
N-Jason: Run-Time Norm Compliance
in AgentSpeak(L)

JeeHang Lee1, Julian Padget1,
Brian Logan2, Daniela Dybalova2, and Natasha Alechina2

1 Department of Computer Science,
University of Bath,

Bath, BA2 7AY, UK
{j.lee,j.a.padget}@bath.ac.uk

2 School of Computer Science,
University of Nottingham,

Nottingham, NG8 1BB, UK
{bsl,dxd,nza}@cs.nott.ac.uk

Abstract. Normative systems offer a means to govern agent behaviour in dy-
namic open environments. Under the governance, agents themselves must be able
to reason about compliance with state- or event-based norms (or both) depending
upon the formalism used. This paper describes how norm awareness enables a
BDI agent to exhibit norm compliant behaviour at run-time taking into account
normative factors. To this end, we propose N-Jason, a run-time norm compliant
BDI agent framework supporting norm-aware deliberation as well as run-time
norm execution mechanism, through which new unknown norms are recognised
and bring about the triggering of plans. To be able to process a norm such as an
obligation, the agent architecture must be able to deal with deadlines and prior-
ities, and choose among the plans triggered by a particular norm. Consequently,
we extend the syntax and the scheduling algorithm of AgentSpeak(RT) to operate
in the context of Jason/AgentSpeak(L) and provide ‘real-time agency’, which we
explain through a detailed examination of the operational semantics of a single
reasoning cycle.

Keywords: Norms, BDI, Agent Programming Language, Normative System.

1 Introduction

In conventional development of BDI agents, norm compliance is typically achieved by
design. That is, by specifying plans that are triggered by detached norms, because the
agent programmer knows which norms the agent shall adopt, and then prioritising those
rules so that the supporting norms are chosen over those preferred by the agent’s mental
attitudes, in order to suppress conflicts between the normative and the agent’s existing
goals. This creates an undesirable dependence between the agent implementation and
the norm implementation, which creates two issues:

1. When an agent encounters new and unknown norms, which were not taken into
account at design time, there is typically no plan to deal with those norms in the

F. Dalpiaz et al. (Eds.): EMAS 2014, LNAI 8758, pp. 367–387, 2014.
c© Springer International Publishing Switzerland 2014

368 J. Lee et al.

plan library at run-time. Hence, norm compliant behaviour cannot normally be ex-
hibited because the norms are unavoidably ignored. Yet worse, agents may suffer a
punishment from the enforcement of the normative system as a result of a violation
caused by their incapacity to process the normative event.

2. The hierarchical prioritisation of normative over ordinary plans deprives an agent
of its autonomy, since the norms in effect are treated as hard constraints, whose
violation is not possible.

We believe that such tensions can be resolved by the use of an extended model of
norm awareness. In the literature on BDI agents, norm awareness, which is a precursor
to norm compliance, is typically manifested in two places: (i) at the perception level,
by taking new unknown norms into account as part of the generic execution mecha-
nism [13,14] and (ii) at the deliberation level, by attempts to resolve the conflict be-
tween normative factors and agents’ mental attitudes [1,9]. We propose to coalesce
these approaches into one ‘sense–think–act’ reasoning cycle informed by the concept
of awareness, which Charlton [4] describes as the capacity “to select and integrate
relevant inputs from a complex environment to enable humans or animals to choose be-
tween a large repertoire of behavioural responses”. This definition reminds us that, in
order to be norm aware, agents should have knowledge (or understanding) about norms
in respect of: (i) what (state) the norms intend to reach or to achieve, (ii) which action
plans are appropriate to execute norms and (iii) which behaviour agents should prefer
between normative goals and the agent’s own interests.

Thus, this paper addresses the convergence of these approaches in the context of the
BDI agent architecture, in order to be able to ground the discussion of how the extended
model of norm awareness enables a BDI agent to exhibit norm compliant behaviour at
run-time. To do so, we propose N-Jason, a run-time norm-compliant BDI agent frame-
work supporting a run-time norm execution mechanism, under which new and unknown
norms are recognised and enable the triggering of an appropriate plan (if present), in
conjunction with norm-aware deliberation [1]. To be able to process a norm such as an
obligation, the agent architecture should be able to deal with deadlines and priorities,
and choose among plans triggered by a particular norm. Consequently, we extend the
syntax and the scheduling algorithm of AgentSpeak(RT) [15] to operate in the context
of Jason/AgentSpeak(L) [3] and provide ‘real-time agency’, which we explain through
a detailed examination of the operational semantics of a single reasoning cycle.

The paper is organised as follows. In §2 an institutional framework and semantics of
norms considered in N-Jason are introduced. It is followed by §3, where we present a
run-time norm compliant BDI agent framework including programming language and
interpreter. After the operational semantics in §4, related work and the contribution of
this work are contrasted in §5. The conclusion and future work are discussed in §6.

2 Institutional Framework

Normative frameworks can be viewed as a kind of external repositories of (normative)
knowledge from which (normative) guidance may be delivered to agents. Usually, a nor-
mative framework is composed of a set of rules whose purpose is to model the normative

N-Jason: Run-Time Norm Compliance in AgentSpeak(L) 369

positions established by the actions of agents and hence realise the governance of indi-
vidual agents in the society. These rules are not hard-coded recipes presenting reactive
behaviours, such as those in the static expert systems, but rather describe consequences
arising from observations for the purpose of reasoning about the current context, result-
ing in situation-specific norms. The framework identifies not only correct and incorrect
actions but also norms such as obligations, permissions and prohibitions through the
institutional trace that records its evolving internal state, subject to observed external
events representing actions in the external world.

Depending on the formalism of the normative system, norms can be categorised as
state- or event-based. State-based norms usually express higher level norms that impose
desirable or required states on the system (or an environment), often as a logical combi-
nation of institutional facts, which should be brought about by the actions of agents [8].
In contrast, event-based norms generally represent relatively lower level activities ad-
dressing possibly executable events (or actions) at the individual agent level [7]. In this
paper, we use Cliffe’s institutional model [5] for the purpose of providing detached
event-based norms, upon which we develop the run-time norm compliance model pre-
sented here.

The institutional framework provides a formal action language InstAL to specify
norms, describing coordinations and interactions between agents and (or) environments
in the context of an institution. The normative specification is translated to a computa-
tional model that utilises Answer Set Programming (ASP) [10], which enables reason-
ing about the current context described in the institution. The institution is composed
of a set of institutional states, evolving over time triggered by the occurrence of both
internal and external events. An institutional state is a set of fluents which are present
(denoting true) or absent (denoting false) at a given time instant. In addition, such insti-
tutional fluents are divided into domain fluents and normative fluents which are further
partitioned into: (i) power (W) – indicates events that are empowered to bring about
institutional change (ii) permission (P) – indicates events that can occur without vio-
lation, and (iii) obligations (O) – specifies events that are obliged to happen before the
occurrence of a deadline (e.g. a timeout), or else a violation occurs.

These normative fluents represent the normative consequences of particular
behaviours which should be achieved by agents in a certain context. For example, if
an agent X is obliged to carry out an action act by deadline deadline otherwise the vio-
lation event violation is generated, the form of the normative information is represented
as:

obl(act, deadline, violation) (obligation)

Also if an agent X is permitted to perform an action act, then the representation is:

perm(act) (permission)

The determination of those normative consequences is carried out using an answer set
solver driven by a rule-based specification (InstAL) which explores all possible out-
comes derivable from the institutional state arising from the occurrence of a single

370 J. Lee et al.

Second
Life

Jason
Platform

Data Communication
Infrastructure
(XMPP Server)

Normative
Framework

RDF
deserializer

RDF
serializer

Communication
Interface (SF)

Jason Agent
Interface

Communication
Interface (SF)

‘Perceive-think-act’
reasoning cycle

VW client for
Second Life

Communication
Interface (SF)

sensor data
client

C# Lib. Java Lib.

Fig. 1. Governing virtual characters behaviour with Insitutions

event1 as determined by the generation and consequence rules that comprise the insti-
tutional model.

Lee et al. [12] demonstrate a governance mechanism using this institutional model
that shows how the normative consequences of particular actions can be delivered to
agents’ minds as percepts (to conventional Jason agents rather than the variety de-
scribed here) either on request or by subscription, making them available for the agent
reasoning process. The components in this case comprise: (i) the virtual agents (VA)
in Second Life, (ii) an institutional model for social norm reasoning, and (iii) BDI
agents that are responsible for individual reasoning, as illustrated in Figure 1. The vir-
tual agents (VA) in the virtual world appear as sensors to the rest of the system: as soon
as virtual world events are detected in Second Life (SL), the VA turns them into sym-
bolic representations and publishes them, while both the BDI agent and the institution
subscribe to that topic. When the institution receives this information, it triggers the
social norm reasoning process, which determines the new normative positions of the
actors and identifies appropriate behaviours for the current (social) situation. This in-
formation is then published as perm(act) or obl(act, deadline, violation)
for the BDI agent to incorporate into its reasoning process, following the principles set
out in [1]. When the decision making process (for norm compliance) is completed, the
action plans are published, which are then interpreted by the VA using the atomic ac-
tions available in the virtual world – because the virtual agent actions are typically more
primitive that those of the intelligent agent.

With regards to the norm compliance in BDI agents, as described in Figure 1, van
Riemsdijk et al. suggest in [14] that one feasible approach for run-time norm execution
is the use of “pre-existing capabilities” in the agent program when an agent encounters

1 Note: the institutional model can also function as a normative oracle for an agent, if presented
with a sequence of events, in which case it derives all the possible outcomes from all possible
orderings of those events, subject to whatever constraints are specified on the ordering.

N-Jason: Run-Time Norm Compliance in AgentSpeak(L) 371

new and unknown norms. This assumes that event-based norms can identify the asso-
ciated necessary actions, since event-based norms typically refer to relatively low-level
activities that address possibly executable events (or actions) at the individual agent
level [7]. If appropriate information can be extracted from the detached norm, such that
it is recognisable to an agent, in this way an agent presumably may execute unknown
norms and so exhibit a form of norm compliance at run-time.

For example, the act term in an obligation represents a similar level of knowledge
to plans or events in a BDI agent program. If an agent can retrieve and recognise what
action (or event) is required to be achieved, then it can trigger certain plans and at-
tempt to carry out such behaviour even though the norm is not handled explicitly in the
agent specification. With regard to the norm-aware reasoning, an agent may deduce a
preference, if it is able to know the relative priorities, and critical impact or the dead-
line of normative factors by extracting deadline and violation information. This
norm-aware reasoning may allow an agent to pursue its own preferences between its
own goals, norms and sanctions by measuring feasibility, as proposed by Alechina et
al. [1]. In this paper, we only use obligations for such purpose, in order to focus on the
essential aspects of the agent’s internal reasoning process. Additionally, we consider the
handling of prohibitions for the compatibility with other normative systems, however
they are not explicit in the institution mechanism employed here.

3 The N-Jason BDI Agent Framework

In this section we outline N-Jason, a norm aware BDI agent interpreter and its pro-
gramming language for run-time norm compliant agent behaviour. In principle, it ex-
tends Jason/AgentSpeak(L) syntactically, semantically and in the reasoning process of
the interpreter. In practice, N-Jason is conceptually similar to AgentSpeak(RT) [15],
which is capable of dealing with deadlines and priorities and scheduling intentions with
the aim of providing real-time agency. N-Jason is conceptually a superset of AgentS-
peak(RT), to which it adds normative concepts (i.e. obligations, permissions, prohibi-
tions, deadlines, priorities and durations) and norm aware deliberation.

We firstly examine work to date with regards to the programming language aspect.
This is followed by an informal explanation of the N-Jason reasoning cycle. Subse-
quently, we show how the extended model of norm awareness in BDI agents is estab-
lished by the combination of the run-time norm execution mechanism and norm-aware
deliberation.

3.1 The N-Jason Agent Programming Language

A N-Jason agent consists of four main components: beliefs, goals, events and a set
of plans. Beliefs and goals are identical to those in standard Jason, while events and
plans are extended. We now give a brief summary of the extended features of the ba-
sic elements in the agent specification. We take advantage of Jason’s plan annotation
mechanism to provide deadline, duration and priority information, so that each feature
is simply a term, such as deadline(X), duration(Y) or priority(Z), where the
parameters are (positive) integer literals. The interpretation of these annotations and
examples are covered in the following.

372 J. Lee et al.

Belief: A belief represents agent’s information (e.g. initial states of an agent, inter-
nal knowledge established through the reasoning cycle) and its knowledge about
the environments wherein agents are situated (e.g. percepts observed by agents,
messages containing the information about other agents and norms delivered from
normative frameworks). Typically, a belief is represented as a grounded atomic for-
mula. The collection of beliefs is referred to as a belief base, which contains belief
literals in the form of belief atoms and negations.

Goal: A goal is one of two basic types: an achievement goal or a test goal. The former
are usually specified as predicates prefixed by the ‘!’ operator. This specifies a
certain state of the environment that the agent wants to achieve, which is indicated
when the predicate associated with its achievement goal is true. The latter test goal,
for which the prefix is the ‘?’ operator, indicates that agents want to know whether
the associated predicate is a true belief.

Event: An event is the main component for triggering agent’s plans. In principle,
changes in agent’s mental attitudes (i.e. beliefs, goals and intentions) give rise to
events. There are two types of events: one is an addition event denoted by ‘+’, which
means the addition of a belief or an achievement goal. The other is a deletion event
denoted by ‘–’, referring to a recantation of a base belief.

As in Jason, an addition event is categorised by a belief addition event denoted
by ‘+’ and a goal addition event jointly denoted by ‘+’ and ‘!’. All external be-
lief changes bring about belief addition events, so as to initiate the execution of
corresponding plans. In contrast, the goal addition event results from both inter-
nal and external changes in goals. In other words, explicit goals from the users or
other agents result in a goal addition event, but also a goal addition event can be
generated by internal operations affecting the agent’s mental attitude, such as the
execution of subgoals triggered in response to an external event.

Support for normative concepts is provided by an extension of the syntax for
an event by the addition of deadline and priority information. The deadline is a
real time value indicating a deadline by which an intention should be achieved.
It is expressed in a some adequate unit of real world time. When the deadline is
passed, it is no longer feasible to achieve an intention or to give a response with
a belief change. The priority is a positive integer value that expresses the relative
importance between the achievement of an intention and responding to changes in
a belief. A larger value reflects a higher priority. Both can optionally be specified
in the annotation (a list of terms in between square brackets “[” and “]”) at the end
of an event. For example the event:

+!at(X, Y)[deadline(900), priority(10)]

specifies the goal adoption that an agent moves to the coordinate (X, Y), by the
deadline 900, with priority 10. By default, the deadline is taken as infinity and the
priority as zero. Note that the deadline and priority annotations do not play a part
in unification at plan selection stage.

Plan: A plan is a sequence of actions (and subgoals) which is a means to achieve a
(main) goal or a means to respond to changes in beliefs by agents. The plan typ-
ically consists of a head and a body, but sometimes an optional plan label, which
defines an index, a name and other information, can be specified. The head is

N-Jason: Run-Time Norm Compliance in AgentSpeak(L) 373

composed of a triggering event, which specifies an event for which the plan is to be
used and a context specifying the condition which must be true for the plan to be a
candidate for execution. The body is a series of actions and subgoals to achieve a
main goal.

The plan is extended to support normative concepts. Given the three main ele-
ments, a duration is proposed in N-Jason, specifically in order to enable assessment
of the feasibility of the plan associated with the deadline (see §3.4). The duration
is a non-negative integer value representing a required time to execute the plan. In
principle, the duration may be determined by the summation of an execution time
of each external action in the plan body. For simplicity, we follow the assumption
described in [1], that the estimated time for each external action is fixed and already
known. Like deadline and priority, a duration can be optionally specified in the plan
label in the form of an annotation (a list of terms in between square brackets “[”
and “]”). For example, the plan:

@plan[duration(50)]
+!at(X, Y) : req(ag)
<- move_toward(X, Y); !ack(ag).

is triggered by the request from the agent ag to move to the coordinate (X, Y), and
then to send back an acknowledgement to ag. The required (or estimated) execution
time of the plan is 50.

3.2 The N-Jason Interpreter

The interpreter plays an important role in the operationalisation of agent programs.
The agent’s belief base, intentions and events are manipulated by the interpreter, and
practical reasoning consisting of deliberation and means-ends reasoning is performed
to achieve a goal or to respond to environmental changes.

During a single reasoning cycle, run-time norm compliance is accomplished by an
extended model of norm awareness that has three steps:

1. Event Reconsideration, to find out what the norm is intended to achieve or to reach,
2. Option Reconsideration, to identify which plan is the most appropriate in response

to the norm,
3. Intention Scheduling, to confirm the decision about which behaviour agent would

prefer between goals, norms and sanctions.

The interpreter code of N-Jason is shown in Algorithm 1. B is the belief base, E is
the event base, G is a set of goals and I is a set of intentions of an agent. The func-
tion create-tevent encodes a percept as a triggering event and returns it. The function
add-event updates the agent’s event base with an event which is a pair of a trigger-
ing event and an intention. The function update-belief updates the agent’s belief base
with a percept p. The function type returns a type of p, either obligation or prohibition,
if p is a norm. The function edp constructs a triggering event using the terms in the
event-based norm, if the type of p is a norm (e.g. obligations). The functions EVENT-
and OPTION-RECONSIDERATION accomplish the run-time norm execution mecha-
nism described in §3.3. The main algorithm of the SCHEDULE function which carries

374 J. Lee et al.

Algorithm 1. N-Jason Interpreter Reasoning Cycle
1: B :=B0 /* B0 are initial beliefs */
2: G :=G0 /* G0 are initial goals */
3: E :=E ∪G
4: P :=P ∪N /* P are percepts and N are norms */
5: for all p ∈ P and p /∈ B do
6: tep = create-tevent(p)
7: Rtep := {πθ | θ is a mgu for tep and plan π}
8: if Rtep �= ∅ then
9: E :=add-event(E, tep)

10: else if Rtep = ∅ and type(p) = (obl | proh) then
11: E :=EVENT-RECONSIDERATION(p)
12: end if
13: B :=update-belief(B, p)
14: end for
15: for all 〈te, τ 〉 ∈ E do
16: Ote := {πθ | θ is an applicable unifier for te and plan π}
17: πθθ′ := SO(Ote) where θ′ is a context unifier for te and plan π
18: if πθθ′ = nil then
19: πθθ′ := OPTION-RECONSIDERATION(te)
20: end if
21: if πθθ′ �= nil and τ /∈ I then
22: I := I ∪ πθθ′

23: else if πθθ′ �= nil and τ ∈ I then
24: I := (I\τ) ∪ push (πθθ′σ, τ) where σ is an mgu for πθθ′ and τ
25: else if πθθ′ = nil and τ ∈ I then
26: I := (I\τ)
27: end if
28: I :=SCHEDULE(I)
29: if I �= ∅ then
30: I :=EXECUTE(I)
31: end if
32: end for

out norm-aware intention scheduling is shown in §3.4. The internal operation of the
N-Jason interpreter is extended from [15]. We use the same notations as in [15] for
consistency and comparability.

We now give an informal explanation of one reasoning cycle in the interpreter. At the
start (lines 1–4), we assume that an agent perceives knowledge (P) from its environment
and about its normative positions (N) (e.g. obligations) from one or more institutional
frameworks. N is treated just like P , that is a form of percept at this stage, by the
interpreter (line 4).

The belief base (B) and the event base (E) are updated by P in the belief update pro-
cess (belief-update-function (buf) more precisely) (see lines 6–13). This belief update
involves the creation/addition of events in response to each new percept. Once a percept
(p) is encoded as a triggering event (tep) by the function create-tevent, the interpreter

N-Jason: Run-Time Norm Compliance in AgentSpeak(L) 375

checks whether tep has a set of relevant plans Rtep
2 in the plan library Π . If Rtep is

retrieved, thenE is updated with the event, a pair of tep and its intention, by the function
add-event. If no relevant plan is retrieved, tep is ignored but B is updated in any case
with p by the function update-belief. The same approach is taken for norms when the
norms and its relevant plans are already specified in the agent program. Otherwise, the
event reconsideration process (line 11) starts to find out what the norms are intended to
achieve, as the first step in run-time norm execution.

Next, the interpreter starts the reasoning process in order to determine an applicable
plan3 in the selected set of applicable plans (Ote). The selection function SO chooses
a single option from Ote as a result of the unification of event and context. If SO re-
trieves nothing (denoted by nil), then the interpreter follows exactly the same path as
described above. The option reconsideration process (line 19) tries to find out which
action plans are appropriate to execute unknown norms, as the second step in run-time
norm execution. See lines 17–20.

If one single applicable plan is successfully retrieved by SO, then the means-ends
reasoning adds the applicable plan (π) as an intended means (IM) on top of an intention
(I). If te of π is an internal event then π added in the existing I , otherwise a new I is
created with π to be added in there (line 21–27). This is followed by the intention
scheduling process which returns a preference maximal set of intentions in deadline
order (line 28). Afterwards, one intention selected by the intention selection function
SI is finally executed (line 30). The details of the remainder are exactly the same as in
[3] or [15].

3.3 Run-Time Norm Execution

In §3.2, we explained that run-time norm execution is realised by two steps: (i) event
reconsideration and (ii) option reconsideration. Prior to defining those reconsideration
processes, we firstly define a property of the executability of norms at run-time. We say
that a norm such as obl(evt, deadline, violation), is executable at run-time
iff:

1. p ∈ P and type(p) = (obligation | prohibition), where p is a percept, formed
from a list of terms such as term(“,” term)∗, in a set of newly observed percepts
P at run-time;

2. tep /∈ E, where tep is a triggering event generated from the percept p, and E is an
event base, which is a set of events {(te, τ), (te′, τ ′), . . .}, where an event is a pair
of a triggering event and an intention (te, τ);

3. edp(p) �= nil and {(teedp(p), τedp(p))} ∩ E �= ∅, where edp(p) is a function ex-
tracting the obliged event together with its deadline and priority from p, teedp(p)
is a triggering event of the edp(p), an event term in the norm, and τedp(p) is an
intention of teedp(p) and

4. Rteedp(p) �= ∅, where Rteedp(p) is a set of relevant plans.

2 A relevant plan for a particular event is a plan whose triggering event matches the particular
event. There can be many relevant plans for each triggering event in general [3].

3 An applicable plan is a candidate plan for execution, which has a context that evaluates to true
given the agent’s current beliefs [3].

376 J. Lee et al.

Algorithm 2. Event Reconsideration
Require: P :=P ∪N
Require: tep = create-tevent(p)
1: if p ∈ P and type(p) = obligation then
2: teedp(p) = create-tevent(edp(p))
3: Rteedp(p)

:= {πθ | θ is a mgu for teedp(p) and plan π}
4: if Rteedp(p) �= ∅ then
5: E :=add-event(E, tep)
6: end if
7: else if p ∈ P and type(p) = prohibition then
8: Ξ :=add-prohibition(Ξ, edp(p))
9: end if

The executability determines the necessity of further reconsideration for the new
and unknown norms. If those norms are judged executable at the perception stage, the
event-reconsideration process starts for the addition of such norms to the event base as
triggering events. Similarly, the executability also enables the option-reconsideration in
order to execute an applicable plan in relation to the triggering events derived from the
norms.

Event Reconsideration aims to verify that a norm perceived at run-time is executable
although no corresponding plan exists in the agent program. If an event extracted from
a detached norm has a relevance to a certain set of plans, it thus has potential to trigger
specific ones, and it is then concluded that the norm is executable. If the norm is proven
to be executable, the interpreter adds the norm to the event base E as an achievement
goal addition event. The procedure for event reconsideration is as follows (see Algo-
rithm 2):

1. Extract the terms representing an obliged event, a deadline and its priority4 from
the obligation by the function edp, whose practical implementation may vary, de-
pending on norm representations in various systems (line 2),

2. Construct a new triggering event (an achievement goal addition event in this case)
from the combination of extracted terms (line 2),

3. Query the existence of a set of relevant plans with such a constructed triggering
event (line 3),

4. Add such triggering event to E, if relevant plans are successfully retrieved (line 5)
and

5. If the norm is a prohibition, then the extracted event is added into the prohibition
base (Ξ) (line 7 - 8) and will be revisited at the norm deliberation stage 5.

For example, suppose there is a detached obligation obl(at(X, Y), 1030, 10).
If relevant plans are not found in the agent program (plan library of an agent, to be

4 In principle, the last term is an event which arises when a violation occurs. This value normally
indicates the criticality of such a violation. Higher values represents a higher priority.

5 N-Jason supports prohibitions as described above, and is therefore compatible with normative
systems supporting prohibitions, but we note that the institutional model described in §2 does
not have an explicit representation of prohibition, but only the absence of permission.

N-Jason: Run-Time Norm Compliance in AgentSpeak(L) 377

precise) in response to the obligation, the function edp firstly extracts the event (at(X,
Y)), deadline (1030) and priority (10) from the obligation. Next, the interpreter con-
structs a new triggering event (an achievement goal addition event as described above)
such as +!at(X,Y)[deadline(1030), priority(10)] using the extracted infor-
mation. Subsequently, the interpreter queries the existence of relevant plans to SR once
again with a new triggering event, +!at(X,Y)[deadline(1030), priority(10)].
If the retrieval of relevant plans is successful, then the original event, +!obl(at(X,
Y), 1030, 10), is added to E.

One exceptional aspect in event-reconsideration is the addition of a deontic event tep
(which is a detached norm) instead of a normal event teedp(p) (which is a newly con-
structed triggering event) into the event base E. In so doing, we intend to distinguish
norm-triggered intentions from ordinary intentions that normal events trigger, so as to
facilitate norm-aware deliberation (see §3.4) in N-Jason. In principle, Jason creates
different intentions in response to different triggering events. Given this characteristic,
both a deontic and a normal event create a deontic and a normal intention in N-Jason,
respectively. The intended means included in both intentions are identical since a de-
ontic and a normal event trigger exactly the same plan in an agent program. However,
the properties (e.g. deadline and priority) of each intention are different. The normal
intention follows the original deadline and priority specified in the plan. In contrast, the
deontic intention has different deadline and priority, which are inherited from those in
the detached norm. As a result, these intentions are the main source of norm-aware de-
liberation. An agent is able to deliberate on norms and agent’s private goals through the
evaluation of the relative importance and urgency using norm-triggered (i.e. deontic)
intentions and ordinary event-triggered (i.e. normal) intentions.

Suppose a plan whose label is example, is specified in an agent program:

@example[duration(50)]
+!at(X, Y)[deadline(1000), priority(5)]
<- move_toward(X, Y); !ack(ag).

Assuming that a normal event triggering example is added to event base E. Then it
creates a normal intention using a pair of normal event and its associated plan plan_-
example, whose deadline and priority are 1000 and 5, respectively. Later, a detached
obligation obl(at(X, Y), 1030, 10) is received. Following Algorithm 2, the de-
ontic event +!obl(at(X, Y), 1030, 10) is added to E, since a relevant plan
example is found. Consequently a deontic intention is created using a pair of a de-
ontic event and its associated plan example. Its deadline and priority are 1030 and
10, respectively, which are different from those in the normal intention. Obviously, we
have two intentions whose properties are different, although the intended means are ab-
solutely same. Hence, N-Jason is able to carry out norm-aware deliberation on norms
and the agent’s own goals using those intentions. If N-Jason simply adds a normal event
instead of a deontic event when an obligation is detached, then norm-aware deliberation
may not be feasible since there must be only one normal intention.

Option-Reconsideration is a central element in the practical reasoning process
whereas the event reconsideration happens at the perception stage. The main objec-
tive of option reconsideration is the determination of an applicable plan corresponding
to the new and unknown norm – whose executability is already verified – and is thus

378 J. Lee et al.

Algorithm 3. Option Reconsideration
Require: 〈tep, τ 〉 ∈ E where tep is an event and τ is an intention
Ensure: πθθ′ where θ′ is a context unifier for teedp(p) and plan π
1: if type(p) = obligation then
2: teedp(p) = create-tevent(edp(p))
3: Rteedp(p)

:= {πθ | θ is a mgu for teedp(p) and plan π}
4: if Rteedp(p) �= ∅ then
5: Oteedp(p)

:= {πθ | θ is an applicable unifier for teedp(p) and plan π}
6: πθθ′ := SO(Oteedp(p)) where θ′ is a context unifier for teedp(p) and plan π
7: end if
8: end if

added to E as an achievement goal addition event. If the applicable plan is chosen,
then it will probably be used to enact a norm-compliant behaviour, unless it is infeasi-
ble as judged by intention scheduling (described in §3.4). The procedure is shown in
Algorithm 3.

Like Event-Reconsideration, tep is generated by a new and unknown norm that does
not have any relevant plans Rtep at this moment. Thus at the beginning of the option
reconsideration, the interpreter carries out the same process for event reconsideration:

1. Extract the event term edp(p) of the norm in order to retrieve relevant plansRteedp(p)

(as before), if the type of p is a norm (i.e. an obligation) (line 1 - 2),
2. Retrieve the relevant plans corresponding to the teedp(p) by the unification of an

atomic-formula in a triggering event and each plan in an agent (line 3),
3. Determine a set of applicable plans with the constructed triggering event (line 5)

and
4. Select a single applicable plan as an intended means to which to commit, through

the extended unification of a triggering event, a plan and a context (line 6).

3.4 Norm Awareness in Deliberation

Norm awareness in the deliberation process is achieved by the scheduling of intentions
with deadlines and priorities. We extend the algorithm proposed in [15] with the con-
sideration of prohibitions in order to establish a conflict-free preference maximal set of
intentions. In effect, this is like [1] who proposes a scheduling algorithm that brings
about a preference maximal set of intentions, but that depends upon (N-)2APL’s paral-
lel execution of plans, whereas here the scheduling algorithm for (N-)Jason has to take
account of the single-threaded plan execution model in Jason.

The scheduling algorithm is introduced in Algorithm 4. A set of candidate intentions
IC = {τ, τ ′, . . . }, which is sorted in descending order of a priority, is inserted into
a scheduling process. If each intention is feasible, i.e. a plan on top of the intention
can be executed before the deadline and is not prohibited by a set of prohibition Ξ =
{ξ, ξ′, . . . }, then the intention is added to the preference maximal set (Γ) whose criteria
are defined as follows:

N-Jason: Run-Time Norm Compliance in AgentSpeak(L) 379

Algorithm 4. Scheduling of Intentions
1: Γ := ∅, Ξ ′ := ∅

2: for all τ ∈ I in descending order of priority do
3: if {τ} ∪ Γ is feasible then
4: if τ /∈ Ξ then
5: Γ := {τ} ∪ Γ
6: else
7: for all ξ ∈ Ξ do
8: Ξ ′ := {τθ | θ is a mgu for ξ and intention τ}
9: end for

10: if priority(τ) > max{priority(ξ),∀ξ ∈ Ξ ′} then
11: Γ := {τ} ∪ Γ
12: end if
13: end if
14: end if
15: end for
16: sort Γ in order of increasing deadline
17: return Γ

1. An intention is feasible iff the execution of the intention is completed before its
deadline, that is, for τ ,

ne(τ) + et(τ) − ex(τ) ≤ dl(τ)

where τ denotes an intention, ne(τ) is the time at which τ will next execute, et(τ)
is the time required to execute τ , denoted in the plan label, ex(τ) is the elapsed time
to execute τ to this point, and dl(τ) is the deadline for τ specified in the plan [1].

2. The intention should not be prohibited, that is, for τ
– τ /∈ Ξ or
– τ ∈ Ξ , then ∀ξ ∈ Ξ , τ = ξ and priority(τ) > max{priority(ξ), ∀ξ ∈ Ξ}

where τ is an intention, ξ is a prohibited event in the prohibition base Ξ and priority
is a priority retrieval function.

Scheduling in N-Jason is also pre-emptive in that the adoption of a new intention
τ may prevent scheduled intentions with lower priority than τ (including currently ex-
ecuting intentions) being added to the new schedule just as in N-2APL and AgentS-
peak(RT). Intentions that cannot meet their deadline are dropped.

3.5 Implementation

We have implemented N-Jason on top of the existing code base for Jason version
1.3.6. The latest prototype6 of N-Jason implements the core language extensions (i.e.
syntax, semantics) described in §3.1 and the extensions (e.g. run-time norm execution,
norm-aware deliberation) described in §3.3 and §3.4. In addition, we implement a norm

6 N-Jason is available via http://bsf.googlecode.com/svn/tags/njason-0.0.1/

http://bsf.googlecode.com/svn/tags/njason-0.0.1/

380 J. Lee et al.

perceive

checkNorms

BUF

checkMail

Percepts

Norms
EVT

RECON

Soc
Acc

Messages

BRF

Belief
Base

Events

Beliefs

External Events

Unify
Event

Check
Context

Events

OPT
RECON

Intentions

New New

Intention
Scheduling

Execute
Intention

Internal Events

Selected
Intention

Intentions

Plan
Library

Plans

Beliefs

Update
Intention

Actions

Messages

Selected
Events

Relevant
Plan

Applicable
Plans

Intended Means

2

1 3

4

5

6

7

8 9

10

11

12

13

14

Fig. 2. Extended Features of N-Jason on Jason/AgentSpeak(L)

adoption mechanism in N-Jason, so that an agent under the governance of institutional
frameworks is able to receive situationally appropriate norms and subsequently add
them as percepts for processing by the reasoning cycle.

Figure 2 shows the extended features7 and how they fit into the Jason interpreter.
The language extensions, run-time norm execution and norm-aware deliberation are
implemented as part of the reasoning cycle of the Jason interpreter. The norm adoption
mechanism is implemented as an extension of the AgArch class.

In brief, one reasoning cycle of Jason is modelled as a transition system over states.
The configuration of a Jason agent [3], contains the current state, denoted s, where s ∈
{ProcMsg, SelEv, RelPl, ApplPl, AddIM, SelInt, ExecInt, ClrInt}. Each state has a
corresponding procedure – applyProcMsg(), applySelEv(), applyRelPl(),
applySelAppl(), applyFindOp(), applyAddIM(), applyProcAct(),
applySelInt(), applyExecInt() – which are internal to the reasoningCycle()
method in the transition system. To this transition system, we add the states RcvNorm
and schInt and customise the procedures reasoningCycle(), applyRelPl(),
applyFindOp(), applySelInt(). The complete states are detailed in §4.1.

We now sketch some details of the implementation. To begin with, we extend the
Jason agent reasoning architecture class (AgArch) by subclassing in order to facilitate
the norm adoption mechanism (2checkNorms). Run-time norm execution is achieved

7 Grey boxes with numbers 2, 4, 10, 12 in Figure 2 are new features. For more explanation about
other white boxes see Chapter 4 of [3].

N-Jason: Run-Time Norm Compliance in AgentSpeak(L) 381

by Event- and Option-Reconsideration as described in Algorithms 2 and 3 above. The
former, 4EV TRECON in Figure 2, is implemented by customising the native belief
update function (buf()) which is a subroutine ofreasoningCycle()to implement Al-
gorithm 2. For the latter, 10OPTRECON in Figure 2, we customise the native option
selection function (applyFindOp()) to implement Algorithm 3. Norm-aware deliber-
ation, 12IntentionScheduling in Figure 2, is accomplished by an intention scheduler
with deadlines and priorities implemented in a newly created IntentionScheduler
class. The scheduling (schedule()) method in this class is inserted just before
the intention selection function (selectIntention()) which is a part of the
applySelInt() procedure.

Apart from the above changes to the interpreter, the language syntax extensions are
implemented by the customisation of the annotation processing routine (setLabel()
and setTEvent()) in the Plan class.

3.6 Example

As an example, we consider robots serving beer in a pub, whose main role is to get an
order and to deliver a beer to the customer. We assume the existence of some institutions
delivering desirable social norms, subject to the observations of participants, and that
all agents are governed by such systems. A part of the agent program is shown below:

@P1[duration(5)]
+!at(X, Y) : not at(X, Y) <- moveToward(X, Y).

@P2[duration(10)]
+!order(X, Y) <- get(beer); moveToward(X, Y).

// A request from customer seated at (X, Y).
// The deadline is D and the priority is P.
+request(X, Y)[deadline(D), priority(P)]
<- !order(X, Y)[deadline(D), priority(P)].

At time 100, the robot receives the following events:

E1: +!request(2, 3)[deadline(130), priority(20)]
A request from customer seated at (2, 3).
The deadline is 130 and the customer is important so the priority is 20.

E2: +!request(1, 1)[deadline(115), priority(10)]
A request from customer seated at (1, 1).
The deadline is 115 and the the priority is 10.

E3: +!request(3, 3)[deadline(130), priority(10)]
A request from customer seated at (3, 3).
The deadline is 130 and the the priority is 10.

These three events trigger the plan P2, and give rise to three possible intentions τ1
(P2 triggered by (2, 3)), τ2 (P2 triggered by (1, 1)) and τ3 (P2 triggered by (3, 3)). τ2 is
not feasible, thus it is dropped, whereas τ1 and τ3 are feasible, so scheduled in deadline
order: τ1 is scheduled first between 100 and 110 since it has an earlier deadline followed
by τ3 between 110 and 120. Now the agent starts the execution of τ1.

382 J. Lee et al.

Let consider an announcement of a fire alarm by one of the normative frameworks. It
broadcasts an obligation containing the coordinates of an exit to all participants so they
may escape from the building. Suppose the norm is obl(at(0, 0), 115, 100).
Although the obligation is not stated in the agent’s program, it is executable since the
agent has a pre-existing moving ability !at(X, Y), which is enough to satisfy the
obligation. With the event- and option-reconsideration, the event :

E4: +!at(0, 0)[deadline(115), priority(100)] is generated from the obli-
gation, thus adoption the plan P1, bringing about an intention τ4 (P1 triggered by
(0, 0)). During the execution of τ1, τ3 and τ4 are inserted into a new schedule in
deadline order: since the priority of τ4 is greater than τ3 and τ4 has a more ur-
gent deadline, the agent starts to execute τ4, triggered by the obligation, before the
execution of τ3.

Notwithstanding, that this example is extremely simple, it provides a useful in-
principle illustration of norm-aware deliberation – as performed by intention schedul-
ing – as well as the run-time norm execution mechanism in N-Jason.

4 Operational Semantics

In this section, we present a theoretical foundation for the N-Jason programming lan-
guage with semantics based upon an extension of the operational semantics for Ja-
son/AgentSpeak(L). Given the formal semantics of Jason we extend the transition
rules which transform one extended configuration into another. To begin with, we show
a configuration of individual N-Jason agents which is almost unchanged except for
norm configuration. In the following section, we describe the transition rules that give
rise to a configuration change at each state in a single reasoning cycle. For consistency
and comparability, we follow exactly the same notations as those in published Jason
descriptions excepting the normative aspects.

4.1 N-Jason Configuration

The configuration of N-Jason is a tuple 〈ag, C,N, T, s〉 where:

– ag is an agent program consisting of a set of beliefs bs and a set of plans ps, as
defined by the EBNF in [3].

– An agent’s circumstance C is a tuple 〈I, E,A〉, where I is a set of intention
{i, i′, . . .}, E is a set of events {(te, i), (te′, i′), . . .}, in which event is a pair of a
triggering event and an intention (te, i) and A is a set of actions an agent performs
in the external environment.

– N is a tuple 〈Γ,Ξ〉 denoting normative consequences delivered from normative
systems, where Γ is a set of obligations {γ, γ′, . . .} and Ξ is a set of prohibition
{ξ, ξ′, . . .}.

– T is a tuple 〈R,Ap, ι, ε, ρ 〉 defining a trace of provisional information required
for subsequent steps within a single reasoning cycle, where R is the set of relevant
plans, Ap the sets of applicable plans, and ι, ε and ρ record an intention, event, and
applicable plan (respectively) at a specific moment under consideration within the
execution of a single reasoning cycle.

N-Jason: Run-Time Norm Compliance in AgentSpeak(L) 383

– The current state s within an agent’s reasoning cycle is denoted by s ∈ {RcvNorm,
ProcMsg, SelEv, RelPl, ApplPl, AddIM, SchInt, SelInt, ExecInt, ClrInt}.

4.2 Transition Rules

The execution of the N-Jason program leads the modification of the initial configuration
of an agent via transition rules given below. For the sake of brevity, we do not repeat
the communication semantics, since these are unaffected by the changes in relation to
norms.

In general, the transition would normally start from the state ProcMsg, but we pro-
pose a preceding step RcvNorm, as described in §2 because this provides the hook for
the consideration of the norm as part of the reasoning cycle. Thus, note that the initial
configuration of this model is 〈ag, C,N, T,RcvNorm〉, where ag is specified by the
agent program and other all components are empty, and the reasoning cycle starts from
RcvNorm with the transition rules given below.

Receiving Detached Norms: As described in §2, institutional frameworks may dis-
tribute norms via broadcasting when a norm is activated by the fulfilment of institutional
states triggered by external events in the environment. As soon as the event-based norms
are received, the norms effectively act like an ordinary event thus trigger the transition
of the agent’s mental state. Rule RcvNorm (see Figure 3) updates the agent belief base
and an event base component CE associated with adding new norms, specifically in
case of obligations in an obligation base NΓ . Otherwise, only a prohibition is added
into the prohibition base and there are no updates to other components.

Relevant Plans: (see Figure 4) If the transition of states (RcvNorm 	→ SelEv) is suc-
cessful after RcvNorm and the state SelEv selects one event from the component E of
which event is either 〈te, i〉 or 〈γ, i〉, rule Rel_1 starts to assign the set of relevant plans
to component TR in the state RelPl. Rule Rel_2 indicates the reconsideration situation
where a new triggering event extracted from the obligation is assigned to the compo-
nent CE , where Evt(γ) is a function constructing a triggering event by the retrieval of
information from γ. Rule Rel_3 assigns a set of relevant plans to TR in respect of the
reconsidered event. Rule Rel_4 and Rel_5 cope with the situation where no relevant
plan is retrieved. In those cases, events (both ordinary event and reconsidered event) are
simply ignored and the state returns to SelEv.

Since transition rules between (AppPl 	→ AddIM) are almost same as those in Jason
we give a brief description of each rule at each state from here. If T ′

R is successfully
assigned then it is followed by: (i) AppPl which assigns a set of applicable plans to TAP

by retrieving those relevant plans whose contexts are believed to be true, (ii) SelAppl
which assigns a particular intended means selected by an option selection function SO

to Tρ, and (iii) AddIM which adds a selected intended means to CI which is an existing
intention or a newly created one. If transitions fail between (AppPl 	→ AddIM), then
the state SelInt becomes the next step. For more information, see [3].

Scheduling of Intentions: Rule SchInt (see Figure 5) updates the componentC′
I by the

function SCHEDULE(CI). Note that the scheduling function, SCHEDULE(CI), sorts

384 J. Lee et al.

N �= {}
〈ag,C,N, T,RcvNorm〉 → 〈ag′, C,N ′, T,SelEv〉 (RcvNorm)

where: ag′bs = agbs ∪ {γ}
N ′

Γ = NΓ ∪ {γ} ∨N ′
Ξ = NΞ ∪ {ξ}

Fig. 3. Transition Rule for Receiving a Norm

Tε = 〈te, i〉 RelPlans(agps, te) �= {}
〈ag,C,N, T,RelPl〉 → 〈ag,C,N, T ′,ApplPl〉 (Rel_1)

where: T ′
R = RelPlans(agps, te)

Tε = 〈γ, i〉 RelPlans(agps, γ) = {}
〈ag,C,N, T,RelPl〉 → 〈ag,C′, N, T,RelPl〉 (Rel_2)

where: C′
E = {〈Evt(γ), i〉}

Tε = 〈Evt(γ), i〉RelPlans(agps,Evt(γ)) �= {}
〈ag,C,N, T,RelPl〉 → 〈ag,C,N, T ′,ApplPl〉 (Rel_3)

where: T ′
R = RelPlans(agps,Evt(γ))

RelPlans(agps, te) = {}
〈ag,C,N, T,RelPl〉 → 〈ag,C,N, T,SelEv〉 (Rel_4)

RelPlans(agps,Evt(γ)) = {}
〈ag,C,N, T,RelPl〉 → 〈ag,C,N, T,SelEv〉 (Rel_5)

Fig. 4. Transition Rules for Relevant Plans

Tρ = {}
〈ag,C,N, T,SchInt〉 → 〈ag,C′, N, T,SelInt〉 (SchInt)

where: C′
I = SCHEDULE(CI)

Fig. 5. Transition Rule for Scheduling Intentions

intentions in order of priority and deadline so as to determine the preference maximal
set of intentions discussed in §3.4.

After this step, the transition system follows the same rules as presented in [3] in
order to execute an intended means in an particular intention selected by SI in between
SelInt, ExecInt and ClrInt.

N-Jason: Run-Time Norm Compliance in AgentSpeak(L) 385

5 Related Works

There has been much research over a number of years on the matter of norm compliance
through the combination of normative frameworks and classical (BDI-type) cognitive
agents [2,11]. However, research on compliance of norms at the individual agent level
has received less attention. As discussed in §1, this problem can be decomposed into
two perspectives: to facilitate a generic norm execution mechanism at run-time, and to
focus on the rational decision making between norms and existing goals.

Alechina et al. [1] introduce N-2APL, a norm-aware BDI agent architecture and its
programming language. It is able to carry out norm-aware deliberation, which aims to
permit agents to resolve the conflicts between an agent’s own goals, normative goals and
sanctions. This is accomplished by a deadline- and priority-based intention scheduling
algorithm, which weighs the feasibility for all intentions that may bring about conflicts.
The (potential) sanctions may affect agent decision making, but violations are possi-
ble in this approach. Given N-2APL, Dybalova et al. [9] demonstrate norm-compliant
agents in location-based gaming environments in conjunction with the organisational
framework, 2OPL [6]. There, once organisations have broadcast state-based norms to
all participants, the individual agents achieve a state of the environment described in
the norms using a design-based approach. N-Jason is also able to support norm-aware
deliberation in conjunction with an institutional model, which is similar to the combi-
nation of N-2APL and 2OPL, but extends the concept of norm awareness to the whole
reasoning cycle. As a result, it supports agents in being design-based norm compliant,
but can additionally deliver run-time compliance through norm execution.

Meneguzzi et al. [13] focuses on norm awareness at the perception level, by extend-
ing the AgentSpeak(L) BDI architecture with a run-time plan modification technique.
It enables agents to behave appropriately in response to newly accepted norms at run-
time. However, it assumes that the norms are non-conflicting, so it does not consider
scheduling of plans with regards to their deadlines or possible sanctions in accordance
with existing goals in agents. Whereas [13] takes a rather practical perspective, van
Riemsdijk et al. [14] introduce a formal framework for generic norm execution, which
allows agents to be norm compliant by triggering or preventing actions in new and un-
known norms at design time. However the agent in [14] works at the level of individual
actions (its decision mechanism chooses actions rather than plans) and the norms are
specified in terms of actions, making in effect a norm-reactive agent, and it is unclear
how the decision mechanism can combine actions to achieve goals and thereby the ob-
jective of a norm-deliberative agent. In N-Jason, run-time norm execution is in practice
accomplished at the level of plans to achieve goals, and norms indicate a sort of event
that triggers plans. Moreover, in N-Jason run-time norm compliance is achieved on top
of the norm aware decision making and in conjunction with the execution mechanism.

Notwithstanding the benefits of N-Jason, there are some issues to highlight in respect
of the mechanism for run-time norms. The norm compliance strategy is hard-coded in
the semantics of the language, leaving only a capacity for configuration via the plan
annotations, whereas the strategy is programmable through agent plans (i.e. supporting
the design of strategy by an agent programmer) in JaCaMo [2] and N-2APL [1]. Thus,
the proposal presented here provides a pre-packaged approach to normative reasoning,
since it deprives the agent of the scope to change plans dynamically or mis-behave

386 J. Lee et al.

intentionally, based on rules the agent programmer designs. However, the mechanism
put forward here does enable legacy agents, which have no compliance rule or strategy
in their specification, to become norm-aware automatically. Thus, those agents’ be-
haviour can be coordinated through the governance of normative frameworks without
further engineering effort.

Another issue lies in the simple mechanism for the operationalisation of norms in
run-time norm execution. The approach described here means the ontology and syntax
of norms that can be executed are limited to those present in the plan library of an
agent. In consequence, some detached norms, that may correspond semantically to one
of an agent’s plans, but which are ontologically different from the plan, will be ignored
or violated. We are considering how to generalise the execution mechanism with the
analysis of semantics of norms, following [14], in conjunction with plan synthesis.

6 Conclusion and Future Works

In this paper, we have presented a design for a norm-aware BDI agent, N-Jason, that
enables the exhibition of norm compliance at run-time. Basically N-Jason offers a
generic norm execution mechanism on top of norm-aware deliberation to contribute
to the exploitation of run-time norm compliance. Run-time norm execution specifi-
cally focuses on the operationalisation of new and unknown (event-based) norms not
stated in the agent program at run-time. By judging the executability of them, N-Jason
agents executes those norms following an extended model of norm awareness consist-
ing of: (i) event reconsideration, to find out what the norm is intended to achieve or
to reach, and (ii) option reconsideration, to identify which plan is the most appropri-
ate in response to the norm. The selection of norm compliant behaviour is achieved
in the norm-aware deliberation process by intention scheduling with deadlines, priori-
ties and prohibitions which confirms the decision about which behaviour agent would
prefer between goals, norms and sanctions. It brings about a preference maximal set
of intentions in order to realise the norm compliance. N-Jason is implemented in Ja-
son/AgentSpeak(L) and extends its syntax and semantics to create N-Jason.

We believe that run-time norm compliance model is beneficial for the enhancement
of both a norm compliance capability and agent autonomy from the agent’s perspective.
However, we note that the behaviour triggered by run-time norm execution may look
like unpredictable/unwanted behaviour from the agent programmer’s perspective.

Although this paper particularly considers the execution of event-based norms at
run-time in conjunction with the institutional model, the extension to support state-
based norms and its normative systems can easily be incorporated into N-Jason agents
and will be as future work. We also plan to detect violations which are generated in
the norm aware deliberation, particularly when the normative goals are dropped during
scheduling. This offers a potentially useful link for enforcement in the context of nor-
mative system implementation. In addition, both empirical and analytical evaluation of
the performance of N-Jason requires proper investigation.

N-Jason: Run-Time Norm Compliance in AgentSpeak(L) 387

References

1. Alechina, N., Dastani, M., Logan, B.: Programming norm-aware agents. In: Proceedings of
the 11th International Conference on Autonomous Agents and Multiagent Systems, Rich-
land, SC, pp. 1057–1064 (2012)

2. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented program-
ming with jacamo. Sci. Comput. Program. 78(6), 747–761 (2013)

3. Bordini, R., Hübner, J., Wooldridge, M.: Programming Multi-Agent Systems in AgentSpeak
using Jason. Wiley Series in Agent Technology. John Wiley & Sons (2007)

4. Charlton, B.: Evolution and the cognitive neuroscience of awareness, consciousness and lan-
guage. Cognition 50, 7–15 (2000)

5. Cliffe, O., De Vos, M., Padget, J.: Specifying and reasoning about multiple institutions. In:
Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V., Fornara, N., Matson,
E. (eds.) COIN 2006 Workshops. LNCS (LNAI), vol. 4386, pp. 67–85. Springer, Heidelberg
(2007)

6. Dastani, M., Tinnemeier, N.A., Meyer, J.-J.C.: A programming language for normative multi-
agent systems. In: Multi-Agent Systems: Semantics and Dynamics of Organizational Models,
pp. 397–417 (2009)

7. De Vos, M., Balke, T., Satoh, K.: Combining event-and state-based norms. In: Proceedings
of the 2013 International Conference on Autonomous Agents and Multi-agent Systems, AA-
MAS 2013, pp. 1157–1158. International Foundation for Autonomous Agents and Multia-
gent Systems, Richland (2013)

8. Dignum, V.: A Model for Organizational Interaction. PhD thesis, Utrecht University (2004)
9. Dybalova, D., Testerink, B., Dastani, M., Logan, B.: A framework for programming norm-

aware multi-agent systems. In: Dignum, F., Chopra, A. (eds.) Proceedings of the 15th In-
ternational Workshop on Coordination, Organisations, Institutions and Norms, COIN 2013
(2013)

10. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Comput. 9(3/4), 365–386 (1991)

11. Hubner, J.F., Sichman, J.S., Boissier, O.: Developing organised multiagent systems using the
moise+ model: programming issues at the system and agent levels. Int. J. Agent-Oriented
Softw. Eng. 1(3/4), 370–395 (2007)

12. Lee, J., Li, T., Padget, J.: Towards polite virtual agents using social reasoning techniques.
Computer Animation and Virtual Worlds 24(3-4), 335–343 (2013)

13. Meneguzzi, F., Luck, M.: Norm-based behaviour modification in bdi agents. In: Proceed-
ings of The 8th International Conference on Autonomous Agents and Multiagent Systems,
AAMAS 2009, vol. 1, pp. 177–184. International Foundation for Autonomous Agents and
Multiagent Systems, Richland (2009)

14. van Riemsdijk, M.B., Dennis, L.A., Fisher, M., Hindriks, K.V.: Agent reasoning for norm
compliance: A semantic approach. In: Proceedings of the 2013 International Conference on
Autonomous Agents and Multi-agent Systems, AAMAS 2013, pp. 499–506. International
Foundation for Autonomous Agents and Multiagent Systems, Richland (2013)

15. Vikhorev, K., Alechina, N., Logan, B.: Agent programming with priorities and deadlines. In:
The 10th International Conference on Autonomous Agents and Multiagent Systems, Rich-
land, SC, pp. 397–404 (2011)

	Run-Time Norm Compliance in AgentSpeak(L)
	1 Introduction
	2 Institutional Framework
	3 TheN-
	BDI Agent Framework
	3.1 The
	3.2 The
	3.3 Run-Time Norm Execution
	3.4 Norm Awareness in Deliberation
	3.5 Implementation
	3.6 Example

	4 Operational Semantics
	4.1
	4.2 Transition Rules

	5 Related Works
	6 Conclusion and Future Works
	References

