Efficient Verification of M ASs with Projections

Davide Ancona, Daniela Briola, Amal El Fallah Seghrouchni,
Viviana Mascardi, and Patrick Taillibert

! DIBRIS, University of Genova, Italy
{Davide .Ancona,Daniela.Briola,Viviana. Mascardi}@unige .it
2 LIP6, University Pierre and Marie Curie, Paris, France
{Amal.Elfallah,Patrick.Taillibert}@lip6.fr

Abstract. Constrained global types are a powerful means to represent
agent interaction protocols. In our recent research we used them to rep-
resent complex protocols in a very compact way, and we exploited them
to dynamically verify actual agents’ interactions with respect to different
protocols in both Jason and JADE. The main drawback of our previous
approach is the full centralization of the monitoring activity, which is del-
egated to a unique monitor agent in charge of verifying that the messages
exchanged among all the agents are compliant with the protocol. This
approach works well for MASs with few agents, but could become un-
suitable in communication-intensive and highly-distributed MASs where
hundreds of agents should be monitored.

In this paper we define an algorithm for projecting a constrained
global type onto a set of agents Ags, by restricting it to the interac-
tions involving agents in Ags, so that the outcome of the algorithm is
another constrained global type where interactions involve only agents in
Ags. The projection mechanism is the first step towards distributing the
monitoring activity, making it safer and more efficient: the compliance
of a MAS to a protocol could be dynamically verified by suitably parti-
tioning the agents of the MAS into small sets of agents, and by assigning
to each partition Ags a local monitor agent which checks all interactions
involving Ags against the projected constrained global type.

Although the projection of well formed constrained global types can
be always performed, the resulting projected protocol does not always
model all the constraints as the original one. We describe a generate
and test algorithm that provides hints on the correctness of the protocol
distribution, leaving for further investigation the formal characterization
of which protocols can be distributed onto which agents’ subsets.

Keywords: Constrained Global Type, Projection, Dynamic Verifica-

tion, Agent Interaction Protocol.

1 Introduction and Motivation

Distributed monitoring of agent interaction protocols is interesting for various
reasons. First, the distribution of monitoring reduces the bottleneck issue due
to the potentially high number of communications between the central monitor

F. Dalpiaz et al. (Eds.): EMAS 2014, LNAI 8758, pp. 246-270, 2014.
© Springer International Publishing Switzerland 2014

Efficient Verification of MASs with Projections 247

and the agents of the system. Consequently, the communications are localized
according to the distribution topology (how many local monitors are available
and where they are localized in the system), improving the efficiency of the
monitoring. As usual, distribution increases the robustness of the whole system
and prevents for a breakdown, crash or failure of the system. In particular,
in the context of distributed environments, having a robust monitoring system
requires to distribute the monitoring on several agents which ensure their prompt
reaction to events. In addition, the distributed approach is more suitable than
the centralized one for asynchronous and/or distributed contexts. Hence, we can
mention at least three classes of applications where the distribution of monitoring
is relevant.

1. MASs dealing with huge number of agents, for example applications in the
context of supervising networks (e.g. [28]). The distribution becomes mandatory
to deal with the complexity of the system and to guarantee its scalability.

2. Distributed MASs dealing with distributed agents because of the intrinsic
geographical distribution of the system. This often happens in the context of
industrial projects.

3. Pervasive MASs: in ambient intelligent systems for instance, agents are
mobile (they move from one locality to another one) and their communication
depends on their location. In such open environments, agents enter and leave the
system and this requires a distributed monitoring of communication (e.g. local
registration, etc.).

Usually, in systems related to the above three classes of applications, an over-
lay of agents is deployed above the real system. Agents are distributed over
the system according to the topology distribution which has to satisfy several
criteria (logical, physical or temporal, etc.) of communication in order to meet
the target application requirements. The induced topology leads the agents to
communicate with their local monitor or with their neighboring agents in order
to exchange information.

In order to distribute the monitoring activity, the first step to face is to design
and implement an algorithm for projecting the protocol specification onto subsets
of agents, and then allow interactions taking place within these subsets to be
monitored by local monitors. This step is the main subject of this paper.

Automatically identifying these subsets of agents in order to guarantee that
the distributed monitoring behaves like the centralized one is the second step to
face. The current solution to this issue is a generate and test algorithm which may
detect the impossibility to distribute the monitoring activity, without however
guaranteeing the possibility to distribute it. We leave for further investigation
the problem of finding suitable partitions of agents in a MAS which provide for-
mal guarantees that verification through projected types and distributed agents
is equivalent to verification performed by a single centralized monitor with a
“centralized” global type.

A third interesting issue concerns dynamic redistribution of monitoring agents;
even if not explored in this work, projected types could be recomputed dynami-
cally to balance the load among local monitors depending on the currently available

248 D. Ancona et al.

resources, and according to some “meta-protocol”. Self-adaptation of local moni-
tors along the lines of [13] raises similar issues as dynamic redistribution.

We exploit the formalism of constrained global types [2] for specifying and dy-
namically verifying agent interaction protocols. In our recent research we demon-
strated that they can be used to represent complex protocols in a very compact
way, and we exploited them to detect deviations from the protocol in both Ja-
son' [3] and JADE? [8]. Extensions of the original formalism with attributes
have been described [20] and exploited to model a complex, real protocol in the
railway domain [21]. This paper shows how a constrained global type can be
projected onto a set of agents Ags, obtaining another constrained global type
which contains only interactions involving agents in Ags. Although the projec-
tion of a well formed global type is always possible, this does not mean that it
is always meaningful: as an example, the Alternating Bit Protocol (ABP) that
will be introduced later on in this paper can be projected onto any subset of
agents in the MAS, but needs to be monitored in a centralized way to verify
all its constraints. Our generate and test algorithm detects the impossibility to
distribute the monitoring of the ABP, hence providing a useful, although partial,
support to the protocol and MAS developers.

The paper is organized in the following way: the sequel of this section describes
one motivating scenario for our research; Section 2 overviews the state of the
art in runtime monitoring of distributed systems; Section 3 gives the technical
background needed for presenting the projection algorithm in Section 4, Section 5
describes the implementation of the algorithm in SWI Prolog and the projection
at work, and Section 6 concludes.

Motivating scenario. In order to better understand the impact of distributed
monitoring of complex and open systems, let us consider the following scenario:
a humanitarian convoy in charge of food transportation is traversing a poten-
tially hostile country. In order to ensure the convoy safety, a set of autonomous
unmanned aerial vehicles (UAV) is deployed. The goals assigned to the UAVs are
as diverse as: 1. maintaining the convoy within sight of a distant control center
thanks to an embedded camera and data transmission; 2. transmitting images of
the situation ahead of the convoy (to the convoy itself and to the control center);
3. ensuring data transmission from the convoy to the external world and con-
versely; 4. detecting potential hazards and informing the convoy and the control
center; 5. localizing suspicious vehicles; 6. identifying a designated mobile entity,
etc.

Several UAVs are required to achieve some of these goals since they require
being at different locations at the same time (goals 1, 2). On the contrary, some
goals can be assigned to the same UAV, providing the UAV traveling from one
specific location to another one (goals 4, 5, 6). Moreover, some goals can be
shared between UAVs (goal 3). When some UAV becomes unavailable, its goals
must be allocated to another one or a new UAV must take-off depending on the

! http://jason.sourceforge.net/wp/
2 http://jade.tilab.com/

http://jason.sourceforge.net/wp/
http://jade.tilab.com/

Efficient Verification of MASs with Projections 249

resources availability. It is the case when communication failures occur, which
might be temporary or permanent. It is also the case of instrument failure on-
board UAVs, of meteorological events, etc. Due to situation-related hazards, the
convoy might (autonomously or by a decision coming from the control center)
decide to change its route. This change has to be taken into account by all the
UAVs, which implies at the same time a re-planning of UAVs trajectories but also
re-planning of the tasks they have been allocated to since their feasibility is not
anymore ensured (fuel resources, communication network, etc.). It is of a major
importance that the protocols implemented in the system are monitored for two
reasons: 1. possible errors in protocols might generate confusion among agents
and generate bad decisions whose consequences might be dramatic; 2. malevolent
actors might try to penetrate the system since humanitarian operations almost
often occur in a tense political context.

Unfortunately, a centralized monitoring is difficult to carry out in such a
system since it forces every agent to communicate with a unique control agent,
which is not always possible due to the physical dispersion of the agents. For
example, a low altitude UAV can only communicate with a distant control center
in gaining altitude, which is incompatible with a permanent monitoring of its
communications since most of the UAV mission takes place close to the ground.
Hence, in an application such as the humanitarian convoy the distribution of
protocol monitoring and the ability of any agent to monitor part of the protocol,
if needed, is a problem that must be addressed. It is not a surprise since the
functions of the application themselves have to be implemented as autonomous
goal-directed agents to be able to tackle the complexity inherent to this kind of
systems. Adding a centralized monitoring is then hopeless.

2 State of the Art

In this section we review the literature on runtime monitoring of interaction
protocols, on the distribution of monitoring among subsets of components with
a specific attention to how decentralized monitoring can ensure global protocol
compliance, and on projections that move from global types to global types in
order to lighten them.

Runtime monitoring of interaction protocols. Many frameworks and formalisms
for monitoring the runtime execution of a distributed system have been proposed
in the last years.

One of the most recent and relevant work in this area is SPY (Session Python)
[24], a tool chain for runtime verification of distributed Python programs against
protocol specifications expressed in Scribble®. Given a Scribble specification of a
global protocol, the tool chain validates consistency properties, such as race-free
branch paths, and generates Scribble (i.e. syntactic) local protocol specifications
for each participant (role) defined in the protocol. At runtime, an independent
monitor (internal or external) is assigned to each Python endpoint and verifies

3 http://www.scribble.org

http://www.scribble.org

250 D. Ancona et al.

the local trace of communication actions executed during the session. That work
shares motivations similar to ours. The main differences lie in the expressive
power of the two languages, which is higher for our formalism of constrained
global types due to the constrained shuffle operator which is missing in Scrib-
ble, and in the availability of tools for statically verifying properties of Scribble
specifications, which are not available for constrained global types.

Many other approaches for runtime monitoring of distributed systems and
MASSs exist like those mentioned in the sequel, but with no emphasis on the
projection from global to local monitors. This represents the main difference
between those proposals and ours.

In [17], aspect-oriented development techniques are used to enhance exist-
ing code of runtime monitors, checking the interaction behavior of applications
against their specifications. Message Sequence Charts (MSCs) are exploited to
specify the interaction behavior of distributed systems and as a basis for au-
tomatic runtime monitor generation. An explanation of the monitor generation
procedure and tool set is presented using a case study from the embedded au-
tomotive systems domain. Addressing the need for formal specification and run-
time verification of system-level requirements of distributed reactive systems, [14]
presents a formalism for specifying global system behaviors in terms of MSCs
assertions, with a technique for the evaluation of the likelihood of success of
a distributed protocol under non-trivial communication conditions via discrete
event simulation and runtime execution monitoring.

Moving to the MAS field, a great attention has been recently devoted to
monitoring norms and commitments: formalizing the entities participating to a
protocol and the rules regulating their interaction is in fact an inherent aspect
of normative systems. In [23] a generic architecture for observing agent behav-
iors and recognizing those which comply to or violate the predefined norms is
described. The architecture deploys monitors that receive inputs from observers
and process these inputs together with transition network representations of
individual norms. In this way, monitors determine the fulfillment or violation
status of norms. As far as commitments are concerned, one of the first contri-
butions were Commitment Machines [29], a formalism modeling communication
protocols supplying a content to protocol states and actions in terms of the so-
cial commitments of the participants. The content can be reasoned about by
the agents, thereby enabling flexible execution of the given protocol. In [27] Dis-
tributed Commitment Machines are defined and the properties of Commitment
Machines, both distributed and centralized, are explored. A recent work on re-
lationship between agents and commitment-based protocols is [12], where the
authors specify agents in terms of goal models and protocols in terms of com-
mitments among agents. The semantic relationship between agents and protocols
is formalized exploiting the relationship between goals and commitments. Given
an agent specification and a protocol, it is possible to verify whether the protocol
allows the achievement of particular agent goals, and whether the agent’s specifi-
cation supports the satisfaction of particular commitments. In [4] commitments
are exploited again in normative MASs: the authors focus on JADE and show

Efficient Verification of MASs with Projections 251

that it is possible to account for interactions by exploiting commitment-based
protocols, by modifying the Jade Methodology so as to include the new features
in a seamless way, and by relying on the notion of artifact.

In [15] a framework for automatic processing of interactions generated using
FIPA-ACL* is presented. This framework includes three elements: i) an agent
interaction architecture to systematize interaction processing tasks, ii) interac-
tion models to build re-usable validated code used to check different phases of
interaction processing associated with message semantics, and iii) components
and control structures implementing interaction architecture for a particular
agent platform. The paper describes the implementation details of the proposed
approach developed within the CAPNET agent platform.

Finally, [22] describes an architecture for verifying properties of a multiagent
system during its execution. Considering that a correct system is a system verify-
ing the properties specified by the designer, the authors focus on the “property”
notion. The architecture, a MAS itself, is based on a set of agents whose goals
are to check at runtime the whole system’s properties.

Compliance of distributed and centralized monitoring. The problem of distributed
monitoring has been faced by many researchers in MASs, web services, sensor
networks and other distributed systems, but often the proposed solutions either
directly describe a distributed protocol without any central point of control, or
dynamically create groups of entities (agents, services, components) for monitor-
ing different areas with no central representation of the global protocol, making
these approaches and their theoretical foundations not comparable with ours.

Also, some proposals are similar to ours, but no formal justification of the pro-
jection and its coherence with the global protocol is provided. For example, the
idea of “splitting” a global protocol into subprotocols has been proposed thirty
years ago in the area of network communication protocols [18] and more recently
in the one of Web Services choreography [25], but without a theoretical basis.

The formalization and analysis of the relation between a global description of
a distributed system and a more machine-oriented description of a set of compo-
nents that implements it is a problem that has been studied in several contexts
and by different communities, as widely discussed for example in the related
work section of [10]. Projecting a global protocol into a stub of an executable
piece of code, or - on the other way round - verifying at design time that an
executable piece of code respects the global protocol specification are problems
different from what we face: we do not need to know the implementation of the
agents in order to perform a runtime verification of their observable behavior
with respect to the global protocol, and we project global protocols involving
many agents into sub-protocols involving less, and not global protocols into “im-
plementations”.

Although different from ours, contributions dealing with global types pro-
jected onto session types and their declination as choreographies projected onto
contracts, can be a source of inspiration for identifying the syntactic and seman-
tic conditions which make the projection of a constrained global type feasible.

4 http://www.fipa.org/specs/fipa00061/SCO0061G.html

http://www.fipa.org/specs/fipa00061/SC00061G.html

252 D. Ancona et al.

Global types [9,10,16] are behavioral types, whose aim is the specification and
verification of multiparty interactions between distributed components. As sug-
gested by the term “global”, they describe the overall communication behavior
of a distributed system, whereas session types specify the behavior of the single
components of a system.

In [10] Castagna et al. tackle the problem of projecting global to session
types; in particular, projection is well-defined only if well-formedness conditions
are satisfied by global types. Such non trivial conditions are expressed in terms
of the semantics of global types, which corresponds to sets of traces. The defined
projection algorithm is not complete, since it is not defined for all global types
that satisfy the semantic conditions for projectability.

Global types can be seen as web service choreographies® describing the in-
teraction of some distributed processes connected through a private multi-party
session. Therefore, there is a close relationship between the work of Castagna et
al., and those by Zavattaro et al. [6,19] which concern the projection of chore-
ographies into the contracts of their participants. The projection procedure is
basically an homomorphism from choreographies to the behavior of their partic-
ipants. While [7] gives no conditions to establish which choreographies produce
correct projections, [19] defines three connectedness conditions that guarantee
correctness of the projection for various (synchronous and asynchronous) seman-
tics, solely stated on the syntax of the choreography.

The problem of analyzing choreographies and characterizing their properties
has been addressed also by the MAS community. In particular, Baldoni et al.
[5] propose a notion of interoperable choreography which basically coincides
with Castagna et al.’s notion of liveness: the interaction between the parties
must preserve the ability to reach a state in which every party has successfully
completed its task. Also the notion of conformance between parties defined by
Baldoni et al. may be a basis for proposing methods and algorithms for devising
whether a set of projected protocols expressed in our formalism for constrained
global types can be used to verify the same properties as the global one.

Lightening global types. As seen in the previous paragraph, projection of global
types (resp. choreographies) usually moves from global to session types (resp.
from choreographies to contracts). A very recent proposal by T-C. Chen [11]
shares with ours the purpose of moving from global types to global types, in
order to “lighten” the original global type.

The motivation for Chen’s work is that some interactions in global types
take place just for the purpose of informing receivers that some message will
never arrive or the session is terminated. By decomposing a big global type into
several simpler global types, one can avoid such kind of redundant interactions.
Chen proposes a framework for easily decomposing global types into light global
types, preserving the interaction sequences of the original ones but for redundant
interactions.

® http://www.w3.org/TR/ws-cd1-10/

http://www.w3.org/TR/ws-cdl-10/

Efficient Verification of MASs with Projections 253

Although the rationale for our “lightening” function is to remove interactions
not involving some agents rather than removing redundant interactions as in
Chen’s work, her proposal is the only one, to the best of our knowledge, where
projection moves from global types to global types. While Chen demonstrates the
correctness of her lightening function, she did not implement it yet. Conversely,
our projection function is implemented and usable by both JADE and Jason
agents, although we did not formally demonstrate its properties yet.

3 Backgroud

This section briefly recaps on constrained global types, omitting their extension
with attributes [20] because the projection algorithm discussed in Section 4 is
currently defined on “plain” constrained global types only.

Constrained global types (also named “types” in the sequel, when no ambi-
guity arises) are defined starting from the following entities:

Interactions®. An interaction a is a communicative event taking place between
two agents. For example, msg(right robot, right monitor, tell, put sock)
is an interaction involving the sender right robot and the receiver right mo-
nitor, with performative tell and content put sock.

Interaction types. Interaction types model the message pattern expected at a
certain point of the conversation. An interaction type « is a predicate on inter-
actions. For example, msg(right robot, right monitor, tell, put sock) €
put right sock means that interaction msg(right robot, right monitor,
tell, put sock) has type put right sock.

Producers and consumers. In order to model constraints across different
branches of a constrained fork, we introduce two different kinds of interaction
types, called producers and consumers, respectively. Each occurrence of a pro-
ducer interaction type must correspond to the occurrence of a new interaction;
in contrast, consumer interaction types correspond to the same interaction speci-
fied by a certain producer interaction type. The purpose of consumer interaction
types is to impose constraints on interaction traces, without introducing new
events. A consumer is an interaction type, whereas a producer is an interaction
type a equipped with a natural superscript n specifying the exact number of
consumer interactions which are expected to coincide with it.

Constrained global types. A constrained global type 7 represents a set of pos-
sibly infinite traces of interactions, and is a possibly cyclic term defined on top
of the following type constructors:

—)\ (empty trace), representing the singleton set {e} containing the empty
trace e.

— a™:7 (seg-prod), representing the set of all traces whose first element is an
interaction a matching type a (a € «), and the remaining part is a trace

5 “Interactions” were named “sending actions” in our previous work. We changed
terminology to be consistent with the one used in the choreography community.

254 D. Ancona et al.

in the set represented by 7. The superscript” n specifies the number n of
corresponding consumers that coincide with the same interaction type «;
hence, n is the least required number of times a € « has to be “consumed”
to allow a transition labeled by a.

— a:T (seg-cons), representing a consumer of interaction a matching type «
(a € a).

— 71 + 72 (choice), representing the union of the traces of 71 and 7o.

— 71|72 (fork), representing the set obtained by shuffling the traces in 7 with
the traces in 7.

— 71 -T2 (concat), representing the set of traces obtained by concatenating the
traces of 71 with those of 7.

Since constrained global types are interpreted coinductively [1], it is possible to
specify protocols that are not allowed to terminate like for example the PingPong
protocol defined by the equation

PingPong = (ping,0): (pong,0) :PingPong

where PingPong is a logical variable which is unified with a recursive (or cyclic,
or infinite) term consisting of the producer interaction type ping, followed by
the producer interaction type pong (both requiring 0 consumers), followed by
the term itself. The coinductive interpretation (that is, the greatest fixed point
of the function F' corresponding to the recursive definition of PingPong) is the
singleton containing the only valid and infinite interaction trace ping pong ping
pong ping pongTheinductive interpretation (that is, the least fixed point
of F) of PingPong is the empty set, since there is no base for the induction; hence,
coinduction [26] is required for correctly dealing with infinite traces.
The valid traces for the type

PingPong = ((ping,0):(pong,0) :PingPong) + lambda

instead, are {¢, ping pong, ping pong ping pong, ...}, namely all the traces
consisting of an arbitrary number (even none or infinite) of ping pong.

Let us consider the following simple example where there are two robots (right
and left), two monitors (right and left) associated with each robot, and a plan
monitor which supervises them (Figure 1). The goal of the MAS is to help
mothers in speeding up dressing their kids by putting their shoes on: robots
must put a sock and a shoe on the right (resp. left) foot of the kid they help. As
robots are autonomous, they could perform the two actions in the wrong order,
making the life of the mothers even crazier... Monitors are there to ensure that
wrong actions are immediately rolled back. Robots communicate their actions to
their corresponding monitors, which, in turn, notify the plan monitor when the
robots accomplish their goal. Each robot can start by putting the sock, which
is the correct action to do, or by putting the shoe, which requires a recovery by
the (right or left, resp.) robot monitor.

" In the examples throughout the paper we use the concrete syntax of Prolog where
producer interaction types are represented by pairs (a,n).

Efficient Verification of MASs with Projections 255

% plan_monitor

/ ,%)
left_| monnor R @ right_monitor

%j ~\&7
IeﬂTrobot/B\) \rlght robot

Fig. 1. The “socks and shoes” MAS

As we will see, the left and right monitors play two different roles: they interact
with robots to detect wrong actions and recover them, and they also verify part of
the protocol, notifying the user of protocol violations. In this MAS, monitors are
part of the protocol itself. In the MASs described in our previous papers, monitors
performed a runtime verification of all the other agents but themselves, and their
sole goal was to detect and signal violations. Extending monitors with other
capabilities (or, taking another perspective, extending “normal” agents with the
capability to monitor part of the protocol) does not represent an extension of
the language or framework. The possibility of having agents that can monitor,
can be monitored, and can perform whatever other action, was already there,
but we did not exploit it before.

The interactions involved in the socks and shoes protocol and their types are
as follows:

msg(right robot, right monitor, tell, put sock) € put right sock

msg(right robot, right monitor, tell, put shoe) € put right shoe

msg(right robot, right monitor, tell, removed shoe) € rem right shoe
msg(right monitor, right robot, tell, obl remove shoe) € obl rem right shoe
msg(right monitor, plan monitor, tell, ok) € ok right

msg(left robot, left monitor, tell, put sock) € put left sock

msg(left robot, left monitor, tell, put shoe) € put left shoe

msg(left robot, left monitor, tell, removed shoe) € rem left shoe

msg(left monitor, left robot, tell, obl remove shoe) € obl rem left shoe
msg(left monitor, plan monitor, tell, ok) € ok left

The protocol can be specified by the following types, where SOCKS corresponds
to the whole protocol.

RIGHT = ((put right sock,0):(put right shoe,0): (ok right,0):lambda) +
((put right shoe,0): (obl rem right shoe,0): (rem right shoe,0) :RIGHT),
LEFT = ((put left sock,0):(put left shoe,0):(ok left,0):lambda) +
((put left shoe,0):(obl rem left shoe,0):(rem left shoe,0) :LEFT),
SOCKS = (RIGHT | LEFT)

The type SOCKS specifies the shuffle (symbol “|”) of two sets of traces of inter-
actions, corresponding to RIGHT and LEFT, respectively. The shuffle expresses the

256 D. Ancona et al.

fact that interactions in RIGHT are independent (no causality) from interactions
in LEFT, and hence traces can be mixed in any order.

Types RIGHT and LEFT are defined recursively, that is, they correspond to
cyclic terms. RIGHT consists of a choice (symbol “+”) between the finite trace
(the constructor for trace is “:”) of interaction types (put right sock,0), (put-
right shoe,0), (ok right,0) corresponding to the correct actions of the right
robot, and the trace of interaction types (put right shoe,0), (obl rem right-
shoe,0), (rem right shoe,0) corresponding to the wrong initial action of the
robot, followed by an attempt to perform the RIGHT branch again. Basically,
either the right robot tells the right monitor that it put the sock on first, and
then it can go on by putting the shoe, or it tells that it started its execution by
putting the shoe on. In this case, the right monitor forces the robot to remove the
shoe, the robot acknowledges that it removed the shoe, and then starts again.
The LEFT branch is the same as the RIGHT one, but involves the left robot and
the left node monitor.

An example where sets of traces could be expressed with a fork, but are
not completely independent, is given by the Alternating Bit Protocol ABP. We

Bob

@

Al A%\\Dave
ice o N
(‘%‘/ | i | ‘ “‘
e Carol | \

Fig. 2. The ABP3 MAS

consider the instance of ABP where six different sending actions may occur
(Figure 2): Bob sends msgl to Alice (interaction type m1), Alice sends ackl to
Bob (sending action type al), Bob sends msg2 to Carol (interaction type m2),
Carol sends ack2 to Bob (sending action type a2), Bob sends msg3 to Dave
(interaction type m3), Dave sends ack3 to Bob (interaction type a3). The ABP
is an infinite iteration, where the following constraints have to be satisfied for
all occurrences of the sending actions:

— The n-th occurrence of an interaction of type m1 must precede the n-th
occurrence of an interaction of type m2 which in turn must precede the n-th
occurrence of an interaction of type m3.

- For k € {1,2,3}, the n-th occurrence of msgk must precede the n-th oc-
currence of the acknowledge ackk, which, in turn, must precede the (n + 1)-th
occurrence of msgk .

The ABP cannot be specified with forks of independent interactions, hence
a possible solution requires to take all the combinations of interactions into
account in an explicit way. However with this solution the size of the type grows
exponentially with the number of the different interaction types involved in the
protocol.

Efficient Verification of MASs with Projections 257

With producer and consumer interaction types it is possible to express the
shuffle of non independent interactions which have to verify certain constraints.
In this way the ABP can be specified in a very compact and readable way. The
whole protocol is specified by the following constrained global type ABP3:

M1M2M3=m1:m2:m3:M1M2M3,
M1A1=(m1,1):(al,0) :M1A1,
M2A2=(m2,1) : (a2,0) :M2A2,
M3A3=(m3,1) : (a3,0) :M3A3,
ABP3=((M1M2M3|M1A1) | (M2A2|M3A3))

Fork is associative and the way we put brackets in ABP3 does not matter:
((M1M2M3|M1A1) | (M2A2|M3A3)) has the same meaning as (M1M2M3| (M1A1|M2A2)
IM3A3), and as any other association.

4 Projection Algorithm

In the “socks and shoes” example the monitors, besides checking that the robots
accomplish their goal, verify also the compliance of the system to the specifica-
tion of the protocol, given by the type SOCKS. If we assume that the right robot
and the right monitor reside on the same node, then it is reasonable that the
right monitor verifies only the interactions which are local to its node; to do
that, we must project the type SOCKS onto the agents of the node, that is, the
right robot and the right monitor.
What we would like to obtain is the type

RIGHT P = ((put right sock,0):(put right shoe,0): (ok right,0) :lambda) +
((put right shoe,0): (obl rem right shoe,0): (rem right shoe,0) :RIGHT P),
SOCKS P = (RIGHT P|lambda)

which only contains interactions where the right robot and the right monitor are
involved, either as sender or as receiver.

We can project any protocol onto any set of agents (although it is not neces-
sarily meaningful or useful). For example, projecting the ABP3 on Dave should
result into

ABP3 P compact = (m3,0):(a3,0):ABP3 P compact

which just states that Dave must ensure to respect the order between messages
of type m3 and acknowledges of type a3 between him and Bob. That projected
type can be represented in an equivalent way, even if less compact, as

MiM2M3 P = m3:M1M2M3 P,
M3A3 P = (m3,1):(a3,0):M3A3 P,
ABP3 P =((M1M2M3 P|lambda) | (1ambda|M3A3 P))

Projecting the ABP3 on Bob, instead, should result into the ABP3 itself as Bob
is involved in all communications and hence no interaction will be removed from
the projection.

258 D. Ancona et al.

Since Dave cannot be aware of the order among messages from other agents to
Bob, he can only monitor a part of the protocol. Therefore, distributing the ABP
among Alice, Carol and Dave would result in a partial verification of the protocol
not able to detect all possible errors; indeed, Bob is necessary for checking the
constraints involving m1, m2, m3, and, hence, is the only agent that can monitor
the protocol.

In order to allow agents to verify only a sub-protocol of the global interaction
protocol, we designed a projection algorithm that takes a constrained global type
and a set of agents Ags as input, and returns a constrained global type which
contains only interactions involving agents in Ags. The intuition besides the
algorithm is that interactions that do not involve agents in Ags are removed from
the projected constrained global type. Given the finite set AGS of all the agents
that could play a role in the MAS and an interaction type a, senders(a) is the set
of all the agents in AGS that could play the role of sender in actual interactions
having type « and receivers(a) is the set of all the agents in AGS that could play
the role of receiver in interactions of type a.. The involves predicate holds on one
interaction type « and one set of agents Ags, involves(a, Ags), iff (senders(a) C
Ags) V (receivers(a) C Ags).

Projection can be described as a function IT : €T x P(AGS) — CT where CT
is the set of constrained global types. IT is driven by the syntax of the type to
project®; since IT is defined on cyclic terms, the simplest way to define it would
be by coinduction as follows:

(i) IT (X, Ags) = A

(ii) H(«: 1, Ags) = a : II(1, Ags) if involves(cr, Ags)

(iii) I (« : 7, Ags) = I (7, Ags) if —involves(a, Ags)

(iv) I (7" op 7", Ags) = II(7', Ags) op II(7", Ags), where op € {+,],}.

However, this definition is not fully correct: it works properly on non cyclic
terms (example 1) and on some cyclic terms (example 2), but does not behave
correctly with other kinds of cyclic terms as shown in examples 3 and 4.

Example 1 (non cyclic terms). Let us consider a simple non cyclic term
T defined by T = a : b : \. We want to project T' on Ags. Suppose that
involves(a, Ags) holds, whereas involves(b, Ags) does not (this assumption will
hold for the following examples too), meaning that interaction type a must be
kept in the projection and b must be removed. From (ii) we get II(a : b :
A Ags) = a : II(b : A\, Ags) (a is kept in the projection), from (iii) we have
II(b : A\, Ags) = II(\) (b is discarded from the projection), and finally, from (i)
we know that IT(\) = A, therefore I1(T, Ags) = a : \.

Example 2 (cyclic terms without problems). Let us now consider the cyclic
teem T st. T=a:T and T'=0:T.

8 In the sequel of this section we will use “type” and “term” interchangeably, as a
constrained global type (or just type) is represented by a term.

Efficient Verification of MASs with Projections 259

s D s)
(b)

(a)

Fig. 3. Correct projection of a cyclic term

Again, the projection is driven by the syntax of T'; by applying the definition of
IT we have given before, we have IT(a : T', Ags) = a : II(T', Ags) = a : II(b :
T,Ags) = a: II(T) = a: II(a : T', Ags); while in the previous, non recursive
example we could conclude by applying the definition I7(\, Ags) = A correspond-
ing to the A type, in this case we do not have any basis. However, by coinduction
we can conclude that IT(a : T', Ags) has to return the unique cyclic term 7" s.t.
T” = a : T" (see Figure 3(a)), which corresponds to the correct projection.

Example 3 (cyclic terms with problems - non uniqueness). The defini-
tion of IT needs to be refined because it does not always specify a unique result;
to see that, let us consider the cyclic term T's.t. T =a : T’ and T' = b : T’ with
the same definition of involves as before. Now from the definitions above we get
IH(a :T' Ags) = a : II(T', Ags), II(T', Ags) = II(b : T', Ags) = II(T", Ags);
since IT(T', Ags) = II(T', Ags) is an identity, IT is allowed to return any type
when applied to 779, while the expected correct type should be), so that
II(a : T',Ags) = a : A (see Figure 3(b)). This example demonstrates that
the definition of II as given before must be reconsidered for coping with cases
like this one correctly (see the paragraph “Projection function refined” below).

Example 4 (cyclic term with problems - non contractiveness). Fi-
nally, let us consider the cyclic term T st. T = (a : T) + (b : T); by (iv)
II(T, Ags) = I(a : T,Ags) + II(b : T, Ags), by (i) II(a : T,Ags) = a :
II(T, Ags), and by (iii) II(b : T, Ags) = II(T, Ags), therefore by coinduction
the returned type is 77 s.t. T = (a : T') + T”; although in this case there exists
a unique type that can be returned by I1, such a type is not contractive. A type
is contractive if all possible cycles in it contain an occurrence of the sequence
constructor “”; Figure 3(c) shows that type 7" s.t. T/ = (a : T’) + T” is not
contractive, since the rhs cycle contains only the “+” operator.

Contractive types ensure that runtime verification always terminates and we
want that contractive constrained global types like T st. T = (a: T)+ (b: T)
are always projected into contractive constrained global types. The refinement
of IT discussed below copes with this requirement as well.

9 In the same way as the equation X = X is satisfied for any value associated with X.

260 D. Ancona et al.

Projection function refined. To guarantee that the projection function always
returns a contractive type and that the correct coinductive definition is imple-
mented, we need to keep track of all types visited by IT along a path!'®; each
type is associated with its depth in the path, and with a fresh variable which
will be unified with the corresponding computed projection. During the visit, the
depth DeepestSeq of the deepest visited sequence operator is kept. If a type 7
has been already visited (and we can detect this situation because we keep track
of all the already visited types, together with their depth and projection), then
a cycle is detected: if its depth is less than DeepestSeq then the cycle contains an
occurrence of the sequence constructor, therefore the projected type associated
with 7 is contractive and, hence, is returned; otherwise, the projection would
not be contractive, therefore A is returned.

Let us consider again the type T = (a : T) + (b : T) from example 4; when
computing its projection, the depth of T is 0, and initially we set the value of
DeepestSeq to -1. When visiting the lhs path starting from the “+” operator, the
type a : T is visited at depth 1, and DeepestSeq is set to 1, since the root of a : T
is the sequence constructor. Then T is revisited, and since its depth 0 is less than
DeepestSeq, the projection of the lhs is T/ = a : T'. When visiting the rhs path
starting from the “+” operator, DeepestSeq contains again the value -1, and the
type b: T is visited at depth 1, but because involves(b, Ags) does not hold, b is
discarded with the corresponding sequence constructor, hence DeepestSeq is not
updated. Then T is revisited, and since its depth 0 is not less than DeepestSeq,
the projection of the rhs is A\. The next section provides a detailed description
of the implementation of the correct projection algorithm.

5 Implementation and Use

In this section, we show II’s implementation and we frame it into our frame-
work for distributed runtime verification of MASs. The framework, depicted in
Figure 4, consists of four layers: (1) a formalism for describing agent interaction
protocols (AIPs) based on constrained global types, along with an algorithm to
validate at design time that the described protocol models the expected traces
of interaction; (2) the projection algorithm, along with a generate and test algo-
rithm for validating at design time that the projection on a given agents’ subset
can be safely used for dynamic verification; (3) a mechanism for verifying at
runtime that interactions are compliant with the AIP; and (4) a mechanism for
intercepting at runtime actual messages involving the agents under monitoring,
be them JADE or Jason ones, in a way as transparent as possible.

Whereas the design time validation algorithms supporting layers 1 and 2 can
only generate and test traces of finite length, the runtime verification of layer 3
could in principle go on forever, if the protocol is an infinite one: the runtime
verification mechanism checks the compliance of each actual interaction taking

10 By “path” we mean the path in the tree associated with the type; for example, if
the type is T s.t. T'= (a : T) + (b : T), II will first visit the path associated with
(a: T) and then that associated with (b:T).

Efficient Verification of MASs with Projections 261

Protocol representation
Protocol projection

Verification of compliance
between interaction and protocol

| Interface towards JADE | | Interface towards Jason |

JASON MAS

Fig. 4. Our modular framework for distributed runtime verification of MASs

place in the MAS w.r.t. the constrained global time and stops only when a
violation is detected.

The choice of JADE and Jason as the two frameworks that we are able to
monitor is due to their widespread adoption in the agent community.

Implementation. The projection algorithm has been implemented in SWI Prolog,
http://wuw.swi-prolog.org/, which manages infinite terms in an efficient way.
Since we need to record the association between any type and its projection in
order to correctly detect and maage cycles, we exploited the SWI Prolog library
assoc for association lists, http://www.swi-prolog.org/pldoc/man?section
=assoc. The three predicates of the library assoc that we use for our implemen-
tation are

— empty assoc(-Assoc): Assoc is unified with an empty association list.

— get assoc(+Key, +Assoc, ?Value): Value is the value associated with Key
in the association list Assoc.

— put assoc(+Key, +Assoc, +Value, ?NewAssoc): NewAssoc is an association
list identical to Assoc except that Key is associated with Value. This can be
used to insert and change associations.

The projection is implemented by a predicate project (T, ProjAgs, ProjT)
where T is the constrained global type to be projected, ProjT is the result,
and ProjAgs is the set of agents onto which the projection is performed. The
algorithm exploits the predicate involves(IntType, ProjAgs) succeeding if
IntType may involve one agent, as a sender or a receiver, in ProjAgs.

Currently involves looks for actual interactions ActInt whose type is Int-
Type and assumes that senders and receivers in ActInt are ground terms, but
it could be extended to take agents’ roles into account or in other more complex
ways. It uses the “or” Prolog operator ; and the member predicate offered by
the library lists. It exploits the predicate has type (ActInt, IntType) imple-
menting the definition of the type IntType of an actual interaction ActInt.

involves(IntType, List) :-
has type(msg(Sender, Receiver, ,), IntType),
(member (Sender, List);member(Receiver, List)).

http://www.swi-prolog.org/
http://www.swi-prolog.org/pldoc/man?section=assoc
http://www.swi-prolog.org/pldoc/man?section=assoc

262 D. Ancona et al.

For the implementation of project/3 we use an auxiliary predicate project/6
with the following three additional arguments:

— an initially empty association A to keep track of cycles;

— the current depth of the constrained global type under projection, initially
set to O;

— the depth of the deepest sequence operator belonging to the projected type,
initially set to -1.

project(T, ProjAgs, ProjT) :-
empty assoc(A), project(A, 0, -1, T, ProjAgs, ProjT).

The predicate is defined by cases.

1. lambda is projected into lambda.
project(Assoc, Depth, DeepestSeq, lambda, ProjAgs, lambda):- !.

2. If Type has been already met while projecting the global type (get assoc
(Type, Assoc, (AssocProjType,LoopDepth)) succeeds), then its projec-
tion ProjT is AssocProjType if LoopDepth =< DeepestSeq and is lambda
otherwise. The “if-then-else” construct is implemented in Prolog as
Condition -> ThenBranch ; ElseBranch.

project(Assoc, Depth, DeepestSeq, Type, ProjAgs, ProjT) :-
get assoc(Type,Assoc, (AssocProjType,LoopDepth)),!,
(LoopDepth =< DeepestSeq -> ProjT=AssocProjType; ProjT=lambda) .

3. T= (IntType:T1).IntType is a consumer since it has no integer number asso-
ciated with it. ProjT is recorded in the association A along with the
current depth Depth (put assoc((IntType:T1),Assoc, (ProjT,Depth),
NewAssoc)). If IntType involves ProjAgs, ProjT=(IntType:ProjT1) where
ProjT1is obtained by projecting T1 onto ProjAgs, with association NewAssoc,
depth of the type under projection increased by one, and depth of the deepest
sequence operator equal to Depth. If IntType does not involve ProjAgs, then
the projection on T is the same as T1 with association NewAssoc, depth of the
type under projection equal to Depth, and depth of the deepest sequence op-
erator equal to DeepestSeq.

project(Assoc, Depth, DeepestSeq, (IntType:T1), ProjAgs, ProjT) :- !,
put assoc((IntType:T1),Assoc, (ProjT,Depth) ,NewAssoc),

(involves(AMsg, ProjAgs) ->

IncDepth is Depth+1,

project (NewAssoc,IncDepth,Depth,T1,ProjAgs,ProjT1),
ProjT=(IntType:ProjT1);

project (NewAssoc,Depth,DeepestSeq,T1,ProjAgs,ProjT)).

4. T = ((IntType,N):T1). (IntType,N) is a producer since it has an integer
number N associated with it. The clause for projection is identical to the
previous case, except for the atom ProjT=(IntType:ProjT1) in the first
branch of the condition which becomes ProjT=((IntType,N) :ProjT1).

Efficient Verification of MASs with Projections 263

5. T = T1 op T2, where op € {+, |, *}: the association between T1 op T2
and the projected type ProjT is recorded in the association Assoc along
with the current depth Depth, T1 and T2 are projected into ProjT1 and
ProjT2 respectively, with association equal to NewAssoc, depth of the type
under projection increased by one and depth of the deepest sequence opera-
tor equal to DeepestSeq. The result of the projection is ProjT=(ProjT1 op
ProjT2). For example, if op is +, the Prolog clause is:

project(Assoc, Depth, DeepestSeq, (T1+T2), ProjAgs, ProjT) :- !,
put assoc((T1+T2) ,Assoc, (ProjT,Depth) ,NewAssoc),

IncDepth is Depth+1,

project(NewAssoc, IncDepth, DeepestSeq, T1, ProjAgs, ProjT1),
project(NewAssoc, IncDepth, DeepestSeq, T2, ProjAgs, ProjT2),
ProjT=(ProjT1+ProjT2) .

Types SOCKS P and AP3 P shown at the beginning of Section 4 have been
obtained by applying the projection algorithm to types SOCKS and ABP3 respec-
tively. The reason why they are not as compact as possible, which is mainly
evident in AP3 P, is that the projection algorithm does not implement a further
simplification step and hence some types which have been projected into lambda
could have been safely removed.

The result of the projection may be a type equivalent to lambda. For example,
if we project ABP to the set {eric}, no interaction involves it and the result is
(lambda|lambda) | lambda|lambda. Optimizing the algorithm to perform this
simplification step is a forthcoming improvement, easy to face in Prolog. On the
other hand, we have already observed that the projection may be the same as
the projected type. This happens for example if we project ABP to the set {bob},
which interacts with all the agents in the MAS.

Design time wvalidation that centralized protocol behaves as expected. In SWI
Prolog we have implemented a mechanism for generating all the different traces
(sequences of interactions) with length N, where N can be set by the user, that
respect a given protocol. This mechanism is necessary during the design of the
protocol and allows the protocol designer to make an empirical assessment of
the conversations that will be recognized as valid ones during the runtime veri-
fication. We used this mechanism for validating the “centralized” protocols.

For example, Table 1 (left) shows one of the 16380 different traces with length
12 of the SOCKS protocol (for sake of presentation, we abbreviate right robot
in right r, right monitor in right m, left robot in left r, left monitorin
left m, msg in m, and we drop the tell performative from interactions). The
trace corresponds to an execution where the protocol reached a final state and no
other interactions could be accepted after the last one. In the output produced by
the SWI Prolog algorithm, this information is given by means of an asterisk after
the last interaction. Traces that are prefixes of longer (maybe infinite) ones have
no asterisk at their end. Table 1 (right) shows one of the 30713 different traces
with length 16 of the ABP3 protocol. Since the ABP3 is an infinite protocol, all
its traces are prefixes of infinite ones.

264 D. Ancona et al.

Table 1. Traces of the SOCKS and ABP “centralized” protocols

SOCKS protocol ABP protocol
m(right r, right m, put sock) msg(bob, alice, tell, ml)
m(left r, left m, put shoe) msg(bob, carol, tell, m2)

m(left m, left r, oblige remove shoe) msg(carol, bob, tell, a2)
m(left robot, left m, removed shoe) msg(alice, bob, tell, al)

m(right r, right m, put shoe) msg(bob, dave, tell, m3)
m(right m, plan monitor, ok) msg(dave, bob, tell, a3)
m(left robot, left m, put shoe) msg(bob, alice, tell, mil)
m(left m, left r, oblige remove shoe) msg(bob, carol, tell, m2)
m(left r, left m, removed shoe) msg(alice, bob, tell, al)
m(left r, left m, put sock) msg(bob, dave, tell, m3)
m(left r, left m, put shoe) msg(bob, alice, tell, ml)
m(left m, plan monitor, ok) msg(carol, bob, tell, a2)
* msg(dave, bob, tell, a3)

msg(bob, carol, tell, m2)
msg(alice, bob, tell, al)
msg(carol, bob, tell, a2)

By generating traces of different length and inspecting some of them, the pro-
tocol designer can get a clear picture of whether the protocol he/she designed
behaves in the expected way. Of course this manual inspection gives no guaran-
tees of the correctness of the protocol specification, but in our experience it was
enough to early detect flaws.

Design time validation that the projected protocol makes sense. This step was
devised for giving hints on whether the decentralized monitoring can ensure
global protocol compliance. In fact, although all well-formed deterministic and
contractive constrained global types can be projected, not all possible partitions
of a subset of all agents of the system to be verified allows a full distributed
monitoring of the protocol’s properties.

For example, in the case of the SOCKS protocol, deciding which were the
subsets of agents onto which projecting the global protocol in order to distribute
the monitoring activity was easy: interactions induce a graph connecting pairs of
agents that interact at some point, and in this case the graph is a tree as shown
in Figure 1. By projecting onto {left monitor} and allowing left monitor to
monitor its own interactions, we make a complete check of the left branch of
the tree. In the same way, by projecting onto {right monitor} and allowing
right monitor to monitor its own interactions, we make a complete check of
the right branch. Projecting onto {plan monitor} in this case would be useless,
as interactions with this agent are already checked by the left and right monitors
and the plan monitor does not perform further checks; in particular, it does not
check that messages from the left and right monitor arrive in some specific order.
However, projecting onto {plan monitor} would make sense if the MAS were a
“sub-MAS” of a larger system, where more couples of robots exist. In that case,
we might expect that each plan monitor would report the outcome of activities
of its couple of robots to an agent higher in the hierarchy. Interactions with this

Efficient Verification of MASs with Projections 265

top-level agent should be monitored by the plan monitor (or vice-versa) and
should be transparent to the agents monitoring the robots.

In the MAS implementing the ABP3 protocol shown in Figure 2, things are
different due to the constraints in the fork. Although interactions induce a tree
like in the SOCKS case, projecting onto Alice, Carol and Dave and allowing
these three agents to check their own interactions would not be enough to verify
all the protocol’s constraints, as already observed in Section 4. The ABP3 cannot
be distributed, hence we need a centralized monitor (which might be an external
monitor or Bob himself, as it is involved in all the interactions) that “sniffs”
the interactions among all the agents and verifies their compliance to the ABP3.
None prevents us from projecting ABP3 also onto Alice, Carol and Dave and
asking them to monitor the part of the protocol where they are involved, but this
would be a useless redundancy, as Bob (or the external monitor) would already
verify their part.

In order to detect the fact that, for example, projecting the ABP3 onto Dave
gives no complete information on the protocol properties, we implemented an
empirical method based on a “generate and test” brute force algorithm, consist-
ing in generating all the traces of a given length of the projected protocol, and
verifying if they are compliant with the global protocol. This method works only
on finite traces; furthermore, while all detected positives are true, negatives may
be false.

For example, Table 2 (left) shows one of the 2 different traces with length
12 of the SOCKS protocol projected onto {right robot, right monitor}. All
the traces of length from 1 to 12 of the projected SOCK protocol are compliant
with the global one, hence our compliance algorithms answers “maybe”.

Table 2. Traces of projections of the SOCKS and ABP protocols

SOCKS protocol projected onto ABP3 protocol projected onto {dave}

{right robot, right monitor}
m(right r, right m, put shoe) msg(bob, dave, tell, m3)
m(right m, right r, msg(dave, bob, tell, a3)
oblige remove shoe) msg(bob, dave, tell, m3)
m(right r, right m, msg(dave, bob, tell, a3)
removed shoe) msg(bob, dave, tell, m3)
m(right r, right m, put shoe) msg(dave, bob, tell, a3)
m(right m, right r, msg(bob, dave, tell, m3)
oblige remove shoe) msg(dave, bob, tell, a3)
m(right r, right m, msg(bob, dave, tell, m3)
removed shoe) msg(dave, bob, tell, a3)
m(right r, right m, put shoe) msg(bob, dave, tell, m3)
m(right m, right r, msg(dave, bob, tell, a3)
oblige remove shoe) msg(bob, dave, tell, m3)
m(right r, right m, msg(dave, bob, tell, a3)
removed shoe) msg(bob, dave, tell, m3)
m(right r, right m, put sock) msg(dave, bob, tell, a3)

m(right r, right m, put shoe)
m(right m, plan monitor, ok)

266 D. Ancona et al.

Table 2 (right) shows the only trace with length 16 of the ABP3 protocol
projected onto {dave}. This trace, as well as the shorter ones, is not compliant
with the global ABP3 protocol because it does not respect the constraint that
m3 must follow m1 and m2. The compliance algorithm answers “no”, meaning
that when projecting the ABP3 onto Dave we are no longer able to check the
verification of some constraints in the global protocol.

As we have seen in Section 2, tackling the compliance problem in a formal
way is a complex task, which can be faced following different approaches and
heavily depends on the formalism employed for specifying protocols. Despite
this interesting theoretical open problem, the compliance algorithm we have
developed has proved to work well in practice in the case studies we considered.

Runtime verification of actual interactions in Jason and JADE. In our previous
papers we discussed many experiments of the verification mechanism carried out
on both in Jason [3] and JADE [8]. Although those experiments did not deal
with projected types since projection had not been implemented yet, verifying
the compliance of a set of agents w.r.t. a constrained global type works in the
same way whether the type is a centralized or projected. In this paragraph we
limit ourselves to briefly discussing the “socks and shoes” MAS in Jason.

The MAS is represented in Figure 1. We projected the SOCKS constrained
global type shown in Section 3 onto the three sets of agents {left monitor},
{right monitor} and {plan monitor}. The three resulting constrained global
types are used by agents left monitor, right monitor and plan monitor re-
spectively. Each of these agents monitors all the messages that it either receives
or sends, using the “message sniffing” mechanism described in [3]. We run differ-
ent experiments by changing the actual messages sent by the agents in the MAS,
in order to obtain both correct and wrong executions. As an example, Figure 5
shows the output of an interaction where the right monitor sends a message
with content very good to the plan monitor, instead of the ok content foreseen
by the protocol. The plan monitor correctly detects a dynamic type checking
error (last lines of the messages in the screenshot).

Similar experiments have been carried out with JADE; the outcome of the
monitoring activity in both Jason and JADE were the expected ones, both in
case of correct and wrong executions.

6 Conclusions and Future Work

In this paper we have defined an algorithm for projecting a constrained global
type onto a set of agents Ags, to allow distributed dynamic verification of the
compliance of a MAS to a protocol. Besides describing the algorithm and its SWI
Prolog implementation, we have framed it into the context of a full monitoring
framework for agent systems, currently interfaced with Jason and JADE.

For what concerns future work, we are planning to extend the projection
algorithm in order to be able to properly deal with the more general notion of
attribute global type.

Efficient Verification of MASs with Projections 267

MAS Console - socksAndshoes : O x

Message msg(left_robot,left_monitor.tell,put_shoe)

leads from state
fork(choicel[lambda,lambdal),...choice([seqisalput_left_sock,0),seqisalput_left_shoe,0),seqisalok_left,0) lambdal)) seqisalput_|
to state

fork(choicel[lambda,lambdal), seqlsaloblige_remove_left_shoe 0),seq(salremoved left_shoe,0)....choice([seq(salput_left_sock,0),

[left_monitor]

Message msg(left_monitor,left_robot.telleblige_remove_shoe)

leads from state

fork(choice([lambda,lambdal),seq(saloblige_remove_left_shoe,0) seq(salremoved_left_shoe,0)....choice([seq(salput_left_sock,0),
to state

fork(choicel([lambda,lambda]), seqlsalremaoved_left_shoe,0)...choice([seqisalput_left_sock 0)seq(salput_left_shoe 0),seq(salok |

J| [right_monitor]

Message msg(right_robot, right_monitor tell,put_sock) 3
leads from state
fork(...choice([seq(salput_right_sock,0),seq(salput_right_shoe,0),seqisalok_right,0).lambda))).seq(salput_right_shoe,0),seg(salt |
to state [
| fork(seq(sa(put_right_shae,0).seq(salok_right,0).lambda)),...choice([seq(salput_right_sock,0),seq(salput_right_shoe,0),seq(salo|_ |

i| lleft_meniter]

Message msgl(left_robotleft_monitor.tell removed_shoe)
leads from state
fork(choice{[lambda.lambda]},seq(sa(removed_left_shoe,0}....choice([seqisalput_left_sock 0).seq(salput_left_shoe,0).seq(salok |
to state
fork{choice([lambda,lambdal)....choice([seqisalput_left_sock,0),seq(salput_left_shoe,0),seqlsalok_left,0).lambda))),seqisalput_|

[right_monitor]

{|Message msglright_robot, right_monitor tell, put_shoe)
leads from state &
fork{seq(salput_right_shoe,0),seqisalok_right,0).lambda))....choice([seqg(salput_right_sock, 0),seq(salput_right_shoe.0).seqlsalo
|to state

fork(seq(salok_right,0),lambda),...choicel([seqlsalput_right_sock,0) seq(salput_right_shoe,0),seqisalok_right,0),lambda))) seq(s

[left_monitor]

Message msglleft_robot,left_monitor tell put_sock)

leads from state
fork{choice([lambda,lambdal)....choice([seqisalput_left_sock,0),seqlsalput_left_shoe,0).seqlsalok_left,0).lambda))).seqlsalput_l{f |,
to state i
fork(choicel([lambda,lambdal), seqlsalput_left_shoe,0),seq(salok_left, 0).lambdal))

‘| Iplan_monitor] !
*k DYNAMIC TYPE-CHECKING ERROR, ### |
Message msg(right_monitor, plan_moniter.tell very_good) received within protocol socks
.|cannot be accepted in the current state fork(choice([seqisalok_right,0),lambda),lambda]),choice([seq(salok_left,0), lambda),laml|_|

||

4] i]]

Fig. 5. Projected SOCKS protocol in Jason: the right monitor violates the protocol

Also, we are investigating the possible ways to partition the set of agents for
projecting types, to minimize the number of monitors, while ensuring safety of
dynamic verification. In Section 2 we analyzed many different research areas,
looking for solutions to the problem and for formal demonstrations that the dis-
tribution of the protocol allows monitoring the same properties as the centralized
version, but even the works which seem closer to ours, namely those related with
global and session types, and with choreographies, cannot be directly adopted to
guarantee the correctness of the projection in our context, for four main reasons:

1. we may project on subsets of agents, if needed, and non necessarily onto
individual agents;

2. we project constrained global types into constrained global types, not into
“implementations”: the implementation of the agents is relevant neither for
the projection stage, nor for the monitoring one;

3. the expressive power of our formalism is different from other approaches:
a compliance analysis must take the specific features of the formalism into
account;

268 D. Ancona et al.

4. all the proposals found in literature to solve the problem of checking the
correctness of projection, simply enforce syntactic restrictions on protocol
specifications (as done in Scribble), whereas we would like to come out with
a less restrictive approach.

While taking inspiration from these approaches will be extremely useful, we
will nevertheless need to develop a new approach, taking the features and the
intended use of our formalism into account.

Finally, in the examples considered in this paper, types are projected stati-
cally (that is, before the system is started) because we have assumed that agents
cannot move among nodes, but monitoring would be also possible in the pres-
ence of agent mobility, as described in the scenario outlined in the introduction.
However, in this case the implementation of a self-monitoring MAS is more chal-
lenging, because monitor agents have to dynamically project the global type in
reaction to any change involving the set of monitored agents. Tackling scenarios
of this kind is the final long term goal of our research.

References

1. Ancona, D.: Regular corecursion in Prolog. Computer Languages, Systems & Struc-
tures 39(4), 142-162 (2013)

2. Ancona, D.; Barbieri, M., Mascardi, V.: Constrained global types for dynamic
checking of protocol conformance in multi-agent systems. In: Shin, S.Y., Maldon-
ado, J.C. (eds.) Proceedings of the 28th Annual ACM Symposium on Applied
Computing, SAC 2013, pp. 1377-1379 (2013)

3. Ancona, D., Drossopoulou, S., Mascardi, V.: Automatic Generation of Self-
monitoring MASs from Multiparty Global Session Types in Jason. In: Baldoni, M.,
Dennis, L., Mascardi, V., Vasconcelos, W. (eds.) DALT 2012. LNCS, vol. 7784, pp.
76-95. Springer, Heidelberg (2013)

4. Baldoni, M., Baroglio, C., Capuzzimati, F.: 2COMM: A commitment-based MAS
architecture. In: Cossentino, M., El Fallah Seghrouchni, A., Winikoff, M. (eds.)
EMAS 2013. LNCS (LNATI), vol. 8245, pp. 38-57. Springer, Heidelberg (2013)

5. Baldoni, M., Baroglio, C., Chopra, A.K., Desai, N., Patti, V., Singh, M.P.: Choice,
interoperability, and conformance in interaction protocols and service choreogra-
phies. In: Sierra, C., Castelfranchi, C., Decker, K.S., Sichman, J.S. (eds.) 8th Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems, AA-
MAS 2009, vol. 2, pp. 843-850. IFAAMAS (2009)

6. Bravetti, M., Zavattaro, G.: Towards a unifying theory for choreography confor-
mance and contract compliance. In: Lumpe, M., Vanderperren, W. (eds.) SC 2007.
LNCS, vol. 4829, pp. 34-50. Springer, Heidelberg (2007)

7. Bravetti, M., Zavattaro, G.: Contract compliance and choreography conformance
in the presence of message queues. In: Bruni, R., Wolf, K. (eds.) WS-FM 2008.
LNCS, vol. 5387, pp. 37-54. Springer, Heidelberg (2009)

8. Briola, D., Mascardi, V., Ancona, D.: Distributed runtime verification of JADE
multiagent systems. In: Camacho, D., Braubach, L., Venticinque, S., Badica, C.
(eds.) Intelligent Distributed Computing VIII. SCI, vol. 570, pp. 81-92. Springer,
Heidelberg (2014)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Efficient Verification of MASs with Projections 269

Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred program-
ming for web services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
2-17. Springer, Heidelberg (2007)

Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and multi-
party session. Logical Methods in Computer Science 8(1) (2012)

Chen, T.: Lightening global types. In: Donaldson, A.F., Vasconcelos, V.T. (eds.)
Proceedings 7th Workshop on Programming Language Approaches to Concurrency
and Communication-cEntric Software, PLACES 2014. EPTCS, vol. 155, pp. 3846
(2014)

Chopra, A.K., Dalpiaz, F., Giorgini, P., Mylopoulos, J.: Reasoning about agents
and protocols via goals and commitments. In: Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent Systems, AAMAS 2010, vol. 1,
pp. 457-464. IFAAMAS, Richland (2010)

Coppo, M., Dezani-Ciancaglini, M., Venneri, B.: Self-adaptive monitors for mul-
tiparty sessions. In: 22nd Euromicro International Conference on Parallel, Dis-
tributed, and Network-Based Processing, PDP 2014, pp. 688-696. IEEE (2014)
Drusinsky, D., Shing, M.-T.: Verifying distributed protocols using MSC-assertions,
run-time monitoring, and automatic test generation. In: Proceedings of the 18th
IEEE/IFIP International Workshop on Rapid System Prototyping, RSP 2007, pp.
82-88 (May 2007)

German, E., Sheremetov, L.B.: An agent framework for processing FIPA-ACL mes-
sages based on interaction models. In: Luck, M., Padgham, L. (eds.) AOSE 2007.
LNCS, vol. 4951, pp. 88-102. Springer, Heidelberg (2008)

Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL 2008, pp. 273-284. ACM (2008)

Kriiger, I.H., Meisinger, M., Menarini, M.: Runtime verification of interactions:
From MSCs to aspects. In: Sokolsky, O., Tasiran, S. (eds.) RV 2007. LNCS,
vol. 4839, pp. 63-74. Springer, Heidelberg (2007)

Lam, S., Shankar, A.U.: Protocol verification via projections. IEEE Transactions
on Software Engineering SE-10(4), 325-342 (1984)

Lanese, 1., Guidi, C., Montesi, F., Zavattaro, G.: Bridging the gap between
interaction- and process-oriented choreographies. In: Cerone, A., Gruner, S. (eds.)
Sixth IEEE International Conference on Software Engineering and Formal Meth-
ods, SEFM 2008, pp. 323-332. IEEE Computer Society (2008)

Mascardi, V., Ancona, D.: Attribute global types for dynamic checking of protocols
in logic-based multiagent systems. Theory and Practice of Logic Programming,
13(4-5-Online-Supplement) (2013)

Mascardi, V., Briola, D., Ancona, D.: On the expressiveness of attribute global
types: The formalization of a real multiagent system protocol. In: Baldoni, M.,
Baroglio, C., Boella, G., Micalizio, R. (eds.) AI*IA 2013. LNCS (LNAI), vol. 8249,
pp. 300-311. Springer, Heidelberg (2013)

Meron, D., Mermet, B.: A tool architecture to verify properties of multiagent sys-
tem at runtime. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A.
(eds.) PROMAS 2006. LNCS (LNAI), vol. 4411, pp. 201-216. Springer, Heidelberg
(2007)

Modgil, S., Faci, N., Meneguzzi, F., Oren, N., Miles, S., Luck, M.: A framework for
monitoring agent-based normative systems. In: Proceedings of the 8th International
Conference on Autonomous Agents and Multiagent Systems, AAMAS 2009, vol. 1,
pp. 153-160. IFAAMAS, Richland (2009)

270

24.

25.

26.

27.

28.

29.

D. Ancona et al.

Neykova, R., Yoshida, N.; Hu, R.: SPY: Local verification of global protocols. In:
Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 358-363. Springer,
Heidelberg (2013)

Qiu, Z., Zhao, X., Cai, C., Yang, H.: Towards the theoretical foundation of choreog-
raphy. In: Proceedings of the 16th International Conference on World Wide Web,
WWW 2007, pp. 973-982. ACM, New York (2007)

Sangiorgi, D.: On the origins of bisimulation and coinduction. ACM Trans. Pro-
gram. Lang. Syst. (2009)

Winikoff, M.: Implementing flexible and robust agent interactions using distributed
commitment machines. Multiagent and Grid Systems 2(4), 365-381 (2006)

Wérn, H., Langle, T., Albert, M., Kazi, A., Brighenti, A., Seijo, S.R., Senior, C.,
Bobi, M.A.S., Collado, J.: DIAMOND: Distributed multi-agent architecture for
monitoring and diagnosis. Production Planning & Control 15(2), 189-200 (2004)
Yolum, P., Singh, M.P.: Commitment machines. In: Meyer, J.-J.C., Tambe, M.
(eds.) ATAL 2001. LNCS (LNAI), vol. 2333, pp. 235-247. Springer, Heidelberg
(2002)

	Efficient Verification of MASs with Projections
	1 Introduction and Motivation
	2 State of the Art
	3 Backgroud
	4 Projection Algorithm
	5 Implementation and Use
	6 Conclusions and Future Work
	References

