this
evaluation constitutes the first evaluation of security games and, most impor-
tantly, the largest evalutation of algorithmic game theory, in the field. Existing
literature on game theory in the field has focused on showing equilibrium con-
cepts in the human and animal activities [12,3]. Our work shares their enthusiasm
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of taking game theory to the field, but fundamentally focuses on algorithmic de-
ployments and the impact of such algorithms. Most importantly, our work opens
the door of applied research in security games to the realm of field evaluation.
Given the maturity that such research has acquired in the recent years and
its strong connection with real world patrolling problems, we argue that field
deployment should become a key area for future research in security games.
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