
The Shaping of the Agent-Oriented Mindset

Twenty Years of Engineering MAS

Koen V. Hindriks

Delft University of Technology, EEMCS, The Netherlands

Abstract. In the past twenty years we have seen an enormous growth
and development of new techniques, technologies, and tools that support
the engineering of Multi-Agent Systems (MAS). The 1990s perhaps are
best characterized as the period in which the foundations were laid and
the more theoretical underpinnings of the MAS field were explored. Be-
sides a continuation of this foundational work, since 2000 the agent-based
community has also been increasingly able to demonstrate the great po-
tential for applying the MAS technology that has been developed in a
very broad and diverse range of application domains.

In this paper, I will trace the shaping of the agent-oriented mindset
from the mid 90s on as it evolved in the work presented in the interna-
tional workshops ProMAS, AOSE, and DALT that recently merged into
the EMAS workshop. For this reason the focus of this overview will be
in particular on cognitive agents as it seems fair to say that most work
reported in ProMAS, AOSE, and DALT has taken its inspiration from
Belief-Desire-Intention (BDI) agents.

1 Introduction

In a recent survey of applications of MAS technology [44], mature applications
are reported in such diverse areas as Logistics and Manufacturing, Telecom-
munication, Aerospace, E-commerce, and Defense. The authors conclude that
“dedicated agent platforms actually can make a difference regarding business
success”. They also write that “more recent platforms [...] may take some more
time to mature”. It was found, for example, that quite a few mature applications
were built using one of the older and well-known agent platforms JADE [6]. In
order to continue these successes, it is important to identify what is needed to
advance more recently developed technologies for engineering MAS to a level
that they can be used to engineer mature applications.

In this paper, we will focus in particular on cognitive agent technology as it
seems fair to say that most work reported in the international workshops Pro-
MAS, AOSE, and DALT that recently merged into the EMAS workshop has
taken its inspiration from so-called Belief-Desire-Intention (BDI) agents. Ar-
guably, the step to mature applications for technologies that support the engi-
neering of cognitive agents and MAS is bigger than that of more general purpose
frameworks for engineering agents such as JADE. One reason, moreover, why
a broader uptake and the application of cognitive agent technologies has been

F. Dalpiaz et al. (Eds.): EMAS 2014, LNAI 8758, pp. 1–14, 2014.
c© Springer International Publishing Switzerland 2014



2 K.V. Hindriks

somewhat slow perhaps, may be that this work originally has had a strong con-
ceptual focus, aiming, for example, to relate agent frameworks to formal theories
of rational agents.

To move forward it is important to learn from past successes and failures
and to take stock of where we are today. To this end, the aim is to trace and
to provide an overview of the agent-oriented mind-set by revisiting some of
the results discussed and proposed in the past 20 years on Engineering MAS
(EMAS). I will only be able here to provide a high-level overview of the past
twenty years of developments related to engineering MAS and this overview thus
will necessarily be far from complete and will only include some of what I consider
to be its highlights. In the remainder, some of the core concepts, research goals,
and achievements of twenty years of EMAS will be presented, followed by a brief
perspective on future research of engineering MAS.

2 The Agent-Oriented Mindset

One perspective on what we as a research community are trying to achieve is
that we are shaping the agent-oriented mind-set. This mind-set, among others,
consists of key concepts that we use to design a multi-agent system. A lot of
research has gone into clarifying and refining concepts associated with agent-
based systems. In addition, to support the design and engineering of MAS using
this mind-set, we have developed corresponding agent-oriented tools, techniques,
and methodologies.

The agent-oriented mindset is well-established by now and it is not hard to
answer the question what is part of that mind-set. A short interaction with the
audience at EMAS yielded the concepts that are common and familiar by now
to most MAS developers, including:

– autonomy,
– environment, event, reactive,
– rational, goal-directedness, intentional stance
– decentralization, interaction, and social.

To summarize and paraphrase a well-known definition [71], apart from being
autonomous, an agent is reactive, proactive, and interactive (also known as a
weak notion of agency).

Another defining notion in our field of research has been the notion of a
Belief-Desire-Intention (BDI) agent [56]. The notion of a BDI agent is about the
internal, cognitive structure of an agent that consists, among others, of an agent’s
beliefs and can be viewed as a refinement of a pro-active agent to an agent that
has a motivational state that consists of, e.g., desires, goals, and/or intentions.
The idea is that an agent aims at achieving something it wants and [56] therefore
emphasises the rationality of agents instead of their autonomy. The cognitive
state of an agent should, moreover, satisfy basic rationality constraints, e.g., goals
should be compatible with the agent’s beliefs, intentions should be compatible
with goals, and agents should not procrastinate with respect to their intentions.



The Shaping of the Agent-Oriented Mindset 3

That is, agent should be committed to achieving their goals but should not do
so blindly. Another very influential paper [55] proposed an agent programming
language called AgentSpeak(L) derived from the notion of a BDI agent but
which also added the concept of a plan. An agent in AgentSpeak(L) has a plan
library that should provide an agent with the means to achieve its goals (see also
Figure 1). Mental states have been identified by some as the essential ingredient
of Agent-Oriented Programming (AOP) [13].

Fig. 1. Interpreter for BDI Agent

Models that formalized the notion of an agent have typically been based
on some form of logic and throughout “the declarative paradigm” has been
promoted within the community (and less so game theoretic models). Especially
the work reported in the DALT workshop has contributed to implementation
models and refinements or extensions of the notion of a BDI agent. Just to
mention two examples, [2] introduced a cooperative BDI model Coo-BDI, and
[1] presents an efficient (linear time) belief contraction operation.

Agents are distinctly different from other software entities such as objects be-
cause they are intrinsically motivated: agents are pro-active and aim to achieve
their goals in order to meet their design objectives. It thus is not surprising to
see that quite some work has focussed on the notion of a goal. For example,
[66] studies the dynamics of declarative goals, [17] introduced a mechanism for
goal generation, [38] presents an account of goal change that is able to handle
prioritized goals and subgoals and their dynamics, whereas [70] has investigated
the interactions between goals and provides a framework for reasoning about
such interactions. Various goal types were distinguished in this work, including
most importantly achievement, maintenance, and perform goals (see also [67]).



4 K.V. Hindriks

Important results were also obtained on the life cycle of goals : [12,61,67] dis-
cuss various states in different life cycle models which include, for example, the
suspension and abortion of goals.

Right from the start it was recognized that agents that are part of a MAS
should be somehow organized. An important aspect of this organization con-
cerns the modelling of agent interaction. New models for interaction based on
the notion of commitment rather than that of a speech act have been introduced
with corresponding methods for verification based on the notion of compliance
[3,7,15]. Another means to regulate the behaviour of agents is to introduce norms
that agents should obey or comply with. Various works have looked at the notion
of an institution with associated norms, including, for example, [68] which pro-
poses a definition of norms for electronic institutions for synthesising norm-aware
agents, [28] which introduces a social layer for MAS in which normative posi-
tions are explicitly represented and managed, and [27] which presents a model
of norms for specifying, amongst others, sanctions.

Summary. The concept within the agent-oriented mindset that has been refined
most over the years has been that of a goal whereas the notion of a norm-aware
agent has been the most significant extension of the notion of a cognitive agent.

3 The Design of MAS

In Agent-Oriented Software Engineering (AOSE), agent interaction, not the
agent’s environment, was emphasized, at least initially, as a key characteris-
tic of complex software that calls for new methods. The agent metaphor defines
a new software engineering paradigm and agent metaphors and technologies are
adopted to harness and govern the complexity of software systems. The basic
idea was that the growing complexity of systems calls for new models and tech-
nologies that promote system predictability and MAS can provide a solution to
this problem.

Although other methodologies were also proposed at the time (e.g., [51]),
the multi-agent software engineering methodology MaSE is an early representa-
tive of work on design methodologies that is still being further developed [41].
The MaSE methodology is based on several key concepts that have remained
important in AOSE, including requirements, goal hierarchy, use cases or scenar-
ios, roles, agents and their conversations. MaSE has evolved into O-MaSE [40].
Another early well-known methodology for agent-oriented software engineering
methodologies is Gaia [72]. The Gaia methodology proposed several design arti-
facts that the methodology required from a design of a MAS. The methodology
supports the analysis and design life cycle phases but did not provide any tooling
to support the design process. MASDK is an extension of Gaia [30].

The main life cycle phases that have been distinguished in the design process of
a MAS include the requirements phase, analysis phase, design phase (sometimes
a distinction is made between the architectural and detailed design phase), the
implementation phase, and the testing phase. State of the art methodologies such



The Shaping of the Agent-Oriented Mindset 5

as O-MaSE [40], Prometheus [52], and Tropos [29] cover and provide support for
all of these phases by means of design tools. These methodologies are compared
with each other using a conference management case study in [53]. See [60] for
a recent overview of agent-oriented methodologies.

An important contribution of work on AOSE has been the introduction of
graphical notations for design specifications of agent systems. UML [8] has been
taken as a starting point because it is easier to develop an agent-based exten-
sion based on the object-oriented notation, and it is relatively easy to provide
high-quality tools by extending existing object-oriented tools [4,48]. Typically,
however, each methodology has introduced its own notation. Some effort has
been done to unify notations again [54]. It is also worthwhile to mention some
of the work on design patterns in this context (see, e.g., [50,20]).

Several methodologies also provide dedicated support for organizational mod-
elling. A well-known model is the AGRmodel [26] which stands for Agent-Group-
Role. The notion of a role refers to the constraints (obligations, requirements,
skills) that an agent needs to have to obtain a role, the benefits (abilities, au-
thorization, profits) that an agent will receive in playing the role, and the re-
sponsibilities associated to the role. A basic assumption of the AGR approach
is that the organizational model does not make any assumptions about the cog-
nitive capabilities of the agents within the organization. The notion of a group
is used to partition agents into units in which they can freely interact whereas
different groups are assumed to be opaque to each other. Several other organiza-
tional meta-models have been proposed, including MOISE+ [34], TEAMS [36],
ISLANDER [24], and OperA [49].

A topic that has gained more attention recently is testing. Some initial work
on providing a testing framework for MAS development, including SUNIT [63]
and a framework integrated with Tropos [46]. [74] provides a technique for unit
testing of plan based agent systems, with a focus on the automated generation
and execution of test cases.

Summary. Much has been achieved with respect to design methodologies for
MAS that provide useful graphical notation for the specification of a MAS and
cover all design life cycle phases, where in particular the testing phase has gained
more attention only recently. In particular the concept within the agent-oriented
mindset that has been refined most over the years has been that of an organiza-
tion.

4 Programming Languages for Cognitive Agents

Various programming languages have been proposed that facilitate the imple-
mentation of MAS based on cognitive agents. We have already mentioned the
AgentSpeak(L) language [55] above. Programming languages are also needed for
bridging the gap between analysis and design, which yields an agent-oriented
system design, and implementation of a MAS. Agent programming languages
aim to provide support for a rather direct implementation of the core concepts
that are part of the agent-oriented mind-set.



6 K.V. Hindriks

AGENT-01

(PLACA )

Basic concepts: beliefs, action, plans, goals-to-do

AgentSpeak(L), Jason2

Golog 3APL3

Main addition: Declarative goals

2APL 3APL + GOAL

Java-based Cognitive Agent Languages

AF-APL, JACK (commercial), Jadex, Jazzyk

Mobile Agents

CLAIM

Logic Programming

METATEM

Families of
Languages

Fig. 2. Families of Agent Programming Languages

The community has been particularly productive in the area of programming
frameworks for agent systems. Figure 2 provides an overview of the landscape
of languages and highlights the distinction between Java-based and logic-based
languages. Java-based languages stay closer to the well-known and familiar
object-oriented paradigm whereas logic-based languages provide more powerful
reasoning engines for reasoning about the beliefs and goals of an agent.

Early work introduced the JACKTM language as an implementation of the
Belief/Desire/Intention model of rational agency in Java with extensions to sup-
port the design and execution of agent systems [25] and the CLAIM language
that supports the design of mobile agents [23]. Three other frameworks that were
introduced and built on top of Java are Jadex [12], which was motivated by ex-
tending JADE with BDI agents, AF-APL [58], which was motivated by the need
for a practical programming language for agent systems, and JIAC [37,42], which
has been motivated by the desire to be able to meet requirements imposed by
modern industrial projects. Finally, [47] presents the language Jazzyk which is
motivated by the need for a clean separation between the knowledge representa-
tional and the behavioural level of an agent program. The work [19] incorporates
the notion of a declarative goal into the agent programming language 3APL [33].

An important contribution of work on agent programming languages has been
the introduction of modules that support modular design of agent programs. In
[11] a module concept is presented that is based on the capability concept for
structuring BDI agents in functional clusters introduced before [14] that supports
a higher degree of reusability. In [31] and [43], respectively, the logic-based agent
languagesGoal [32] and Jason [9] are extended with modules. Another approach
for adding structure to a MAS program based on the notion of an organization
is introduced in [62].

Substantial work has also been done in the area of debugging MAS. The Trac-
ing method proposed in [39] assists a programmer in debugging agents by ex-
plaining the actual agent behaviour in the implemented system. The method logs



The Shaping of the Agent-Oriented Mindset 7

actual agent behaviour from which it derives interpretations in terms of, e.g., the
beliefs, goals, and intentions of an agent. [10] proposes the use of data mining
to assist during the debugging of MAS. [16] describes how debugging has been
supported for the Agent Factory Agent Programming Language (AF-APL). [18]
proposes an assertion language for specifying the cognitive and temporal be-
haviour of an agent program as support for debugging.

The integration of sophisticated AI techniques into agent systems has mainly
been looked at in the context of agent-oriented programming. A planner is inte-
grated into Jadex for providing dynamic plans at runtime [69]. The integration
approach used is one where the cognitive agent takes responsibility for plan mon-
itoring and re-planning and only the responsibility for the creation of plans is
delegated to the planner. Recently also work on integrating learning into the
agent programming language Goal has been reported in [59]. The focus in this
paper is on improving action selection in rule-based agent programming lan-
guages using a reinforcement learning mechanism under the hood.

Fig. 3. Environment Interface for Agent Interaction with Environments

One important feature of agent systems has not yet been discussed: agent sys-
tems are embedded in and agent systems interact with an environment.
Various models that support the interaction between agents and their environ-
ments have been proposed. The Agents and Artifacts (A&A) model of environ-
ments is based on the idea that an environment is composed of different sorts
of artifacts that are shared and used by agents to support their activities[57].



8 K.V. Hindriks

The PRESAGE model introduced in [45] proposes the use of environments as
a rapid prototyping tool for agent societies. The CIGA middleware proposed in
[64] aims at facilitating the coupling between a MAS and a game engine. Finally,
the Environment Interface Standard (EIS) introduced in [5] provides support for
connecting agent platforms to environments such as games (see also [22] for a
range of environment implementations that have been made available). The EIS
interface provides generic functionality for executing actions and for perceiving
changes in an agent’s environment and also provides support for managing an
environment, e.g., for starting, pausing and terminating it (see also Figure 3).

Summary. Various programming language that support the agent-oriented
paradigm have been proposed. Several extensions such as the notion of mod-
ular programming have made these languages more useful in practice. Work
on debugging agent programs has also contributed to this end. An important
contribution has also been the development of several models that support the
interaction of an agent with its environment.

5 Conclusion

Cognitive agent technology offers a powerful solution for developing the next
generation autonomous decision-making systems. To make this happen it is im-
portant to continue to promote and contribute to the agent-oriented mindset. It
also continues to be important to justify the need for a paradigm shift from ex-
isting paradigms such as the object- or service-oriented paradigms to the agent-
oriented paradigm ([60]; see also [35]). In particular, it would be useful to be
able to perform quantitative assessments and comparisons of the agent-based
paradigm with other paradigms ([73]; see also [21]).

We also want to suggest that it is time to start paying more attention to
the kind of support that a MAS developer needs to facilitate him or her when
engineering future MAS applications (see also [21,65]). It is important to identify
the needs of a developer and make sure that a developer is provided with the
right tools for engineering MAS. For the same reason we should focus more on
issues related to ease of use, scalability and performance, and testing. As we have
seen, work on techniques and tools that support the testing phase has only quite
recently produced more concrete results (see also [60]).

There are also promises of the agent-oriented paradigm that are still to be
realized. As argued in [35], “agents are the right abstraction to (re-)integrate var-
ious AI sub-disciplines together again”. Robots should come to mind here. Can
we provide tools and techniques that facilitate the integration of sophisticated AI
techniques into agents? As a community, we can provide an important contribu-
tion by focusing on understanding how to provide programmers with easy access
to such techniques. We have seen that already some proposals have been made
to re-integrated planning and learning. Similarly, it remains to be shown that
agent-orientation can solve key concurrency and distributed computing issues.
If agents are advocated as the next generation model for engineering complex,



The Shaping of the Agent-Oriented Mindset 9

distributed systems, we should be able to demonstrate the added value of agent
systems.

Finally, it seems particularly worthwhile to put more effort into integrating
agent-based methodologies and programming languages. There are several areas
of clear overlap where both can reinforce and improve their respective results,
e.g., in the area of testing and the area of organizational modelling. In any case,
to stimulate the adoption of cognitive agent technology and MAS, we need to
provide methods and tools that jointly support the agent-oriented mindset.

References

1. Alechina, N., Jago, M., Logan, B.: Resource-bounded belief revision and contrac-
tion. In: Baldoni, M., Endriss, U., Omicini, A., Torroni, P. (eds.) DALT 2005.
LNCS (LNAI), vol. 3904, pp. 141–154. Springer, Heidelberg (2006)

2. Ancona, D., Mascardi, V.: Coo-BDI: Extending the BDI model with cooperativity.
In: Leite, J., Omicini, A., Sterling, L., Torroni, P. (eds.) DALT 2003. LNCS (LNAI),
vol. 2990, pp. 109–134. Springer, Heidelberg (2004)

3. Baldoni, M., Baroglio, C., Marengo, E.: Commitment-Based Protocols with Be-
havioral Rules and Correctness Properties of MAS. In: Omicini, A., Sardina, S.,
Vasconcelos, W. (eds.) DALT 2010. LNCS (LNAI), vol. 6619, pp. 60–77. Springer,
Heidelberg (2011)

4. Bauer, B., Müller, J.P., Odell, J.J.: Agent UML: A Formalism for Specifying Mul-
tiagent Software Systems. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000.
LNCS, vol. 1957, pp. 91–103. Springer, Heidelberg (2001)

5. Behrens, T.M., Hindriks, K.V., Dix, J.: Towards an environment interface standard
for agent platforms. Annals of Mathematics and Artificial Intelligence 61(4), 261–
295 (2011)

6. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. Wiley (2007)

7. Bentahar, J., Moulin, B., Meyer, J.-J.C.: A tableau method for verifying dialogue
game protocols for agent communication. In: Baldoni, M., Endriss, U., Omicini,
A., Torroni, P. (eds.) DALT 2005. LNCS (LNAI), vol. 3904, pp. 223–244. Springer,
Heidelberg (2006)

8. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User
Guide. Addison Wesley Longman Publishing Co., Inc., Redwood City (1999)

9. Bordini, R.H., Hübner, J.F., Wooldridge, M.J.: Programming multi-agent systems
in AgentSpeak using Jason, vol. 8. John Wiley & Sons (2007)

10. Bot́ıa, J.A., Hernansáez, J.M., Gómez-Skarmeta, A.F.: On the application of clus-
tering techniques to support debugging large-scale multi-agent systems. In: Bordini,
R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) PROMAS 2006. LNCS
(LNAI), vol. 4411, pp. 217–227. Springer, Heidelberg (2007)

11. Braubach, L., Pokahr, A., Lamersdorf, W.: Extending the capability concept for
flexible bdi agent modularization. In: Bordini, R.H., Dastani, M. M., Dix, J., El
Fallah Seghrouchni, A. (eds.) PROMAS 2005. LNCS (LNAI), vol. 3862, pp. 139–
155. Springer, Heidelberg (2006)

12. Braubach, L., Pokahr, A., Moldt, D., Lamersdorf, W.: Goal Representation for BDI
Agent Systems. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A.
(eds.) PROMAS 2004. LNCS (LNAI), vol. 3346, pp. 44–65. Springer, Heidelberg
(2005)



10 K.V. Hindriks

13. Burkhard, H.-D.: Agent-oriented programming for open systems. In: Wooldridge,
M.J., Jennings, N.R. (eds.) ECAI/ATAL 1994. LNCS, vol. 890, pp. 291–306.
Springer, Heidelberg (1995)

14. Busetta, P., Howden, N., Rönnquist, R., Hodgson, A.: Structuring BDI Agents in
Functional Clusters. In: Jennings, N.R. (ed.) Intelligent Agents VI. LNCS (LNAI),
vol. 1757, pp. 277–289. Springer, Heidelberg (2000)

15. Chopra, A.K., Singh, M.P.: Producing compliant interactions: Conformance, cov-
erage, and interoperability. In: Baldoni, M., Endriss, U. (eds.) DALT 2006. LNCS
(LNAI), vol. 4327, pp. 1–15. Springer, Heidelberg (2006)

16. Collier, R.: Debugging agents in agent factory. In: Bordini, R.H., Dastani, M., Dix,
J., El Fallah Seghrouchni, A. (eds.) ProMAS 2006. LNCS (LNAI), vol. 4411, pp.
229–248. Springer, Heidelberg (2007)

17. da Costa Pereira, C., Tettamanzi, A.G.B.: Goal Generation from Possibilistic Be-
liefs Based on Trust and Distrust. In: Baldoni, M., Bentahar, J., van Riemsdijk,
M.B., Lloyd, J. (eds.) DALT 2009. LNCS (LNAI), vol. 5948, pp. 35–50. Springer,
Heidelberg (2010)

18. Dastani, M., Brandsema, J., Dubel, A., Meyer, J.-J.C.: Debugging BDI-Based
Multi-Agent Programs. In: Braubach, L., Briot, J.-P., Thangarajah, J. (eds.) Pro-
MAS 2009. LNCS (LNAI), vol. 5919, pp. 151–169. Springer, Heidelberg (2010)

19. Dastani, M., van Riemsdijk, M.B., Dignum, F., Meyer, J.-J.C.: A Programming
Language for Cognitive Agents Goal Directed 3APL. In: Dastani, M., Dix, J., El
Fallah-Seghrouchni, A. (eds.) PROMAS 2003. LNCS (LNAI), vol. 3067, pp. 111–
130. Springer, Heidelberg (2004)

20. De Wolf, T., Holvoet, T.: Design patterns for decentralised coordination in self-
organising emergent systems. In: Brueckner, S.A., Hassas, S., Jelasity, M., Yamins,
D. (eds.) ESOA 2006. LNCS (LNAI), vol. 4335, pp. 28–49. Springer, Heidelberg
(2007)

21. Dix, J., Hindriks, K.V., Logan, B., Wobcke, W.: Engineering Multi-Agent Systems
(Dagstuhl Seminar 12342). Dagstuhl Reports 2(8), 74–98 (2012)

22. The Environment Interface (September 2014), https://github.com/eishub
23. El Fallah-Seghrouchni, A., Suna, A.: CLAIM: A computational language for au-

tonomous, intelligent and mobile agents. In: Dastani, M., Dix, J., El Fallah-
Seghrouchni, A. (eds.) PROMAS 2003. LNCS (LNAI), vol. 3067, pp. 90–110.
Springer, Heidelberg (2004)

24. Esteva, M., De La Cruz, D., Sierra, C.: ISLANDER: An electronic institutions
editor. In: Proceedings of the First International Joint Conference on Autonomous
Agents and Multiagent Systems: part 3, pp. 1045–1052. ACM (2002)

25. Evertsz, R., Fletcher, M., Frongillo, R., Jarvis, J., Brusey, J., Dance, S.: Imple-
menting industrial multi-agent systems using JACKTM. In: Dastani, M., Dix, J.,
El Fallah-Seghrouchni, A. (eds.) PROMAS 2003. LNCS (LNAI), vol. 3067, pp.
18–48. Springer, Heidelberg (2004)

26. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: An organiza-
tional view of multi-agent systems. In: Giorgini, P., Müller, J.P., Odell, J.J. (eds.)
AOSE 2003. LNCS, vol. 2935, pp. 214–230. Springer, Heidelberg (2004)

27. Fornara, N., Colombetti, M.: Specifying and enforcing norms in artificial insti-
tutions: A retrospective review. In: Sakama, C., Sardina, S., Vasconcelos, W.,
Winikoff, M. (eds.) DALT 2011. LNCS (LNAI), vol. 7169, pp. 117–119. Springer,
Heidelberg (2012)

https://github.com/eishub


The Shaping of the Agent-Oriented Mindset 11

28. Garćıa-Camino, A., Rodŕıguez-Aguilar, J.-A., Sierra, C., Vasconcelos, W.: A dis-
tributed architecture for norm-aware agent societies. In: Baldoni, M., Endriss, U.,
Omicini, A., Torroni, P. (eds.) DALT 2005. LNCS (LNAI), vol. 3904, pp. 89–105.
Springer, Heidelberg (2006)

29. Giorgini, P., Mylopoulos, J., Perini, A., Susi, A.: The Tropos methodology and soft-
ware development environment. In: Social Modeling for Requirements Engineering,
pp. 405–423 (2010)

30. Gorodetsky, V., Karsaev, O., Samoylov, V., Konushy, V.: Support for Analysis,
Design, and Implementation Stages with MASDK. In: Luck, M., Gomez-Sanz, J.J.
(eds.) AOSE 2008. LNCS, vol. 5386, pp. 272–287. Springer, Heidelberg (2009)

31. Hindriks, K.V.: Modules as Policy-Based Intentions: Modular Agent Programming
in GOAL. In: Dastani, M., El Fallah Seghrouchni, A., Ricci, A., Winikoff, M. (eds.)
ProMAS 2007. LNCS (LNAI), vol. 4908, pp. 156–171. Springer, Heidelberg (2008)

32. Hindriks, K.V.: Programming Rational Agents in GOAL. In: El Fallah Seghrouchni,
A., Dix, J., Dastani, M., Bordini, R.H. (eds.) Multi-Agent Programming, pp. 119–
157. Springer US (2009)

33. Hindriks, K.V., De Boer, F.S., Van der Hoek, W., Meyer, J.-J.C.: Meyer. Agent
Programming in 3APL. Autonomous Agents and Multi-Agent Systems 2(4), 357–
401 (1999)

34. Hübner, J.F., Sichman, J.S., Boissier, O.: Developing Organised Multiagent Sys-
tems Using the MOISE+ Model: Programming Issues at the System and Agent
Levels. Int. J. Agent-Oriented Softw. Eng. 1(3/4), 370–395 (2007)

35. Jennings, N.R.: Agent-oriented software engineering. In: Imam, I., Kodratoff, Y.,
El-Dessouki, A., Ali, M. (eds.) IEA/AIE 1999. LNCS (LNAI), vol. 1611, pp. 4–10.
Springer, Heidelberg (1999)

36. Kaminka, G.A., Pynadath, D.V., Tambe, M.: Monitoring teams by overhearing:
A multi-agent plan-recognition approach. Journal of Artificial Intelligence Re-
search 17(1), 83–135 (2002)

37. Keiser, J., Hirsch, B., Albayrak, Ş.: Agents do it for money - accounting features
in agents. In: Dastani, M., El Fallah Seghrouchni, A., Ricci, A., Winikoff, M. (eds.)
ProMAS 2007. LNCS (LNAI), vol. 4908, pp. 42–56. Springer, Heidelberg (2008)

38. Khan, S.M., Lespérance, Y.: Prioritized goals and subgoals in a logical account of
goal change: A preliminary report. In: Baldoni, M., Bentahar, J., van Riemsdijk,
M.B., Lloyd, J. (eds.) DALT 2009. LNCS (LNAI), vol. 5948, pp. 119–136. Springer,
Heidelberg (2010)

39. Lam, D.N., Barber, K.S.: Debugging agent behavior in an implemented agent sys-
tem. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) PRO-
MAS 2004. LNCS (LNAI), vol. 3346, pp. 104–125. Springer, Heidelberg (2005)

40. De Loach, S.A., Garcia-Ojeda, J.C.: O-MaSE: A customisable approach to design-
ing and building complex, adaptive multi-agent systems. International Journal of
Agent-Oriented Software Engineering 4(3), 244–280 (2010)

41. De Loach, S.A., Wood, M.: Developing Multiagent Systems with agentTool. In:
Castelfranchi, C., Lespérance, Y. (eds.) Intelligent Agents VII. LNCS (LNAI),
vol. 1986, pp. 46–60. Springer, Heidelberg (2001)

42. Lützenberger, M., Küster, T., Konnerth, T., Thiele, A., Masuch, N., Heßler, A.,
Keiser, J., Burkhardt, M., Kaiser, S., Albayrak, S.: JIAC V: A MAS Framework
for Industrial Applications. In: Proceedings of the 2013 International Conference
on Autonomous Agents and Multi-agent Systems, AAMAS 2013, Richland, SC,
pp. 1189–1190. International Foundation for Autonomous Agents and Multiagent
Systems (2013)



12 K.V. Hindriks

43. Madden, N., Logan, B.: Modularity and Compositionality in Jason. In: Braubach,
L., Briot, J.-P., Thangarajah, J. (eds.) ProMAS 2009. LNCS (LNAI), vol. 5919,
pp. 237–253. Springer, Heidelberg (2010)

44. Müller, J.P., Fischer, K.: Application Impact of Multi-Agent Systems and Tech-
nologies: A Survey. In: Agent-Oriented Software Engineering: Reflections on Ar-
chitectures, Methodologies, Languages, and Frameworks. Springer (2014)

45. Neville, B., Pitt, J.: PRESAGE: A Programming Environment for the Simulation
of Agent Societies. In: Hindriks, K.V., Pokahr, A., Sardina, S. (eds.) ProMAS 2008.
LNCS (LNAI), vol. 5442, pp. 88–103. Springer, Heidelberg (2009)

46. Nguyen, D.C., Perini, A., Tonella, P.: A Goal-Oriented Software Testing Method-
ology. In: Luck, M., Padgham, L. (eds.) AOSE 2007. LNCS, vol. 4951, pp. 58–72.
Springer, Heidelberg (2008)

47. Novák, P.: Jazzyk: A Programming Language for Hybrid Agents with Hetero-
geneous Knowledge Representations. In: Hindriks, K.V., Pokahr, A., Sardina, S.
(eds.) ProMAS 2008. LNCS (LNAI), vol. 5442, pp. 72–87. Springer, Heidelberg
(2009)

48. Odell, J.J., Van Dyke Parunak, H., Bauer, B.: Representing agent interaction pro-
tocols in UML. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000. LNCS,
vol. 1957, pp. 121–140. Springer, Heidelberg (2001)

49. Okouya, D., Dignum, V.: OperettA: A Prototype Tool for the Design, Analysis
and Development of Multi-agent Organizations. In: Proceedings of the 7th Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems: Demo
Papers, AAMAS 2008, Richland, SC, pp. 1677–1678. International Foundation for
Autonomous Agents and Multiagent Systems (2008)

50. Oluyomi, A., Karunasekera, S., Sterling, L.: An agent design pattern classification
scheme: Capturing the notions of agency in agent design patterns. In: 11th Asia-
Pacific on Software Engineering Conference, pp. 456–463 (November 2004)

51. Omicini, A.: SODA: Societies and Infrastructures in the Analysis and Design of
Agent-Based Systems. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000.
LNCS, vol. 1957, pp. 185–193. Springer, Heidelberg (2001)

52. Padgham, L., Luck, M.: Prometheus: A practical agent-oriented methodology. In:
Henderson-Sellers, B., Giorgini, P. (eds.) Agent-oriented Methodologies, pp. 107–
135. Idea Group Inc., Hershey (2005)

53. Padgham, L., Luck, M.: Introduction to AOSE tools for the conference management
system. In: Luck, M., Padgham, L. (eds.) AOSE 2007. LNCS, vol. 4951, pp. 164–
167. Springer, Heidelberg (2008)

54. Padgham, L., Winikoff, M., DeLoach, S., Cossentino, M.: A Unified Graphical
Notation for AOSE. In: Luck, M., Gomez-Sanz, J.J. (eds.) AOSE 2008. LNCS,
vol. 5386, pp. 116–130. Springer, Heidelberg (2009)

55. Rao, A.S.: Agentspeak(l): BDI agents speak out in a logical computable language.
In: Van de Velde, W., Perram, J. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42–55. Springer, Heidelberg (1996)

56. Rao, A.S., Georgeff, M.P.: Modeling Rational Agents within a BDI-Architecture.
In: Proceedings of the 2nd International Conference on Principles of Knowledge
Representation and Reasoning (KR 1991), Cambridge, MA, USA, April 22-25, pp.
473–484 (1991)

57. Ricci, A., Viroli, M., Omicini, A.: The A&A Programming Model and Technol-
ogy for Developing Agent Environments in MAS. In: Dastani, M., El Fallah
Seghrouchni, A., Ricci, A., Winikoff, M. (eds.) ProMAS 2007. LNCS (LNAI),
vol. 4908, pp. 89–106. Springer, Heidelberg (2008)



The Shaping of the Agent-Oriented Mindset 13

58. Ross, R.J., Collier, R., O’Hare, G.M.P.: AF-APL: Bridging Principles and Prac-
tice in Agent Oriented Languages. In: Bordini, R.H., Dastani, M., Dix, J., El Fal-
lah Seghrouchni, A. (eds.) PROMAS 2004. LNCS (LNAI), vol. 3346, pp. 66–88.
Springer, Heidelberg (2005)

59. Singh, D., Hindriks, K.V.: Learning to Improve Agent Behaviours in GOAL.
In: Dastani, M., Hübner, J.F., Logan, B. (eds.) ProMAS 2012. LNCS (LNAI),
vol. 7837, pp. 158–173. Springer, Heidelberg (2013)

60. Sturm, A., Shehory, O.: The landscape of agent-oriented methodologies. In: She-
hory, O., Sturm, A. (eds.) Agent-Oriented Software Engineering, pp. 137–154.
Springer, Heidelberg (2014)

61. Thangarajah, J., Harland, J., Morley, D., Yorke-Smith, N.: Operational behaviour
for executing, suspending, and aborting goals in bdi agent systems. In: Omicini,
A., Sardina, S., Vasconcelos, W. (eds.) DALT 2010. LNCS (LNAI), vol. 6619, pp.
1–21. Springer, Heidelberg (2011)

62. Tinnemeier, N.A.M., Dastani, M., Meyer, J.-J.C.: Orwell’s Nightmare for Agents?
Programming Multi-agent Organisations. In: Hindriks, K.V., Pokahr, A., Sardina,
S. (eds.) ProMAS 2008. LNCS (LNAI), vol. 5442, pp. 56–71. Springer, Heidelberg
(2009)

63. Tiryaki, A.M., Öztuna, S., Dikenelli, O., Erdur, R.C.: SUNIT: A Unit Testing
Framework for Test Driven Development of Multi-Agent Systems. In: Padgham,
L., Zambonelli, F. (eds.) AOSE 2006. LNCS, vol. 4405, pp. 156–173. Springer,
Heidelberg (2007)

64. van Oijen, J., La Poutré, H., Dignum, F.: Agent perception within CIGA: Perfor-
mance optimizations and analysis. In: Müller, J.P., Cossentino, M. (eds.) AOSE
2012. LNCS, vol. 7852, pp. 99–117. Springer, Heidelberg (2013)

65. van Riemsdijk, M.B.: 20 Years of Agent-oriented Programming in Distributed AI:
History and Outlook. In: Proceedings of the 2nd Edition on Programming Systems,
Languages and Applications Based on Actors, Agents, and Decentralized Control
Abstractions, AGERE! 2012, pp. 7–10. ACM, New York (2012)

66. van Riemsdijk, M.B., Dastani, M., Dignum, F.P.M., Meyer, J.-J.C.: Dynamics of
Declarative Goals in Agent Programming. In: Leite, J., Omicini, A., Torroni, P.,
Yolum, p. (eds.) DALT 2004. LNCS (LNAI), vol. 3476, pp. 1–18. Springer, Heidel-
berg (2005)

67. van Riemsdijk, M.B., Dastani, M., Winikoff, M.: Goals in Agent Systems: A Uni-
fying Framework. In: Proceedings of the 7th International Joint Conference on
Autonomous Agents and Multiagent Systems, AAMAS 200, Richland, SC, vol. 2,
pp. 713–720. International Foundation for Autonomous Agents and Multiagent
Systems (2008)

68. Vasconcelos, W.W.: Norm verification and analysis of electronic institutions. In:
Leite, J., Omicini, A., Torroni, P., Yolum, p. (eds.) DALT 2004. LNCS (LNAI),
vol. 3476, pp. 166–182. Springer, Heidelberg (2005)

69. Walczak, A., Braubach, L., Pokahr, A., Lamersdorf, W.: Augmenting BDI Agents
with Deliberative Planning Techniques. In: Bordini, R.H., Dastani, M., Dix, J.,
El Fallah Seghrouchni, A. (eds.) PROMAS 2006. LNCS (LNAI), vol. 4411, pp.
113–127. Springer, Heidelberg (2007)

70. Winikoff, M.: An Integrated Formal Framework for Reasoning about Goal Inter-
actions. In: Sakama, C., Sardina, S., Vasconcelos, W., Winikoff, M. (eds.) DALT
2011. LNCS (LNAI), vol. 7169, pp. 16–32. Springer, Heidelberg (2012)

71. Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice. The
Knowledge Engineering Review 10, 115–152 (1995)



14 K.V. Hindriks

72. Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia Methodology for Agent-
Oriented Analysis and Design. Autonomous Agents and Multi-Agent Systems 3(3),
285–312 (2000)

73. Zambonelli, F., Omicini, A.: Challenges and research directions in agent-oriented
software engineering. Autonomous Agents and Multi-Agent Systems 9(3), 253–283
(2004)

74. Zhang, Z., Thangarajah, J., Padgham, L.: Automated testing for intelligent agent
systems. In: Gomez-Sanz, J.J. (ed.) AOSE 2009. LNCS, vol. 6038, pp. 66–79.
Springer, Heidelberg (2011)


	The Shaping of the Agent-Oriented Mindset
	1 Introduction
	2 The Agent-Oriented Mindset
	3 The Design of MAS
	4 Programming Languages for Cognitive Agents
	5 Conclusion
	References




