
F. Dalpiaz et al. (Eds.): EMAS 2014, LNAI 8758, pp. 309–327, 2014.
© Springer International Publishing Switzerland 2014

Mutation Testing for Jason Agents

Zhan Huang, Rob Alexander, and John Clark

Department of Computer Science, University of York, York, United Kingdom
{zhan.huang,robert.alexander,john.clark}@cs.york.ac.uk

Abstract. Most multi-agent system (MAS) testing techniques lack empirical
evidence of their effectiveness. Since finding tests that can reveal a large pro-
portion of possible faults is a key goal in testing, we need techniques to assess
the fault detection ability of test sets for MAS. Mutation testing offers a direct
and powerful way to do this: it generates modified versions of the program
(“mutants”) following a set of rules (“mutation operators”) then checks if a test
set can distinguish the original program from the (functionally non-equivalent)
mutants. In this paper, we propose a set of mutation operators for the agent-
oriented programming language Jason, and then introduce a mutation testing
system for individual Jason agents that implements a subset of our proposed
mutation operators. We use this subset to assess a test set for a Jason agent that
meets a combination of existing agent-based coverage criteria. The assessment
shows that this test set is not adequate to kill all mutants.

Keywords: Test Evaluation, Mutation Testing, Agent-Oriented Programming,
Jason.

1 Introduction

Multi-agent systems (MAS) are a promising paradigm for engineering autonomous
and distributed systems. Testing MAS is a challenging activity, however, because of
the increased complexity, large amount of data, irreproducibility, non-determinism
and other characteristics involved in MAS [9]. Although many techniques have been
proposed to address the difficulties in MAS testing, most of them lack empirical evi-
dence of their effectiveness [10].

Effective testing requires tests that are capable of revealing a high proportion of
faults in the system under test (SUT). It can be difficult to find real faulty projects to
verify the real fault detection ability of a test set; instead, we can use coverage-based
and fault-based testing techniques.

For coverage based techniques, the tests or their executions are measured against
some coverage criteria based on some model of the SUT (or other relevant model); if
they cover all model elements defined in the coverage criteria, the tests are said to be
adequate for the coverage criteria – in other words, they examine the involved model
elements thoroughly. Existing coverage criteria for MAS testing include Low et al.’s
plan and node based coverage criteria for BDI agents [1], Zhang et al.’s plan and
event based coverage criteria for Prometheus agents [2], and Miller et al.’s protocol
and plan based coverage criteria for agent interaction testing [3].

310 Z. Huang, R. Alexander, and J. Clark

Fault based techniques offer a more direct way to assess the fault detection ability
of the tests than coverage based ones: faults are seeded into the SUT by some means,
typically by hand or by mutation [12]. After seeding faults (i.e. producing faulty ver-
sions of the SUT), each test is executed against first the original SUT then each faulty
version. For each faulty version, if its behaviour differs from the original SUT in at
least one test, it will be marked as “killed” to indicate that the fault(s) seeded in it can
be detected by the tests. Therefore, the fault detection ability of the tests can be as-
sessed by the “kill rate” – the ratio of the killed faulty versions to all faulty versions:
higher the ratio is, more effective the tests are. Those non-killed faulty versions reveal
the weaknesses of the existing tests so that testers can enhance these tests (in order to
kill those versions) by improving some of them or adding new ones.

Mutation is a systematic and automatic way of generating modified versions of the
SUT (“mutants”) following a set of rules (“mutation operators”). The process of using
mutation to assess tests is called mutation testing. Mutation is more commonly used
to seed faults than the hand-seeded way because many theories and empirical evi-
dences support it; for instance [13] shows that it provides an efficient way to seed
faults that are more representative of realistic faults than hand-seeded ones. However,
the mutation operators used to guide mutant generation may lead to a large number of
mutants so that comparing the behaviour of each mutant with that of the original SUT
in each test is computationally costly. Another problem is that mutation unpredictably
produces equivalent mutants – alternate implementations of the SUT that are not ac-
tually faulty (as the result, no tests can differentiate the original SUT from them), and
thus which must be excluded from test evaluation. Although the process of detecting
equivalent mutants may be partially automated, much manual work is still required.

Many studies show that mutation testing provides a more rigorous test evaluation than
coverage-based techniques [11], so it is usually used to evaluate or compare other testing
techniques (e.g. that are based on some coverage criteria). The key to successful mutation
testing is to select an appropriate set of mutation operators. Here we define “appropriate”
in terms of two criteria: effectiveness and efficiency. Effectiveness is the value of the
individual operators for assessing tests, it requires representativeness, which means a
mutation operator should be able to guide seeding faults that are representative of realis-
tic ones, and power, which means an operator should be able to guide generating hard-to-
kill non-equivalent mutants. Efficiency is concerned with the computational cost due to
the operator set, it requires that the operator set generate a reasonable (computationally
tractable) number of non-equivalent mutants.

There is some preliminary work on mutation testing for MAS. Nguyen et al. [4] use
standard mutation operators for Java to assess tests for JADE agents (which are imple-
mented in Java). As to the work on MAS model/language specific mutation operators,
Adra and McMinn [5] propose a set of mutation operator classes for agent-based models.
Saifan and Wahsheh [6] propose and classify a set of mutation operators for JADE mo-
bile agents. Savarimuthu and Winikoff [7, 8] systematically derive a set of mutation op-
erators for the AgentSpeak agent language and another set for the GOAL agent language.
Most existing work focuses on deriving mutation operators from agent mod-
els/languages, a recent paper [8] evaluates the representativeness of the mutation opera-
tors for the agent language GOAL by comparison with realistic bugs.

 Mutation Testing for Jason Agents 311

In our work, we aim to explore the use of mutation testing for MAS, with the inten-
tion that our work can be used to assess and enhance the tests derived from existing
testing techniques (e.g. that are based on some coverage criteria) for MAS. This paper
presents our preliminary work – in Section 2 we propose a set of mutation operators
for Jason [14], which is an implementation of the AgentSpeak language; in Section 3
we introduce a mutation testing system for individual Jason agents that implements a
subset of our proposed mutation operators; in Section 4 we show the use of our im-
plemented mutation operators in assessing and enhancing a test set (for a Jason agent)
satisfying some existing agent-based coverage criteria, and the evaluation of the
power of these operators by observing which one(s) lead to hard-to-kill non-
equivalent mutants; in Section 5 we discuss the relationships between our work and
previous related work; in Section 6 we summarise our work and make some sugges-
tions for where this work could go in the future.

2 Mutation Operators for Jason

Mutation operators are rules to guide mutant generation by making changes to the
description (syntax) of the program1. For instance, a mutation operator for procedural
programs called Relational Operator Replacement (ROR) requires that each occur-
rence of one of the relational operators (<, ≤, >, ≥, =, ≠) is replaced by each of the
other operators [11]. A mutant usually only contains a simple, unary fault (e.g., in the
above example, each generated mutant only replaces a single relational operator by
another), because of the two underlying theories [12] in mutation testing: the Compe-
tent Programmer Hypothesis states that programmers create programs that are close
to being correct; the Coupling Effect states that tests that can detect a set of simple
faults can also find complex faults.

Since mutation is typically performed at program level, a set of mutation operators is
specific to a given programming language. To design mutation operators for a pro-
gramming language, it is common to start by proposing an initial set based on the syntax
and features of the language, and then to refine an effective set through evaluation.

The language we chose is Jason, which is a multi-agent system programming lan-
guage that uses the extended AgentSpeak to specify agents in terms of beliefs, initial
goals and plans, uses Java to customize agent architectures, define agent environ-
ments and implement various extensions. We chose to mutate the extended AgentS-
peak code at first because it directs the behaviour of Jason agents.
Savarimuthu and Winikoff [7] apply the guidewords of HAZOP (Hazard and Oper-
ability Study) into the syntax of AgentSpeak to systematically derive a set of mutation
operators. In contrast to their work, firstly we explicitly describe each of our derived
operators while they do not give and describe their actual full operator set. Secondly
we mutate the Jason-extended version of AgentSpeak, so some of our operators are
specific to Jason. Finally, we borrow some ideas from other existing mutation opera-

1 This paper only concerns conventional mutation testing, i.e. syntactic mutation testing,

although some recent work applies mutation testing to program semantics.

312 Z. Huang, R. Alexander, and J. Clark

tors (for both conventional programs and MAS) when deriving ours, in the hope of
preliminarily refining our set, e.g., by excluding ones that are not sensible.

We base our work on Jason’s Extended Backus–Naur Form (EBNF), where a list
of production rules is defined that describe Jason’s grammar. The EBNF we use is a
simplified version in [14] that does not include some advanced features such as direc-
tives and conditional/loop statements in the plan body. We divide these production
rules into high-level and low-level ones – the high-level production rules specify the
main syntactical concepts that are closely related to how Jason agents generally work,
while the low-level ones specify the basic logical representations forming the Jason
syntactical concepts. Accordingly our mutation operators for Jason can also be de-
scribed as high- or low-level. In the following two subsections we present these muta-
tion operators according to which production rules they are derived from.

2.1 High-Level Mutation Operators for Jason

Fig. 1 shows the high-level production rules in Jason’s EBNF; from this, we have
derived 13 high-level mutation operators.

Fig. 1. High-level production rules in Jason’s EBNF (Rule 1–11 are slightly adapted from [14],
12–16 are the ones we added for specifying Jason agent communication)

Production rule 1 states that an agent is specified in terms of beliefs, initial goals
and plans. From this rule we derive the following three mutation operators:

• Belief Deletion (BD): A single belief in the agent is deleted.
• Initial Goal Deletion (IGD): A single initial goal in the agent is deleted.
• Plan Deletion (PD): A single plan in the agent is deleted.

 Mutation Testing for Jason Agents 313

Production rule 2 states that a belief can be a literal representing some fact, or a rule
representing some fact will be derived if some conditions get satisfied. The introduc-
tion of rules enables Jason to perform theoretical reasoning [15]. From this produc-
tion rule we derive the following mutation operator:

• Rule Condition Deletion (RCD): The condition part of a rule is deleted.

A rule that RCD is applied to will only have its conclusion part – a literal – left, as a be-
lief held by the agent regardless of whether the (now deleted) conditions get satisfied.

Production rule 6 states that the triggering event of a plan consists of a literal follow-
ing one of the six types: belief addition (+), belief deletion (−), achievement goal addi-
tion (+!), achievement goal deletion (−!), test goal addition (+?) and test goal deletion
(−?). It can be seen that an event that can be handled by Jason plans represents a change
– addition or deletion (represented using + or − operator respectively) – to the agent’s
beliefs or goals. From this rule we derive the following mutation operator:

• Triggering Event Operator Replacement (TEOR): The triggering event opera-
tor (+ or −) of a plan is replaced by the other operator.

We don’t have an operator that changes the trigger type i.e. one of achievement goal,
test goal and belief to another. This is because as learned from [8], this type of change
doesn’t make sense, and because in the case no events can match the modified trigger
it will be equivalent to PD (Plan Deletion) anyway.

Production rule 7 states that the context of a plan can be a logical expression, or be
always true (the latter is equivalent to the context not being specified at all). The plan
context defines the condition under which the plan that has been triggered becomes a
candidate for commitment to execution. From this production rule we derive the fol-
lowing mutation operator:

• Plan Context Deletion (PCD): The context of a plan is deleted if it is non-empty
and not set true.

Production rule 8 states that the body of a plan can be a sequence of formulae, each of
which will be executed in order, or set true (the latter is equivalent to the body not
being specified at all). From this rule we derive the following three mutation opera-
tors:

• Plan Body Deletion (PBD): The body of a plan is deleted if it is non-empty or not
set true.

• Formula Deletion (FD): A single formula in the body of a non-empty plan is de-
leted.

• Formulae Order Swap (FOS): The order of any two adjacent formulae in the
body of a plan that contains more than one formula is swapped.

FOS comes from an idea behind some existing mutation operators that the order of
elements in a sequence is changed. Although elements can be arranged in many ways,
we choose to only swap two adjacent elements (i.e. formulae) because as suggested in
[8], it can avoid generating a large number of mutants.

314 Z. Huang, R. Alexander, and J. Clark

In many cases, PBD is equivalent to PD (Plan Deletion). However, since the plan
context can contain internal actions that may cause changes in the agent’s internal
state, the plan that PBD is applied to may still have an effect on the agent although its
body has been deleted, in this case PBD is not equivalent to PD.

Production rule 9–11 states that a body formula can be one of the six types:
achievement goal (!literal or !!literal), test goal (?literal), mental note (+literal, −lit-
eral, −+literal), action (atomic_formula), internal action (.atomic_formula or
.formula_for_comm2) and relational expression. The former three types are involved
in generating internal events that correspond to changes in achievement goals, test
goals and beliefs respectively. Similar to how we derived the Triggering Event Opera-
tor Replacement (TEOR) operator, from this production rule we derive the following
mutation operator:

• Formula Operator Replacement (FOR): The operator of an achievement goal
formula (! or !!) is replaced by the other operator, so is that of a mental note for-
mula (+, −, −+).

It is worth noting that the achievement goal formula has two types: “!” is used to post
a goal that must be achieved before the rest of the plan body can continue execution,
“!!” allows the plan containing the goal to run alongside the plan for achieving the
goal. In the latter case, the two plans can compete for execution due to the normal
intention selection mechanism.

We don’t consider changing the formula type i.e. one of achievement goal, test
goal and belief to another because as noted in [8], this type of change doesn’t make
sense; neither do we consider the formula type of action, internal action or relational
expression for the similar reason.

Production rules 12–16 are the ones we added for specifying Jason agent commu-
nication. It can be seen that two internal actions: .send and .broadcast, are used by
Jason agents to send messages. The main parameters in these actions include the mes-
sage receiver(s) (only used in .send action) that can be a single or a list of agents
identified by the agent ID(s), the illocutionary force (tell, untell, achieve, etc.) repre-
senting the intention of sending the message and the message content that can be
one or a list of propositional contents. From these production rules we derive the
following three mutation operators:

• Message Receiver Replacement (MRR): The receiver or the list of receivers in a
.send action is replaced by another agent ID (or some subset of all the agent IDs in
the MAS). If the action is .broadcast, it will be first converted to its equivalent
.send action and then applied this mutation operator.

• Illocutionary Force Replacement (IFR): The illocutionary force in an action for
sending messages is replaced by another illocutionary force.

• Propositional Content Deletion (PCD2): A single propositional content in the
message content is deleted.

2 formula_for_comm actually belongs to atomic_formula. We separate it in order to specify

rules for agent communication.

 Mutation Testing for Jason Agents 315

It is worth noting that a propositional content is some component of another type
(e.g., belief, plan, etc.). Therefore, the mutation operators for these components can
also be applied for mutating agent communication.

2.2 Low-Level Mutation Operators for Jason

Fig. 2 shows the low-level production rules in Jason’s EBNF; from this, we have
derived 11 low-level mutation operators, most of which are borrowed from existing
operators for conventional programs.

Fig. 2. Low-level production rules in Jason’s EBNF (Source: [14])

Production rule 1 states that a literal is an atomic formula or its strong negation
(~l). Strong negation is introduced to overcome the limitation of default negation in
logic programming: an agent can explicitly express that something is false by using
strong negation, or express that it cannot conclude whether something is true or false
using default negation (i.e. by the simple absence of a belief on the matter). From this
production rule we derive the following mutation operator:

• Strong Negation Insertion/Deletion (SNID): The form of a literal (affirmative or
strong negative) is transformed to the other form.

Production rule 2 and 3 state that an atomic formula consists of a relation followed by
a list of annotations. Annotations can be used to provide further information about the
relation. source is an important annotation that is appended to some atomic formulae
automatically by Jason is used to represent where the atomic formulae (or the compo-
nent it represents) come from by taking one of the three parameters: percept, self or
an agent ID. For instance, belief likes(rob, apples)[source(tom)] implies the informa-
tion that rob likes apples comes from agent tom. From these production rules we de-
rive the following two mutation operators:

• Annotation Deletion (AD): A single annotation of an atomic formula is deleted, if
one exists.

• Source Replacement (SR): The source of an atomic formula is replaced by an-
other source, if it exists.

316 Z. Huang, R. Alexander, and J. Clark

Production rule 4 and 5 define logical expressions; rule 6 and 7 define relational ex-
pressions; rule 8 and 9 define arithmetic expressions. Since some mutation operators
for conventional programs have been designed for these concepts [11], we can just
slightly adapt so as to use them in the context of Jason:

• Logical Operator Replacement (LOR): A single logical operator (& or |) is re-
placed by the other operator.

• Negation Operator Insertion (NOI): The negation operator (“not”) is inserted
before a (sub) logical expression.

• Logical Expression Deletion (LED): A single sub logical expression is deleted.
• Relational Operator Replacement (ROR): A single relational operator (“<”,

“<=”, “>”, “>=”, “==”, “\==”, “=”, “=..”) is replaced by another operator.
• Relational Term Deletion (RTD): A single relational term in a relational expres-

sion is deleted.
• Arithmetic Operator Replacement (AOR): A single arithmetic operator (“+”,

“−”, “*”, “**”, “/”, “div”, “mod”) is replaced by another operator.
• Arithmetic Term Deletion (ATD): A single arithmetic term in an arithmetic ex-

pression is deleted.
• Minus Insertion (MI): A minus (−) is inserted before an arithmetic term.

3 muJason: A Mutation Testing System for Jason Agents

We have developed a mutation testing system for individual Jason agents called mu-
Jason3, where we have implemented the 13 high-level mutation operators via Jason
APIs and Java reflection, both of which can be used to access and modify the archi-
tectural components of the agents and the state of the MAS at runtime. The class dia-
gram and the user interface of muJason are shown in Fig. 3 and Fig. 4 respectively.

Fig. 3. The class diagram of muJason

3 http://mujason.wordpress.com

 Mutation Testing for Jason Agents 317

Fig. 4. The user interface of muJason

muJason can be launched by running the MutationSystem class and passing the name
of the Jason project configuration file (postfixed with “.mas2j”) as the parameter.
Then muJason will load the Jason project and display the mutation testing control
panel (as shown in Fig. 4), where users can configure, start and observe mutation
testing processes.

Before initiating a mutation testing process, users need to specify the input of each
test, the killing mutant criterion (or the oracle) for each test and the TTL (Time to
Live) of the original/mutated agent under each test in the deploy(testID), isMutant-
Killed(testID) and getAgentTTL(testID) methods provided by the TestBed class (as
shown in Fig. 3), respectively. Each of these methods is described as follows:

• deploy(testID): this method sets up the initial configuration of the Jason system
prior to each test run. It is called each time by taking an ID identifying one of the
tests, so users can write code to specify the starting configuration as the input of
each test.

• isMutantKilled(testID): this method is used to determine whether a mutant under
some test is killed (as indicated by the Boolean return value). It is called as soon as
each mutant terminates, and is passed the ID of the current test. Therefore, in this
method users can write code to check whether the mutated agent has been killed by
each individual test, in other words, in there users can implement the oracle for
each test.

• getAgentTTL(TestID): this method is used to specify the lifetime of the origi-
nal/mutated agent (as the return value) under each test. Since agents usually run in-
definitely, an original/mutated version of the agent can only be allowed to run for a

318 Z. Huang, R. Alexander, and J. Clark

certain period of time so that the next one can run. The whole Jason project will re-
start as soon as one version terminates, so that the next version can be observed
from (and mutated at) the same starting point of the MAS. The lifetime or TTL of
an agent is measured by the number of cycles the agent can perform; it must be
enough for the agent to expose all the behaviour involved in the process of killing
mutants. The TTL for a test is actually part of the killing mutant criterion/oracle for
that test. Although there may be ways to automatically terminate the mutant once it
is observed being killed, for simplicity in the beginning, the TTL for a test is fixed
and manually set depending on the users’ experience.

After specifying the input, the killing mutant criterion (oracle) and the TTL for each
test, users can configure and start a mutation testing process in the mutation testing
control panel through the following steps (as shown in Fig. 4):

1. Select an agent and its mutation domain. Since muJason aims at individual agents,
users need to select one from the MAS, and then they can choose which belief(s),
initial goals(s) and plan(s) of the selected agent the mutation operators will be ap-
plied into. They can ignore the agents/components unnecessary for testing, e.g., the
GUI agents and the built-in plans for enabling agent communication.

2. Select the mutation operators. After specifying the mutation domain of an agent,
users can select the mutation operators that will be applied into the mutation do-
main.

3. Start the mutation testing process. After the above steps, users can start the muta-
tion testing, observe its process in the mutation testing control panel and wait for
its result. The mutation testing process can be described using the following
pseudo-code:

1: For each test identified by a testID:
2: Set up the starting config as the input of the
3: test
4: Get the specified TTL for the test
5: Run the original Jason project for the TTL
6: Restart the Jason project
7: Create a mutant generator taking the selected
 agent, mutation domain and mutation operators
8: While the generator can generate another mutant:
9: Generate the next mutant
10: Run the modified Jason project for the TTL
11: Check if the mutant is killed under the
 current test, if so mark it “killed”
12: Restart the Jason project

4 Evaluation

To perform a preliminary evaluation of the power of our implemented mutation op-
erators, we use them to guide generating mutants of an agent in a Jason project, then

 Mutation Testing for Jason Agents 319

examine whether a test set designed using a combination of existing agent-based cov-
erage criteria can kill all the non-equivalent mutants. We think the operators that can
guide generating the hard-to-kill non-equivalent mutants are powerful to reveal the
weaknesses of this test set.

4.1 Experimental Setup

The Jason project we chose is available on the Jason website4, and is called Cleaning
Robots. It involves a cleaner agent, an agent besides an incinerator (we call it incin-
erator agent later for convenience) and several pieces of garbage located in a gridded
area as shown in Fig. 5 (R1 represents the cleaner agent, R2 represents the incinerator
agent, G represents the garbage). When this project is launched, the cleaner agent will
move along a fixed path that covers all grid squares (move from the leftmost square to
the rightmost one in the first row, then “jump” to the leftmost square in the second
row and move to the rightmost one in the same row, and so on). If it perceives that the
square it is in contains garbage, it will pick it up, carry it and then move to the square
where the incinerator agent is along a shortest path (diagonal movement is allowed).
The cleaner agent will drop the garbage after arriving so that the incinerator agent can
take it to burn. After dropping garbage the cleaner agent will return to the square
where it just found the garbage along a shortest path (diagonal movement allowed),
and then continue moving along the fixed path until it reaches the last square.

Fig. 5. The Cleaning Robots example

In order to test the cleaner agent, we specify test inputs that each describe a differ-
ent environment in which the agent is located. We design test inputs according to the
test coverage criteria proposed by Low et al. [1]. Their criteria are based on plans and
nodes (formulae) in BDI agents, so they are suitable for the Jason agent paradigm.
Fig. 6 shows the subsumption hierarchy of their criteria – the criterion at the starting
point of an arrow subsumes the one at the end of the arrow, e.g., for any agent, a test
set satisfying node path coverage criterion also satisfies node coverage criterion. This
Jason project is simple and doesn’t concern plan and node failure, so we ignore the

4 http://jason.sourceforge.net/wp/examples/

320 Z. Huang, R. Alexander, and J. Clark

related criteria, i.e. node with success and failure coverage criterion and plan with
success and failure coverage criterion (that is to say, for this project they are equiva-
lent to node coverage criterion and plan coverage criterion respectively). After man-
ual analysis of the AgentSpeak program of the cleaner agent we design ten test inputs
(different environments) that collectively meet node path coverage criterion, plan
context coverage criterion and plan path coverage criterion, and for the involved cy-
clic paths we apply the 0-1-many rule. We think this combination forms the most
rigorous one among Low et al.’s criteria (as can be seen in Fig. 6) and is viable for
testing the cleaner agent.

Fig. 6. The subsumption hierarchy of the coverage criteria proposed by Low et al. (Redrawn
from [1])

These test inputs (environments) differ in at least one of the three variables – the
location of the incinerator agent, the amount (and locations) of garbage and the prob-
ability the cleaner agent has to pick up each piece of garbage successfully when it
attempts to. Since the agent environment is hard-coded into a java file, we use text
replacement and class reload techniques in the deploy(testID) method to modify the
values of these three variables in order to specify each test input. We consider a mu-
tant to be killed if, at the end of any test, there is any garbage uncollected (in contrast,
the non-mutated version always collects all the garbage). To implement this crite-
rion/oracle, we use Jason APIs and Java reflection in the ifMutantKilled(testID)
method to check whether all the squares in the environment are empty except the two
taken by the cleaner agent and the incinerator agent respectively. In the ge-
tAgentTTL(testID) method, for each individual test, we set the lifetime of the origi-
nal/mutated agent to a value that is enough to collect all garbage. This value equals
the exact time taken by the original agent to finish its work (we observe this by giving
the original agent a normal run under that test) plus a modest tolerance value.

Next we configure a mutation testing process for the cleaner agent as shown in Fig.
4: first we choose r1 which is the name of the cleaner agent, and then all of its three
beliefs, one initial goal and nine plans excluding those built-in ones for enabling agent
communication. Next we check all the implemented operators. After these we start
and observe the mutation testing itself.

 Mutation Testing for Jason Agents 321

4.2 Results

After the mutation testing, muJason displays the results as shown in the first three col-
umns of the table in Fig. 7: the first column lists the mutation operators we selected, the
second column lists the total number of mutants generated by each selected operator and
the third column lists the number of the killed mutants that corresponds to each selected
operator. From the displayed results we can see that the three operators for agent com-
munication – Message Receiver Replacement (MRR), Illocutionary Force Replacement
(IFR) and Propositional Content Deletion (PCD2) – are not useful because this Jason
project doesn’t involve agent communication. We also observe that our implemented
operators (excepts the ones for agent communication) have resulted in a manageable
number of mutants, i.e. 70 mutants, among which 60 have been killed while 10 not
killed. We track these non-killed mutants in the log of the mutation testing process and
analyse their corresponding changes in the code. We present our analysis results in the
last two columns, and discuss each non-killed mutant below.

Fig. 7. The results of the mutation testing

Equivalent Mutants
The Belief Deletion (BD) operator generates three mutants, in each of which an initial
belief in the belief base of the agent is deleted. Two mutants are equivalent, however,
they should not have been generated. Recall that muJason provides access to and
makes changes to the initial state of the MAS rather than the agent code. This imple-
mentation is equivalent to mutating the code directly because the code will be inter-
preted to the initial state that subsequently affects the MAS behaviour. However, two

322 Z. Huang, R. Alexander, and J. Clark

of the three beliefs we choose – pos(r2, 3, 3) and pos(r1, 0, 0) representing the initial
positions of the incinerator agent and the cleaner agent respectively, are not defined in
the agent (AgentSpeak) code – they are from the environment (Java) code, which is
not our mutation target. Like beliefs from the agent code, they have been automati-
cally added into the belief base by the Jason engine before the initial state of the MAS
becomes accessible, so they appear as mutation options, which have been selected by
us. Also, deleting them before the MAS runs will not change the agent behaviour
because they will be automatically added again soon due to the mechanism of how
Jason handle beliefs from environments.

The Plan Deletion (PD) operator generates one equivalent mutant, in which a plan
that has empty context and empty body is deleted. This plan only exists in the first place
to prevent a certain source of spurious runtime errors; when it is deleted, the agent will
throw error messages at runtime, but there is no other effect on the agent behaviour. It
could be suggested that this is in fact a non-equivalent mutant, but the runtime of the
system is variable and the difference here is tiny. This mutant is not killed because our
killing mutant criteria or test oracles don’t check for this source of errors.

The Triggering Event Operator Replacement (TEOR) operator generates one
equivalent mutant, in which the triggering event of the empty plan (discussed above
for the PD operator) is changed from addition to deletion of some goal. This will just
prevent the error messages discussed above from being thrown, so there is no change
at all to the agent behaviour.

The Formula Operator Swap (FOS) operator generates one equivalent mutant, in
which two formulae whose executions are completely independent (their order
doesn’t matter) are swapped. Specifically, the original order is first to remember the
location where the agent just picked up the garbage, and then to move to the incinera-
tor agent; reversing the order makes no difference to the agent behavior because this
location will be used only after both formulae completes (more precisely, after the
agent drops the garbage), although the original order seems more rational.

The Formula Operator Replacement (FOR) operator generates three equivalent
mutants, in each of which a goal formula type “!” is replaced by “!!” or vice versa. As
discussed in Section 2, a “!” goal pursuit stops the current plan until completed, while
a “!!” goal pursuit can carry on in parallel with the rest of the plan. It is not difficult to
see that in some cases they can be replaced by each other with no changes in the agent
behaviour (only with semantic difference).

Non-equivalent Mutants
The Formula Deletion (FD) operator generates one non-equivalent mutant, in which
the formula that is used to drop the carried garbage is deleted. It is not killed because
our killing mutant criteria or test oracles are incomplete: they don’t check whether the
cleaner agent drops the carried garbage – it can pick up all the garbage without drop-
ping any and still pass the tests.

The Formula Operator Replacement (FOR) operator produces one non-equivalent
mutant, in which the formula −+pos(last,X,Y) in plan +!carry_to(R) is replaced by

 Mutation Testing for Jason Agents 323

+pos(last,X,Y). The former formula is used to update the belief that keeps last location
where garbage was found, so that the agent can retrieve then return to this location
after it drops garbage at the incinerator agent, so as to continue checking the remain-
ing squares along the fixed path. However, when the formula is changed to the new
version, each time the cleaner agent finds garbage, it will add a new belief represent-
ing the location of this garbage into the belief base rather than replacing the old one.

The above mutation introduces a fault, because it means that the agent will end up
with several versions of “last location at which I found garbage” stored in its memory.
In many cases, this is not a problem. When the cleaner agent has finished at the incin-
erator agent, it will try to take a shortest route back to last location where it found
garbage. To do this, it queries for its belief about the last location, and it will always
retrieve the correct one because Jason’s default belief selection mechanism will al-
ways select the matching one that is added to the belief base most recently.

After each movement step, however, the agent will query "does my current loca-
tion correspond to the last location I found garbage" i.e. should it cease its fast
movement and go back to its slow side-to-side sweep of the map? If the agent is at
any location where it previously found garbage, Jason's belief query mechanism will
cause the answer to that question to be "yes" – all of the "last garbage location" be-
liefs will be checked for a match. At that point, it will go back into its slow sweep,
even though (in this simple world) there's no chance of finding new garbage before it
reaches the actual last garbage location. As a consequence, the whole collection proc-
ess will take longer and the agent may not collect all the garbage within its specified
time-to-live.

This fault cannot be detected by any of our tests designed for the cleaner agent, be-
cause in our tests (by chance) it never passes through a previous garbage location
when returning to last collected garbage location (Fig. 5 shows an example where it
would happen). In order to detect this fault, we add a test input that satisfies the fol-
lowing three conditions:

• A piece of garbage, G1, is located in a shortest path between the incinerator agent
and another piece of garbage G2.

• G1 is found prior to G2. This requires that G1 and G2 be located after where the
incinerator agent is along the fixed side-to-side path that the agent uses to check all
the squares.

• G1 and G2 are not in the same row. This enables us to observe that the agent does
indeed return to where G1 was found after dropping either garbage for burning.

Fig. 8 shows a test that will detect this fault and thus kill this mutant. Under this test,
the cleaner agent (R1) will always return to the location where G1 was found after
dropping either G1 or G2 at the incinerator agent (R2). It will then continue moving
along the fixed side-to-side path from this location, and the second time it does this,
this wastes time (there is guaranteed to be no further garbage on the way to the G2
location, since it’s already swept that area). The additional time it spends doing this
takes it over its time-to-live so the agent fails the test.

324 Z. Huang, R. Alexander, and J. Clark

Fig. 8. A test that can detect the fault of multiple last locations

4.3 Discussion

In order to evaluate the power of our implemented high-level mutation operators, we
used them to assess a test set for a simple Jason agent. We designed the test inputs
according to what we thought as the most rigorous and viable criterion (a combination
of three criteria) among those proposed by Low et al. Then we analysed the generated
mutants that were not killed by the test set. To find out the hard-to-kill non-equivalent
ones from these mutants, we took the following steps:

Firstly, we excluded two sources of mutants – those that should not have been gen-
erated and those non-equivalent but non-killed because of the incomplete test oracles
(see 4.2 for the details). Those two sources are due to weaknesses in our implementa-
tion so they can be avoided.

Secondly, we excluded the equivalent mutants. Although they are of little interest
to our current work, the details of them may be of some interest for future studies on
how to reduce the relevant equivalent mutants. For instance, in some cases changing
the formula operator “!!” to “!” only affects the agent behaviour in efficiency, so this
rule can be ignored if this source of difference is not considered when killing mutants.
Similarly, the Triggering Event Operator Replacement (TEOR) operator should not be
applied to the empty plans that are only used to prevent spurious runtime messages.

Finally, we found a non-equivalent mutant that was not killed (regardless of how
the test oracles are specified). From this, we deduce that Formula Operator Replace-
ment (FOR) that generates this mutant is probably a powerful operator, more precise-
ly, the rule of changing the formula operator “−+” to “+” is powerful.

5 Comparison with Related Work

Savarimuthu and Winikoff [7] systematically derive a set of mutation operators from
the syntax of the AgentSpeak language (except that they derive those for agent com-
munication from the Jason-style code). In contrast to their work, firstly we explicitly
describe each of our derived operators while they do not give and describe the actual
full operator set. Secondly we mutate the Jason-extended version of AgentSpeak, so

G1

G2

 Mutation Testing for Jason Agents 325

some of our operators are specific to Jason while others are also applicable to
AgentSpeak.

Jason-specific examples are the Rule Condition Deletion (RCD) operator that in-
volves rules (introduced by Jason to enable theoretical reasoning), the Formula Op-
erator Replacement (FOR) operator that involves some Jason specific operators (!!
and −+), the Strong Negation Insertion/Deletion (SNID) operator that involves strong
negation (introduced by Jason to increase the expressive power), and the Annotation
Deletion (AD) and Source Replacement (SR) operator that involves annotations (spe-
cific to Jason).

Finally, we borrow some ideas from other existing mutation operators (for both
conventional programs and MAS) when deriving ours, in the hope of preliminarily
refining our set. For instance, changing a belief type to a goal type or vice versa
doesn’t make much sense (as learned from [8]), so it is not considered; there have
been some well-defined mutation operators for some traditional concepts that are also
used in Jason grammar (e.g., arithmetic expression), so we can directly borrow them
after small adjustments.

Savarimuthu and Winikoff [8] systematically derive another set of mutation opera-
tors for the GOAL agent language (like AgentSpeak, GOAL is another language for
programming cognitive agents), and then evaluate the representativeness of their set
by comparison with some realistic bugs. In contrast, we evaluate the power of our set
by comparison with some existing coverage criteria. Since an effective operator set
requires ones that are both representative of realistic faults and powerful to guide
generation of hard-to-kill mutants, our evaluation approach is complementary to
theirs.

We have attempted to compare our evaluation results with theirs and found that our
Formula Operator Replacement (FOR) operator (which is powerful in our experi-
ment) is similar to one of their mutation rules – A:op1 (changing an operator), which
doesn’t involve any realistic bug observed in their experiment. However, considering
our hard-to-kill mutant is generated by changing the mental note formula “−+bel”,
which is actually a composition of two adjacent formulae “−bel; +bel”, to “+bel”,
while A:op1 doesn’t involve any composite operator, our mutant is actually the result
of their another rule – AC:drop (dropping an action), which involves the 4th most
realistic bugs (i.e. 14 bugs, while the most representative rule involves 31 bugs) ob-
served in their experiment. This comparison is not very convincing since the two
studies are based on different agent languages, and both are quite preliminary, but it
shows a way to evaluate the effectiveness of mutation operators, i.e. examining both
the representativeness and the power of each operator.

Another related work is Adra and McMinn’s [5]. Although they use a rather differ-
ent agent model, some of their ideas are relevant to our work. They propose four
mutation operator classes, among which their class for agent communication
(Miscommunication, Message Corruption) corresponds to our operators for agent
communication (Message Receiver Replacement, Illocutionary Force Replacement,
Proposition Content Deletion and other involved high- and low-level operators), and
their class for an agent’s memory corresponds to our operators for beliefs (Belief
Deletion, Rule Deletion and other involved low-level operators). Their mutation

326 Z. Huang, R. Alexander, and J. Clark

operator class for agent’s function execution does not directly correspond to our op-
erators since our agent model adopts the BDI reasoning mechanism, while their model
does not. As to their mutation operator class for the environment, it is not relevant to
our operators for agents, although environment is an important dimension of MAS.

6 Conclusions

In this paper we presented our preliminary work on mutation testing for Jason agents.
We proposed a set of mutation operators for the Jason-extended AgentSpeak language
and we described a mutation testing system called muJason, which implements the
high-level subset of our operators. We then used our implemented operators to assess
a test set (for an example agent) that satisfies some coverage criteria proposed by Low
et al. [1]. We found a mutation operator – Formula Operator Replacement (FOR) –
that guided generation of a non-equivalent mutant that is hard to kill. We are hence
able to add a test into the test set for killing this mutant (and, probably, similar mu-
tants or faults).

Our work extends Savarimuthu and Winikoff’s work [7, 8] mainly in two respects:
first, we extend the mutation operators for AgentSpeak by some operators specific to
Jason; second, we propose an approach for assessing the power of operators, which is
complementary to their approach for assessing the representativeness of operators.

Our work is preliminary and has a number of weaknesses. In terms of deriving mu-
tation operators, we may miss some that may be of interest to our experiment since
we did not consider the complete syntax of Jason and systematic ways to derive them
(instead we intended to start with an initial set then implement and evaluate them in
an incremental way). As to our evaluation, our results are limited as we only consi-
dered a single simple agent and a single source of coverage criteria, and because our
finding is specific to Jason (the hard-to-kill mutant we found is the result of changing
the Jason-specific formula operator “−+”).

Our work also has some scalability issues. Firstly, we did not adopt an appropriate
testing technique to specify test inputs and oracles; instead we used inefficient ap-
proaches such as manual specification via Java reflection, which are very difficult to
use to specify a number of tests that are required by complex systems and tests that
are able to detect small differences to the system behavior (mutants often only lead to
such small differences). Secondly, in deriving test inputs that satisfies a specific cov-
erage criterion, we did not use any technique for auto-measuring test coverage to
guide our derivation work; instead we derived them by manual analysis of the pro-
gram, which is impractical for complex programs.

Future work will first address the above issues. Before further evaluation of the
power of our mutation operators, we will develop a unit testing technique for Jason
agents (unit testing provides a flexible way to specify tests that are able to detect
small differences in behavior) and techniques for auto-measuring test coverage. We
will then be able to apply our approach to more complex Jason systems and to a range
of coverage criteria. In the mean time, we will derive more mutation operators for
Jason agents, then implement and evaluate them, along with the low-level ones that
we proposed in this paper but did not implement in muJason so far.

 Mutation Testing for Jason Agents 327

Other potentially valuable studies include evaluating the representativeness of mu-
tation operators for Jason (or other agent languages), improving the efficiency of mu-
tation testing for multi-agent systems (e.g. by auto-reduction of equivalent mutants)
and mutation of other aspects of multi-agent systems (e.g., environments, organiza-
tions and semantics).

References

1. Low, C.K., Chen, T.Y., Rönnquist, R.: Automated test case generation for BDI agents. Au-
tonomous Agents and Multi-Agent Systems 2, 311–332 (1999)

2. Zhang, Z., Thangarajah, J., Padgham, L.: Automated unit testing for agent systems. In: 2nd
International Working Conference on Evaluation of Novel Approaches to Software Engi-
neering (ENASE 2007), pp. 10–18 (2007)

3. Miller, T., Padgham, L., Thangarajah, J.: Test coverage criteria for agent interaction test-
ing. In: Weyns, D., Gleizes, M.P. (eds.) Proceedings of the 11th International Workshop
on Agent Oriented Software Engineering, pp. 1–12 (2010)

4. Nguyen, C.D., Perini, A., Tonella, P.: Automated continuous testing of multi-agent sys-
tems. In: The Fifth European Workshop on Multi-Agent Systems (2007)

5. Adra, S.F., McMinn, P.: Mutation operators for agent-based models. In: Proceedings of 5th
International Workshop on Mutation Analysis. IEEE Computer Society (2010)

6. Saifan, A.A., Wahsheh, H.A.: Mutation operators for JADE mobile agent systems. In: Pro-
ceedings of the 3rd International Conference on Information and Communication Systems,
ICICS (2012)

7. Savarimuthu, S., Winikoff, M.: Mutation operators for cognitive agent programs. In: Pro-
ceedings of the 2013 International Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS 2013), pp. 1137–1138 (2013)

8. Savarimuthu, S., Winikoff, M.: Mutation Operators for the GOAL Agent Language. In:
Winikoff, M., El Fallah Seghrouchni, A., Winikoff, M. (eds.) EMAS 2013. LNCS (LNAI),
vol. 8245, pp. 255–273. Springer, Heidelberg (2013)

9. Houhamdi, Z.: Multi-agent system testing: A survey. International Journal of Advanced
Computer Science and Applications (IJACSA) 2(6), 135–141 (2011)

10. Nguyen, C.D., Perini, A., Bernon, C., Pavón, J., Thangarajah, J.: Testing in multi-agent
systems. In: Gleizes, M.-P., Gomez-Sanz, J.J. (eds.) AOSE 2009. LNCS, vol. 6038, pp.
180–190. Springer, Heidelberg (2011)

11. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University Press
(2008)

12. Mathur, A.P.: Foundations of Software Testing. Pearson (2008)
13. Andrews, J.H., Briand, L.C., Labiche, Y.: Is mutation an appropriate tool for testing expe-

riments? In: International Conference on Software Engineering (2005)
14. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in

AgentSpeak using Jason. John Wiley & Sons (2007)
15. Wooldridge, M.: An Introduction to MultiAgent Systems, 2nd edn. John Wiley & Sons

(2009)

	Mutation Testing for Jason Agents
	1 Introduction
	2 Mutation Operators for Jason
	2.1 High-Level Mutation Operators for Jason
	2.2 Low-Level Mutation Operators for Jason

	3 muJason: A Mutation Testing System for Jason Agents
	4 Evaluation
	4.1 Experimental Setup
	4.2 Results
	4.3 Discussion

	5 Comparison with Related Work
	6 Conclusions
	References

