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Abstract. In contemporary autonomous systems, like robotics, the need to
apply group knowledge has been growing consistently with the increasing com-
plexity of applications, especially those involving teamwork. However, classical
notions of common knowledge and common belief, as well as their weaker ver-
sions, are too complex. Also, when modeling real-world situations, lack of knowl-
edge and inconsistency of information naturally appear. Therefore, we propose
a shift in perspective from reasoning in multi-modal logics to querying paracon-
sistent knowledge bases. This opens the possibility for exploring a new approach
to group beliefs. To demonstrate expressiveness of our approach, examples of so-
cial procedures leading to complex belief structures are constructed via the use of
epistemic profiles. To achieve tractability without compromising the expressive-
ness, as an implementation tool we choose 4QL, a four-valued rule-based query
language. This permits both to tame inconsistency in individual and group beliefs
and to execute the social procedures in polynomial time. Therefore, a marked im-
provement in efficiency has been achieved over systems such as (dynamic) epis-
temic logics with common knowledge and ATL, for which problems like model
checking and satisfiability are PSPACE- or even EXPTIME-hard.

Keywords: Cooperation, reasoning for robotic agents, formal models of agency,
knowledge representation, tractability.

1 A New Perspective on Beliefs

Classical approaches to common knowledge capture the essence of the mutuality in-
volved in what it means to deal with common knowledge, as contrasted with dis-
tributed knowledge. According to the usual understanding, the essence of these notions
is consensus between group participants. This is clearly visible in the notion of general
knowledge E-KNOWG (every agent in group G knows), and propagation of consensus,
through iterations E-KNOWk

G up to common knowledge C-KNOWG, which informally
can be seen as an infinitely iterated stack of general knowledge operators. This manner
of building common knowledge, originating from epistemology and modal logic, cap-
tures “what every fool knows” [28, 44], [23, Chapter 2]. Indeed common knowledge is

� This work was partially supported by Polish National Science Centre grants 2011/01/B/
ST6/02769, 2012/05/B/ST6/03094 and Vici grant NWO 227-80-001.

F. Dalpiaz et al. (Eds.): EMAS 2014, LNAI 8758, pp. 328–350, 2014.
c© Springer International Publishing Switzerland 2014



Tractable Reasoning about Group Beliefs 329

helpful in drawing common consequences from commonly known premises, which is
invaluable in creating models of others. But this comes at the price of super-polynomial
complexity, causing grave problems when engineering multi-agent systems for use in
time-critical situations [5, 24].

Theories dealing with various notions of knowledge and teamwork in multi-agent
systems have been developed, among them the multi-modal logic TEAMLOG [23].
TEAMLOG allows to precisely model notions motivating agents to cooperate, such as
collective intention, which integrates a strictly cooperative team together into a whole,
and collective commitment, leading directly to team action based on a social plan that
delineates how subgoals have been delegated to agents that have committed to perform
them. Since teamwork occurs in various very diverse forms, it would not suffice to in-
troduce one iron-clad notion of collective intention or collective commitment. Instead,
using the expressive power of TEAMLOG, both notions should be calibrated to fit a va-
riety of circumstances. The elements that vary from context to context are the levels
of agents’ awareness about the agent itself, other agents and the environment. Various
forms of knowledge and beliefs constitute a fundamental layer of TEAMLOG.

As the role of group knowledge has recently evolved, it may instead be useful for
participants to preserve their individual beliefs, while at the same time being a member
of a larger group structure with group beliefs that govern the group’s behavior. Instead
of “what every fool knows”, group knowledge would then tend to express synthetic in-
formation extracted from the information delivered by individuals. Thus, more so than
in classical epistemic and doxastic logical approaches, there should be a clear distinc-
tion between agents’ individual informational stances and the groups’ ones. Consensus
is not a requirement anymore, as group members do not necessarily adopt group con-
clusions. It suffices that during the group’s lifetime they obey them.

In autonomous systems, the need to apply group knowledge has been growing with
the increasing complexity of real-world applications, especially those involving cooper-
ation or teamwork. A field that particularly expanded recently is robotics. In fact, con-
temporary robotics has now advanced so far that it has become necessary to investigate
performance issues. Since more and more intelligent robots are able to autonomously
perform sophisticated and precise maneuvers, we inevitably approach the era of strict
cooperation among robots, software agents and people. Typical examples of such coop-
eration are emergency situations or catastrophes [2, 17, 24, 37, 47].

During robots’ cooperation, an attempt to create consensus seems to be superflu-
ous. Instead, in time-critical situations it is essential to reduce the complexity of both
communication and reasoning. It is often too computationally costly to establish and
reason about common beliefs and common knowledge. Especially when the informa-
tion derives from different sources and is imprecise, problems arise due to the properties
discussed in [21], including limited accuracy of sensors and other devices, restrictions
on time and other resources, unfortunate combinations of environmental conditions,
and limited reliability of physical devices. This combination of properties inevitably
introduces inconsistencies on many different levels: in the information available to in-
dividual agents, between different agents, as well as between agents and groups and
between groups and groups.
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Even though in classical logical approaches, inconsistency immediately trivializes
reasoning — “Ex falso sequitur quodlibet” — we intend to avoid such an effect. Robots
are often sent to unknown terrains and face a need to sensibly proceed regardless of
their ignorance and/or inconsistent information. This leads us to a paraconsistent ap-
proach, i.e., an approach that tolerates inconsistencies.1 Thus, instead of fighting with
inconsistencies, we treat them as first-class citizens. Typically, they need to be resolved
sooner or later, depending on the situation in question, but in some reasonable cases
they can even remain unresolved (see, e.g., [29]).

How to formally model such complicated situations? First of all, Dunin-Kȩplicz and
Szałas [19,21] have proposed a shift in perspective: from reasoning in multi-modal sys-
tems of high complexity to querying (paraconsistent) knowledge bases. This has led
to a novel formalization of complex beliefs. In order to bridge the gap between ideal-
ized logical approaches and their actual implementations, the novel notion of epistemic
profile serves as a tool for transforming preliminary beliefs into final ones.

An epistemic profile reflects an agent’s individual reasoning capabilities: it defines
a schema in which an agent reasons and deals with conflicting information and igno-
rance. These skills are achievable by combining various forms of reasoning, including
belief fusion, disambiguation of conflicting beliefs, and completion of lacking infor-
mation. More formally, an epistemic profile corresponds to a function mapping finite
sets of ground literals to ground literals (see Definition 3.3). As epistemic profiles can
be devised analogously both on an individual and a group level, we achieve a uniform
treatment of individual and group beliefs.

Various challenges occurring when building epistemic profiles can be solved with
the use of 4QL, a four-valued rule-based query language designed by Małuszyński and
Szałas [40, 42, 53].2 Our approach builds on ideas underlying 4QL, which allows for
negation in premises and conclusions of rules. It provides simple, yet powerful con-
structs (modules and external literals) [40, 41] and more general multisource formu-
las [53] for expressing non-monotonic rules reflecting, among others, lightweight forms
of default reasoning [51], auto-epistemic reasoning [45], defeasible reasoning [49], and
the local closed world assumption [27]. Importantly, 4QL enjoys tractable query com-
putation and captures all tractable queries; this means that 4QL can express exactly
those properties which can be checked in deterministic polynomial time with respect
to the size of the database domain (see [41] for details). Therefore, 4QL is a natural
implementation tool opening the space for a diversity of applications by providing firm
foundations for paraconsistent knowledge bases used by external applications. This pa-
per is part of a larger research program started in [18–21, 25]. The main contributions
of this article are (see also Table 1):

– Providing a tractable methodology for modeling group beliefs that ensures a proper
treatment of inconsistent or lacking information, while avoiding unwanted effects
like logical omniscience;

– Implementing examples of social procedures, leading to complex belief structures,
via the use of epistemic profiles and 4QL;

1 Paraconsistency has a long tradition and is intensively investigated (see, e.g., [4]).
2 See also http://4ql.org, which provides an open source experimental interpreter of 4QL.
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Table 1. Shift in perspective on group beliefs

Traditional approaches The new approach

“What every fool knows” Synthetic information extracted from individuals or other
groups

Holistic knowledge Selected aspects only
Consensus Group members not forced to adopt group conclusions: only

required to obey them during the group’s lifetime
Logical omniscience Incomplete/inconsistent beliefs allowed
Monotonicity Non-monotonic resolution of incomplete/inconsistent be-

liefs offered
Homogeneity (typically) Heterogeneity: reasoning is individualized; heterogeneous

information sources allowed
Reasoning intractable Tractability: reasoning in deterministic polynomial time

– Showing how to tame inconsistency and incompleteness in individual and group
beliefs;

– Showing that social procedures for creating group beliefs, expressed in 4QL and
using lightweight forms of non-monotonic reasoning, can be executed in determin-
istic polynomial time.

In this paper we focus on belief formation rather than belief maintenance and revision.
Such dynamic aspects, for which 4QL is eminently suitable, will be presented in future
work.

The rest of the paper is structured as follows. Section 2 presents a robot rescue sce-
nario to be used as running example, while Section 3 presents the logical background
on belief structures, epistemic profiles and 4QL. The heart of the paper includes Sec-
tion 4, which introduces methods for creating group beliefs in 4QL according to agents’
and groups’ epistemic profiles. Section 5 focuses on solving the problem of conflicting
information at the group level. Section 6 provides a formalization of the robot rescue
scenario. Section 7 discusses the influence of group beliefs on members’ individual
beliefs. In Section 8, we show that social procedures expressible in 4QL are in fact
tractable. We end with a discussion and topics for future research in Section 9.

2 Running Example: Robot Rescue Scenario

Consider a group of robots, each equipped with a temperature sensor. In our running
example, their beliefs, as hardwired by the robots’ manufacturer, are expressed by the
following rules:

− if
(
temperature ≤ 65oC

)
then operating is safe; (1)

− if
(
65oC < temperature ≤ 80oC

)
then risk of damage is serious; (2)

− if
(
80oC < temperature

)
then it is certain that operating is impossible. (3)
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Assume that there is fire in certain regions, resulting in a high temperature in these
regions and their neighborhoods. Let a surveillance team team = {r1, . . . , rk} (k > 1)
of robots be formed, whose group beliefs include the one that searching for victims is
more important than preserving robots. An example of a group belief can be:

− enter the affected region and search for victims unless it is certain
that operating in the region is impossible.

(4)

To formalize these and related rules we shall use the following relations, where R rep-
resents regions:

– temp(R, T ): temperature in R is T ;
– risk(R): situation in R is risky;
– allowed(R): entering R is allowed (perhaps also in a risky situation);
– search(R): search for victims in R.

Let us emphasize that each agent (robot) is equipped with its individual knowledge
base, so it has individual beliefs about these relations. We also assume that geographic
information system (GIS)-based information about subregions and robots’ locations is
available via the following relations:

– close(P,R): robot P is close to R;
– subreg(S,R): S is a subregion of R.

We use this robot rescue scenario throughout the paper.

3 Preliminaries

In what follows we assume that domains of objects are finite and that agents’ reasoning
is grounded in knowledge bases rather than in arbitrary theories. That is, in reasoning
we allow rules and facts and consider well-supported models only.

3.1 Language, Belief Structures and Epistemic Profiles

We view epistemic profiles as the general means to express a variety of strategies for
belief acquisition and formation. In order to apply them here, we present a summary
of some of the most important definitions from [19–21, 40, 42]. The semantical struc-
tures constituents and consequents reflect the processes of agents’ belief acquisition
and formation. An agent starts with constituents, i.e., sets of beliefs acquired by per-
ception, expert-supplied knowledge, communication with other agents, and many other
ways. Next, the constituents are transformed into consequents according to the agent’s
individual epistemic profile. Consequents contain final, “mature” beliefs.

In a multi-agent system, for each group, the group epistemic profile is set up, where
consequents of group members become constituents at the group level and such con-
stituents are further transformed into group consequents. Observe that in this way, vari-
ous perspectives of agents involved are taken into consideration and merged. Similarly,
groups may be members of larger groups, perhaps containing individuals, too, etc.
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Table 2. Truth tables for ∧, ∨, → and ¬ (see [40, 54])

∧ f u i t ∨ f u i t → f u i t ¬
f f f f f f f u i t f t t t t f t
u f u u u u u u i t u t t t t u u
i f u i i i i i i t i f f t f i i
t f u i t t t t t t t f f t t t f

As to the language, we use the classical first-order language over a given vocabulary
without function symbols, presented in [21,40,53]. We assume that Const is a fixed set
of constants, Var is a fixed set of variables and Rel is a fixed set of relation symbols.

Definition 3.1. A literal is an expression of the form R(τ̄ ) or ¬R(τ̄ ), with τ̄ being
a sequence of arguments, τ̄ ∈ (Const∪V ar)k , where k is the arity of R. Ground literals
over Const, denoted by G(Const), are literals without variables, with all constants in

Const. If � = ¬R(τ̄ ) then ¬� def
= R(τ̄). �

Though we use classical first-order syntax, the semantics substantially differs from the
classical one as truth values t, i, u, f (true, inconsistent, unknown, false) are explicitly
present; the semantics is based on sets of ground literals rather than on relational struc-
tures. This allows one to deal with lack of information as well as inconsistencies. Be-
cause 4QL is based on the same principles, it can directly be used as implementation
tool.

The semantics of propositional connectives is summarized in Table 2. Observe that
definitions of ∧ and ∨ reflect minimum and maximum with respect to the ordering:

f < u < i < t, (5)

as argued in [1, 40, 54]. Similarly, the semantics of quantifiers in formulas
∀xA(x)/∃xA(x) is defined using ordering (5), by taking the minimum (respectively,
maximum) of the truth values of A(a) for a ∈ Δ, where Δ is the domain of x.

As a reminder from [40, 54], the truth tables for conjunction ∧ and disjunction ∨
are defined as minimum and maximum with respect to the truth ordering, respectively.
The implication → is a four-valued extension of classical implication, and is used to
interpret 4QL-clauses. Whenever the body of a clause has value f or u, the truth value of
the whole clause is defined to be t. This reflects our intention not to draw conclusions
from false or unknown information: a clause with a body that is f or u is always satisfied,
so one does not need to update its head. On the other hand, from an inconsistent body,
we want to conclude that the head is also inconsistent. Thus, for a body with value i,
the implication is t if the head is i, and f otherwise. If the body takes value t and the
head takes value t or i, the implication as a whole is t. Note that, in contrast to classical
two-valued logic, it is not the case that ϕ → ψ is equivalent to ¬ϕ ∨ ψ, so the classical
abbreviations cannot be used.

Let v : Var −→ Const be a valuation of variables. For a literal �, by �(v) we
understand the ground literal obtained from � by substituting each variable x occurring
in � by constant v(x).
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Definition 3.2. The truth value �(L, v) of a literal � with respect to a set of ground
literals L and valuation v, is defined by:

�(L, v)
def
=

⎧
⎪⎪⎨

⎪⎪⎩

t if �(v)∈L and (¬�(v)) 
∈L;
i if �(v)∈L and (¬�(v))∈L;
u if �(v) 
∈L and (¬�(v)) 
∈L;
f if �(v) 
∈L and (¬�(v))∈L. �

Belief structures can now be defined as in [19,21].3 Here, the concept of an epistemic
profile is the key abstraction involved in belief formation. If S is a set, then FIN(S)
represents the set of all finite subsets of S.

Definition 3.3. Let C
def
= FIN(G(Const)) be the set of all finite sets of ground literals

over constants in Const. Then:

– an epistemic profile is any function E : FIN(C) −→ C;
– by a belief structure over epistemic profile E is meant a structure BE = 〈C, F 〉

with C ⊆C being a nonempty finite set of constituents,4 and F
def
= E(C) being the

consequent of BE . �
Importantly, final beliefs are represented as consequents.

3.2 The 4QL Rule Language

The rule language 4QL has been introduced in [40] and further developed in [42, 53].
Beliefs in 4QL are distributed among modules, illustrated by the following example.

Example 3.4. Consider the scenario specified in Section 2. With each robot we asso-
ciate a module containing relations ‘temp’, ‘risk’, ‘search’. With the group ‘team’ we
associate a module containing relations ‘risk’, ‘search’, ‘allowed’. The geographic in-
formation system module ‘gis’ contains relations ‘subreg’ and ‘close’. �

The 4QL language allows for negation in premises and conclusions of rules. It is
based on the four-valued logic described in Section 3.1. The semantics of 4QL is defined
by well-supported models [40–42, 53], i.e., models consisting of (positive or negative)
ground literals, where each literal is a conclusion of a derivation starting from facts. For
any set of rules, such a model is uniquely determined:

“Each module can be treated as a finite set of literals and this set can be com-
puted in deterministic polynomial time with respect to the number of constants
occurring in the module” [40, 42].

Thanks to this correspondence and the fact that 4QL captures PTIME, the constituents
and consequents of Definition 3.3, being PTIME-computable, can be directly imple-
mented as 4QL modules (see also Theorem 8.1).

3 Their indeterministic version is introduced and discussed in [22].
4 That is, a constituent is any set C ∈ C.



Tractable Reasoning about Group Beliefs 335

Remark 3.5. Note that this prevents the unfortunate effects of the logical omniscience
problem (for a survey of the problem, see, e.g., [28,38,44,52]): to check whether a for-
mula A belongs to a set of beliefs of an individual or a group, one only has to determine
what is its truth value in the respective consequent. Formula A can be considered as
a query to a corresponding 4QL module, so tractability is preserved. As 4QL allows to
express PTIME-computable queries only, intractable/uncomputable classes of valid for-
mulas (e.g., expressing the consequences of the Peano axioms for first-order arithmetic)
cannot be expressed as valid beliefs unless explicitly added to knowledge bases. �

For specifying rules and querying modules, we adapt the language of [53]. To define
the language, we need the notion of multisource formulas defined as follows.

Definition 3.6. A multisource formula is an expression of the form: m.A or m.A∈T ,
where:

– m is a module name;
– A is a first-order or a multisource formula;
– T ⊆ {t, i, u, f}.

We write m.A = v (respectively, m.A 
= v) to stand for m.A ∈ {v} (respectively,
m.A 
∈{v}). �

The intuitive meaning of a multisource formula m.A is:

“return the answer to query expressed by formula A, computed within the con-
text of module m”.

The value of ‘m.A ∈ T ’ is:
{
t when the truth value of A in m is in the set T ;
f otherwise.

Let A(X1, . . . , Xk) be a multisource formula with X1, . . . , Xk being all its free vari-
ables and let D be a finite set of literals (a belief base). Then A, understood as a query,
returns tuples 〈d1, . . . , dk, v〉, where d1, . . . , dk are database domain elements and the
value of A(d1, . . . , dk) in D is v.

Example 3.7. The following formula:

∃S(gis.subreg(S,R) ∧ temp(S, T ) ∧ T > 65) (6)

states that there is a subregion of R with the temperature T exceeding 65. The
‘gis’ module stores information about subregions; the part ‘gis.subreg(S,R)’ of (6)
uses this module.5 More precisely, formula (6), understood as a query, returns triples
〈region, temperature, value〉 such that the truth value of formula (6) is value when
R = region and T = temperature.

The formula:
(∃S(gis.subreg(S,R) ∧ temp(S, T ) ∧ T > 65)

) ∈ {t, i, u}. (7)

is true when the value of formula (6) is t, i or u, and is false otherwise. �
5 It is assumed that formulas without a module label refer to the current module.
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Definition 3.8.

– Rules are expressions of the form:

conclusion :– premises. (8)

where conclusion is a positive or negative literal and premises are expressed by
a multisource formula.

– A fact is a rule with empty premises (such premises are evaluated to t).
– A module is a syntactic entity encapsulating a finite number of facts and rules.
– A 4QL program is a set of modules, where it is assumed that there are no cyclic

references to modules involving multisource formulas of the form m.A∈T . �

Openness of the world is assumed, but rules can be used to close it locally or globally.
Rules may be distributed among modules. Here follows an example, using the robot
rescue scenario of Section 2.

Example 3.9. Consider the following rules within a module, say m, of a given robot:

risk(R) :– close(R) ∧ [formula (7) = t]. (9)

¬allowed(R) :– temp(R, T ) ∧ T > 80. (10)

Rule (9) expresses the fact that region R is risky for the robot if it is close to R and
formula (7) is true. Rule (10) states that the robot is not allowed to enter regions where
the temperature exceeds 80oC.

One can query module m using multisource formulas like m.risk(R),
m.allowed(R), m.risk(R) ∈ {t, i}, etc. �

4 Between Individual and Group Beliefs

Group beliefs gather conclusions of reasoning processes of the agents involved. There-
fore, they are generally more synthetic than beliefs of group members, and deal with
selected aspects only. If not stated differently, group beliefs prevail over individual ones.
If a group belief about some aspect is missing or is inconsistent, an agent should be able
to grab adequate information from its individual belief base or possibly complete it non-
monotonically. These features should be reflected in the epistemic profiles (as discussed
in Section 3.1).

4.1 Adjusting 4QL to Epistemic Profiles

To simplify formalization of epistemic profiles in 4QL, we shall identify consequents
of robot r (or group of robots G) with a 4QL module having the same name r (respec-
tively, G). For a truth value w, we write:

– m.A = w to stand for m.A ∈ {w};
– m.A 
= w to stand for m.A ∈ {t, i, u, f} − {w}.
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Although all phenomena presented in this paper are expressible in 4QL, we shall also
use notation extending 4QL, yet simplifying the formalizations we need. For a group of
robots G = {r1, . . . , rk} (k ≥ 1), we introduce the following notation:

– ∃r ∈ G[A(r)]
def
= A(r1) ∨ . . . ∨ A(rk);

– ∀r ∈ G[A(r)]
def
= A(r1) ∧ . . . ∧ A(rk);

– #{r ∈ G | A(r)} is the number of members of G making A true (A is assumed
here not to have free variables other than r); we shall also use the abbreviation

#G
def
= #{r ∈ G | t} (the number of members of G).

Example 4.1. Consider the robot rescue scenario. Typical rules for the robots can be:

search(R) :– team.search(R)= t. (11)

¬search(R) :– temp(R, T ) ∧ T > 80. (12)

The first rule states that the robot should start searching for victims in region R if
search(R) = t is a team’s belief. If the temperature excludes the possibility of robots’
operation (see rule (3)), then the conclusion is ¬search(R). Of course, rules (11)–(12)
may lead to inconsistency when the temperature in a given region is over 80oC and
team still believes that searching that region is in order. This inconsistency can easily
be resolved. If rules (11)–(12) are in a module, say m, then the robot may use a rule
like:

¬search(R) :– m.search(R) = i. (13)

Of course, one can define more refined solutions than (13). �

4.2 Establishing Group Belief

Common knowledge and its weaker approximations, such as iterated general knowl-
edge, can be viewed as a paradigmatic form of group knowledge. However, for many
applications this is too much to ask for. After all, when using standard modal logics,
such as in [23,44], the levels of iterated general beliefs harbor the risk of combinatorial
explosion. Even for a group as small as three agents, G = {1, 2, 3}, we have:

E-BELG(p) ⇔ BEL(1, p) ∧ BEL(2, p) ∧ BEL(3, p); (14)

for k ≥ 1: E-BELk+1
G (p) ⇔ E-BELG(E-BELk

G(p)). (15)

Observe that (15), when written in full, has 3k+1 conjuncts, so the complexity of
building levels of general belief is exponential in the number of required levels, there-
fore not computable in polynomial time. Thus, for time-critical applications, one should
completely change the approach to group belief.

Actually, full-fledged general and common belief is not needed for many real-world
applications. The necessary shared belief state may result from agreement, some ex-
ample methods of which will be listed in Section 4.3. On the other hand, the notion of
distributed knowledge is sometimes referred to as “what a wise person would know”.
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Fig. 1. Implementation framework for belief structures and epistemic profiles. Arrows indicate
belief fusion processes.

This wise person would pull together the individual knowledge of group members, and
would draw only classical conclusions from the combined information [44]. Distribu-
tion of reasoning is also an important feature of our approach, but why should we limit
ourselves to classical reasoning only? Group knowledge may go even further than tra-
ditional distributed knowledge or belief: when starting from the same individual beliefs
of the group members, a variety of reasoning methods and other techniques may lead to
much more far-reaching conclusions. Epistemic profiles are introduced to encapsulate
the variety of techniques used.

4.3 Building Epistemic Profiles

Creation of group beliefs takes place in the broader context of producing derivatives,
understood as a complex process of drawing conclusions by different, temporarily ex-
isting, virtual subgroups or intermediate views [20, 21].6 When the final consequent
has been reached, the virtual subgroups involved may (but do not have to) disintegrate,
while the consequent itself is spread among initial group members. This whole process,
reflected in Figure 1 (from [20] with permission), can take place at any level of group
aggregation.7

Using well-known heuristics, agents and groups have the possibility to complete their
knowledge. Several reasoning methods can be used in the context of 4QL, as discussed
in [18, 20, 25]:

– non-monotonic reasoning including the local closed-world assumption;
– default reasoning, circumscription, etc.;
– defeasible reasoning;
– methods inspired by argumentation theory.

A variety of social procedures, in combination with the reasoning methods above, may
be used to establish different types of group knowledge or belief:

6 Note that derivatives do not occur in the definition of belief structures. They are used to define
epistemic profiles in a better structured and more readable manner.

7 Though epistemic profiles may, in general, be of arbitrary complexity, in the current paper we
only allow 4QL-based reasoning guaranteeing tractability.
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– public announcements [16];
– different voting methods [48];
– methods involving power relations [11, 35].

Example 4.2. Assume that agents in group G vote about the truth value of the formula:

temp(R, T ) ∧ T > 65. (16)

A simple way to encode such majority voting is:

risk(R) :– #{r∈G | r.[(16)]= t} > #{r∈G | r.[(16)]= f}.

The above rule can be made more subtle, e.g., by setting:

risk(R) :– #{r∈G | r.[(16)]∈{t, i}} > #{r∈G | r.[(16)]∈{f, u}}.

Of course, such voting may be made more context-dependent by using relations other
than those occurring in (16). �

It may be profitable to investigate the consequences of making group decisions based
on voting rather than, for example, lengthy persuasion dialogues, such as those needed
to establish collective intentions [13].

In appropriate circumstances, one may choose seeing rather than communicating as
a method to create group belief. This can be seen as an analogy to “co-presence” [12]:
by joint attention, the information is seen by everybody and everybody knows that the
others in the group see this, and so on. Formally, this is more restrictive than the majority
voting of the above example; for the robot rescue example such “co-presence” could
follow the rule:

risk(R) :– #{r∈G | r.[(16)]= t} = #G.

The relevant combination of social procedures and reasoning techniques is to be im-
plemented as individual and group epistemic profiles by means of multisource formulas
and 4QL modules.

4.4 Creating Virtual Groups

Sometimes a virtual group is created (among other reasons) in order to establish appro-
priate group beliefs. Whenever this happens, the virtual group’s reasoning method has
to be fixed, either implicitly or explicitly, and then represented in the virtual group’s
epistemic profile.

However complex the process of drawing a consequent from the constituents may be
in terms of subgroups involved, at the end, the resulting consequent is seen by members
of the initial group only. Analogously, in order to answer a question in daily life, you
may look at Wikipedia, ask experts, and ask friends what they think about the issue.
When you have finally drawn your conclusion, you often forget about the details of
this process and do not necessarily communicate your final conclusion to all people
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involved, but only to those who need to know. This makes the process less complex and
safer from the perspective of information security and, not to forget, also more relaxed.

The next important issue is a proper organization of reasoning processes and infor-
mation sharing between different groups and/or agents belonging to different groups
at the same time. As in everyday life, during an agent’s reasoning and activities as
a member of one group, the beliefs of other groups to which the agent belongs are tem-
porarily suspended or hidden. In this situation, the agent sees only its individual and the
current group beliefs. This way, switching between groups becomes simple and compu-
tationally efficient.8 When a group belief is formed, this does not force each member to
change its individual informational stance (Section 7). Relaxing this postulate creates
an important difference from the attainment of common knowledge in the modal logic
framework.

5 Conflicting Information

Whenever conflicting information appears, it may be resolved on the individual or group
level in a similar way. If there is no means to resolve it within a given time and other
constraints, the group can resort to less resource-demanding kinds of heuristics. As to
timing, there are at least three strategies:

– “Killing inconsistency at the root”: to solve them as soon as possible;
– On the other extreme, “living with inconsistency”: to postpone disambiguation to

the last possible moment (or even forever);
– Intermediate: to solve inconsistency each time new relevant information appears.

In the sequel, we focus on techniques for resolving inconsistencies, as those are gener-
ally independent of timing strategies.

5.1 Examples of Techniques

The context of the following simple examples is a group of robots in the rescue scenario
deciding on the truth value of search(X), which is crucial in their decision making
about whether action is needed.

Example 5.1. One can resolve potential inconsistencies using one of the following ex-
ample policies.

– Search if at least one group member is convinced to do this:

search(R) :– ∃r∈ team[r.search(R) = t]. (17)

– Search if no group member opposes:

search(R) :– ∀r∈ team[r.search(R) 
= f]. (18)

8 See also the discussion in Section 7, in particular Figure 2.
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– Search if at least one group member is convinced to do this and no group member
opposes:

search(R) :– (17) ∧ (18). (19)

Of course, there are many other reasonable ways for resolving inconsistencies, some of
them discussed below. �

In more complex scenarios, techniques for resolving inconsistency may reflect
knowledge about the application domain involving legal regulations, argumentation,
or other accepted strategies, such as the social procedures on which we focus next.

5.2 Social Procedures Solving Inconsistencies

In the subsequent example cases, the robots use different procedures to resolve incon-
sistent information about whether an area is risky, risk(reg).

Case A: peer-to-peer Solving inconsistencies among peers may not be immediately
possible. A possibility is to ignore the i-values and decide that on the group level,
risk(reg) is true. This solution takes the majority vote among the t and f votes only
and is computationally very simple, as the following example solutions indicate.

Example 5.2. SupposeG = {r1, r2, r3} and one agent assigns value i to risk(reg) while
two other agents assign t. It seems reasonable that the group then considers risk(reg) to
be true. The following rule formalizes this approach.

risk(reg) :– ∃r ∈ G(r.risk(reg) = i) ∧#{r ∈ G | r.risk(reg) = t} = 2.

Of course, this solution may be modified in particular cases, for example, when the
agent voting for i is much more reliable in estimating risk than other team members.
A rule like the above can be generalized to arbitrary numbers of agents, for example
“the majority among the agents who are voting t or f, assigns t to risk(reg)” can be
formalized as

risk(reg) :– #{r ∈ G | r.risk(reg) = f} < #{r ∈ G | r.risk(reg) = t}. �

Example 5.3. Let again G = {r1, r2, r3}. Now suppose two agents assign value u to
risk(reg), while one agent assigns t to it. What should be done with this lack of infor-
mation? In case of majority voting, it seems fine to ignore the u votes and restrict to
taking the majority among the t and f votes. Also for larger groups, even if there are
many agents assigning u to the formula, it still makes sense to compute the majority
among the t and f votes only, as done in Example 4.2. �

Case B: with authority or outside expert Let us describe several possible procedures
using the framework of 4QL, in the context of the robot rescue scenario.



342 B. Dunin-Kȩplicz, A. Szałas, and R. Verbrugge

Procedure B1: A group belief identified with the leader’s or an expert’s belief

Suppose expLead is a consequent of an expert or leader knowledge base, deciding
whether certain regionsR are risky. If the expert’s or leader’s value of risk(R) = t, then
the group value corresponds. The following rules can then be used to express team’s
consequents as to the risk:

risk(R) :– expLead .risk(R) = t.

¬risk(R) :– expLead .risk(R) ∈ {u, i, f}.

Procedure B2: Conditional choice between leader, expert, and majority

A safer choice is to use all information about risk(R) based on trustworthiness:

“If there is an outside expert on risk (R), then we take his decision that
risk (R) = t as the group decision; else, if the leader’s evaluation of risk(R) is
t, then we take on the leader’s decision as group belief; else, we cast a majority
vote.”

This is reflected in the following rules, where exp is a group of outside experts and lead
is the leader:

risk(R) :– ∃e∈exp[e.risk(R) = t]. (20)

risk(R) :– ∀e∈exp[e.risk(R) 
= t] ∧ lead .risk(R) = t. (21)

risk(R) :– ∀e∈exp[e.risk(R) 
= t] ∧ lead .risk(R) 
= t ∧
‘risk(R) = t wins voting’.

(22)

Note that the voting in the last line can be formalized along the lines of Example 4.2.

To infer negative conclusions as to risk(R), one can add rules negating conclusions
and premises of (20)–(22). For example, adding such negations in rule (20), we obtain:

¬risk(R) :– ¬∃e∈exp[e.risk(R) = t].

One could also close the relation risk in various ways. If rules (20)–(22) are defined
in module m, then the simplest closure can be obtained using the following rule (in
a module other than m):

¬risk(R) :– m.risk(R) 
= t.

6 A Formalization of the Robot Rescue Scenario

Let us now formalize an illustrative example of an epistemic profile for the module team
using the robot rescue scenario of Section 2. Recall that 4QL modules can be identified
with sets of literals. In what follows we use this identification.
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The team’s belief structure consists of constituents:

– consequents of each robot r1, . . . , rk in team;
– the gis module.

To define team’s epistemic profile, we use the following derivatives:

– allClose, containing the relation risk, calculated according to votes of all agents
close to a given region;

– safe, containing the relation allowed, stating that searching a given region is al-
lowed (no certainty of damaging robots there).

The above derivatives are used for illustration purposes only.

The module allClose contains, among others, the following rules:

risk(R) :– #{r ∈ team | gis.close(r, R) = t ∧ r.risk(R) = t} >
#{r ∈ team | gis.close(r, R) = t ∧ r.risk(R) 
= t}.

¬risk(R) :– #{r ∈ team | gis.close(r, R) = t ∧ r.risk(R) = t} ≤
#{r ∈ team | gis.close(r, R) = t ∧ r.risk(R) 
= t}.

The module safe contains the rule:

¬allowed(R):– ∃r∈ team
(
gis.close(r, R)= t ∧ r.temp(R, T )= t ∧ T > 80

)
.

The team’s consequent can be defined, for example, by the following rules:

risk(R) :– allClose.risk(R). (23)

¬risk(R) :– allClose.(¬risk(R)) ∧ safe.allowed(R) 
= f. (24)

search(R) :– safe.allowed(R) 
= f. (25)

Of course, robots may have individual beliefs about risk and search(R) contradict-
ing (23)–(25). These inconsistencies can be resolved by a rule similar to (13), conclud-
ing that a robot cannot search regions where it cannot operate without being damaged.

7 From Groups Down to Agents

Group belief may be naturally used to clarify agents’ individual beliefs. For example,
if for some agent r the value of P is u or i, and for group G the value became one of
t, f, then generally it makes sense for r to adopt this latter truth value. Formally, this
could be handled by a default rule in the agent’s epistemic profile, where we distinguish
between a constituent of r, denoted by c, and its consequent, denoted by r:

if c.P ∈ {i, u} and G.P ∈ {t, f} (prerequisite) and it is consistent that “special
situation (S) does not occur” (justification), then r.P becomes G.P .

This is achieved in 4QL by placing the following rules in the module implementing
consequent r:

P :– c.P ∈ {i, u} ∧G.P = t ∧ S ∈ {f, u}.
¬P :– c.P ∈ {i, u} ∧G.P = f ∧ S ∈ {f, u}.
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This way, coherence of knowledge can be maintained. The process does call for calcu-
lating a new well-supported model. Such downward reflection is useful when the group
decides about critical situations. Then each individual should follow this.

When a decision is not life-critical, different opinions remain possible. For example,
when a jury decides that the Best Paper Prize should be given to A while an individual
jury member would have preferred B, (s)he can keep her/his opinion while the group
decision stands. Similarly when a program chair decides that a certain paper is accept-
able for the proceedings, individual program committee members do not need to agree
to the group decision. The mode of adaptation to group beliefs needs to be included
in everyone’s epistemic profile. This real-world model of the information flow between
a group and its individual members fits to many contexts better than common knowl-
edge.

While 4QL does not allow for circular dependencies between modules, it is important
to note that there may be loops in managing beliefs when circular dependencies among
individuals and groups occur in applications, for example, due to the used updating
policies. However, it is the responsibility of application designers to avoid such loops.
The following example illustrates this issue.

Example 7.1. Consider a module m being a constituent of a group belief structure with
consequent G. Let m consist only of facts of the form:

s(a),¬s(b), s(c), . . . ,
and let G consist of the rule:

r(X) :– m.s(X) = t. (26)

Suppose further that an external application implements the following policy of updates:

m.s(X) becomes false whenever G.r(X) becomes true; (27)

m.s(X) becomes true whenever G.r(X) becomes unknown. (28)

If, at some point, a fact s(d) becomes true in m then rule (26) makes G.r(d) true. How-
ever, when G.r(d) becomes true, the update (27) makes m.s(d) false which, in turn,
makes G.r(d) unknown (the premise of rule (26) becomes false). According to (28),
whenever G.r(d) becomes unknown, m.s(d) becomes true, and a loop occurs. How-
ever, this loop is caused by the design of the update policy, being out of the scope of
4QL itself. �

To avoid loops, no circularity should be allowed. To achieve non-circularity, one may
equip each agent with several belief structures:

– the main one modeling the agent’s beliefs;
– a separate belief structure associated with each group the agent belongs to;
– other structures, when needed.

Figure 2 shows an example of such an architecture. Agent A has its “main” belief struc-
ture B with consequentF , which becomes a constituent of belief structures G1, . . . , Gk
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Fig. 2. Architecture of groups and agents. Arrows indicate the use of consequents of belief struc-
tures as constituents of other belief structures.

of groups A belongs to. For every group belief structure Gi (1 ≤ i ≤ k) there is an as-
sociated belief structure Bi within A, with constituents F and Fi. Each belief structure
Bi exists as long as A is a member of group Gi. This way agent A can easily switch
between belief structures according to the role it plays at a given moment. When Bi

is being deleted, belief structure B may be updated using information from Bi, but
circularity is avoided.

8 Complexity

Consider a static situation without knowledge base updates. Thus, we have a snapshot
of a system consisting of, say, k individuals and n groups, each of them computing its
consequents according to its epistemic profile (Definition 3.3). Since data complexity
of 4QL is PTIME and 4QL captures PTIME (see [41,42]), we have the following result,
where, as usually, finite domains are assumed.

Theorem 8.1. Assume that the number of constituents of each individual as well as
the number of belief structures associated with each individual/group is bounded by
a constant. Let k be the number of agents and let n be the number of groups under
consideration.

– If each constituent and epistemic profile involved is implemented in 4QL, then the
complexity of computing them all is O

(
(k+n)∗p(|Const|)), where p is a polynomial

and Const is the set of constants occurring in constituents and epistemic profiles.
– Every epistemic profile/belief structure computable in deterministic polynomial

time (PTIME with respect to data complexity) can be expressed in 4QL (assum-
ing linear ordering on Const is given). �

Note that in this way, tractability is achieved. Though complexity depends on k and
n, these parameters reflect the numbers of individuals and groups involved in a given
mission. Such individuals and groups must have been generated somehow, so we can
safely assume the existence of computational capacity to handle them.
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If system dynamics is considered, Theorem 8.1 guarantees that every time updates
need to be performed, they can be done in deterministic polynomial time. In fact, the
role of 4QL is to provide firm foundations for knowledge bases used by applications ex-
ternal to 4QL. The application’s behavior and complexity are controlled by its designers
(see also Example 7.1).

Note that there is a price to pay for tractability of our approach. Namely, we neither
allow disjunctive facts nor disjunctive conclusions of rules, so without additional con-
structs we cannot express unrestricted disjunctive reasoning unless PTIME =NPTIME.
On the other hand, all tractable reasoning schemata are captured by our framework, so
all tractable forms of disjunctive reasoning are expressible, too, though not necessarily
directly.

9 Discussion and Conclusions

In the current literature on knowledge and beliefs, modal logic-based approaches are
dominant. Even though they suit very well to idealized epistemic theories, they are
hardly applicable to real-world complex scenarios. In order to apply them one needs
to use some restricted versions of modal logics, like in [36, 46]. However, neither of
these approaches deals with inconsistent knowledge bases and [36] deals solely with
limited forms of incomplete multi-agent knowledge. In contrast, in the current paper
we offer a novel approach to group beliefs, intended to bridge the gap between theory
and applications.

We also introduce a variety of social procedures for creating group beliefs within
a paraconsistent four-valued framework offered by 4QL, allowing for tractable reason-
ing. Importantly, our approach does not share unwanted omniscience effects like closure
under logical consequence or irrelevant belief handling.

To the best of our knowledge, a paraconsistent approach to beliefs has so far mainly
been pursued in the context of belief revision [43, 50], not the creation of group be-
liefs. These other approaches substantially differ from ours. Their models are based on
criteria and rationality indexes [50] or on relevant logic [43].

Accepting four rather than two logical values considerably simplifies our approach
where one is not forced to find general embeddings of {t, i, u, f} into {t, f} that would
work in all considered contexts. Instead, we offer a framework in which such embeddings
can much more easily be obtained either totally or partially, or even avoided altogether,
in a highly context- and user-dependent manner. To our knowledge, such flexibility, ex-
pressiveness and at the same time tractability has not been achieved before.

We have taken into account that agents are heterogeneous in the ways that they rea-
son; this in contrast to classical epistemic logics, which view agents as if they were
homogeneous; a recent exception is the work by Liu [39]. Agents’ reasoning patterns
may differ significantly, which is reflected in the epistemic profiles of individual agents
as well as of different (sub-)groups. Another approach to heterogeneity of information
sources is proposed in [6, 10, 31, 32], where multi-context systems are considered. In-
consistencies in multi-context systems are addressed, e.g., in [7,26]. To fuse knowledge
from various contexts, bridge rules are used. However, the associated reasoning prob-
lems are typically of high complexity [7].
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Developed from logic programming, answer set programming has been used to for-
malize qualitative decision making in individual agents [9, 30]. However, to decide
whether a given program has some answer set is NP-complete already in the proposi-
tional case while non-grounded programs have exponentially higher complexity [8]. In
a multi-agent epistemic context Baral et al. [3] provide an answer set programming ap-
proach to group beliefs; in their approach, reasoning problems such as the muddy chil-
dren puzzle, however, inherit their high complexity from modal logic. In addition, like
the modal approaches discussed above, the above-mentioned answer set programming
approaches allow only consistent models and do not provide means for disambiguating
inconsistencies.

There are also many techniques for resolving inconsistencies other than those pre-
sented and discussed in our paper. In particular, one could apply techniques known from
defeasible reasoning [49]. One could also think of applying Boolean games in which
control over specific literals is assigned to different agents. For some examples from the
extensive literature, we refer to [11, 33, 35, 48].

We have also proposed some extensions to 4QL, allowing one to express a rich reper-
toire of combinations of social procedures with non-monotonic reasoning techniques
and inconsistency disambiguation, based on the possibilities of 4QL. Although these
extensions can be expressed in “pure” 4QL, we have achieved their substantial simpli-
fication here, which also is a novel contribution.

We have represented epistemic profiles, belief structures and social procedures for
creating group belief in 4QL, discussing a number of example procedures of increasing
intricacy. Theorem 8.1 then shows that all these aspects can be executed in polynomial
time. This is a marked improvement over some of the most well-known logics for multi-
agent systems. More precisely, for modal logics incorporating common knowledge or
common belief, model checking is PSPACE-complete, while the satisfiability problem
is EXPTIME-complete [16, 23, 44]. For logics of propositional control and coalition
logics, both model checking and satisfiability are PSPACE-complete [35]. Finally, for
alternating-time temporal logic (ATL), both model checking and satisfiability are even
EXPTIME-complete [34,55]. In real-time applications like time-critical teamwork, the
advantages of using a tractable approach such as the one advocated here are essential.

In future work, we will also apply our approach to finding tractable solutions for
classical puzzles in epistemic logic, such as the wise men, the muddy children, and the
sum and product puzzle. These are classically formalized and solved by constructing
(dynamic) epistemic models, which are often huge in terms of the input [14,15,28,44].

This paper is part of a larger research program. Here, we focus on belief formation in
heterogeneous groups, while dynamical aspects, such as maintenance of group beliefs
and belief revision, are left to future research. A general problem in robotics is how the
activities of different groups dovetail and interleave together. This needs to be smartly
organized to allow agents to smoothly switch between activities in different groups.
While the focus of this paper is agents’ reasoning via individual and group epistemic
profiles, in future work we will discuss the organizational part of group activities.
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