
The Interaction as an Integration Component
for the JaCaMo Platform

Maicon Rafael Zatelli and Jomi Fred Hübner

Department of Automation and Systems Engineering
Federal University of Santa Catarina (UFSC) – Florianópolis, SC – Brazil

xsplyter@gmail.com, jomi.hubner@ufsc.br

Abstract. Interaction is a subject widely investigated in multi-agent systems
(MASs), but some issues are still open. While most of current approaches of
interaction in MAS just consider the interaction between agents, some problems
are better modeled when the MAS is composed of agents, environment, inter-
action, and organization. In our approach, we integrate the interaction with the
other MAS components, like the organization and the environment, keeping it as
a first class abstraction. In this paper we present a conceptual model for the inter-
action component, a programming language to specify the interaction, and how
our approach was integrated in an MAS platform. The main result of this paper is
the conception of the interaction as a first class abstraction considering an MAS
composed of agents, environment, interaction, and organization.

1 Introduction

It is quite common in MAS that the agents need to interact to achieve their goals. Some-
times an MAS can be composed of Agent, Environment, Interaction, and Organization
as introduced in [15,23]. In this kind of MAS, the interaction does not concern only the
agents, it is strongly related to the environment and the organization of the system. For
instance, besides interacting directly with other agents, agents also interact with objects
in their environment by means of acting and sensing.

Many works already exist about agents, organization, and environment. There are
tools to specify, develop, and execute each of these components. For example, an MAS
developer is able to build the environment by means of CArtAgO [40], the organiza-
tion by means of AGR [21], ISLANDER [20], Moise [27], and so forth, and finally,
the agents by means of GOAL [24], JADE [11], 2APL [13], Jason [10], and so on.
There are also tools to link these components to work together, such as EIS [5] and
JaCaMo [9]. This separation of concerns can improve the maintenance, modularity, or-
ganization, reuse of code, etc. It is also easy to see that each of these components can
be programmed by different developers, which also facilitates the division of tasks.

In addition, several approaches defend the idea of keeping the interaction as a first
class abstraction [14, 32–34, 43, 44]. However, none of current works (Sec. 2) provide
us features to specify and execute the interaction considering the existence of the other
MAS components, that is, to allow the specification, development, and execution of the
interaction not considering only agents, but also considering the environment and the
organization.

F. Dalpiaz et al. (Eds.): EMAS 2014, LNAI 8758, pp. 431–450, 2014.
c© Springer International Publishing Switzerland 2014



432 M.R. Zatelli and J.F. Hübner

We already introduced a conceptual model and a programming language for the in-
teraction considering the other MAS components in previous works [49, 50]. In this
paper we focus on the integration of the interaction with the JaCaMo platform. JaCaMo
is a project that allows the developer to consider each one of the MAS components as
first class abstraction. Although the agent, environment, and organization components
are already considered by this platform, the interaction component was not properly
integrated. In this platform, the interaction is not a first class abstraction, it is simply re-
duced to messages coded inside the agents program. For instance, it is not easy to find
in the code how the system interaction is programmed (it is indeed spread in several
agent programs).

The aim of our work about interaction (conceptual model (Sec. 3), programming
language (Sec. 4), and integration with JaCaMo (Sec. 5)) is to provide a mechanism to
institutionalize how the agents may interact with the different elements in an MAS to
achieve the organizational goals. We are linking the organization (e.g. its goals) to the
agents (that should fulfill them) and to the environment (by defining interaction proto-
cols that could be used as guidelines for the achievement of the goals). By considering
the interaction with the environment, we can formalize more general situations in a pro-
tocol, where the agents should interact with the environment by means of performing
actions and perceiving changes. We are looking for an interaction component that is
able to deal with the other three MAS components. It means that we are considering a
more complex MAS, composed of Agent, Environment, Interaction, and Organization.
The main results that we got with our approach are detailed in Sec. 6 while further
works and conclusions are presented in Sec. 7.

2 Related Work

In this section, we present the interaction problematic and some related work. We start
with the works focused on interaction between agents, followed by those that consider
the interaction with the environment, and in the following, the works that regard the
interaction with the organization. Finishing this section, we mention some works that
have already introduced the interaction problematic considering the integration with the
three other components.

2.1 Interaction and Agents

There are several drawbacks of specifying the interaction inside of the agents code
[19, 32, 44]. One of them is related to the maintainability of the system. If the interac-
tion specification is modified, it is necessary to update the code of each agent involved.
Another one is related to the protocol composition. The protocols could not be com-
posed at run-time in order to allow more complex interactions.

As pointed by some approaches, it is unnecessary to keep the interaction control in-
side the agents code [31–33, 35, 44]. The separation of the two issues simplifies the de-
velopment of applications, leading to a modular approach [22]. Consequently, protocols
can be used to compose more complex protocols [12, 16, 17, 28, 37, 38]. In [28, 38, 44],
other advantages of a modular approach are presented such as the specification of



The Interaction as an Integration Component for the JaCaMo Platform 433

reusable protocols, the improvements in the validation process, and the capacity to share
protocols between agents at run-time.

2.2 Interaction and Environment

One of the main limitations in most of works is to consider the interaction only by means
of message exchange between agents, not considering the agent interaction with the
environment [2, 3, 6]. Some examples that justify this kind of interaction are presented
in [2,3]. One of these examples refers to the election in the human world. When people
have to do an election, they do not say the candidate name. They use their hands to
interact with the electronic ballot box or simply raise them without saying any word. On
the one hand, the electronic ballot box is responsible for computing the votes and notify
the winner. On the other hand, by raising their hands, people also may discover the
winner of some election only by counting the upper hands. In both cases, the interaction
occurs by actions and percepts in the environment and not by speech acts.

There are some works that consider the relation between interaction and environ-
ment. In [39] and [42], it is presented a model that allows some different kinds of
interaction, called overhearing, or eavesdropping. In this kind of interaction, the agent
intercepts messages of others by using the environment. The environment is a way to
send and receive messages. In [30], the aim is to conceive an environment as a way
to allow indirect interaction. Their focus is on interaction like stigmergy, which is the
interaction used by several natural systems such as amoebae and ants. In [35], the en-
vironment is considered as a mediator between agents and not a proper first class ab-
straction. In [31], the environment is also considered by another perspective: the agents
could recognize other agents by the concept of neighborhood. The agents are only able
to communicate with others depending on how far they are from each other. In both
cases [31, 35], it is not considered the actions or percepts performed by the agents in
the environment. Moreover, although their approach consider the concept of roles, such
roles are not related to organizational roles. As a consequence, the specification may
lack coherence since different role conceptualization may exist in different components.
A role, for example, while existing inside a protocol, may not exist in the organization.

The MERCURIO framework [2,3], a very similar work to ours, focus on integration
of the interaction model regarding agents and environment. The environment considers
the actions performed by the agents and the percepts that the agents may sense. How-
ever, the main aim of MERCURIO is to deploy the interaction with the environment,
thus the interaction is also not strongly connected with the organization. As in [31, 35],
the roles in the interaction are not the same roles as in the organization.

Finally, in [4, 41] the authors use artifacts to handle the interaction between the
agents. In [41], the aim is to provide a communication infrastructure based on arti-
facts. The implementation of such infrastructure is done in JaCaMo platform [9] and the
authors provide the representation of two kinds of artifacts. The former has the aim
to represent the interaction protocol itself and allows the specification of a sequence
of messages. The latter defines each speech act individually. In [4], the authors use
CArtAgO artifacts to embed commitment-protocols following the model introduced
in [46–48]. Their work also enriches the JADE [7] with mechanisms to exploit the
use of commitments and protocols based on commitments. Each artifact keeps a



434 M.R. Zatelli and J.F. Hübner

social state, which is composed of social facts and commitments. Thus, the agents are
able to reason about the interaction by means of observing the social state evolution. In
both cases [4,41], instead of the agents exchange messages directly, they use the opera-
tions provided by the artifacts. For example, in the contract-net protocol, the operations
of the artifact can be cfp, propose, refuse, accept, reject, done, and failure.
Moreover, the communication artifacts have the aim to notify the receiver about the
messages.

2.3 Interaction and Organization

The relation between interaction and organization is also important. The GAIA method-
ology [45], for instance, has already defined a role as a composition of four main
attributes: responsibilities, permissions, activities, and protocols. The protocols are re-
sponsible for specifying the interaction between the agents that are playing the organi-
zational roles.

Some works about organization already relate the interaction with the organization
by means of a dialogical dimension [8, 18, 20, 21, 25]. In this case, they use several
organizational concepts, like goals, roles, and obligations. Each of these concepts is
strongly connected with the interaction concepts, which means that, for example, the
roles in the interaction are the same roles as in the organization.

2.4 Summary

Although none of the presented works addresses the integration of the interaction with
the three other components in order to allow its specification, development, and execu-
tion, some works already address this topic in an AOSE perspective. MAS-ML [43] and
O-MaSE [14] are a modeling language and methodology, respectively, which consider
the interaction integration with the three other components. However, both approaches
are conceived for the specification phase and do not consider the implementation and
execution phases. In addition, even providing tools to generate code, they do not gener-
ate the interaction code.

Thus, even if some authors are concerned with the interaction between agents and
some of the other components, none of them integrates the interaction with the three
components in a unified perspective and consider the development and execution phases.
Moreover, in some of them, the interaction specification is conceived to be handled by
humans during the MAS design and does not allow the agents to read it (or eventually
to change it) at run-time. By not considering the interaction as a first class entity and
by lacking an integration with the other three components, we may have a series of
difficulties in the development of some applications: (i) it is difficult to have an overall
view of the interaction in the MAS because the interaction code is spread in several
parts of the system (e.g. it is only possible to see the interaction if we open the code of
each agent involved in the interaction); (ii) the MAS developer is not able to formalize
(by means of a programming language) the expectations about the MAS evolution con-
sidering the interaction both with the environment and with other agents; (iii) it is not
possible to provide a more detailed specification for the agents to help them to achieve
organizational goals, especially if the agents need to interact with the environment; and



The Interaction as an Integration Component for the JaCaMo Platform 435

Fig. 1. Conceptual model

(iv) agents in open systems have more difficulties to interact because the interaction
protocols are not explicitly specified and available at run-time.

3 Conceptual Model

This section briefly presents how the several MAS components are conceptually inte-
grated with the interaction. Only the core ideas of the model are described here. More
details can be found in [49].

Fig. 1 shows the four MAS components and the relations between the interaction
and the others. In order to keep the figure clear and clean, we only show the concepts
that were directly related to the interaction. The most important concept in our model
is the interaction protocol1, which is basically composed of a set of participants, transi-
tions, states, and goals. Each transition links two states (one source state and one target
state) and it can be fired by an event, a message, or an action. When some transition is
fired, a new state is achieved and the protocol execution progresses. In order to separate
the protocol specification and the protocol execution, we call scene an instance of a
protocol. It is possible for a protocol to have several scenes executing at the same time.

The organizational concepts used in our model (top of Fig. 1) are based on the or-
ganizational models presented in [18, 27]. The interaction is related to organization in

1 In this paper, we consider the definition of protocol presented in [29].



436 M.R. Zatelli and J.F. Hübner

four points. Firstly, the protocols are related to organizational goals. A protocol specifies
a possible interaction scheme to achieve them. When a protocol finishes successfully,
the organizational goal is considered achieved. For example, if there is an organizational
goal for an agent to contract a company to build a house, such goal can be achieved by
the use of a contract-net protocol. The protocol is just one (and not the only or even a
mandatory) way for the agents to achieve the organizational goals. It can exists several
protocols to achieve the same goal and the agents could also achieve a goal using other
means. We could also imagine the existence of protocols without a relation to organi-
zational goals, however, in this work, our main objective with the use of protocols is
to help the agents to achieve the organizational goals. Thus, we are not interested in
the representation of protocols that do not drive the agent to accomplish organizational
goals and neither about what the agents do for achieving their own (not organizational)
goals.

The second organizational concept used in our model is obligation. The transitions
of a protocol are related to organizational obligations. Obligations are created for the
agents to perform the action that fires some enabled transition of the scene and thus
evolve its execution. For example, if there is a transition in a protocol that specifies that
some agent needs to tell the price of a product to another agent, an obligation with this
information will be created as soon as the transition is enabled. Furthermore, the use
of obligations does not hinder the agents from trying other means to achieve the goals.
The agents are free to violate them.

Thirdly, the participants of a protocol are related to organizational roles. To be a par-
ticipant in a protocol, an agent must previously play a role in the organization (e.g. the
role baker or manager). Since the organization constraints the role adoption based on
the agent skills, the agent will be able to perform the activities required as a participant
in the protocol. Finally, the organization also provides operations, which are the actions
that some agent can perform in the organization such as adopts or leaves some role,
commits to some mission or goal, and achieves some goal.

The environmental concepts used in our model (bottom of Fig. 1) are based on the
A&A meta-model introduced in [36]. We map the concept of artifact onto a partici-
pant in the interaction component, which constrains the participation of artifacts in the
protocol; the operations, which represent the actions that the agents can perform in the
environment (for example, the agent can execute actions to regulate the temperature of
an oven, such as turns the oven on or off); and finally, the observable events, which
agents can perceive in the environment, such as an alarm indicating that the tempera-
ture of an oven is too high, the color of something, the sound of a machine, etc. It is
important to notice that the artifacts are not an autonomous entity and, in our approach,
we are not trying to define what the artifacts should do. Rather, the protocol defines
which actions the agents should do on them. Besides the actions, the use of protocols is
a way to handle the observable events that are being produced by the artifacts.

The agent component (right side of Fig. 1) provides the concepts of action, which
can be some action performed in the environment or in the organization, and the mes-
sage exchange, which represents the use of communicative acts (e.g. tell, achieve)
in order to interact with the other agents. The actions that the agents perform in the
environment or in the organization are mapped onto their respective concepts in their



The Interaction as an Integration Component for the JaCaMo Platform 437

respective components. An action performed by the agent in the organization is mapped
onto the concept of action in the organization component while an action performed by
the agent in the environment is mapped onto the concept of action in the environment
component. Finally, the concept of message exchange is directly mapped onto the con-
cept of message in the interaction component.

The conceptual model introduced in this section is a generic solution for the inte-
gration of the organization, environment, and agents based on the concepts depicted in
Fig. 1. For example, if the organization provides concepts like goals, roles, and obli-
gations, it can fit very well in the proposed model. Moreover, the model can also be
adapted to other organizations, environments, or agents. One of the core ideas of this
paper is to take advantage of using a formal representation for the interaction consider-
ing the environment and the organization. A well-detailed protocol (specified by means
of messages, actions, and events) can help the development of open systems or help
the agents that do not know how to achieve some organizational goal. Thus, protocols
are used to define a more general behavior for a system and not simply to define the
behavior of the agents using message exchange.

4 A Language to Specify Interaction Protocols

In this section, we map the concepts presented in Fig. 1 onto a programming language
used to specify interaction protocols.2 The language is mostly presented by means of
two examples. The aim of the first example is to provide a typical sequence of steps used
to write a protocol in our approach. For this first example, we consider a simplified
situation where an agent must make a cake. The protocol shows especially how an
agent interacts with the environment by means of actions and percepts. The second
example illustrates more features of the language, such as the specification of message
exchanges and timeouts. In both examples, we present very simple situations, however
the real advantages of the proposed interaction protocols are better noticed in large
MAS, where the system is composed of hundreds of agents with complex tasks and
interactions.

The first step to build a protocol with the proposed language is to decide which or-
ganizational goals the protocol must achieve. For example, to make a cake for a bakery
organization, we can conceive a protocol as a way to achieve the goal “to make a cake”.
When the cake is done, the goal “to make a cake” can be set as achieved.

In the following, we need to decide who will be the participants of the protocol.
Using the example of the cake, we can assume that in the bakery organization there are
the roles baker and cake decorator. The baker is responsible for the cake production
while the cake decorator is responsible for the cake decoration. Therefore we can define
baker and cake decorator as participants of the protocol. In addition, we may include
some environment elements that will participate of this scenario. For example, we will
need an oven, a blender, a clock, etc.

Then we specify the states of the protocol and the order that they should be achieved.
The states of a protocol can be achieved by means of transitions that can be fired by

2 We will only briefly present the most important parts of the language, since more details can
be found in [50].



438 M.R. Zatelli and J.F. Hübner

Algorithm 1. Making a cake protocol
1. protocol making a cake {
2. description: "Tell the agent how to make a cake";
3. goals: "to make a cake";
4. participants:
5. agBaker agent "baker";
6. agCakeDecorator agent "cake decorator";
7. artBlender artifact "artifacts.Blender";
8. artOven artifact "artifacts.Oven";
9. artClock artifact "artifacts.Clock";

10. states:
11. n1 initial; n2; n3; n4; n5; n6 final;
12. transitions:
13. n1 - n2 # agBaker -- action "mixIngredients" -> artBlender;
14. n2 - n3 # agBaker -- action "putCake" -> artOven;
15. n3 - n4 # agBaker -- action "setTimer" -> artClock;
16. n4 - n5 # artClock -- event "alarm" -> agCakeDecorator;
17. n5 - n6 # agCakeDecorator -- action "takeCake" -> artOven;
18. }

actions that the agents perform in the environment, events that the agents can perceive,
and messages that the agents can exchange. Back to the making a cake scenario we can
see some transitions. We can define as a first transition that the agent with the role baker
needs to mix the ingredients using the blender. In the second transition, the baker needs
to put the cake into the oven and finally it needs to set the clock with the required time.
After the time elapses, the clock emits a sound, which can notify the cake decorator
that the cake is done. Thus, the cake decorator can take the cake out of the oven. In
Sec. 5, we give more details about how transitions produce obligations.

Finally, we can define a name, some description, the initial state, and the final states.
Notice that we can have several final states, however we can only have one initial state.
In the making a cake scenario, we can set the initial state as when there is “nothing” of
the cake. As a final state, we can set the state after the agent takes the cake out of the
oven. Therefore, when this final state is achieved, the goal to make a cake is achieved
in the organization. A possible implementation of this protocol is presented in Code 1.

The advantage of using protocols in the case of the making a cake scenario is the
openness. A new agent, which has never made a cake before, can adopt the role baker
and follow the protocol specification. The protocol is a way to guide the new agent to
make the cake. Therefore, we can replace the agents and if they know how to follow
protocols, they can make a cake easily. Another aspect of this example is that we only
used actions and events, such as put the cake into the oven, take the cake out of the
oven, set the time in the clock, and the sound emitted by the clock. Both actions and
events are related to environmental concepts. Although the transitions in our example
represent macro-tasks, we could detail the protocol as much as we need. For example,
the transition n5 - n6 could be detailed using other actions. Instead of simply taking
the cake out of the oven, we could specify that the agent should turn the oven off, open
the oven door, take the cake out of the oven, and close the oven door.

Code 2 presents another example of protocol, where the aim is to serve a customer
in a store and the sellers do an election in order to decide which one will serve the
customer. The participation of the agents is defined in lines 5 and 6, which state that they



The Interaction as an Integration Component for the JaCaMo Platform 439

Algorithm 2. Attending protocol
1. protocol attending {
2. description: "Serve a customer";
3. goals: "chooseSeller";
4. participants:
5. playerCustomer agent "customer";
6. playerSeller agent "seller" all;
7. artBallotBox artifact "artifacts.BallotBox";
8. states: k1 initial; k2; k3; k4 final;
9. transitions:

10. k1 - k2 # playerCustomer -- message[tell] "needSeller" -> playerSeller;
11. k2 - k3 # playerSeller -- action "vote(X)" -> artBallotBox

: ".string(X) & .is_agent(X)";
12. k2 - k3 # timeout 30000;
13. k3 - k4 # artBallotBox -- event "winner(Y)" -> playerSeller;
14. }

must play the role customer (line 5) or the role seller (line 6) in the organization.
The protocol also includes the participation of a ballot box artifact to help the agents to
vote in an anonymous approach (line 7).

The protocol is composed of four states (line 8): k1, k2, k3, and k4, where k1 is
the initial state and k4 is the final state. On the one hand, the available transition from
state k1 is defined in line 10. It defines that the agent who is playing the participant
playerCustomer must send a message to the agents who are playing the participant
playerSeller informing them that it needs some seller. On the other hand, the avail-
able transitions from state k2 are those defined in lines 11 and 12. The former can be
triggered only by agents participating as playerSeller in the protocol by doing the ac-
tion vote(X) on the artifact artBallotBox (the ballot box). The latter is defined with
a timeout statement (line 12). The timeout is important in situations where temporal
constraints are fundamental, such as the time that an agent must wait for the proposals
of the others in an auction.

An important mechanism used in the language is the unification, which is equiv-
alent with the traditional unification mechanism of several agent languages and also
Prolog. When an agent performs the action vote or the environment produces the
event winner, it must unify with their respective expressions vote(X) and winner(Y),
where X and Y are variables. Notice that in transition k2 - k3 we have specified the
test ".string(X) & .is agent(X)" which means that the agent performs the action
vote(X), the X must be both a String and an existing agent in the MAS. Moreover, it
is important to notice that this test expression is any String, which means we can have
many ways to evaluate some action. More details about this mechanism is explained
afterwards.

Finally, the last transition of the protocol (line 13) defines that the artBallotBox

counts the votes and emits an observable event named winner(Y), where Y is the win-
ner name. With the successful termination of the protocol, the goal chooseSeller is
achieved in the organization (line 3).

It is also possible to specify different ways to fire transitions. Fig. 2 presents the
language grammar with its non-terminal symbols. The non-terminal duty defines what
must happen to fire the transitions and each transition may have several different



440 M.R. Zatelli and J.F. Hübner

Fig. 2. Language grammar [50]

Algorithm 3. Reply to call-for-proposals in the contract-net protocol
1. no2 - no3 # seller -- message[tell] "replyCFP(CNPId)" -> client

trigger "refuse(CNPId)" : ".number(CNPId)";
trigger "propose(CNPId,Offer)" : ".number(CNPId) & .number(Offer)";

verifications (represented by the non-terminal trigger) to make sure whether some oc-
currence is valid to fire it. For example, in Code 3, we specified part of the contract-net
protocol. In this part, the agents playing the participant seller must answer the call-
for-proposals (replyCFP(CNPId)) sent by the agent playing the participant client.
The triggers define the two possible answers that the agents could use to fire the transi-
tion no2 - no3. The former indicates that the seller could refuse to make a proposal
(refuse(CNPId)), while the latter indicates that the seller could send a proposal
(propose(CNPId,Offer)). In the previous protocols, presented in Code 1 and Code 2,
we do not have such kind of situation because for each transition there is only one way
to fire it. However, as presented in Code 3, we can represent transitions that could be
fired using other ways.

The non-terminal trigger is composed of an expression to evaluate the occurrence
pattern (represented by the non-terminal pattern) and an expression to evaluate the oc-
currence content (represented by the non-terminal content). For example, in Code 3,



The Interaction as an Integration Component for the JaCaMo Platform 441

Algorithm 4. Protocol composition
1. y2 - y3 # import "election.ptl"

mapping {
employee elector;

};

the pattern is represented by "refuse(CNPId)" and "propose(CNPId,Offer)",
while the evaluation of the content is represented by ".number(CNPId)" and
".number(CNPId) & .number(Offer)", respectively. If the occurrence satisfies the
pattern, then we can evaluate the content of the variables (if there are variables in the
pattern).

If the pattern is omitted, the expression defined in the non-terminal duty will be
considered as the pattern. For example, the pattern is omitted in the case of the proto-
cols presented in Code 1 and Code 2. Considering the transition k2 - k3 presented in
Code 2 (line 11), the expression specified in the duty (vote(X)) is used as the pattern.
Next to the symbol : (line 11), it is defined the expression to evaluate the content of
the action. Suppose the agent tries to execute something like vote("Ana",22). This
action is not valid because it does not unify with the pattern vote(X), then the action is
discarded. However, suppose that the agent performs the action vote(22). This action
follows the pattern because it unifies the pattern (with X = 22), however the action is
invalid because 22 is not a String, as required by the content. Finally, suppose the
agent tries to execute the action vote("Ana"). We have X = "Ana" and "Ana" is a
String. If Ana is also an agent, the action is valid to fire the transition.

Other features of the language are the composition of protocols and the cardinal-
ity. The composition is made by using the import directive. The import directive
needs the information about the file of the sub-protocol and a mapping between the
participants of the protocol and the sub-protocol. The mapping is necessary because,
sometimes, the protocols may not have the same participants. An example of composi-
tion is presented in Code 4. In this case, the transition y2 - y3 will be fired after the
election protocol be accomplished. The mapping in this protocol is made by defining
that the participant employee will be the participant elector in the election protocol.
Although the election protocol needs a goal related to it, during the composition its goal
will be ignored. Only the goals related to the main protocol will be used at run-time.

The language also provides two different kinds of cardinality: the participant car-
dinality and the transition cardinality. The former is related to the required number of
entities playing some participant in the protocol. The latter is related to the number of
entities that are necessary to perform the duty specified in some transition. For example,
we can have several attendants in a call-center, however we just need one to answer the
phone. In an election, we have electors and it is necessary that all of them participate.
Therefore, with cardinality mechanisms we can define these situations. Such features
are presented in more details in [50].



442 M.R. Zatelli and J.F. Hübner

Fig. 3. Concern separation

5 Integrating with JaCaMo

The main aim of the integration of our interaction approach with JaCaMo is to provide
an MAS programming platform supporting concerns separation also considering the
interaction.3 Fig. 3 shows a general idea of the integration. In JaCaMo platform, the
MAS developer can already program each of the three components separately and each
component can be programmed with specific tools and languages. The organization
can be programmed using Moise, the agents can be programmed using Jason, and the
environment can be programmed by using CArtAgO. In our work, we also enrich the
JaCaMo platform with the interaction component, which also has its proper tool and
language. The next two sections detail how the integration was made.

5.1 Mapping the Conceptual Model onto JaCaMo Platform

In order to integrate our approach into JaCaMo platform, we map the model presented
in Fig. 1 onto the JaCaMo platform. Since the components of agent, organization, and
environment in JaCaMo already use the same concepts, we need to integrate the rela-
tions between the interaction component and the other ones. As part of the integration,
we introduce an interaction artifact (SceneArtifact), which allows the agents to work
with the interaction component. A similar integration was already done with the orga-
nization by means of ORA4MAS artifacts [26].

Basically, when the agent receives an organizational obligation to achieve some orga-
nizational goal, it can verify which protocol can be used to help the accomplishment of

3 The full implementation of our approach can be found at
https://sourceforge.net/projects/intmas/ .

https://sourceforge.net/projects/intmas/


The Interaction as an Integration Component for the JaCaMo Platform 443

Algorithm 5. Handling the organizational obligations created by the scene artifact.
1. +obligation(MyName, _Scene,

transition(_CurrentState, _GotoState, _TriggerType, _Target, Duty),
_Deadline):

2. .my_name(MyName)
3. <-
4. !Duty.

the goal. The agent can instantiate the protocol by informing its specification. Each in-
stance of a protocol is executed in a different instance of the SceneArtifact, which al-
lows the agent to follow the execution of each scene individually. The SceneArtifact
reads the protocol specification and convert it in several observable properties to guide
the agents during the scene execution.

The relation between the protocol and the organizational goal (Fig. 1) is reified by
using a link between the artifact SceneArtifact and the artifact SchemeBoard of
the organization. The artifact SchemeBoard is the responsible to deal with the or-
ganization goals in the organizational component of JaCaMo. Therefore, when the
SceneArtifact achieves the final state of a protocol, it changes the state of the goals
related to the protocol in the organization by means of that link.

An important part of our approach is the use of obligations, represented by the re-
lation between transition and obligation (Fig. 1). Everytime the scene achieves a new
state, new obligations are created to help the agents to accomplish the protocol. For ex-
ample, suppose the protocol presented in Code 2. When the state k1 is enabled, an obli-
gation related to the transition k1 - k2 is created. This obligation defines that the agent
playing the participant playerCustomer should send a message needSeller, using
the performative tell, to the agents playing the participant playerSeller. When
the messages are sent, the scene moves from state k1 to k2 and the obligation is ac-
complished. As a consequence, new obligations will be created. In this case, it will be
created an obligation related to the transition k2 - k3 for the agents playing the par-
ticipant playerSeller to perform the action vote(X) on the artifact artBallotBox.
In addition, this new obligation will have a timeout of 30000 milliseconds, as defined
in line 12. Although created from a fact in the interaction component, the obligations
exist in the organizational component of the MAS.

The agents in JaCaMo already knows how to handle organizational obligations be-
cause it is a concept already used in Moise. Thus, it is not necessary to build any new
specific mechanism for the agents to work with the obligations created by the inter-
action component. The main advantage of using obligations is that they are created at
run-time, which also means that the protocols can be updated at run-time. For example,
if the order of the transitions is modified in the protocol specification, the next obliga-
tions will be created respecting the new order of the transitions. Therefore, the agents
code usually does not need to be modified all the time that the protocol is modified,
since the agents simply follow the obligations.

The Jason code presented in Code 5 illustrates how the agents can deal with the
obligations created by the interaction component. In line 1, it is indicated that the agents
perceive an obligation to do a duty in a certain moment of the scene execution. That duty



444 M.R. Zatelli and J.F. Hübner

Fig. 4. Scene artifact

must be done in order to fire the enabled transition. As soon as the agents perceive that
obligation, they create a new goal to accomplish that duty (line 4). Notice that it is only
necessary to add the code presented in Code 5 in the agents program to make the agents
able to create their own goals to accomplish the duties of the protocol. If the protocol
is modified, other obligations for the agents are created and the agents will be able to
continue following the protocol in the same way.

Fig. 4 shows the interface of the SceneArtifact, with its operations and observ-
able properties. The operations allow the agents to play some participant of the scene
(joinScene), to leave the scene (leaveScene), add and remove artifacts of the scene
(addArtifact and removeArtifact, respectively), and to start (start), stop (stop),
or continue (goOn) the scene execution. Moreover, by means of observable properties,
the agents can get some information about the scene. For example, they can see the
current state of the scene (Current State), the enabled transitions (by means of the
Current State property), their obligations (Obligations), the entities that are play-
ing the participants (Entities), the protocol specification (Specification), etc.

Since CArtAgO uses the concept of links to allow the representation of “operations”
that can be accessed by other artifacts, we specify some links to allow the development
of tools to monitor the scene execution. In that sense, there are links to add and remove
some listener (addListener and removeListener, respectively). The general idea of
these links is to allow other artifacts to receive information about the scene evolution.
For example, it is possible to get information about the enabled states and transitions,
the fired transitions and the actions, messages, and events that were responsible to fire
each transition.

The last link (updateRolePlayers) is necessary because the interaction mecha-
nism needs to know which are the agents playing each role in the organization. This
information is used to handle the cardinalities and to make sure that certain agent is re-
ally playing some role. The Moise GroupBoard artifact already provides a link to add
listeners and gets such information. In the same way, we need to handle the cardinalities



The Interaction as an Integration Component for the JaCaMo Platform 445

Fig. 5. Interception model

of artifacts and verify if certain artifact is of some kind. Therefore, we created a link
(getArtifactList) into the WorkspaceArtifact in CArtAgO. This link has the aim
to return the list of all artifacts and their kinds in some workspace. Such mechanisms
are introduced to reify the relations between interaction participant with organizational
role and environmental artifact, as presented in the conceptual model (Fig. 1).

5.2 Getting Messages, Actions, and Events

All the messages, actions, and events must be intercepted and sent to the scenes. Fig. 5
shows the interception model. It shows messages, actions, and events being intercepted
during their occurrences. The agents do not need to notify the scene artifact about what
they are doing explicitly, since they could try to cheat the interaction mechanism. For
example, they could notify the interaction about things that they have never done.

Some related work use a mediator agent to get the necessary information [1], how-
ever the mediator agent is an autonomous entity and then it is possibly malicious. Our
approach to get messages, actions, and events is similar to the approach presented
in [3, 35], where the authors define a layer that behaves like a filter to consider only
the correct messages to change the interaction state. In order to do that in JaCaMo plat-
form, in a first moment, we modified the agent architecture. The new agent architecture
intercepts the messages exchanged between the agents, the events that occurs in the en-
vironment, and the actions that the agents perform in the environment. Notice that the
agents interact with the organization in JaCaMo by means of organizational artifacts



446 M.R. Zatelli and J.F. Hübner

in the environment, therefore it is not necessary to create a specific mechanism to deal
with the actions performed in the organization. In the end, the messages, actions, and
events that were intercepted are delivered to the scenes that the agents are attending.
Then, they will be processed and evaluated in order to fire the enabled transitions.

6 Results and Discussion

Our main contribution in this paper is the integration of the interaction component into
the JaCaMo platform. With this integration we have an MAS platform to program the
agents, the environment, the organization, and the interaction, all of them as first class
abstractions. We can now specify the interaction in a separated component, avoiding
specifying the interaction inside the code of agents or other components.

As another result, we can also specify the agents more independent of the applica-
tion. Before the integration of our approach into JaCaMo, it was necessary to specify
how the agents interact with the other MAS components in their own code. With the in-
teraction integrated into JaCaMo by means of artifacts and assuming the fact that agents
already know how to deal with artifacts and organization, the agents do not need any
specific mechanism to deal with the interaction. Even in the case of open and hetero-
geneous MAS, a global behavior can be defined for the overall system by means of the
interaction. It is possible because the interaction allows the definition of the desired se-
quence of steps to achieve the organizational goals. Moreover, while the organizational
goals provide information about what the agents need to do, the interaction protocols
provide a more detailed description about how to behave to achieve them.

The integration with the JaCaMo platform allowed us to evaluate our interaction
proposal and also to provide an example of how to integrate it into an MAS platform
composed of agents, environment, and organization. In our experiments, we saw sev-
eral advantages considering the interaction as a first class abstraction. For example, we
can update the interaction without changing the code of the other MAS components.
We also got some positive results with the relations that we made between the interac-
tion and the other MAS components. For example, the obligations facilitate the agent
programming and allow the agents to reason about them, specially whether the agents
already can handle organizational obligations, as in the case of JaCaMo platform. We
can change the sequence of transitions of protocols and, because the obligations are
created in execution time regarding to transitions, we do not need to update the agents
code. Moreover, in future works, norms and obligations will allow us to create punish-
ment and reward mechanisms to prevent malicious behavior and reward the agents with
good performances. The relation between participant in the interaction and role in the
organization allows the agents to search for partners to cooperate because the protocols
specify which roles they must interact with. The relation between interaction and envi-
ronment by means of artifacts permits the specification of how the agents must proceed
to interact with the artifacts by means of actions and observable events.

As some drawbacks of the integration with JaCaMo platform, we noticed a decrease
in performance and some negative impact related to scalability. In fact, it was an ex-
pected impact because we did not focused on performance and scalability issues in this
first moment. The main reason for this negative impact is the interception and manage-
ment of messages, actions, and events that happen in the MAS execution. Since most



The Interaction as an Integration Component for the JaCaMo Platform 447

of them could be relevant to the scenes, after the interception mechanism catch such
occurrences we need to send them to the scenes and process them. So far, we built a
centralized solution to process such occurrences in each scene, however it seems not
the best solution for an MAS where there are many messages exchanges, actions, and
events. The improvement of these issues remains as future work.

Another questionable point of our approach is related to the number of different lan-
guages that the developer should learn in order to implement an MAS using JaCaMo
platform. With the integration of the interaction component into JaCaMo platform, the
MAS developer will have four different languages to learn, each one dedicated to spec-
ify one of its components (agents, organization, environment, and interaction). Indeed,
learning four languages would require more time and investments from the MAS de-
velopers. However, all the four languages are more suitable to implement their own
concerns. For example, in order to specify the environment, it is better to use a specific
environmental language than to specify the environment by means of an agent language.
Naturally, when it is necessary to implement a simple MAS, most of times, the agents
themselves are enough to solve the problems. The organization, environment, and inter-
action are better suitable to implement large and complex systems, where the separation
of concerns is underlying.

Finally, our approach is not the only one to deal with interaction and some of the
other components. As we presented in Sec. 2, there are several approaches of inter-
action, however, none of them integrate the interaction with all the other three MAS
components in a unified way. Some of them handle the interaction between agents,
others deal with the interaction and the environment or organization. Furthermore, our
proposal is focused on more complex MAS, composed of agents, environment, and or-
ganization. Our aim is to integrate these components by means of the interaction and
explore the advantages of this kind of MAS.

7 Conclusions and Future Works

In this paper we presented the integration of an approach of interaction considering
agents, environment, and organization into the JaCaMo platform. Although we present
the integration with the JaCaMo platform, our approach can also be integrated with
other MAS platforms. We also highlighted the interaction model and the programming
language. As future works, we intend to evaluate the use of this proposal in the devel-
opment of large systems and also to verify protocols that are created by some agent,
since the agents could create protocols at run-time and execute it. Other interesting sub-
jects to explore are how the agents could reason about a protocol in order to optimize
its execution, and a proposal of a mechanism to specify and handle exceptions. Finally,
mechanisms of punishment and reward should be studied for the purpose of evaluating
the performance of the agents when they are participating of some scene.

Acknowledgments. The authors are grateful for the support given by CNPq, grants
140261/2013-3 and 306301/2012-1. We would also like to thank the reviewers for the
useful comments and questions, which helped us to improve this paper.



448 M.R. Zatelli and J.F. Hübner

References

1. Ancona, D., Drossopoulou, S., Mascardi, V.: Automatic generation of self-monitoring MASs
from multiparty global session types in jason. In: Baldoni, M., Dennis, L., Mascardi, V., Vas-
concelos, W. (eds.) DALT 2012. LNCS, vol. 7784, pp. 76–95. Springer, Heidelberg (2013)

2. Baldoni, M., Baroglio, C., Bergenti, F., Boccalatte, A., Marengo, E., Martelli, M., Mascardi,
V., Padovani, L., Patti, V., Ricci, A., Rossi, G., Santi, A.: MERCURIO: An interaction-
oriented framework for designing, verifying and programming multi-agent systems. In: Proc.
of MALLOW, pp. 134–149 (2010)

3. Baldoni, M., Baroglio, C., Bergenti, F., Marengo, E., Mascardi, V., Patti, V., Ricci, A., Santi,
A.: An interaction-oriented agent framework for open environments. In: Pirrone, R., Sor-
bello, F. (eds.) AI*IA 2011. LNCS (LNAI), vol. 6934, pp. 68–79. Springer, Heidelberg
(2011)

4. Baldoni, M., Baroglio, C., Capuzzimati, F.: 2COMM: A commitment-based mas architec-
ture. In: Proc. of the 1st EMAS@AAMAS, pp. 17–32 (2013)

5. Behrens, T.M., Hindriks, K.V., Dix, J.: Towards an environment interface standard for agent
platforms. Annals of Mathematics and Artificial Intelligence 61(4), 261–295 (2011)

6. Bel-Enguix, G., Jimenez-Lopez, M.D.: Agent-environment interaction in a multi-agent sys-
tem: A formal model. In: Proc. of GECCO, pp. 2607–2612. ACM, New York (2007)

7. Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: JADE - a java agent development
framework. In: Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E. (eds.) Multi-
Agent Programming. Multiagent Systems, Artificial Societies, and Simulated Organizations,
vol. 15, pp. 125–147. Springer (2005)

8. Boissier, O., Balbo, F., Badeig, F.: Controlling multi-party interaction within normative
multi-agent organizations. In: Proc. of MALLOW, pp. 17–32 (2010)

9. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented program-
ming with JaCaMo. Science of Computer Programming (2011)

10. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems in AgentS-
peak using Jason. Wiley, Liverpool (2007)

11. Braubach, L., Pokahr, E., Lamersdorf, W.: Jadex: A BDI agent system combining middleware
and reasoning. In: Software Agent-Based Applications, Platforms and Development Kits, pp.
143–168. Birkhaeuser (2005)

12. Cabac, L., Moldt, D., Rölke, H.: A proposal for structuring Petri net-based agent interaction
protocols. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp.
102–120. Springer, Heidelberg (2003)

13. Dastani, M., Meyer, J.-J.C.: A practical agent programming language. In: Dastani, M., El Fal-
lah Seghrouchni, A., Ricci, A., Winikoff, M. (eds.) ProMAS 2007. LNCS (LNAI), vol. 4908,
pp. 107–123. Springer, Heidelberg (2008)

14. DeLoach, S.A., Valenzuela, J.L.: An agent-environment interaction model. In: Padgham, L.,
Zambonelli, F. (eds.) AOSE 2006. LNCS, vol. 4405, pp. 1–18. Springer, Heidelberg (2007)

15. Demazeau, Y.: From interactions to collective behaviour in agent-based systems. In: Proc. of
EuroCogSci, Saint-Malo, pp. 117–132 (1995)

16. Desai, N., Mallya, A.U., Chopra, A.K., Singh, M.P.: OWL-P: A methodology for business
process development. In: Kolp, M., Bresciani, P., Henderson-Sellers, B., Winikoff, M. (eds.)
AOIS 2005. LNCS (LNAI), vol. 3529, pp. 79–94. Springer, Heidelberg (2006)

17. Desai, N., Singh, M.P.: A modular action description language for protocol composition. In:
Proc. of AAAI, pp. 962–967. AAAI Press (2007)

18. Dignum, V., Vázquez-Salceda, J., Dignum, F.P.M.: OMNI: Introducing social structure,
norms and ontologies into agent organizations. In: Bordini, R.H., Dastani, M., Dix, J., El Fal-
lah Seghrouchni, A. (eds.) PROMAS 2004. LNCS (LNAI), vol. 3346, pp. 181–198. Springer,
Heidelberg (2005)



The Interaction as an Integration Component for the JaCaMo Platform 449

19. Doi, T., Tahara, Y., Honiden, S.: IOM/T: An interaction description language for multi-agent
systems. In: Proc. of AAMAS, pp. 778–785. ACM, New York (2005)

20. Esteva, M., Rosell, B., Rodriguez-Aguilar, J.A., Arcos, J.L.: AMELI: An agent-based mid-
dleware for electronic institutions. In: Proc. of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems. Proc. of AAMAS, vol. 1, pp. 236–243. IEEE
Computer Society, Washington, DC (2004)

21. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: An organizational view
of multi-agent systems. In: Giorgini, P., Müller, J.P., Odell, J. (eds.) AOSE 2003. LNCS,
vol. 2935, pp. 214–230. Springer, Heidelberg (2004)

22. Cabri, G., Leonardi, L., Zambonelli, F.: BRAIN: A framework for flexible role-based interac-
tions in multiagent systems. In: Meersman, R., Schmidt, D.C. (eds.) CoopIS/DOA/ODBASE
2003. LNCS, vol. 2888, pp. 145–161. Springer, Heidelberg (2003)

23. Hammer, F., Derakhshan, A., Demazeau, Y., Lund, H.H.: A multi-agent approach to social
human behaviour in children’s play. In: Proc. of IAT, Washington, pp. 403–406 (2006)

24. Hindriks, K.V.: Programming rational agents in GOAL. In: Multi-Agent Programming: Lan-
guages and Tools and Applications, pp. 119–157 (2009)

25. Hübner, A., Dimuro, G.P., Costa, A.C.R., Mattos, V.L.D.: A dialogic dimension for the
Moise+ organization model. In: Proc. of MALLOW, pp. 21–26 (2010)

26. Hübner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent organisations with
organisational artifacts and agents. Autonomous Agents and Multi-Agent Systems 20(3),
369–400 (2010)

27. Hübner, J.F., Sichman, J.S., Boissier, O.: A model for the structural, functional, and deon-
tic specification of organizations in multiagent systems. In: Bittencourt, G., Ramalho, G.L.
(eds.) SBIA 2002. LNCS (LNAI), vol. 2507, pp. 118–128. Springer, Heidelberg (2002)

28. Vitteau, B., Huget, M.-P.: Modularity in interaction protocols. In: Dignum, F.P.M. (ed.) ACL
2003. LNCS (LNAI), vol. 2922, pp. 291–309. Springer, Heidelberg (2004)

29. Huhns, M.N., Stephens, L.M.: Multiagent systems and societies of agents. In: Weiss, G. (ed.)
Multiagent Systems, pp. 79–120. MIT Press, Cambridge (1999)

30. Keil, D., Goldin, D.Q.: Indirect interaction in environments for multi-agent systems. In:
Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2005. LNCS (LNAI), vol. 3830,
pp. 68–87. Springer, Heidelberg (2006)

31. Kubera, Y., Mathieu, P., Picault, S.: Interaction-oriented agent simulations: From theory to
implementation. In: Proc. of ECAI, pp. 383–387. IOS Press, Patras (2008)

32. Miller, T., McBurney, P.: Using constraints and process algebra for specification of first-class
agent interaction protocols. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J., Dikenelli, O. (eds.)
ESAW 2006. LNCS (LNAI), vol. 4457, pp. 245–264. Springer, Heidelberg (2007)

33. Miller, T., McBurney, P.: On illegal composition of first-class agent interaction protocols. In:
Proc. of ACSE, pp. 127–136. Australian Computer Society, Inc., Darlinghurst (2008)

34. Miller, T., McGinnis, J.: Amongst first-class protocols. In: Artikis, A., O’Hare, G.M.P.,
Stathis, K., Vouros, G.A. (eds.) ESAW 2007. LNCS (LNAI), vol. 4995, pp. 208–223.
Springer, Heidelberg (2008)

35. Oliva, E., Viroli, M., Omicini, A., McBurney, P.: Argumentation and artifact for dialogue
support. In: Rahwan, I., Moraitis, P. (eds.) ArgMAS 2008. LNCS (LNAI), vol. 5384, pp.
107–121. Springer, Heidelberg (2009)

36. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent systems.
Autonomous Agents and Multi-Agent Systems 17, 432–456 (2008)

37. Paurobally, S., Cunningham, J.: Achieving common interaction protocols in open agent en-
vironments. In: Proc. of AAMAS (2002)

38. Paurobally, S., Cunningham, J., Jennings, N.R.: Developing agent interaction protocols using
graphical and logical methodologies. In: Dastani, M., Dix, J., El Fallah-Seghrouchni, A.
(eds.) PROMAS 2003. LNCS (LNAI), vol. 3067, pp. 149–168. Springer, Heidelberg (2004)



450 M.R. Zatelli and J.F. Hübner

39. Platon, E., Sabouret, N., Honiden, S.: Overhearing and direct interactions: Point of view of
an active environment. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2005.
LNCS (LNAI), vol. 3830, pp. 121–138. Springer, Heidelberg (2006)

40. Ricci, A., Viroli, M., Omicini, A.: CArtAgO: An infrastructure for engineering computa-
tional environments in MAS. In: Weyns, D., Parunak, H.V.D., Michel, F. (eds.) Proc. of
E4MAS, Hakodate, Japan, pp. 102–119 (2006)

41. Rodrigues, T.F., da Rocha Costa, A.C., Dimuro, G.P.: A communication infrastructure based
on artifacts for the JaCaMo platform. In: Proc. of the 1st AAMAS Workshop on Engineering
MultiAgent Systems, pp. 97–111 (2013)

42. Saunier, J., Balbo, F.: Regulated multi-party communications and context awareness through
the environment. Multiagent Grid Syst, 75–91 (2009)

43. Silva, V.T., Choren, R., de Lucena, C.J.P.: A UML based approach for modeling and imple-
menting multi-agent systems. In: Proc. of AAMAS, pp. 914–921. IEEE Computer Society,
Washington, DC (2004)

44. Singh, M.P.: Information-driven interaction-oriented programming: BSPL, the blindingly
simple protocol language. In: Proc. of AAMAS, pp. 491–598 (2011)

45. Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia methodology for agent-oriented anal-
ysis and design. Autonomous Agents and Multi-Agent Systems, 285–312 (2000)

46. Yolum, P., Singh, M.P.: Designing and executing protocols using the event calculus. In: Pro-
ceedings of the Fifth International Conference on Autonomous Agents, AGENTS 2001, pp.
27–28. ACM (2001)

47. Yolum, p., Singh, M.P.: Commitment machines. In: Meyer, J.-J.C., Tambe, M. (eds.) Intelli-
gent Agents VIII. LNCS (LNAI), vol. 2333, pp. 235–247. Springer, Heidelberg (2002)

48. Yolum, P., Singh, M.P.: Reasoning about commitments in the event calculus: An approach
for specifying and executing protocols. Annals of Mathematics and Artificial Intelligence
(2004)

49. Zatelli, M.R., Hübner, J.F.: A unified interaction model with agent, organization, and envi-
ronment. In: Anais do IX ENIA@BRACIS, Curitiba, Brazil (2012)

50. Zatelli, M.R., Hübner, J.F.: A language to specify the interaction considering agents, envi-
ronment, and organization. In: Anais do VII WESAAC, São Paulo, Brazil (2013)


	The Interaction as an Integration Component for the JaCaMo Platform
	1 Introduction
	2 Related Work
	2.1 Interaction and Agents
	2.2 Interaction and Environment
	2.3 Interaction and Organization
	2.4 Summary

	3 Conceptual Model
	4 A Language to Specify Interaction Protocols
	5 Integrating with JaCaMo
	5.1 Mapping the ConceptualModel onto JaCaMo Platform
	5.2 GettingMessages, Actions, and Events

	6 Results and Discussion
	7 Conclusions and Future Works
	References




