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Preface

The engineering of multi-agent systems (MAS) is a complex activity: Such sys-
tems consist of multiple autonomous and heterogeneous agents, and their proper
functioning depends on the effective interaction between these agents. While
MAS have been used to some extent in industry, we feel that a wider adop-
tion is hindered by the fact that the underlying engineering techniques are not
as mature as those in mainstream software and systems engineering. Numerous
challenges have to be addressed, including:

Design and software engineering: how to effectively design agents and their
interactions?
Implementation: how to implement multi-agent coordination or organizations
efficiently?
Verification: how to formally verify (un-) desired properties of individual agents
and MAS?

We believe that these challenges can be tackled more effectively when consid-
ered within the discipline of MAS engineering. As an example, design artefacts
(e.g., agents or MAS models) can be used to support and assist with debugging
and testing. Other examples are the following: (1) the development of agent-
oriented programming languages that result in programs that are more readily
verifiable, (2) the use of declarative techniques that span design and implemen-
tation.

The International Workshop on Engineering Multi-Agent Systems (EMAS)
is meant to be an ideal venue for papers that relate to all aspects of agent and
MAS engineering. EMAS was created in 2013 as a merger of three separate
workshops (with overlapping communities) that focused on software engineering
aspects (AOSE), programming aspects (ProMAS), and the application of declar-
ative techniques to design, programming, and verification (DALT).

The EMAS workshop series1 explicitly pursues three goals:

To progress and further develop the understanding of how to engineer multi-
agent systems.
To bring together the communities that are concerned with different aspects of
engineering MAS, and by doing so, allow for better interchange of ideas between
the communities, thus exploiting the synergies discussed above.
To provide a venue for workshop papers that report on experiences and lessons

1 http://emas.in.tu-clausthal.de



VI Preface

learned from innovative applications of MAS, and have these lessons influence
further research in the field.

To guide the authors in preparing their submissions and to establish a con-
sistent set of expectations in the review process, all authors were asked to self-
identify their papers with one or more of the categories (adapted from the ICSE
2014 guidelines2) listed below. In this way, we hope to foster the diversity of
approaches for addressing challenges in engineering MAS.

Analytical: A paper in which the main contribution relies on new mathematical
theory or algorithms. Examples include new logics and semantics for agent pro-
gramming languages, algorithms for agent reasoning, algorithms for the efficient
implementation of MAS languages.
Empirical: A paper in which the main contribution is the empirical study of an
MAS engineering technology or phenomenon. This includes studies of the use of
(existing or novel) MAS engineering techniques in practice, such as (industrial)
experience reports, controlled experiments, and case studies, using qualitative
and/or quantitative data analysis. This also concerns empirical evaluations of
algorithms and performance of MAS platforms.
Technological: A paper in which the main contribution is of a technological
nature. This includes novel tools, environments, testbeds, modeling languages,
infrastructures, and other technologies.
Methodological: A paper in which the main contribution is a coherent system
of broad principles and practices to interpret or solve a problem. This includes
novel requirements elicitation methods, process models, design methods, devel-
opment approaches, programming paradigms, and other methodologies.

EMAS 2014 received 41 submissions. Each paper was reviewed by three
reviewers, and we accepted 22 papers for presentation at the workshop. These
were distributed across the paper categories as follows: technological: 17; method-
ological: 14; analytical: 6; empirical: 4. The authors of accepted papers were in-
vited to submit a revised version of their paper for the Springer LNAI proceed-
ings, which underwent another round of reviewing. The result is this volume,
containing 21 regular papers and an additional paper from one of the invited
speakers at the workshop.

The EMAS 2014 chairs would like to acknowledge the great review work done
by members of the Program Committee. Reviews were in general detailed (and,
we hope, useful to the authors), and were followed by extensive discussion among
Program Committee members and chairs to finally decide on the acceptance of
the papers.

2 http://2014.icse-conferences.org/research
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We hope the reader of this volume finds the papers useful to get an idea
about this exciting area.

October 2014 Fabiano Dalpiaz
Jürgen Dix

M. Birna van Riemsdijk
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Tobias Küster, Axel Heßler, and Sahin Albayrak

Environments and Organizations in Multi-Agent Systems:
From Modelling to Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Daniela Maria Uez and Jomi Fred Hübner
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The Shaping of the Agent-Oriented Mindset

Twenty Years of Engineering MAS

Koen V. Hindriks

Delft University of Technology, EEMCS, The Netherlands

Abstract. In the past twenty years we have seen an enormous growth
and development of new techniques, technologies, and tools that support
the engineering of Multi-Agent Systems (MAS). The 1990s perhaps are
best characterized as the period in which the foundations were laid and
the more theoretical underpinnings of the MAS field were explored. Be-
sides a continuation of this foundational work, since 2000 the agent-based
community has also been increasingly able to demonstrate the great po-
tential for applying the MAS technology that has been developed in a
very broad and diverse range of application domains.

In this paper, I will trace the shaping of the agent-oriented mindset
from the mid 90s on as it evolved in the work presented in the interna-
tional workshops ProMAS, AOSE, and DALT that recently merged into
the EMAS workshop. For this reason the focus of this overview will be
in particular on cognitive agents as it seems fair to say that most work
reported in ProMAS, AOSE, and DALT has taken its inspiration from
Belief-Desire-Intention (BDI) agents.

1 Introduction

In a recent survey of applications of MAS technology [44], mature applications
are reported in such diverse areas as Logistics and Manufacturing, Telecom-
munication, Aerospace, E-commerce, and Defense. The authors conclude that
“dedicated agent platforms actually can make a difference regarding business
success”. They also write that “more recent platforms [...] may take some more
time to mature”. It was found, for example, that quite a few mature applications
were built using one of the older and well-known agent platforms JADE [6]. In
order to continue these successes, it is important to identify what is needed to
advance more recently developed technologies for engineering MAS to a level
that they can be used to engineer mature applications.

In this paper, we will focus in particular on cognitive agent technology as it
seems fair to say that most work reported in the international workshops Pro-
MAS, AOSE, and DALT that recently merged into the EMAS workshop has
taken its inspiration from so-called Belief-Desire-Intention (BDI) agents. Ar-
guably, the step to mature applications for technologies that support the engi-
neering of cognitive agents and MAS is bigger than that of more general purpose
frameworks for engineering agents such as JADE. One reason, moreover, why
a broader uptake and the application of cognitive agent technologies has been

F. Dalpiaz et al. (Eds.): EMAS 2014, LNAI 8758, pp. 1–14, 2014.
c© Springer International Publishing Switzerland 2014



2 K.V. Hindriks

somewhat slow perhaps, may be that this work originally has had a strong con-
ceptual focus, aiming, for example, to relate agent frameworks to formal theories
of rational agents.

To move forward it is important to learn from past successes and failures
and to take stock of where we are today. To this end, the aim is to trace and
to provide an overview of the agent-oriented mind-set by revisiting some of
the results discussed and proposed in the past 20 years on Engineering MAS
(EMAS). I will only be able here to provide a high-level overview of the past
twenty years of developments related to engineering MAS and this overview thus
will necessarily be far from complete and will only include some of what I consider
to be its highlights. In the remainder, some of the core concepts, research goals,
and achievements of twenty years of EMAS will be presented, followed by a brief
perspective on future research of engineering MAS.

2 The Agent-Oriented Mindset

One perspective on what we as a research community are trying to achieve is
that we are shaping the agent-oriented mind-set. This mind-set, among others,
consists of key concepts that we use to design a multi-agent system. A lot of
research has gone into clarifying and refining concepts associated with agent-
based systems. In addition, to support the design and engineering of MAS using
this mind-set, we have developed corresponding agent-oriented tools, techniques,
and methodologies.

The agent-oriented mindset is well-established by now and it is not hard to
answer the question what is part of that mind-set. A short interaction with the
audience at EMAS yielded the concepts that are common and familiar by now
to most MAS developers, including:

– autonomy,
– environment, event, reactive,
– rational, goal-directedness, intentional stance
– decentralization, interaction, and social.

To summarize and paraphrase a well-known definition [71], apart from being
autonomous, an agent is reactive, proactive, and interactive (also known as a
weak notion of agency).

Another defining notion in our field of research has been the notion of a
Belief-Desire-Intention (BDI) agent [56]. The notion of a BDI agent is about the
internal, cognitive structure of an agent that consists, among others, of an agent’s
beliefs and can be viewed as a refinement of a pro-active agent to an agent that
has a motivational state that consists of, e.g., desires, goals, and/or intentions.
The idea is that an agent aims at achieving something it wants and [56] therefore
emphasises the rationality of agents instead of their autonomy. The cognitive
state of an agent should, moreover, satisfy basic rationality constraints, e.g., goals
should be compatible with the agent’s beliefs, intentions should be compatible
with goals, and agents should not procrastinate with respect to their intentions.
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That is, agent should be committed to achieving their goals but should not do
so blindly. Another very influential paper [55] proposed an agent programming
language called AgentSpeak(L) derived from the notion of a BDI agent but
which also added the concept of a plan. An agent in AgentSpeak(L) has a plan
library that should provide an agent with the means to achieve its goals (see also
Figure 1). Mental states have been identified by some as the essential ingredient
of Agent-Oriented Programming (AOP) [13].

Fig. 1. Interpreter for BDI Agent

Models that formalized the notion of an agent have typically been based
on some form of logic and throughout “the declarative paradigm” has been
promoted within the community (and less so game theoretic models). Especially
the work reported in the DALT workshop has contributed to implementation
models and refinements or extensions of the notion of a BDI agent. Just to
mention two examples, [2] introduced a cooperative BDI model Coo-BDI, and
[1] presents an efficient (linear time) belief contraction operation.

Agents are distinctly different from other software entities such as objects be-
cause they are intrinsically motivated: agents are pro-active and aim to achieve
their goals in order to meet their design objectives. It thus is not surprising to
see that quite some work has focussed on the notion of a goal. For example,
[66] studies the dynamics of declarative goals, [17] introduced a mechanism for
goal generation, [38] presents an account of goal change that is able to handle
prioritized goals and subgoals and their dynamics, whereas [70] has investigated
the interactions between goals and provides a framework for reasoning about
such interactions. Various goal types were distinguished in this work, including
most importantly achievement, maintenance, and perform goals (see also [67]).
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Important results were also obtained on the life cycle of goals : [12,61,67] dis-
cuss various states in different life cycle models which include, for example, the
suspension and abortion of goals.

Right from the start it was recognized that agents that are part of a MAS
should be somehow organized. An important aspect of this organization con-
cerns the modelling of agent interaction. New models for interaction based on
the notion of commitment rather than that of a speech act have been introduced
with corresponding methods for verification based on the notion of compliance
[3,7,15]. Another means to regulate the behaviour of agents is to introduce norms
that agents should obey or comply with. Various works have looked at the notion
of an institution with associated norms, including, for example, [68] which pro-
poses a definition of norms for electronic institutions for synthesising norm-aware
agents, [28] which introduces a social layer for MAS in which normative posi-
tions are explicitly represented and managed, and [27] which presents a model
of norms for specifying, amongst others, sanctions.

Summary. The concept within the agent-oriented mindset that has been refined
most over the years has been that of a goal whereas the notion of a norm-aware
agent has been the most significant extension of the notion of a cognitive agent.

3 The Design of MAS

In Agent-Oriented Software Engineering (AOSE), agent interaction, not the
agent’s environment, was emphasized, at least initially, as a key characteris-
tic of complex software that calls for new methods. The agent metaphor defines
a new software engineering paradigm and agent metaphors and technologies are
adopted to harness and govern the complexity of software systems. The basic
idea was that the growing complexity of systems calls for new models and tech-
nologies that promote system predictability and MAS can provide a solution to
this problem.

Although other methodologies were also proposed at the time (e.g., [51]),
the multi-agent software engineering methodology MaSE is an early representa-
tive of work on design methodologies that is still being further developed [41].
The MaSE methodology is based on several key concepts that have remained
important in AOSE, including requirements, goal hierarchy, use cases or scenar-
ios, roles, agents and their conversations. MaSE has evolved into O-MaSE [40].
Another early well-known methodology for agent-oriented software engineering
methodologies is Gaia [72]. The Gaia methodology proposed several design arti-
facts that the methodology required from a design of a MAS. The methodology
supports the analysis and design life cycle phases but did not provide any tooling
to support the design process. MASDK is an extension of Gaia [30].

The main life cycle phases that have been distinguished in the design process of
a MAS include the requirements phase, analysis phase, design phase (sometimes
a distinction is made between the architectural and detailed design phase), the
implementation phase, and the testing phase. State of the art methodologies such
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as O-MaSE [40], Prometheus [52], and Tropos [29] cover and provide support for
all of these phases by means of design tools. These methodologies are compared
with each other using a conference management case study in [53]. See [60] for
a recent overview of agent-oriented methodologies.

An important contribution of work on AOSE has been the introduction of
graphical notations for design specifications of agent systems. UML [8] has been
taken as a starting point because it is easier to develop an agent-based exten-
sion based on the object-oriented notation, and it is relatively easy to provide
high-quality tools by extending existing object-oriented tools [4,48]. Typically,
however, each methodology has introduced its own notation. Some effort has
been done to unify notations again [54]. It is also worthwhile to mention some
of the work on design patterns in this context (see, e.g., [50,20]).

Several methodologies also provide dedicated support for organizational mod-
elling. A well-known model is the AGRmodel [26] which stands for Agent-Group-
Role. The notion of a role refers to the constraints (obligations, requirements,
skills) that an agent needs to have to obtain a role, the benefits (abilities, au-
thorization, profits) that an agent will receive in playing the role, and the re-
sponsibilities associated to the role. A basic assumption of the AGR approach
is that the organizational model does not make any assumptions about the cog-
nitive capabilities of the agents within the organization. The notion of a group
is used to partition agents into units in which they can freely interact whereas
different groups are assumed to be opaque to each other. Several other organiza-
tional meta-models have been proposed, including MOISE+ [34], TEAMS [36],
ISLANDER [24], and OperA [49].

A topic that has gained more attention recently is testing. Some initial work
on providing a testing framework for MAS development, including SUNIT [63]
and a framework integrated with Tropos [46]. [74] provides a technique for unit
testing of plan based agent systems, with a focus on the automated generation
and execution of test cases.

Summary. Much has been achieved with respect to design methodologies for
MAS that provide useful graphical notation for the specification of a MAS and
cover all design life cycle phases, where in particular the testing phase has gained
more attention only recently. In particular the concept within the agent-oriented
mindset that has been refined most over the years has been that of an organiza-
tion.

4 Programming Languages for Cognitive Agents

Various programming languages have been proposed that facilitate the imple-
mentation of MAS based on cognitive agents. We have already mentioned the
AgentSpeak(L) language [55] above. Programming languages are also needed for
bridging the gap between analysis and design, which yields an agent-oriented
system design, and implementation of a MAS. Agent programming languages
aim to provide support for a rather direct implementation of the core concepts
that are part of the agent-oriented mind-set.
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AGENT-01

(PLACA )

Basic concepts: beliefs, action, plans, goals-to-do

AgentSpeak(L), Jason2

Golog 3APL3

Main addition: Declarative goals

2APL 3APL + GOAL

Java-based Cognitive Agent Languages

AF-APL, JACK (commercial), Jadex, Jazzyk

Mobile Agents

CLAIM

Logic Programming

METATEM

Families of
Languages

Fig. 2. Families of Agent Programming Languages

The community has been particularly productive in the area of programming
frameworks for agent systems. Figure 2 provides an overview of the landscape
of languages and highlights the distinction between Java-based and logic-based
languages. Java-based languages stay closer to the well-known and familiar
object-oriented paradigm whereas logic-based languages provide more powerful
reasoning engines for reasoning about the beliefs and goals of an agent.

Early work introduced the JACKTM language as an implementation of the
Belief/Desire/Intention model of rational agency in Java with extensions to sup-
port the design and execution of agent systems [25] and the CLAIM language
that supports the design of mobile agents [23]. Three other frameworks that were
introduced and built on top of Java are Jadex [12], which was motivated by ex-
tending JADE with BDI agents, AF-APL [58], which was motivated by the need
for a practical programming language for agent systems, and JIAC [37,42], which
has been motivated by the desire to be able to meet requirements imposed by
modern industrial projects. Finally, [47] presents the language Jazzyk which is
motivated by the need for a clean separation between the knowledge representa-
tional and the behavioural level of an agent program. The work [19] incorporates
the notion of a declarative goal into the agent programming language 3APL [33].

An important contribution of work on agent programming languages has been
the introduction of modules that support modular design of agent programs. In
[11] a module concept is presented that is based on the capability concept for
structuring BDI agents in functional clusters introduced before [14] that supports
a higher degree of reusability. In [31] and [43], respectively, the logic-based agent
languagesGoal [32] and Jason [9] are extended with modules. Another approach
for adding structure to a MAS program based on the notion of an organization
is introduced in [62].

Substantial work has also been done in the area of debugging MAS. The Trac-
ing method proposed in [39] assists a programmer in debugging agents by ex-
plaining the actual agent behaviour in the implemented system. The method logs
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actual agent behaviour from which it derives interpretations in terms of, e.g., the
beliefs, goals, and intentions of an agent. [10] proposes the use of data mining
to assist during the debugging of MAS. [16] describes how debugging has been
supported for the Agent Factory Agent Programming Language (AF-APL). [18]
proposes an assertion language for specifying the cognitive and temporal be-
haviour of an agent program as support for debugging.

The integration of sophisticated AI techniques into agent systems has mainly
been looked at in the context of agent-oriented programming. A planner is inte-
grated into Jadex for providing dynamic plans at runtime [69]. The integration
approach used is one where the cognitive agent takes responsibility for plan mon-
itoring and re-planning and only the responsibility for the creation of plans is
delegated to the planner. Recently also work on integrating learning into the
agent programming language Goal has been reported in [59]. The focus in this
paper is on improving action selection in rule-based agent programming lan-
guages using a reinforcement learning mechanism under the hood.

Fig. 3. Environment Interface for Agent Interaction with Environments

One important feature of agent systems has not yet been discussed: agent sys-
tems are embedded in and agent systems interact with an environment.
Various models that support the interaction between agents and their environ-
ments have been proposed. The Agents and Artifacts (A&A) model of environ-
ments is based on the idea that an environment is composed of different sorts
of artifacts that are shared and used by agents to support their activities[57].
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The PRESAGE model introduced in [45] proposes the use of environments as
a rapid prototyping tool for agent societies. The CIGA middleware proposed in
[64] aims at facilitating the coupling between a MAS and a game engine. Finally,
the Environment Interface Standard (EIS) introduced in [5] provides support for
connecting agent platforms to environments such as games (see also [22] for a
range of environment implementations that have been made available). The EIS
interface provides generic functionality for executing actions and for perceiving
changes in an agent’s environment and also provides support for managing an
environment, e.g., for starting, pausing and terminating it (see also Figure 3).

Summary. Various programming language that support the agent-oriented
paradigm have been proposed. Several extensions such as the notion of mod-
ular programming have made these languages more useful in practice. Work
on debugging agent programs has also contributed to this end. An important
contribution has also been the development of several models that support the
interaction of an agent with its environment.

5 Conclusion

Cognitive agent technology offers a powerful solution for developing the next
generation autonomous decision-making systems. To make this happen it is im-
portant to continue to promote and contribute to the agent-oriented mindset. It
also continues to be important to justify the need for a paradigm shift from ex-
isting paradigms such as the object- or service-oriented paradigms to the agent-
oriented paradigm ([60]; see also [35]). In particular, it would be useful to be
able to perform quantitative assessments and comparisons of the agent-based
paradigm with other paradigms ([73]; see also [21]).

We also want to suggest that it is time to start paying more attention to
the kind of support that a MAS developer needs to facilitate him or her when
engineering future MAS applications (see also [21,65]). It is important to identify
the needs of a developer and make sure that a developer is provided with the
right tools for engineering MAS. For the same reason we should focus more on
issues related to ease of use, scalability and performance, and testing. As we have
seen, work on techniques and tools that support the testing phase has only quite
recently produced more concrete results (see also [60]).

There are also promises of the agent-oriented paradigm that are still to be
realized. As argued in [35], “agents are the right abstraction to (re-)integrate var-
ious AI sub-disciplines together again”. Robots should come to mind here. Can
we provide tools and techniques that facilitate the integration of sophisticated AI
techniques into agents? As a community, we can provide an important contribu-
tion by focusing on understanding how to provide programmers with easy access
to such techniques. We have seen that already some proposals have been made
to re-integrated planning and learning. Similarly, it remains to be shown that
agent-orientation can solve key concurrency and distributed computing issues.
If agents are advocated as the next generation model for engineering complex,
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distributed systems, we should be able to demonstrate the added value of agent
systems.

Finally, it seems particularly worthwhile to put more effort into integrating
agent-based methodologies and programming languages. There are several areas
of clear overlap where both can reinforce and improve their respective results,
e.g., in the area of testing and the area of organizational modelling. In any case,
to stimulate the adoption of cognitive agent technology and MAS, we need to
provide methods and tools that jointly support the agent-oriented mindset.
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Abstract. Many approaches to BDI agent modeling permit the agent
developers to interweave the levels of plans and goals. This is possible
through the adoption of new goals inside plans. These goals will have
plans of their own, and the definition can extend on many levels. From a
software development point of view, the resulting complexity can render
the agents’ behavior difficult to trace, due to the combination of elements
from different abstraction levels, i.e., actions and goal adoptions. This
has a negative effect on the development process when designing and
debugging agents. In this paper we propose a change of approach that
aims to provide a more comprehensible agent model with benefits for
the ease of engineering and the fault tolerance of agent systems. This is
achieved by imposing a clear separation between the reasoning and the
acting levels of the agent. The use of goal adoptions and actions on the
environment inside the same plan is therefore forbidden. The approach
is illustrated using two theoretical scenarios as well as an agent-based
maritime patrol application. We argue that by constraining the agent
model we gain in clarity and traceability therefore benefiting the develop-
ment process and encouraging the adoption of agent-based techniques in
industrial contexts.

Keywords: goal directed agents, goal reasoning, goal-plan tree.

1 Introduction

In the field of intelligent agents, BDI agents are used extensively due to their
proactivity, adaptability and similarity between their abstract representation
and the human reasoning. These agents are enticed with beliefs to cover their
view of the world, a reason for their behaviors in the form of desires or goals,
and a description of the means to act, in the form of plans or intentions.

In the original BDI model proposed by Rao and Georgeff [1], the “matching”
between goals and plans is assured through a cycle that considers the options for
desires, deliberates on them to update the existing intentions and then executes
the actual actions. In more practical approaches, automata are used to handle
the life-cycle of goals from their adoption to the appropriate plan selection and
execution [2,3].

F. Dalpiaz et al. (Eds.): EMAS 2014, LNAI 8758, pp. 15–39, 2014.
c© Springer International Publishing Switzerland 2014
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Fig. 1. Agent complexity when goals are adopted in plans acting on the environment

The purpose of an agent is usually to act on the environment, which is done
through its plans. Actions can involve the use of actuators, but they also cover the
sending of messages1. However, in practice, various works [3,4] and programming
frameworks (Jason [5], Jadex [6] etc.) employ a model where plans can also adopt
new goals, often termed sub-goals. A goal can thus have multiple possible plans,
whose success depends on the achievement of their respective sub-goals and this
can extend on many levels (Fig. 1). Note however that the successful completion
of a plan does not necessarily guarantee the achievement of a goal, as goals can
have success and failure conditions [7].

While it may be straightforward to design in this way, the fact that in a
plan (1) actions on the environment – i.e., with effects “outside” of the agent –
and (2) goal adoptions – i.e., with effects on the, possibly long-term, reasoning
and behavior of the agent – are used together in the same structure can have
adverse effects on the resulting agents: low intelligibility during design, difficult
traceability during execution and poor reusability afterwards.

This recursive construction has the advantage of using already existing BDI
building blocks and can help abstract certain aspects of an agent’s behavior
offering the possibility to define the agent in a top-down approach. However,
it also creates a structure which is difficult to trace, especially when actions
occur at any level, and whose depth may be unpredictable. Important aspects
in the behavior of an agent might be hidden from the eyes of a developer or
code reviewer due to this intricate design. One might always wonder whether
the current plan is a terminal one or whether the model continues with further
sub-goals. Given that the adoption of a goal usually implies a new reasoning
process with an automaton and further plans, the goal adoption shouldn’t be
treated the same as an atomic action.

For a change of perspective, let us take the example of the army as a clear-
cut multi-level organization. A soldier executes the orders (goals) given from
“above” but cannot make high level decisions. Strategies and new objectives
(goal adoptions) are decided by the higher ranks. This is due to the separa-
tion of responsibilities and competences, as well as the soldier’s limited view of
the situation. In a similar way, an agent’s goals should not be mixed with the
acting. This would also allow plans to have limited interdependencies, just as
the soldier has a limited view of the situation, with benefits on complexity and
fault confinement. A similar analogy can be made with other hierarchical human

1 We do not consider belief revision to be an action.
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organizations such as companies, where the management decides – either on a
single or at multiple levels – before requiring the workers to perform the required
tasks. Needs that can arise have to be discussed with the manager or managers,
who can then decide to take new measures, just as an agent’s reasoning would
adopt new goals. While small companies with a “flatter” hierarchy can cope
with certain issues faster, complex organizations have proven to benefit from
this hierarchical composition2.

Agent oriented development methodologies such as Tropos [8] and Prometheus
[9] have top-down approaches where they start with system level characteristics
to then “descend” towards agent goals before defining plans and other low level
details. Implementing agent systems modeled using such methodologies would
also be more natural if reasoning and acting were more clearly separated.

Several works [10,11,12,7] have argued for the interest of using declarative
goals-to-be together with procedural goals-to-do, for decoupling goal achievement
(the “to be” part) from plan execution (the “to do” part), giving the agents
their pro-activeness, but also better flexibility and fault tolerance. Taking this
delimitation a step further, we argue for the interest of separating a level where
goal reasoning takes place – managing goal adoptions, dependencies, conflict
resolution – from an action level where the agent interacts with its peers and
environment.

While at runtime it is useful and even inevitable to alternate between reason-
ing and acting, we argue that these already conceptually distinct levels should
be kept separate when designing agents.

To address these issues we propose a subtle change in the agent modeling that
simplifies the agent representation by requiring the actions on the environment
to be separated from the goal adoptions. We call the approach Goal-Plan Sep-
aration, or GPS. As shall be seen, the direct consequence of this separation is
the structuring of the agent into two levels: one concerned with goals and one
concerned with actions.

This paper is organized as follows. Section 2 presents the original approach of
the paper which is illustrated on two examples. Section 3 discusses implementa-
tion issues and Sect. 4 some aspects of the goal execution. Section 5 presents an
experimentation in the domain of maritime patrol. In Sect. 6 we discuss some
fault tolerance issues with respect to the experimentation. Section 7 addresses
the related work and Sect. 8 concludes the paper.

2 The Goal-Plan Separation

In this section we introduce a representation model from the literature which we
use to illustrate our proposition through a first generic example. This allows us
to discuss the consequence of the Goal-Plan Separation, followed by the more
refined example of a Mars rover.

2 Note: while we are presenting examples of organizations with many people, our scope
remains the design of the reasoning of a single agent, which would thus correspond
to the army or the company as a whole.



18 C. Caval, A. El Fallah Seghrouchni, and P. Taillibert

(a) (b)

Fig. 2. An example of goal-plan tree (a) and a goal-plan separation of the same example
(b)

2.1 Goal-Plan Trees to Goal-Plan Separation

Thangarajah [4,13] formalizes the representation of the agent model in the form
of an AND-OR tree: the goal-plan tree, or GPT. Goals are OR nodes since their
child nodes, the plans, offer alternative solutions and only one plan suffices for
the achievement of a goal. Plans on the other hand are AND nodes in order to
denote the obligation to achieve all the adopted sub-goals for a successful plan
execution. Furthermore, two operators are added to the plan node, to indicate
either that the goals have to be achieved in sequence (;) or in parallel (||). A
generic example which illustrates all these is given in Fig. 2 (a). Here, the GPT
using the two operators spreads in depth across several levels. Note that there
can be more than one tree for a given agent, in other words more than one root
goal. We chose this model because even if it is used more as an analysis than a
development tool (see Related Work in Sect. 7), it shows well the issues we are
addressing, in particular how the goal and plan levels alternate.

To illustrate the Goal-Plan Separation approach, the generic example was
modified to obtain a possible goal-plan separation, as seen in Fig. 2 (b).
The plans that are the most important here are P1, P3 and P4 as they are
the ones that can contain both actions on the environment and goal adoptions.
The new representation, which decomposes goals into sub-goals is an AND-OR
tree (very similar to the one used in [14]) with only the leaf nodes having plans
containing actions, but no goal adoptions. To save space, we consider that the
default operator for the AND nodes is the sequence operator, unless stated oth-
erwise, e.g., in the case of SG23. To preserve the original structure, goals are also
allowed to be OR nodes, in order to depict cases where a goal or sub-goal can be
achieved in more than one way. Similarly, goals that have more than one plan
are OR nodes. While the original goals were preserved, the plans that were not
leaves were replaced by sub-goals, e.g., SG11. To compensate, plan names of the
form P’ were used to indicate a variation of an original P plan which at least
removes the goal adoptions. Note, however, that this exact transformation is not
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unique for the given example as it depends on the plan’s specific features3. More
examples can be seen in Sect. 2.3. SG12 was introduced to avoid the existence
of siblings of different types. This example shows that transforming an existing
agent is possible. Nevertheless, as is the case with many such translations and
as we discovered during the experimentation we describe in Sect. 5, a complete
redesign of the agent produces a more appropriate result.

2.2 The Goal Reasoning Level

As can be seen in Fig. 2 (b), a direct consequence of the separation of goal
adoptions from the actions on the environment is the appearance of two levels
in the definition of the agent: a goal reasoning level and an action level.

The goal reasoning level is the part of the agent concerned with goal adoption,
control, dependencies and interactions. In this paper, we are concerned mostly
with the specification (by a programmer or designer) of dependencies between
goals and issues related to the adoption and life-cycle control. For the purpose of
the Goal-Plan Separation, no actions on the environment are present at this level.
However, as will be discussed further on, other mechanisms can appear at this
level, e.g., for handling perceptions, events or various types of goal dependencies.

2.3 Mars Rover Scenario

To further illustrate the GPS, let us consider a Mars rover example from [13].
Figure 3 (a) represents a goal-plan tree for a Mars rover’s goal to analyze soil
samples. The depth of the tree varies between P7: ExpSoilByDelegationPlan that
is at a depth of one and P6: TransmitTo(Lander)Plan, at a depth of 5. While
all leaf nodes are plans, there are also intermediary plans which adopt goals and
can contain actions: P1: ExpSoilBySelfPlan and P4: RecordResultsPlan. If these
two plans had no actions on the environment, the representation would be GPS-
compliant as no unwanted action-goal adoption mix would be present. In this
case, an alternative representation can also be obtained in the same manner as in
the example in Sect. 2. As depicted in Fig. 3 (b), P1 changes into a sub-goal and
P4 disappears completely as there is already SG3 to regroup the corresponding
sub-tree. For P7, a parent sub-goal SG12 is created to avoid having two siblings
of the G1 node of different types, i.e., a goal and a plan. SG12 also carries the
precondition originally contained by P7.

Another approach would be to rewrite the Mars rover’s behavior in a format
similar to the goal diagram from Tropos [8], as in Fig. 3 (c). The representation
can also be seen as a type of plan. It starts with a decision node that corre-
sponds to P7 ’s precondition from the original scenario. The sequence operator
is represented through the arrows that depict the dependencies between goals,

3 E.g., a plan that turns on a sensor, adopts a goal to retrieve data and then saves
that data. Such a plan would rather transform into a main goal with three sequential
sub-goals, the first corresponding to the beginning of the original plan, and the last
corresponding to its final part.
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(a) (b)

(c)

Fig. 3. (a) the goal-plan tree of a Mars rover from [13], (b) a translation of the Mars
rover scenario in the form of a GPS-compliant AND-OR goal decomposition and (c) a
modified representation of the scenario with a clear goal-plan separation

while the parallelism is implied through the fact that two arrows start from the
same entity, in this case SG2.

If, however, P1 and P4 also contained actions on the environment, the trans-
formation would become more complicated. Figure 4 shows only the sub-tree
starting from SG3 with three simple examples of possible cases: (1) actions in
parallel with, (2) before or (3) after the goal adoptions. This shows the hidden
complexity associated with the action-goal mix.

The examples in this section obey the GPS principle since in each case, the two
levels, the goal reasoning level and the plan level, can be clearly distinguished.
This shows the applicability of the Goal-Plan Separation is not restricted to a
specific goal reasoning formalism.

3 GPS Method Implementation

Throughout the evolution of programming, languages and development tools
often advanced by limiting the programmer’s freedom to access lower level el-
ements such as registers and pointers to data, and offering in exchange higher
level tools and constructs such as variables and dynamically created references to
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(a) (b)

(c) (d)

Fig. 4. Transformation of the SG3 sub-tree (a) from the Mars rover scenario (Fig. 3)
into a GPS-compliant form, in some of the non trivial cases: P4 contains actions on the
environment that happen in parallel with the goal adoption (b), P4 contains actions
on the environment that happen before (c) or after (d) the goal adoption

data. These evolutions allowed for the creation of increasingly complex systems
while decreasing the possibilities for coding errors. Similarly, we do not refrain
from restraining the freedoms of the programmers and designers in the interest
of clarity and reliability.

To achieve the goal-plan separation, rather than adopting sub-goals, at ex-
ecution time an agent’s action level (usually composed of action plans) would
accomplish the necessary actions and then relinquish control to the higher level
where the reasoning and possibly a following goal is adopted. This creates, as il-
lustrated in the examples above, a distinct goal reasoning level where an agent’s
goals are chosen and their execution is managed.

As shall be discussed in this paper, the representation on multiple levels, either
by using sub-goals or through other mechanisms, is important for the scalability
and intelligibility of the resulting agents and therefore constitutes an important
characteristic of the models that should be at least taken into consideration for
the goal reasoning level.

In [15], GPTs are used as support for a study on plan coverage and overlap,
with the hypothesis that the plan libraries discussed have no cycles. This is
important to note as in the general case adopting goals inside plans may produce
cycles, sometimes even with unwanted consequences similar to the infinite loops
in classic programming. We, on the other hand, do not restrict cycles, as will be
seen in the scenario in Sect. 5. However, the Goal-Plan Separation doesn’t allow
cycles created through plans that also have actions on the environment.
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As the Goal-Plan Separation approach in its simplest form is the requirement
to keep a clear distinction between the two abstraction levels, it is general enough
so that it can be applied using any of the BDI frameworks that allow goal
adoptions in plans. The important condition, however, is to make sure no goals
are adopted in plans that act on the environment. Examples of representations
that can be used are given next, followed by a more detailed description of a
model based on what we call goal plans and that we use in Sect. 5.

3.1 Examples of Possible Models for the Goal Reasoning Level

Reasoning through Rules. Using goal trigger rules, an almost “reactive”
agent can be created. The goal relationships are implicit but a dependency tree
similar to the one seen in Fig. 3 (c) above can be constructed at runtime for trac-
ing purposes. This reasoning model can be implemented in Jadex by simply spec-
ifying trigger conditions for each goal but without creating explicit connections
between these goals. The advantage of this approach is that the representation
can handle more complex systems that act in highly dynamic environments, with
new goals added effortlessly. However, this model lacks look-ahead capabilities.

Reasoning Using a Planner. Rather than having goals simply triggered by
rules, a planner can be used to select among available goals, as for example in
CANPLAN [7]. The difference then from the reasoning model described above is
that this time the reasoning allows the choice of goals to be prepared in advance
starting form the current context. Another difference is that a planner would
render the agent proactive, as it would not have to wait for events in order
to act. The job of the planner would be to select, order and parallelize goals
according to the current needs, and for this it could use certain operators [16].
The example in Sect. 5 does not correspond to this method as no planner is used
and its goal plan (see below) is defined at design time. Our intuition is also that
the GPS approach benefits this model as planning should be easier to perform
only on goals, without the interference of details from actions.

3.2 Reasoning through a Goal Plan

Between the reactivity of the first model above, and the planning capabilities
of the second, we propose here a middle solution that allows for a certain level
of look-ahead owing to the use of pre-written goal dependencies, just as plan
libraries can be used with BDI systems. As required by the GPS method, the
goal reasoning level should be kept separate from the plans that handle action
composition. Considering that relations between goals can be similar to those
between actions, we can envisage using a modified plan language to represent
the relations between goal adoptions. We call the resulting plans that handle
goal composition goal plans and we oppose them to action plans.
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P = < N,E > // action plan

N = A ∪ O ∪ T // nodes

A = {action | action �= goalAdoption}
O = {o | o ∈ {startNode, finishNode,

AND, ‖, wait(duration)}}
T = {test(stateCond) | stateCond ∈

{Beliefs, Events}} // conditions

E = {n1 → n2 | n1, n2 ∈ N} // edges

(a)

GP = < Ng , E > // goal plan

Ng = Ag ∪O ∪ T // nodes

Ag = {adopt(G) | G ∈ Goals}
O = {o | o ∈ {startNode, finishNode,

AND, ‖, wait(duration)}}
T = {test(stateCond) | stateCond ∈

{Beliefs,Events}} // conditions

E = {n1 → n2 | n1, n2 ∈ N} // edges

(b)

Fig. 5. Action plan (a) compared to goal plan (b). Only the action nodes differ.

As defined in Fig. 5, a goal plan is an oriented graph with three types of nodes:

– Ag, the goal adoption nodes, as the unique action allowed in the goal plan.
Each node represents the invocation of an automaton associated with the
goal. Note that this is the only distinction from the action plans which have
A = {action | action �= goalAdoption}.

– O, the operator nodes, with operations including a unique start node and
at least one finish node. Different finish nodes can be used to indicate final
states for a plan, e.g., “successful completion” or “partial failure”. There
is also an operator for branching parallel threads and one for the logical
condition AND that can be used to synchronize threads or to indicate the
obligation of two or more conditions to be all true, for example to require
several goals to be achieved in order for the execution to continue.

– T , the condition test nodes that can handle state conditions for belief values
and events such belief change and message arrival. They can either be used
to test for a momentarily condition, or to wait for a condition to become
true or for a message to arrive.

Edges indicate the succession of nodes in the goal plan and, as stated before,
cycles are possible, for example to indicate a recurrent goal adoption.

The Mars rover scenario in Fig. 3 (c) with its inline goal dependencies can
easily be transformed into a goal plan, as seen in Fig. 6. There are two possible
finish nodes, with one for a successful mission where either G7 or both SG4 and
SG5 were achieved, and one to indicate all other cases as failures.

While implicit relations between entities (such as the rule-triggered goals
above) may be enticing due to their ease of definition and generality, they are also
difficult to follow and may hide unwanted interactions. The goal plans, however,
favor the use of explicit specifications of dependencies between goals. If for exam-
ple a Mars rover needs to perform an experiment at a location X and it has two
goals for achieving this, one being G1=“move to X” and the other G2=“drill”,
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Fig. 6. A goal plan for the Mars rover scenario from Fig. 3

then it is clearer to link the adoption of G2 to the successful achievement of G1

rather than for example the belief that the rover is at location X.
In a framework like Jadex, this model can be implemented using a plan that

is triggered at agent’s birth. The plan would specify the dependencies between
sub-goals and adopt them without any other actions.

In practice, this model can become difficult to manage as the agent grows in
complexity. A solution to this problem is to group together parts of the goal plan
and abstract them into sub-goal plans, that are to be expanded only when needed.
In this way, the representation can still be conceptually on one level, while having
the advantages, in particular the scalability, of a hierarchical representation.

This kind of reasoning is suitable for agent systems where the behavior can be
thoroughly specified at design time so that all dependencies can be accurately
included. Adding new goals and other modifications, however, are difficult to
apply. The first implementation described in Sect. 5.2 corresponds to this ap-
proach.

3.3 Reasoning through Multiple Goal Plans

The method above has the advantage of providing a “big picture” of the agent’s
behavior but, as stated before, does not scale well to complex agents. Designing
the behavior of an agent that can run for hours can for example create a large
goal plan that is difficult to follow and which risks being too rigid in case of un-
foreseen events. The solution is then to decouple the sub-goal plans from their
“parent” goal plans by using goals to manage the expansion, in other words, by
allowing any goal not only to have action plans, but also goal plans. This means
using the “classic” BDI mechanisms – i.e., goals, plans and automata – with just
the subtle difference in the construction of plans: no goal adoption will be in the
same plan as an action on the environment. Note, however, that in this case the
states indicated through finish nodes do not necessarily reflect the achievement
or failure of the parent goal, as the goal would normally have its own conditions
for success and failure. Figure 7 (a) shows the Mars rover’s behavior represented
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(a) (b)

Fig. 7. A multiple level goal plan for the Mars rover scenario from Fig. 3, with (a) the
resulting tree (similar to a goal-plan tree) representation and (b) the corresponding
goal plans. Note the separation in (a) between the action plans, i.e., P2, P3, P5, P6
and P7, and the goal reasoning level comprising the goals and the three goal plans,
i.e., GP1, GP2 and GP3.

with this model. The resulting model can be represented through a structure
that is similar to the GPT as can be seen in the Fig. 7 (b), but this tree contains
fewer details as more logic is included in the goal plans, while in the same time
complying with the GPS approach.

There are many advantages of this multiple goal plan model. First of all, split-
ting the behavior into more levels of goals and sub-goals with the corresponding
plans improves flexibility and fault tolerance – in case a plan fails, the BDI logics
can require a retry using the same or a different plan, provided that such plan
is available. Then, splitting the behavior into more manageable chunks leaves
less room for hidden faults. The use of goal plans for managing goal dependen-
cies allows for a more refined specification than what was available through the
AND, OR and the operators in the GPT. For example, in Fig. 7, the suite of
goal adoptions in GP2 does represent the sequence that was originally in the
GPT, but other operators – such as the delay in the example – can be added
through this specification, and precise goal failures can be handled accordingly
(while not present in the given example, one could add other goals to account for
these specific sub-goal failures). This model is therefore preferred to the simple
goal plans presented above, and is illustrated in the second implementation in
Sect. 5.2.
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Goal/Sub-goal

BDI Logics

Plani Plan Library Plan Generator

Fig. 8. BDI logics: handler of the goal-plan relation at runtime

4 Execution

While not explicitly presented in the GPT, as stated before and seen in Fig. 8,
between the goal and plan levels there are the BDI logics or more commonly
a goal automaton [2,3] which handles the goal life-cycle. This life-cycle usually
starts with the adoption of the goal and includes the choice and execution of
plans.

An example of a goal life-cycle for which an automaton is used is depicted
in Fig. 9. It uses a series of beliefs for state changes, such as desirable (des) to
indicate the presence in the automaton, selected (sel) to indicate the passage in
an active state and satisfaction (sat) that indicates if the goal was achieved. We
use these beliefs to control the execution of goals by linking them to other beliefs
that justify them, for example the goal adoption conditions for desirable. In case
any of these conditions is no longer valid, the belief is no longer justified so
the automaton changes its state automatically, which in the case of the desirable
belief means that the goal is aborted. If we take the example in Fig. 6, supposing
that during the execution of G7 the condition FreeRover(X) is contradicted by
an observation, the adoption of the goal will no longer be justified and the goal
will fail automatically. It is also important to note that as a higher level means
of control, the goal reasoning level has precedence over the action level.

Beliefs can also be used to control the goal automaton from the higher level in
a more straightforward manner, if for example we added another operator that
causes a goal to abort its execution.

For the GPS approach the automaton is a black box that is given a goal to
adopt and possible plans to execute and this is why we represent only goals and
plans in our modeling examples. The execution can cause side effects such as
belief changes that can lead the reasoning level to take actions with respect to
current goal or even the adoption or execution of other goals. For example, this
can cause the goal to be aborted in case it is estimated to take the agent in an
unsafe state, or it can cause the adoption of a reparation or compensation goal
to counter certain unwanted effects. Note that several automata can function
at a given moment as parallelism is allowed in our method. While conflicts are
normally treated at goal reasoning level and can even be explicitly handled in
the goal plans, conflict management is not within the scope of this paper.
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Desire Intention
Plan in
progress

Fail Success

Adoption

sel ∧ des ∧ ¬sat

(to ∨ ¬des) ∧ ¬sat

sat

¬sel ∧ ¬sat

(to ∨ ¬des ∨ ¬me) ∧ ¬sat

me ∧ sel ∧ des ∧ ¬sat

sat

¬sel ∧ ¬sat

sel ∧ des ∧ ¬sat

sat

Fig. 9. Our generic goal life-cycle with transition conditions on state beliefs (des =
desirable, sel = selected, sat = satisfied, me = means, to = timeout)

5 Experimenting with GPS

The GPS approach has been experimented in an industrial context at Thales
Airborne Systems on an application designed for experimenting on AI in general
and more precisely on Interval Constraints propagation and multi-agent systems
(MAS). The purpose of this application, Interloc, is the localization of boats
from a maritime patrol aircraft. It is implemented as a MAS and can contain
dozens of agents implemented as Prolog processes.

Interloc was initially designed as a set of non goal-directed autonomous agents.
This means that the agents had only one purpose that was achieved through a
set of associated plans. Subsequently, it was redesigned in order to improve the
level of autonomy of the agents by endowing them with goals. The pursuit of
intelligibility brought along the idea of having a clear separation between the
levels of abstraction of goals and plans.

A first implementation in the spirit of GPS used a goal plan formalism as
the one described in Sect. 3.2. This meant designing a plan where the only
possible action was goal adoption. For the ease of use, sub-goal plans – which
anticipate the hierarchical approach later implemented – were also used, adding
their activation to the goal adoption as the only possible “actions” in the goal
plan. The intention of the designer (prior to the GPS methodology presented in
the present paper) was to exhibit an abstract (goal) level describing the main
features of the behavior of agents so that one would find it sufficient to only
read the goal level description in order to understand the salient behavior of
the agents. Agents were then implemented following the idea described in Sect.
3.3 as the flexibility and robustness of goals seemed preferable to the simple
invocation of sub-goal plans.

In the pursuit of a more formal representation, we abstracted the goal plans
into Time Petri Nets, TPNs [17], seen in Figs. 10 and 11 (b-e). We chose the
TPNs because they present many advantages through their graphical and in-
tuitive representation, as well as their expressive power (parallelism, sequence,
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synchronisation etc.). This extension over classic Petri nets gives the possibility
of assigning firing time intervals to the transitions, which we used for representing
waiting in the agent behavior. Furthermore, the TPNs allowed us to structurally
verify the goal plans and ensure their correctness. We also used a type of Petri
net that resemble the Recursive Petri Nets (already used for representing agent
plans [18]) where we distinguished two types of transition: the elementary tran-
sitions to be fired according to the standard semantics of Petri nets and the
abstract ones corresponding to the action of adoptiong a goal. However, the ex-
pansion of this action, the goal adoption, is not handled in this network, and
its transition corresponds to a call to the associated automaton, e.g., the one in
Fig. 9.

We first present the application itself, then the particular case of one of the
main agents, the aircraft, in the two goal plan-based implementations mentioned
above. This section concludes with a discussion on the advantages of the GPS
approach in the specific case of the Interloc application.

5.1 Interloc

The main goal of the application is the localization of boats using a goniometer4

on-board a maritime patrol aircraft. The sole use of a goniometer allows for a
stealth detection, i.e., detect without being detected, of boats which is impor-
tant for some missions such as gas-freeing prevention5. If the boats were steady,
the problem would be simple. The fact that they move necessitates a reliance
on non-linear regression methods, as is the case of existing commissioned imple-
mentations, or interval constraint propagation, in Interloc. Most of the agents,
i.e., boats, the goniometer and the data visualization agent, were designed for
the purpose of simulation. The main agent, the aircraft, must (1) follow all the
boats visible from its location, (2) compute in real-time their position by ac-
cumulating bearings and interacting with computation agents (more precisely
artifacts [19]) operating interval propagation, (3) adapt its trajectory to obser-
vations and contingencies and (4) transmit results to the visualization agent.
For the patrol aircraft, boats may appear or vanish at any time. Several aircraft
might be present at the same time, but so far they do not communicate with
each other. Typically 20 to 30 agents or artifacts are active in the system at a
given time.

5.2 The Aircraft Agent

Boats and aircraft have been designed following the GPS method. We present
here the aircraft, which is the most complex agent type and hence the most
interesting for illustrating the methodology.

Five goals corresponding to five main activities of the agent were identified:

4 Tool which displays the direction towards the source of a signal, in this case a boat
and its radar.

5 Deterring tankers from polluting the environment by cleaning their fuel tanks at sea.
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Fig. 10. Petri net representation of the goal plan for the aircraft agent with goal adop-
tions represented as hollow transitions. The Treat. (for “treatment”) goal is adopted
in two different contexts in order to insure that messages from each boat are treated
sequentially, but in parallel with the other boats. Multiple instances of the goal with
different beliefs are thus created.

– Init. (for “initialization”) of the system: get data related to the aircraft
trajectory (pre-defined, planned or human-guided) and various parameters
characterising the simulation

– Move: execute one step forward
– Measure: initiate measurement of the bearing of all the visible boats
– Treat. (for “treatment”): process a received measurement
– Visu. (for “visualization”): process a single request from the visualization

agent

The sole knowledge of the various goals present in the system is not sufficient
to understand (and define) its behavior. One must also describe the way in which
these goals are adopted and what happens when they are achieved, for exam-
ple by specifying their chronology, conditions for becoming a desire, conditions
for becoming an intention. This knowledge may be provided in different forms,
corresponding to the different ways of applying the GPS approach.

Using a Single Goal Plan. For the first implementation we present here, the
aircraft agent in Interloc was designed using a goal plan with four sub-plans to
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indicate the dependencies of the goals above. These dependencies correspond to
the goal reasoning level in the GPS approach.

Informally, the goal plan is the following (a more formal description of this
plan is given in Fig. 10 as a Petri net): the achievement goal Init. is adopted. If
the goal is not achieved, the system is halted. Otherwise, four sub-branches im-
plemented as sub-goal plans are activated in parallel:main move, main measure,
main visualization and main analyze.

The main move sub-plan:

– Wait for a move time step delay
– Adopt the Move goal, whose associated plans will compute and execute the

next time step
– Wait for the Move goal achievement
– Loop

The main measure sub-plan:

– Adopt the Measure goal, where the associated plans will measure the bear-
ings of all the visible boats through interactions with the measurement arti-
fact and the (simulated) boat agents

– Once achieved, the goal will be re-adopted after a given time delay

The main analyze sub-plan:

– Wait for a measurement, in the form of a message that arrives randomly
after a measurement request message is issued

– Record the newly present boats
– Adopt the Treat. goal, whose associated plan will generate a constraint to

be added to the previously received measurements and send it to an interval
constraint propagation artifact which will compute a more and more precise
boat location

– Loop, in order to process waiting measurements

The main vizualization sub-plan:

– Wait for a request from the visualization agent
– Adopt the Visu. goal in order to process the request
– Wait for the achievement
– Loop to process pending requests

Using the Multiple Levels of Goal Plans. When the pursuit for flexibility
and robustness pushed us further and we separated the goal plans and their
sub-goal plans through new goals, we obtained the tree structure seen in Fig. 11
(a). GP1, in Fig. 11 (b), guides the adoption of four intermediary goals that are
internal to the goal reasoning level, i.e., they do not have action plans. GP2 -
GP5 correspond roughly to the sub-goal plans described above and can easily
be matched with the corresponding branches in the initial one-level goal plan
(Fig. 10).
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Fig. 11. (a) the goal-plan structure of the aircraft agent, (b-e) Petri net representations
of the GP1 (b), GP2 (c), GP3 (d) and GP4 (e) goal plans. GP5 is not presented
because it is very similar to GP4, as can be deduced from Fig. 10. Goal adoptions are
represented as hollow transitions.

5.3 Discussion

With GPS, Iterative and Timed Behaviors Appear at Goal Level: In
the pre-GPS version of the application, the natural tendency was to incorporate
dynamic aspects into the plans, making them fairly complex. For instance, the
Move goal was not conceived as a single step as presented above, instead, it was
charged with the complete management of the aircraft’s trajectory, including
the loop sequencing individual steps. This rather straightforward design would
close the loop inside the plans and after the actions on the environment – e.g.,
the movement or broadcast of measure request messages – were performed. The
move time-step, which is important for the global understanding of the behavior
of the aircraft, was also “buried” in the plan pursuing the goal. In the GPS-
compliant versions, deciding to rewrite the plan and change the scope of the
goal to the achievement of a single movement step, created the need for the
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definition of the time-step and the iterative behavior at the goal reasoning level,
leading to a clearer design. The fact that such details are at an upper level of
abstraction emphasizes their importance and improves the understanding of the
agent behavior.

With GPS, Relevant Perceptions of the Environment Are Required at
the Goal Reasoning Level: It is the case of messages coming from the visu-
alization or the measurement agents. Here again, it emanates from the fact that
certain perceptions can be essential for the global understanding of the agent
behavior. In Interloc, measurements trigger the adoption of a goal whose achieve-
ment is more or less secondary since other measurements can occur rapidly. That
is the reason why it seems to be a good approach to handle these measurements
at the upper level of abstraction. A perception filtering strategy, to avoid unnec-
essary inputs or even overloading the agent, can also appear in this goal plan,
possibly by the adoption of a specific goal prior to the adoption of the Measure
goal itself.

With GPS, Handling Errors Is Easier to Take into Account: This is
because errors, whatever their cause, often manifest through the failure of goals.
This provides an adequate range of exception mechanisms in the language in
which plans are written. Hence, the programmer’s effort with regard to fault
tolerance is mainly to take into account the processing of non-achieved goals. Of
course, this does not concern the goal plan itself, which has to be designed tradi-
tionally by explicitly introducing fault tolerance actions. However the amount of
code regarding the classic plans is far greater than the amount of the goal plan
code. In the Interloc application, no specific fault tolerance effort has been car-
ried out but a clean processing of non-achieved goals in order to stop the system
rather than have it crash. As a consequence, application debugging was greatly
facilitated. For the same reasons, the GPS approach proved to facilitate the evo-
lution of the multi-agent system. Thus, the aircraft agent was easily changed
into a UAV (Unmanned Autonomous Vehicle), with a larger autonomy in the
trajectory choice. Here again, the abstraction obtained by separating goals and
plans seems to be the reason.

In Interloc, we used an in-house agent programming language (Alma) to im-
plement the goal plans. All the required primitives were available, since a goal
plan is a type of plan. Nonetheless, it appears that specific primitives could be
introduced to facilitate the programming of the goal level. These concern mainly
iterative and time-controlled behaviors.

6 Discussion on the Fault Tolerance with Goal Reasoning

In real life applications agents tend to have more refined representations than
the ones discussed in Sect. 2. In particular, when it comes to handling errors, the
specification easily grows in complexity as specific cases have to be taken into
consideration [20]. Goals give agents a level of abstraction that is beneficial for
a system’s robustness as errors, exceptions, anomalies etc. usually occur during
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plan execution which, in a robust6 system, only cause the plan to fail and the
goal automaton to react normally and reattempt to achieve the goal. While
there are studies that treat the more general case of partial goal satisfaction [21]
(described below), if we only consider a binary goal definition, a goal’s adoption
has only two possible outcomes at reasoning level: the goal is either achieved or
not. Requiring the programmer to specify not only the actions to take after the
achievement of a goal, but also the actions to take in case the goal fails enhances
the reliability of the agent without dramatically increasing its complexity.

In the Mars rover scenario represented in Fig. 6, the failure to delegate the
task to another agent, i.e., the failure of G7, causes the rover to attempt to
accomplish the mission by itself through the adoption of SG1. Similarly, in the
aircraft specification of the Interloc application (Sect. 5), both the successful
achievement and the failure of goals are represented in the Petri net and also in
the implementation. However, for simplicity reasons, in our example, no special
actions are taken and the only result of a goal failure is to ensure the agent does
not reach unforeseen states. Also, the current format implies an infinite life for
the agent, which is not necessarily desirable in a real application.

In the paper cited above [21], goal satisfaction is evaluated using a progress
metric. Partial goal satisfaction could be integrated with our model by enforcing
the coverage of the whole range of possible values for the progress metric used.
For example for a Surveillance goal, instead of specifying success and fail behav-
iors, it could be interesting to estimate the percentage of the assigned area that
was covered and to use thresholds for the desired behaviors: less than 30% would
be considered a mission failure with the area announced as unsafe, a coverage
between 30 and 80% would require a call for backup to finish the job, while a
coverage of more than 80% would be considered a success. Note that this does
not concern the intermediary stages such as those that are handled by the goal
automata, but final goal failures, i.e., when all alternatives have been tried and
no positive outcome resulted.

7 Related Work

The aspect of the Goal-Plan Separation that handles goal reasoning is situated at
what Harland et al. [3] and Thangarajah et al. in earlier works [4,13] call agent
deliberation level. This is where agent goals are considered, which constitutes
the point where goals start their life-cycle. It is the same level where top level
commands are issued to interfere with the goal life-cycle, e.g., when deciding
to drop or suspend the goal. As the cited authors point out, goal deliberation
can deal with issues such as goal prioritization, resource management and even
user intervention. These aspects are beyond the scope of this paper but can be
considered for future developments of our approach. We note, however, that in
[3] changes in the goal state have preference over any executing plans, just as in

6 In this case, we understand by robust an agent system in which an error or exception
in a plan is caught and only causes that plan to fail, while the rest of the agent
continues to function normally, i.e., does not cause the whole agent to fail.
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the case of GPS, where the goal reasoning level takes precedence over the lower
levels that it controls, i.e., the goal life-cycle automata and the plan execution.

The arguments for planning in BDI agents at goal level employed by Sar-
dina and Padgham [7] offer more reasons for the existence of the goal reasoning
level (be it hardcoded, created through planning or other means) that the GPS
approach delimits: “(a) important resources may be used in taking actions that
do not lead to a successful outcome; (b) actions are not always reversible and
may lead to states from which there is no successful outcome; (c) execution of
actions take substantially longer than “thinking” (or planning); and (d) actions
have side effects which are undesirable if they turn out not to be useful”. All
these advocate for an agent that behaves strategically and proactively rather
than react based on a limited context, and it is at goal reasoning level that such
a strategic reasoning is possible. The multi-level goal plan structure proposed
in Sect. 3.3 allows for both complex “strategic” and simple “reactive” behaviors
(GP3 vs. GP2 in Fig. 11).

While this paper discusses the goal reasoning level in the need to better orga-
nize the levels “below”, i.e., the plans, Morandini et al. [14] approach the same
level from a different perspective: the need to fill in the gap between goal based
engineering and goal implementations. They propose a tool for transforming an
agent designed using the Tropos methodology [8] into Jadex code, for which they
introduce a formalism based on rules for the life-cycle of non-leaf goals in a goal
hierarchy. This segregation between leaf and non-leaf goals creates a goal level
that corresponds to our goal reasoning level and thus their work is consistent
with the GPS approach. This further confirms our statement with respect to the
utility of a goal-plan separation for the implementation of goal-based methodolo-
gies. Furthermore, our proposition of using goal plans on multiple levels means
that even goals that are internal to the goal reasoning level will have the same
life-cycles as goals that use action plans. A specific life-cycle, as proposed by
Morandini et al. is therefore no longer needed, deeming the development process
easier, as there are less types of goals to consider. One of the interesting aspects
is that Morandini et al. take into account the fact that even if the sub-goals are
achieved, the parent goal may still fail due to its own achievement condition,
which is often not taken into consideration when discussing the goal-plan trees.
While this formalism is rich and GPS-compliant, as our application example
shows, our approach aims to provide a model that allows for a more refined
representation, with more diverse goal relations, event-based goal reasoning and
time constraints.

There are many parallels that can be drawn between our approach and the one
employed by the Prometheus agent development methodology [9] in the detailed
design phase. This is where functionalities identified in the previous phases of
the methodology – system specification and architectural design – are used as
a starting point for designing capabilities. A capability is a module within the
agent that can contain further capabilities, and at the bottom level plans, events
and data, e.g., capability C1 uses data D or plan P1 sends message to plan
P2. Internal messages are used to connect between different design artifacts,
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such as plans and capabilities. This functionality is assured by either beliefs
or direct goal dependencies in our work. This nested structure of capabilities
is similar to the sub-goal plans (Sect. 3.2) in its pursuit of “understandable
complexity at each level”, and while semantically different, it does provide a
very similar functionality to our goal reasoning level. Furthermore, the use of
internal messages to indicate dependencies between internal artifacts (mostly
capabilities and plans) creates a very similar structure to our goal plans where
we explicit dependencies between goals, often guided by tests on beliefs and
messages. In Prometheus, BDI goals at agent level can be represented through
a specific type of event, because events can trigger plans. As events, i.e., goal
events, but also messages, percepts and internal messages, can be produced in
plans as well as in outside the agent, a clearly defined goal reasoning level in the
GPS sense cannot be delimited in the current form of the methodology. The Goal-
Plan Separation approach would, however, benefit from the integration with the
first two phases of the Prometheus methodology: the system specification and
the architectural design. Due to the fact that these two phases correspond to
a top-down design approach, and also, as we showed above, the fact that there
are already similarities in the current form of Prometheus, we feel that such
an integration would be possible, resulting in a methodology tailored for goal-
directed GPS agents.

In [22] Pokahr et al. address the issue of goal deliberation. This concept is not
equivalent but rather included in our goal reasoning level as they consider only
goals that have already been adopted. Their work focuses on the similar issue
of goal interactions, i.e., when goals interfere positively or negatively with each
other, and they base their proposed strategy on the extension of the definition
of goals. They include for example inhibition arcs that block the adoption of a
certain goal or type of goal when another goal is adopted. Such mechanisms can
be integrated when specifying the goal reasoning level discussed in our approach.

The goal automaton proposed by Braubach et al. [2] presents a goal state
labeled “New” with a “Creation condition” acting as a triggering condition for
the goal before the adoption and the actual goal life-cycle. This state, together
with the condition are at the level of our goal reasoning level. A goal that was
defined for the agent is considered to be in the “New” state, as opposed to a
goal that can for example be received from the exterior or generated through the
agent reasoning. Only when such a goal is received does it pass into the “New”
state. All the goals discussed in the examples in this paper are already in this
state.

The goal-plan trees have been used in various works for representing agent
specifications and as a basis for further treatments. In [4] GPTs are used to
gather resource requirements called summary information and identify possible
goal interactions. This is due to the hierarchical structure of the tree where
summary information can be propagated upwards towards the root of the tree.
Further works on the subject [3] reuse the model to illustrate their operational
semantics for the goal life-cycle. Furthermore, Shaw et al. propose different ap-
proach for handling goal interactions using Petri Nets [23] and constraints [24]
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instead of GPTs. These, as well as other works that use GPTs, such as [25] on
intention conflicts, can be used with GPS, and our intuition is that by separating
the goal reasoning level, goal interactions can be managed more easily.

Singh et al. [26] use learning for plan selection in BDI agents. They also use
GPTs to describe the agents and even note briefly that only “leaf plans inter-
act directly with the environment”, which is consistent with the GPS approach.
This allows for a representation where, given the results – i.e., success or fail
– of the executions of all leaf nodes, the success or failure of the root node is
decided by simply propagating these logic values in the AND-OR tree. This is a
confirmation of the benefits of the GPS approach, for, if actions were included in
intermediary plans, even if all sub-goals of a plan were achieved, the plan would
not necessarily cause the achievement of its parent goal. The GPT is therefore
already a simplification of the system, as it uses the rather strong hypothesis
that there are no perturbations, such as the one in the afore-mentioned case,
in the AND-OR tree. Another example of “perturbation” in the propagation
of success values in the tree can be the use of specific achievement and failure
conditions for each goals [7,14].

Note that, while we use the GPT representation to justify our approach, the
GPS is concerned with more general agent models. Also, this paper does not
argue against the GPT formalism, neither does it dispute the plethora of works
that use it as a model, but rather discusses the more general issue of specifying
agents with interwoven goal and action levels. The current paper complements
the cited works on goal interactions as it concerns the agent specification rather
than the runtime mechanisms that aim to improve the efficiency, proactivity,
reactivity etc. of the agents.

Another representation used for resource handling is the task expansion tree
described in [27]. This tree represents the decomposition of a task (a concept
similar to goals in our work) into subtasks. The particularity is the introduction
of special composite tasks that are used to compose other tasks in a functional
manner. These include, besides the sequence and parallel operators present in
the GPT model described in this paper, other tasks that allow other types of
branching and tests. The use of these operators in a tree structure situates their
model between classic goal hierarchies and our goal plan.

Clement et al. [28] champion the advantages of abstraction for solving vari-
ous problems such as large scale planning and scheduling. They argue that by
abstracting the less critical details in a large problem, the overall solution is
easier to find, and can then be expanded to the actual detailed solution. This
applies well to our Goal-Plan Separation approach, as well as to their approach
on planning in a hierarchical way. They extend HTNs (hierarchical task net-
works) to take time into consideration and use summary information at higher
levels in the HTN to identify possible interactions between plans while working
with abstract actions (which are similar to the BDI concept of goal). HTNs are
quite similar to goal hierarchies in that they too offer a gradual refinement for
the behavior of an agent from the more abstract to the actual actions. The ad-
vantage of using goals instead of “abstract plans” is given by the flexibility and
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resilience offered through the goal life-cycles where a goal’s achievement can be
attempted through various plans, with different constraints etc. Nevertheless,
our work does not exclude the possibility of using HTNs for plan selection, for
example in a similar fashion with CANPLAN [7].

8 Conclusion and Future Work

In this paper, we argued that the separation of reasoning and acting is important
for the specification and construction of BDI agents. It was shown that the pos-
sibility to mix actions on the environment with goal adoptions in various agent
models and languages can have negative effects on the resulting representation
and can hinder the development process. A series of examples illustrated what an
agent would look like when complying with the Goal-Plan Separation approach,
with emphasis on the two resulting levels: a goal reasoning level and an action
level. As a possible representation for the former, goal plans were introduced.
The GPS therefore imposes a constraint on agent design that does go against
the reflex of adopting a goal in any place it is needed but produces a better-
structured result. The GPS also results in agents that “step back and look at
the overall picture” rather than react “rashly” to their current situation, making
it suitable for “strategic”, proactive and complex behaviors, without necessarily
neglecting the reactive ones, e.g., GP2 in Fig. 11. The importance of tidy agent
representation lies with the ease of development, which can, in turn, facilitate
the wide-scale adoption of the development model. Furthermore, a clean repre-
sentation that helps diminish the number of design and development faults and
also improves maintainability helps bring the overall project costs down.

As discussed in the paper, on the side of BDI agent modeling there are many
studies on goal representations and goal life-cycles. However, the higher level that
is placed above these automata is less examined in the literature and constitutes
a point of this paper that we plan as a further study. For this, a more in-depth
research on specifying the agent’s goal reasoning will have to be undertaken.
Among other primitives, the handling of temporal constraints is important for
agent systems and should be taken into consideration. Furthermore, as stated
above, there are fault tolerance aspects related to this direction in agent develop-
ment that can be exploited. We are particularly interested in the use of GPS and
goal-directed agents in general for designing multi-agent systems that can better
cope with faults that were not foreseen at design. As presented in Sect. 5, we
have already began the empirical evaluation of the approach and its advantages
on agent design on a real time application. However, more evaluations will be
necessary in order to extend and generalize the GPS approach. In the long run,
the goal is to integrate this approach in an agent development methodology.
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Abstract. This paper proposes a formal modeling for Self-Organizing
Multi-Agent Systems (SOMAS) based on stepwise refinements, with the
Event-B language and the Temporal Logic of Actions (TLA). This mod-
eling allows to develop this kind of systems in a more structured manner.
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of the derived models both at the individual level and the global level.
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1 Introduction

Self-Organizing Multi-Agent Systems (SOMAS) are made of a set of autonomous
entities (called agents) interacting together and situated in an environment. Each
agent has a limited knowledge about the environment and possesses its own
goals. The global function of the overall system emerges from the interactions
between the individual entities composing the system as well as interactions
between the entities and the environment. Thanks to their self-organizing mech-
anisms, SOMAS are able to adjust their behavior and cope with the environment
changes [14].

When designing this kind of systems, two levels of observation are generally
distinguished: the micro-level which corresponds to the agents local behavior
and the macro-level which describes the emergent global behavior.

One of the main challenges when engineering a SOMAS is about giving
assurances and guarantees related to its correctness, robustness and resilience.
Correctness refers to fulfillment of the different constraints related to the
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agents activities. Robustness ensures that the system is able to cope with changes
and perturbations [5]. Whereas resilience informs about the capability of the sys-
tem to adapt when robustness fails or a better performance is possible [2].

In order to promote the acceptance of SOMAS, it is essential to have effec-
tive tools and methods to give such assurances. Some works propose using test
and simulation techniques [3], others define metrics for evaluating the resulting
behavior of the system [9]. Our proposal to deal with SOMAS verification is to
take advantage of formal methods. We propose a formal modeling for the local
behavior of the agents based on stepwise refinement steps and the Event-B for-
malism [1]. Our refinement strategy guarantees the correctness of the system. In
order to prove the desired global properties related to robustness and resilience,
we make use of Lamport’s Temporal Logic of Actions (TLA) and its fairness-
based proof rules. The use of TLA was recently proposed in [8] in the context of
population protocols to prove liveness and convergence properties and fits well
with SOMAS. Our work is illustrated with the foraging ants case study.

This paper is organized as follows. Section 2 presents a background related
to the Event-B language, the main principles on which it is based and TLA. In
section 3, our refinement strategy of SOMAS is presented. An illustration of this
strategy on the foraging ants is given in section 4. Section 5 presents a summary
of related works dealing with verification of SOMAS. Section 6 concludes the
paper and draws future perspectives.

2 Background

2.1 Event-B

The Event-B formalism was proposed by J.R. Abrial [1] as an evolution of the
B language. It allows a correct-by-construction development for distributed and
reactive systems. Event-B uses set theory as a modeling notation which enables,
contrary to process algebra approaches, to support scalable solutions for system
modeling. In order to make formal verification, Event-B is based on theorem
proving. This technique avoids the problem of explosion in the number of the
system states encountered with the model checkers.

The concept used to make a formal development is that of a model. A model
is formed of components which can be of two types: machine and context. A
context is the static part of the model and may include sets and constants defined
by the user with their corresponding axioms. A machine is the dynamic part of
the model and allows to describe the behavior of the designed system. It is
composed by a collection of variables v and a set of events ev_i. The variables
are constrained by conditions called invariants. The execution of the events
must preserve these invariants. A machine may see one or more contexts, this
will allow it to use all the elements defined in the seen context(s). The structures
of a machine and an event in Event-B are described as follows.
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Machine M
SEES

CMi

VARIABLES
Vi

INVARIANTS
Inv(Vi)

EVENT ev_1
...
EVENT ev_i

END

EVENT ev_i
ANY

p
WHERE

grd_evi : G_evi(p, v)
THEN

act_evi : A_evi(p, v, v′)
END

An event is defined by a set of parameters p, the guard G_evi(p, v) which
gives the necessary conditions for its activation and the action A_evi(p, v, v′)
which describes how variables v are substituted in terms of their old values and
the parameters values. The action may consist in several assignments which can
be either deterministic or non-deterministic. A deterministic assignment, having
the form x := E(p, v), replaces values of variables x with the result obtained
from the expression E(p, v). A non-deterministic assignment can be of two forms:
1) x :∈ E(p, v) which arbitrarily chooses a value from the set E(p, v) to assign
to x and 2) x : | Q(p, v, v′) which arbitrarily chooses to assign to x a value
that satisfies the predicate Q. Q is called a before-after predicate and expresses
a relation between the previous values v (before the event execution) and the
new ones v′ (after the event execution).

Proof Obligations. Proof Obligations (POs) are associated with Event-B ma-
chines in order to prove that they satisfy certain properties. As an example, we
mention the Preservation Invariant INV and the Feasibility FIS POs. INV
PO is necessary to prove that invariants hold after the execution of each event.
Proving (or discharging) FIS PO means that when an event guard holds, every
action can be executed. This PO is generated when actions are non-deterministic.

Refinement. This technique, allowing a correct by construction design, consists
in adding details gradually while preserving the original properties of the system.
The refinement relates two machines, an abstract machine and a concrete one.
Data refinement consists in replacing the abstract variables by the concrete
ones. In this case, the refinement relation is defined by a particular invariant
called gluing invariant. The refinement of an abstract event is performed by
strengthening its guard and reducing non determinism in its action. The ab-
stract parameters can also be refined. In this case, we need to use witnesses
describing the relation between the abstract and the concrete parameters. The
correctness of the refinement is guaranteed essentially by discharging POs GRD
and SIM . GRD states that the concrete guard is stronger than the abstract one.
SIM states that the abstract event can simulate the concrete one and preserves
the gluing invariant. An abstract event can be refined by more than one event.
In this case, we say that the concrete event is split. In the refinement process,
new events can be introduced. In order to preserve the correctness of the model,
we must prove that these new introduced events do not take the control for ever;
i.e. they will terminate at a certain point or are convergent. This is ensured by
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the means of a variant –a numerical expression or a finite set– that should be
decreased by each execution of the convergent events.

B-event is supported by the Rodin platform1 which provides considerable
assistance to developers by automating the generation and verification of all
necessary POs.

2.2 Temporal Logic of Actions (TLA)

TLA combines temporal logic and logic of actions for specifying and reasoning
about concurrent and reactive discrete systems [11]. Its syntax is based on four
elements: 1) constants, and constant formulas - functions and predicates - over
these, 2) state formulas for reasoning about states, expressed over variables as
well as constants, 3) transition or action formulas for reasoning about (before-
after) pairs of states, and 4) temporal predicates for reasoning about traces
of states; these are constructed from the other elements and certain temporal
operators [8]. In the remainder of this section, we give some concepts that will
be used further in section 4.

Stuttering Step. A stuttering step on an action A under the vector variables
f occurs when either the action A occurs or the variables in f are unchanged.
We define the stuttering operator [A] as: [A]f =̂ A ∨ (f ′ = f). 〈A〉 asserts that
A occurs and at least one variable in f changes.
〈A〉f =̂ A ∧ (f ′ �= f).

Fairness. Fairness asserts that if a certain action is enabled, then it will even-
tually be executed. Two types of fairness can be distinguished: 1) Weak Fairness
for action A denoted WFf (A); which asserts that an operation must be executed
if it remains possible to do so for a long enough time and 2) Strong Fairness for
action A denoted SFf (A); asserts that an operation must be executed if it is
often enough possible to do so [11]. Formally WFf (A) and SFf (A) are defined
as follows.

WFf (A) =̂ ♦�Enabled〈A〉f ⇒ �♦〈A〉f
SFf (A) =̂ �♦Enabled〈A〉f ⇒ �♦〈A〉f

� and ♦ are temporal operators. �P called alwaysP means that P is always
true in a given sequence of states. ♦P called eventually P means that P will
hold in some state in the future.
Enabled〈A〉f asserts that it is possible to execute the action 〈A〉f . In addition,
we define the leads to operator: P � Q =̂ �(P ⇒ ♦Q), meaning that whenever
P is true, Q will eventually become true.

Proof Rules for Simple TLA. We consider the two proof rules WF1 and SF2
given below. WF1 gives the conditions under which weak fairness assumption
of action A is sufficient to prove P � Q. Condition WF1.1 describes a progress
step where either state P or Q can be produced. Condition WF1.2 describes
the inductive step where 〈A〉f produces state Q. Condition WF1.3 ensures that

1 http://www.event-b.org/

http://www.event-b.org/
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〈A〉f is always enabled. SF1 gives the necessary conditions to prove P � Q
under strong fairness assumption. The two first conditions are similar to WF1.
The third condition ensures that 〈A〉f is eventually, rather than always, enabled.

WF1
WF1.1 P ∧ [N ]f ⇒ (P ′ ∨Q′)
WF1.2 P ∧ 〈N ∧A〉f ⇒ Q′

WF1.3 P ⇒ Enabled〈A〉f

�[N ]f ∧WFf (A) ⇒ P � Q

SF1
SF1.1 P ∧ [N ]f ⇒ (P ′ ∨Q′)
SF1.2 P ∧ 〈N ∧A〉f ⇒ Q′

SF1.3 �P ∧�[N ]f ⇒ ♦Enabled〈A〉f

�[N ]f ∧ SFf (A) ⇒ P � Q

3 Formal Modeling of Self-Organizing MAS

The formal modeling is based on two levels of abstraction; i.e. the micro level
which corresponds to the local behavior of the agents and the macro level which
describes the global behavior of the system. In this subsection, we identify the
main properties that must be ensured when designing a SOMAS according to
these levels. We give also a refinement strategy allowing to ensure the proof of
these properties.

3.1 Formal Modeling of the Agents Local Behavior

The main concern at this level is the design of the behavior of the agents and
their interactions. In a very abstract way, the behavior of each agent is composed
by three steps: the agent senses information from the environment (perception
step), makes a decision according to these perceptions (decision step) and fi-
nally performs the chosen action (action step). We refer to these steps as the
perceive− decide− act cycle. Thus, an agent is characterized by the representa-
tions of the environment that it possesses (rep), a set of decision rules telling it
which decisions to make (decisions), the set of actions it can perform (actions)
and the set of operations (perceptions) allowing it to update its representations
of the environment. Moreover, an agent is identified by its intrinsic characteris-
tics such as the representations it has on itself (prop), its sensors (sensors) and
its actuators (actuators). More formally, an agent is described by the following
expression:

agent � < prop, rep, sensors, actuators, decisions, actions, perceptions >

In Event-B, the characteristics of agents, their representations of the environ-
ment, sensors and actuators are modeled by means of variables. Whereas their de-
cisions, actions and update operations are formalized by events. Hence, a before-
after predicate can be associated with each one of them. As a consequence, the
decisions of each agent ag, belonging to the set of agents noted Agents, can be
considered as a set of before-after-predicates denoted Decide_i(ag, d, d′), where
d is the set of variables corresponding to the properties and actuators of ag.
Moreover, the actions of each agent ag can be considered as a set of before-
after predicates having the form Act_i(ag, a, a′), where a is the set of variables
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corresponding to the properties and sensors of ag. Indeed, an action event is
responsible for getting the agent to the perception step. Since the actions of
an agent can affect its local environment, the set a can also contain variables
describing the environment state. Finally, perceptions is the event enabling an
agent to update its perceptions. It is described by the before-after predicate:
Perceive(ag, rep, rep′). The local agents behavior described earlier is said "cor-
rect", if the following properties are satisfied.

– LocProp1: the behavior of each agent is complied with the perceive-decide-act
cycle.

– LocProp2: the agent must not be deadlocked in the decision step, i.e. the
made decision must enable the agent to perform an action.

LocProp2 � ∀ag · ag ∈ Agents∧Decide_i(ag, d, d′) = TRUE ⇒
∃Act_i · Act_i ∈ actions ∧G_Act_i(ag, a) = TRUE

– LocProp3: the agent must not be deadlocked in the perception step; i.e. the
updated representations should allow it to make a decision.

LocProp3 � ∀ag · ag ∈ Agents∧ Perceive_i(ag, rep, rep′) = TRUE ⇒
∃Decide_i ·Decide_i ∈ decisions ∧G_Decide_i(ag, d) = TRUE

3.2 Global Properties of the Macro-level

At the macro level, the main concern is to prove that the agents behavior, de-
signed at the micro-level, will lead to the desired global properties. The aim is
to discover, in the case of proof failure, design errors and thus make the neces-
sary corrections at the micro-level. One of the most relevant global properties
that should be proved, when designing self-organizing systems, is robustness.
Serugendo ([5]) defines four attributes for the analysis of robustness:

– Convergence2: indicates the system ability to reach its goal,
– Stability: informs about the system capacity to maintain its goal once reached,
– Speed of convergence, and
– Scalability: shows if the system is affected by the number of agents.

Besides robustness, resilience represents another relevant property that should
be analyzed for SOMAS. Resilience refers to the ability of the system to self-
adapt when facing changes and perturbations. The analysis of resilience allows
assessment of the aptitude of self-organizing mechanisms to recover from errors
without explicitly detecting an error ([5],[2]).
In this paper, we only focus on proving the stability property. We give an ex-
ample from the foraging ants case study and some guidelines to prove it in the
next section. The formalization and proof of the remaining properties is still an
ongoing work.

2 Convergence here is different from the convergence of an event in Event-B, i.e.
termination.
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3.3 The Refinement Strategy

The formal development of SOMAS begins by a very abstract model representing
the system as a set of agents operating according to the Perceive-Decide-Act
cycle. This abstract model guarantees LocProp1. An overview of this machine
is given in figure 1.

Machine Agents0
SEES

Context0
VARIABLES

stepAgent
INVARIANTS

defStepAg : stepAgent ∈ Agents → Steps
EVENTS
INITIALISATION
THEN

initStep : stepAgent := Agents × {perceive}
END
EVENT Perceive
EVENT Decide
EVENT Act
ANY

agent
WHERE

checkStep : agent ∈ Agents ∧ stepAgent(agent) = act
THEN

updStepAg : stepAgent(agent) := perceive
END

END

Fig. 1. The Agents0 machine

The first refinement consists in identifying the different actions performed by
the agents. Thus, the refinement of the machine Agents0 by Agents1 is achieved
by splitting the Act event into the different actions an agent can perform. This
refinement should ensure LocProp2. Figure 2 is an excerpt from the Agents1
machine modeling the actions of an agent.

In the second refinement step, we specify the events corresponding to the
decisions that an agent can make. In addition, we describe the rules allowing
the agent to decide. We also introduce the actuators of the agents. By using
witness, we connect the actions introduced in the previous refinement with the
corresponding decisions defined in this stage of refinement. Figure 3 describes
how the decision and action events are refined.

In the third refinement, the perceptions of the agents and the necessary events
to update them are identified. As a consequence the different events related to
the decisions and actions are refined and property LocProp3 should be satisfied.

Figure 4 shows an excerpt from the Agents3 machine that refines the Agents2.
The gluInvSensorsPercept invariant is a gluing invaraint making connection
between the perception and the activation of the agent’s sensors. In the context
Context3, we define the ability AbilityT oPerceive (used in the Perceive event
in the figure 4 allowing the agent to determine the state of its local environment
based on the global system state.
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Machine Agents1
SEES

Context1
EVENTS

...
EVENT Act_Action_i
REFINES Act
ANY

agent
action

WHERE
checkStep : agent ∈ Agents ∧ stepAgent(agent) = act
checkAction : action = Action_i

THEN
updStepAg : stepAgent(agent) := perceive

END
END

Fig. 2. The refinement of the event Act in the Agents1 machine

EVENT Decide_Perform_Action_i
REFINES Decide
ANY

agent
WHERE

checkStep : agent ∈ Agents ∧ stepAgent(agent) = decide
THEN

updStepAg : stepAgent(agent) := act
updActAg : actuators(agent) := enabled

END
EVENT Act_Action_i
REFINES Act_Action_i
ANY

agent
WHERE

checkStep : agent ∈ Agents ∧ stepAgent(agent) = act
checkActuator : actuators(agent) = enabled

WITH
action : action =
Act_Action_i ⇔ actuators(agent) = enabled

THEN
updStepAg : stepAgent(agent) := perceive

END

Fig. 3. The refinement of the Act and Decide events in the Agents2 machine

4 Application to the Foraging Ants

The case study is a formalization of the behavior of a foraging ants colony.
The system is composed of several ants moving and searching for food in an
environment. Their main goal is to bring all the food placed in the environment
to their nest. Ants do not have any information about the locations of the sources
of food, but they are able to smell the food which is inside their perception field.
The ants interact with one another via the environment by dropping a chemical
substance called pheromone. In fact, when an ant discovers a source of food,
it takes a part of it and comes back to the nest by depositing pheromone for
marking food paths. The perturbations coming from the environment are mainly
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Machine Agents3
SEES

Context3
VARIABLES

sensors
rep
ActualSysState

INVARIANTS
defSensorAg : sensors ∈ Agents → Activation
defRepAg : rep ∈ Agents → V alue
defGlobalStateSys : ActualSysState ∈ SysStates
gluInvSensorsPercept : ∀ag·ag ∈ Agents⇒

(stepAgent(ag) = perceive
⇔sensors(ag) = enabled)

EVENTS
EVENT Perceive
REFINES Perceive
ANY

agent
WHERE

grdAgent : agent ∈ Agents
grdChekSensors : sensors(agent) = enabled

THEN
updStepAg : stepAgent(agent) := decide
updRepAg : rep(agent) :=

AbilityToPerceive(ActualSysState)
updSensorAg : sensors := disabled

END
END

Fig. 4. Refinement of the Perceive event in the machine Agents3

pheromone evaporation and appearance of obstacles. The behavior of the system
at the micro-level is described as follows. Initially, all ants are in the nest. When
exploring the environment, the ant updates its representations in its perception
field and decides to which location to move. When moving, the ant must avoid
obstacles. According to its smells, three cases are possible:

1. the ant smells food: it decides to take the direction in which the smell of
food is stronger (even if it smells some pheromone).

2. the ant smells only pheromone: it decides to move towards the direction in
which the smell of pheromone is stronger.

3. the ant doesn’t smell anything: it chooses its next location randomly.

When an ant reaches a source of food on a location, it collects it and comes
back to the nest. If some food remains in this location, the ant drops pheromone
when coming back. Arriving at the nest, the ant deposits the harvested food and
begins another exploration. In addition to the properties LocProp1, LocProp2
and LocProp3 (described in section 3), the following properties should be verified
at the micro-level.

– LocInv1: the ant should avoid obstacles
– LocInv2: a given location cannot contain both obstacle and food.



A Stepwise Refinement Based Development of SOMAS 49

The main global properties associated with the foraging ants system are de-
scribed in the following3.

– C1: the ants are able to reach any source of food
– C2: the ants are able to bring all the food to the nest
– S1: when a source of food is detected, the ants are able to focus on its

exploitation
– R1: the ants focusing on exploiting a source of food, are able to continue

their foraging activity when this source of food suddenly disappear from the
environment.

In the remainder of this section, we only focus on the properties related to the
correctness (LocProp1, LocProp2, LocProp3, LocInv1 and LocInv2) and the
stability (S1) of the system. The proofs of convergence and resilience are still an
ongoing work. The next section illustrates the proposed refinement strategy.

4.1 Formalization of the Ants Local Behavior

Abstract Model: the initial machine Ants0 describes an agent (each agent is
an ant) operating according to the Perceive-Decide-Act cycle. It contains three
events Perceive, Decide and Act describing the agent behavioral rules in each
step. At this very abstract level, these events are just responsible for switching an
agent from one step to another. The current cycle step of each agent is depicted
by the variable stepAgent defined as follows.

inv1 : stepAgent ∈ Ants → Steps

where Ants defines the set of the agents and Steps is defined by the axiom axm1.
The partition operator allows the enumeration of the different steps of an ant.

axm1 : partition(Steps, {perceive}, {decide}, {act})

As an example, we give below the event Act modeling the action step. The only
action specified at this level is to switch the ant to the perception step.

EVENT Act
ANY

ant
WHERE

grd12 : ant ∈ Ants ∧ stepAgent(ant) = act
THEN

act1 : stepAgent(ant) := perceive
END

The proof obligations related to this machine concern essentially preservation
of the invariant inv1 by the three events. All of them are generated and proved
automatically under the Rodin platform.

First Refinement: In the first refinement Ants1, we add the variables QuFood,
Obstacles modeling respectively the food and the obstacles distribution in the
3 C refers to Convergence, S to Stability and R to Resilience.
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environment, currentLoc and load which give respectively the current location
and the quantity of food loaded of each ant. Invariants inv5 and inv3 guaran-
tee the properties LocInv1 and LocInv2 respectively. The notation dom is the
domain of a function. �− denotes a range subtraction. Thus, QuFood�− {0} is a
subset of the relation QuFood that contains all pairs whose second element is
not equal to zero.

inv1 : QuFood ∈ Locations → N

inv2 : Obstacles ⊆ Locations \ {Nest}
inv3 : Obstacles ∩ dom(QuFood�− {0}) = ∅

inv4 : currentLoc ∈ Ants → Locations
inv5 : ∀ant·ant ∈ Ants ⇒ currentLoc(ant) /∈ Obstacles
inv6 : load ∈ Ants → N

Moreover, the Act event is refined by the four following events:

1. Act_Mov: the ant moves in the environment
2. Act_Mov_Drop_Phero: the ant moves and drops pheromone when coming

back to the nest
3. Act_Harv_Food: the ant picks up food
4. Act_Drop_Food: the ant drops of food at the nest

In the following, the event Act_Mov is presented as an action event example.

EVENT Act_Mov
REFINES Act

ANY
ant, loc, decideAct

WHERE
grd12 : ant ∈ Ants ∧ stepAgent(ant) = act
grd34 : loc ∈ Next(currentLoc(ant)) ∧ decideAct = move

THEN
act12 : stepAgent(ant) := perceive||currentLoc(ant) := loc

END

The parameter loc is the next location to which the ant will move. It is the
result of the decision process. This decision process will be modeled in the next
refinement. The parameter decideAct is also an abstract parameter that will
be refined in the next step. It indicates what type of decision can lead to the
execution of the Act_Mov event.

The majority of the generated POs are related to proving the refinement cor-
rectness (the SIM PO) and the preservation of invariants. With the presented
version of the Act_Mov event, it is impossible to discharge the inv5 preservation
PO (inv5 states that an ant cannot be in a location containing obstacles). In
fact, if loc belongs to the set Obstacles, Act_Mov will enable ant to move to a
location containing an obstacle, which is forbidden by inv5. In order to discharge
the inv5 preservation PO, we need to add the guard grd5 : loc /∈ Obstacles to
Act_Mov event. Finally, in order to guarantee the property LocProp2 for the
Act_Mov event, it is necessary to add another event Act_Mov_Impossible
that refines Act and allows to take into account the situation where the move
to loc is not possible because of obstacles. Act_Mov_Impossible will just al-
low ant to return to the perception step. The same reasoning is applied for
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Act_Mov_Drop_Phero. For Act_Harv_Food, we should consider the case
where the food disappears before that the ant takes it.
The Rodin tool generates 35 proof obligations for the correctness of the refine-
ment. 85% of them are proved automatically and the rest has been proven using
the interactive proof environment.

Second Refinement: The second refinement Ants2 serves to create the links
between the decision made and the corresponding action. We add the actua-
tors of an ant: paw, exocrinGland, mandible as well as the ant’s characteristic
nextLocation which is updated when taking a decision. The Decide event is split
into five events:

1. Dec_Mov_Exp: decide to move for exploring the environment
2. Dec_Mov_Back: decide to come back to the nest
3. Dec_Mov_Drop_Back: decide to come back wile dropping pheromone
4. Dec_Harv_Food: decide to take the food
5. Dec_Drop_Food: decide to drop food in the nest

As an example, we give the event Dec_Mov_Exp above.

EVENT Dec_Mov_Exp
REFINES Decide

ANY
ant, loc

WHERE
grd12 : ant ∈ Ants ∧ stepAgent(ant) = decide
grd3 : loc ∈ Next(currentLoc(ant)) ∧ loc �= Nest

THEN
act123 : stepAgent(ant) := act||nextLocation(ant) := loc||paw(ant) := activate

END

As a result of event Dec_Mov_Exp execution, the ant chooses its next location
and activates its paws. What is necessary now, is to link the activation of the
paws with the triggering of the move action. Thus, we need to refine the event
Act_Mov by adding a Witness relating the parameter decideAct in the event
Act_Mov with the variable paw.

EVENT Act_Mov
REFINES Act_Mov

ANY
ant

WHERE
grd123 : ant ∈ Ants ∧ stepAgent(ant) = perceive ∧ loc ∈ Next(currentLoc(ant))
grd4 : paw(ant) = activate

WITNESSES
decideAct : decideAct = Move ⇔ paw(ant) = activate
loc : loc = nextLocation(ant)

THEN
act12 : stepAgentCycle(ant) := perceive||currentLoc(ant) := nextLocation(ant)
act3 : paw(ant) := disabled

END

The Rodin tool generates 62 proof obligations for the correctness of the refine-
ment. 79% of them are proved automatically and the rest has been proven using
the interactive proof environment.
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Third Refinement: At this level of refinement (Ants3), the ants representa-
tions about the environment are introduced . Every ant can sense food smell
(food) as well as pheromone scent (pheromone). We introduce also the vari-
able DePhero modeling the distribution of pheromone in the environment. The
event Perceive (here above) is refined by adding the necessary event actions for
updating the perceptions of an ant.

EVENT Perceive
REFINES Perceive

ANY
ant, loc, fp, php

WHERE
grd123 : ant ∈ Ants ∧ stepAgent(ant) = perceive ∧ loc = currentLoc(ant)
grd45 : fp ∈ Locations × Locations → N ∧ fp = FPerc(QuFood)
grd67 : php ∈ Locations × Locations → N ∧ php = PhPerc(DePhero)

THEN
act1 : stepAgentCycle(ant) := decide
act2 : food(ant) := {loc → fp(loc → dir)|dir ∈ Next(loc)}
act3 : pheromone(ant) := {loc → php(loc → dir)|dir ∈ Next(loc)}

END

FPerc (guard grd45) and PhPerc (guard grd67)4 models the ability of an ant
to smell respectively the food and the pheromone situated in its perception
field. They are defined in the accompanying context of Ants3. After execution
of the event Perceive, the ant acquires a knowledge about the food smell and
pheromone scent for each direction from its current location. Moreover, we split
the event Dec_Mov_Exp into three events:

1. Dec_Mov_Rand: decide to move to a location chosen randomly because no
scent is smelt

2. Dec_Mov_Fol_F : decide to move towards the direction where the food
smell is maximum

3. Dec_Mov_Fol_Ph: decide to move towards the direction in which the
pheromone smell is maximum

This split guarantees the LocProp3 property for the decision concerning the
move. The event Act_Mov is also refined in order to take into account these
different decisions. The Rodin tool generates 59 proof obligations for the cor-
rectness of the refinement. 40% of them are proved automatically.

4.2 Formalization of the Ant Global Properties

The three refinement steps described in the last section have enabled us to
specify a correct individual behavior for the ants. Let us now focus on the ability
of the modeled behavior to reach the desired global properties. As we already
mentioned, the focus of this paper is on the stability property (S1) which informs
about the capability of ants to exploit entirely a source of food detected.

Recall in the machine Ants3, we have three events describing an exploration
movement namely Act_Mov_Fol_F , Act_Mov_Fol_Ph, Act_Mov_Rand

4 In the guards grd45 and grd67, 
→ denotes a partial function.
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plus the event Act_Harv_Food corresponding to the action of picking up food.
All these events are defined according to the parameter loc which refers to any
location. In order to prove the stability property, we refine these events by instan-
tiating the parameter loc with a precise location of food loc1. This refinement
gives rise to the machine Ants4. Our aim is to prove that once loc1 is reached,
the quantity of food in it will decrease until reaching zero. In Event-B, this kind
of reasoning is possible by proving convergence (or termination) of the event
responsible for decreasing this value, i.e. the event Act_Harv_Food. For car-
rying out the proof of termination in Event-B, we need to use a variant, i.e. a
natural number expression or a finite set and prove that event Act_Harv_Food
decreases it in each execution. Finding an implicit variant is trivial under weak
fairness assumptions on the actions of this event ([8]). In our case, the non-
determinism introduced by the movement actions makes such an assumption
impossible. Indeed, Act_Harv_Food is not always enabled since once an ant
reaches a source of food, the others can need time to reach this source.

For proving convergence, our work is inspired by the proofs done by D. Méry
and M. Poppleton in [8] where they demonstrate how to prove convergence under
fairness assumption by the use of the Temporal Logic of Actions (TLA) [11] and
Event-B.

Let us consider the two states P and QHarvest describing the quantity of food
on loc1 and defined as follows:

P =̂ InvAnts4∧QuFood(loc1) = n+1, QHarvest =̂ InvAnts4∧QuFood(loc1) = n

InvAnts4 denotes the conjunction of invariants of machine Ants4. Proving the
termination of Act_Harv_Food is reformulated by the formula:

P � QHarvest.

We define N and AHarvest as follows.

N =̂ Act_Harv_Food ∨Act_Mov_Fol_F ∨
Act_Mov_Fol_Ph ∨ Act_Mov_Rand and
AHarvest =̂ Act_Harv_Food.

By applying SF1, we prove P � QHarvest:

SF1.1 P ∧ [N ]QuFood(loc1) ⇒ (P ′ ∨Q′
Harvest)

SF1.2 P ∧ 〈N ∧ AHarvest〉QuFood(loc1) ⇒ Q′
Harvest

SF1.3 �P ∧�[N ]QuFood(loc1) ⇒ ♦Enabled〈AHarvest〉QuFood(loc1)

SF1.H �[N ]QuFood(loc1) ∧ SFQuFood(loc1)(Aharvest) ⇒ P � QHarvest

Condition SF1.1 describes a progress step where either state P or QHarvest

can be produced.
Condition SF1.2 describes the inductive step where 〈AHarvest〉QuFood(loc1)

produces state QHarvest.
Condition SF1.3 ensures that 〈AHarvest〉QuFood(loc1) will be eventually en-

abled. Note that both conditions SF1.1 and SF1.2 do not contain any temporal
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operator. As a consequence, they are expressible in Event-B. SF1.3 is a temporal
formula that can be expressed in the leads to form. Thus, we can define SF1.31
as:

SF1.31 =̂ �[N ]QuFood(loc1) ⇒ P � ♦Enabled〈AHarvest〉QuFood(loc1)

To demonstrate that condition SF1.31 is true, we need to prove that the formula
♦Enabled〈AHarvest〉QuFood(loc1) holds.

Ants are able to reach food thanks to their movements for following food.
Thus if we assume that once an ant smells food, it will be able to follow it
(we do not consider case where food disappears suddenly), we can argue that
the event Act_Harv_Food is always eventually Enabled. Consequently, we can
prove SF1.31 under weak fairness assumption.
We consider:
QfollowFood =̂ Enabled〈AHarvest〉QuFood(loc1) and
AFollowFood =̂ Act_Follow_Food.
We apply WF1:

WF1.311 P ∧ [N ]QuFood(loc1) ⇒ (P ′ ∨Q′
FollowFood)

WF1.312 P ∧ 〈N ∧AFollowFood〉QuFood(loc1) ⇒ Q′
FollowFood

WF1.313 P ⇒ Enabled〈AFollowFood〉QuFood(loc1)

WF1.31 �[N ]QuFood(loc1) ∧WFQuFood(loc1)(AFollowFood) ⇒ P � QFollowFood

WF1.311,WF1.312 and WF1.313 do not contain any temporal operator, so that
they are directly expressible in Event-B.

5 Related Work

Related work cited in this section deals in the first part, with the formal mod-
eling and verification of self-organization. The second part is devoted to the
presentation of works using Event-B for the development of adaptive systems.

Formal Modeling of Self-organizing Systems
In [6], Gardelli uses stochastic Pi-Calculus for modeling SOMAS for intrusion
detection. This formalization was used to perform simulations using the SPIM
tool to assess the impact of certain parameters, such as the number of agents and
frequency of inspections, on the system behavior. In [4], a hybrid approach for
modeling and verifying self-organizing systems has been proposed. This approach
uses stochastic simulations to model the system described as Markov chains and
the technique of probabilistic model checking for verification. To avoid the state
explosion problem, encountered with model-checkers, the authors propose to use
approximate model-checking based on simulations. The approach was tested for
the problem of collective sorting using the PRISM tool. Konur and colleagues
([10]) use also the PRISM tool and probabilistic model checking to verify the
behavior of robot swarm, particularly foraging robots. The authors verify proper-
ties expressed by PCTL logic (Probabilistic Computation Tree Logic) for several
scenarios. These properties provide information, in particular, on the probabil-
ity that the swarm acquires a certain amount of energy for a certain number of
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agents and in a certain amount of time. Simulations were also used to show the
correlation between the density of foraging robots in the arena and the amount
of energy gained.

Most of the works exposed above use the model checking technique to evaluate
the behavior of the system and adjust its parameters. Although they were able
to overcome the state explosion problem and prove the effectiveness of their
approaches, these works do not offer any guidance to help the designer to find
the source of error in case of problems and to correct the local behavior at the
micro level. For the purpose of giving more guidance for the designer, we find
that the use of Event-B language and its principle of refinement are very useful.

Formal Modeling Using the Event-B Language
In [13], the authors propose a formal modeling framework for critical MAS,
through a series of refinement step to derive a secure system implementation.
Security is guaranteed by satisfying three properties: 1) an agent recovering from
a failure cannot participate in a cooperative activity with others, 2) interactions
can take place only between interconnected agents and 3) initiated cooperative
activities should complete successfully. This framework is applied to model crit-
ical activities of an emergency. Event-B modeling for fault tolerant MAS was
proposed in [12]. The authors propose a refinement strategy that starts by speci-
fying the main purpose of the system, defines the necessary agents to accomplish
it, then introduces the various failures of agents and ends by introducing the
communication model and error recovery mechanisms. The refinement process
ensures a set of properties, mainly 1) reachability of the main purpose of the
system, 2) the integrity between agents local information and global information
and 3) efficiency of cooperative activities for error recovery. The work of Hoang
and Abrial in [7] was interested in checking liveness properties in the context of
the nodes topology discovery in a network.

The proposed refinement strategy allows to prove the stability property, indi-
cating that the system will reach a stable state when the environment remains
inactive. The system is called stable if the local information about the topology
in each node are consistent with the actual network topology.

These works based on the correct by construction approach, often providing
a top-down formalization approach, have the particularity of being exempt from
the combinatorial explosion problem found with the model checking techniques.
They have the advantage of allowing the designer to discover the restrictions
to be imposed to ensure the desired properties. We share the same goals as the
works presented i.e. ensuring liveness properties and simplifying the development
by the use of stepwise refinements. Our refinement strategy was used to guide
the modeling of individual behaviors of agents, unlike the proposed refinement
strategies that use a top-down development of the entire system. We made this
choice to be as closely as possible to the bottom-up nature of self-organizing
systems.
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6 Conclusion

We have presented in this paper a formal modeling for SOMAS by means of
Event-B. In our formalization, we consider the system in two abstraction levels:
the micro and macro levels. This abstraction allows to focus the development
efforts on a particular aspect of the system. We propose a stepwise refinement
strategy to build a correct individual behavior. This refinement strategy is ex-
tended in order to prove global properties such as robustness and resilience. Our
proposal was applied to the foraging ants case study. While the proof obligations
were used to prove the correctness of the micro level models, it was necessary
to turn to TLA in order to prove the stability property at the macro-level. We
think that this combination of TLA and Event-B is very promising for formal
reasoning about SOMAS.
Our ambitions for future works are summarized in the following four points:

– Reasoning about the convergence of SOMAS by means of TLA.
– Introduction of the self-organization mechanisms, based on the cooperation

in particular, at the proposed refinement strategy of the local agents behavior
and the analysis of the impact of these mechanisms on the resilience of the
system. For the foraging ants, for example, the objective is to analyze the
ability of the ants to improve the rapidity of reaching and exploiting food
thanks to their cooperative attitude. To achieve this aim, we plan to use a
probabilistic approach coupled with Event-B.

– Definition of design patterns for modeling and refinement of SOMAS and
their application to real case studies.

– Integration of the proposed formal framework within SOMAS development
methods in order to ensure formal proofs at the early stages of the system de-
velopment. This integration will be made by using model-driven engineering
techniques.
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Abstract. The belief-desire-intention (BDI) architecture has been pro-
posed to support the development of rational agents, integrating theoret-
ical foundations of BDI agents, their implementation, and the building of
large-scale multi-agent applications. However, the BDI architecture, as
initially proposed, does not provide adequate concepts to produce intra-
agent modular software components. The capability concept emerged to
address this issue, but the relationships among capabilities have been in-
sufficiently explored to support the development of BDI agents. We thus,
in this paper, propose the use of three different types of relationships be-
tween capabilities in BDI agent development — namely association, com-
position and generalisation — which are widely used in object-oriented
software development, and are fundamental to develop software compo-
nents with low coupling and high cohesion. Our goal with this paper is to
promote the exploitation of these and other mechanisms to develop large-
scale modular multi-agent systems and discussion about this important
issue of agent-oriented software engineering.

Keywords: Capability, Modularisation, BDI Architecture, Agent-
oriented Development.

1 Introduction

The belief-desire-intention (BDI) architecture is perhaps the most adopted ar-
chitecture to modelling and implementing rational agents. It has foundations in a
model proposed by Bratman [3], which determines human action based on three
mental attitudes: beliefs, desires and intentions. Based in this model, Rao and
Georgeff [22] proposed the BDI architecture, integrating: (i) theoretical work on
BDI agents; (ii) their implementation; and (iii) the building of large-scale ap-
plications based on BDI agents. Although their work has been widely used to
model and implement BDI agents in theory and practice in academy, there is no
real evidence that this approach scales up.

Much work on software engineering aims to deal with the complexity of
large-scale enterprise software applications to support their development, and
a keyword that drives this research is modularity [18]. Software developed with
modular software components — i.e. components with high cohesion and low
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coupling properties — is more flexible and easier to reuse and maintain, and
can be built in parallel by different software developers given specified inter-
faces of modules and components. Although modularity is highly investigated
in the context of mainstream software engineering, it has been poorly addressed
not only in work on BDI agents, but also by the agent-oriented software engi-
neering community. Research in this context is limited to few approaches, for
example, modularisation of crosscutting concerns in agent architectures with
aspects [10,24] and the use of capabilities in BDI agent architectures [4,6].

We, in this paper, investigate the concept of capability, in order to allow the
modular construction of BDI agents, with the aim of supporting the development
of large-scale systems based on BDI agents (hereafter, agents). Capabilities are
modules that are part of an agent, and they cluster a set of beliefs and plans that
together are able to handle events or achieve goals. Therefore, it is a fundamental
abstraction to modularise a particular functional behaviour that can be added
to agents [13]. In particular, it was crucial and successfully used to modularise
intra-agent features in multi-agent system product lines [15,16]. The capabil-
ity concept is available in some of the BDI agent platforms, e.g. JACK [11],
BDI4JADE [14], and Jadex [21]; however, there is divergence on its implemen-
tation, and therefore there is no standard structure for this concept. A commu-
nality shared by different capability implementations is the ability to include
capabilities to another, but this relationship also varies in the different available
implementations, as well as their implications in the agent reasoning cycle at
runtime. Moreover, there is a single type of relationship between capabilities
in each implementation. This differs from the object-oriented paradigm, which
allows to establish many types of relationships between software objects, and
each of which makes the nature of the relationship explicit in the design, using
appropriate notations. Moreover, the relationship type also expresses semantic
implications, which is the case of the aggregation and composition relationships
between object classes.

We thus present an investigation of structures to improve the intra-agent
modularity of BDI agents. We propose the use of different types of relationships
that may occur between capabilities, specifically association, composition and
generalisation. Using different relationship types allows one to understand the
purpose of the relationship, its runtime implications, the intensity of coupling
between two capabilities, and what is shared between related capabilities, by
simply specifying the type of the relationship between the involved capabilities.
This differs from existing approaches that require specifying the visibility of in-
dividual fine-grained BDI agent components. For each type of relationship, we
describe both their structure and their implications at runtime, analysing how a
pair of related capabilities work together in the context of the agent reasoning.
These relationships may be used in combination to design and implement agents,
and we show examples of this scenario. Moreover, we show a preliminary evalua-
tion of our proposal, by comparing the design of agents composed of capabilities
using our relationships and the most common approach to relate capabilities [4],
implemented by Jack and Jadex. The presented relationships provide the basis
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Table 1. Capability Specification [6]

Part Definition

Identifier The capability identifier, i.e. a name.

Plans A set of plans.

Beliefs A set of beliefs representing a fragment of knowl-
edge base and manipulated by the plans of the
capability.

Belief Visibility Rules Specification of which beliefs are restricted to the
plans of the capability and which ones can be seen
and manipulated from outside.

Exported Events Specification of event types, generated as a con-
sequence of the activity of the capability, that are
visible outside its scope, and their processing al-
gorithm.

Perceived events Specification of event types, generated outside the
capability, that are relevant to the capability.

Capabilities Recursive inclusion of other capabilities.

for a discussion with respect to engineering aspects of agents, which support
the construction agent-based systems. Our aim is to promote the exploitation of
these and other mechanisms to develop large-scale modular multi-agent systems
and discussion about this important issue of agent-oriented software engineering.

This paper is organised as follows. We first introduce work related to ca-
pabilities and their relationships in Section 2. Then, we describe the different
capability relationships in Section 3, and exemplify their combined use in Sec-
tion 4. We next present a preliminary evaluation of our approach in Section 5.
We further analyse and compare these relationships and discuss relevant issues
from object-orientation in Section 6. Finally, we conclude this paper in Section 7.

2 Background and Related Work

We begin by presenting work that has been done in the context of capabilities.
We first introduce the concept of capability, and then discuss implementations
of its relationships in existing BDI platforms.

2.1 The Capability Concept

The capability concept was introduced by Busetta et al. [6] and emerged from
experiences with multi-agent system development with JACK [1,11], a BDI agent
platform. The goal was to build modular structures, which could be reused across
different agents. In Table 1, we detail the parts that comprise a capability ac-
cording to this work. Some of which are specific to the JACK platform, such as
the explicit specification of perceived events.

This work is the result of practical experience, so Padgham and Lambrix [17]
formalised the capability concept, in order to bridge the gap between theory
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and practice. This formalisation included an indication of how capabilities can
affect agent reasoning about its intentions. In order to integrate capabilities to
the agent development process, Penserini et al. [19] proposed a tool-supported
methodology, which goes from requirements to code. It identifies agent capa-
bilities at the requirement specification phase, based on the analysis models of
Tropos [5], and is able to eventually generate code for Jadex [21], another BDI
agent platform.

Among the different available platforms to implement BDI agents, such as Ja-
son1 [2] and the 3APL Platform2, three implement the capability concept: JACK3

[11], Jadex4 [4,21], and BDI4JADE5 [14]. As we already discussed how JACK ca-
pabilities are implemented, we next detail the other two implementations.

A Jadex capability is composed of: (i) identifier; (ii) beliefs; (iii) goals; (iv)
plans; (v) events; (vi) expressions; (vii) properties; (viii) configurations; and (iv)
capabilities. Some of these parts are platform-specific, such as expressions, which
are expressions written in a language that follows a Java-like syntax and are
used for different purposes, e.g. goal parameters or belief values. The BDI4JADE
capability, on the other hand, is composed of: (i) a belief base; (ii) a plan library;
and (iii) other capabilities. These are the explicit capability associations with
other BDI elements. As BDI4JADE is written in pure Java (no XML files),
other properties may be obtained by manipulating the capability parts, besides
the described components.

2.2 Capability Relationships in Existing BDI Platforms

Considering these three introduced BDI agent platforms that provide the capa-
bility concept, we will now discuss how each of these platforms provides capa-
bility relationships.

JACK. The JACK platform explicitly provides a single type of relationship:
inclusion, allowing the construction of a hierarchical structure. When this rela-
tionship is declared, the visibility of the involved capabilities’ components should
also be specified. Beliefs may be imported (i.e. shared with its enclosing agent or
capability), exported (i.e. accessible from its parent capability), or private (i.e.
local to the capability). Events have the role of goals in JACK, and in this plat-
form capabilities should explicitly declare the kinds of events that it is able to
handle or post. When declaring this information, an exports modifier is used to
indicate whether events are to be handled only within the scope of the capability
or by any other capability.

Although these modifiers increase the flexibility of the platform, their use in-
creases the possibility of breaking the code. When beliefs are exported, any other

1 http://jason.sourceforge.net/
2 http://www.cs.uu.nl/3apl/
3 http://aosgrp.com/products/jack/
4 http://www.activecomponents.org
5 http://www.inf.ufrgs.br/prosoft/bdi4jade/

http://jason.sourceforge.net/
http://www.cs.uu.nl/3apl/
http://aosgrp.com/products/jack/
http://www.activecomponents.org
http://www.inf.ufrgs.br/prosoft/bdi4jade/
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capability can access them, i.e. internal capability elements are accessible from
outside, and consequently inconsistencies in the capability’s beliefs may occur
due to the modification on these beliefs by other capabilities. This goes against
the principle of information hiding: it is equivalent to making attributes pub-
lic in objects. Although in object-orientation attributes are sometimes exposed
through getters and setters, this still preserves encapsulation, because a getter
hides the actual implementation of the value being returned and setters control
values to be assigned to an attribute.

Note that using solely capability inclusion results in limiting capabilities to
be used as hierarchical structures.

Jadex. Jadex extended [4] the capability concept of JACK, providing a model
in which the connection between an outer and an inner capability is established
by a uniform visibility mechanism for contained components. The implemented
relationship type is also inclusion, but it is more flexible by allowing the decla-
ration of abstract and exported components.

In Jadex, any component (beliefs, goals, plans and so on) can be used only
internally, if no modifier is specified. They can be exported, and thus accessed
outside the capability scope. In addition, they may be declared as abstract, and
be set up by an outer capability. For example, beliefs can be used only within
the scope of the capability, exported to outside the capability scope, or abstract,
meaning that a value of a belief outside the capability may be assigned to this
abstract belief. This way of modelling capabilities is similar to that discussed
above, and have the same issues.

Jadex was recently extended by changing its implementation based on XML
files to an implementation based on pure Java, as BDI4JADE, making an ex-
tensive use of Java annotations. This new Jadex version, namely Jadex Active
Components6 [20], makes the implementation of capabilities more flexible, as all
object-oriented features can be used.

BDI4JADE. BDI4JADE provides a flexible implementation as it is imple-
mented in pure Java, allowing the customisation of its BDI model implemen-
tation without requiring to change how source code files are processed and
compiled. Moreover, it allows the integration with frameworks that instantiate
software objects by reflection. Goals are declared as Java classes, and therefore
can be used in different capabilities. Moreover, Java modifiers can be used to
limit goal visibility, for instance, by using a package visibility.

As the other two agent platforms discussed, it implements only the inclusion
relationship. However, beliefs are always private to the capability, or accessible
by its included capabilities. A goal is added to an agent within a plan with a
specification of its scope. There are two possibilities: (i) it can be handled by
any plan of any capability; or (ii) it can be handled by the capability whose plan
added the goal, or any other included capability.

6 http://www.activecomponents.org/

http://www.activecomponents.org/
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Although BDI4JADE does not intend to provide inheritance, it is possible
to extend capabilities as they are Java classes — the same applies to other
Java-based platforms. However, if the belief base or plan library of the parent
capability is overridden by the child capability, the inheritance will loose its
meaning.

As discussed above, all the implementations of the capability concept provide
limited relationship types. Thus, we next introduce three different types of re-
lationships between capabilities, which can simplify the design of BDI agents
because, with a simple indication of the relationship type, it is possible to un-
derstand the coupling between capabilities.

3 Relationships between Capabilities

According to the object-oriented paradigm, a system is composed of software ob-
jects, which integrate state and behaviour. Such objects are building blocks to
construct complex structures, and can be combined using different forms of rela-
tionships. Similarly, BDI agents have state, captured by beliefs, and behaviour,
implemented by plans. A key difference is that a BDI agent is constantly run-
ning to achieve goals, and behaviour is not triggered by direct invocation, but
the agent reasoning process chooses a plan that is adequate to achieve its goal.
An agent can dynamically add goals to be achieved, i.e. they can dispatch goals,
during its reasoning cycle or execution of its plans.

As BDI agents can be complex, it is essential to modularise its parts and, as
introduced before, this is the main purpose of the capability abstraction. Agents
A are an aggregation of capabilities C, which are in turn composed of a set of
goals G (abstractions that represent a target to be pursued), a set of beliefs B
(a piece of knowledge identified by a name and has a value of a certain type)
and a set of plans P (which consist of actions to achieve a goal, identified by
an id), i.e. C = 〈G,B, P 〉. An isolated capability can: (i) dispatch only its own
goals G during the execution of its plans; (ii) access only its own beliefs B;
and (iii) its plans P are candidates to achieve only g ∈ G. In order to combine
such capabilities, we describe and analyse three types of relationships between
capabilities. These relationships are presented in Figure 1, which shows an ab-
stract meta-model of BDI agents. Capabilities can relate to each other using:
(i) association (Section 3.1), represented by the Association concept, when the
isComposition attribute is false; (ii) composition (Section 3.2), represented
by the Association concept, when the isComposition attribute is true; and
(iii) inheritance (Section 3.3), represented by the parent attribute.

Throughout this section, to illustrate relationships, we will use a scenario
in which we are developing two versions of an intelligent robot. The software
infrastructure to be developed includes the ability to clean the floor (either with
a sweep or with a vacuum cleaner) and to do laundry (regular and professional
washes). In order to do so, the robot should also be able to move around. One
version of the robot is to assist at home, and the other at professional laundries.
Further details about this scenario will be given in the following sections to
exemplify our relationships.
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Fig. 1. BDI Agent Meta-model with Capability Relationships

3.1 Association

As said above, software objects encapsulate both state (represented by attributes)
and behaviour (represented by methods). In order for a system to implement
functionality, objects collaborate by invoking methods of other objects with
which they are associated.

This collaboration is also needed for capabilities. Consider our scenario in
which we are developing an intelligent robot, which is responsible for household
duties, such as cleaning the floor and washing clothes. For both these duties, the
robot has to move around and, while executing plans for cleaning the floor and
washing clothes, the robot has to achieve a subgoal move(x, y), i.e. move from
a position x to a position y. In this case, our robot may have three modularised
capabilities — FloorCleaning, Laundry, and Transportation capabilities —
and both FloorCleaning and Laundry capabilities use the Transportation

capability to achieve their goals.
How objects can collaborate with each other is specified through their inter-

face, which is a collection of method signatures, which is inapplicable to capa-
bilities. Similar to objects, capabilities implement some functionality, and have
both state (represented by beliefs) and behaviour (represented by plans). How-
ever, while methods that are part of an object interface can be directly invoked
by other objects, plans are invoked within the context of the agent reasoning
cycle, and their execution are triggered by goals (or events, in some BDI mod-
els). As a consequence, in order for an agent behaviour to be the result of the
interaction of more than one capability, an important question arises: what is a
capability interface?

In a capability, beliefs are a piece of encapsulated knowledge, and are modified
(added, removed, or updated) by the capability’s plans. Consequently, following
the principle of information hiding, the manipulation of beliefs are restricted to
the capability. Plans, which correspond to methods, cannot be explicitly invoked,
as explained before. Therefore, they are accessible only within the context of the
capability, and are not part of the capability interface as well. Goals, on the
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Fig. 2. Association: Structure and Element Visibility

other hand, indicate the objectives that a capability may achieve, and possibly
there are different capability plans that can be used to achieve such goals. There-
fore, goals represent services that a capability may provide to another, and thus
comprise its interface. This definition of capability interface matches the goal-
oriented agent modularisation approach proposed by van Riemsdijk et al. [23].
Capability interfaces are illustrated in capabilities of Figure 2, in which goals
are in the border of the capabilities. Note, however, that there are goals used
only internally, and are not part of the capability interface. Therefore, goals of a
capability are split into two subsets G = EG∪ IG, where EG are external goals
and IG are internal goals.

Given that we now have an interface for capabilities — specified in terms of
a set of the external goals EG that a capability may achieve — we are able to
associate capabilities so that they can collaborate. An association is a relation
Capability × Capability, where a source capability CS uses a target capability
CT , by dispatching goals g ∈ EGCT , which will be handled and possibly achieved
by CT . The target capability, on the other hand, is not aware of the source ca-
pability. In the scenario described above, there are two association relationships:
one from the FloorCleaning (source) to the Transportation capability (tar-
get), and another from the Laundry (source) to the same Transportation capa-
bility (target). The Transportation capability has an external goal move(x, y),
part of its interface.

An implication of any capability relationship is the accessibility of certain
capability’s components by other capability. In the case of association, such
accessibility is shown in Figure 2. In this figure, and others similar presented
throughout the paper, we show what the capability is composed of goals, beliefs
and plans. These elements are in light gray when they can be accessed solely by
the capability to which they belong. When they are in dark gray, it means that
they can be accessed also by the other related capability, part of the relationship.
Figure 2 shows that all components within the scope of the target capability are
hidden and inaccessible by the source capability, except external goals, which
are part of the target capability interface.
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Table 2. Association: Implications at Runtime

Source Capability CS Target Capability CT

Accessible Beliefs BS BT

Dispatchable Goals GS ∪EGT GT

Candidate Plans PS PT

During the runtime execution of the agent reasoning cycle, a relationship also
has implications. Three kinds of implications must be analysed. (i) Accessible
Beliefs: during the execution of a plan of a capability, which beliefs can accessed?
(ii)Dispatchable Goals: which goals can be dispatched during the execution of
a capability’s plans? (iii)Candidate Plans: given a dispatched capability’s goal,
which plans are candidates to handle it? In Table 2, we detail the implications
at runtime of the association relationship. This table shows, for instance, that
during the execution of a plan of the source capability CS it can access only its
own beliefs BS , and dispatch its own goals GS and also external goals EGT of
the target capability CT . But a goal g ∈ EGT , dispatched possibly by CS , can
only be achieved by plans PT of the capability CT .

This described behaviour is similar to the notion of delegating a goal to an-
other agent, but it has a key important difference. A multi-agent system is a
multi-threaded system. Consequently, two agents mean two threads of execu-
tion, whereas two capabilities of one agent consist usually of a single thread of
execution. Therefore, it is a design choice to use one approach or another.

The association relationship is directed, but it may be bidirectional. In order
to better modularise an agent architecture, functionality associated with two
different concerns may be split into two capabilities, and they may use each
other to achieve their goals.

3.2 Composition

The association relationship allows us to modularise BDI concepts into two ca-
pabilities — composed of beliefs, goals, and plans — and each of which should
address a different concern, thus having high cohesion. The connection between
these capabilities is that the execution of at least one plan of the source capa-
bility requires achieving a goal that is part of and can be handled by the target
capability. In this case, each capability uses the knowledge captured by their
own beliefs to execute their plans.

However, there may be situations in which there should be shared knowledge
between capabilities, that is, a capability uses the information stored in other
capability’s beliefs in the execution of its plans. This is the case when an agent is
built by first developing functionality to achieve higher level goals, decomposing
it into lower level goals. In this case, the composition relationship is used, which is
also a relation Capability×Capability, and expresses the notion of containment.
This kind of relationship, illustrated in Figure 3, increases the coupling between
the two involved capabilities when compared to association.
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Fig. 3. Composition: Structure and Element Visibility

For example, the FloorCleaning capability of the robot agent must have
goals, beliefs and plans to both sweep the floor and vacuum the dust, when
there are carpets on the floor. As these are two different concerns, they may
be modularised into two capabilities (Sweeper and VacuumCleaner), each being
composed of the external goals related to their respective duty to be accom-
plished. The FloorCleaning capability, by having a composition relationship
with the Sweeper and the VacuumCleaner capabilities, can thus dispatch exter-
nal goals of these two capabilities — while executing a plan to clean a room, for
instance. This can also be performed using the association relationship, but now
there are three main differences.

First, the FloorCleaning capability may have knowledge stored in its beliefs,
such as those related to the environment, and they need to be used both to
sweep the floor and to vacuum the dust. So by composing the FloorCleaning

capability with the other two, the Sweeper and VacuumCleaner capabilities may
access the FloorCleaning’s beliefs in the execution of their plans. Second, these
capabilities can also dispatch goals of the FloorCleaning capability. This is
associated with the visibility of capability components involved in a composition
relationship, namely the whole and the part, which is shown in Figure 3. The
whole-capability is able to dispatch external goals of part-capability, but cannot
access other components, while the part-capability can access both the beliefs
and goals of the whole-capability.

Third, the Sweeper and the VacuumCleaner capabilities can have plans to
handle FloorCleaning’s goals, so if goals are dispatched in plans of this ca-
pability, they may be achieved by plans of the composed capabilities. This is
associated with the runtime implications of the composition relationship, which
are detailed in Table 3.

The composition relationship is transitive, as containment is. Consider a ca-
pability C that is part of a capability B, which in turn is part of a capability
A. C can access beliefs of both B and A in addition to its own beliefs (as
C’s whole consists of both A and B), in the same way that A’s goals can be
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Table 3. Composition: Implications at Runtime

Whole-capability CW Part-capability CP

Accessible Beliefs BW BP ∪BW

Dispatchable Goals GW ∪ EGP GP ∪GW

Candidate Plans PW ∪ PP PP
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Fig. 4. Inheritance: Structure and Element Visibility

handled by plans of both B and C, in addition to its own plans. As a consequence,
different compositions may be performed with capabilities that implement low
level behaviour.

3.3 Inheritance

While the association and composition relationships focus on collaborating ca-
pabilities, the goal of the inheritance relationship — which will now be discussed
— is mainly to promote reuse, by generalising common behaviour in a parent
capability and specialising it in children capabilities. It consists of a partial func-
tion parent : Capability � Capability, which relates a capability to its parent
capability, if it has one. This relationship increases the coupling between the
involved capabilities, with respect to the other two types of relationships. It is
also transitive, that is, a child capability inherits from its parent’s parent.

The development of a multi-agent system may involve building agents that
share a common behaviour, but have some particularities that distinguish one
from another. In this case, we may need to design a capability with a set of
beliefs, goals, and plans, to which other goals, beliefs and plans must be added
to develop particularities. The inheritance relationship thus allows to connect
this common behaviour to specialised variable behaviour. This relationship is
illustrated in Figure 4.

When a capability extends another, it inherits all the components of the par-
ent capability. Therefore, the components of a child capability can be seen as
the union of its components — beliefs, goals, and plans — with its parent’s
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Table 4. Inheritance: Implications at Runtime

(a) Parent Capability Instance.

Parent Capability CP Child Capability CC

Accessible Beliefs BP -

Dispatchable Goals GP -

Candidate Plans PC -

(b) Child Capability Instance.

Parent Child Capability CC

Capability CP

Accessible BP BC ∪ {b|b ∈ BP ∧ �b′ ∈ BC .(name(b) = name(b′))}
Beliefs

Dispatchable GP GC ∪GP

Goals

Candidate PC ∪ {p|p ∈ PP ∧ �p′ ∈ PC .(id(p) = id(p′))}
Plans

components. Such parent’s components can be accessed within the scope of the
child capability, that is, the child capability can: (i) dispatch both external and
internal parent’s goals; (ii) access and update parent’s beliefs while executing
its plans; (iii) have a goal handled and achieved by the parent’s plans; and (iv)
handle and achieve parent’s goals. This full access to the parent capability’s
components by the child capability is shown in Figure 4. The parent capability,
in turn, is not aware that there are capabilities that extend its behaviour.

In order to detail runtime implications of the inheritance relationship, we must
highlight that this relationship has a significant difference with respect to the two
previously presented relationships. When there are two capabilities related with
association or composition, at runtime, there are two instantiated capabilities
that are related to each other. In inheritance, we can either instantiate a parent
capability, which has no relationship with the child capability at runtime, or
instantiate a child capability, which inherits all parent capability’s components.
Therefore, at runtime, an instance of the parent capability access only its own
components, as shown in Table 4a. The child capability, in turn, may handle both
parent and child capabilities’ dispatched goals, besides accessing all their beliefs
and being able to dispatch all their goals, as detailed in Table 4b. Note that a
child capability may modify the behaviour of a parent capability. For example,
it may change values of beliefs, identified by a name, or the body of a plan
identified by an id. In such cases, the child capability overrides components of a
parent capability. Goals, on the other hand, are non-parameterised abstractions,
and adding a goal to the child capability that was also added in the parent
capability will produce the same effect as adding it just to the parent capability.

We will now illustrate a situation where inheritance may be used in the con-
text of the development of our intelligent robot. As introduced before, we have
physical robots, which are provided with some basic features, such as walking,
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moving arms, and so on, so that they are able to perform different household
duties, depending on the software deployed on them. Moreover, some of these
robots are developed for helping at home and and others for working on laun-
dries. The Laundry capability should have plans to wash clothes in the wash
machine and to hand washing, if the robot is for helping at home and, and if it
will work on laundries, it should also have components to dry cleaning. There-
fore, two capabilities may be designed: Laundry and ProfessionalLaundry. The
latter extends the former, adding new beliefs, goals, and plans needed to provide
the dry cleaning functionality.

4 Using Capability Relationships

Given that we presented the three capability relationships, we illustrate their
use in this section. We gave examples of their individual use in the previous
section within the same context, the intelligent robot example. In Section 4.1,
we combine the examples previously given by providing a big picture of the
design of our intelligent robot. In Section 4.2, we provide further examples of
the use of capability relationships in the context of transportation.

4.1 Intelligent Robots

We provided many examples in the context of robot development, where the
capability relationships may be applied to modularise agent concerns. We now
present an integration of these different examples to show how relationships can
be used together in the development of agents. An overview of the design of
the intelligent robots example is presented in Figure 5. This is an overview, and
therefore this figure does not correspond to the complete design of a system —
many agent components are omitted.

We use a simple notation. Capabilities are represented with rectangles, split
into four compartments: (i) capability name; (ii) goals; (iii) beliefs; and (iv)
plans. For relating capabilities, we use the notation previously introduced. And
we represent agents with ellipses, and an agent is an aggregation of capabilities.

The Laundry capability provides the basic functionality for washing clothes,
and it is extended by the ProfessionalLaundry capability — an instance of
the later adds the ability of dry washing to the former. The Laundry capa-
bility is associated with the Transportation capability, so that the Laundry

capability can dispatch goals related to transportation. Note that, because the
ProfessionalLaundry capability extends the Laundry capability, it also inherits
the association.

The FloorCleaning capability has a goal (clean), which is not handled by
any plan within this capability. It is, however, composed of two other capa-
bilities, each having a plan that can achieve it, so that they can be selected
to achieve the clean goal when appropriate (remember that capabilities have
other omitted beliefs, goals and plans). The execution of plans of the Sweeper

and VacuumCleaner capabilities also needs goals related to transportation to be
achieved, thus both of them are associated with the Transportation capability.
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Fig. 5. Example: Intelligent Robots

The different types of relationships that relate the capabilities of our example
causes different implications at the runtime execution of these capabilities, which
are in accordance to the implications previously introduced. We summarise such
implications in Table 5.

These capabilities are the building blocks to develop agents. A Maid agent
(that is used to help at home) is an aggregation of both the FloorCleaning

and Laundry capabilities, so that is can perform tasks related to them. The
Laudress agent (who performs duties at laundries) must be able to perform
other tasks related to washing clothes, therefore it is an aggregation of the
ProfessionalLaundry capability, which in turn inherits the behaviour of its
parent capability.

4.2 Driver Agents

We now will introduce a second example, which is in the transportation context.
The objective is to design agents able to drive cars and motorcycles. As above,
we will show an overview of the design, highlighting important parts of it, and
omitting details. This example is illustrated in Figure 6, and runtime implications
of capability relationships are described in Table 6.

The key functionalities associated with driving are implemented as part of
the Driver capability, which has beliefs with respect to the current speed and
location, an external goal drive(x, y) that it is successfully achieved when the
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Table 5. Intelligent Robots: Runtime Implications of Capability Relationships

Capability Accessible Dispatchable Candidate
Beliefs Goals Plans

Transportation (T ) BT GT PT

FloorCleaning (FC) BFC GFC ∪EGS ∪ EGV C PFC ∪ PS ∪ PV C

Sweeper (S) BS ∪BFC GS ∪GFC ∪EGT PS

VacuumCleaner (V C) BV C ∪ BFC GV C ∪GFC ∪ EGT PV C

Laundry (L) BL GL ∪ EGT PL

ProfessionalLaundry (PL) BPL ∪BL GPL ∪GL ∪EGT PPL ∪ PL

Table 6. Driver Agents: Runtime Implications of Capability Relationships

Capability Accessible Dispatchable Candidate
Beliefs Goals Plans

RoutePlanner (RP ) BRP GRP PRP

Driver (D) BD GD ∪EGRP ∪ EGGC PD ∪ PGC

MotoDriver (MD) BMD ∪BD GMD ∪GD ∪EGRP ∪EGGC PMD ∪ PD ∪ PGC

CarDriver (CD) BCD ∪BD GCD ∪GD ∪EGRP ∪EGGC PCD ∪ PD ∪ PGC

GearController (GC) BGC ∪BD GGC ∪GD PGC

agent has driven from location x to location y, and internal goals dispatched by
plans whose aim is to achieve the drive(x, y) goal. There are two extensions of
this capability: MotoDriver and CarDriver, which specialise the Drive capa-
bility to add behaviour specific to driving a motorcycle and a car, respectively.
Besides other omitted details, each has its own plans to perform similar tasks,
such as accelerating.

To drive from a location x to y, the Driver capability must first find a route
between these two locations. This is modularised into the RoutePlanner ca-
pability, which has knowledge needed to calculate a route (maps, congestion
zones, agent preferences, etc.), and different plans to find a route. To be able to
find the route, the Driver capability has an association with the RoutePlanner

capability, and consequently it can dispatch the findRoute(x, y) goal.
Finally, there is a complicated part related to driving, which is the control

of gears. This can be modularised in a separate capability, which needs specific
beliefs, goals and plans to do so. However, it also needs the knowledge that is part
of the Driver capability, and consequently there is a composition relationship
between the Driver and GearController capabilities. In order to build agents
able to drive a motorcycle or a car, an agent must aggregate the MotoDriver

capability or CarDriver capability, respectively.

5 Preliminary Evaluation

Given that we have presented our capability relationships and examples of their
combined use, we will now provide a preliminary evaluation of our approach.
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Fig. 6. Example: Driver Agents

If we compare our approach with the traditional BDI architecture, in which there
is no capabilities, our approach makes improvements from a software engineering
point of view. An agent, in the traditional BDI architecture, is composed of all
beliefs, goals and plans, which in our approach are decomposed into capabilities.
So, if we collect software metrics [7]7 — such as Lines of Code (LOC), Number
of Attributes (NOF), Lack of Cohesion of Methods (LCOM) — to compare
the design of this single agent with this agent decomposed into capabilities,
the former would have much higher values for these metrics than the latter,
indicating its poor design. However, the design improvement is not exclusively
promoted by capability relationships, but also because of the use of the capability
abstraction. Therefore, in order to make a fair comparison, we compare our
approach with the most traditional way for relating capabilities: capabilities can
be related using hierarchical composition, which allows to export and import
capability components.

Our comparison is made using a hypothetical design of two agents — AgentX

and AgentY — that are built using seven different capabilities. Each capability
has its goals, beliefs and plans. Although this scenario is hypothetical, it is
sufficient to show the impact of the two compared approaches in the design.

7 We interpret traditional object-oriented metrics in the following way to be used in
the context of BDI agents: beliefs and goals correspond to attributes, and plans
correspond to methods.
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Table 7. Comparison of Number of Capability Components

Design with Design with
Capability Capability Relationships Export/Import

#Goals #Beliefs #Plans #Goals #Beliefs #Plans

Capability A 4 3 6 4 3 6

Capability B 3 1 4 3 1 4

Capability C 2 3 3 5 5 3

Capability D 4 2 7 10 5 7

Capability E 3 2 4 10 3 4

Capability F 2 2 4 5 3 4

Capability G 3 2 5 7 2 5

The design of AgentX and AgentY using our proposed capability relationships is
shown in Figure 7a. We use the same notation used before, indicating also which
goal each plan can achieve beside the plan name. As can be seen, we use our
three relationship types: association, composition, and inheritance.

A design model of these same two agents and capabilities that has a similar
behaviour at runtime using the alternative design approach — i.e. using a single
type of relationship and indicating the particular capability components that
should be imported or exported — is shown in Figure 7b. The comparison of the
two designs shows that, in terms of number of components, the second design
model has much higher values, as detailed in Table 7. The high number of com-
ponents of the second design model compromises the legibility of the code, and
makes it harder to maintain. Moreover, some of the capability components must
be kept consistent when evolving the code, which also compromises maintenance.

This comparison is a preliminar evaluation of our approach with the most
common way of relating capabilities. Although the comparison uses a small and
hypothetical scenario, it already indicates the potential that our approach has to
improve the design of BDI agents. Moreover, it allowed us to identify limitations
of the use of import/export to related capabilities. First, specifying access to
particular beliefs is limited to beliefs specified at design time. If new beliefs
are added to a capability, no other capability can access it. In our approach,
the relationship specifies access to the set of beliefs of a capability, and if new
beliefs are added to this capability, other capabilities, such that those involved
in a composition relationship as part-capabilities, may access them. Second, the
common way of relating capabilities considers a tree-like structure, where each
capability has only one parent. However, there are situations, exemplified in
this paper, that different capabilities must be related to the same capability
(instance). And third, as can be seen in Figure 7b, modelling inheritance with
this import/export approach is complicated, and it gets even more complicated
when there are multiple levels in the hierarchy.
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6 Discussion

In this section, we discuss relevant issues with respect to the described capability
relationships. We first analyse them, pointing out their main differences and the
impact of choosing one or another in Section 6.1. We next discuss in Section 6.2
other object-oriented concepts, and how they are related to the presented rela-
tionships.

6.1 Relationship Analysis and Comparison

We have presented three different kinds of relationships between capabilities,
and understanding their differences in order to be able to choose one to be used
in agent design is important. We thus in this section make this discussion.

First, a key difference among these relationships is their purpose. Associations
should be used when different independent agent parts collaborate to achieve a
higher level goal. This is similar to collaborations among agents, but capabilities
are within the scope of a single agent, i.e. a single thread. Therefore, it is a
design choice to develop two agents, each of which with one capability and col-
laborating through messages, or to develop a single agent with two capabilities,
collaborating by dispatching goals to be achieved by other capability. Compo-
sition is adopted when the agent behaviour can be decomposed into modular
structures, but parts depend on the whole, providing the notion of a hierarchical
structure. And inheritance is used when there is a need for reusing a common
set of beliefs, goals and plans, and then specialising it in different ways.

According to software engineering principles, the lower the coupling between
capabilities, the better. Additionally, components of each capability should have
high cohesion. These presented relationships have different degrees of coupling
between the involved capabilities, so consequently relationships that reduce cou-
pling should be preferred, when possible. We summarise this comparison of the
relationships — discussed in the previous sections — in Table 8, which also in-
dicates the visibility of components of capabilities involved in the relationships.
For example, when there is a composition relationship, the whole-capability has
access to the part-capability’s external goals, while the part-capability has ac-
cess to the whole-capability’s beliefs, external goals and internal goals. We also
emphasise the purpose of each relationship. Therefore, choosing a certain capa-
bility relationship is a design choice that not only implies restrictions over the
visibility of the capability components, but also expresses the meaning of the
relationship.

Now, we will focus on the impact at runtime of choosing different capability
relationships. When a capability has access to components of another capability,
it may use these components at runtime. The access to beliefs is already shown
in Table 8, and this means that a capability can use and modify knowledge to
which it has access. Besides accessing other capability’s knowledge, a capability
involved in a relationship may: (i) dispatch goals of another capability when one
of its plans is executing; and (ii) execute a plan to achieve a goal of another
capability. We show when these two possibilities can happen in Table 9, which
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CapabilityD 
<< external>> goalD1 
goalD2 
goalD3 
<< external>> goalD4 
beliefD1 
beliefD2 
planD11 [goalD1] 
planD12 [goalD1] 
planD2 [goalD2] 
planD31 [goalD3] 
planD32 [goalD3] 
planD4 [goalD4] 
planDE3 [goalE3] 

CapabilityB 
<< external>> goalB1 
goalB2 
goalB3 
beliefB1 
planB11 [goalB1] 
planB12 [goalB1] 
planB31 [goalB3] 
planB32 [goalB3] 

CapabilityE 
<< external>> goalE1 
goalE2 
goalE3 
beliefE1 
beliefE2 
planE11 [goalE1] 
planE12 [goalE1] 
planE2 [goalE2] 
planEB2 [goalB2] 

CapabilityF 
<< external>> goalF1 
<< external>> goalF2 
beliefF1 
beliefF2 
planF1 [goalF1] 
planF2 [goalF2] 
planFB21 [goalB2] 
planFB22 [goalB2] 

CapabilityG 
<< external>> goalG1 
goalG2 
goalG3 
beliefG1 
beliefG2 
planG11 [goalG1] 
planG12 [goalG1] 
planG2 [goalG2] 
planG31 [goalG3] 
planG32 [goalG3] 

CapabilityC 
<< external>> goalC1 
goalC2 
beliefC1 
beliefC2 
beliefC3 
planC11 [goalC1] 
planC12 [goalC1] 
planC2 [goalC2] 

CapabilityA 
<< external>> goalA1 
<< external>> goalA2 
goalA3 
goalA4 

beliefA1 
beliefA2 
beliefA3 
planA11 [goalA1] 
planA12 [goalA1] 
planA2 [goalA2] 
planA31 [goalA3] 
planA32 [goalA3] 
planA4 [goalA4] 

AgentX 
AgentY 

Legend: 
         Agent 
         Capability 
         Association 
         Composition 
         Inheritance 
         Aggregation 

(a) Design with Capability Relationships.

CapabilityB 
<<exported>> goalB1 
<<exported>> goalB2 
<<exported>> goalB3 
<<exported>> beliefB1 
planB11 [goalB1] 
planB12 [goalB1] 
planB31 [goalB3] 
planB32 [goalB3] 

CapabilityF 
<<exported>> goalF1 
<<exported>> goalF2 
<<imported/exported>> goalB1 
<<imported>> goalB2 
<<imported>> goalB3 
beliefF1 
beliefF2 
<<imported>> beliefB1 

planF1 [goalF1] 
planF2 [goalF2] 
planFB21 [goalB2] 
planFB22 [goalB2] 

CapabilityG 
<<exported>> goalG1 
<<exported>> goalG2 
<<exported>> goalG3 
<<imported>> goalF1 
<<imported>> goalF2 
<<imported>> goalB1 
<<imported>> goalC1 

<<exported>> beliefG1 
<<exported>> beliefG2 

planG11 [goalG1] 
planG12 [goalG1] 
planG2 [goalG2] 
planG31 [goalG3] 
planG32 [goalG3] 

CapabilityC 
<<exported>> goalC1 
goalC2 
<<imported>> goalG1 
<<imported>> goalG2 
<<imported>> goalG3 
beliefC1 
beliefC2 
beliefC3 
<<imported>> beliefG1 
<<imported>> beliefG2 
planC11 [goalC1] 
planC12 [goalC1] 
planC2 [goalC2] 

CapabilityA 
<<exported>> goalA1 
<<exported>> goalA2 
goalA3 
goalA4 

beliefA1 
beliefA2 
beliefA3 
planA11 [goalA1] 
planA12 [goalA1] 
planA2 [goalA2] 
planA31 [goalA3] 
planA32 [goalA3] 
planA4 [goalA4] 

AgentX 
AgentY 

Legend: 
         Agent 
         Capability 
         Include 

CapabilityD 
<<exported>> goalD1 
goalD2 
goalD3 
<<exported>> goalD4 
<<imported>> goalE1 
<<imported>> goalE2 
<<imported>> goalE3 
<<imported>> goalB1 
<<imported>> goalB2 
<<imported>> goalB3 
beliefD1 
beliefD2 
<<imported>> beliefE1 
<<imported>> beliefE2 
<<imported>> beliefB1 
planD11 [goalD1] 
planD12 [goalD1] 
planD2 [goalD2] 
planD31 [goalD3] 
planD32 [goalD3] 
planD4 [goalD4] 
planDE3 [goalE3] 

CapabilityE 
<<exported>> goalE1 
<<exported>> goalE2 
<<exported>> goalE3 
<<imported/exported>> goalB1 
<<imported/exported>> goalB2 
<<imported/exported>> goalB3 
<<imported>> goalD1 
<<imported>> goalD4 
<<imported>> goalA1 
<<imported>> goalA2 

<<exported>> beliefE1 
<<exported>> beliefE2 
<<imported/exported>> beliefB1 
planE11 [goalE1] 
planE12 [goalE1] 
planE2 [goalE2] 
planEB2 [goalB2] 

(b) Design with Export/Import.

Fig. 7. Capability Relationships vs. Export/Import
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Table 8. Relationship Comparison (1)

Association Composition Inheritance

Purpose Collaboration Decomposition Extension

Coupling + ++ +++

Visibility

Source/ Beliefs X X
Whole/ External Goals X X
Parent Internal Goals X X

Plans X
Target/ Beliefs
Part/ External Goals X X
Child Internal Goals

Plans

Table 9. Relationship Comparison (2)

Whose goals can be dispatched
within the scope of this capa-
bility?

Whose goals can be
achieved by this ca-
pability’s plans?

Association
Source Source’s goals

Target’s goals (external only)
Source’s goals

Target Target’s goals Target’s goals

Composition
Whole Whole’s goals

Part’s goals (external only)
Whole’s goals

Part Part’s goals
Whole’s goals

Part’s goals
Whole’s goals

Inheritance
Parent Parent’s goals Parent’s goals
Child Child’s goals

Parent’s goals
Child’s goals
Parent’s goals

are associated with goal visibility. For example, if a whole-capability (of a com-
position relationship) dispatches one of its goals, this goal may be achieved by
the execution of a whole-capability’s plan or a plan of any the part-capabilities
(and their parts).

6.2 Further OO Concepts

In this paper, we propose the use of relationships from object orientation to
improve the modularity promoted by capabilities. This is just one of the object-
oriented mechanisms that support the construction of high-quality software sys-
tems from a software engineering point of view. In this section, we discuss other
mechanisms that may be adopted.

First, attributes and methods are always associated with an explicitly specified
visibility, which can be private, protected, or public. JACK and Jadex, as pre-
viously discussed, provide similar concept using the export keyword. Here, we
do not propose to use of visibility modifiers, except for goals, because exposing
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capability’s beliefs goes against the principles of encapsulation and information
hiding. In some situations, it is needed, and we provide mechanisms that explic-
itly show why there is a need for sharing beliefs, i.e. when there is a whole-part
structure, and the parts involved. Nevertheless, visibility may be helpful to re-
strict the access of part or child capabilities to components of the whole or parent
capabilities, respectively.

Associations between objects usually have a cardinality specified. If this is
also applied to capabilities, it will allow capabilities to be associated with more
than one instance of a capability. However, dispatching a goal of any of these
capabilities will produce the same effect, unless their fragments of knowledge
have different states, but this is unreasonable. We are not stating that any of
these mechanisms (visibility or cardinality) should not be used, but they should
be carefully analysed before being adopted in the context of capabilities, in order
to evaluate their usefulness and their meaning.

Classes of objects can be abstract, when they cannot be instantiated and
certain (abstract) methods must be implemented by subclasses. Although we do
not address abstract capabilities in this paper, our examples shown in Figures 5
and 6 indicate that it would be useful to specify when capabilities are abstract.
In the examples, the FloorCleaning and Driver capabilities have goals that
they cannot handle, and are handled by child or part capabilities.

Finally, configurations of how capabilities are structured can be investigated,
so as to form design patterns [9], or anti-patterns that should be avoided, such
as object-oriented code-smells [8].

7 Final Considerations

Modularisation plays a key role in software engineering and is crucial for devel-
oping high-quality large-scale software. However, it has limited investigation in
agent architectures, or more specifically BDI agents. Our previous studies have
shown that there is a lack of mechanisms that allow modularising fine-grained
variability in BDI agents [12].

Capabilities are one of the most important contributions to allow the construc-
tion of modularised BDI agent parts, increasing maintainability and promoting
reuse. Nevertheless, this concept could be further explored to provide more so-
phisticated tools to increase the quality of BDI agents from a software engi-
neering point of view, and supporting the construction of large-scale multi-agent
systems. In this paper, we investigated the use of three types of relationships be-
tween capabilities, which are association, composition and inheritance. Each of
which has a particular purpose, and indicates specific access to its components.
We showed examples of their use, and discussed the implications of each rela-
tionship at runtime. Although some BDI agent platforms provide mechanisms
to emulate most of these relationships, by means of the exportation of capabil-
ity’s components, they compromise maintenance, as shown in our preliminary
evaluation. Keeping track of all shared beliefs and capabilities that can handle
goals may become an error-prone task, thus making agents susceptible to faults.
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The main goal of this paper is to promote the exploitation of capability re-
lationships and other mechanisms to develop large-scale modular multi-agent
systems and discussion about this important issue of agent-oriented software
engineering. In this context, this work has left many open issues to be further
discussed, with respect to capabilities and modularisation into agent architec-
tures: (i) does it make sense to add visibility to all BDI agent components? (ii) is
there any situation where there should be cardinality in the association relation-
ship? and (iii) we specify the interface of a capability, but what is the interface
of an agent? We are currently working on a new version of BDI4JADE, which
will provide the capability relationships proposed in this paper, and it will soon
be available for download.
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Abstract. Using purely agent-based platforms for any kind of simula-
tion requires to address the following challenges: (1) scalability (efficient
scheduling of agent cycles is difficult), (2) efficient memory management
(when and which data should be fetched, cached, or written to/from
disk), and (3) modelling (no generally accepted meta-models exist: what
are essential concepts, what just implementation details?). While dedi-
cated professional simulation tools usually provide rich domain libraries
and advanced visualisation techniques, and support the simulation of
large scenarios, they do not allow for “agentization” of single compo-
nents. We are trying to bridge this gap by developing a distributed, scal-
able runtime platform for multiagent simulation, MASeRaTi, addressing
the three problems mentioned above. It allows to plug-in both dedicated
simulation tools (for themacro view) as well as the agentization of certain
components of the system (to allow a micro view). If no agent-related
features are used, its performance should be as close as possible to the
legacy system used.

Paper type: Technological or Methodological.

1 Introduction

In this paper, we describe ongoing work on a distributed runtime platform for
multiagent simulation, MASeRaTi, that we are currently developing in a joint
project(http://simzentrum.de/en/projects/desim). The idea forMASeRaTi
evolved out of two projects, Planets and MAPC. In both projects, we imple-
mented, completely independently, running systems for different purposes. One
to simulate urban traffic management, the other to simulate arbitrary agent
systems in one single platform.

Agent-Based Traffic Modelling and Simulation: We developed ATSim, a
simulation architecture that integrates the commercial traffic simulation
framework AIMSuN with the multiagent programming system JADE (im-
plemented in JAVA): ATSim was realized within Planets, a project on co-
operative traffic management (http://www.tu-c.de/planets).

F. Dalpiaz et al. (Eds.): EMAS 2014, LNAI 8758, pp. 81–102, 2014.
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Agent-Based Simulation Platform: We implemented, in JAVA, an
agent-based platform, MASSim, which allows several simulation scenarios
to be plugged in. Remotely running teams of agents can connect to it and
play against each other on the chosen scenario. MASSim has been developed
since 2006 and is used to realise the MAPC, an annual contest for multiagent
systems.

While the former system centers around a commercial traffic simulation plat-
form (AIMSuN), the latter platform is purely agent-based and had been devel-
oped from scratch. Such an agent-based approach allows for maximal freedom
in the implementation of arbitrary properties, preferences, and capabilities of
the entities. We call this the micro-level : each agent can behave differently and
interact with any other agent.

The traffic simulation platform AIMSuN , which easily runs tens of thousands
of vehicles, however, does not support such a micro-level view. Often we can
only make assumptions about the throughput or other macro-features. There-
fore, with ATSim, we aimed at a hybrid approach to traffic modelling and inte-
grated the JADE agent platform in order to describe vehicles and vehicle-to-X
(V2X) communication within a multiagent-based paradigm. One of the lessons
learned during the project was that it is extremely difficult to agentize.1 certain
entities (by, e.g. plugging in an agent platform) or to add agent-related features
to AIMSuN in a scalable and natural way.

Before presenting the main idea in more details in Section 2, we point to
related work (Section 1.1) and comment about the overall structure of this paper.

1.1 Related Work

In the past decade a multitude of simulation platforms for multiagent systems
have been developed. We describe some of them with their main features and
note why they are not the solution to our problem. The Shell for Simulated Agent
Systems (SeSAm) [22] is an IDE that supports visual programming and facili-
tates the simulation of multiagent models. SeSAm’s main focus is on modelling
and not on scalability.

GALATEA [9] is a general simulation platform for multiagent systems de-
veloped in Java and based on the High Level Architecture [24]. PlaSMA [14]
was designed specifically for the logistics domain and builds upon JADE. Any-
Logic(http://www.anylogic.com/) is a commercial simulation platform writ-
ten in Java that allows to model and execute discrete event, system dynamics and
agent-based simulations, e.g. using the included graphical modelling language.
MATSim(http://www.matsim.org/)was developed for large-scale agent-based
simulations in the traffic and transport area. It is open-source and implemented
in Java. The open-source simulation platform SUMO [23] was designed to man-
age large-scale (city-sized) road networks. It is implemented in C++ and sup-
ports a microscopic view of the simulation while it is not especially agent-based.

1 To agentize means to transform given legacy code into an agent so that it belongs to
a particular multiagent system (MAS) This term was coined in [29]. In [28], Shoham
used the term agentification for the same purpose.
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Mason [26] is a general and flexible multiagent toolkit developed for simulations
in Java. It allows for dynamically combining models, visualizers, and other mid-
run modifications. It is open-source and runs as a single process. NetLogo[30]
is a cross-platform multiagent modelling environment that is based on Java and
employs a dialect of the Logo language for modelling. It is intended to be easily
usable while maintaining the capability for complex modelling.

TerraME (http://www.terrame.org/) is a simulation and modelling frame-
work for terrestrial systems which is based on finite, hybrid, cellular automata
or situated agents. We are using a similar architecture (Section 3), but we add
some features for parallelisation and try to define a more flexible model and
architecture structure.

Most frameworks with IDE support are not separable, so the architecture
cannot be split up into a simulation part (e.g., on a High Performance Comput-
ing (HPC) cluster) and a visualisation/modelling part for the UI. Therefore an
enhancement with HPC structure produces a new design of large parts of the
system. Known systems like Repast HPC(http://repast.sourceforge.net/)

use the parallelisation structure of the message passing interface MPI
(http://www.mcs.anl.gov/research/projects/mpi/), but the scenario
source code must be compiled into platform specific code. Hence, the process of
developing a working simulation requires a lot of knowledge about the system
specifics.

Repast HPC represents a parallel agent simulation framework written in
C++. It introduces local and non-local agents which can be distributed along
with the environment among different processes. Technically, it uses Boost and
Boost.MPI to create the communication between the processes. A dedicated
scheduler defines the simulation cycle. A problem of Repast HPC is the “hard
encoding” structure of the C++ classes, which requires good knowledge about
the Repast interface structure. In our architecture, we separate the agent and
scheduling structure into different parts, creating a better fit of the agent pro-
gramming paradigm and the underlying scheduler algorithms.

Also, a number of meta models for multiagent-based simulation (MABS) have
been developed so far. AMASON [21] represents a general meta-model that
captures the basic structure and dynamics of a MABS model. It is an abstrac-
tion and does not provide any implementation. MAIA [15] takes a different
approach by building the model on institutional concepts and analysis. The re-
sulting meta-model is very detailed, focusing on social aspects of multiagent
systems. easyABMS [13] provides an entire methodology to iteratively and vi-
sually develop models from which code for the Repast Simphony toolkit can
be generated. The reference meta model for easyABMS is again very detailed
making it possible to create models with minimal programming effort.

To summarize, we find that most platforms are either written in Java or are
not scalable for other reasons. Many are only used in academia and simply not
designed to run on a high performance computing cluster. Common challenges
relate to agent runtime representation and communication performance.

 (http://www.terrame.org/)
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1.2 Structure of the Paper

In Section 2 we discuss our past research (ATSim and MASSim), draw conclu-
sions and show how it led to the new idea of a highly scalable runtime platform
for simulation purposes. We also give a more detailed description of the main fea-
tures of MASeRaTi and how they are to be realized. The main part of this paper
is Section 3, where we describe in some detail our simulation platform, including
the system meta-model and the platform architecture. Section 4 presents a small
example on which we are testing our ideas and the scalability of the system as
compared to MASSim, a purely agent-based approach implemented in Java. We
conclude with Section 5 and give an outlook for the next steps to be taken.

2 Essential Concepts and Features of MASeRaTi

In this section, we first present our own research in developing the platforms
ATSim (Subsection 2.1) and MASSim (Subsection 2.2). We elaborate on lessons
learned and show how this resulted in the new idea of the scalable runtime
platform MASeRaTi (Subsection 2.3).

2.1 Traffic Simulation (ATSim)

Most models for simulating today’s traffic management policies and their ef-
fects are based on macroscopic physics-based paradigms, see e.g. [17]. These
approaches are highly scalable and have proven their effectiveness in practice.
However, they require the behaviour of traffic participants to be described in
simple physical equations, which is not necessarily the case when considering
urban traffic scenarios. Microscopic approaches have been successfully used for
freeway traffic flow modelling and control [27], which is usually a simpler prob-
lem than urban traffic flow modelling and control, due to less dynamics and
better predictability.

In [8], we presented the ATSim simulation architecture that integrates the
commercial traffic simulation framework AIMSuN with the multiagent program-
ming system JADE. AIMSuN is used to model and simulate traffic scenarios,
whereas JADE is used to implement the informational and motivational states
and the decisions of traffic participants (modelled as agents). Thus, all features of
AIMSuN (e.g. rich GUI, tools for data collection and data analysis) are available
in ATSim, while ATSim allows to simulate the overall behaviour of traffic, and
traffic objects can be modelled as agents with goals, plans, and communication
with others for local coordination and cooperation.

AIMSuN (Figure 1(a), left side) provides an API for external applications
to access its traffic objects via Python or C/C++ programming languages. But
the JADE-based MAS (right side of Figure 1(a)) is implemented in Java, which
leads to problems with scalability. To enable AIMSuN and the MAS to work
together in ATSim, we used CORBA as a middleware. Technically we imple-
mented a CORBA service for the MAS and an external application using the
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(a) ATSim architecture
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(b) MASSim platform

Fig. 1. Overview of the platforms

AIMSuN API to access the traffic objects simulated by AIMSuN . The CORBA
service allows our external application to interact with the MAS directly via ob-
ject references. For details on the integration architecture, we refer to [8]. Two
application scenarios were modelled and evaluated on top of ATSim: The simula-
tion of decentralized adaptive routing strategies, where vehicle agents learn local
routing models based on traffic information [12], and cooperative routing based
on vehicle group formation and platooning [16]. The overall system shown in
Figure 1(a) was developed in a larger research project and contained additional
components for realistic simulation of V2X communication (extending the OM-
NET++ simulator), and for formulating and deploying traffic control policies;
see [11].

Our evaluation of the ATSim platform using a mid-sized scenario (rush hour
traffic in Southern Hanover, one hour, approx. 30.000 routes, see [11]) showed
that while the agent-based modelling approach is intuitive and suitable, our
integration approach runs into scalability issues. Immediate causes identified
for this were the computationally expensive representation of agents as Java
threads in Jade and the XML-based inter-process communication between Jade
and the AIMSuN simulator. In addition, system development and debugging
proved difficult because two sets of models and runtime platforms needed to be
maintained and synchronised.

2.2 Multi-Agent Programming Contest (MAPC)

The MASSim platform [5,4] is used as a simulation framework for the Multi-
Agent Programming Contest (MAPC) [2](http://multiagentcontest.org).
Agents are running remotely on different machines and are communicating in
XML with the server over TCP/IP. The server computes the statistics, gen-
erates visual output and provides interfaces for the simulation data while the
simulation is running.

A drawback of dividing the simulation in such a way is the latency of
the network that can cause serious delays. Network communication becomes a

 (http://multiagentcontest.org)
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bottleneck when scaling up; the slowest computer in the network is determining
the overall speed of the simulation. Running the simulation in one Java virtual
machine leads to a centralised approach that might impede an optimal run (in
terms of execution time) of a simulation.

Figure 1(b) depicts the basic components of the MASSim platform. MAS-
Sim will mainly serve us as a reference to compare scalability with MASeRaTi
right from the beginning (using the available scenarios). We want to ensure
that MASeRaTi outperforms MASSim in both computation time and number
of agents.

2.3 MASeRaTi: Challenges and Requirements

Our new simulation platform, MASeRaTi (http://tu-c.de/maserati), aims
at combining the versatility of an agent-based approach (the micro-view) with
the efficiency and scalability of dedicated simulation platforms (the macro-view).
We reconsider the three challenges mentioned in the abstract for using a purely
agent-based approach.

Scalability: Efficient scheduling of agent cycles is a difficult problem. In agent
platforms, usually each agent has her own thread. Using e.g. Java, these
threads are realised in the underlying operating system which puts an upper
limit of approximate 5000 agents to the system. These threads are handled
by the internal scheduler and are therefore not real parallel processes. In the
MASeRaTi architecture we develop a micro-kernel where agents truly run
in parallel. In this way, we reduce the overhead that comes with each thread
significantly. We believe that this allows for a much better scalability than
agent systems based on (any) programming language, where all processes are
handled by the (black-box) operating system. Additionally, many simulation
platforms use a verbose communication language (e.g., XML or FIPA-ACL)
for the inter-agent communication that becomes a bottleneck when scaling
up. We exploit the efficient synchronisation features of MPI instead.

Efficient Memory Management: Which data should when be fetched from
disk (cached, written)? Most agent platforms are based on Java or simi-
lar interpreter languages. When using them we have no control over the
prefetching or caching of data (agents need to access and reason about their
belief state): this is done by the runtime mechanism of the language. We do
not know in advance which available agent is active (random access), but
we might be able to learn so during the simulation and thereby optimise
the caching mechanism[1]. This is the reason why we are using the scripting
language Lua in the way explained in the next section.

Modelling Support: As of now, no generally accepted meta-model for
multiagent-based simulations exists. We would like to distinguish between
essential concepts and implementation details. What are the agents in the
simulation? Which agent features are important? We also want the mod-
elling framework to assist a simulation developer in creating her scenario
as well as hide the complexity of a parallelised simulation, while not being
restrictive in terms of modelling capability.

 (http://tu-c.de/maserati)
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So the main problem we are tackling is the following: How can we develop
a scalable simulation environment, where the individual agents can be suitably
programmed and where one can abstract away from specific features? We would
like to reason about the macro view (usually supported by dedicated simulation
tools) as well as zooming into the micro view when needed. The overhead for
supporting the microview should not challenge overall system scalability:

(1) If no agents are needed (no micro-view), the performance of MASeRaTi
should be as close to the legacy code (professional simulation tools) as pos-
sible.

(2) If no legacy code at all is used, MASeRaTi should still perform better or at
least comparable to most of the existing agent platforms (and it should have
similar functionality).

Due to general considerations (Amdahl’s law[18]) and the fact that not all pro-
cesses are completely parallelizable, it is not possible to achieve (1) perfectly (no
agents: performance of MASeRaTi equals performance of legacy code).

In addition to a scalable platform we also provide ameta-model for multiagent-
based simulations (MABS) in order to address the third challenge. The focus in
this paper is on the first two challenges. The meta-model serves as a general
starting point for the development of a MABS and ensures a certain structure
of a simulation that is needed by the underlying platform in order to facilitate
scalability. We have chosen Lua mainly because of its efficiency. It allows both
object-oriented and functional programming styles and is implemented in native
C. For details we refer to Section 3.2.

To conclude, we formulate these basic requirements for MASeRaTi that di-
rectly follow from the identified challenges: (1) the support of a macro and
micro view of a simulation, (2) a scalable and efficient infrastructure, and (3) a
multiagent-based simulation modelling framework that also supports non-agent
components.

3 Overview of the System

The overall architecture of our framework is inspired by concepts from game
development. The state of the art in developing massively multiplayer online
role-playing games (MMORPGs) consists in using a client-server architecture
where the clients are synchronised during game play [10] via a messaging system.
Well-known games include Blizzards’s World of Warcraft or EA’s SimCity 2013,
which supports multiplayer gaming with an “agent-based definition” in its own
Glassbox engine(http://andrewwillmott.com/talks/inside-glassbox).

While a game architecture is a good starting point for our purposes, of course
we cannot assume a server system with hundreds of hardware nodes, which is
powerful enough to handle a MMORPG system. Also, for developing purposes,
we need a system running on a single node (think of a common desktop PC).
The source code (i.e. scenario) developed there must then be transferable to a
HPC system, where the real simulation is executed.

 (http://andrewwillmott.com/talks/inside-glassbox)
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Our underlying agent-oriented meta-model uses the well established concept
of a BDI agent [28,31] in a variant inspired by the agent programming language
Jason [7] combined with the idea of an entity [3] that evolved out of experiences
gathered in the MAPC. However, the used concepts are completely exchangeable,
due to the flexibility of Lua, and developers are not forced to use them. In
our agent model, agents connect to these entities in the simulation world.
Agents consist of a body and a mind : While the mind (being responsible for
the deliberation cycle, the mental state etc.) does not have to be physically
grounded, the entity has to be located in an area of the simulation. Thus, an
entity is an object with attributes that an agent can control and that might be
influenced by the actions of other agents or the overall simulation. Intuitively,
an agent can be viewed as a puppet master that directs one (or more) entities.

3.1 Architecture

Our system is composed of three layers (Fig. 2):

Micro-Kernel (MK): The micro-kernel represents the technical backbone of
the system. It is written in the C++ programming language to get the neces-
sary performance and provides basic network parallelisation and scheduling
algorithms. The layer defines the system’s underlying structure containing
interfaces e.g. for plug-ins, serialisation, Prolog for knowledge representa-
tion and reasoning, or statistical accumulation. In short, this bottom layer
describes a meta-model for a generic parallel simulation (Section 3.2).

Agent-Model Layer (AML): The agent-model layer (Section 3.4) introduces
agent-oriented concepts (e.g. agents, environments, artifacts etc.) to the sys-
tem and thus describes a model of an agent-based simulation. It is imple-
mented in the scripting language Lua(http://www.lua.org/) [20] to ensure
maximum flexibility. Due to the multi-paradigm nature of Lua, pure object-
oriented concepts are not supported by default. That is, Lua uses only simple
data types and (meta-) tables. Fortunately, based on this, we can create an
object-oriented structure in Lua itself. This allows us to work in a uniform
fashion with UML models regarding the AML and the scenario layer.

Scenario Layer (SL): The third and topmost layer represents the instantia-
tion of the AML with a concrete scenario, e.g., a traffic setting or the MAPC
cow scenario (to be introduced later in Section 4). It is illustrated by dotted
boxes in Fig. 2 to emphasise the distinction from the AML layer. Section 4
provides an example of a concrete scenario fitting this layer.

An important aspect is the linkage between the three layers, and in particular
the connections between the micro-kernel and the AML (illustrated in Fig. 2)
which is discussed further in the following sections.

3.2 Micro-kernel

The micro-kernel represents the technical side of the system and is split up into
two main structures (Fig. 3(b)). The core part (below) contains the scheduler

 (http://www.lua.org/)
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Fig. 2. MASeRaTi system architecture: UML class diagram

algorithms, the core and memory management, the network and operating sys-
tem layers and the plug-in API together with a Prolog interpreter. Above these
core utilities, the Lua interpreter (top) is defined and each class structure on the
core can be bound to “Lua objects”. The Lua runtime is instantiated for each
process once, so there is no elaborated bootstrapping.

The choice of Lua was mainly motivated by the scaling structure and the
game developing viewpoint. Lua, a multi paradigm language, has been used for
game development for many years ([25]). An advantage of Lua is the small size
of its interpreter (around 100 kBytes) and the implementation in native C with
the enhancement to append its own data structures into the runtime interpreter
with the binding frameworks. The multiparadigm definition of Lua, especially
object-oriented and functional [20], can help us to create a flexible metamodel
for our simulation model. Lua can also be used with a just-in-time compiler.

The kernel defines basic data structures and algorithms (Fig. 3(a)):

Simulation: A global singleton simulation object, which stores all global op-
erations in the simulation e.g. creating agents or artifacts. It defines the
initialization of each simulation; the constructor of the Simulation object
must create the world object, agent objects, etc.

Object: Defines the basic structure of each object within the simulation. All
objects have got a UUID (Universally Unique Identifier), a statistical map
for evaluating statistical object data, the (pre-/post-)tick methods to run
the object and the running time data, which counts the CPU cycles during
computation (for optimisation).

Prolog: An interface for using Prolog calls within the simulation.

Each class is derived from the Lua Binding class, so the objects will be mapped
into the AML.

The mapping between the micro-kernel and the AML is defined using a lan-
guage binding concept. The Lua interpreter is written in native C. Based on this
structure, a C function can be “pushed” into the Lua runtime. The function will
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be stored into a global Lua table; the underlying C function is used with a script
function call.

Our concept defines the micro-kernel in UML; instantiated C++ objects
are mapped into the runtime environment by a Lua binding framework
(e.g. Lua Bridge (https://github.com/vinniefalco/LuaBridge) or Luabind
(http://www.rasterbar.com/products/luabind.html)). Classes and objects
in Lua are not completely separate things, as a class is a table with anonymous
functions and properties. If a Lua script creates an object, it calls the construc-
tor, which is defined by a meta-table function, the underlying C++ object will
be also created and allocated on the heap. The destructor call to an object de-
terministically removes the Lua object and its corresponding C++ object. All
C++ objects are heap-allocated and encapsulated by a “smart pointer”, as this
helps avoiding memory leaks. This concept allows consistent binding between
the different programming languages and the layer architecture.

Each Object comes from the Communication interface, which allows an object
to send any structured data to another object. Three subclasses inherit from the
central Object. This structure is necessary for creating a distributed and scalable
platform with optimisation possibility:

Synchronised Object: An object of this type is synchronised over all instances
of the micro-kernel (thread and core synchronised). It exists also over all
instances and needs a blocking communication. In the agent programming
paradigm the world must be synchronised.

 (https://github.com/vinniefalco/LuaBridge)
 (http://www.rasterbar.com/products/luabind.html)
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Fig. 4. Math plug-in architecture example

Non-synchronised Object: This object exists only on one instance of the
micro-kernel and can be transferred between different instances of the micro
kernel. It should be used e.g. for agents and norms, because the evaluation
is independent from other objects. Using the “execution time” of the tick
(time complexity), we can group such objects together.

Data-Type: This object represents a data structure, e.g. a multigraph for the
traffic scenario with routing algorithms (Dijkstra, A� and D�). The data
types will be pushed into the micro-kernel with the plug-in API. The Access-
Type creates the connection to the storing devices.

Synchronised and non-synchronized objects are implemented via Boost.MPI2

structure, and the Access-Type defines the interface to a database or the filesys-
tem for storing / loading object data. The access via the data interface will
be defined by the Boost.Serialization library2, so we can use a generic inter-
face. Based on the Data-Type we can use the defined plug-in API for math
datatypes, which allows e.g. to create a (multi-) graph interface for our traffic
scenario, based on Boost-Graph2. A plug-in is defined in a two-layer structure
(Fig. 4). The plug-in is written in C++ (the algorithm part) and based on
the Lua binding structure mapped into the higher layers (the function invoking
part). This two layer strucutre enables us to use a differential equation solver
like OdeInt(http://www.odeint.com/) to simulate the macroscopic view in the
simulation (e.g. a highway traffic model can be simulated with a differential
equation while employing a microscopic agent-based view for an urban traffic
area. The “glue” between these two types can be defined by a “sink / source
data-type”).

The plug-in interface is based on a native C implementation to avoid problems
with name managing in the compiler and linker definition. Plug-ins are stored
in a dynamic link library; they are loaded upon start of the kernel.

Design Tradeoffs. Next, we discuss alternatives and trade-offs when designing
a runtime system to take a deeper look into that of MASeRaTi. During runtime
we propose to ask which objects need to be defined as synchronised or non-
synchronised datasets. The implementation of the FIPA-ACL definition, e.g., is
a blocking operation, because we can update the object only after we have pro-
cessed the input data, so each external data input creates a slower performance.

2 http://boost.org/doc/libs/release/libs/

 (http://www.odeint.com/)
http://boost.org/doc/libs/release/libs/
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With the implementation we create additional workload, because parser, lexer
and interpreter must also process the data.

One MASeRaTi runtime instance implements a thread-pool (see
Subsection 3.3) which processes all objects. Scalability is obtained by looking
at local instances and taking the global view over all instances into account.

3.3 Optimisation

In [32], Wooldridge describes some pitfalls in agent developing:

1. “You forget that you are developing multithreaded software”.
2. “Your design does not exploit concurrency”.
3. “You have too few agents”.

As discussed in Section 3.2 there are two disjoint sets of objects in our simula-
tion: non-synchronised and synchronised objects. Taking the above three state-
ments seriously, our aim is to design a scalable, multi-threaded and multi-core
system which can handle a large number of agents that act concurrently. With
the technical restrictions (memory and number of threads), we need another
approach, which is inspired by the technical view of an MMORPG:

– We create a scheduler on its own to handle the agents. It is based on a thread
pool.

– We measure the average of the calculation time of each agent when it is
active (counting the CPU cycles).

– Based on this result, we optimise the number of agents between the micro-
kernels with a thread-/core-stealing algorithm (in future work we aim to
describe this with a stochastic process).

After having defined one discrete simulation step, we denote this step “tick” and
the process definition of one step is as follows (Figure 5):

run simulation step

synchronize object

call tick

[synchronized
object exists]

[else]

start time 
measurement

stop time 
measurement

call tick

[non synchronized
object exist]

[else]

foreach s imu lat ion step
foreach synchron ized ob j e c t

synchron i ze ob j e c t
ca l l t i c k

wait for a l l threads are f i n i s h e d

foreach non−synchron ized ob j e c t
start ob j e c t time measurement
ca l l t i c k
stop ob j e c t time measurement

wait for a l l threads are f i n i s h e d

Fig. 5. Simulation tick
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Fig. 6. Stealing process on an instance

Each simulation object owns a tick method, which is called by the scheduler
(pre/post tick calls are not shown here). There exist only two global blocking
operations for synchronisation over all kernel instances. Each micro-kernel pro-
cess runs the (global) synchronised objects first. After finishing, the simulation
environment is synchronised on each kernel. In the next step, the kernel runs
the non-synchronised objects. This second loop can be run in a fast way, e.g.
the agents do nothing, so the micro-kernel idles, then the while-loop sends “steal
requests” and gets objects from the other instances (Figure 6).

Figure 7 shows the stealing process (bullets are the agents, with different
calculation times) over all running MASeRaTi instances

....

....

world

micro 
kernel

micro 
kernel

micro 
kernel

process 1 process 2 process n

Fig. 7. Stealing process over all instances



94 T. Ahlbrecht et al.

Agent-model layer (AML)

Area

Non-Synchronized 
Object

Synchronized 
Object

Object 
Group

Simulation

perceive
think
act

Agent
type
getManual
use

Artifact

active
check

Norm

register
unregister
useEffector
getSensorData

Entity

BDI Agent

SensorEffector

1..*

Data-TypeProlog

Manual

*

* *

1
Institution

*

Fig. 8. Agent-model layer: UML class diagram

This idea allows the processing of a large number of agents with different
(complex) plans and belief bases, because we can define the optimisation process
with different targets and methods. The simulation consists of a finite number
of discrete steps and objects, so we can describe the process with a discrete
stochastic approach.

3.4 Agent-Model Layer

The agent-model layer (AML) (depicted in Fig. 8) defines a meta-model of an
agent-based simulation. It provides the basic structure and serves as a starting
point for an implementation. We start by explaining the structure, followed by
the overall system behaviour; we end with a general description of the develop-
ment process. Realization details (pseudo code) can be found in the appendix of
[1].

Structure. The structure of the meta-model is heavily influenced by the goal
of creating a simulation which can be distributed over several nodes or cores.
In such a parallelised multiagent simulation, the developer has to determine for
each object whether it has to be present on each and every core or if it is sufficient
to have the object running independently on a single core only. We prefer the
latter, since that implies less execution time. In contrast, an object like a global
artifact has to be accessible by virtually any other object. Thus, it must be made
available and therefore executed on each core.

The goal of the AML is to simplify the development of parallel multiagent
simulations by defining a number of abstract objects or object categories that
normally have to be synchronised and those that can usually run independently.
Nevertheless, a developer can easily modify the AML to her needs, in particular
redefining the synchronicity of objects.

Figure 8 illustrates the structure of the AML. Mainly, a simulation consists of
a singleton Simulation, the non-synchronised object types Agent, Norm, and the
synchronised classes Area, Artifact, ObjectGroup. While for the Simulation

only one instance is allowed, the other objects can be instantiated several times.
All instantiated objects are being executed in a step-based fashion and therefore
implement a tick method that is called exactly once per simulation cycle.
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Simulation: The simulation class in the AML is the Lua-based counterpart
to the simulation class in the MK. It is responsible for the creation, initial-
isation and deletion of objects. Thus, it is in full control over the simulation.

Agent: As we aim to simulate as many agents as possible we have to ensure
that this part of the model can run independently of the rest. Therefore
we define two kinds of agents as non-synchronised objects: a generic agent
based on [31] and a more sophisticated BDI agent [28] inspired by Jason [7].
The agent interacts with the environment through entities [3]. In general
an agent can have random access to the simulation world. Therefore, we
can only encapsulate some parts of the agent, namely the internal actions
and functions like reasoning. But the effects on the environment have to be
synchronised to make them known to all other objects. This is the reason
for splitting the agent into two parts: the mind (the agent) and the body
(the entity). The generic agent has three methods that are invoked in the
following order: (1) perceive, (2) think, and (3) act. Inside these methods,
those of the respective entity can be called directly while communication
between objects has to be realised by a synchronised object (for instance by
means of an artifact).

BDI Agent: The BDI agent is a little more sophisticated and consists of a
Belief Base representing the current world view, a set of Events describ-
ing changes in the mental state, a set of plans Plans, and a set of Intentions
describing the currently executed plans. Fig. 9 shows an overview of the agent
cycle. Black (continuous) lines represent the activity flow while red (dashed)
lines show the data flow. The agent cycle is executed from within the agent’s
tick method. In each tick, the agent first perceives the environment and
checks for new messages. Based on this information, the belief base is up-
dated and an event for each update is generated. From the set of events one
particular event is selected and a plan that matches this event will be cho-
sen and instantiated. During a simulation run this might result in multiple
instantiated plans at the same time and allows the agent to pursue more
than one goal in parallel. We decided to limit the agent to the execution of
one external action (that affects the environment) but allow several internal
actions per simulation tick. The next method selects the next action of an
instantiated plan (i.e. the next action of an intention). In contrast to Jason,
the agent cycle does not stop here if it was an internal action or a message,
i.e., an action that does not affect the environment. Thus, the agent selects
the next event (if possible) or next intention (if possible) until (1) it reaches
a global timeout (set by the simulation) or (2) an external action is executed
that forces a synchronisation, or (3) if the set of events and intentions are
both empty.

Artifact: For all passive objects of a simulation we use the artifact method-
ology defined in [6]. Basically, each artifact has a type, a manual in Prolog
(a description of the possible actions associated with it) and a use method
that allows an agent to execute a particular action, i.e. make use of the ar-
tifact. Due to the generality of this approach the developer decides whether
the actions are known by the agents beforehand or not. Additionally, since
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Fig. 9. BDI agent cycle: Activity diagram and data flow. Activity is red/dashed and
data flow is black/solid.

the artifact is defined as a synchronous object, one can consider a variation
of this object that implements a method for each of its offered capabilities
and allows for direct method invocation.

Area: So far, we defined the main actors of a simulation but how are they
connected among each other? An artifact does not have to be located inside
a real simulation, i.e., it does not need a physical position (in contrast,
most objects do need one). Therefore, we define an area as a logical or
physical space (similar to the term locality introduced by [19]). There can
be several areas, subareas, and overlapping areas. In the general case, agents
can perform a random access on the environment, so the areas have to be
synchronised and thus be available on all cores of the simulation platform.
Within an area, we define some basic data structures and algorithms for
path finding, etc. The most important issue, the connection of the non-
synchronised agents with the synchronised areas is realised by the use of
entities. Agents perceive the environment and execute actions by using the
entities’ sensors and effectors.

Entity: An entity can be seen as the physical body of an agent located inside
an area. An agent can register to it, get the sensor data, and execute actions
that possibly change the environment. The entity has some effectors and
sensors that are easily replaceable by the simulation developer. Since such
an entity represents the physical body of an agent and is meant to connect
an agent with the environment, it has to be synchronised over all cores.

Institutions and Norms: For now, we provided a rudimentary model as a
placeholder for future extension: An institution is an object that checks for
norm violations and compliance. It operates as a monitor and is also respon-
sible for sanctioning. But a developer can also decide to separate these two
tasks. For the future, we are planning to focus only on three kinds of norms:
obligations, permissions, and prohibitions. Additionally, we will focus on
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exogenous norms (events that occur in at least one area) and not on rules
that affect the agent’s mind, plans etc.

ObjectGroup: Finally, an ObjectGroup – as the name implies – defines a group
of objects. It can be used to group agents, artifacts or other objects. Method
calls on an ObjectGroup are forwarded to all group members, i.e., with a
single method call, all corresponding methods (with the same type signature)
of the group members are invoked. In order to reduce overhead and to avoid
circular dependencies we only allow a flat list of members at the moment.
However, if a hierarchy is needed, it can be easily implemented.

Agent-Model Layer Behaviour. So how does the overall behaviour look?
Initially the simulation object creates a number of agents, areas, object groups,
norms, etc., and changes the global properties in the three phases: preTick,
tick, and postTick. It can delete and create new agents during runtime. But if
the simulation developer decides to allow an agent to create another agent, this
is consistent with the meta-model. The agent cycles are executed in each tick

method. Also, the main procedures of artifacts, norms and areas are executed in
this phase. The preTick is intended to be used as a preparation phase and the
postTick phase for cleaning up.

Design Tradeoffs. As we have seen, the AML tries to facilitate the modelling
of a parallel multiagent simulation by helping the developer deciding whether
objects have to be synchronised or not. Of course, our classification might not
fit each and every possible use case. But because of the flexibility of this layer,
it is possible to easily adapt the AML to the specific domain.

Also, the layer cannot provide all of the concepts related to the agent-oriented
paradigm. We tried to identify those which are of utmost importance and thus
form something like the least common denominator of all agent-based simula-
tions. If further concepts are needed, they can be easily added on demand or
might be readily available if already implemented for another use case.

We mentioned that our BDI agent is restricted to perform at most one external
action per simulation cycle, while it is allowed to perfom internal actions until
it runs out of time. It will be easy to change this behaviour if it proves to be
disadvantageous both in terms of agent or platform perfomance.

We provided a BDI agent in order to (1) show how to transfer an agent concept
to the platform at this level of implementation and (2) ensure that the platform
is easily usable if no specific kind of agent is needed. While our platform is open
to use any agent concepts, it does not have to.

This section contains some heavy technical machinery and describes even
some low level features that are usually not mentioned. But our main aim is to
ensure scalability in an agent-based simulation system. In order to achieve that,
we came up with some ideas (using Lua and how to combine it with BDI-like
agents) that can only be understood and appreciated on the technical level that
we have introduced in this section.
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4 Evaluation: Cow Scenario

Scalability is an important requirement of the platform and therefore has to be
evaluated early on. For that reason we chose the cow scenario from the MAPC
as a first simulation that is realistic enough in the sense that it enforces the
cooperation and coordination of agents. As it is already implemented for the
MASSim platform, it can easily serve as a first benchmark.

In addition, we can test the suitability of the proposed meta-model and test
a first implementation. Furthermore, the cow scenario contains already some
elements of more complex scenarios (as in traffic simulation).

The cow scenario was used inMAPC from 2008 to 2010. The task for the agents
is to herd cows to a corral. The simulated environment contains two corrals—
one for each team—which serve as locations where cows should be directed to.
It also contains fences that can be opened using switches. Agents only have a
local view of their environment and can therefore only perceive the contents of
the cells in a fixed vicinity around them. A screenshot of the visualisation as
well as a short description of the scenario properties are depicted in Fig. 10. For
a detailed description we refer to [4]. Using the proposed meta-model AML we
can now implement the cow scenario in the following way.3

Fig. 11 shows how we derived the cow scenario classes from appropriate su-
perclasses of the agent-model layer. The grid of the environment is implemented
as an Area. Obstacles are defined by a matrix that blocks certain cells. The two
corrals are subareas located inside the main area. Fences will become Artifacts.
Similarly, we define a switch as an artifact that controls and changes the state
(opened or closed) of a fence when getting activated. The cows are realised by a
reactive agent that perceives the local environment and reacts upon it. For such
a reactive agent the basic Agent definition together with an entity represent-
ing the cow are sufficient, while for the cowboy agents we need a more complex
behaviour that facilitates coordination and cooperation. For this reason we use
the BDIAgent (recall Fig. 9) class and create an entity for each cowboy agent.
Furthermore, for each entity we create a simple MoveEffector that can be used
by the entities to alter their position and a ProximitySensor providing the en-
tities with their percepts. Additionally, we have to define the two teams by using
the notion of an ObjectGroup. Finally, the simulation creates all agents and
entities, assigns them to the two teams and creates the simulation world.

To conclude, this (very preliminary) evaluation shows that it is possible to
express each aspect of the scenario using the predefined classes without the
need to derive further ones from the synchronised or non-synchronised objects.
(Nonetheless, doing so still remains a possibility). Regarding the suitability of
Lua, it is an extremely flexible language that comes at the cost of a certain
degree of usability: any newcomer needs some time to master it. But even then,
having appropriate tools and methodologies that support the modelling process
is a necessity to ensure an improved workflow and reduced error-proneness.

3 The corresponding Lua code can be found in the appendix of [1].
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Fig. 10. The environment is a grid-like world. Agents (red (at top) and blue (at the
bottom) circles) are steered by participants and can move between adjacent cells. Ob-
stacles (green circles) block cells. Cows (brown circles) are steered by a flocking al-
gorithm. Cows form herds on free areas, keeping distance to obstacles. If an agent
approaches, cows get frightened and flee. Fences (x-shapes) can be opened by letting
an agent stand on a reachable cell adjacent to the button (yellow rectangles). An agent
cannot open a fence and then definitely go through it. Instead it needs help from an
ally. Cows have to be pushed into the corrals (red and blue rectangles).

Simulation Area Artefact Entity

Sensor Effector

Agent

BDI Agent

ObjectGroup

CowSimulation CowWorld

Corral

Fence

Switch

CowEntity

CowboyEntity

ProximitySensor MoveEffector TeamCowAgent

CowboyAgent

Agent-model layer (excerpt)

Cow scenario instance (Scenario layer)

Fig. 11. Cow scenario: UML class diagram
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5 Conclusion and Outlook

In this paper, we described ongoing work towards a distributed runtime plat-
form for multiagent simulation. The main contributions of this paper are: (1) an
analysis of the state of the art in agent-based simulation platforms, leading to a
set of requirements to be imposed on a simulation platform, focusing on runtime
scalability and efficient memory management; (2) the proposal of a novel ar-
chitecture and design of the MASeRaTi simulation platform, bringing together
a robust and highly efficient agent kernel (written in Lua) with a BDI agent
interpreter including multiagent concepts such as communication and computa-
tional norms; and (3) an initial proof of concept realization featuring a simple
application scenario.

The work presented in this paper provides the baseline for further research
during which the MASeRaTi system will be extended and improved. Issues such
as optimisation of the scheduler and the caching mechanisms sketched in the
appendix of [1] will be explored in more detail. Also, systematic experimental
evaluation will be carried out using more sophisticated and much larger traffic
simulation scenarios. As the ATSim platform introduced in Section 2.1 can deal
with a few thousand (vehicle) agents, we aim MASeRaTi to scale up to one
million agents of comparable complexity (corresponding to the micro-simulation
of multimodal traffic in a large city, including public transport, cars, pedestrians,
city logistics, and infrastructure).

Simulation results obtained this way can be compared to the performance
of other simulation frameworks using benchmark data; scalability can also be
described by varying certain parameters (e.g. number / complexity of agents)
and investigating the resulting degradation of performance. An idea for eval-
uating our optimisation approach (and in particular the adaptive mechanism
for allocating agents to nodes of the runtime system) is the following: By mod-
elling agents’ preferences, capabilities, and interactions, a certain structure is
imposed on the resulting MAS. We intend to evaluate the degree to which this
structure can be mapped to the allocation of agents to the nodes of the dis-
tributed runtime system, by a (domain-independent!) entropy measure. We are
also planning to consider different communication technologies like Bittorrent
(http://www.libtorrent.org/) for the inter-object communication.

Given the three objectives in the abstract, our focus in this paper has been
on the first two: scalability and efficient memory management, whereas we only
touched the third, modelling. Here, one avenue of research is to develop appro-
priate modelling tools to support the MASeRaTi architecture. Finally, method-
ologies for simulation development will be explored, starting from established
methodologies such as GAIA, Tropos, or ASPECS.
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Abstract. This paper proposes the Multi-Operation Patrol Scheduling
System (MOPSS), a new system to generate patrols for transit system.
MOPSS is based on five contributions. First, MOPSS is the first system
to use three fundamentally different adversary models for the threats of
fare evasion, terrorism and crime, generating three significantly differ-
ent types of patrol schedule. Second, to handle uncertain interruptions
in the execution of patrol schedules, MOPSS uses Markov decision pro-
cesses (MDPs) in its scheduling. Third, MOPSS is the first system to
account for joint activities between multiple resources, by employing the
well known SMART security game model that tackles coordination be-
tween defender’s resources. Fourth, we are also the first to deploy a new
Opportunistic Security Game model, where the adversary, a criminal,
makes opportunistic decisions on when and where to commit crimes.
Our fifth, and most important, contribution is the evaluation of MOPSS
via real-world deployments, providing data from security games in the
field.

Keywords: Security, Game-theory, Real-world deployment.

1 Introduction

Research in Stackelberg security games has led to several real-world deploy-
ments to aid security at ports, airports and air transportation [16]. Such sys-
tems generate unpredictable security allocations (e.g., patrols and checkpoints),
while carefully weighing each potential target, considering the scarcity of de-
fender resources and the adversary’s response. In a Stackelberg security game,
the defender (e.g., the security agency) commits to her strategy first, taking into
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account the attacker’s (e.g., a terrorist’s) ability to conduct surveillance before
launching his attack [5,6].

Among the different applications of security games, the problem of patrolling
a transit system has gathered significant interest [9,17]. Due to the large volume
of people using it every day, a transit system is a key target for illegal activities
such as fare evasion (FE), terrorism (CT) and crime (CR). The security of such a
system then, poses a number of challenges. The first challenge is multi-operation
patrolling. Whereas most previous work in security games has focused on single
threats which could be represented with a single adversary model (e.g., PRO-
TECT, TRUSTS and IRIS)[16], the comprehensive security of a transit system
requires different specialized security responses against three threats (FE, CT
and CR). The second challenge is execution uncertainty. Security resources are
often interrupted during their patrols (e.g., to provide assistance or arrest a sus-
pect). Thus, traditional patrol schedules are often difficult to complete. Current
research in security games has proposed the use of Markov decision processes
(MDPs) to plan patrols under uncertainty [9]. However, such schedules were not
actually deployed in the field, therefore, their real effectiveness has yet to be
verified in the real-world. The fourth challenge is accounting for joint activities.
In CT patrolling, security resources, such as explosive detective canine (EK9)
teams, often patrol train lines in cooperation with other resources. By doing
so, their effectiveness is increased. Recently, [14] proposed a new security game
model, SMART (Security games with Multiple coordinated Activities and Re-
sources that are Time-dependent), that explicitly represents jointly coordinated
activities between defender’s resources. [14]. Yet, similarly to the work of [9]
discussed earlier, this framework has still not been deployed in the real-world.
The fourth challenge is crime. Literature in criminology describes criminals as
opportunistic decision makers [15]. At a specific location, they decide whether
to commit a crime based on available opportunities and on the presence (or lack
thereof) of security officers. Thus far, this type of adversary—less strategic in
planning and more flexible in executing multiple attackes— has not been ad-
dressed in previous work, which has focused on strategic single shot attackers
[16].

The fifth and most important challenge is that, despite earlier attempts [13],
the actual evaluation of the deployed security games applications in the field
is still a major open challenge. The reasons are twofold. First, previous appli-
cations focused on counter-terrorism, therefore controlled experiments against
real adversaries in the field were not feasible. Second, the number of practical
constraints related to real-world deployments limited the ability of researchers
to conduct head-to-head comparisons

To address these challenges, this paper introduces five major contributions.
Our first contribution is MOPSS, the first Multi-Operation Patrol Scheduling
System for patrolling a train line. MOPSS provides an important insight: the
multiple threats (FE, CT and CR) in a transit system require such fundamen-
tally different adversary models that they do not fit into state-of-the-art multi-
objective or Bayesian security game models suggested earlier [18,4]. Instead,
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in MOPSS each of the three threats is modeled as a separate game with its
own adversary model. These three game formulations provide security for the
same transit system, require data from the same transit system as input, use
smart-phones to display the schedules and share several algorithmic insights.
Our second contribution addresses execution uncertainty. We deployed MDP-
based patrol schedules in the field, and used sampling-based cross-validation to
handle model uncertainty in such MDPs [8]. Similarly, our third contribution
is the deployment of coordinated schedules for CT patrolling. We incorporate
the framework in [14] to MOPSS, and use it to generate patrols for counter-
terrorism. Fourth, we address crime patrolling. Our contribution is the first ever
deployment of opportunistic security games (OSGs). We model criminals as op-
portunistic players who decide whether to commit a crime at a station based on
two factors, the presence of defender resources and the opportunities for crime
at the station.

Our fourth contribution is the real world evaluation of MOPSS. This eval-
uation constitutes the largest scale evaluation of security games in the field in
terms of duration and number of security officials deployed. As far as we know,
it constitutes the first evaluation of algorithmic game theory in the field at such
a scale. We carefully evaluated each component of MOPSS (FE, CT and CR)
by designing and running field experiments. In the context of fare evasion, we
ran a 21-day experiment, where we compared schedules generated using MOPSS
against competing schedules comprised of a random scheduler augmented with
officers providing real-time knowledge of the current situation. Our results show
that our schedules led to statistically significant improvements over the com-
peting schedules, despite the fact that the latter were improved with real-time
knowledge. For counter-terrorism, we organized a full-scale exercise (FSE), in
which 80 security officers (divided into 14 teams) patrolled 10 stations of a
metro line for 12 hours. The purpose of the exercise was a head-to-head compar-
ison of the MOPSS game-theoretic scheduler against humans. The comparison
was in terms of the schedule generation process, as well as provide a thorough
evaluation of the performance of both schedules as conducted by a number of
security experts. Our results show that MOPSS game-theoretic schedules were
able to perform at least equivalently to (and in fact better than those) generated
by human schedulers. Finally, we ran a two-day proof-of-concept experiment on
crime where two teams of officers patrolled 14 stations of a train line for two
hours. Our results validate our OSG model in the real world, thus showing its
potential to combat crime.

2 Transit Line Patrolling

The Los Angeles Sheriff’s Department (LASD), the security agency responsible
for the security of the Los Angeles Metro System (LA Metro), requested a multi-
operation patrol scheduling system to improve and facilitate the comprehensive
security of each train line. This system should generate randomized schedules
for three different operations each addressing a fundamentally different threat:
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Fare Evasion Patrols (FE): This type of patrol covers both the trains and
the stations of a train line. The purpose is to capture as many fare evaders as
possible to improve the perception of order within an area. Thus, this type of
patrolling should favor the locations with a large volume of riders because it
would lead to a large number of fare evaders caught.

Counter-Terrorism Patrols (CT): This type of patrol covers the stations of
a train line. Each station concentrates a large number of people at a specific
place and time. In addition, in Los Angeles, several stations are located within
key economic and cultural areas of the city (e.g., tourist locations, business and
financial districts). Thus, the effects on society of any successful attack on the
metro system would be catastrophic. Terrorists are then strategic adversaries
who carefully study the weaknesses of a train line before committing an attack.
To optimize security, this type of patrol should cover the different stations while
favoring the stations either with large passenger volume and/or located in key
areas.

Crime: This type of patrol covers the stations of a train line. Crimes can be of
different types including robbery, assaults and drug dealing. Each of this crimes
is a symptom that the train line’s security is not sufficient. In addition, criminals
behave differently than terrorists or fare evaders. They are opportunistic decision
makers, they randomly traverse a train line, moving from station to station,
seeking opportunities for crime (e.g., riders with smart-phones) [2,15]. The key
purpose of crime patrolling is then to patrol each of these stations, while favoring
the stations representing “hot-spots” for crime (i.e., the most attractive stations
from a criminal’s perspective).

Given the three operations defined above, the LASD computes patrol sched-
ules, manually, on a daily basis. This task, however, introduces a significant
cognitive burden for the human expert schedulers. Thus, to generate more effec-
tive schedules in a timely fashion, we introduce MOPSS, described in the next
section.

3 MOPSS

MOPSS addresses the global security of a transit system. Hence, it presents two
key advantages for the LASD. First, it can be used to generate specialized patrols
for substantially different threats and second it concentrates all the information
relevant to the comprehensive security of each transit line (e.g., crime and rider-
ship statistics). MOPSS is comprised of a centralized planner and a smart-phone
application (shown as a demonstration in [11]). The system is shown in Figure
1. The core of MOPSS consits of the three game modules. Each module gen-
erates patrols for one operation (FE, CT or CR). Each operation deals with a
fundamentally different adversary model (fare evaders, terrorists or criminals),
therefore each operation is modeled as a different two-player security game (the
defender’s resources represent the security officers). Each module takes as input
the information about the requested patrol (i.e., the number of officers, the start-
ing time and the duration) and connects to a database to get the data necessary
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Fig. 1. The MOPSS system

to build the security game model. Each game is cast as an optimization problem
and sent to the SOLVER which contains three algorithms, one for each game
[14,20,9]. Once the game is solved, the defender’s mixed strategy is sent to the
SAMPLER to produce the schedule which is uploaded into the application.

3.1 Fare Evasion Module

This module aims to generate the defender’s (i.e., security officers’) mixed strate-
gies against fare evaders [9]. The idea is to use such strategy to derive patrol
schedules that randomly favor the trains and the stations with a large volume
of riders. Fare evaders are modeled as daily riders based on statistics.

The key requirement of fare evasion patrolling is to be able to address ex-
ecution uncertainty. To do so, in the FE module, the mixed strategy for each
defender resource i is determined by an MDP denoted by a tuple 〈Si, Ai, Ti, Ri〉
where: (i) Si is a finite set of states (si = (l, τ) where l is a train or a station and
τ is the time step); (ii) Ai is a set of two actions: perform a train or a station
check (equivalently do a train or a station check) and (iii) Ti(si, ai, s

′
i) is the

transition probability which can model execution uncertainty such as an officer
being delayed while trying to conduct a fare check (e.g., due to arrests) and (iv)
Ri is the immediate reward for transition (si, ai, s

′
i). Although this reward could

potentially model more complex domains, it is unrelated to the game-theoretic
payoffs, and is not considered in the remainder of this work.

The FE game is then represented as a two player Bayesian zero-sum game
(see [9] for the definition of the linear program). Given a resource i and rider
λ ∈ Λ (i.e., defined by their daily itinerary in the train line), the objective is to
maximize the expected utility of the defender, defined as max

∑

λ∈Λ pλuλ where
each utility uλ is the defender’s payoff against passenger type λ, which has a prior
pλ calculated using ridership statistics (calculated using ridership statistics).
Each uλ is calculated by the constraint uλ ≤ xTUλeα∀λ, α where each utility
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Uλ(si, ai, s
′
i, α) represents the payoff that resource i will get for executing action

ai in state si and ending up in s′i, while the attacker plays action α (defined
by the base vector eα) and x is the marginal probability that the resource will
actually go from si to s′i. In other words, x represents the probability that the
officer will overlap with a fare evader of type λ playing action α.

The optimization problem defined above is used by the SOLVER module to
produce a mixed strategy represented as a Markov policy πi. The SAMPLER
then generates a single MDP patrol schedule that is loaded onto the handheld
smartphone. An example of such a schedule is shown in Figure 2(a). The figure
shows the schedule as it is visualized by the mobile application. The schedule
contains two actions: train checks and station checks. Given that there is now
a full MDP policy on the smartphone, a schedule can be updated whenever a
security officer is delayed, by pushing the ”>” button shown in Figure 2(a).

We next turn to instantiating the parameters in this game model for deploy-
ment. Fortunately, given fixed train fares and penalties for fare evasion, popu-
lating the payoff matrices is straightforward. Furthermore, via observations, we
were able to set the transition function Ti. However, the delay length, when-
ever an office was interrupted, seemed to vary significantly, and modeling this
variability became important. A continuous-time MDP or modeling multiple
fine-grained delays are both extremely expensive. As a practical compromise we
use a model considering a single delay whose value is chosen via cross-validation
[8]. First, we randomly generate N MDPs, each of which assumes that resource
i can experience delays of five different lengths: 6, 12, 18, 24 and 30 minutes
(any delay longer than 30 minutes is considered to be beyond repair and a new
schedule is generated). Second, we solve each MDP and obtain N Markov poli-
cies πk

i corresponding to each MDP k which we cross validate by running 100000
Monte Carlo simulations. In each simulation, we sample one strategy for the de-
fender and calculate the resulting expected utility against all N MDPs. Finally,
we pick the policy that maximizes the minimum. If the officer gets into a state
not directly represented in the MDP, we pick the next available state at their
current action.

(a) FE Schedule (b) CT Schedule (c) CR Schedule

Fig. 2. Three schedules for each threat of a transit system
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3.2 Counter Terrorism Module

The counter-terrorism module aims to generate a defender mixed strategy that
can be used to produce schedules that deter terrorists from attacking the stations
of a train line [14]. Since stations are often composed of multiple levels, these
schedules should then randomly patrol each of these stations while taking the
levels into account and while favoring the most important stations. Terrorists
are modeled as strategic adversaries who carefully observe the security of a train
line before executing an attack.

The key requirement of CT patrolling is to represent joint activities. We
achieve this by incorporating the SMART problem framework defined in [14]
in the CT component of MOPSS. A SMART problem is a Security Game [10]
such that each target t ∈ T is assigned a reward U c

d(t) and a penalty Uu
d (t) if t is

covered and uncovered by a defender’s resource. Similarly, each target is assigned
a reward U c

a(t) and a penalty Uu
a (t) for the attacker. The defender has a set of R

resources. Each resource chooses an activity from the set A = {α1, α2, . . . αK}
for each target t ∈ T . Each resource r ∈ R is assigned a graph Gr = (T,Er),
where the set of vertices T represents the set of targets to patrol and the set of
edges Er represents the connectivity between such targets. Each edge e ∈ Er is
assigned a time value τ(e) representing the time that it takes to one defender
resource r to traverse e.

The attacker’s pure strategy space is the set of all targets, T . A pure strategy
for the defender is a set of routes, one route Xi for each resource. Each route
is defined as a sequence of activities α, conducted at a specific target t with
specific duration γ. Joint activities are then represented when there exists two
routes Xi and Xj such that ti = tj and |γi− γj| ≤ W , i.e. when two activities of
two different resources overlap in space and time (within a time window W ). For
each activity αi, eff(αi) represents the individual effectiveness of the activity αi,
which ranges from 0% to 100%, and measures the probability that the defender
will be able to successfully prevent an attack on target t. The effectiveness of
the joint activity 〈αi, αj〉 is defined as eff(αi, αj).

Given these parameters, the expected utilities Ud(Pi, t) and Ua(Pi, t) for both
players, when the defender is conducting pure strategy Pi (defined as a joint
pure strategy for multiple defender resources), and when the attacker chooses to
attack target t is given as follows:

ωt(Pi) = max
(t,α,γ)∈Pi

{(t,αl,γl),(t,αm,γm)}⊆Pi,|γl−γm|≤W

{eff(α), eff(αl, αm)} (1)

Ud(Pi, t) = ωt(Pi)U
c
d(t) + (1 − ωt(Pi))U

u
d (t) (2)

Ua(Pi, t) = ωt(Pi)U
c
a(t) + (1− ωt(Pi))U

u
a (t) (3)

Here ωt(Pi) defined in Equation (1) represents the effective coverage of the
defender on target t when executing pure strategy Pi.

To solve this problem, we use SMARTH , a branch-and-price, heuristic ap-
proach, which we incorporate in the SOLVER component of MOPSS. SMARTH

is based on a branch-and-price framework, it constructs a branch-and-bound
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tree, where for each leaf of the tree, the attacker’s target is fixed to a different
t′. Due to the exponential number of defender pure strategies, the best defender
mixed strategy is determined using column generation, which is composed of
a master and slave procedure, where the slave iteratively adds a new column
(defender strategy) to the master. The objective of the pricing component is to
find the best defender mixed strategy x at that leaf, such that the best response
of the attacker to x is to attack target t′. The structure of the algorithm is il-
lustrated in Figure 3. In the figure, the master solves the non-zero-sum game to
get a defender mixed strategy over a small subset of joint patrol pure strategies.
After solving the master problem, the duals are retrieved and used as inputs for
the slave. The purpose of the slave is to generate a pure strategy which is then
added to the master and the entire process is iterated until the optimal solution
is found.

Fig. 3. The column generation algorithm

An example counter-terrorism schedule, as visualized by the mobile applica-
tion, is shown in Figure 2(b). The schedule describes two actions, observe (patrol
a station) and transit (go to a station) each with a specific time and duration.
The key challenge to deploy CT schedules is to define an accurate SMART prob-
lem instance to accurately encompass the real-world problem. To achieve this,
we had to define three types of features. First, we had to define the payoffs of
the game1. We defined the payoffs for each target (32 in total) in discussions
with security experts from the LASD. Each set of payoffs for each station was
based on the number of people using the station every day and by the economic
impact that losing this station would have on the city. The different levels of a
single station had slightly different payoffs which were based on the number of
persons present at each specific level of the station every weekday. Second, we
had to define the defender different resources, i.e., the type of teams participat-
ing to the experiment, which we will refer to as type 1 to type 52. Third, we
had to define the single and joint effectiveness for both the observe and transit
actions. All Transit actions were given a 0 effectiveness, since moving from one
station to another (i.e., riding the trains or taking the car) will not have any
effect on the security of the stations. Most teams were assigned the same positive
individual effectiveness of 0.7, except one Type 3 which has a greater individual
effectiveness because it is composed of officers from multiple agencies carrying

1 We are not able to reveal the value of these payoffs due to an agreement with the
LASD.

2 The real name of each type is omitted as requested by the agencies participating to
the FSE.
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heavy weapons. Resources of types 1, 2 and 3 typically work alone. Hence, to de-
fine their effectiveness values, their individual effectiveness is positive while their
joint effectiveness is null (any joint effectiveness value below 0.7 would induce
the same type of behavior, but we chose 0 since it is a clear indicator of the type
of behavior that we want to obtain). Resources of type 4 are assigned a joint
effectiveness greater then their individual effectiveness because they can perform
all type of activites, but, typically, they prefer joint over individual activities.
In contrast, resources of type 5 typically work only in cooperation with other
teams, therefore they are assigned a null individual effectiveness and a positive
joint effectiveness of 0.75.

3.3 Crime Module

The crime module aims to generate a defender mixed strategy to prevent crime
on a train line. The idea is to generate schedules that take criminal behavior into
account and attempt to predict the stations that are more likely to be affected
by crime. Crime statistics are used to characterize the behavior of criminals
and the attractiveness that they attribute to each station of the train line. The
key difference with the previous modules is that criminals behave differently
than fare evaders and terrorists. They are less strategic in planning crimes and
more flexible in committing them than is assumed in a Stackelberg game. They
opportunistically and repeatedly seek targets and react to real-time information
at execution-time, rather than strategically planning their crimes in advance.

Crime schedules are computed using an OSG [20]. An OSG is similar to a
Stackelberg game in that the defender commits to a patrol strategy first, after
which the criminal chooses the station(s) to attack given their belief about the
defender’s deployment. In an OSG, the defender’s actions are computed using
a Markov chain, which assigns probabilities for how the defender should move
through the train line. The criminal’s behavior is defined by a quantal-biased
random walk, i.e., the next station to visit for potentially committing a crime
is determined according the quantal response model [16]. This model takes as
input information the attractiveness Att(i) of each station i and the criminal’s
belief about the defender’s strategy which is updated using real-time observa-
tions. Station attractiveness is a measure based on crime statistics about the
availability of opportunities for committing crime as well as how likely criminals
are to seize such opportunities. The behavior models for both the defender and
the criminal are combined to form a Markov chain with transition matrix Ts,
which along with the rewards to the defender, define an OSG that can be solved
to generate an optimal defender strategy. To solve an OSG, we iteratively calcu-
late the defender expected utility Vd over all the possible states of the Markov
chain for a number of crime opportunities k as follows:

Obj = lim
K→∞

K
∑

k=0

Vd(k + 1)

= rd · (I − (1− α)Ts)
−1X1, (4)
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where Rd is a vector defining the utility of each state of the Markov chain in
terms of the payoff ud for the defender and the attractiveness Att(i); I is the
identity matrix; α is the probability of leaving the train line after an attack and
X1 is the initial coverage probability over all the possible states of the Markov
chain. By maximizing Obj (i.e., minimizing the total amount of crime in the
metro), we obtain a transition matrix T ∗

s . This matrix is then used to compute
the defender’s Markov strategy π.

The maximization of Equation 4 is a nonlinear optimization problem. There-
fore, to scale up to the number of states necessary to represent a real train line
we use the Compact OPportunistic security game State algorithm (COPS) [20]
in the SOLVER module. COPS returns a number of coverage probabilities for
the different stations of the train line. These are then sent to the SAMPLER
module which generates a schedule. An example of a schedule for crime patrolling
is shown in Figure 2(c). It describes three actions, go north (i.e., take the next
northbound train), go south (i.e., take the next southbound train) and stay (i.e.,
patrol a specific station).

To deploy crime schedules, two key challenges had to be addressed. The first
challenge deals with defining of the attractiveness parameter. In our work, we
define the attractiveness Att(i) of station i following the statistical model pre-
sented in [15]. Formally, Att(i) = 1−exp−aN(i), where N(i) is the number of past
crimes at station i (based on actual crime statistics received from the LASD)
and a is a weighting coefficient. The second challenge is the parameterization
of the criminal behavior model, which consists of defining the quantal-biased
random walk. In our crime tests (Section 4.3), we defined the criminal behavior
in collaboration with both security agencies and criminologists.

4 Real World Evaluation

In collaboration with the Los Angeles Sheriff’s Department (LASD), we designed
three types of real world tests, one for each of the three operations defined in
Section 2. Each of these tests allows us to evaluate different aspects of game-
theoretic patrolling. This evaluation introduces the following novelties: (i) in fare
evasion, we present the first real world deployment of game-theoretic schedules
and analyze their performance against real adversaries (fare evaders); similarly,
(ii) in counter-terrorism, we present the first real world head-to-head comparison
between game-theoretic and human generated schedules. Finally, (iii) in crime,
we introduce the first deployment of OSGs. The crime tests provide the first
real world data showing the benefits of game-theoretic scheduling when facing
opportunistic attackers.

4.1 Fare Evasion Experiment

This experiment took place over 21 days during the months of July and Au-
gust 2013. The organization of the experiment (e.g., train the security officers,
design and organize the experiment in collaboration with the LASD) required
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approximately two weeks. This experiment had two key purposes. The first was
to validate the MDP model of the Fare Evasion module (Section 3.1) in the real
world. The second was to run a head-to-head comparison between the game-
theoretic approach calculated using MOPSS and a Markov policy that takes
execution uncertainty into account, but that assign actions based on a uniform
random probability. The uniform random Markov strategy (Markov UR) assigns,
given a state s ∈ Si of the MDP defined in Section 3.1, a uniform probability to
all the actions taken in s leading to another state s ∈ Si. It was chosen because
it constitutes is the approach that security agencies adopt when they are not
using a game-theoretic approach for randomization. This section discusses the
setup of the experiment and the results that we obtained.

Fig. 4. The map of the blue line of the LA Metro

Experiment Setup. The fare evasion experiment took place on the Blue line
of the LA Metro system (see Figure 4 for the map of the metro line). Other lines
could not be tested, because the LASD only allowed us to use our strategies on
the Blue line during our real-world test. This line consists of 22 different stations
and is one of the biggest lines in the LA Metro system. It was selected by the
LASD, which helped to organize the experiment (e.g., assign security officers
and patrol times).

Each day, a team of two security officers (see Figure 5), was randomly selected
by the LASD, to patrol the line for a duration of at most 120 minutes. Patrols
were run during both the morning and the afternoon. Some days the tests ended
early due to the officers being reassigned. One of the two officers acted as the
leader of the team: he was given the smartphone, he had to read the schedule
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Fig. 5. Two security officers performing fare checks on a train

to the other officers, collect the data and eventually update it whenever a delay
occurred. An update could be made either during a station-check, i.e., when
checking riders at a station, or during a train-check, i.e., when checking riders
on the coach of a train. In the latter case, the officers were required to leave the
train at the next station to request an update. This was required because the
Markov strategy is defined over each state of the MDP (i.e., station, time). Thus
any new strategy has to be sampled from a specific state. Every week the team
was provided with one of two types of schedules:

Game-theoretic schedules (GT): This type of schedule was generated using
MOPSS’ fare evasion component (Section 3.1).

Markov UR schedules (UR): This type of schedule was generated by mod-
eling the problem as an MDP. However, the corresponding Markov strategy
πsi,ai , for each state si and action ai was calculated assuming a uniform
probability distribution.

The officers were not told which schedule they were using as not to bias their
performance. Before the experiment, we anticipated that the officers might view
some of the schedules as leading to low performance in terms of catching very
few fare evaders. In such situation, the officers, in order to avoid poor perfor-
mance, might end up voluntarily deviating from their given schedules to reach
a better location because they were unsatisfied with the current one. In antici-
pation of such voluntary deviations, we augmented both the game-theoretic and
UR schedules with the ability to perform updates. More specifically, we allowed
the officers to request VOLUNTARY or INVOLUNTARY updates. VOLUN-
TARY updates consisted of the officers updating the current schedule because
in their opinion, the current specified action was not fruitful as a venue to check
fares. Officers were allowed to choose a new location that they considered more
fruitful for catching fare evaders and request a new schedule from there. INVOL-
UNTARY updates consisted of the officers requesting a new schedule because
they were delayed (e.g., from issuing citations or arresting a suspect) and were
unable to perform the next action on their schedule. This type of update could
be requested anytime an officer was delayed. As we will see below the officers
used VOLUNTARY updates almost every day with the UR schedules, but never
in the GT schedules.
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Table 1. Patrol duration over each of the 21 days

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 total

GT 60 60 90 60 90 10 90 110 90 90 105 855

UR 60 60 60 60 60 75 100 100 100 90 765

Finally, it is important to notice that given the duration of our experiment, the
game-theoretic schedules are essentially testing a maximin strategy. As discussed
in Section 3.1, the fare evasion component computes a Stackelberg strategy, a
strategy based on the assumption that the riders will conduct surveillance and
observe the defender’s mixed strategy. However, considering only 21 days of pa-
trol whereby the officers could only patrol less than few hours per day, either
in the morning or the afternoon, we cannot assume that the riders had suffi-
cient time to conduct accurate surveillance, observe the mixed strategy and best
respond to it. Nonetheless, the FE component in Section 3.1 solves a zero-sum
game for which a Stackelberg equilibrium and the maximin strategy are known to
be equivalent [19]. Thus, since the maximin strategy provides a guaranteed level
of defender utility without making any assumption on the adversary’s surveil-
lance of the defender’s mixed strategy, these experiments compare the benefit
of using a maximin strategy against other (non-game-theoretic) approaches for
generating patrol schedules.

Results. During the 21 weekdays of our experiments, we were able to run GT
schedules for 11 days of testing while UR schedules were deployed for 10 days,
resulting in 855 and 765 patrol minutes, respectively. The schedules were com-
pared using two different metrics. First, we counted the number of passengers
checked and the number of captures at the end of each patrol. The captures were
defined as the sum of the number of warnings, citations, and arrests. Passengers
without a valid ticket could be given a warning or cited for a violation on the
discretion of the officer. This metric was chosen because it would allow us to
measure the performance of each schedule in the real world. Second, we counted
the number of times that the update function was used voluntarily and involun-
tarily. While involuntary updates helped determine the value of using MDPs as
discussed below, voluntary updates measured the human (officer) perception of
quality of the schedules – the more such voluntary updates, the more the officers
were dissatisfied with their given action. Table 1 shows the duration of each day
of patrol for both GT and UR schedules3.

As shown in the table, the actual duration of a daily patrol was often different
over the 21 days of the experiment, for both GT and UR schedules. For this
reason, providing a comparison normalized over the days of the experiment was
impossible. However, most of the days, we were able to collect data for multiples

3 As shown in Table 1, each day of patrol correspond to a 2-day test where GT
schedules were tested on the first day and UR schedules were tested on the second,
both at identical times.
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Table 2. Number of INVOLUNTARY (delays) deviations for each day of patrol

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 total

GT 0 1 3 1 1 0 2 2 4 2 1 18

UR 0 2 1 1 1 2 2 2 3 2 16

Table 3. Number of VOLUNTARY (updates) deviations for each day of patrol

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 total

GT 0 0 0 0 0 0 0 0 0 0 0 0

UR 1 0 1 1 1 0 1 1 1 1 8

of 30 minutes (e.g., 60, 90 minutes). Hence, to properly compare our results, we
divided our data in 30 minutes segments. More specifically, we considered all the
train and station checks within a time window of 30 minutes and collected the
data resulting from these actions4. Having defined the data points, we can now
proceed to analyze our results.

Validation of the MDP Model: As discussed at the beginning of this section
Both GT and UR schedules were calculated by solving an MDP. For this reason
both schedules could be updated to request a new schedule. Tables 2 and 3 then
show, for each day of patrol, the number of VOLUNTARY and INVOLUNTARY
deviations requested by the officers. In total, GT schedules were updated 18
times, all of which were involuntary deviations, i.e., delays. All these update
requests confirm that the MDP model was able to provide schedules that could
be updated whenever necessary.

All INVOLUNTARY deviations were due to the officers writing citations or
helping people. The average delay length was of 12 minutes (the largest delay
was of 20 minutes). In each case, as discussed at the beginning of this section,
a new schedule was provided starting at the officers’ current location and clos-
est time. Finally, Table 3 shows that voluntary deviations were used only with
UR schedules. This result strongly suggests that the officers were mostly satis-
fied with GT schedules. In addition, it means that GT schedules did not really
compete against UR schedules only. Rather, the comparison was between UR
schedules which were augmented with real-time human intelligence for most of
the time (8 out of 10 days). We discuss the results of such comparison next.

Game-Theory vs. Uniform Random: The results that we obtained are
shown in Figure 6 and in Table 4. Figure 6 shows eight boxplots depicting the

4 In so doing, the segments are also statistically independent. Within each segment
the officers will check different people who are unable to affect each other. Each
segment corresponds to a sample of different train riders taken at different times
and locations. Not only do the officers never check the same rider twice but most
importantly, during 30 minutes, they will visit different locations by riding the trains
(roughly, one train every 6 minutes in the blue line) and inspecting the stations (on-
station operations last no longer than 20 minutes).
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Fig. 6. Results of the Fare Evasion tests

data that we collected during each patrol, using both GT and UR schedules.
Respectively, the four figures present data collected on captures (Figure 6(a)),
warnings (Figure 6(b)), violations (Figure 6(c)), and passengers checked (Figure
6(d)) per 30 minutes of patrolling5. For each boxplot, the top and bottom of
the box represent the 75th and 25th percentiles, respectively, while the middle
line indicates the median of the collected data. The ”+” data points indicate
statistical outliers, while the whiskers show the most extreme non-outlier data
points. Each of the four figures (captures, warnings, violations and passengers
checked) shows that the data collected using GT schedules had higher values
than the data collected using UR schedules. As shown in Table 4, on average,
GT schedules led to, respectively 15.52 captures, 10.42 warnings and 5.03 vio-
lations issued every 30 minutes against, respectively against 9.55 captures, 6.48
warnings and 3.07 violations obtained using UR schedules. To confirm the statis-
tical significance of these results, we ran a number of weighted unpaired student
t-tests (p = 0.05) [7,1] and verified, for each metric, that the difference in the
results was statistically significant. We used a weighted t-test because some data
segments had a duration shorter than 30 minutes and we wanted to use all the

5 GT schedules also led to two arrests on day 6. This is why the patrol only lasted 10
minutes.
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Table 4. Average captures (C), warnings (W), violations (V) and passengers (P) based
on the results obtained in Figure 6

Days avg. C avg. W avg. V avg. P

GT 11 15.52 10.42 5.03 96.77

UR 10 9.55 6.48 3.07 60.85

available data for our analysis. As shown in Table 1, not all the patrol durations
could be properly divided into a finite number of 30 minutes segments (e.g., UR:
D6, D7, D8, D9 and GT: D6, D8, D11). Therefore, we calculated a weighted
average for each of the metric defined above, whereby each segment was given
a weight which was defined based on the segment’s duration (longer segments
corresponded to higher weights).

From a practical perspective, the magnitude of the difference between the two
approaches is significant: cumulatively over a period of 21 days GT would cap-
ture a much larger total number of fare evaders. This result can be emphasized
even further if we correlate it with the results shown in Tables 3 and 2. While
running UR schedules the officers were requesting INVOLUNTARY deviations
essentially every day, whereas no such deviations were requested while running
GT schedules. In other words, they were using real-time situation awareness
to augment the quality of the schedules, thus making the UR schedule more
compelling.

The results in Table 4 also indicate that GT schedules led to 96.77 passen-
gers checked every 30 minutes against 60.85 passengers checked by using UR
schedules. As discussed in [9], GT schedules are generated by leveraging all the
possible sequences of train and station checks and by taking into account key
dimensions such as the train schedules, the officers’ effectiveness and, most im-
portantly the daily ridership statistics. This means that stations or trains with
a higher presence of riders will be given a higher coverage probability since they
are more likely to contain fare evaders. Hence, these results confirm the accuracy
of the model as both Figure 6(d) and Table 4 show that GT schedules led the
officers to check more passengers than UR schedules.

This raises the question of whether a static type of schedule, which only
deploys the officers at the most crowded locations, would lead to similar or
even better results than those obtained with GT. Given the limited amount of
time that we had to conduct our experiments, we were unable to compare GT
schedules against a static deployment – where the key weakness is predictability
in the longer term. Indeed, effective randomization was one of the main reasons
for LASD to collaborate on these experiments – security agencies know that
static schedules become predictable in the long term6. After a certain amount of
time, the passengers would know where the officers are located and could exploit
this information to avoid paying the fare.

6 [16] discusses the benefits of randomization in detail.
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4.2 Counter-Terrorism Experiment

The purpose of this experiment is to run a head-to-head comparison between
MOPSS and a manual allocation, the standard methodology adopted by several
security agencies. Security agencies refer to this type of experiment as a mass
transit full scale exercise (FSE). A FSE is a training exercise where multiple
security agencies analyze the way their resources cooperate to secure a specific
area while simulating a critical scenario. This scenario typically describes a “high
level” threat, e.g., intelligence reports confirming that a terrorist attack might
take place in the Los Angeles Metro System. The FSE consists of simulating the
response to this threat, i.e., increasing the number of resources patrolling a train
line on a daily basis to improve the quality of the security.

Setup: The FSE consisted of patrolling 10 stations of one train line of the
LA Metro system for 12 hours. Each station on the train line is composed of
three levels (street level, platform level and mezzanine) except station 1 which
is composed of 5 levels (2 more platform levels). The exercise involved multiple
security agencies, each participating with a number of resources. Overall, 80
security personnel were involved. These resources were divided into 14 teams,
each with different abilities (see Section 3.2).

The exercise was divided into 3 different “sorties”, each consisting of three
hours of patrolling and one hour of debriefing. Human-generated schedules were
used during the first sortie while MOPSS schedules were used during the second
and the third sorties. The first two sorties were used to run the head-to-head
comparison. Hence, the sorties were ran under the same settings: the same num-
ber of officers had to cover the 10 stations for a cumulative time of 450 minutes.
The two sorties were ran during off-peak times (9h00 to 12h00 and 13h00 to
16h00, respectively), hence the type and the number of riders of the train lines
could be considered to be, approximately, the same. The purpose of Sortie 3
was to test whether the officers were capable of following MOPSS schedules for
a longer period (900 minutes instead of 450) and during peak time. We found
out that the officers were actually able to follow the schedules. Thus, since the
purpose of this Sortie was unrelated to our comparison, we will focus on Sorties
1 and 2 in the remainder of this section. Each type of schedule was generated as
follows:

MOPSS schedules: The schedules were generated by (i) instantiating a CT
game using the specifics of the FSE discussed earlier; (ii) solving this prob-
lem instance using the SOLVER and (iii) sampling a pure strategy in the
SAMPLER to generate the patrol schedule for each of the different resources
involved. Specifically, we ran the SMARTH in the SOLVER component, con-
sidering 14 resources and 32 targets. The algorithm produced a mixed strat-
egy which was then sampled to generate a pure strategy in the SAMPLER.
This pure strategy contains a schedule for each resource.

Manual Schedules: The schedules were generated by human expert schedulers of
the LASD. They were generated using a two-step process. First, each

station was assigned a coverage duration of 45 minutes (i.e., 1
10

th
of
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the time). The idea was to have the officers perform three observe actions at
each station. Second, the human expert schedulers assigned teams to each
station so that each station was covered for exactly 45 minutes. Joint team
activities were used 6 times in six different stations. This simple two-step
process was adopted to avoid the cognitive burden involved with leveraging
the effectiveness of each team to cover the different stations individually or
while coordinating with other teams. Despite its simplicity, this process was
difficult for the human expert schedulers. It involved several discussions and
required one entire day of work.

Results: We first analyze the type of schedules generated as a result of using
either MOPSS or manual scheduling. Then, we evaluate the results obtained by
deploying the schedules during Sorties 1 and 2 and measuring their performance
in the real-world.

Table 5. Count of Individual Activities

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Manual 3 3 3 2 3 2 2 2 2 2

MOPSS 2 2 3 3 2 2 2 3 3 2

Table 6. Count of Joint Activities

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Manual 0 0 0 1 0 1 1 1 1 1

MOPSS 1 0 0 0 0 2 0 1 1 1

The numbers of individual and joint activities for both the schedules generated
during the FSE are shown in Tables 5 and 6. In both tables we can see that the
number of individual (IA) and joint (JA) activities for both approaches are the
same (IA: both 24; JA: both 6). All the joint activities in the MOPSS schedules
are performed by CRM and EK9 teams, i.e., the teams with a positive joint
effectiveness. This is similar to the behavior of the manual generated schedules,
where joint activities are mostly performed by resources of types 4 and 5 (once by
a team of resources of type 3). The remaining individual activities are performed
by resources of type 1, 2 and 3.

There are two important differences between the two types of schedules. First,
MOPSS sent the most effective type, type 3, to the most important stations be-
cause its individual effectiveness is greater than the effectiveness of other teams.
This was not seen in the human schedule. Second, the schedules generated us-
ing MOPSS assigned the different teams to cover all the different levels of the
different stations, whereas manual schedules did not specify such levels. The
reason for this is that human schedulers were not able to reach this level of
detail and thus they preferred to leave the decision of which level to patrol to
the teams once they were deployed. In addition, the effort required to generate
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the schedules using MOPSS was much lower than the effort required to generate
manual schedules, which required one day of work due to its significant cogni-
tive burden. Since typically such patrols would be conducted day-in and day-out
for several days in high-threat periods, the savings of human effort achieved by
game-theoretic schedulers are thus very significant.

Each type of security allocation (either manual or game-theoretic based on
MOPSS) was evaluated by security experts. A team of security experts (SEs)
was placed at each station for the entire length of the exercise. Their task was
to observe and evaluate the officers’ patrolling activity during each sortie, and
determine how their behavior was affecting the quality of the security within
each station. In what follows, we report the conclusions of their analysis. The
SEs did not know what type of schedules (so as to not bias their evaluation). To
translate the observers’ observations into a comparable value, each observer was
asked to fill out a questionnaire every 30 minutes. The objective was to define a
number of key sentences that could help to qualify the way in which the security
officers had been patrolling the station in the last 30 minutes. Each question-
naire contained 11 assertions about the level of security within the station. The
assertions were defined in collaboration with a team of SEs from the LASD and
with social scientists. Each SE had to determine his level of agreement with each
assertion, which was defined in the integer interval {0,6}, where 0 meant a strong
disagreement, whereas 6 meant a strong agreement.

(a) Assertions (b) Stations

Fig. 7. Evaluation of the FSE: average agreement over the different questions and
stations

Figures 7(a) and 7(b) show the results that we obtained. Figure 7(a) shows
the weighted average agreement obtained for each assertion calculated over all
the stations (the average was calculated considering each station’s correspond-
ing weight). Figure 7(b) shows the average agreement obtained for each station
calculated over all the assertions. The error bars in both figures show the stan-
dard error of the mean calculated for each specific assertion (in Figure 7(a)) and
station (in Figure 7(b)). As we can see the difference between some data points
of the two approaches do not seem to be statistically significant. A student t-test
confirmed this trend. This is expected, since we were only able to collect data
for few hours of a single day. Nonetheless, we can still acquire some interesting
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information about the performance of game-theoretic schedules in the field, by
analyzing the results that are statistically significant.

In Figure 7(a), we can see that MOPSS schedules seem to yield a higher
level of agreement than manual schedules over all questions. As shown in the
figure, the difference is significant only for assertions Q1, Q2, Q8 and Q9.These
four assertions correspond to very general statements about the security at each
station which address the efficiency of the schedules, their ability to provide a
strong feeling of safety and to allow the officers to patrol each area as much as
needed.

Similarly, in Figure 7(b), we can see that the average agreement is higher for
MOPSS schedules over Manual schedules for stations S1, S2, S3, S4, S8, S9 and
S10. Some of these stations (S1, S8 and S9) are the ones assigned a higher set of
payoffs, as discussed above. Hence, they correspond to the ones given a higher
coverage by MOPSS.

These results indicate that game-theoretic schedules were evaluated as more
effective than manual schedules. By analyzing the differences between the sched-
ules, we can infer that this happened for two key reasons. First, as discussed
earlier, manual schedules were generated by leaving the decision of which level
of a station to patrol to each deployed team. The officers then, were not able to
properly coordinate over the different levels to patrol and therefore they ended
up patrolling the same levels. Second, MOPSS produced a schedule which more
effectively scheduled resources of type 3, i.e., the team with the highest effec-
tiveness (0.8) for covering each target. More specifically, the resources of type
3 patrolled all the most important stations at key levels. In contrast, manual
schedules assigned the same type of resources, without accounting for their ef-
fectiveness. This made an impact on the security evaluators, which considered
the game-theoretic allocation more effective than the manual allocation, because
it was leveraging the abilties of the resources in a way that human experts could
not achieve.

4.3 Crime Experiment

Our crime experiment was designed to be a proof-of-concept of MOPSS crime
component. As discussed in Section 3.3, OSGs are a new framework to represent
opportunistic adversaries. The purpose of our experiment is then to validate
this new framework in the real world to ascertain its ability to generate effective
schedules against crime. The experiment was organized as follows:

Setup: We ran tests for two days with each test consisting of a two hours
patrol involving two teams of two security officers. Each team had to patrol
seven stations of a particular LA Metro train line using schedules generated
using MOPSS. MOPSS generated the schedules by converting crime statistics
into a set of coverage probabilities for the different stations. Figure 8 shows
such probabilities and correlates them to the crime statistics for each of the 14
stations to patrol. In the figure, the x-axis enumerates the 14 stations to patrol.
The bar graphs (y-axis on the right) show, for each station, the total number
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of crimes that happened during 2012 and 2013. Finally, the line graph shows
the different coverage probabilities calculated for each station (y-axis on the
left). In the figure, the stations with a larger coverage probability (stations 5
to 10) are either the stations with a large number of crimes (stations 5 and 8)
or the adjacent stations (Stations 6, 7, 9 and 10). The latter stations are given
a large coverage probability because the OSG model anticipates the possibility
that criminals will choose stations 6, 7, 9 and 10 anticipating that stations 5
and 8 will be frequently patrolled by security officers [20]. Hence, these coverage
probabilities show how game theory allows to build real world patrol schedules.

Results: During the tests, the officers were able to write 5 citations and make 2
arrests. In general, they were able to understand and follow the schedule easily.
Overall, these tests indicate that the CR module in MOPSS can produce effective
schedules that would work in the real world.

Fig. 8. Crime Statistics and Coverage Probabilities

5 Lessons Learned

The work presented in this paper is the result of a long term collaboration
between university researchers and personnel from different security agencies in-
cluding decision makers, planners and operators. To interact with such security
agencies, we took inspiration from the lessons presented in [13]. We discussed
the strengths and weaknesses of every aspect of MOPSS and emphasized the
requirement of learning from the field to ascertain the performance of our sys-
tem. In addition, The field experience allowed us to discover two new insights
regarding real-world applied research in security games: (i) testing this research
in the field requires a period of “immersion” and (ii) users are a key factor when
when running field experiments.

The first insight is a key lesson for running field experiments. Any real world
test of a security game based system will involve real security officers protect-
ing a critical area for a long period of time. To succeed in such an experiment,
researchers should immerse themselves in order to deeply understand the way
officers and, more generally, a security agency operate every day. A period of
“immersion”, as we did for both the FE and the CT experiments, also ensures
that the security agencies do not think researchers as ivory tower occupants
leading to easier acceptance of technology. To test MOPSS, we spent several
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months observing the different security agencies patrolling the LA Metro to
understand how they operate so as to set up effective field experiments.

The second insight comes from our interactions with the security personnel.
These officers are the end users of our system. Thus, it is critical that they un-
derstand exactly the benefits of game-theoretic scheduling. Not doing this could
severely affect the results of the evaluation. As an example, at the beginning of
our FE tests (Section 4.1), the officers required a number of days to understand
that their schedules could be updated without having to request a new allocation
to the dispatch.

6 Summary

This paper steps beyond deployment to provide results on security games in the
field, a challenge not addressed by existing literature in security games. Readers
will notice that the paper does not contain any simulation results as all of our
results are based on real world experiments. We presented MOPSS, a novel
game-theoretic scheduling system for patrolling a train line. MOPSS introduced
five contributions not addressed in previous applied systems, including both
TRUSTS [18] and the system in [17].

The first contribution is multi-operation patrolling. Thus far, all existing
game-theoretic scheduling systems [16] (in particular TRUSTS) and the sys-
tem in [17] were focused on a single mission. In contrast, MOPSS is the first
deployed system to use three significantly different adversary models to develop
three different patrol schedules for the threats of fare evasion, terrorism and
crime. In contrast with previous work suggesting such threats could be modeled
as a multi-objective security game [4], A fundamental contribution of this paper
is the insight that these different threat types lead to fundamentally different
adversary models that cannot be folded into a single security game framework.
MOPSS then is built upon these three adversary models. The second contri-
bution deals with uncertain interruptions in the execution of patrol schedules.
Existing systems, including TRUSTS [18], generated patrols that were often in-
terrupted and left incomplete. This led to the use of MDPs for planning defender
patrols in security games [9]. MOPSS exploits this idea to generate patrols for
fare evasion. The third contribution is that MOPSS is the first system to gener-
ate patrols for counter-terrorism which accounts for joint coordinated activities
between defender resources. This is achieved by incorporating the framework in
[14] within both the SOLVER and the CT-Game in MOPSS. As a fourth contri-
bution, MOPSS is the first system to deploy the Opportunistic Security Game
model, where the adversary makes opportunistic decisions to commit crimes.

Finally, the fifth, and most important, contribution is the evaluation of MOPSS
via real-world deployments. We ran three field experiments showing the benefits
of game-theoretic scheduling in the real world. To the best of our knowledge, this
evaluation constitutes the first evaluation of security games and, most impor-
tantly, the largest evalutation of algorithmic game theory, in the field. Existing
literature on game theory in the field has focused on showing equilibrium con-
cepts in the human and animal activities [12,3]. Our work shares their enthusiasm
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of taking game theory to the field, but fundamentally focuses on algorithmic de-
ployments and the impact of such algorithms. Most importantly, our work opens
the door of applied research in security games to the realm of field evaluation.
Given the maturity that such research has acquired in the recent years and
its strong connection with real world patrolling problems, we argue that field
deployment should become a key area for future research in security games.
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Abstract. Open systems are characterized by a diversity of heteroge-
neous and autonomous agents that act according to private goals, and
with a behavior that is hard to predict. They can be regulated through
organizations similar to human organizations, which regulate the agents’
behavior space and describe the expected behavior of the agents. Agents
need to be able to reason about the regulations, so that they can act
within the expected boundaries and work towards the objectives of the
organization. In this paper, we describe the AORTA (Adding Organi-
zational Reasoning to Agents) architecture for making agents organi-
zation-aware. It is designed such that it provides organizational reasoning
capabilities to agents implemented in existing agent programming lan-
guages without being tied to a specific organizational model. We show
how it can be integrated in the Jason agent programming language, and
discuss how the agents can coordinate their organizational tasks using
AORTA.

1 Introduction

Open systems rely on organizational structures to guide and regulate agents, be-
cause these systems have no control over the internal architecture of the agents.
This means that the agents must be able to reason about the organizational
structures in order to know what to do in the system and how to do it. Reg-
ulations are often specified as organizational models, usually using roles that
abstract away from specific agent implementations such that any agent will be
able to enact a given role. Roles may restrict enacting agents’ behavior space,
such that it coincides with the expectations of the system.

Agents that can reason about organizations are organization-aware [20]. Or-
ganizational reasoning includes understanding the organizational specification,
acting using organizational primitives, and cooperating with other agents in the
organization to complete personal or organizational objectives. From the agent’s
perspective, there are two sides of organizational reasoning. First, how can it
contribute to the objectives of the organization, and second, how can it take
advantage of the organization, once it is a part of it.

From the organizational perspective, the system can be regulated, for exam-
ple, by blocking certain actions (for example through a middleware, such as
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Fig. 1. How AORTA differs from other approaches to program agents that can partic-
ipate in an organization

S-Moise+ [13], or governors in ISLANDER [10]), or by enabling the agents
to reason about the expectations of the system. In these cases, agents are thus
connected to the organizational entity via a bridge, as shown in figure 1(a).
Here, everything related to the organization is controlled and regulated by the
organization; the agent has little or no control over what happens.

AORTA (Adding Organizational Reasoning to Agents) [16] is an organiza-
tional reasoning component that can be integrated into the agent’s reasoning
mechanism, allowing it to reason about (and act upon) regulations specified by
an organizational model using simple reasoning rules. AORTA assumes a preex-
isting organization, is independent from the agent, and focuses on reasoning rules
that specify how the agent reasons about the specification. The organization is
completely separated from the agent, as shown in figure 1(b), meaning that the
architecture of the agent is independent from the organizational model, and the
agent is free to decide on how to use AORTA in its reasoning. The separation
is possible because AORTA is tailored based on an organizational metamodel,
designed to support different organizational models.

In this paper, we describe the AORTA architecture for making agents organiza-
tion-aware1. It is designed such that it can provide organizational reasoning
capabilities to agents implemented for existing agent platforms. We present an
integration of AORTA in the well-known agent platform Jason [2], and show
how it lets Jason-agents decide how to use their capabilities to achieve their
organizational objectives, and furthermore, how they are able to coordinate their
tasks.

We consider software architecture as the highest level of abstraction of a soft-
ware system. The AORTA architecture is designed as a component that can be
integrated into existing agent platforms. Existing agents are extended with an
AORTA component, which features an organizational reasoning cycle that per-
forms organizational reasoning, providing the existing agent with organizational
reasoning capabilities. Furthermore, the organizational reasoning is specified in
an AORTA-program in which organizational actions and coordination mecha-
nisms for each agent can be defined by the developer.

1 The implementation of the AORTA architecture is available as open source at
http://www2.compute.dtu.dk/~ascje/AORTA/.

http://www2.compute.dtu.dk/~ascje/AORTA/
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The rest of the paper is organized as follows. We begin, in section 2, with a de-
scription of the organizational metamodel, and briefly discuss a simple scenario,
which we later implement in AORTA and Jason. In section 3, we present the
AORTA architecture. Section 4 describes the integration with Jason. We discuss
related work in section 5 and conclude the paper in section 6.

2 Organizational Modeling

Organizational models are used in multi-agent systems to give agents an explicit
representation of an organization. Similarly to [7] we use concepts from Organi-
zational Theory (OT), which, even though it lacks formality, has been studied
for years and has been applied successfully. OT defines an organization as an en-
tity in which individuals have roles, and use these roles to accomplish collective
goals. Organizations are furthermore defined with a purpose; individuals in the
organization have intentions and objectives, which lead to the overall collective
goals.

Different models are proposed in the literature (e.g. Moise+[13], OperA [8],
ISLANDER [9]). These models typically use concepts from OT as well, especially
the notion of roles, abstracting implementation details away from expectations,
and objectives, defining the desired outcome of the organization.

2.1 Organizational Metamodel

AORTA uses an organizational metamodel, which is based on roles and objec-
tives.

Definition 1 (Organizational metamodel). The organizational metamodel
of AORTA is defined by the following predicates:

role(r,O) r is the role name, and O is a set of objectives.
objective(o) o is the name of an objective.
dependency(r1, r2, o) Role r1 depends on role r2 for completion of objective o.
order(o1, o2) Objective o1 should be completed before objective o2.
rea(a, r) Agent a enacts role r.
active(o) Objective o is currently active2.

Agents can reason about the organizational structure to make organizational
decisions. For example, if an agent enters an organization with the purpose of
completing a certain objective oi, it can reason about which roles to enact based
on that objective:

roles = {r | role(r,O) ∧ oi ∈ O}
Given such a set of possible roles, the agent can decide which role(s) to enact
based on the organizational structure. In particular: what are the other objec-
tives of a given role, do they coincide with the agent’s own objectives and is the

2 An objective is active if it has not yet been completed and all objectives it depends
on have been completed.
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role(medic,{injuredFound,injuredSaved,removeBlocker}).
role(officer,{fightFound,fightStopped}).
dependency(medic,officer,removeBlocker).

order(injuredFound,injuredSaved).
order(fightFound,fightStopped).

objective(injuredFound).
objective(injuredSaved).
objective(removeBlocker).
objective(fightFound).
objective(fightStopped).

Fig. 2. Organizational specification of the crisis response scenario

agent capable of completing them? Will the agent depend on other agents; or
conversely, will other agents depend on this agent for completion of their objec-
tives? Once a role is enacted it is furthermore useful to reason about the order of
the objectives; it provides a starting point and enables the agent to “plan ahead”
(e.g., after the completion of objective o1, objective o2 must be completed).

2.2 The First Responders Scenario

We consider a scenario of first responders at a fight between groups of people,
some of them being injured and requiring medical attention.

After a match between two sports teams, fans are fighting and some of
them are badly hurt. The authorities have been contacted, and a group
number of medics and police officers (the first-responders) have arrived.
The medics are supposed to help the injured, while the police officers are
supposed to break up the fight. The fans may try to prevent medics from
rescuing injured fans from the other team.

The organizational specification is shown in figure 2. For this paper, we as-
sume that the agents entering the organization are cooperative, that is, they
will pursue organizational objectives and cooperate with the other agents in the
organization. It is, however, simple enough to consider self-interested agents as
well; they will just be more likely to pursue their personal objectives rather than
those of the organization.

An agent entering the system will then need to decide which role(s) to enact,
for example, by comparing role objectives to its own objectives and reasoning
about the requirements of the role.

3 The AORTA Architecture

Agents are often based on the belief-desire-intention (BDI) model [18], where
each agent has beliefs about the state of the world, desires are possible states
of affairs that the agent might want to realize, and intentions are those states
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Fig. 3. The Organizational Reasoning Component of AORTA

of affairs that the agent has committed to (attempt to) realize. AORTA pro-
vides organizational reasoning capabilities to agents, and extends classical BDI
reasoning, allowing the agents to reason about organizational matters. Organiza-
tional reasoning is divided into organizational option generation, organizational
action deliberation and organizational coordination. An organizational option is
something that the agent should consider, such as an active objective, or a role
that can be enacted or deacted [15]. For instance, initially in the scenario, the
medics will only search for injured people. When all areas have been searched,
this objective has been completed and a new objective, rescuing the injured, will
be possible. An organizational action is the execution of an organizational op-
tion: actually enacting a role or committing to an organizational objective. This
creates the expectation (for the organization) that the agent should somehow
believe it is able to (help) achieve it, either by itself, by cooperating with other
agents, or by delegating it to one or more agents in the dependency relation of
its role. Note that self-interested or deceitful agents might know that they can-
not achieve an organizational objective, but will commit to it anyway to disturb
the organization. Organizational coordination is organization-level coordination,
which is based on the agent’s mental state.

AORTA puts organizational reasoning into a separate organizational reasoning
component inside the agent, which is connected to the mental state of the agent
(see figure 3). The component lets the agent hold beliefs about the organization
(its specification and instantiation) and can use that for reasoning about orga-
nizational objectives that are possible to achieve (or required to be achieved),
roles that can be enacted, norms that are enforced, and so on. An integration
of the organization within the agent makes the agent more likely to take both
the organization and its own beliefs into account in its reasoning. Furthermore,
by representing the organization as beliefs, the organizational structure can be
changed, if necessary. For example, if the organization changes (reorganization),
or if the agent finds out that it has wrong beliefs about the organization.
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Based on the agent’s mental state, AORTA can determine which organizational
options to choose, and the organizational actions might change the mental state.
For instance, in order to consider the available organizational options, AORTA
uses the agent’s capabilities and intentions. Furthermore, intentions may influ-
ence the reasoning, e.g., when the intention to coordinate a task requires use
of the organizational model. Finally, AORTA lets agents commit to objectives:
an organizational action leads to change in the agent’s intentions, corresponding
to the fact that the agent commits to the objective. The coordination compo-
nent sends messages using the mailbox, and incoming messages can change the
organizational structure.

3.1 Mental State

BDI agents usually have knowledge bases containing their beliefs and intentions.
In this paper, we consider agents that contain an AORTA-component, which
means that they not only have belief and intention bases, they also have knowl-
edge bases for the organizational aspect. Each knowledge base will hold different
kinds of formulas depending on their purpose.

Definition 2 (Knowledge bases). The AORTA knowledge bases are based on
a predicate language, L, with typical formula φ and operators ∧,¬, ∀. The agent’s
belief base and intention base are denoted Σa and Γa, respectively. The language
of the organization is denoted Lorg, and Lorg ⊆ L. The organizational specifica-
tion and options are denoted Σo and Γo, respectively. We then have the following
knowledge bases:

Σo, Γo ⊆ Lorg Σa, Γa ⊆ L
We define different kinds of formulas for each knowledge base, which allows

us to target specific knowledge bases in different situations.

Definition 3 (Formulas). AORTA uses reasoning formulas, LR, with typical
element ρ, which are based on organizational formulas, option formulas, belief
formulas and goal formulas.

ρ ::= � | org(φ) | opt(φ) | bel(φ) | goal(φ) | ¬ρ | ρ1 ∧ ρ2

Organizational formulas, org(φ), queries the organizational specification, op-
tion formulas, opt(φ), queries the options base, belief formulas, bel(φ), queries
the belief base and goal formulas, goal(φ), queries the intention (or goal) base.
We can use the formulas to specify things such as:

org(objective(injuredFound)) ∧ ¬bel(injuredFound),

where the first part of the conjunction queries the organizational specification,
Σo, and the second part queries the agent’s belief base, Σa. The formula queries
whether there is an organizational objective (to find victims), which the agent
currently does not believe it has achieved.
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Definition 4 (Mental state). The AORTA mental state MS is a tuple of
knowledge bases:

MS = 〈Σa, Γa, Σo, Γo〉.
The implementation of the mental state is based on tuProlog [6], which is

a Java-based lightweight implementation of ISO-Prolog. We chose tuProlog be-
cause of its efficiency and straightforward interface in Java, allowing us to query
a Prolog knowledge base without requiring any external system-dependent li-
braries. The AORTA component of each agent has its own instance of tuProlog,
comprising its entire mental state. That is, all knowledge bases of an agent are
implemented in a single Prolog instance by wrapping each rule in a predicate de-
pending on its nature. For example, the reasoning formula bel(a ∧ b)∧¬org(c ∧ d)
is converted to the following Prolog query:

bel(a), bel(b), \+ (org(c), org(d))

This translation makes querying straightforward, while still keeping the dis-
tinction between the different knowledge bases.

Note that the AORTA component contains its own copy of the agent’s mental
state, rather than integrating AORTA into the knowledge bases of the agent in
an existing platform. This means that the belief base and goal base of AORTA
must be synchronized with the agent, which could lead to pitfalls in an integra-
tion process (especially if the knowledge bases are not properly synchronized).
However, our aim is to enable AORTA to be integrated with most of the existing
agent platforms, and since it requires only that formulas must be converted be-
tween the language of AORTA and the agent platform in question, we find that
it makes the implementation of AORTA simpler to understand.

3.2 Acting and Coordinating

At the center of agents in AORTA are the organization-specific actions. While
the agent will have access to a number of domain-specific actions (such as a
medic performing a life-saving action), the AORTA component will furthermore
make it possible to consider certain organizational options (what happens by
enacting a certain role, pursuing an objective), or performing organizational
actions (enacting a role, committing to an objective).

Definition 5 (Organization-specific actions). The set of options with typ-
ical element aO is denoted Opt and the set of actions with typical element aA is
denoted Act.

aO ::= consider(φ) | disregard(φ)
aA ::= enact(ρ) | deact(ρ) | commit(φ) | drop(φ)

Actions are executed using a transition function, TO and TA, respectively. Each
action is only applicable in certain states. For example, consider(φ) can only be
applied if Σo |= φ in the current state, and the effect is that φ is added to Γo.
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Role enactment, enact(ρ), is applicable only when ρ is the name of a role and the
agent does not currently enact that role. Committing to an objective, commit(φ),
is possible only if φ is an organizational objective and φ is not already a belief or
a goal3. disregard(φ), deact(ρ) and drop(φ) simply remove the respective formula
from the appropriate knowledge base.

Notice the correspondence between elements in Opt and Act: if the agent
considers enacting a role, the enact action allows it to enact that role. However,
once the role is enacted, the option is no longer an option. Since the agent now
enacts the role, it seems appropriate to remove the option from Γo. This is done
using an option removal function, O, which removes options, when they are no
longer applicable (that is, when their respective organizational action would be
undefined).

We are now in a position to introduce organizational reasoning rules : option
and action rules. These rules enable the agent to decide which organization-
specific actions to perform.

Definition 6 (Reasoning rules). The sets of option rules RO and action rules
RA are defined as follows.

RO = {ρ =⇒ aO | ρ ∈ LR, aO ∈ Opt}
RA = {ρ =⇒ aA | ρ ∈ LR, aA ∈ Act}

Finally, since each agent has its own organizational state, they need to be able
to coordinate and synchronize their organizational knowledge. While such coor-
dination can happen in different ways, we choose to use organizational messages.
In order to determine whether a message is intended for AORTA, organizational
messages are wrapped in an organizational wrapper, om, which is an unary pred-
icate with the message as a single term.

Definition 7 (Organizational messages). An organizational message is de-
fined as

msg(α, om(M)),

where om is the organizational wrapper, and M is the message. In outgoing
messages, α corresponds to the set of recipient agents, and in incoming messages,
α is the sender.

Each agent can then specify how to coordinate using a set of coordination
rules, which specifies certain criteria for when and with whom to coordinate.

Definition 8 (Coordination rules). A coordination rule is a triple,

(c, φ,m),

where c is the trigger for coordination and is a set of positive or negative rea-
soning formulas, φ defines the set of agents to coordinate with, and m is the
message.

3 The correspondence between goals and beliefs is based on achievement goals in the
GOAL agent programming language [11], which are defined such that φ is an achieve-
ment goal iff φ is a goal and φ is not currently believed.
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The coordination trigger c can, e.g., be the set {bel(injuredFound)}, which will
trigger at a point where Σa |= injuredFound is true and Σa |= ¬injuredFound
was true in the previous state.

3.3 AORTA Reasoning Cycle

The configuration of the AORTA component consists of the agent’s knowledge
bases, a number of option, action and coordination rules, and a message box
for incoming (inbox) and outgoing (outbox) organizational messages. The ini-
tial state consists of a set of initial beliefs and goals, and the organizational
specification.

The agent has a number of state transition rules available, which can be used
to change its state. A reasoning cycle in AORTA is executed using a strategy that
decides which transition rules to execute.

The agent has transition rules for execution of option and action rules, called
Opt and Act, a transition rule for external updates, Ext, and two rules for
coordination, Coord and Chk.

Opt can be applied to an option rule in a given state, ρ =⇒ aO, if ρ is entailed
and the option transition function, TO, is defined for aO.

Act can be applied to an action rule in a given state, ρ =⇒ aA, if ρ is entailed
and the action transition function, TA, is defined for aA. The option removal
function O is applied after a successful application of Act.

Ext changes the agent’s mental state to accommodate updates from outside
AORTA. For example, if the agent perceives something, Ext adds the percept
to the belief base.

Coord is applied to coordination rules, (c, φ,m), when c is triggered by the
state, and the set of agents entailed by φ is not empty. The message m is
then sent to each agent.

Chk checks for new organizational messages by adding messages from the in-
coming message queue to the appropriate knowledge base4.

For the purpose of this paper, we use a single linear strategy, which executes
the state transition rules in a predefined order.

Definition 9 (Linear strategy). The linear strategy is defined as follows:

(Chk)∗(Ext)(Opt)(Act)(Coord)∗,

where (Rule)∗ denotes that Rule is executed until the agent’s state no longer
changes.

The strategy executes each of the transition rules, as explained above, chang-
ing the agent’s state. The linear strategy is rather simple, but it is possible
to implement strategies, which e.g. allows the agent to explore different paths
before choosing one.

4 For simplicity, we assume that the agents will not consider whether a sender is
trustworthy, and thus whether a message is reliable.
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options {
[org(role(R,Os)), bel(me(Me), member(O,Os), cap(O))] => consider(role(R,Os))
[bel(me(Me)), org(role(R,Os), rea(Me,R), member(O,Os), objective(O), active(O))]

=> consider(objective(O))
}
actions {

[opt(role(R,_))] => enact(R)
[opt(objective(O)), bel(me(Me)), org(role(R,Os), member(O,Os), rea(Me,R))] => commit(O)

}
coordination {

[+bel(visited(R))] : [org(rea(A,medic))] => send(A,bel(visited(R)))
[+goal(X)] : [bel(me(Me)), org(rea(Me,R1), dependency(R1,R2,X), rea(A,R2))]

=> send(A, goal(X))
[+bel(O)] : [org(role(R,Os), objective(O), member(O,Os), rea(A,R))] => send(A, bel(O))
[+org(rea(A,R))] : [bel(agent(Ag))] => send(Ag, org(rea(A,R)))

}

Fig. 4. An example of an AORTA program

3.4 AORTA Programs

An AORTA program consists of three sections: options, actions and coordination.
An example program, which can be used in the first responders scenario, is shown
in figure 4.

Options and actions are of the form [φ] => a, where φ consists of a comma-
separated list of reasoning formulas. The content of each reasoning formula (i.e.,
the query) is Prolog code. For example, the action rule

[opt(role(R,_))] => enact(R),

states that if role(R, ) is an option (i.e. entailed by Γo), the agent should enact
R. Note that this is a simplification of the reasoning process required by agents to
decide whether or not to enact a role in an organization. It is, however, possible
to incorporate more sophisticated reasoning, e.g., by using the notion of social
power. For example, in [4], various forms of power agents may have over each
other are identified and formalized as rules. These power relations can be used
in the reasoning process by adding the rules to the agents’ organizational state.

The coordination section consists of coordination triples, of the form [c] : [φ]
=> send(Ag, ψ), where c is a list of reasoning formulas, with either + or - in front
of each, denoting that the trigger or its negation is now entailed by the agent’s
mental state. φ is identical to φ in option and action rules. Ag corresponds to a
variable in φ or c, and ψ is the message to be sent. Thus, the following rule

[+org(rea(A,R))] : [bel(me(A),agent(Ag))] => send(Ag, org(rea(A,R)))

states that when the agent enacts a role, it should inform all other agents in the
system.

The implementations of Opt and Act are deterministic: the rules in each
section are simply processed linearly, and the first matching rule is executed.
Coord is implemented such that every triggered triple in a state will be executed
in a single step.
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Fig. 5. Implementation overview with the most important components. A filled arrow-
head indicates an association between components. An unfilled arrowhead indicates
inheritance.

3.5 Implementation Overview

The architecture is depicted in figure 5. Each agent is associated with an instance
of AortaAgent, which contains the agent’s state, AgentState, and in which
the reasoning cycle is implemented. The reasoning cycle performs two steps:
executing the strategy and sending messages from the outbox.

3.6 Integration Considerations

The agent state contains the agent’s the knowledge bases, rules and message
boxes. Furthermore, it contains an ExternalAgent and an AortaBridge. The
external agent corresponds to the message box and knowledge bases of the agent
using AORTA. That is, whenever the agent commits to a new goal or updates its
beliefs, these changes are propagated via the external agent into AORTA using
Ext. The bridge lets AORTA manipulate the agent’s mental state. For example,
successful execution of commit(φ) will add φ to the agent’s goal base using the
bridge.

When integrating AORTA into an existing agent platform, there are thus three
things to take care of.

Bridge. AORTA uses the bridge to send updates to the agent’s goal and belief
bases, so an agent platform-specific bridge should be implemented (by im-
plementing the AortaBridge interface), such that the knowledge bases can
be synchronized.

External agent. When the agent updates its goal or belief base, it should
inform AORTA by invoking the appropriate methods of ExternalAgent.
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Translation. AORTA makes use of tuProlog, so the contents of the agent’s
knowledge bases should be translated into Java objects supported by tuPro-
log.

4 Evaluation of AORTA in Jason

We now show how AORTA can be implemented in an existing agent platform,
the Jason platform [2]. Jason is a Java-based interpreter for an extended version
of AgentSpeak. Jason is based on the BDI model, is open source and highly
extensible, making it a reasonable choice for the integration of AORTA.

The AgentSpeak language is a Prolog-like logic programming language, which
allows the developer to create a plan library for each agent in a system. A plan
in AgentSpeak is of the form

+triggering event : context <- body.

If an event matches a trigger, the context is matched with the current state of the
agent. If the context matches the current state, the body is executed; otherwise
the engine continues to match contexts of other plans with the same trigger. If
no plan is applicable, the event fails. Triggering events can amongst other things
be addition or deletion of beliefs (+l and -l) and addition or deletion of goals
(+!l and -!l). The body contains a sequence of actions the agent should perform
and goals to adopt. When adopting a goal in the body of a plan, the agent will
attempt to achieve the new goal before continuing executing the current plan.

Note that when a plan for a goal has been completed, the goal is considered
finished. This means that it will be removed from the agent’s mental state. Since
commit(φ) is only defined if φ is not already a goal and is not believed by the
agent, the agent will be able to commit to a goal multiple times, until it believes
it has been achieved.

4.1 Jason+AORTA

The AORTA integration in Jason is shown in figure 6. The integration consists
of an extended agent architecture, which implements the actual integration with
AORTA, and an infrastructure, which makes it possible to create an AORTA-
project in Jason without having to deal with the specifics of the integration.
This is done by specifying the infrastructure as follows:

MAS projectname {

infrastructure: AORTA(organization(location, type))

...

}

The infrastructure takes two parameters: location refers to the location of
the organizational specification, and type refers to the type of organizational
model (currently, a generic organization based on the metamodel is supported).
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Fig. 6. Jason+AORTA. A filled arrowhead indicates an association between compo-
nents. An unfilled arrowhead indicates inheritance.

AORTA does not make any changes to the Jason language, and any existing
implementations of multi-agent systems in Jason should be compatible with Ja-
son+AORTA. The integration does two things: (1) when the belief base or goal
base in the AORTA component changes, these changes are propagated to the
Jason-agent (via AortaJasonBridge), and an addition/deletion event is trig-
gered and (2) when the Jason-agent’s mental state changes, AORTA receives
those changes (via the ExternalAgent). The Jason-agent is connected to the
ExternalAgent in three places:

AortaAgentArch Organizational messages are filtered and sent to AORTA for
processing. The normal procedure for checking an agent’s mailbox is ex-
tended to check whether incoming messages are wrapped in the organiza-
tional wrapper.

AortaBB Whenever the Jason-agent’s belief base is changed (i.e., a belief is
added or removed), the changes are sent to AORTA to ensure synchrony
between the mental states.

AortaGoalListener When a goal changes state (i.e., when a plan for it has
started, failed, or stopped), the goal listener is responsible for sending the
changes to AORTA.

Furthermore, Jason formulas are converted to AORTA formulas. Note that
while Jason supports annotations on literals (e.g., denoting the source of a be-
lief, injuredFound[source(alice)]), they are lost in conversion to AORTA
formulas, since they are not supported. This should generally not be a problem,
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since formulas will not propagate back and forth between the systems. That is,
if a belief originates from Jason, it will be sent to AORTA, which will not send it
back to Jason, e.g. +injuredFound[source(alice)]→ bel(injuredFound)→
+injuredFound does not happen.

The AORTA reasoning cycle is executed in Jason via the method reasoning-

CycleStarted() in AortaAgentArch, which is called in the beginning of a Jason
reasoning cycle. This means that the agent will execute the AORTA reasoning
strategy in the beginning of each cycle.

4.2 The First Responders Scenario

We now discuss how AORTA can be used to let agents participate in the first
responders scenario. We use the Blocks World for Teams [17] testbed to simulate
the first responders scenario by considering the drop zone being the ambulance,
colored blocks being injured fans, and agents playing the roles of fans, medics
and police officers. Fans are fighting just outside some of the rooms and they
can stop the medic from rescuing injured fans by entering a room just before the
medic does so. Police officers will look for areas where fans are standing, while
medics will check the rooms to find injured fans.

Consider an agent, Bob, playing the role of a medic (Σo |= rea(bob,medic)),
using the program in figure 4. He is considering the objective injuredFound
(Γo |= objective(injuredFound)), to which he has not yet committed. The fol-
lowing action rule can then be executed.

[opt(objective(O)), bel(me(Me)),

org(role(R,Os), member(O,Os), rea(Me,R))] => commit(O)

In the resulting state, injuredFound is added as a goal (Γa |= injuredFound), and
is sent via the bridge to the Jason-agent. This will trigger an event, +!injured-
Found, and if the agent has a plan matching this trigger, it will execute the body
of the plan. Bob has the following simplified plan library, making him capable
of searching for injured fans.

+!injuredFound : room(R) & not(visited(R)) <- !visited(R).

+!injuredFound <- +injuredFound.

+!visited(R) : in(R) <- +visited(R).

+!visited(R) : not(state(traveling)) <- goTo(R); !visited(R).

Bob is situated in an environment with a single room, room1. The flow of the
execution is shown in figure 7. Bob commits to finding the injured, which leads
to the subgoal of visiting room1. When he believes he has visited the room (when
he is inside the room), both goals will finish, since !injuredFound waited on the
completion of !visited(room1). Since the main goal, injuredFound, has not yet
been completed, Bob can execute the same action rule again, thus committing
to the goal once more. Since there are no more rooms to visit, only the second
plan is applicable, and he believes that all the injured fans have been found.

When injuredFound is achieved, several things happen. First, the following
coordination mechanism is triggered:
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commit(injuredFound)

goal(injuredFound) +!injuredFound

+!visited(room1)goal(visited(room1))

+visited(room1)
bel(visited(room1)),

not(goal(visited(room1))),
not(goal(injuredFound))

commit(injuredFound)

goal(injuredFound) +!injuredFound

+injuredFoundbel(injuredFound)

AORTA Jason

Fig. 7. The flow of execution starting when Bob performs the organizational action
commit(injuredFound). not means that the formula is removed from the mental state.

[+bel(O)]

: [org(role(R,Os), objective(O), member(O,Os), rea(A,R))]

=> send(A, bel(O))

Since bel(injuredFound) is added to the agent’s mental state, and injuredFound
is an objective, the agent will inform all agents responsible for that objective,
that it has been completed. Second, the next objective, injuredSaved, becomes
an option, and Bob will then commit to completing it. The flow of execution is
similar to that of figure 7 and will not be described in detail.

If, during the rescue, a room is blocked by a fan, the agent may adopt a goal,
removeBlocker, which will trigger the following coordination mechanism:

[+goal(X)]

: [bel(me(Me)), org(rea(Me,R1), dependency(R1,R2,X), rea(A,R2))]

=> send(A, goal(X))

Since the agent commits to a goal for which there is a dependency, he sends
a request to the agents enacting the role R2 (in this case the officer role). An
officer should then commit to achieving the goal, and inform the medic when it
has been done.

Notice that while it may seem like the agent is compelled to commit to the
objectives given the organizational rules, it is important to emphasize that in the
example this is the only rule. In other cases there will be more rules to choose
between; rules that may influence the agent in different directions.

The agent can furthermore deliberately choose not to complete an objective.
In Jason, the intention selection function can be changed to, e.g., prioritize the
agent’s own goals. This, of course, is only valid in the current integration; other
frameworks may not have this possibility. However, the agent can deliberately
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skip parts of an objective, or even the entire objective, simply by marking the
objective as done (i.e., a belief addition in Jason). This is a deliberate violation
of the expectations of the role, but nothing prevents the agent from doing so.

Consider, for example, a different situation with two rooms, and in one of
the rooms, the lights do not work. If the agent is scared of the dark, it may
choose to simply skip that room, while convincing the organization that it has
completed the objective. It is also possible that one of the medics is a fan of one
of the soccer teams, and therefore deliberately chooses to only save injured fans
from his own team. While this is in clear violation of the expectations from the
organization, the agent is free to do so, since AORTA does not force the agent
to perform certain actions, leading to, e.g., entering a dark room or saving fans
from another team.

5 Related Work

There has been other work extending the BDI-architecture with organizational
concepts, especially norms and obligations. This work differs from AORTA in that
they modify the BDI-model, whereas AORTA extends the BDI reasoning with a
component for the organizational reasoning. For example, the BOID architecture
[3] imposes a strict ordering between beliefs, obligations, intentions and desires.

An abstract architecture for organizational reasoning is suggested in [20,1]. In
this architecture, they suggest that organizational reasoning is done in a separate
layer with a connection to the agent’s cognitive layer (e.g., the BDI agent’s beliefs
and plans). The AORTA architecture is based on the same idea, that reasoning
should be done within the agent, with a strong connection to the the cognitive
layer of the agent. It is noted that several concrete architectures have been
proposed that allow agents to understand and reason about organizations, e.g.
[3,13,5].

The Moise+ model is based on three organizational dimensions : the struc-
tural, functional and deontic dimensions [13]. Development of organized multi-
agent systems using the Moise+ model is separated into a system and an agent
level. The system level, S-Moise+, provides an interface (a middleware) be-
tween the agents and the organization using a special agent, the OrgManager, to
change the organizational state, ensuring organizational consistency. The agent
level, J -Moise+, joins Jason and Moise+, by making organizational actions
available to agents, such that they can reason about (and change, using the
OrgManager) an organization.

Similar to agents with an AORTA component, agents in J -Moise+ receive
objectives (missions) that they can achieve using Jason plans. The main differ-
ence is that in J -Moise+, the organization-oriented reasoning is done as a part
of the agent’s normal reasoning process, whereas agents using AORTA perform
the organizational reasoning inside the AORTA component, and then decides how
to complete their objectives at a different level. The main advantage of keeping
the reasoning apart in AORTA is that it allows agents on different agent plat-
forms to perform the same kind of organizational reasoning without any extra
development required.
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The AMELI middleware for electronic institutions (EIs) specified in
ISLANDER [9] “mediates agents’ interaction while enforcing institutional roles”
[10]. EIs specified in ISLANDER are based on dialogs; agents play roles in scenes
in which they participate in interaction protocols to fulfill their goals (e.g., agents
in an auction market use an interaction protocol for bidding on goods, where
certain criterias decide whether the agent has bid on an item). The agents inter-
act with the EI via a so-called governor using a predefined set of messages the
governor will understand. These messages concern among other things entering
the institution, moving to a scene, and say something in a scene. The governor
can then agree to process the message (e.g. executing an action which can ei-
ther succeed or fail) or refuse it. The governors of AMELI are similar to the
middleware of S-Moise+; the control of the institution lays on the institution
side. Our approach is to let the agents decide by themselves whether they can
enter the institution or move to a different scene. Furthermore, if the agents
want to utter something in a scene, they should be free to do so, even if it means
unintentionally bidding for an item, or getting themselves kicked out.

The responsibility of deciding of whether an agent is allowed to enter an orga-
nization should not be put on the organizational entity but on the agents within
that entity. In [19] it was shown that it is possible for agents to 1) reason about
their own capabilities and 2) use this information to engage in an interaction
with a gatekeeper in the organization (i.e. another agent) to determine whether
the agent should be allowed to enter the organization. Such reasoning keeps the
agents in control while still ensuring that the agents are capable of playing their
roles in the organization.

Instead of putting mediators between the organization and the agents, or
providing agents with a reasoning component, a third option is proposed in [12]:
The ORA4MAS (Organizational Artifacts for Multi-Agent Systems) approach is
another attempt to build a bridge between an organization and the agents in
it. It is a general approach suitable for different kinds of organizational models,
however in [12], Moise+ is used as organizational model. They use artifacts,
which they claim bring the control back to the agents (as compared to using a
middleware), since the agents can, via their autonomy, choose whether to interact
with the organizational artifacts of the system. We argue that the ultimate way
of bringing the control back to the agents is to allow the agents themselves to
perform the organizational reasoning. By integrating AORTA in agents, they are
provided with organizational reasoning capabilities, but are still able to, e.g.,
decide not to commit to certain organizational objectives.

6 Conclusion and Future Work

We have described the AORTA architecture and have shown how it can be inte-
grated in the Jason platform. The example shows how Jason-agents gain capa-
bilities to reason about which organizational objectives to commit to, and how
to coordinate completing them.

AORTA lets the developer focus on implementing the agents’ domain-specific
capabilities, while commitment to organizational objectives, coordination, and
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communication can be done entirely by AORTA. Furthermore, since AORTA
can be integrated in different agent platforms, the same AORTA programs can
be used for several different implementations in different agent programming
languages. The use of the simple, generic language makes it possible to show
how AORTA can be used to extend BDI-agents with organizational reasoning,
however, the support of an existing, and more powerful, organizational language,
such as Moise+ or OperA, is a natural extension to the architecture, and would
make it readily useful for more complex systems.

The decoupling of AORTA and the agent platform means that synchronization
is required. However, the linear strategy makes sure that external changes are
synchronized before options and actions are considered (via the Ext transition
rule). As mentioned, the requirement is a translation between AORTA formulas
and the formulas of the connected agent (e.g. AgentSpeak formulas). Further-
more, organizational reasoning is done in AORTA and is thus separated from the
agent’s normal reasoning. This is because the organizational state is only avail-
able to AORTA, as it is not shared with the agent. This means that the agent
cannot reason about organizational matters, such as role enactment and orga-
nizational objectives without using the rules of AORTA. However, if necessary,
in the case of Jason, it is possible to allow this kind of reasoning by introducing
an internal action, e.g. .org(Fml) which succeeds if Fml can be translated to
an AORTA formula and is entailed by the organizational state.

In the future, we plan to investigate other strategies that could improve the
reasoning, such as a strategy that explores different paths of execution, and
makes a decision based on this. Furthermore, since agents may have objectives
that do not coincide with the organizational objectives, they need a way to
decide which objectives to pursue, for example using a preference ordering [3] or
individual agent preferences [14].

We are also investigating how to incorporate norms in the semantics, such
that the agents are able to deliberately follow paths that violate the organiza-
tion, while possibly being sanctioned by other agents in the organization. Finally,
the scenario used in this paper was rather simple, so we are also working on eval-
uating the system on more advanced scenarios, and using other agent platforms
(e.g. GOAL [11]) to show that the integration process is straightforward.
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Abstract. Continuous improvement is a procedure to improve products, servic-
es or processes. In the Software Engineering domain, software process im-
provement means understanding existing development processes and changing 
them to increase product quality and reduce development costs and time. In this 
paper, we present the Medee Improvement Cycle, which adopts this approach to 
improve development methods for Multiagent Systems (MAS). Such a cycle is 
anchored in the Medee Method Framework, which provides means for building 
methods through the combination of method fragments sourced from existing 
Agent-Oriented Software Engineering methods (AOSE methods) and Agent 
Organization models (AO models). The Medee Improvement Cycle allows to 
continuous evolving MAS methods and fragments, taking into account a set of 
quality attributes, such as understandability, visibility, supportability, accepta-
bility and robustness. We have shown through the case study how to apply this 
cycle to evolve fragments through their usage, instead of assuming that we have 
already the definitive version of them from the beginning. 

1 Introduction 

Organization-centered multiagent systems (OC-MAS) are systems whose basic con-
ceptual entity is the agent organization as a whole, composed of a set of goals, norms, 
and functionalities [18]. Such approach adopts a sociological and organizational vi-
sion for modeling MAS, involving organizations, teams and inter-agent relationships 
notions. Research in this area usually provides Agent Organization models (AO mod-
els) to support the specification of organizational aspects during MAS design and 
possibly changing them during MAS runtime, such as MOISE+ [16] and OperA [13]. 
Nevertheless, these models do not address a structured MAS development cycle in 
terms of phases, tasks, and work products, as extensively accepted by the software 
industry [19].  

Moreover, although some existing Agent-Oriented Software Engineering (AOSE) 
methods, such as Gaia [25] and Ingenias [20], propose the development of MAS 
based on the notion of agent organization, they deal with organization specification at 
design time, preventing the modification of the organization core aspects during run-
time.  
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In order to fill this gap and provide reuse of existing AOSE methods and AO mod-
els, Casare et al [9] propose the Medee Method Framework (Medee for short), which 
allows the user to leverage advantages of both AOSE methods and AO models in 
order to develop OC-MAS, even though some AO models are not currently incorpo-
rated into AOSE methods. Such a method framework proposes the composition of 
MAS situational methods out of method fragments  (i.e. small portions of methods) 
according to a given project situation, by applying the principles proposed by Situa-
tional Method Engineering [7] [14]. The proposed approach provides a high degree of 
reuse and flexibility, allowing the composition of new methods based on software 
industry standards for method description, such as SPEM [19].  

Given that such situational methods are built on demand for immediate use and 
stored for further reuse, it is desirable that both methods and fragments could be im-
proved in a continued way. Therefore, the definition of a cycle for guiding the conti-
nuous improvement of methods and fragments would reinforce the development of  
OC-MAS. 

In this paper we present the Medee Improvement Cycle, a continuous cycle for 
evolving fragments and methods for MAS. The usage of such a cycle is illustrated in 
a case study conducted to improve fragments sourced from the MOISE+ agent organ-
ization model. The Medee Improvement Cycle is based on the idea that, although 
processes, methods, and tools are essential to the development of MAS, they should 
be underpinned by a continuous software process improvement in order to focus on 
product quality (e.g. OC-MAS applications quality) as well as on reducing develop-
ment costs and time [21][22]. In brief, this cycle covers an entire improvement 
process for MAS method:  (i) from tailoring a method according to the project charac-
teristics (ii)  to learning from the results how to evolve the method itself, in a way that 
lessons learned could give rise to method improvement.    

Nevertheless, before explaining the Medee Improvement Cycle in details, which is 
done in Section 4, in Section 2 we briefly present the Medee Method Framework and 
in Section 3 we present the fragments sourced from MOISE+ that we have used. Our 
case study is presented in Section 5, and we discuss the advancements achieved with 
our approach in Section 6. Finally, we conclude the paper in Section 7.    

2 Medee Method Framework  

The Medee Method Framework supports the composition of MAS methods on de-
mand, especially the ones for developing OC-MAS. In brief, it consists of a repository 
containing method fragments sourced from several AOSE methods and AO models, 
as well as a process for populating such a repository and a model for composing situa-
tional methods out of fragments according to a given MAS project situation. There-
fore, this framework encompasses the following components: the Medee Method 
Repository, the Medee Delivery Process, and the Medee Composition Model.  To-
gether, these components cover most of a typical situational method procedure - from 
managing the method repository to building and publishing the situational method - in 
a seamless way, since they are based on the same conceptual model, i.e. the Medee 
Conceptual Model, as illustrated in Fig. 1. Moreover, this figure highlights that situa-
tional methods are published as HTML pages. 
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Fig. 1. The Medee Method Framework main components and functionalities  

AOSE methods and AO models involve particular aspects, such as specific system 
architecture, development platform, design and programming languages. The Medee 
Method Framework takes these aspects into account in an integrated way, from the 
method repository management to the situational composition. Firstly, the Medee user 
can elaborate method fragments in a standard way, for instance by using common 
MAS development roles like MAS Developer and MAS Tester, as well as categoriz-
ing them according to the underpinned MAS component (e.g. agent, environment, 
organization), the MAS nature (e.g. open, closed), the design language (e.g. UML, 
AUML), and the programming language (e.g. Java, AgentSpeak), among other crite-
ria provided by a semiotic taxonomy for MAS fragments. 

Secondly, the Medee user can clearly state the project characteristics in terms of 
people, problem, product, and resource factors. Such characterization takes into ac-
count AOSE aspects, like the project team previous experience with developing MAS, 
the agent architecture to be used, like BDI, and the kind of product to be delivered, 
such as OC-MAS or agent-centered MAS. Finally, issues like how to proceed for 
elaborating fragments, characterizing the project, selecting fragments and putting 
them together in a situational method are described in great details in the Medee Deli-
very Process. This latter is published as a website and offers three phases: Method 
Element Capture, Method Fragment Elaboration, and Medee Method Composition 
phases.  
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A detailed description of the Medee Method Framework is available at the Medee 
website1 and also at [9]. Currently, the Medee Method Repository stores 64 (sixty 
four) fragments sourced from AOSE methods such as Gaia, Tropos [6], PASSI [11], 
Ingenias, and from general-purpose development methods such as USDP (Unified 
Software Development Process) [17], as well as fragments sourced from AO models 
like MOISE+ and OperA. This repository can be easily extended with fragments 
sourced from other AOSE methods since the Medee Delivery Process provides step-
by-step tasks for the method repository population. Moreover, new fragments can be 
categorized according to more than 25 semiotic criteria provided by the Medee  
Composition Model.  Such functionalities allow the user to manage the method  
repository in a consistent and disciplined way, despite the number of stored  
fragments.  

3 Method Fragments for MOISE+ 

MOISE+ is a well-established AO model tailored for specifying OC-MAS. It de-
scribes a MAS organization in terms of three dimensions: structural, functional and 
normative dimensions. For each one of these dimensions MOISE+ proposes one ho-
monym specification.  

The method fragments sourced from MOISE+ consisted of the smallest fragments 
that compose a MAS situational method. They contain tasks described in terms of 
steps, input and output work products, and development roles, as illustrated in Fig. 2 
(right side). It should be noted that Fig. 2 shows a screenshot of the Medee website 
prior to the case study. Indeed, it depicts the fragment2 MMF Analyze Organization with 
MOISE+, which was sourced from MOISE+ along with other four fragments: MMF De-
sign Agent Organizational Behavior with MOISE+, MMF Design Organization with MOISE+, MMF Imple-
ment Agent with MOISE+, and MMF Implement Organization with MOISE+ (see Fig. 2, left side). 
These five fragments could take part in situational methods for developing OC-MAS 
projects. 

It is important to observe that MOISE+ offers a conceptual framework and syntax 
to organizational specification, but it does not describe the work that should be done - 
as such activities, task or steps - to produce such specifications. Therefore, the  
fragments sourced from MOISE+ resulted from the analysis and interpretation made 
during a previous research presented in [8].   

These fragments consisted of an important step towards the development of me-
thods for OC-MAS. Nonetheless, they deserve to be improved through utilization. 
One way of doing that is using the Medee Improvement Cycle, as done during the 
case study presented in this paper. 

 

                                                           
1 http://medee.poli.usp.br/. 
2 MMF stands for Medee Method Fragment, MPS stands for Medee work Product Slot, MTV stands 

for Medee Task Variability, MPV stands for Medee Product Variability. 
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Fig. 2. Medee fragments sourced from MOISE+ 

4 Medee Improvement Cycle  

The Medee improvement cycle is anchored in an empirical procedure for continuous 
evolving MAS methods and fragments based on previous project experience. 

This cycle is built upon approaches proposed in Situational Method Engineering 
and Software Engineering areas: (i) an iterative procedure for building situational 
methods [7] [14], (ii) paradigms for software improvement through experimentation, 
namely Quality Improvement Paradigm (QIP) [1] [2] and Goal Question Metric 
(GQM) [3], and (iii) the method quality attributes proposed by Sommerville [22].  

An iterative procedure for building situational methods usually encompasses the 
following steps:  management of the method repository, characterization of the 
project situation, selection of method fragments, situational method building, and 
project execution. We have extended this set of steps by adopting those proposed by 
QIP, which is an evolutionary software quality process that provides a mechanism for 
software improvement through experimentation and reuse, based on project expe-
rience. Such a paradigm proposes to treat software development as empirical experi-
ments in order to learn with them and thus improve the way to build software based 
on a goal-driven approach for collecting data around a particular experiment, the 
GQM paradigm. Given that method quality attributes (e.g. understandability, accepta-
bility, reliability) may be used to drive method quality improvement [22], we have 
adopted these attributes in order to define the goals for improving methods and frag-
ments.  

Therefore, the Medee Improvement Cycle underpins seven steps that can be ap-
plied in two scenarios, depending on the improvement target: (i) a situational method, 
(ii) a method or some method fragments. Fig. 3 shows enclosed in solid bold line the 
five steps for improving fragments and methods, out of this rectangle, the other two 
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steps involved on improving situational methods.  The case study presented in Section 
5 is concerned with fragments improvement and thus is based on the second scenario. 
Interested readers can find a case study involving the first scenario in [8]. The seven 
steps are described in the following.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Medee Improvement Cycle 

Step 1 - Characterize MAS Project Situation using the Medee Composition Model. 
This step allows a Medee user to better understand and characterize the factors in-
volved in the MAS project, mainly those related to AOSE aspects. Therefore, in this 
step s/he can clearly state project characteristics in terms of people, problem, product, 
and resource factors. Possible examples are:  the project team has no previous expe-
rience of developing MAS, although having some skills related to agent-oriented 
methods and UML; the product to be delivered involves an organization-centered 
approach. This step is performed only while running the cycle for situational methods 
(first scenario).  

 
Step 2 - Set MAS Measurement Goals. It consists of establishing a goal-driven 
model based on the GQM paradigm, according to the improvement targets selected 
for the empirical procedure. The method quality attributes proposed by Sommerville 
[22] were adopted as a backbone to define the measurement goals. Therefore, these 
goals are based on  the following method and fragment issues: understandability, 
supportability, visibility, acceptability, reliability, robustness, rapidity, and maintaina-
bility. For instance, a goal related to fragment understandability could measure how 
easy it is to understand its elements (e.g. task, work product, roles), while another 
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related to supportability could measure how easy it is to navigate in the website that 
describes methods and fragments. Although such quality attributes provide a steady 
basis for starting specifying measurement goals, they may be extended and refined 
according to a given set of method improvement targets. Section 5 presents the goal-
driven model instantiated to measure the method fragments sourced from MOISE+ 
during the case study, involving goals concerned with understandability, supportabili-
ty and visibility.  

 
Step 3 - Compose MAS Situational Method. This step is performed only while 
running the cycle for situational methods. It consists of generating a situational me-
thod according to the current MAS project situation, by executing the Medee Method 
Composition phase of the Medee Delivery Process. Brandão et al [5] recently pro-
vided some automated support for selecting fragments in Medee in order to facilitate 
situational composition.  

 
Step 4 - Collect Metrics after using method and fragments. It consists of applying 
methods or analyzing a set of fragments and then gathering the metrics specified 
through the goal-driven model. Every usage of fragments or methods will be consi-
dered as an experiment. Moreover, this step involves designing questionnaires that are 
filled out by the participants of the experiment, as well as validating data provided by 
them. Examples of how metrics can be collected and validated are presented and dis-
cussed in Section 5. 

 
Step 5 - Analyze the Measurement Goals. It consists of identifying the strengths 
and weakness of methods or fragments, through the assessment of the previously 
collected questionnaires' answers. Examples of how to perform such analysis concern-
ing MOISE+ fragments are presented in Section 5. 

 
Step 6 - Package Experience to improve the Method Repository. It consists of cap-
turing and describing the lessons learned during the experiment in terms of improve-
ment opportunities, in such a way that it could be used to update fragments and/or 
methods, as well as other building blocks underpinned by the Method Repository 
itself, like the Medee Glossary. Lessons learned can give rise to improvement oppor-
tunities in several ways, such as: (i) understandability concerns can drive method 
fragment re-elaboration or the creation of new guidelines and examples; (ii) fragment 
acceptability or reliability concerns can drive method fragments re-classification, and 
(iii) rapidity concerns are related to the project required effort, can be captured as 
estimation consideration and associated either with the whole method or the corres-
ponding fragments. Section 5 presents MOISE+ fragments’ improvement identified 
during the case study.  

 
Step 7 - Manage the Method Repository. It consists of populating the Medee Me-
thod Repository with new elements as well as modifying/updating already stored 
elements - like method fragments and Medee methods - based on lessons learned 
during an experiment, as illustrated in Section 5. This step is mainly underpinned by 
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two phases of the Medee Delivery Process [9] - Method Element Capture and Method 
Fragment Elaboration phases - both described in great detail at the Medee website. 

Finally, it should be observed that the Medee Improvement Cycle could be used to 
evolve the Medee Delivery Process itself, and not only fragments and situational me-
thods. Examples of measurement goals and questions of interest that could be used in 
such an improvement scenario are:  
 

Goal 1: Analyze the Medee Delivery Process for the purpose of evaluation with 
respect to the usability 

     Q1: How ease is it to create/modify method fragments? 
     Q2: How ease is it to compose the situational method out of fragments? 

 
Goal2:  Analyze the Medee Delivery Process for the purpose of evaluation with 

respect to its rapidity/efficiency. 
     Q3: How fast can the method engineer create a new fragment? 
     Q4: How fast can the method engineer compose a situational method? 
 
Summing up, these seven steps embedded in the Medee Improvement Cycle offer a 

process for evolving both methods and fragments based on lessons learned. As de-
scribed in the next section, lessons learned were packaged and integrated in the me-
thod repository for further use in a seamless way. 

5 Case Study 

The purpose of this case study was to investigate the use of the Medee Improvement 
Cycle for evolving fragments sourced from MOISE+. In a few words, it consisted of 
performing the step-by-step of such a cycle to improve MOISE+ fragments based on 
lessons learned. 

Moreover, we investigated also how aware Medee users were about the improve-
ments we have done. Therefore, some steps of the Medee cycle were performed twice 
namely, steps 2, 4, and 5.  

This case study was conducted in 2013 and involved undergraduate students, 
MOISE+ authors and MAS researchers skilled in MOISE+ notions and method engi-
neering, totalizing eight people. 

The remainder of this section describes the five steps executed during this experi-
ment, starting with Step 2 (Set measurement goals) and closing the cycle with Step 7 
(Manage the method repository). It should be observed that evolving the fragments 
sourced from MOISE+ means also evolving the situational methods that include them 
as well as evolving the method repository as a whole. 

5.1 Setting the Measurement Goals (Step 2) 

This step consisted of defining a goal-driven model based on the GQM approach for 
evaluating the method fragments sourced from MOISE+ concerning three quality 
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attributes: understandability, visibility, and supportability. Measurement goals were 
described in terms of the objects of study, issues, and viewpoints taken into account in 
this experiment, as well as detailed through questions of interest and metrics. Firstly, 
the five MOISE+ fragments presented in Section 3 were considered as objects of 
study. Second, the issues consisted of the quality attributes understandability, visibili-
ty, and supportability. Thirdly, the viewpoint entities encompassed MAS developers, 
MOISE+ experts and method engineers.  

Finally, these goals were refined through eleven questions of interest and related 
metrics. Some questions of interest took into account the MAS developer viewpoint, 
while other considered the MOISE+ expert and Method Engineer viewpoints. In the 
following we present the three goals and the associate questions and metrics.  

 
Goal 1: Analyze the MOISE+ Method fragment for the purpose of evaluation with 

respect to its understandability. 
Q1: To what extent has the fragment facilitated the understanding of MOISE+ 

aspects (e.g. concepts, specifications, implementation)? 
Metric 1: Ranging from 1 (not helpful at all) to 5 (very useful). 

Q2: To what extent has the Medee Glossary helped to understand the elements 
encompassed in the fragment (e.g. tasks, work products, roles)? 

Metric 2: From 1 (not helpful at all) to 5 (very useful). 
Q3: How easy is it to understand the work that should be performed when 

adopting the fragment? In other words, is it easy to understand the task(s) and steps 
encompassed in the fragment? 

Metric 3: From 1 (not easy at all) to 5 (very easy) 
Q4: How easy is it to understand the work product encompassed in the  

fragment? 
Metric 4: From 1 (not easy at all) to 5 (very easy). 
 

Goal 2: Analyze the MOISE+ Method fragment for the purpose of evaluation with 
respect to its visibility. 

Q5: To what extent the development phase (e.g. analysis, design) during which 
the fragment is expected to be used is clearly stated? 

Metric 5: From 1 (unclear) to 5 (very clear). 
Q6: To what extent the work product that should be generated by the fragment 

is clearly stated?   
Metric 6: From 1 (unclear) to 5 (very clear) 

Q7: To what extent the fragment inputs are clearly stated? 
Metric 7: From 1 (unclear) to 5 (very clear). 

Q8: To what extent the development role(s) assigned to the fragment are clearly 
stated? 

Metric 8: From 1 (unclear) to 5 (very clear). 
Q9: To what extent the MAS aspects involved in the fragment are clearly stated 

(e.g. MAS component, MAS nature)? 
Metric 9: From 1 (unclear) to 5 (very clear). 
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Goal 3: Analyze the MOISE+ Method fragment for evaluation purposes with re-
spect to supportability. 

Q10: How easy is it to navigate in the website that describes the fragment? 
Metric 10: From 1 (not easy at all) to 5 (very easy). 

Q11: To what extent the guidance proposed by the fragment (e.g. examples, 
whitepapers, concepts) could help task execution and/or work product generation? 

Metric 11: From 1 (not helpful at all) to 5 (very useful). 

5.2 Collecting Metrics after Fragments Usage (Step 4) 

Having defined the goal-driven model, a questionnaire was designed for each of the 
five MOISE+ fragments. Along with aforementioned goals, questions of interest and 
metrics, the designed questionnaires asked for additional comments.  

Furthermore, the participants had inspected these fragments and analyzed them 
against the MOISE+ literature [15] [16]. Next, they filled out the five questionnaires.  
Questionnaires involving the Developer viewpoint were filled out by students, while 
those relating to the MOISE+ expert and Method Engineer viewpoints were filled out 
by MAS researchers.  

Finally, to ensure completeness and consistency, the data provided in these ques-
tionnaires were validated through interviews with the students and researchers. The 
collected metrics are presented in Table 1. 

5.3 Analyzing the Measurement Goals (Step 5) 

This step consisted of analyzing the three measurement goals through the collected 
metrics. Table 1 (last row) shows a consolidated perspective of such metrics by  
the three goals, as well as perspectives broken by the five MOISE+ fragment (last 
column).  

Table 1. Collected GQM metrics round 1 

Frag#1 4,3 4,4 4,6 4,4
Frag#2 4,3 4,2 4,3 4,3
Frag#3 4,0 4,4 4,5 4,3
Frag#4 4,8 4,7 4,6 4,7
Frag#5 4,2 4,1 4,6 4,3

Total 4,3 4,3 4,5 4,4

Total
Goal 1

Understandability
Goal 2

Visibility
Goal 3

Supportability

 
 
The metrics regarding Goal 1 – Understandability - have shown that MOISE+ 

fragments were quite easy to understand (4.3 points in a 1 to 5 scale). However, some 
comments stated that the two fragments related to the analysis and design of the orga-
nizational specification could be made more understandable if tasks and steps were 
more explicit about which of the three MOISE+ specifications they were concerned 
with (i.e. Structural, Functional, Deontic specifications).  
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Furthermore, this experiment showed that fragments’ elements - like roles, input 
and output work products - had a quite well visibility (4.3 in a 1 to 5 scale). Nonethe-
less, some aspects related to Medee development roles were missing, such as role 
responsibility, while the work products could be more visible if they could also be 
accessed directly, besides embedded in tasks.    

Finally, the metrics related to Goal 3 – Supportability - have shown that MOISE+ 
fragments offered a suitable collection of examples, whitepapers, and concepts, as 
well as an easy navigation through the Medee website (4.5 in a 1 to 5 scale). Howev-
er, some comments suggested that fragments could provide definitions for concepts 
related to the agent-oriented paradigm to help newcomers. 

5.4 Packaging Experience for Improving Fragments (Step 6) 

This step consisted of describing improving opportunities in a way that such descrip-
tion could be used to manage fragments and/or the Method Repository itself, which is 
effectively done in the step 7. 

Due to paper length limitations, this section describes only a couple of improve-
ment opportunities related to the two fragments concerned with the analysis and de-
sign of OC-MAS, as well as some improvement related to the Method Repository as a 
whole. 

Opportunities for Improving MAS Organization Analysis and Design 

─ Improve the comprehension about the work to be done, since tasks mixed up sev-
eral MOISE+ concepts pertaining to different MOISE+ specification (functional, 
structural and deontic). 

─ State in a clear way each one of the MOISE+ specifications should be created or 
modified through the tasks/steps underpinned by the fragments.  

─ Recommend the use of MAS User Requirement specification during the design of 
the MOISE+ organization, as it is recommended during the organization analysis.  

Opportunities for Improving the Method Repository 

─ Offer the definition of concepts related to the Agent-Oriented Paradigm. 
─ Make development roles characteristics more explicit. 
─ Make work products characteristics more explicit. 

5.5 Managing the Method Repository (Step 7) 

This step consisted of updating the Medee Method Repository according to the im-
provement opportunities previously identified. Such an update encompassed manag-
ing two MOISE+ fragments. Moreover, it involved managing some aspects related to 
the building blocks underpinned by the Method Repository itself, such as making 
more explicit the Medee development roles and work products, and expanding the 
Medee Glossary by including MAS concepts, as explained in the sequence. 
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Updating Fragments for MAS Organization Analysis and Design  
It consisted of modifying two fragments, MMF Analyze MAS Organization with MOISE+ and 
MMF Design MAS Organization with MOISE+, by describing the work required to deal with 
MOISE+ specifications in a way that each task were focused on one single specifica-
tion (i.e. Functional, Structural and Deontic). Therefore, the task called MTV Analyze 
MAS Organization was replaced by three new tasks: MTV Analyze MAS Functional Specification, 
MTV Analyze MAS Structural Specification and MTV Analyze MAS Deontic Specification.  

 

Fig. 4. Workflow for MMF Analyzing MAS Organization with MOISE+  

As illustrated in Fig. 4, the new task in charge of analyzing the functional dimen-
sion of a MOISE+ organization takes a User Requirement (e.g. the one proposed by 
Tropos) as input and produces the MOISE+ Functional Specification as output. In a 
similar way, the new tasks in charge of analyzing structural and deontic MOISE+ 
dimensions produce the homonym MOISE+ specifications as outputs. Furthermore, 
the improved fragment for analyzing MOISE+ organization was built upon these new 
tasks and thus clearly states the specification created by each one of its tasks. Moreo-
ver, as illustrated in Fig. 4, as soon as a specification is available, it can be used as an 
input in the next task.  

Such an approach promotes the coherence and consistence of the MOISE+ specifi-
cations generated by this fragment. A similar approach was adopted to update the 
MMF Design MAS Organization with MOISE+. Interested readers can find these new frag-
ments in the Medee website (see Medee Method Fragments folder). 
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Updating the Method Repository Building Blocks 
 

On one hand, it consisted of modifying the Method Repository navigation tree in 
order to present the Medee Development Roles and the Medee Work Product Frame-
work in an explicit way, as illustrated in Fig. 5 (right side). In such a way, these ele-
ments can be accessed directly, and not only through method fragments.  

 

Fig. 5. Providing direct navigation for Roles and Work Products into the Method Repository 

On the other hand, it consisted of extending the Medee Glossary by creating new 
concepts in order to facilitate the comprehension of the agent-oriented paradigm main 
notions. Examples of these new concepts are BDI agents, agent autonomy, and mul-
tiagent systems, as depicted in Fig. 6. 

Therefore, after these modifications Medee users should better understand the 
agent-oriented paradigm, as well as easily discover the entire set of MAS develop-
ment roles and MAS work products currently available in the Method Repository. 

Summing up the Medee Method Repository Improvements  
During this experiment we have improved several elements of the Medee Method 
Repository through modifications based on lessons learned. As illustrated in Figs. 4, 5 
and 6, such modifications are ready for use since this repository has been updated and 
the Medee website related pages have been generated again as part of the method 
repository management procedure. 

Therefore, from now on the Medee repository stores a glossary containing concepts 
that facilitate the comprehension of the agent-oriented paradigm, a navigation tree 
that presents in an explicit way the available MAS development roles and MAS work 
products, and method fragments that state in a clear way each one of the three 
MOISE+ specifications should be created/updated through the tasks and steps under-
pinned by them.  
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Fig. 6. Improving the Medee Glossary including MAS concepts 

5.6 Repeating the Medee Improvement Cycle  

As previously mentioned, we have performed twice some steps of the Medee Im-
provement Cycle to investigate in which extent the presented improvement were per-
ceived by students and MAS researchers.  

This second round took into account a narrower scope, since it concerned mainly 
the two improved MOISE+ fragments, those related to the analysis and design of 
organizations. Therefore, this round included the following steps: (i) Setting mea-
surement goals, (ii) Collecting metrics after using method fragments, and (iii) Analyz-
ing the measurement goals. 

Table 2. Collected GQM metrics round 2  

Frag#1 4,6 4,6 4,8 4,6
Frag#2 4,8 4,6 4,8 4,7

4,7 4,6 4,8 4,7

Goal 3

Supportability
Total

Goal 1

Understandability

Goal 2

Visibility

 
 

We have used a smaller version of the goal-driven model previously developed, by 
limiting the objects of study to the Fragments #1 and #2, respectively, MMF Analyze 
Organization with MOISE+ (Enhanced) and MMF Design Organization with MOISE+ (Enhanced). Thus, 
metrics were collected through two questionnaires involving the three goals and re-
lated questions of interest, and filled out by the same participants. 

Table 2 presents a consolidated perspective of collected metrics by the three goals 
(last row), and perspectives broken by the two MOISE+ fragments (last column). Just 
by looking at the quantitative aspects one may think that improvement was marginal. 
Nevertheless, the comments were very important to evaluate the improvement percep-
tion. Participants said that their understanding about MOISE+ work products  
increased a lot, as well as the steps that must be followed to execute the tasks in-
volved in their generation. 
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6 Discussion  

As described in the course of this paper, the Medee Improvement Cycle allows to 
continuous evolving MAS methods and fragments, taking into account a set of quality 
attributes, such as understandability, visibility, supportability, acceptability and ro-
bustness.  We have shown through the case study how to apply this cycle to evolve 
fragments through their usage, instead of assuming that we have already the definitive 
version of them from the beginning. 

Furthermore, our approach encompasses several aspects that constitute advance-
ments in the way we can improve methods and fragments for AOSE. Firstly, it is 
concerned with evolving both MAS methods and fragments based on lessons learned, 
and not only evaluating and comparing them, as proposed in [4] [10] [12] [23]. Our 
goal is to continuously improving method and fragments, instead of comparing them 
quantitatively.  

Secondly, it provides an integrated approach to update fragments, methods, and 
other Method Repository building blocks, based on industry standards for describing 
methods [19]. As illustrated in the case study, fragment improvements were easily 
incorporated to the method repository for immediately reuse, which could involve 
composing new situational method or changing existing ones. 

Although no one is able to ensure that has the best development method for a given 
project situation neither in traditional software engineering field in general nor in 
AOSE field, the Medee Improvement Cycle is an approach that could help pursuing 
such a goal. 

To the best of our knowledge, in the AOSE field there is no currently such a broad 
approach for evolving methods, fragments, and method repository building blocks in 
an integrated way. 

7 Conclusions 

Having a set of well established MAS development methods would facilitate the 
adoption of the agent-oriented software engineering by the software industry . In such 
a context, method improvement is strongly desirable since it allows lessons learned 
from method usage to give rise to a continuous process for evolving method based on 
quality attributes, like understandability, supportability, visibility, and robustness, 
among others. 

In this paper we have presented the Medee Improvement Cycle, a continuous 
process improvement approach to deal with MAS methods. Our approach may be 
applied for both whole methods or single fragments, and uses industry standards [19] 
for evolving them in a seamless manner. Moreover, it offers a controlled and discip-
lined way to learn from experience. Therefore, it can be used for reinforcing the de-
velopment of MAS in the academy as well as in the software industry.   

We show its applicability by presenting in which manners some fragments sourced 
from a well-established AO model, the MOISE+ model, could be improved towards a 
better understandability, visibility and supportability. In a few words, at the end of the 
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improvement process we had facilitated the understanding of MOISE+ concepts as 
well as enhanced the visibility of the step-by-step in which MOISE+ specifications 
could be produced during the development of an OC-MAS project. Also, we have 
updated the Method Repository turning it easily to be navigated.  
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Tobias Küster, Axel Heßler, and Sahin Albayrak

DAI-Labor, Technische Universität Berlin, Germany
tobias.kuester@dai-labor.de

Abstract. Different ways of integrating business processes and agents
have been proposed, but using restricted process models or targeting
only single agents, none of them is truly convincing. Nevertheless, busi-
ness processes have many notions in common with agents and would be
well suited for modelling complex multi-agent systems. In this paper, we
combine concepts of two existing approaches to a mapping from business
process diagrams to readily executable agent components. The results are
well-structured and extensible, and at the same time account for nearly
the entire expressiveness of the process modelling notation.

Keywords: Technological, Methodological.

1 Introduction

In recent times, different approaches for modelling agents and multi-agent sys-
tems using business process diagrams and related notations have been introduced
(e.g., [6], [10], [18]). However, none of these approaches is really compelling. Of-
ten, very simple workflow models are used, or if a more expressive process mod-
elling notation is chosen, then only a limited subset of the language is covered.
Furthermore, usually only single agents are targeted, while interactions between
agents – which could very well be modelled using many process notations – are
not regarded.

This is unfortunate, since process diagrams share many concepts and abstrac-
tions with multi-agent systems – in particular sophisticated notations such as
the Business Process Model and Notation (BPMN) [22]. Those notations can
be used for modelling the intertwined workflows of different participants in a
process, as well as their interactions and communication, or their reactions to
external events. The focus lies much more on what has to be done and less on
how it is implemented. Thus, despite the shortcomings of existing approaches,
BPMN and related notations appear to be very well suited for modelling agents
and particularly multi-agent systems.

In this paper we take a look at some of the existing approaches – particularly
the WADE extension to the JADE agent framework [10], and a mapping from
BPMN to the agent-oriented scripting language JADL [18] – and combine the
strong sides of both into a new approach. The result is a mapping from BPMN
diagrams to behaviour components for the JIAC multi-agent framework [19].

F. Dalpiaz et al. (Eds.): EMAS 2014, LNAI 8758, pp. 163–180, 2014.
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In this way, the core components of the agents can easily be modelled with
and generated from BPMN process diagrams. Thus, we are helping to close the
gap between design and implementation of multi-agent systems [8]. The resulting
Java classes are similarly structured and as extensible as those of WADE, but
they exhibit the expressiveness of BPMN, including communication between
agents and event-handling, both as part of the workflow and for triggering the
process.

The remainder of this paper is structured as follows: First, we discuss some re-
lated work, most notably the WADE framework and the mapping from BPMN to
JADL, with their benefits and shortcomings. Then, in Section 3, we take a closer
look at BPMN and the JIAC framework, and how they fit together, Thereafter,
we describe how BPMN processes can be mapped to semantically equivalent
JIAC Agent Beans (Section 4), and how the transformation was implemented
(Section 5). In Section 6, the mapping is illustrated using an example, before we
finally wrap up and discuss our results.

2 Related Work

Different approaches for combining process modelling and agent-oriented
software development have been devised. Some using BPMN, others using sim-
pler notations; some using code generations, others employing interpreting ap-
proaches. Each of those have their strengths and weaknesses.

In the following we discuss several works that are highly relevant to the ap-
proach described in this paper: The original mapping from BPMN to BPEL, a
mapping from BPMN to JIAC’s scripting language JADL, the WADE frame-
work, mapping workflows to JADE behaviours, and GO-BPMN, a combination
of BPMN and goal hierarchies.

2.1 Transformation from BPMN to BPEL

One of the motivations for developing BPMN was to provide a standardised
graphical notation for BPEL, the Business Process Executable Language. Con-
sequently, a mapping from BPMN to BPEL is part of the BPMN specifica-
tion [22, Chapter 14], and a number of alternative or extended mappings have
been proposed by various other authors (see for example [20], [23]).

In many aspects, the mapping is very straightforward: Each pool is mapped to
a BPEL process (which can be deployed as a Web service), and the several events
and activities within are mapped to the workflow of the process. The process is
made up mostly of Web service calls, assignments and flow control, but can also
contain, e.g., event handling based on timing and incoming messages. Given a
sufficiently detailed BPMN diagram, the resulting BPEL process can be readily
executable.

Still, there are enough elements in BPMN for which no mapping to BPEL is
given. Thus, while BPMN was created with the mapping to BPEL in
mind, it is not just a visualisation for BPEL but a distinct, self-contained lan-
guage – and in fact more expressive than BPEL itself. Among the elements that
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are not mapped to BPEL are somewhat obscure elements such as the ad-hoc
subprocess, or the complex gateway, but also many types of events and tasks.

2.2 Transformation from BPMN to JADL

In prior work of mapping BPMN to agents [14], JIAC’s service-oriented scripting
language JADL [15] was used as the target of the transformation.

Being conceptually close to BPEL, the mapping is similar, and the process can
be mapped very directly to different language elements of JADL. For instance,
like BPEL, JADL has dedicated language elements for complex actions such
as invoking other services, or for sending and receiving messages, making the
generated code compact and easy to comprehend.

Each pool in the BPMN process is mapped to a JADL service, and the service’s
input parameters and result types are derived from the pool’s start- and end
events [18]. Further, for each start event, a Drools rule is created, starting the
respective JADL service on the occurrence of the given event (e.g., an incoming
message, or a given time). Also, for each participant in the BPMN process, an
agent configuration file is created, setting up the individual agents, each equipped
with an Interpreter Bean and Rule Engine Bean, together with the generated
JADL services and Drools rules.

Alternatively, the JADL services and rules created from the BPMN processes
can be added to a running JIAC agent, thus dynamically changing its behaviour.

2.3 WADE: Workflows for JADE

A different approach, from which some of the concepts in this work have been
drawn, is WADE (Workflows and Agents Development Environment), which is
an extension to the JADE multi-agent framework [3]. Using WADE, certain as-
pects of the behaviour of a JADE agent can be modelled using a simple workflow
notation [10,9]. The workflows basically consist of only two elements: Activities
and Transitions.

Using theWolf tool [11], JADE behaviour classes can be generated from those
workflowmodels. The generated Java classes show a clear distinction between the
workflow (the order of the activities, together with conditions and guards) and
the several activities. Each of them is mapped to an individual Java method that
can either refer to existing functionalities or be implemented by the developer.
Using this separation, generated workflows can safely be altered or extended.

However, the expressiveness of WADE is restricted by the simplistic workflow
notation, which allows only the most basic workflows to be modelled. While the
transitions can be annotated with guards (conditions), it seems impossible to
model parallel execution and synchronisation, let alone more advanced concepts
such as event handling or messaging. In fact, each workflow diagram covers only
the behaviour of an isolated agent; to our knowledge, interactions between agents
can not be modelled.
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Later, WADE has been extended to provide better support for long-running
business processes, event handling, user-interaction and Web-service integra-
tion [5,4] and as of today appears to be a very mature product used in many
projects.

2.4 GO-BPMN and Go4Flex

In GO-BPMN (Goal-oriented BPMN), process models are combined with a goal-
hierarchy and executed by agents [12]. The authors highlight the high flexibility
of the system, and the prospects of parallelisation, but they also write that test-
ing the system is difficult due to possible side-effects of the processes regarding
other goals [7].

The individual processes (the “leafs” in the goal hierarchy) are described
as BPMN processes; however, only a subset of BPMN is used. Particularly,
each diagram shows only a single pool, and thus, as in the case of WADE, no
communication and interaction can be modelled, but just the behaviour of a
single agent. While using goals for connecting the individual processes is quite
promising, in our opinion process diagrams can more efficiently be used at a
higher level of abstraction, e.g., for providing an overview of the system as a
whole, instead of for isolated behaviours of individual agents.

A similar approach is Go4Flex, or GPMN [6]. Like GO-BPMN, Go4Flex uses
goal hierarchies with BPMN processes being the leafs. Both the goals and the
processes are interpreted by Jadex agents [25]. The authors also present a map-
ping from FIPA/AUML interaction diagrams [2] to BPMN processes [24].

2.5 Other Approaches

While those are the works most similar to our own, there are of course other,
slightly different approaches, that shall not go unmentioned.

Agent UML, or AUML as already mentioned above, extends the UML with
several agent-specific diagram types, most prominently interaction diagrams [2].
However, while serving very well for describing the interactions among agents,
interaction diagrams – following the principles of UML – show just this single
aspect of multi-agent systems. BPMN diagrams, on the other hand, can be seen
as a combination of AUML interaction and activity diagrams and thus seem to be
better suited for conveying the whole picture of the behaviours and interactions.

In another approach, multi-agent systems are modelled as ‘electronic institu-
tions’ [27], describing their common ontologies, roles, interactions and norms.
Those norms are monitored and enforced by the agent runtime, facilitating the
operation of open systems, where agents might try to break those rules. Similar
to this, in 2COMM, interaction protocols are represented as artefacts, not only
encapsulating the different roles and commitments involved in the interaction,
but also providing for functionalities such as logging, auditing, etc. [1].

Finally, there are numerous agent development methodologies, many of which
also make use of sophisticated graphical notations for one end or another. One
of those is i∗, which is used in the TROPOS Methodology, among others [30].
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The focus here lies particularly on modelling the social relationships of the sev-
eral actors involved in the systems: Their goals, intentions, and mutual ‘strategic
dependencies’. While i∗ itself is not used for modelling processes, it could well be
used complementary to, e.g., BPMN to model the rationale behind the agents’
behaviours and interactions.

3 A Closer Look at BPMN and JIAC

As we have seen, there are numerous approaches for combining process modelling
and multi-agent system engineering, but to the best of our knowledge none of
them makes full use of the expressiveness of BPMN or a similarly powerful
process notation. This is unfortunate, since BPMN provides many notions that
could very well be used for modelling high-level multi-agent behaviour.

In the following, we will take a closer look at the BPMN language and the
JIAC agent framework, being the domain and co-domain of the mapping dis-
cussed in the next section of this paper.

3.1 BPMN

The Business Process Model and Notation [22] is a workflow representation that
can be used both as a description language for real-world processes, and as
a high-level modelling language for computer programs. It can be seen as a
combination of UML’s Activity Diagrams and Sequence Diagrams, depicting
both the actors’ internal processes and their interactions. An example diagram
is shown in Figure 1.

Fig. 1. Example BPMN Diagram: Taxi Request Service
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BPMN diagrams can be understood at three levels of abstraction:

1. The diagrams are made up of a few easily recognisable elements, i.e. events
(circles), activities (boxes) and gateways (diamonds), connected by sequence-
and message flows and situated in one or more pools.

2. These basic elements are further distinguished using sets of marker icons,
e.g., message, timer, and error events, or parallel and exclusive gateways.

3. Each element features a number of additional attributes that are hidden
from the diagram and contain most of the information that is necessary for
automated code generation, e.g., properties and assignments.

Consequently, the essence of a BPMN diagram is easily understood by all
business partners, including those who have great knowledge in their domain but
little understanding of programming and multi-agent systems. At the same time,
BPMN diagrams provide enough information for the generation of executable
programs.

A variety of notational elements make BPMN diagrams well suited for the
design of distributed systems in general and multi-agent systems in particular.
The process diagrams are subdivided into pools, each representing one partici-
pant in the process. Using message flows for communication between pools, even
complex interaction protocols can be modelled clearly. Further, the notation
supports features such as event- and error handling, compensation, transactions
and ad-hoc behaviour.

In fact, one could argue that BPMN is too expressive, featuring many elements
that are rarely used in practice [21] as well as redundancies w.r.t. how certain
concepts can be modelled. Also, the semantics of some elements of BPMN –
particularly those not covered in the official mapping from BPMN to BPEL [22,
Chapter 14] – are not very clearly defined; however, there is an increasing number
of approaches describing the semantics of BPMN using, e.g., Petri nets [13], and
version 2.0 of the specification made things clearer, too.

The reason why Petri nets are not used in the first place is: While Petri
nets have very clear semantics, and basically everything can be expressed as
a Petri net, some high-level constructs that are directly supported by BPMN
(e.g., event handling and cancellation) would require huge, incomprehensible
Petri nets. Thus, while Petri nets are well suited for the formal specification of
a workflow, they are not the best choice for modelling.

BPMN is neither the first process modelling notation, nor will it be the last.
However, given its high level of adoption in practical process modelling [26], it
has proven to be a good choice for modelling distributed computing systems,
combining a high-level overview of the system with all the necessary details
about its implementation and execution.

3.2 JIAC

JIAC V (Java-based Intelligent Agent Componentware, version 5) is a multi-
agent development framework and runtime environment [19]. Among others,
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JIAC features message-based inter-agent communication, tuple-space based
agent memory, transparent distribution of agents and services, and provides
support for dynamic reconfiguration in distributed environments, such as com-
ponent exchange at runtime. Individual JIAC agents are situated within Agent
Nodes, i.e. runtime containers, which also provide support for migration. The
agents’ behaviours and capabilities are defined in a number of so-called Agent
Beans that are controlled by the agent’s life cycle. The different structures and
elements of a JIAC multi-agent system are shown in Figure 2.

Fig. 2. Components of a JIAC multi-agent system and individual agents

Each JIAC agent is equipped with a Communication Bean, allowing agents
to send and receive messages to and from other agents or groups of agents
(multi-casting to message channels). The messages are not restricted to FIPA1

messages and can have any serialisable data as payload. Other commonly used
Agent Beans are the Rule Engine Bean, integrating a Drools2 rule engine into
the agent’s memory for reactive behaviour, and the Interpreter Bean, providing
an interpreter for the service-oriented scripting language JADL [15].

Besides these and other predefined Agent Beans, the developer is free to add
application-specific Beans to the agent. Each such Agent Bean can:

– implement a number of life-cycle methods, which are executed when the
agent changes its life-cycle state, such as initialized, or started,

– implement an execute-method, which is called automatically at regular in-
tervals once the agent is running (i.e. cyclic behaviour),

– attach observers to the agent’s memory, being called, e.g., each time the
agent receives a message or its world model is updated, and

– contribute action-methods, or services, which are exposed to the directory
and can be invoked by other agents or other Beans of the same agent.

Using these four mechanisms, it is possible to define all of the agents’ capa-
bilities and behaviours. For details on programming JIAC Agent Beans, we refer
readers to the JIAC Programmers’ Manual [16].

1 Foundation for Intelligent Physical Agents: http://www.fipa.org/
2 JBoss Drools: http://www.jboss.org/drools/

http://www.fipa.org/
http://www.jboss.org/drools/
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4 A Mapping from BPMN to JIAC Agent Beans

While the mapping from BPMN to JADL is well suited for modelling high-level
behaviour or services, traditional JIAC Agent Beans were still advantageous
– and often necessary – for defining the better part of the agent’s behaviour,
for instance when it comes to the integration with user interfaces or external
libraries. Consequently, complementary to the mapping to JADL, a mapping to
JIAC Agent Beans was developed [28].

The mapping is conceptually close to WADE: Each Pool in the BPMN di-
agram is mapped to one Agent Bean, i.e. a Java class, with one method for
the workflow, and one method for each individual activity of the process.3 The
workflow method acts as an entry point to executing the process, while the sev-
eral activity methods are invoked by the workflow method in accordance with
the ordering of the activities in the process. The different workflow agent beans
created in this way for the several pools representing one participant then make
up the behaviour of the respective agent role.

Table 1 shows a high-level overview of the mapping. In the following, we will
describe the several aspects of the mapping in detail. Finally, we will briefly
illustrate how process modelling can be integrated into the overall development
method.

Table 1. Overview of Mapping from BPMN to Agent Beans

BPMN Element Agent Concept

participant agent role (implicit, not created)
pool workflow agent bean, holding all of the below
workflow structured workflow method
start events mechanisms to trigger workflow method
tasks activity methods, doing the actual work
subprocess nested class, same structure as workflow bean
boundary events event handler threads, interrupting the activity
properties variables, in appropriate scope

4.1 Workflow Method

The workflow method is made up of calls to several activity methods, being
arranged into sequences, if-else statements and loops. While this requires the
process to be structured properly (see Section 5), the result is structured and un-
derstandable, resembling manually written code, i.e. using conditions and loops
instead of goto-like successor-relations. Thus, if necessary, the generated code
can still be easily extended or altered by hand.

3 In the following, we will use the term “workflow” for the order the individual activ-
ities are executed in the process, and the term “process” for the whole ensemble of
activities and their ordering, events, variables, etc.
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At the same time, BPMN allows for much more expressive workflows to be
modelled, compared to the rather minimalistic workflow notation used in WADE.
In particular, the following concepts of BPMN are covered by the mapping:

– Parallel execution (BPMN’s AND-Gateway) is mapped to multiple threads
being started and joined.

– Subprocesses (composite activities) are mapped to internal classes following
the same schema as the main class, with workflow- and activity methods for
the activities embedded into the subprocess.

– Event handler (intermediate events attached to an activity) are also mapped
to threads, running concurrently to the thread executing the activity itself,
and interrupting this thread in case the respective event occurs.

– The same pattern is applied to event-based XOR-gateways; in this case the
main thread will wait until one of the events has been triggered.

4.2 Properties and Assignments

BPMN specifies a number of non-visual attributes, such as properties (i.e. vari-
ables) and assignments. Properties can be declared in the scope of whole pro-
cesses or individual activities (both atomic tasks and composite subprocesses).
When declared in the scope of a process or subprocess, the property is visible to
all elements (transitively) contained therein.

Accordingly, properties are mapped to Java variables in different scopes in the
Agent Bean, reflecting their visibility in the BPMN diagram. Properties of the
process are mapped to variables in the scope of the Agent Bean class, properties
of a subprocess to variables in the scope of the embedded subprocess class, and
properties of an activity to local variables in the scope of the activity method.

Assignments are always bound to an activity or event, and are included in the
respective activity method. In BPMN, assignments can have an assign-time of
either ‘before’ or ‘after’, determining whether the assignment has to be applied
before or after the actual activity is executed (see below).

4.3 Activity Methods

The several activity methods have neither parameters nor a return value and
always follow the same schema:

1. Properties : First, for each property in the scope of the activity one Java
variable is declared, using the respective data type.

2. Start Assignments : Then, assignments of the activity with assign-time ‘be-
fore’ are applied, e.g., for setting the input parameters of a service call.

3. Activity Body: Now, the code corresponding to the actual activity is carried
out, e.g., invoking a service, sending a message, or executing a user-defined
code-snippet.

4. End Assignments : Finally, assignments with assign-time ‘after’ are applied,
e.g., for binding the return value of a service call to a local variable.
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5. Loop: If the activity’s loop attribute is set, the content of the activity method
is repeated in a loop as long as a given condition is satisfied.

Similar to the mapping to JADL, we can make use of JIAC’s communication
infrastructure, by mapping message events and send and receive tasks to sending
and receiving JIAC messages, while service tasks are mapped to the invocation
of a JIAC action (i.e. a service). Script tasks allow the developer to attach a
custom snippet of Java code to the task. Further, timer events are mapped to a
temporary suspension of the execution.

There are more types of tasks and events in BPMN, for which no mapping has
been devised yet, but these are the most common and important ones. Elements
that will be covered in the near future include the rule event, evaluating a given
Java condition, as well as the user task, presenting a generic input dialogue to
the user.

4.4 Event Handler

As mentioned above, event handlers (i.e. intermediate events attached to an
activity’s boundary) are mapped to threads running in parallel to the actual
activity, interrupting it in case the event has been triggered. To realise this
behaviour, the activity itself is wrapped in another thread, and a reference is
passed to the event handler thread, running in a loop and periodically checking
whether the respective event has occurred (e.g., whether a message has arrived,
or whether a given time has passed). If so, a marker flag is set and the activity
thread is interrupted.

In the workflow method, both threads are started, and the activity thread
is joined. Finally, when the activity has been completed or aborted, the event
handler thread is stopped and the workflow is routed accordingly to whether the
event handler has been triggered or not.

4.5 Start Events and Starter Rules

Finally, the processes’ start events have to be mapped to mechanisms for start-
ing the process on the occurrence of the respective events. In the mapping to
JADL, a number of Drools rules are created for this purpose. Using Agent Beans,
these ‘starter rules’ can be integrated directly into the code, making use of the
mechanisms introduced in Section 3.2.

– If the process has a start event with unspecified type, or none type, then the
workflow method is invoked in the Agent Bean’s doStart() method (one of
the life-cycle methods), being called when the agent is started.

– For a timer start event, the Agent Bean is given an execute() method,
regularly checking the current time against the time the process was last
started, invoking the workflow method at a given time or interval.

– A message start event results in a message observer being attached to the
agent’s memory when the Agent Bean is started, which will then invoke the
workflow method every time a matching JIAC message is received.
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– Finally, in case of a service start event, the workflow method is marked with
the annotation @Expose, exposing the workflow method as a JIAC action to
be discovered and invoked by other agents.4

Besides creating these mechanisms, a service start event also results in the
workflow method’s input parameters being updated to correspond to the speci-
fied service parameters. Analogously, a service end event results in the workflow
method’s return value being set accordingly.

4.6 Development Method

In previous work, we presented a method for integrating process modelling into
the overall multi-agent system development cycle [18], as shown in Figure 3.
While this was aimed at the mapping from BPMN to JADL, most of the ideas
and concepts can be carried over to the mapping to JIAC Agent Beans as well.

Fig. 3. Integration of process modelling into development method [18]

In a nutshell, we see process modelling as the next step after use case analysis.
For each of the previously identified use case diagrams, one BPMN process dia-
gram is created, holding one pool for each of the actors involved in the respective
use case. Those diagrams should describe the behaviour and particularly the in-
teraction of the several roles at a relatively high level of abstraction, illustrating
the system behaviour without cluttering the diagrams with algorithmic details.
The mapping then translates the pools to behaviours, encapsulated into Agent
Beans, while each of the actors corresponds to a different agent role exhibiting
those behaviours. Next, the generated JIAC Agent Beans can be extended with
additional code not suited for inclusion in the process diagrams, and the agent
roles are aggregated to concrete agents and the multi-agent system is set up.

4 There is, as such, no service start event in BPMN. We use this term to distinguish
message start events, where the message is in fact a service request.
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5 Implementation

The first version of the mapping was implemented in the course of a diploma
thesis [28] as an extension to the BPMN editor VSDT (Visual Service Design
Tool). The VSDT was developed with the goal in mind, to provide transforma-
tions from BPMN to diverse executable languages [17]. It also allows for the
import of existing services, simulation/interpretation of process diagrams, and
the generation of descriptive texts in written English from the process. Besides
being a BPMN editor, it can also be used for creating the use case diagrams for
connecting the different process diagrams that make up the entire system.

For exporting BPMN diagrams into different target languages, the VSDT
uses a generic transformation framework [17]. The process can be subdivided
into several stages, being executed one after the other:

1. Validation and Normalization: Check validity of BPMN diagrams and bring
diagram into ‘normalized’ form to facilitate later stages.

2. Structure Mapping: Use pattern-matching to identify different structures,
such as blocks and loops, and bring the diagram into a tree-like form.

3. Element Mapping: Tree-traversal of the structured process, performing the
actual mapping to the target language (JIAC, JADL, BPEL, etc.)

4. Clean Up and Storage: Clean up generated code, merge with existing files,
if any, write to output directory.

The first steps in mapping BPMN to Agent Beans – or any structured pro-
gramming language – is to structure the process graph to a tree of sequences,
decision blocks, loops, etc. [20]. To this end, a number of pattern matching
rules are used, identifying different structures in the workflow and substituting
them with dedicated structural elements. This functionality is provided by the
VSDT’s transformation framework and can be reused for the different target
languages [17]. Thus, only the actual mapping of individual process elements to
fragments of Java code, as specified in the previous section, had to be imple-
mented.

This element mapping has been separated into two stages. First, the struc-
tured process model is translated to an intermediate model, being a high-level
representation of the structure of a JIAC Agent Bean. This is done by travers-
ing the process model, which now has a tree-structure, and thereby creating and
assembling the respective elements of the Agent Bean model. Then, this model
can be translated straightforwardly to executable Java code using a number of
templates for the JET framework.5 Using JET and JMerge, parts of the gen-
erated Agent Bean code can safely be modified and merged in case the process
model changes and has to be re-generated.

5 JET (Java Emitter Templates) is part of the Eclipse Model To Text (M2T) project:
http://www.eclipse.org/modeling/m2t/

http://www.eclipse.org/modeling/m2t/
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6 Example

In this section we will illustrate several aspects of the mapping by means of the
simple example diagram from Section 3, shown in Figure 1.

The BPMN diagram consists of two pools, each representing an agent role:
Client, and Taxi. The client’s process is exposed and started as a service, ex-
pecting a customer ID, current location, desired destination and time of arrival,
and returning the ID of the taxi selected for the tour, if any.

The interaction between the two starts by the client sending a request (cus-
tomer ID, location, destination, desired time of arrival) to all available taxis,
which evaluate the request and decide whether to accept it. If so, they send a re-
sponse (taxi ID, estimated time of arrival, price) back to the client. Meanwhile,
the client enters a looping subprocess, listening to responses and memorising
the best response, until after 30 seconds the subprocess is interrupted by the
attached timer event. The client then sends a notification to the selected taxi.
The taxis listen to incoming message, either preparing to pick up the guest if
the notification is received, or ending the process after waiting for a few more
seconds. Note that the several properties (variables) and assignments are not
visible in the diagram.

The resulting Agent Bean for the Client role is shown in Figure 4, along
with the client’s part of the process diagram for reference. The entire code was
automatically generated and only slightly shortened to improve readability and
to better fit into the figure. The full code also contains JavaDoc comments (not
shown here) with descriptions of the bean class and each of the activity methods,
taken from the description attribute of the respective BPMN elements.

As can be seen, the control-flow of the process is reflected in the workflow()

method, which is also exposed as a JIAC action, or service. The workflowmethod
is dominated by the threads for running the subprocess and the attached event
handler, but also contains an if-else-statement for the gateway at the end of the
process. The activities send request and notify taxis are mapped to two similar
methods for sending JIAC messages to the specified message groups.

The code for, e.g., sending and receiving messages is quite extensive, and
there are several components, such as the event handler classes, that are needed
again and again for different workflows. Consequently, these parts are provided
by the superclass AbstractWorkflowBean, allowing the generated code to be
much more compact and readable.

The subprocess is mapped to the inner class WaitForReplies Sub, also form-
ing a new variable scope for its properties. The class follows the same schema
as the outer workflow class. It features another workflow method (run() in this
case) and three activity methods, most notably the receiveResponse method,
where the client checks its memory for messages arriving at the specified message
group channel. In accordance with the loop-condition of the original subprocess,
the content of the workflow method is executed in an infinite loop. The subpro-
cess itself is run in a thread, which will eventually be interrupted by the event
handler thread, thus breaking out of the loop.
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Fig. 4. Example: Taxi Request Service. Corresponding parts in the process diagram
and the code are numbered correspondingly.

The Agent Bean for the Taxi role is similarly structured, and thus is not
shown here. The main difference is that its workflow method is not exposed as
an action, but is invoked by a memory observer listening for the request messages
sent by the client role. The observer is attached to the agent’s memory in the
doStart() method (one of the life-cycle methods, which is started when the
agent is started). The workflow method itself is rather straightforward, with an
if-statement representing the first gateway, and an event-handler for the second.
The logic for the evaluate request task can either be provided via the task’s script
attribute, or it can be implemented in the generated Java code.

6.1 Discussion

Using the domain-specific scripting language JADL, agent behaviours can be
expressed in a very compact and readable way, but the overall expressiveness



Towards Process-Oriented Modelling and Creation of Multi-Agent Systems 177

(e.g., the supported event types) is limited by the scripting language. JIAC
Agent Beans, on the other hand, have the full expressiveness of the Java language
at their disposal. Thus, basically everything that can be modelled in a BPMN
diagram can be mapped to an Agent Bean.

While the resulting workflow method for complex processes can become some-
what bulky – particularly if event handling is used – its structured form as well
as the separation into workflow methods and activity methods keeps the result-
ing code reasonably clear. Like in WADE, individual activity methods can be
altered or extended without risk of losing the changes after the code is generated
anew. The reason why this is important is that while BPMN is well suited for
high-level behaviour, graphically modelling low-level algorithms and such would
be too laborious. This way, those can be added to the generated code.

One potential problem might be raised by the extensive use of Java threads
for event handling. We are currently investigating ways of integrating the event
handling into the agent’s main thread. Another alternative would be to move
away from the current workflow methods towards a more interpreter-like ap-
proach, memorizing the current state of the process and executing one activity
method in each step of the agent’s execution cycle. Particularly for long-running
processes this might be beneficial.

Regarding the high expressiveness of the generated Agent Beans and the good
performance of compiled Java code when compared to the interpreted JADL
scripts, the mapping from BPMN to JIAC Agent Beans is suited best for mod-
elling and generating core components of the multi-agent system, while the map-
ping to JADL is of much use for creating dynamic behaviours and services to be
deployed and changed at runtime.

7 Conclusion

In this paper, we have presented an approach for creating multi-agent systems
from process models, combining the mapping from BPMN to JADL [18] with
ideas borrowed from WADE [10]. The result is a transformation from BPMN
process diagrams to JIAC Agent Beans, generating one method for the workflow
as a whole, and one method for each individual activity. The resulting Agent
Bean classes are highly expressive and at the same time well structured and
readable. Being based on the wide-spread Business Process Model and Notation,
the process diagrams are easy to understand and the mapping also supports
important aspects such as communication and interaction and event handling,
which are particularly suited for being modelled visually.

Comparing our approach with related works, our impression is that using a
powerful yet high-level notation like BPMN provides for more expressive agent
behaviours, in particular w.r.t. communication and event handling. On the other
hand, we acknowledge that a simpler notation that is more streamlined to the
requirements of agent engineering may be easier to learn, somewhat balancing
the benefit of using an established industry standard.

Of course, it depends on the application to be developed whether process
modelling in general and BPMN in particular are appropriate ways for designing
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the system: Particularly when intensive communication and event handling is
involved, graphical process modelling notations have their benefits, but visually
depicting every detail of a complex algorithm can become rather cumbersome.

Our work has not yet reached the maturity of some of the related approaches.
Still, using the mapping proposed and exemplified in this paper, it is possible to
model complex and distributed multi-agent systems by means of BPMN and to
generate readily executable agent behaviours from the process diagrams. Also,
while we decided to use JIAC in this work, the bulk of the mapping could be
applied to other agent frameworks, as well.

7.1 Future Work

While the mapping can already be used for generating useful agent behaviours, it
is not yet completed. First, there are still aspects of BPMN that are not covered
by the mapping, such as some of the less common event types. Second, there are
aspects of agents that can not yet be modelled adequately with BPMN.

One such issue that we want to tackle in the future is the modelling of goals
and other kinds of dynamic behaviour by means of BPMN. Without those, the
resulting agent systems, strictly following the process diagram, are rather pro-
cedural and inflexible. One promising approach is to use the ad-hoc subprocess
for this task, executing a certain set of activities in no predefined order until a
given completion condition is met. However, this is still work in progress.

Complementary to the transformation to JIAC code, we are currently working
on a process interpreter agent bean. Similar to the JADL interpreter agent, this
will allow to pass processes to the agent at runtime and to have that agent
execute one or more of the roles in that process [29]. Without the additional
layer of abstraction of the scripting language, this approach is expected to have
the same expressive power as the generated JIAC bean while at the same time
being more dynamic. Also, this will allow for monitoring and visualizing the
current state of the running process by linking the process interpreting agent to
the modelling tool.

The downside of the interpreter approach is that the entire behaviour has
to be modelled in the process diagram or has to be made available as callable
services, since there is no possibility to manually extend the generated code.
Thus, we see the upcoming interpreter as a way to dynamically deploy very
high-level processes to the running agent, while the core behaviours of the agent
would still be created in a combination of process modelling, code generation,
and manually extending and refining the generated code.
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Abstract. Although there are many agent oriented methods, organiza-
tional and environmental system dimensions have not been analysed nor
implemented as first class entities. Due to the evolution of development
platforms, we are able to consider these dimensions in all the development
phases. In this paper we present Prometheus AEOlus method, that allows
the integrated development of three systems dimensions: agent, environ-
ment and organization. This method was based on both Prometheus
method and JaCaMo framework and aims to reduce the conceptual gap
between the analysis and implementation phases.
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1 Introduction

As proposed in [10], multi-agent system (MAS) can be formed by four dimen-
sions: agents, environment, protocols of interaction, and organization. However,
the methods.1 provided by the agent oriented software engineering (AOSE) field
focus essentially on the agent dimension. In these methods, some environment
and organizational concepts are used mainly in the early stages to clarify the
problem to be solved. Along the method, these concepts are analysed and, in
the implementation phase, they disappear and are replaced by agent program
primitives. For instance, methods like Prometheus [15] uses the organizational
concept of role to describe part of the agent behaviour. During the analyses
phase roles are grouped to give rise to the agents. However, the roles will not be
properly coded, but the agents originated by a group of these roles will.

Thus, there is a gap problem between analysis and development during the
phases of AOSE methods. One of the reasons for this gap is that the most used
development platforms (i.e. Jade [1] and Jadex [4]) do not deal with organiza-
tional and environmental concepts as first class entities. However, we have now
programming platforms that consider organization and environment as first class
entities, like the JaCaMo [2] and Janus [11] frameworks, and thus this gap could

1 We used method instead of methodology as suggested by [5].
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be reduced. Therefore AOSE methods which also deal with these concepts as
first class entities can be improved.

Aiming the code generation for these four dimensions, we developed
the Prometheus AEOlus method. Prometheus AEOlus is an extension to
Prometheus method, in which we included concepts to improve the modelling
and code generation of the environment and organization dimensions. In this pa-
per we present the main concepts related to Prometheus AEOlus method. The
paper is organized as follows: some AOSE methods are analysed and a state of
the art discussion are introduced in Section 2; in Section 3, we present the tech-
nologies used to develop Prometheus AEOlus method; in Section 4 we present
the concepts and the metamodel defined for Prometheus AEOlus; in Section 5
we present how these concepts are considered in the method; in Section 6 we
present some guidelines used to translate these specifications into code; and in
Section 7 we briefly discuss the experiments performed to test the method and
some future works.

2 State of the Art

Given the existence of many methods, we selected some of them in order to
identify how they deal with organizational and environmental concepts. The
selected methods are well known, largely used by AOSE community and provide
tools which allow code generation from the specification. We selected ASPECS
[6], Ingenias [16], O-MaSe [9], PASSI [7], and Tropos [13].

As presented in Table 1, these methods basically deal with two organizational
concepts: goals and roles. Goals are used to define the overall system behaviour.
Roles are specified to achieve these systems goals, and each role defines a part
of an agent behaviour. Some of them also use the group concept, that allows the
roles to be structured in coherent sets.

Concerning the environment, excepting ASPECS that does not handle envi-
ronmental concept, these methods deal with the concepts of actions, perceptions
and two kinds of external entities: actors, which represent users or other sys-
tems; and resources, which are external objects or tools used by agents. Actions
and perceptions are analysed by the agent point of view, i.e., we can specify an
action performed from the agent without taking into account what this action
changes the environment. In the same way, we specify a perception received by
the agent without taking into account how this perception was generated. An
actor is an external entity that can perform some operations in the system, and
a resource is an external entity in which an agent can perform an action. In both
cases, the method does not address how these events and actions are produced
outside the agents.

Moreover, each method is supported by a tool that allows the translation from
the specifications to code in a specific language. Essentially JADE, Jack and
Jadex languages are used and, typically, most of the system functionality must
be coded by the developer since they generate just a skeleton code in the target
language. Furthermore, no target language allows environment and organization
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Table 1. Organizational and environment concepts used by AOSE methods

Method Organization Environment Tool Platform

Role

ASPECS Group Janeiro Janus

Goal

Role Resources

Ingenias Group Perceptions IDK JADE

Goal Actions

Role External Entities
O-MaSe

Goal Actions
AgentTool III JADE

Actor
PASSI Role

Action
PTK AgentFactory

Actor

Role Resources
Prometheus

Goal Actions
PDT Jack

Perception

Role Actor Jack
Tropos

Goal Action
TAM4E

Jadex

implementation.2 The Janus platform used by ASPECS is one exception that
allows the implementation of some organizational concepts. Janus was indeed
developed specifically to deal with the very concepts of ASPECS.

Thereby, environmental and organizational concepts are just used in these
methods to support the agent analysis and not even the organizational ASPECS
concepts are used considering more detailed models of these dimensions. Despite
the existence of tools that allows the code generation, most used target platforms
do not support these concepts implementation.

3 Background: Prometheus and JaCaMo

Two main technologies are used in Prometheus AEOlus development: the
Prometheus method and the JaCaMo framework. Prometheus [19] is a method
that proposes a detailed process for specifying and designing agent oriented soft-
ware systems. Prometheus method defines a range of structured work products,
graphical or textual, that are produced along three developments phases: system
specification, architectural design and detailed design. The first phase, system
specification, focus on identifying goals and basics functionalities of the system.
The architectural design phase uses the work products produced in the previous
phase to determine which agent types the system will contain and the inter-
actions among them. The last phase, detailed design, focus on the internals of
each agent to specify how they will accomplish their tasks. Due to its maturity

2 Although Jack has a specific package with organizational concepts, the method do
not use this package in the code generation process.
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concerning the agent design and analysis, Prometheus was used as the start-
ing point for the Prometheus AEOlus method, in which the environmental and
organizational analyses and design are improved.

To improve these dimensions in Prometheus, we decided to use some concepts
provided by JaCaMo framework. JaCaMo [2] is a framework for multi-agent
programming that combines three separate technologies: the Jason language for
programming autonomous agents; the CArtAgO framework for programming
environment artifacts; and the Moise organizational model for programming
multi-agent organizations. JaCaMo allows the integrated development of these
three dimensions (agent, environment and organization) using specific concepts
and abstractions for each one.

In the agent dimension, JaCaMo uses abstractions inspired by the BDI archi-
tecture, and implemented in the Jason programming language. A Jason [3] agent
is an entity composed of a set of beliefs, goals, and plans, and it is able to perform
a set of actions. These can be external actions, which change the environment,
or internal actions, which change only the internal state of the agent.

In the environment dimension, JaCaMo uses the CArtAgO [17] framework.
CArtAgO is based on the Agents and Artifacts (A&A) model [18] and it allows
the programming of software environments. Such environments are composed of
one or more workspaces, which one composed of a set of artifacts. Artifacts are
tools or resources and they provide operations, that can be used by the agents,
observable properties and observable events that can be perceived by the agents.
Observable properties can be updated by the operation execution likewise the
observable events specified by it.

Finally, in the organizational dimension, JaCaMo uses the Moise [12] orga-
nizational framework. Moise specifies i) a structural specification, that points
out the roles within the organization. Roles define the agent expected behaviour
in the system and they can be arranged into groups and subgroups ; ii) a func-
tional specification, where the relation among organization’s goals, called social
scheme, and sets of goals the agents can commit to, called missions; iii) and the
normative specification, that binds roles to missions through norms.

Since our objective are both to allow the code generation and to reduce the gap
between the analyses and development stages, we decided to use JaCaMo con-
cepts to improve the Prometheus development process to ensure that concepts
used during the design and analysis stages will be used in the implementation
stage. To the best of our knowledge, JaCaMo is the first approach that allows
the integrated development of these three dimensions (agent, environment and
organization).

4 Prometheus AEOlus Metamodel

We started the Prometheus AEOlus development by defining the concepts that
are relevant for each dimension and how they relate to one another. These con-
cepts were defined based on those used by both Prometheus and JaCaMo tech-
nologies. From such concepts, we defined a new metamodel, used by Prometheus
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AEOlus method. In fact, a complete life cycle method uses different concepts
during each phase, and one single metamodel can not cover all these phases.
Considering that we focus on the code generation for agent, environment and
organizational dimensions, we define the Prometheus AEOlus metamodel with
concepts used during the implementation phase. As this phase is the closest to
the code generation, the concepts must be closer to those used by the target
platform, in order to reduce the conceptual gap.

To define the concepts used for each dimension and to generate the
Prometheus AEOlus metamodel, we initially compared Prometheus [8] and Ja-
CaMo [2] metamodels. It was not a straightforward process, since these technolo-
gies are developed in different projects with distinct objectives. Some concepts
are present in both metamodels; some others have related meanings, but use
different names; and still others have different meanings although they use the
same name. We started this process with the existent concepts in the Prometheus
metamodel and then we included, changed or removed concepts as needed for
each dimension, based on those existent in the JaCaMo metamodel. As the re-
sult of these preliminary analysis, we defined a first metamodel, that integrated
Prometheus and JaCaMo concepts, presented in Figure 1. It is important to
note that in this preliminary metamodel some concepts used only in the analy-
ses phase of the Prometheus method still remains.

Fig. 1. Prometheus AEOlus preliminary metamodel

The environment dimension, in JaCaMo approach, is composed of a set of
artifacts organized in workspaces. Each artifact provides a set of operations and
each operation can generate observable events and change observable proprieties.
In Prometheus approach, the environment dimension is described only by actors
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that interact with the system and resources used by the agents. Thus, we in-
cluded in the metamodel the following concepts: Workspace, Artifact, Operation,
ObservableEvent, and ObservableProperty to allow a more detailed description
of the environmental dimension.

In Prometheus the role and goal organizational concepts are already consid-
ered. However, these role concepts are used as a part of the agent behaviour and
the goal represents both, individual and organizational goals. In JaCaMo ap-
proach, however the organizational dimension includes the organizational goals
that are arranged in missions, and the relation among these goals, called so-
cial scheme; roles that are arranged in groups and subgroups; and norms that
bind roles to missions. To allow a more accurate description for the organiza-
tional dimension, we decided to include the following concepts from the JaCaMo
approach: Role, Group, Goal, Norm, Mission, and SocialScheme.

At this point we realized that, despite the fact that the Prometheus metamodel
provides most of the relevant concepts to describe the agent dimensions, some
other concepts are important in order to best align the metamodels. Looking for
the JaCaMo agent dimension, a plan is composed of a set of actions and by a
trigger event. These actions can be performed in the internals of the agent or in
the environment, called respectively internal and external actions. We decided
to divide the Prometheus action concept in ExternalAction and InternalAction,
and also include the TriggerEvent as a part of the agent plan.

The next step in our process was to identify related and conflicting concepts.
Related concepts are concepts with similar meanings, hence only one of them
is needed in the Prometheus AEOlus metamodel. For instance, when an agent
performs an external action it is executing an operation in an environmental
artifact. Thus, the ExternalAction concept has the same meaning as the en-
vironment concept Operation. In the same way, when an artifact updates an
observable property or generates and observable event in the environment, the
agent will receive it as a perception, and both ObservableProperty and Observ-
ableEvent concepts are related to the Percept concept. The Actor concept is
also related to the Artifact concept, since Artifact also represents all the ex-
ternal entities interacting with the system. The JaCaMo organizational concept
of Role was clearly related to the Role concept from Prometheus. Similarly, the
JaCaMo organizationalGoal concept is related to the Prometheus Goal concept,
that also represents organizational and personal goals. In this case, to allow the
specification of both organizational and personal goals, we decided to specialize
the Goal concept in two types: IndividualGoals, that are the agent’s personal
goals, and OrganizationalGoals, that are goals defined by the organization.

Conflicting concepts are those that do not share the same meaning in
Prometheus and JaCaMo, like the Prometheus Data concept. The Data con-
cept represents both agent’s beliefs and environmental resources, which is al-
ready considered by the JaCaMo Artifact concept. Thus, we replaced the Data
concept by the Belief concept, that only represents the agents beliefs.

Lastly, we removed from the metamodel the Scenario and Step Prometheus
concepts. These concepts are used only in the analysis phase and are not in the
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implementation and code generation phases, thus they are not relevant to this
Prometheus AEOlus implementation metamodel.

As a result of this analysis, we have the Prometheus AEOlus metamodel,
presented in the Figure 2. In this Figure, white concepts came from Prometheus
metamodel; gray concepts are from JaCaMo metamodel and black concepts are
those existent in Prometheus that changed their meaning in the Prometheus
AEOlus metamodel.

Operation InternalAction

ActionArtifactWorkspace

Perception

Protocol

Agent

TriggerEvent

Group

Norm

Role

Mission

SocialScheme

OrganizationalGoal

Belief

Goal

IndividualGoal

Plan Capability

Message

Operation

ArtifactWorkspace

Group

Mission

SocialScheme Norm

OrganizationalGoal

InternalAction

TriggerEvent

IndividualGoal

Goal

Belief

Action

Changed Concept
New Concept

Fig. 2. Prometheus AEOlus metamodel

In the Prometheus AEOlus method agents can perform two types of actions:
InternalActions, that only changes the agent’s internals, and Operations, that is
performed on an environmental Artifact. Artifacts are grouped in Workspaces
and, when an operation is executed, they generate some Perception to the Agents.
These Perception can become a new Belief in the agents beliefs base or a Trig-
gerEvent that starts a Plan.

Agents have Plans to achieve their Goals. Goals can be composed of Subgoals
and they can be either IndividualGoals or OrganizationalGoals. Organizational-
Goals are grouped in Missions, that structures the organization’s SocialScheme
and are assigned to the Agent by the Role it plays in the organization. Mis-
sions are bind to the Roles by a norm, that specify obligation or permissions to
achieve a specific OrganizationalGoal. These Roles can be structured in Groups
and Subgroups.
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5 Prometheus AEOlus Method

The Prometheus AEOlus method uses an interactive incremental process based
on the Prometheus process. Prometheus AEOlus starts with the three develop-
ment phases used in Prometheus (system specification, architectural design and
detailed design) and provides a fourth phase called implementation. During the
system specification phase, a clearly and detailed system specification is created.
Based on this specification, in the architectural design phase the overall system
behaviour is defined, and in the detailed design phase the agent’s plans are spec-
ified. Finally, in the implementation phase some entities defined in the previous
phases are refined to allow the code generation for the JaCaMo framework.

Figure 3 presents all these phases and the work products produced in each one.
In this Figure, work products presented in white are those existent in Prometheus
method and used in Prometheus AEOlus as well; the ones existent in Prometheus
but changed in Prometheus AEOlus are in black and new work defined only in
Prometheus AEOlus are in grey.

Analysis
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Overview

Protocols

Agent Role
Grouping

Role
Overview

Missions

System Overview

Structural

Normative

Environment
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Agent 
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Descriptor

Action
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Input
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Architectural Design

Detailed Design

Implementation

Fig. 3. Prometheus AEOlus overview

Although Prometheus AEOlus method considers most of the work products
of Prometheus, we introduced four graphical work products in order to comple-
ment the environmental and organizational specifications. These work products,
included in the architectural design phase of the Prometheus AEOlus method
are the following: structural, missions, normative and environment overview. In
the implementation phase, we produced some textual work product with a re-
fined description of the entities required for the code generation. Most of these
textual work product are also produced in Prometheus, along all its phases. In
Prometheus AEOlus, however, these textual work product are produced only in
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the implementation phase. The artifact descriptor work product was introduced
in this phase.

In this paper we present a brief description of the Prometheus AEOlus method
based on the Agents on Mars scenario. In this scenario, two teams are competing
to find the best water wells and occupy the Mars best zones. The environment is
represented by a graph where each vertex has a number representing its value. A
zone is a subgraph with at least two nodes and each zone has a value, determined
by the sum of the vertices values. The main goal is to maximize the score,
computed by summing up the values of the zones occupied by the team and its
current money. The money is increased when the team executes some activities,
like probe vertices, survey edges and attack enemies.

5.1 System Specification

To create a clear and detailed system definition, we started by defining use case
scenarios as well as the system’s goals. In this phase, the aim was to answer
the question “What should the system do?”. The scenario description started
from the initial system description. This textual work product describes how
things should happen in some particular circumstances. Each scenario shows a
sequence of steps that take place within the system which were used to describe
the expected behaviour during its normal running and also what was supposed
to happen when something went wrong.

In the goal overview diagram we summarize all identified system’s goals and
subgoals, arranging them in an AND/OR tree that allows the definition of de-
pendencies among these goals. The Goal overview diagram is also based on the
initial system description. New goals can arise during the scenario description
and new goals can originate new scenarios.

For example, in the goal overview for the Agents on Mars scenario, presented
in Figure 4, the main system goal is To Maximize Score and it is decomposed
in three subgoals: Occupy good zones, Defend zones and Get Money. All these
subgoals can be pursuit at the same time since they are decomposed using an
AND operator. The goal Occupy good zones is also decomposed using the AND
operator with a precedence order, suggesting the sequence in which the subgoals
must be pursuit. That is, first the Figure out the map subgoal is achieved, then
Define good zones is achieved, and finally Place the agents is achieved. Like-
wise, the subgoal Defend zones is decomposed using the AND operator with a
precedence order to be achieved. The goal Get money is decomposed using an
OR operator and any of its subgoals (Probe vertices, Attack enemies and Survey
edges) can be selected.

5.2 Architectural Design

This phase aims to define the overall system structure by the defining the sys-
tem’s elements (missions, roles, agents, artifacts) and the links between them.
In this phase, the goals specified in the goal overview diagram are arranged in
coherent sets called missions. Each mission is assigned to an agent by the role
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Fig. 4. Goal overview diagram

it plays in the system. Thus, a mission must be composed of a consistent set of
goals, since the agent that assumes a mission should be able to achieve all its
goals. These missions are presented in the missions diagram presented in Figure
5. This diagram is based on the goal overview diagram, and links missions to
their goals. For example, the mission called Occupy is composed of Define good
zones and Place the agents goals. Thus, the agent that assume this mission must
achieve both goals.

Also in the architectural design phase, the structural diagram specifies the
system’s roles, how these roles are grouped, and the links among them. A role is
defined when a specific behaviour is necessary in the system. These behaviours
can be defined based on the scenario diagram. For example, in the description of
Agent on Mars, we can identify five roles: Sentinel, Inspector, Explorer, Repairer
and Saboteur. A sixth role, called Leader, is defined as a project choice, since this
scenario uses a centralized approach for decision making. Figure 6 present the
structural diagram for this example. In the Figure, the abstract role TeamMem-
ber is defined. This abstract role is used to simplify the specification by means of
inheritance. No agent can directly play an abstract role and it is a “super-role”
that all roles inherit characteristics.

A group is composed of a related set of roles. Each role is included in a group
with its cardinality (min and max) that represents the number of agents that
can play this role. A group can also contain some subgroups, each one with its
cardinality. One group is labelled as “well formed” if all its cardinalities are sat-
isfied. In the Agent on Mars example, we defined a main group called Team.
This group is composed of two subgroups - Conquest and Defense - and one role
called Leader. To be “well formed”, exactly one instance of each subgroup should
be created and one agent must play the role Leader. The subgroup Defense is
composed of the roles Repairer and Saboteur, and the Conquest subgroup is com-
posed of the roles Sentinel, Inspector, and Explorer. All these roles cardinalities



Environments and Organizations in Multi-Agent Systems 191

Maximize 
score

Occupy good 
zones

Defend
zones

Probe
vertices

Define
good zones

Place the
agents

Inspect
enemies

Call defense
agents

AND OR

AND

AND

Survey 
edges

Get Money

Attack 
enemies

Figure out
the map

Occupy

Knowing

Defense Probe

Attack

Survey

Legend

Goal

Link
Precedence

Mission

Composition

Fig. 5. Mission diagram

are four, that is, four agents have to play each role. The Leader is a role played
by one agent that also plays the role Explorer. In a group, the roles are linked to
represent acquaintance, authority, communication or compatibility among them.
In the Agents on Mars example, presented in Figure 6, we used the abstract role
TeamMember to define, by inheritance, compatibility and acquaintance among
all other roles. Further, the role Leader has authority over the others and they
can communicate with the Leader.

Based on these missions and structural diagrams, the normative diagram is
defined. In this diagram the norms that link roles and missions are specified.
Two kinds of norms are used: permission, used to state that an agent is allowed
to commit to a mission, and obligations, to state that an agent ought to commit
to a mission. It is important to note that if an agent is obligated to a mission it is
also permitted to this mission. Figure 7 presents the normative diagram for the
Agents on Mars example. In this Figure, some missions should be committed by
more than one role, like the Survey mission that all agents have to commit to.
Likewise, some roles are obliged/permitted to more than one mission, like the
role Explorer, that is obligated to commit to the missions Probe and Knowing
and is permitted to commit to the mission Survey. That implies that the agent
playing Explorer must achieve the goals of all these missions.

The environmental artifacts are defined in the environment overview diagram.
Each artifact encapsulates operations that represent functionalities or tools that
can be used by agents. When an agent execute an artifact operation, it may
provide some perceptions to the agent. Artifacts are grouped into workspaces
and to execute operations or receive their perceptions the agent must enter this
workspace. In the diagram, artifacts are presented with the actions and percep-
tions related to them. Artifacts can be defined based on the scenario descrip-
tion, when it is identified the need of a shared resource or a shared data among
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agents, or the need of an interface between the system and another external
entity. For example, in the environment overview for the Agents on Mars exam-
ple, presented in Figure 8, we used two artifacts in the same workspace called
Mars. The artifact Server creates an interface between the system and the game
server, and the artifact Map is used to share all agent informations about the
scenario map. Furthermore, we can create artifacts to coordinate agents actions
or to help the communication among them. In Figure 8, we also present some
of the possible actions performed in each artifact (e.g. the probe action in the
Server artifact and the send data action in the Map artifact) and the percep-
tions provided them (e.g, the position perception from the Server artifact and
the new zone perception from the Map artifact).

The next step is to define the agents types that take part of the system.
An agent type is defined when we identify that a specific role demand some
specific characteristic or ability to be properly played. Thus, these agent types
are defined based on the scenario description, the structural, and the norma-
tive diagrams previously created. An agent type can be defined to play one
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specific role or more than one role. These agents types are presented in the
system overview diagram, in which the overall system structure is defined. The
diagram also presents exchanged messages, perceptions and actions related to
each agent. This diagram aims to provide an overview of elements and how they
are related. Figure 9 presents a system overview diagram fragment for the Agents
on Mars scenario. In this fragment three agent types are presented: ExplorerAg,
SentinelAg and RepairerAg. This diagram also specifies some message exchange
between the agents. The ExplorerAg sends a message place in that is received
by the SentinelAg; and all of them may send the message need repair to the
RepairerAg.

5.3 Detailed Design

This phase focus on the agent internals, that is, their plans, beliefs and capa-
bilities. In this phase we assume that the agent uses the BDI architecture. In
Prometheus AEOlus, like in Prometheus, a capability is conceived as a library
that encompasses functionalities required in more than one single agent. A ca-
pability is described in the capability overview diagram while the agent uses the
agent overview diagram. Both agent overview and capability overview diagram
are used to describe the agents internals. A plan is described as a sequence of
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actions that can be performed by the agent to accomplish a goal or make a
task. Each plan requires a trigger event that starts the plan execution. Figure
10 presents some plans used in the Agents on Mars scenario. ExplorerAg agent
executes a plan called conquer zone, that is started by receiving the perception
good zone. This plan executes the action choose strategy and then sends the
place in message. This agent includes the capability CommonPlans and all plans
detailed within this capability can also be executed by the agent.

Agent repairerAg

need_repair

repair_damaged

goto repair

commonPlans

Agent explorerAg

place_in

good_zone
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Fig. 10. Agent and capability overview diagrams

5.4 Implementation

The implementation phase is used to refine the entities including some relevant
information used for the code generation phase. In this phase we assumed that
the code is generated for the JaCaMo platform and we refine these entities based
on JaCaMo characteristics. Each descriptor is a structured textual work prod-
uct with specific information. In the agent descriptor, for example, we included
information about how many agents are initialized during the system start; in
the message description the performative and the content of the message is in-
formed; and in the artifact descriptor we described the operations provided by
each artifact, the parameters needed to instantiate it, and the observable prop-
erties and events provided by it. For the Agents on Mars example we present
some descriptors in Table 2.
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Table 2. Descriptors created in the implementation phase

(a) Agent descriptor

Agent explorerAg

Description Explorer agent is responsi-

ble for mapping the explo-

ration zone and organize the

defense zone

Cardinality 4

(b) Plan descriptor

Plan repair damaged

Description Executed when a need repair

message is received, the repairer

should have more than 3 points

of health and it is not repairing

another agent

Context health(X) & X > 3 & free

(c) Message descriptor

Message need repair

Description Sent by damaged agents. An

agent is damaged if it has less

than 3 points of health

Performative achieve

Content need repair(Pos)

(d) Action descriptor

Action goto

Description Moves the agent to a spe-

cific vertex. Action provided

by the Server artifact

Function goto(Vertex)

(e) Artifact descriptor

Artifact Server

Description Used to interface the system and

the server.

Operations probe(Vertex)

goto(Vertex)

repair(AgentID)

Parameters

Observable Properties int[] position

Observable Events

6 Code Generation

The Prometheus AEOlus method provides some guidelines to allow the assisted
translation from the developed work products to code, using the JaCaMo frame-
work as target platform; the code for the agent dimension is implemented in
Jason; the organizational dimension is implemented in Moise, using a XML file;
and environment dimension is implemented in Java programming language using
the CArtAgO framework.

6.1 Code Generation for the Agent Dimension

The code for the agent dimension starts with the generation of the Jason project
file (that usually has the .mas2j extension) produced from system overview and
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//mas2j file
MAS agentsOnMars
{
   infrastructure: JaCaMo
   agents:
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aslSourcePath: "src/asl"; 
}

Agent Descriptor
Cardinality 4

Agent Descriptor
Cardinality 2

explorerAg

sentinelAg

repairerAg

Fig. 11. Jason .mas2j file generated from system overview diagram

agent descriptor diagrams. Figure 11 presents the .mas2j file for the Agents on
Mars scenario, a portion of the system overview diagram and the agent descriptor
for each agent. This file includes some overall MAS characteristics. It defines that
the infrastructure is JaCaMo and the location of the agents source code. This
file also contains the agents that will take part in the system, i.e., their names
and number of instances. These agents are defined based on the system overview
diagram presented in Figure 9 and agent descriptor presented in Table 2a.

A Jason agent is coded in a file with the .asl extension. The file name is the
agent name and the code is created based on the agent overview diagram. The
agent code is composed of plans, beliefs and capabilities. A plan is composed
of perceptions, messages and actions. All these entities have their own descrip-
tor which are used to generate the code. Figure 12a presents the code for the
agent reapairerAg, the agent overview diagram and the descriptors of each ele-
ment. The plan has three parts: a trigger event, a context and a body. A trigger
event can be a received message, like presented in the Figure, or a perception
received from the environment and the body is a sequence of actions, messages
and beliefs changes. Both are defined in the plan specification, presented in the
agent overview diagram, while the context is defined in the plan descriptor. The
repairerAg includes a capability called commonPlans and the include directive
of Jason is thus used in the generated code. The commonPlans capability is
also coded as an .asl file, named commonPlans.asl. A piece of the capability
code is presented in the Figure 12b, with the capability overview diagram and
the needed descriptors. This plan first executes a query in the belief base and
then sends a message. In the system overview diagram we can see which agent
will receive the message. In the example, the message need repair is sent to the
repairerAg.
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Agent repairerAg

Plan Descriptor
Context: free & 
              healthy(X) &  X > 3 

Message Descriptor
Performative: achieve
Content: need_repair(Pos) 

Action Descriptor
Function: goto(Pos)

Action Descriptor
Function: repair(AgentID)

need_repair

repair_damaged

goto
repair

commonPlans
//repairerAg.asl

{ include("commonPlans.asl") }

@repair_damaged

+!need_repair(Pos)

    : free & healthy(X) &  X > 3 

    <- goto(Pos);

         repair(AgentID).

(a) Jason .asl file for the repairerAg agent

    .send( repairerAg , achieve,
                                     need_repair(Pos)).

explorerAg need_repair

sentinelAgn

repairerAg

Capability commonPlans 

Plan Descriptor
Context: healthy(X) &  X < 3 

Message Descriptor
Performative: achieve
Content: need_repair(Pos) 

Belief Descriptor
Data: myPos(Pos)

Perception Descriptor
Function: repair(AgentID)

new_step

call_repair

pos
need_repair

//commonPlans.

@call_repair

+new_step

 : healthy(X) & X < 3

 <- ?myPos(Pos); 

System Overview

(b) Jason .asl file for the commonPlans capability

Fig. 12. Jason code generated for the agent dimension

6.2 Code Generation for the Organizational Dimension

The overall XML file structure to implement aMoise code is presented in Listing
1.1. The organization is defined within the <organizational specification> tag,
where the code for structural, functional, and normative specifications will be in-
cluded. For each specification one specific tag is used: <structural specification>,
to include the code for the organizational structure with their roles and groups;
<functional specification> tag, to include the code for the organizational goals
and missions; and <normative specification>, to include the code for the orga-
nizational norms. Each specification is detailed below.
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Listing 1.1. Overall structure to Moise XML file

<?xml version ="1.0" encoding ="UTF -8"?>
2 <organisational -specification

id = "id_organizational_specification"
4 os-version = "0.8"

xmlns = ’http://moise. sourceforge.net/os’
6 xmlns:xsi = ’http://www.w3.org/2001/ XMLSchema -instance ’

xsi:schemaLocation = ’http://moise.sourceforge.net/os
8 http://moise.sourceforge.net/xml/os.xsd’ >

10 <structural -specification>
<!-- put structural specification here -->

12 </structural -specification>

14 <functional -specification>
<!-- put functional specification here -->

16 </functional -specification>

18 <normative -specification>
<!-- put normative specification here -->

20 </normative -specification>

22 </organisational -specification>

The structural specification is generated from the structural diagram, in which
all system roles, groups and links are specified. Figure 13 presents a portion
of the structural diagram previously presented, and the XML code generated
based on it. In the Figure, the important XML tags are related to the element
that describes it. For example, the tag <role id=“TeamMember” / > describes
the abstract role TeamMember. Figure 13a presents the XML tags generated
to describe the roles; Figure 13b presents the tags generated to describe the
elements within the group Team; and the Figure 13c presents the tags generated
to describe the elements within subgroup Conquest.

The functional specification is generated within the <scheme> tag, based on
the missions diagram. In Figure 14 a portion of the diagram for the Agents
on Mars and its respective code is presented. Within this specification all sys-
tems goals and their hierarchy are coded. The plan operator tag as specified in
Figure 14 indicates that the subgoals are achieved in sequence. The functional
specification also includes all the missions and their goals.

The normative specification is generated based on the normative diagram. As
presented in Figure 15, which presents a piece of the normative specification for
the Agents on Mars example Generating the code for this specification is simple.
Each norm tag is composed of an id, the name of the role for which this norm
is applicable, the type of the norm (permission or obligation) and the mission
that is related to the norm.

6.3 Code Generation for the Environmental Dimension

The code for the environmental dimension is implemented in Java programming
language using the CArtAgO framework. A CArtAgO artifact is programmed
directly by defining a Java class that extends the cartago.Artifact class. To create
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Explorer

Sentinel

Conquest

Leader

Team

Member

1..11

4..444

4..4

1..1

Team

<structural-specification>
  <role-definitions>
     <role id="TeamMember" />
       <role id="Sentinel"><extends role="TeamMember"/></role>
       <role id="Explorer"><extends role="TeamMember"/></role>  
          <role id="Leader"><extends role="Explorer"/></role>
     </role> 
  </role-definitions>
  <group-specification id="Team">
      [...]
  </group-specification>
</structural-specification>

(a) XML code for the roles in the structural specification

Explore

Sentinel

Conquest

1..11

4..4

4..4

1..1

Team

Leader

Team

Member

<structural-specification>
  <role-definitions> [...] </role-definitions>
    <group-specification id="Team">

      <roles><role id="Leader" min="1" max="1"/> </roles>
      <links>

         <link  from ="TeamMember"  to="TeamMember" 
           type="acquaintance" scope="intra-group"/>
         <link from ="Leader"  to="TeamMember" 
           type="authority" scope="intra-group" />   
         <link from ="TeamMember"  to="Leader" 
           type="communication"  scope="intra-group" />
      </links>     
      <subgroups> [...]  </subgroups>            
      <formation-constraints> [...]  </formation-constraints>
    </group-specification>
 </structural-specification>

(b) XML code for the group Team in the structural specification

Team

Member

1..11

4..4

4..4

Explorer

Leader
1..1

Team

<structural-specification>
  <role-definitions>  [...] </role-definitions>
  <group-specification id="Team">
    <roles> [...] </roles>
     <links> [...] </links>   
     <subgroups>

       <group-specification id="Conquest" min="1" max="1">
          <roles>
              <role id="Explorer"  min="4" max="4"/>

              <role id="Sentinel"  min="4" max="4"/>

          </roles>
        </group-specification>
     </subgroups>            

     <formation-constraints>
       <compatibility  from="TeamMember"  to="TeamMember" 
          type="compatibility" scope="intra-group"  bi-dir="false"/>
      </formation-constraints>
    </group-specification>
 </structural-specification>

Sentinel

Conquest

(c) XML code for the subgroup Conquest in the structural specification

Fig. 13. XML Code generated for the structural specification
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Knowing

<functional-specification>
  <scheme id="scheme">

     <goal id="Occupy good zones" />

       <plan operator="sequence">

         <goal id="Figure out the map" />
         <goal id="Define good zones" />
         <goal id="Place the agents" />
       </plan>
     </goal>

     <mission id="Knowing">
       <goal id="Figure out the map"/>
     </mission>
     <mission id="Occupy">
       <goal id="Define good zones" />
       <goal id="Place the agents" />
     </mission>

  </scheme>
 </functional-specification>

AND

Occupy

Define
good zones

Place the
agents

Figure out
the map

Occupy good 
zones

Fig. 14. XML code generated for the functional specification

<normative-specification>

  <norm id="n1" role="Leader"    type="obligation"     mission="Occupy" />

  <norm id="n2" role="Sentinel"   type="permission"   mission="Knowing" />

 </normative-specification>
Knowing

Sentinel

Leader
Occupy

Fig. 15. XML code generated for the normative specification

this class, we used the environment overview diagram and the artifact descrip-
tor, where the most important information to generate the code is specified. The
class for the Server artifact used in the Agents on Mars example is presented in
Figure 16. For each operation defined in the artifact descriptor one void method
is created. These methods should be annotated with @OPERATION. A special
method called init is used to specify how this artifact is created. If some parame-
ters are defined in the descriptor, these parameters are used in this init method.
The primitive defineObsProperty() is used to define the observable properties
for this artifact. For each observable property its name and initial values are
defined.
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probe

position
Server

Artifact Descriptor
Operations   probe(Vertex) 
Parameters   
Observable Properties int[] position
Observable Events  

import cartago.Artifact;
import cartago.OPERATION;
import cartago.ObsProperty;

public class Server extends Artifact 
{      
    @OPERATION public void probe(Vertex) {
       System.out.print("probe() operation");  
    }   
   

    @OPERATION public void init() {
       defineObsProperty("position", 0); 
    }
}

Fig. 16. Java class generated for the environment dimension

7 Conclusions

The Prometheus AEOlus method aims at allowing the MAS analysis and im-
plementation integrating the agent, organization, and environment dimensions.
Each dimension is analysed and implemented as first class entity, using specific
concepts and abstractions. To minimize the conceptual gap between the anal-
ysis and programming phases, we used the same concepts in both phases. The
approach main advantage is a straightforward translation from the work prod-
ucts used during the analysis phase into code. Nevertheless, the Prometheus
AEOlus method is platform dependent, since it was developed based on the Ja-
CaMo framework, and uses mainly concepts from this framework. Although the
proposed method aims at a specific platform, the approach we used to achieve
this method (metamodels alignment and an existing method extension) could
be followed using other platforms and methods.

We also conducted a preliminary evaluation with a group of 30 undergrad-
uate and graduate students. This primary test aimed to evaluate the method
and its modelling language, including aspects like understandability, acceptabil-
ity, expressiveness and efficiency. The students who took the evaluation had no
previous knowledge in the agent oriented field. They used the method to design
and analyse a simple example. Then, they answered a ten question survey about
the evaluation aspects. The result allowed us to improve the method, changing
some diagrams and notations. However, due to the limited time and the limited
users knowledge, this preliminary evaluation did not include all method aspects.

The next step in the Prometheus AEOlus development is to implement a tool
that supports all Prometheus AEOlus phases and the automatic code generation.
We are planning to describe the Prometheus AEOlus method using the SPEM
2.0[14] specification. Also, a formal verification to the final metamodel and a
comparison evaluation to other methods is necessary to further improve the
method.
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9. DeLoach, S.A., Garćıa-Ojeda, J.C.: O-mase: A customisable approach to designing
and building complex, adaptive multi-agent systems. Int. J. Agent-Oriented Softw.
Eng. 4(3), 244–280 (2010)

10. Demazeau, Y.: From interactions to collective behaviour in agent-based systems.
In: 1st. ECCS, pp. 117–132 (1995)

11. Gaud, N., Galland, S., Hilaire, V., Koukam, A.: An organizational platform for
holonic and multiagent systems. In: Hindriks, K.V., Pokahr, A., Sardina, S. (eds.)
ProMAS 2008. LNCS (LNAI), vol. 5442, pp. 104–119. Springer, Heidelberg (2009)
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Abstract. Various agent-based programming languages and frameworks
have been proposed to support the development of multi-agent systems.
They have contributed to the identification and operationalisation of
multi-agent system concepts, features and abstractions by proposing spe-
cific programming constructs. Unfortunately, these contributions have
not yet been widely adopted by industry. In this paper, we follow the
argument that multi-agent programming technology can find its way to
industry by introducing design patterns for the existing agent constructs
in standard software technology. We provide some object-oriented design
patterns based on the programming constructs that have been developed
in agent-based programming languages.

1 Introduction

Multi-agent systems (MAS) technology aims at improving solutions for industry
problems related to distributed autonomous systems. The MAS community, in
particular the agent oriented engineering side, provides high-level (social/cog-
nitive) concepts and abstractions to conceptualize, model, analyse, implement,
and test intelligent distributed systems. The development of a multi-agent system
boils down to the development of a set of individual agents, their organisation,
and the environment with which they interact. Individual agents are required
to be autonomous in the sense that they are able to make their own decisions
to either achieve their objectives (proactive behaviour) or to respond to their
received events (reactive behaviour). The organisation is supposed to coordinate
the agents’ behaviours in order to ensure the overall objectives of the multi-agent
system. Finally, the environment encapsulates shared resources and services that
can be used by the agents.

In the past decades, various programming languages and frameworks have
been proposed to support the development of multi-agent systems. These pro-
gramming languages have provided dedicated programming constructs (either in
a declarative, imperative, or hybrid style) to support the development of specific
features of multi-agent systems. While some programming languages extend stan-
dard programming technologies such as Java (e.g. Jade [2] and Jack [4]), other
agent-based programming languages are specified from scratch (e.g. 2APL [8],
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GOAL [13] and Jason [3]). These programming languages and frameworks fo-
cus on specific sets of concepts and abstractions for some of which operational
semantics and execution platforms are provided.

Without doubt a merit of these programming languages is the plethora of
programming constructs that support the implementation of various features of
multi-agent systems. For example, BDI-based agent-oriented programming lan-
guages such as 2APL, Goal and Jason can be seen as technologies that demon-
strate how autonomous agents can be developed by means of a set of conditional
plans and a decision procedure that continuously senses the environment to up-
date its state, reasons about its state to select conditional plans, and executes
the selected plans. Other programming proposals focus on the implementation
of specific features concerning organisations or environments of multi-agent sys-
tems by proposing programming constructs to implement norms and sanctions,
mobility, services, resources or artefacts.

Although these programming languages and frameworks have contributed to
the identification and operationalisation of multi-agents systems concepts, fea-
tures and abstractions, they have not been widely adopted as standard technolo-
gies to develop large-scale industry applications. This may sound disappointing,
in particular because technology transfer has been identified as a main challenge
and a milestone for the multi-agent programming community. There are various
reasons for why these programming languages and frameworks fell short of ex-
pectations [6]. First of all, the adoption of new technologies by the industry is
generally assumed to be a slow process as the industry often tends to be con-
servative, employing known and proven technologies. Moreover, industry adopts
new technologies when they can be integrated in their existing technologies, and
more importantly, when they reduce their production costs, which is in this case
the costs of the software development process. Finally, the industry tends to
see the contribution of multi-agent programming community as AI technology.
The main problems with such technologies are thought to be their theoretical
purpose, scalability, and performance.

The aim of this paper is to stimulate the transfer of multi-agent program-
ming technology to industry. We start by the following three observations. First,
object-oriented programming languages and development frameworks have al-
ready found their ways to industry. Second, it is common practice to use de-
sign patterns for often reoccurring problems in object oriented programs. Third,
multi-agent programming technology provides solutions to a variety of reoccur-
ring problems in large-scale distributed applications by means of dedicated pro-
gramming constructs. Based on these observations and as argued in [27], we
believe that multi-agent programming technology may find its way to industry
by introducing object oriented design patterns that describe multi-agent pro-
gramming constructs.

The starting point of our approach is to identify multi-agent concepts and
abstractions for which language level constructs have been developed and inte-
grated in the existing multi-agent programming languages. The identified con-
cepts and abstractions, together with their developed programming proposals,
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can then be used to introduce corresponding design patterns in standard object-
oriented technology. We thus consider language level constructs, which are pro-
posed and agreed by the multi-agent programming community, as being based
and motivated by the best practices used in the development of multi-agent sys-
tems. Hence we do not aim at showing how these ideas improve upon industry
practices. This consideration justifies our proposed design patterns as formalizing
the best practices in the multi-agent programming community. We first explain
the multi-agent concepts and abstractions that form the main concern of exist-
ing multi-agent programming languages and for which dedicated programming
constructs have been proposed. Subsequently we present object-oriented design
patterns that support the implementation of these concepts and abstractions in
standard object-oriented technology. Finally, we explain that the idea of design
patterns for multi-agent concepts is not controversial and provide an overview
of the related work and compare them with our proposal.

We would like to emphasize that we consider multi-agent programming tech-
nology as domain independent and general purpose technology that aims at sup-
porting the development of distributed intelligent applications in general. We
are aware that the use of special purpose programming technologies is growing
and constitutes an essential part of the programming practice in companies such
as Google, Amazon and IBM. However, we see multi-agent programming tech-
nology as being concerned with specific data structures and processes that can
support the implementation of multi-agent system concepts such as knowledge,
goals, plans, deliberation and decision making, norm, sanctions, monitoring and
control. These data structures and processes can be introduced and supported
by standard programming technologies such as Java, C++ and C# in order to
build distributed intelligent applications.

The structure of this paper is as follows. In Section 2 we identify some concepts
for which language level constructs have been proposed in the design of various
multi-agent programming languages. In Section 3 and 4 the identified concepts
are used to define related design patterns at the individual agent and multi-agent
levels, respectively. In Section 5, we discuss our approach and compare it with
some existing work.

2 Autonomous Behaviour and Normative Mechanisms

Multi-agent concepts and abstractions are defined with respect to individual
agents, multi-agent organisations and multi-agent environments. For example,
an individual agent is conceived as a process that continuously senses its envi-
ronment, reasons about its states, and decides to act by selecting some plans
to execute. The agents can thus have autonomous behaviour in the sense that
they have the ability to decide on their own which actions or plans to select
and perform. Autonomous behaviour can be either proactive (i.e., agents behave
to achieve their objectives) or reactive (i.e., agents behave to respond to their
received events). These characteristic behaviours of individual agents, for which
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language level constructs are introduced and integrated in the existing agent-
oriented programming languages, are supposed to meet reoccurring challenges in
the design and development of software agents. We conceive these characteristics
as the best practices for which we aim at presenting design patterns in object-
oriented technology.

At the level of multi-agent organisation, concepts and abstractions have been
proposed in order to cope with coordination and regulation challenges involved
in distributed software systems. Again, we conceive these concepts and abstrac-
tions as identifying the best practices suggested by the multi-agent programming
community to solve coordination and regulation challenges. We aim at formal-
izing these best practices as design patterns. In this paper, we focus on norm-
based regulation mechanisms that coordinate the agents’ behaviour by means
of norms being enforced through sanctions. Such mechanisms continuously mon-
itor the agents’ behaviour and impose sanctions when norms are violated. In
this approach, a norm is considered as a description of good behaviour and a
sanction is seen as a system response to norm violations. Norms can be state-
based, specifying that certain states are obliged or prohibited. Norms can also be
conditional and have a deadline. When the norm condition is satisfied, certain
states are obliged or prohibited before the given deadline.

In order to describe the design patterns we shall use the common format
from [11]. The proposed design patterns are presented with terminology that is
common to object oriented programming, rather than agent technology jargon.
We would like to emphasize that we are aware that design patterns should formal-
ize the best practices that have originated from the industry practices. However,
although we do not have access to the industry practices regarding the develop-
ment of intelligent distributed systems, we assume that the commonly agreed
upon concepts and abstractions within the multi-agent programming commu-
nity do reflect proper solutions to reoccurring problems in distributed intelligent
systems. These concepts and abstractions are established based on a peer re-
viewed approach and are believed to facilitate the development of multi-agent
systems. Also, in line with [11], the examples throughout the paper illustrate
how an application of the patterns might look. They are not meant to compare
the solutions resulting from the patterns with other possible solutions such as
actor technology.

2.1 Example Reactive Behaviour in Agent Programming

We shall draw our examples from a multi-agent system that we aim at devel-
oping in the context of smart roads. We will implement traffic simulation soft-
ware using SUMO [18] to investigate future traffic scenarios with autonomous
cars and intelligent infrastructures. Heterogeneous agents are used to operate
cars in SUMO. Every agent has an interface to the simulation platform with
which they can accelerate, decelerate, switch lanes, change routes and send mes-
sages (to each other or to the infrastructure). For our scenario we use Java to
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implement agents. We use AspectJ to implement traffic norms and laws. We
show how the design patterns can be used to implement the agents and norms.
Autonomous cars are made aware of the obligations/prohibitions that apply
to them by the infrastructure. As a norm example we take the rule that it is
forbidden for a car to move faster than 50km/h after entering an urban area
until it leaves the area.

We first discuss the way agent languages allow the programmer to specify
which actions to do when. For instance in 2APL, Goal and Jason we have the
notion of conditional plans/actions. These are plans that are only applied if
they are relevant to the agent’s current situation and if they are applicable.
As an example, we shall show how in 2APL, Goal and Jason an agent can
react to the perception of a new speed limit. In section 3 it is show how this is
implemented with the proposed design pattern. We assume that an agent receives
an event/percept upon entering an urban area, that states the new speed limit.
The agent adopts this speed limit as its own target speed if the speed limit is
above its own maximum speed capability, and if it is not in an emergency. But
modifying the target speed is only applicable if the agent is capable of adjusting
its own speed.

For the 2APL example we have a PC-Rule:

1 event(speedLimit(Limit)) <- speedIsAdjustable | {
2 B(maxSpeedCapability(Max));
3 i f B(not(inEmergency)){
4 -targetSpeed(_);
5 i f(Max > Limit){ +targetSpeed(Limit); }
6 else { +targetSpeed(Max); }
7 }
8 }

Line 1: Head and guard of the rule. If the head matches the event then the guard
is checked. If the guard is true (i.e. the agent can determine its own speed)
then the plan is applied.

Lines 2-7: Maximum speed capability is retrieved and the target speed is adapted.

For the Goal example we have two conditional actions:

1 i f bel( percept(speedLimit(Limit)), speedIsAdjustable,
2 maxSpeedCapability(Max), Max > Limit,
3 not inEmergency, targetSpeed(Current) )
4 then delete(targetSpeed(Current) ) + insert( targetSpeed(Limit)).
5

6 i f bel( percept(speedLimit(Limit)), speedIsAdjustable,
7 maxSpeedCapability(Max), Max <= Limit,
8 targetSpeed(Current) )
9 then delete(targetSpeed(Current) ) + insert( targetSpeed(Max)).

Lines 1-4: The case where the limit is below the maximum attainable speed.
Lines 6-9: The case where the limit is higher than the maximum attainable speed.
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For the Jason example we have a highly similar plan rule as for 2APL1:

1 +!speedLimit(Limit) : speedIsAdjustable <-
2 ?maxSpeedCapability(Max);
3 i f (not(inEmergency)){
4 -targetSpeed(_);
5 i f(Max > Limit){ +targetSpeed(Limit); }
6 else { +targetSpeed(Max); };
7 }.

Identical comments as the 2APL fragment.

We can see that for all three languages there is a triggering part
(event(speedLimit(Limit)), +!speedLimit(Limit) and
percept(speedLimit(Limit))). Aside from that we have a check to see if
the plan is applicable (speedIsAdjustable), and the plan itself (change of
targetSpeed). The autonomous behaviour pattern that we propose reflects the
structure and application of this type of plan constructs, as they have been
proven to be useful and universally supported over the years within the agent
programming community. In particular it captures the reactivity to events such
as the new speed limit. With a slight difference in implementation it also captures
proactivity such as the pursuit of goals in for instance 2APL.

Our autonomous behaviour pattern consists of a scheduler, a context, a collec-
tion of strategies and a proxy. The strategies can be seen as the plan constructs
from 2APL, Goal or Jason. The context is the data that is required for determin-
ing whether a strategy is relevant and applicable. In agent jargon it reflects the
beliefs of an agent. The proxy is the interface to agent for the system in which
an agent is embedded. The scheduler determines how strategies are selected for
execution and how triggers (e.g. events, percepts, goals) are treated. We do not
envision an agent to be equal to a single autonomous behaviour. Rather, it can
be a complex of heterogeneous behaviours.

2.2 Example Norm in Organisational Programming

As an example norm we shall take that agents in urban zones should not drive
faster than 50 km/h. When a car passes a sensor with a higher speed, then it
is immediately fined. Its implementation using the proposed patterns is given
in section 4. In 2OPL[7] this norm could be implemented with the following
norm/sanction constructs:

1 urban_zone(Car):
2 <zone(Car,urban),
3 F(passing_sensor(Car),speed>50(Car)),
4 not zone(Car,urban)>
5
6 viol(urban_zone(Car)) => fine(Car,50).

1 The main differences between 2APL and Jason originate from persistent goals in
2APL.
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Line 1: Norm label.
Lines 2-4: The condition, deontic content (F for forbidden) and deadline

respectively.
Line 6: The sanction rule for violations of the norm. The agent gets a fine.

In NPL[14] we could program the norm as follows:

1 norm urban_zone1: zone(Car,urban) ->
2 obligation(Car, urban_zone1, speed<50(Car), ‘now’).
3 norm urban_zone2: zone(Car,urban) & passing_sensor(Car) &
4 speed>50(Car) ->
5 obligation(Car, urban_zone2, pay_fine(100), ‘now’).

Lines 1-2: The obligation to limit the speed to 50 km/h.
Lines 3-5: The obligation to pay the fine when the norm is violated.

In the proposed language from [24] we could program the norm as follows:

1 Norm condition: FORBIDDEN(speed>50(car)) IF zone(car,urban)
2 Violation condition: passing(car,sensor) AND zone(car,urban)
3 AND speed>50(car)
4 Detection mechanism: (omitted)
5 Sanction: (omitted)
6 Repairs: fine(car,50)

Line 1: Speed of 50 km/h is forbidden if the current zone is urban.
Line 2: The violation condition is when a sensor is passed with more than 50 km/h.
Line 4-5: Omitted fields
Line 6: The car is fined.

Normative constructs are prevalent among organisational coordination frame-
works for multi-agent systems. Norm based regulation mechanisms can be intro-
duced using existing technologies such as aspect-oriented programming. Aspects
allow crosscutting concerns to be programmed separately from the system’s core
business logic. Norm based regulation mechanisms can be presented as design
patterns based on aspects. The key correspondence is to use pointcuts from as-
pect oriented programming to specify where a norm applies (norm condition),
and pointcut advices to check if a norm is violated and how to react to this
violation (deadlines and sanctions). The use of aspects may raise concerns about
the open nature of multi-agent systems because the source code of the target
processes is required in order to program aspects and weave them in the pro-
cesses at compile time. However, various works promote the use of organisational
interfaces for the interaction between agents and the environment, or between
agents themselves (cf. controllers in [19] and OrgBoxes in [15]). In such methods
it is feasible that the norms are separately developed and maintained from the
business logic of the interfaces to the system and the agents that use them.

3 Agent Pattern: Autonomous Behaviour

The behaviour of agents is generally described by beliefs, goals, events and plans.
The beliefs of an agent can be seen as a system view (the agent’s context informa-
tion) that the agent uses in its deliberation. We will capture this as a separate
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class that contains all the necessary data which is needed for selecting plans.
A plan is coined a strategy, which is in line with the strategy design pattern
from [11]. A strategy is selected and executed if it is both relevant and applica-
ble. The relevancy of a strategy depends on the trigger (e.g. a specific goal or
event) to which it responds, and whether that trigger occurred. The applicability
of a strategy is determined by checking with the context information whether it
is possible to execute the strategy.

Name and Classification. The autonomous behaviour pattern is a concur-
rency pattern. This design pattern has no other known names.

Intent. The design pattern’s intent is to provide a solution structure for prob-
lems where triggers are processed autonomously. This is required for programs
where the processes causing those triggers are not responsible for the processing.
Design-wise it separates the core logic of the trigger causing processes, from the
trigger handling. Aside from this, the pattern also provides structure to make
the trigger processing context sensitive. The basic idea is that the behaviour is
triggered by the system either through a notification or a direct method call.
Then, after being triggered, the behaviour tries to apply an execution strategy
to process the trigger.

Motivation and Applicability. The natural scenarios for autonomous
behaviours are those where many autonomous processes are already present. The
structure of typical scenarios is that independent processes work alongside each
other. Examples are multi-agent systems, service oriented architectures and actor
based systems.

Scheduler
context:ContextInformation
triggerqueue:Queue<Trigger>
strategies:Strategy[0..*]
enqueue(Trigger):void
processTrigger():void

Proxy
scheduler:Scheduler
trigger1(): Trigger
triggerN(): Trigger

Trigger

processed(ContextInformation):bool

Strategy

isApplicable(ContextInformation):bool
triggeredBy(Trigger):bool
execute(ContextInformation,Trigger):void

ContextInformation1

0..*

1

0..*

Fig. 1. UML structure of autonomous behaviour

Structure. Figure 1 shows the UML representation of the structure of the
design pattern.
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Participants

– Proxy. Interface to the behaviour. Either clients call the triggering methods
(as in the active object pattern) or the proxy is subscribed to triggers in the
system.

– Trigger. Trigger instantiations are tokens indicating which triggers occurred.
– ContextInformation. The behaviour’s interface to the rest of the system.

Also contains all the necessary data that is needed for the application of a
strategy.

– Strategy. Strategies are used to process triggers. But for different circum-
stances (determined by the context) there can be different strategies for the
same triggers. Also, one strategy might be able to handle several triggers.

– Scheduler. The scheduler schedules the triggers for processing. It loops
through the trigger queue and applies applicable (by context) strategies for
relevant triggers.

Collaborations. The proxy is the interface to the autonomous behaviour. Ei-
ther client processes can call the trigger methods or the behaviour catches them
through a subscribe/notify relation. If a triggering method is called in the proxy,
then a trigger instantiation is created and sent to the scheduler. The scheduler
schedules the trigger in a queue for processing. It also continuously tries to pro-
cess triggers by using strategies. A strategy has to be relevant for a trigger, but
also applicable given the context of the system. To get information from the
rest of the system, the strategy uses the context information instantiation of the
behaviour.

Consequences. The pattern decouples trigger from handling, by separating the
triggers from the strategies that process them. The behaviour can be expanded
with other capabilities such as dynamically changing the strategies. This enables
self-healing and self-optimisation. An important design choice is to make the
behaviour proactive or reactive. In a proactive behaviour, triggers stay in the
queue until processed. This is similar to the idea of a persistent goal. In a reactive
behaviour the trigger is considered only once for processing.

Implementation. If the triggers stream in faster than their processing, then
memory issues can happen. Also, there exists a possibility that a trigger has no
relevant and/or applicable strategy for it. The programmer has to decide what
should happen in such cases.

Example Reactive Behaviour Code. An agent in our scenario is composed of
an interface to the traffic simulator, a route planner, and various autonomous be-
haviours. As an example reactive behaviour we will illustrate how an autonomous
car can react to a new speed limit. We assume that the example agent is sub-
scribed to various events such as new messages, status updates from the simula-
tion and new obligations/prohibitions. This particular behaviour is designed to
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deal with new obligations and prohibitions. After the car enters an urban area,
it receives an event that states that the car is now prohibited from driving faster
than 50 km/h. The agent reacts to this by applying an appropriate strategy to
comply with this prohibition. Other strategies can be used to for instance deal
with communication obligations, lane position and route prohibitions for blocked
roads. The UML schema for this behaviour is shown in Figure 2.

Scheduler
context:ContextInformation
triggerqueue:Queue<Trigger>
strategies:Strategy[0..*]
enqueue(Trigger):void
processTrigger():void

DeonticProxy
scheduler:Scheduler
addSpeedLimit(int): Trigger

Trigger

processed(ContextInformation):bool

SpeedLimit
limit:int
getLimit():int

Strategy

isApplicable(ContextInformation):bool
triggeredBy(Trigger):bool
execute(ContextInformation,Trigger):void

SpeedLimitStrategy

ContextInformation

CarStatus
adjustableSpeed:boolean
targetSpeed:int
speedCapability:int
emergency:boolean
speedIsAdjustable():boolean
setTargetSpeed(int i):void
getMaxSpeedCapability():int
inEmergency():boolean

1

0..*

0..*

1

Fig. 2. Example UML structure of a reactive behaviour

An autonomous behaviour becomes reactive if it only considers a trigger once.
If no strategy is currently relevant and applicable for a trigger, then it is dropped.
For a reactive behaviour the processTriggermethod could be implemented like
this:

1 public void processTrigger() {
2 Trigger trigger = triggerqueue.remove();
3 for(Strategy strategy : strategies) {
4 i f(!trigger.processed(context)&&
5 strategy.triggeredBy(trigger)&&
6 strategy.isApplicable(context)){
7 strategy.execute(context, trigger);
8 }
9 }

10 i f(!trigger.processed(context)) {
11 // initiate processing error handling
12 }
13 }

Line 2: The trigger is permanently removed from the queue.
Line 3: All strategies are tried.
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Lines 4-8: If a strategy is applicable and relevant, then it is executed.
Lines 10-12: If the trigger is still not processed, then an error procedure can

take place.

Agents in our scenario have an internal state. To allow strategies to access
relevant parts of this state we have a CarStatus class that is the context infor-
mation. This class contains various methods of which the following occur in the
example code below:

– speedIsAdjustable()::boolean returns whether the car can determine its
own target speed.

– setTargetSpeed(int i)::int set a new target speed.
– getMaxSpeedCapability()::int returns the maximum speed that the car

can reach.
– inEmergency()::boolean returns whether the car is in an emergency situ-

ation.

Aside from these the getLimit()::int method from the class SpeedLimit is
used to obtain the limit of the new speed limit. An example implementation of
a strategy is given below:

1 public class SpeedLimitStrategy implements Strategy {
2 public boolean isTriggeredBy(Trigger trigger) {
3 return trigger instanceof SpeedLimit;
4 }
5
6 public boolean isApplicable(ContextInformation context) {
7 return ((CarStatus)context).speedIsAdjustable();
8 }
9

10 public void execute(ContextInformation context,
11 Trigger trigger) {
12 SpeedLimit sl = (SpeedLimit)trigger;
13 CarStatus cs = (CarStatus)context;
14 i f(!cs.inEmergency()){
15 i f(cs.getMaxSpeedCapability() > sl.getLimit()){
16 cs.setTargetSpeed(sl.getLimit());
17 } else {
18 cs.setTargetSpeed(cs.getMaxSpeedCapability());
19 }
20 }
21 sl.setProcessed(true);
22 }
23 }

Line 3: The strategy is triggered by speed limits.
Line 7: The strategy is only applicable if the speed is adjustable by the car.
Line 14: The car ignores speed limits if it is in an emergency.
Lines 15-19: If the limit is lower than the maximum capable speed, then the car’s

target speed is the limit. Otherwise it can drive as fast as possible.
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Example Proactive Behaviour Code. To illustrate proactive behaviour, we
will show how an autonomous car commits itself to a goal destination. In this
example the car has a set goal destination which is an instance of a trigger. The
car has different strategies for getting to the goal. E.g. it can go there as quick
as possible, via a dining place or with maximal driving comfort.

The UML for the trigger and strategy interfaces remains the same, as does
the UML for the scheduler class. However, we do have different strategies and a
different proxy and trigger realization. The UML of the proactive behaviour is
shown in Figure 3. Additional strategies are omitted.

Scheduler
context:ContextInformation
triggerqueue:Queue<Trigger>
strategies:Strategy[0..*]
enqueue(Trigger):void
processTrigger():void

GoalProxy
scheduler:Scheduler
setGoalDestination(Edge):Trigger

Trigger

processed(ContextInformation):bool

GoalDestination
goalEdge: Edge
getGoalEdge():Edge

Strategy

isApplicable(ContextInformation):bool
triggeredBy(Trigger):bool
execute(ContextInformation,Trigger):void

FastRouteStrategy

ContextInformation

CarStatus
route: Route
optimizingTime:boolean
calculateRoute(Edge,Constraint):Route
setRoute(Route):void
isOptimizingTime():boolean
isApproachingJunction():boolean

1

0..*

1

0..*

Fig. 3. Example UML structure of a proactive behaviour

An autonomous behaviour becomes proactive if it keeps trying to process a
trigger, until it is successfully processed. If no strategy is currently relevant and
applicable for a trigger, then it is re-inserted in the queue. Example Java code
for the proactive processTrigger method is given below.

1 public void processTrigger() {
2 for(Strategy strategy : strategies){
3 for(int i = 0; i < triggerqueue.size(); i++){
4 Trigger trigger = triggerqueue.remove();
5 i f(!trigger.processed(context)&&
6 strategy.triggeredBy(trigger)&&
7 strategy.isApplicable(context)){
8 strategy.execute(context, trigger);
9 }

10 i f(!trigger.processed(context)){
11 enqueue(trigger);
12 }
13 }
14 }
15 }
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Lines 2-3: Per strategy every trigger is checked to see whether the strategy is
triggered.

Lines 4 and 10-12: Initially a trigger is removed. When the strategy did not
process the trigger it is put back in the queue. This ensures that the
trigger is persistent until processed.

Lines 5-8: If the strategy is triggered by the trigger, applicable given the
context and still relevant (trigger not already processed) then the strategy
is executed.

Triggers in a proactive behaviour are similar to agent goals. The processed
method is used to see whether the goal is achieved. For the example destination
goal we can check whether the goal is achieved by checking whether the agent
has reached the goal edge. An example of how the goal’s processed method can
be implemented is as follows:

1 public boolean processed(ContextInformation context) {
2 CarStatus cs = (CarStatus) context;
3 return cs.getCurrentEdge() == this.getGoalEdge();
4 }

Line 3: The goal is achieved if the car has reached the goal edge.

The strategy to reach a goal destination as fast as possible is to recalculate
the route every time the vehicle approaches a point in the road network where it
can switch between edges. This way new information concerning traffic jams etc.
can be incorporated in the rerouting process. The destination goal is represented
by an instance of the class DestinationGoal. It contains a method to get the
goal edge. Aside from the aforementioned functionality of the CarStatus class
we have the following methods in the example code below:

– isOptimizingTime()::boolean returns whether the car is optimizing its
time spent in the simulation.

– isApproachingJunction()::boolean returns whether the car is approach-
ing a choice between network edges.

– setRoute(Route)::void changes the route of the car.
– calculateRoute(Edge,Constraint)::Route returns a route to the argu-

ment edge under the given constraint.

The constant CarStatus.FASTEST is a constraint that the route has to be
the expected fastest available route. Example code for a route selection strategy
is as follows:

1 public class FastRouteStrategy implements Strategy {
2 public boolean isTriggeredBy(Trigger trigger) {
3 return trigger instanceof GoalDestination;
4 }
5
6 public boolean isApplicable(ContextInformation context) {
7 CarStatus cs = (CarStatus) context;
8 return cs.isOptimizingTime() && cs.isApproachingJunction();
9 }

10

11 public void execute(ContextInformation context,
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12 Trigger trigger) {
13 GoalDestination goal = (GoalDestination)trigger;
14 CarStatus cs = (CarStatus)context;
15 cs.setRoute(cs.calculateRoute(goal.getGoalEdge(),
16 CarStatus.FASTEST));
17 }
18 }

Line 3: This strategy triggers for destination goals.
Line 8: This strategy is applicable if the agent is optimizing on travel times and

is approaching a junction.
Lines 15-16: Calculate the fastest route and set it as the current route.

Known Uses. The pattern is visible in Jade where behaviours are used to con-
struct agents. Also actor based programming has similar structures, but with less
sophisticated handling of the messages (usually the processing is a big switch/if-
else statement). The application of strategies based on the context of the agent
is common across various agent programming languages such as 2APL, Goal and
Jason. In those languages the reactive variant of the pattern is present and in
2APL and Goal the proactive variant can be found.

Related Patterns. The most related is the active object pattern [11]. It too
has this structure where calls are made through a proxy and are processed inde-
pendently. However, it does not contain strategies, nor is the proactive version
described for this pattern. Another important related pattern is the strategy pat-
tern. It contains the solution to problems where a different execution strategy is
needed under different circumstances. One could see the autonomous behaviour
pattern as an active object, combined with the strategy pattern.

In the reactor pattern [23] applications can register event handlers in an initi-
ation dispatcher. Clients can then send events to the initiation dispatcher which
notifies the correct handlers when they can process the events without a block.
This is related to our reactive behaviour, due to its similar overall architecture.
However, the selected strategies do not solely depend on the type of events. The
proactor pattern is a variant of the reactor pattern. But the proactor pattern is
very different from our proactive variant. In the proactor pattern the handling of
the completion of asynchronous events is supported. In contrast, our proactive
variant introduces proactiveness by pursuing goals until their achievement.

Notes. In the example code the chosen strategy is fully executed as is the case
in for instance the GOAL agent programming language where plans are executed
at once. However, this is not the only way to implement this pattern. The pat-
tern can be expanded to instantiate strategies and have the strategy execute one
step at a time as in 2APL or Jason (e.g., to prevent the execution of one strategy
from blocking the execution of other strategies). It is also possible that the strate-
gies include tests on the (belief) states so that the execution of strategies can be
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blocked and interleaved. Note that in some cases it is desirable that one strategy
or a part of the strategy is executed at once without interleaving its execution
with the execution of other strategies. This is for example done in 2APL by
introducing atomic plans. In general, we believe that these issues should be
decided by the programmer and may not be generic enough to introduce as part
of the design pattern.

The same holds for a specification of how beliefs and goals can be managed.
An integral part of agent programming languages is a specification of how an
agent deals with its beliefs and goals. E.g. how they may change over time. A
management system for goals and beliefs would be part of the context of the
autonomous behaviour.

4 Organisation Pattern: Normative Constraint

Norms are related to constraints. But the term constraint already has a set
meaning in design patterns (from the constraint pattern). Hence we refer to the
counterpart of norms as normative constraints; constraints that can be violated
albeit with consequences.

Name and Classification. The normative constraint pattern is a behaviour
pattern. This design pattern has no other known names.

Intent. Aspect oriented programming allows to disentangle crosscutting con-
cerns from business logic. Exogenous norm-based regulation mechanisms [9] sim-
ilarly have the separation of concerns between agents’ autonomous behaviour
and the norms to which that behaviour must comply. A natural correspondence
exists between certain types of norms and aspects.

On the one hand we have a specification of norm violating behaviour, and
on the other hand we have the compensation for this violation. The intent of
this design pattern is to catch this norm functionality. It allows to exogenously
specify the norm from its subjected processes/classes/objects. We achieve this
by using aspect oriented programming. In an aspect the pointcuts identify when
an obligation/prohibition starts to hold, when the obligation/prohibition is ful-
filled, and when the deadline has arrived. The advices are used to detach an
obligation/prohibition and to execute the sanction in case of a norm violation.

Motivation and Applicability. Just like the autonomous behaviour pattern,
the normative constraint pattern naturally applies in scenarios where there are
many autonomous processes. If multiple processes use the same resource then
it is easy to build in constraints in the resource itself (such as in a database).
However, sometimes this is not so straightforward. For instance in the traffic
scenario we do not want to alter the simulator to facilitate our agents. But we
also do not want to force certain pieces of code in agents (we might not have the
agent’s source). We therefore enforce the norms based on the interface that the
agents use. However, we do not want to clutter the interface code with all the
code concerning norms, as these are not part of the interface’s business logic.
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The kind of scenarios where normative constraints are applicable are those
where the constraints are mostly on interaction between components, rather than
on the usage of a single resource. Typically the norm can change independently
of the rest of the system. Also important is that the constraint is violable, it is
not a hard constraint which cannot be transgressed.

Structure. In Figure 4 the UML for this pattern is depicted.

<<Aspect>>

NormativeConstraint
context : ContextInformation
detachments : Collection<Detachment>
pointcut condition(..)
pointcut obligation(..)
pointcut prohibition(..)
pointcut deadline(..)
advice condition(..)
advice obligation(..)
advice prohibition(..)
advice deadline(..)

ContextInformation

Detachment

1

0..*

Fig. 4. UML structure of a normative constraint

Participants

– NormativeConstraint. The aspect that contains the norm’s functional-
ity and is responsible for detaching the norm when applicable, checking for
violations of detachments, and removing detachments if necessary.

– Detachment. A detachment of the normative constraint. It contains rele-
vant data from when the detachment occurred, which can be used to check
whether the constraint is violated or not.

– ContextInformation. The context is the interface for information and data
gathering of the system.

Collaborations. The normative constraint creates a detachment if the condi-
tion holds. It can be the case that there are multiple detachments, but with
different data. If the obligation/prohibition holds then the detachment can be
removed2. If the deadline holds, then the sanction is executed, after which the
detachment is also removed.

Consequences The main objective is to separate the norm from the subjects
of it. This is inherently the case because of the usage of an aspect. The sepa-
ration between condition, obligation/prohibition and deadline provides a clear
specification of the temporal aspect of a detachable norm. With this pattern
a system designer has the possibility to independently design complex violable
rule structures for different use cases. The trade off is that the flow of control is
harder to grasp because of the use of aspects.

2 Not necessarily, depending on the use case.
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Implementation. Care has to be taken that the norm is not detached ex-
tremely often, because each detachment requires memory. If the detachments
can somehow be ordered, then a heap or other sorted data structure is prefer-
able to an iterable due to run time complexities. Memory issues can occur easily
if the deadlines, obligations and prohibitions are met in a slower pace than that
the norm is detached.

Example Code. The following code is the example where a car is forbidden to
drive faster than 50 km/h when it is in an urban area. We have sensors that are
being called whenever a car passes. When a car passes it is checked whether it
is violating a speed limit norm. In this case we only show the urban zone limit,
but the norm can be extended with extra conditions to also include speed limits
for other situations. Note that in this case if the norm is violated, it does not
take away the prohibition. In the example we use the following classes:

– Car: Contains a deontic proxy to communicate new speed limits.
– Organisation: The organisation to coordinate traffic. Contains a method

to make fines.
– OrganisationInterface: The interface between the simulation environ-

ment and the organisation that is called when cars enter new zone types
and pass sensors.

– SNDetachment: Speed limit norm detachment. Contains the zone type, the
car for which the limit holds, the limit and the fine for violating the norm.

1 public aspect SpeedNorm {
2 private ArrayList<SNDetachment> detachments;
3 private Organisation organisation;
4 // (omitted initialization code)
5
6 pointcut condition(Car c, String type) :
7 cal l(public * OrganisationInterface.enterZone(..)) &&
8 args(c,type);
9

10 pointcut prohibition(Car c, Sensor s) :
11 cal l(* OrganisationInterface.passSensor(..)) &&
12 args(c, s);
13
14 pointcut deadline(Car c, String type) :
15 cal l(public * OrganisationInterface.enterZone(..)) &&
16 args(c,type);
17
18 after() returning(Car c, String type) : condition(c, type){
19 i f(type.equals("urban")){
20 detachments.add(new SNDetachment("urban",c, 50, 50));
21 c.getDeonticProxy().addSpeedLimit(50);
22 }
23 }
24
25 after(Car c, Sensor s) : prohibition(c, s){
26 for(SNDetachment d : detachments){
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27 i f(d.getCar().equals(c)){
28 i f(s.getVelocity(c)>d.getLimit()){
29 organisation.makeFine(c,d.getFine());
30 }
31 }
32 }
33 }
34
35 after(Car c, String type) : deadline(c, type){
36 ArrayList<SNDetachment> toRemove =
37 new ArrayList<SNDetachment>();
38 for(SNDetachment d : detachments){
39 i f(d.getCar().equals(c) && !d.getZone().equals(type)){
40 toRemove.add(d);
41 }
42 }
43 detachments.removeAll(toRemove);
44 }
45 }

Lines 6-8: If a car switches from zone type then the condition must be checked.
Lines 10-12: The prohibition must be checked if a car passes a sensor.
Lines 14-16: The deadline must also be checked if a car switches from zone type.
Lines 18-23: Detachment of the norm upon entering an urban zone.
Lines 25-33: If a car violates a limit, then it is fined by the organisation.
Lines 35-44: If a car enters a new zone, then all detachments of the previous zone

are removed.

Known Uses. There is quite a lot of work on norms with a condition, obli-
gation/prohibition and deadline, e.g. 2OPL and NPL. In OO programming you
typically see some boolean flag in code that signals whether some condition was
met before and that is being used to steer execution at a later point.

Related Patterns. Patterns with contracts among objects are also used to
ensure behaviour over time. A related work is for instance Contract4J [25]. In
design by contract for programs, contracts consist of preconditions, postcondi-
tions and invariants. A client must fulfill the precondition so that a server can
perform an operation which fulfills the postcondition. Invariant constraints must
hold at all times. If a contract is violated, then the program halts (in contrast
to normative constraints).

Another related concept, though no pattern, is the Object Constraint Lan-
guage (OCL), which is a part of UML. OCL is a design tool that allows a
designer to specify very specific constraints such as the range of an integer at-
tribute of an object. However, these constraints are also meant as non-violable
constraints.

Notes. The presented pattern captures conditional norms in a very generic and
basic form. We did not go into details on various topics in normative system
research such as different types of norms, the dynamics of norms, norm con-
flicts and norm awareness. Future efforts will be focused to these topics. We
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also did not address many synchronization and related issues for distributed sys-
tems. Depending on how the normative pattern is used, it can be combined with
patterns for decentralized computation. We would like to reemphasize that our
approach may suggest that the source code of various distributed components
must be available, which may not always be the case, e.g., in open systems. We
do assume that the components interact through interfaces that are under the
control of the system designer. The system designer can therefore introduce
the pointcuts in the interface source code and thereby control the execution of
the components.

5 Related Work

The idea of agent-based design patterns has grabbed the attention of many
researchers in the field. There have been several proposals focusing on various
categories of design patterns (for an overview see [16]). Some of the earliest agent
oriented design patterns are proposed by Aridor and Lange [1]. They proposed
agent design patterns for mobile agent applications and classified them into trav-
eling patterns, task patterns and interaction patterns. The mobility patterns can
be used to enforce encapsulation of mobility management. An example of trav-
eling patterns is the itinerary pattern that defines routing schemes for multiple
destinations and handles special cases such as non existent destination. The task
patterns are concerned with decomposing tasks and their delegation. An exam-
ple is the master-slave pattern that allows task delegation from master to slave.
Finally, the interaction patterns are concerned with agents’ communication and
cooperation. For example, the meeting pattern allows agents to dispatch them-
selves to a specific destination (a meeting place) and engage in local interaction.
Our proposed design patterns are complementary as we are not concerned with
mobile agent applications, but with the internal design of autonomous agents
and how such agents can be controlled and coordinated by means of norms.

Sauvage presents different classes of patterns such as Meta patterns,
Methaphoric patterns and Architectural patterns [22]. Examples of meta pat-
terns are organisation and protocols which are defined in terms of roles, their
relations, and messages. An example of metaphoric patterns is themarks pattern,
which describes an indirect communication model via environment. Examples of
architectural patterns are BDI architecture consisting of knowledge bases and
horizontal architecture consisting of parallel modules (e.g., deliberation and act
modules). Our proposed design patterns for autonomous behaviour and norm-
based coordination are related to the BDI architecture pattern and organisation
pattern. Although Sauvage provides only a two lines description of BDI architec-
ture pattern, we provide an extensive description and possible refinements of it.
Moreover, Sauvage conceives an organisation pattern as being defined in terms
roles and their interactions while our organisation is defined in terms of norms
being monitored and norm violations being sanctioned.

Separating coordination among processes as a concern has been argued in for
instance [12]. In [12] the case is made for special coordination frameworks such
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as Linda. A coordination framework manages coordination separately from the
business logic, which is programmed in a different language. With the use of
aspects we can make reusable coordination oriented norms, while staying very
close to the computational language of the business logic. Though the use of
a separate coordination framework will often remain the preferred choice for
distributed systems where processes are made with different implementation
languages.

In order to organise interacting intentional software entities in multi-agent sys-
tems, social patterns are introduced in [10]. Two specific categories of patterns
introduced here are pair patterns and mediation patterns. The pair patterns de-
scribe direct interaction between intentional agents while mediation patterns de-
scribe intermediate agents that aim at reaching agreement between other agents.
An example of pair patterns is the booking pattern for booking resources from a
service provider, and an example of mediation patterns is the monitor pattern
that allows receiving notification of changes of state. Our proposed design pat-
terns for autonomous behaviour are complementary to the patterns proposed in
[10] and describe the internal design of individual agents. Moreover, our norm
based design patterns differ from patterns proposed in [10] as ours are not con-
cerned with explicit interaction between agents.

In [26] a pattern language is presented to capture various patterns in the design
of multi-agent systems. The language consists of five interrelated patterns that
together capture the different aspects of agent systems. The virtual environment
pattern captures the design of an environment in which agents are situated.
Those agents are captured with the situated agent pattern. It is very common
that agents have a limited view on the system, which is documented as the
selective perception pattern. For the coordination of agents the language contains
two patterns: protocol-based communication and roles & situated commitments.
The patterns are described in a architectural design language whereas we focused
on object-oriented programming. That is less general, but easier to adopt.

Probably the closest agent oriented design patterns to ours are those proposed
in [20], which aim at supporting the development of BDI agent-based systems.
They use the PRACTIONIST framework, which allows the development of goal
oriented agents based on BDI models, to introduce various BDI agent patterns.
In particular, they propose four agent design patterns called dynamic strategy
selection pattern, intention decomposition pattern, mutually exclusive intentions
pattern, and necessary intention pattern. For example, the dynamic strategy
selection pattern describes how an agent’s intention can be achieved by the best
strategy from a set of strategies at run time. Our design patterns for autonomous
behaviour are similar to dynamic strategy selection pattern. But, in contrast
to this pattern, we distinguish two different refinements for both reactive and
proactive behaviours. In our view this distinction is crucial as they generate two
important types of behaviour, i.e., reactive behaviour generates only one single
response to an event while proactive behaviour maintains a response until the
goal is achieved. Moreover, our norm based design pattern are complementary
to the patterns introduced in [20].
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Another article that introduces similar agent design patterns is [17]. In this
article, reactive and deliberative agent patterns are presented as instances of
sensory, beliefs, reasoning patterns. These patterns are described briefly and in-
formally in terms of the problem, forces, solution and known uses of the patterns.
The problem of a pattern is merely an informal description of the agent type.
For example, the problem of a deliberative agent is described as how an agent
can select a capability to proactively achieve a goal. The forces represent some
requirements and properties of the pattern. For example, the forces of a reactive
agents consists of the requirement that an agent needs to be able to respond
to a stimulus or a request. The solution explains how the problem should be
solved. For example, for a reactive agent patterns it is indicated that the agent
acts using a stimulus/response type of behaviour. Finally, the known uses refer
to other work that use similar agent types. For example, the authors refer to the
work of Cohen and Levesque [5] as a use of deliberative agents.

Finally, Oluyomi et al. [21] presents a two dimensional classification in order
to analyse, classify, and describe some existing agent-oriented patterns. The
vertical dimension is based on the stages of agent-oriented software engineering
and distinguishes seven stages from requirement analysis to implementation and
testing phases. The horizontal dimension is based on tasks and activities that are
relevant at each stage of software development. For example, at the multi-agent
system architectural level, the tasks are to design the system, the involved agents,
and their interaction. The vertical and horizontal dimensions identify categories
of agent oriented design patterns. For example, the category defined by the multi-
agent system architectural level (vertical dimension) and system design activity
(horizontal dimension) is identified as a structural patterns which describe the
structure of agent organisations in terms of architectural components including
knowledge component and environment. An example of an agent oriented pattern
that belongs to this category is the embassy pattern. This pattern introduces
an agent responsible for the interaction between a multi-agent system and other
heterogeneous domains. Our design patterns for autonomous behaviour can be
seen as a member of the category Agent Internal Architecture - Interaction
patterns and our design pattern for norms as a member of the category Agent
Oriented Analysis - Organizational patterns.

6 Future Work

The design patterns in this paper are only scratching the surface of all the
contributions of the multi-agent programming community. The goal of this paper
is to take part in the discussion of how we can engineer multi-agent systems
with object oriented technology, so that we can promote the agent paradigm
to a wider audience. We will further develop design patterns to deal with for
instance concurrency issues, repair strategies and interaction among behaviours
and agents. With the input from the multi-agent community we shall reach out
to other platforms where object oriented technology is discussed. We shall also
release open-source example code to illustrate what projects look like when they
are implemented according to the proposed design patterns.
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7 Conclusion

The adoption of multi-agent programming tools and technologies by the industry
is a major challenge that still needs to be met by the multi-agent programming
community. One possible way to meet this challenge is by transferring multi-
agent programming technologies to the standard software technologies. An idea
is to start with the high-level concepts and abstractions for which the multi-agent
programming research field has provided computational models and program-
ming constructs, and propose either corresponding language level supports in
the standard programming languages (e.g., C++ or Java), or alternatively pro-
pose corresponding design patterns, i.e., general reusable solutions to problems
such as proactivity, reactivity, adaptivity, monitoring and control. The language
level support can either be realized by standard programming approaches such
as meta-programming or aspect-oriented programming, where concepts such as
deliberation and control can be considered as different concerns that can be pro-
grammed either by meta-programs or aspects. Although these suggestions are
not mature and need to be worked out both in details and in practice, attempts
along these lines can bring the multi-agent community closer to the industry.
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Abstract. Most agent research seeks insights about a single technology, and 
problems are chosen to allow this focus. In contrast, many real-world applica-
tions do not lend themselves to a single technology, but require multiple tools. 
In an applied AI company, each tool often has its own advocate, whose specia-
lized knowledge may lead her to overestimate her tool’s contribution and dimi-
nish that of other tools. To form an effective team, the various members must 
have a shared understanding of how their tools complement one another. This 
paper describes CaFé (“Cases-Features”), a group process that we have proto-
typed for building a consensus mapping between tools and real-world problems. 
The five AI technologies encompassed in our prototype are cognitive architec-
tures, intelligent user interfaces, classic multi-agent system paradigms, statistics 
and machine learning, and swarming. Structured group discussion identifies the 
dimensions of a feature space in which the technologies are distinct. The 
scheme that emerged from our exercise does not pretend to be an exhaustive 
characterization of the techniques, but it is a jointly owned map of our technol-
ogy capabilities that has proven useful in design of new use cases. 

1 Introduction 

A recurring topic at AAMAS is how to move the results of research into real-world 
applications. Our company, Soar Technology (SoarTech), provides applied AI solu-
tions to a range of customers. We find that real applications often do not align well 
with disciplinary boundaries that guide basic research.  

Research progress requires focusing the researcher’s attention on a particular ap-
proach, tool, or technology, so that it can be characterized theoretically, implemented 
elegantly, and examined with a thorough experimental design.1 In this setting, it is 
appropriate to choose problems that are tailored to the features of the being studied. 

Customers in the real world usually do not start with a particular method they wish 
to exercise. Their pressing problems do not respect the convenient categories accord-
ing to which we structure research and train students. As a result, organizations that 

                                                           
1 For our purposes, we use the terms “approach,” “tool,” and “technology” interchangeably. 
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address real-world needs often assemble a toolbox of capabilities. In our case, we 
started with a single flagship technology (the Soar cognitive architecture [13]), but 
over the years have recruited a staff with capabilities quite different from our original 
focus. In the process, we have encountered a challenge. 

Our researchers understand their own approaches very well, and tend to view every 
problem through a perspective that is appropriate to their own tools. Companies like 
SoarTech often dissolve into disjoint “centers of excellence,” each focused on a single 
technology, and each marketing to customer problems that align more or less with a 
center’s capabilities. Such a structure under-serves customers in two ways.  

First, it may not fully address the needs of the problems to which it does respond. It 
is not uncommon for a multi-disciplinary company to end up competing with itself on 
some opportunities, when different technologists want to bring different tools to bear. 
In such cases, the different facets of the problem might be more thoroughly and ro-
bustly addressed if multiple tools could be applied in tandem.  

Second, some large and gnarly problems are too complex for a single technical 
perspective, even for the most optimistic advocate of a single technology. Such prob-
lems are typically left to large “system integrators” who may not bring the depth of 
technical understanding offered by expert researchers. In overcoming the narrowness 
of academic researchers, system integrators often fall victim to technical shallowness. 

As a company, we seek to avoid both the narrow stove-piping of the academy and 
the shallow technical depth of a large integrator. We want our technical experts to 
share an understanding of our set of technologies that will enable them to deploy the 
full strength of their capabilities in synergy with one another. This paper reports on 
the form and initial results of a group process that we have implemented for this pur-
pose. We expect it to be of value to the AAMAS community in two ways. 

First, as a contribution to the software engineering of agent-based systems, it offers 
a process to enable multi-disciplinary teams to address complex problems that require 
the hybridization of multiple agent technologies.  

Second, though preliminary, the joint feature space that we derived in our initial 
deployment of the CaFé method may be of interest in its own right.  

Section 2 outlines the CaFé process, which draws its name from two information 
artifacts contributed by each technical advocate: a Case study of a problem that is 
particularly appropriate for her technology, and a list of Features of problems for 
which her technology is appropriate. Section 3 summarizes the specific Cases and 
Features in our prototype exercise of the methodology. Section 4 reports on the case 
discussions that form the heart of the process. Section 5 describes the feature space 
that results from our process. Section 6 demonstrates the use of this feature space in a 
series of new design patterns. Section 7 offers a concluding discussion. 

2 The CaFé Process and Its Context 

The CaFé process (Section 2.1) contributes to numerous areas within software engi-
neering (Section 2.2), and brings some discipline to the de facto integration of differ-
ent technologies that other researchers have already identified (Section 2.3). 
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2.1 Description of the Process 

CaFé is a struc-
tured group pro-
cess among advo-
cates for different 
technologies that 
encourages them 
to compare their 
approaches in the 
context of several 
example applica-
tions, and helps 
them to generalize 
these comparisons 
as a set of features 
that make a prob-
lem (or part of a 
problem) appro-
priate for one or 
another tool (Fig. 
1). Each technology or tool is represented by an advocate who is expert in its use. 
Each advocate produces two artifacts representing her technology: a feature list de-
scribing the characteristics of a problem that would recommend the use of her tech-
nology, and a use case or example problem that she would consider an ideal candidate 
for deploying her technology. The process of preparing these artifacts before the 
group begins interaction encourages each advocate to recognize that her technology is 
better suited to some problems than to others, and to articulate what those problems 
might look like. 

The entire group of advocates then discusses each use case. The discussion in-
cludes proposals by each advocate of how each technology might contribute to the 
case, and fitting the different technologies into an overall pattern based on the case.  

Finally, after discussing all of the individual use cases, the advocates review the 
features from the individual cases and seek an overall synthesis that discriminates 
among the individual approaches. 

The features that result from this process are not as detailed as those initially pro-
posed by the advocates. They do not characterize each technology by itself, but situate 
it with respect to the other technologies. Most important, they are jointly owned by 
the advocates as a group, and so can guide collaborative design on new projects. 

2.2 CaFé and Conventional Software Engineering 

Software engineering is a large and complex discipline, and we view CaFé as a com-
plement to traditional tools rather than a replacement for any of them. To situate the 
reader, we comment on how CaFé is related to each of the major thrusts of software 
engineering, as defined in SWEBOK 3.0 [2]. 

 

Fig. 1. The CaFé Process 
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Software Requirements: The various features proposed by technology advocates 
resemble the characteristics commonly elicited as requirements for a software system 
(e.g., need for rapid reactivity; support for distributed decentralized operation). How-
ever, we found that these characteristics are not sufficient to distinguish the technolo-
gies from one another, since the requirements supported by different technologies 
often overlap. 

Software Design: The case discussions typically take the form of proposing high-
level designs for the case under discussion, mapping out a high-level architecture for 
a system to address the needs of the case and nominating the most appropriate tech-
nology for each component. From this perspective, CaFé can be viewed as a tool for 
high-level software design. In fact, the joint feature space that we derived from our 
case discussions (Section 5) functions as a high-level guide for outlining the architec-
ture of a new system (as illustrated in the examples of Section 6). 

Software Construction: Each technology has its own techniques and processes for 
software construction, which we did not seek to integrate. 

Software Testing: Our prototype does not include evaluation, but we discuss possible 
directions for evaluation in Section 7, and any such process would draw on standard 
practice in software testing. 

Software Maintenance: Good practice in software maintenance cuts across all of our 
technologies, and we did not explore the contribution of our technologies to it. How-
ever, see discussion of “Software Quality” below. 

Software Configuration Management: All of our technologies draw on the same 
supporting systems for configuration management. 

Software Engineering Management: We view CaFé as an important contribution to 
software project management, particularly in the design phase, enabling the integra-
tion of insights from different stakeholders.  

Software Engineering Process: CaFé is a particular software engineering process 
that is most valuable in the design phase of a project. 

Software Engineering Models and Methods: Each of our technologies has its own 
distinctive models and methods. We did not explore the interaction among these in 
this prototype. 

Software Quality: ISO/IEC 25010 [12] defines eight product quality characteristics 
for software (functional suitability, reliability, performance efficiency, operability, 
security, compatibility, maintainability, and portability), of which CISQ has selected 
four (reliabililty, performance efficiency, security, and maintainability) that its mem-
bers ranked as most important [3]. One delegate to EMAS 2014 suggested that these 
characteristics might provide an alternative set of features with which to distinguish 
technologies, but it is questionable whether one of our technologies is intrinsically 
more reliable (respectively, efficient, secure, or maintainable) than another. Quality 
attributes and our features are related at a deeper level: in the context of a given  
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application, a feature may contribute to one or another quality attribute, and these 
relations could be identified through an analysis such as the house of quality [9]. This 
exercise would be a natural and useful extension of our prototype. 

Software Engineering Professional Practice: The accepted professional standards 
for software engineers cut across all of our technologies. 

Software Engineering Economics: As discussed in “Software Quality” (above), in 
the context of a specific application, the choice of technology will make a difference 
in the economic viability of a solution. Our exercise suggests that heterogeneous de-
signs, which combine different technologies in a single application, will often be 
more competitive than designs that draw on a single technology throughout.  

Computing Foundations, Mathematical Foundations, Engineering Foundations: 
Each of our technologies draws on distinctive foundations. We did not explore the 
relations among these in this prototype. 

2.3 Other Work in Hybrid Architectures 

CaFé is not the first effort to address the question of combining different technologies 
to solve a single application problem. We have given examples of such hybrids from 
our own work before [16]. Others have also suggested such approaches. To name only 
a few: Ferguson’s TouringMachines architecture [7] showed the benefits of layering 
reaction, planning, and modeling horizontally in a single agent, InteRRaP [8] demon-
strated vertical layering of different reasoning modalities, and a combination of neural 
and cognitive methods was the best performer for event recognition in the DARPA 
Minds’ Eye program [4]. 

Examples of such combinations are valuable as existence proofs showing that hy-
brid systems are feasible. These examples demonstrate that fundamentally different 
reasoning modalities and agent architectures can be interfaced with one another. But 
they were generated ad hoc, and provide little guidance to developers seeking to find 
appropriate hybrid approaches to other problems. CaFé seeks to offer a disciplined 
approach to hybrid systems. Building on insight from past experiences ([14,16]), it 
offers a process for designing hybrid systems from the ground up. 

3 The Artifacts 

We considered five technologies, all familiar to the AAMAS community, in our ini-
tial foray with CaFé. Each has a strong advocate on SoarTech’s current technical 
staff, some of whose publications in each area are referenced below.  

• Cognitive Architectures (CA) are reasoning frameworks, such as Soar [13,22] or 
ACT-R [1], that are derived from high-level cognitive models of human reasoning 
and problem solving, and are intended to produce realistic human-like results. For 
example, the Soar cognitive architecture explicitly models different facets of  
human memory (procedural, semantic, episodic) and learning mechanisms  
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(reinforcement learning, chunking, experience) motivated by experimental results 
in cognitive psychology 

• Intelligent User Interfaces (IUI) are technologies intended to mediate between 
human users and machine reasoners (e.g., [21,23]). Like cognitive architectures, 
they are inspired by insights from experimental psychology, but in this case the fo-
cus is on insights into the functioning of the human perceptual system rather than 
internal reasoning mechanisms. 

• Multi-Agent Systems (MAS) is a collection of conventional MAS techniques that 
focus on inter-agent coordination, including BDI models, joint intention theory, 
theories of trust and norms, and agent communication languages (e.g., [10,11]). 
These methods are largely inspired by sociological models. 

• Statistics and Machine Learning (SML) uses formal statistical methods to charac-
terize data and detect patterns [17,19]. These techniques include cluster analysis, 
probabilistic graphical models (such as Bayesian belief networks, hidden Markov 
models, and Markov networks), neural and kernel-based methods, and generative 
models such as Latent Dirichlet Analysis, as well as a range of techniques for 
combining multiple statistical methods. 

• Swarming harnesses self-organizing methods inspired by natural systems, with 
many simple agents interacting locally in a shared environment (“stigmergy”) [15], 
usually through scalar fields over the environment that they both generate and 
sense. Drawing on insights from statistical physics and complexity theory, these 
methods can yield system-level behavior that is qualitatively more complex than 
the behavior of the individual agents, a phenomenon known as “emergent beha-
vior.” 

For each of these approaches, we summarize the features and the case study proposed 
by its advocate. The purpose of these summaries is not to attempt a definitive state-
ment of each approach, but to illustrate the flavor and level of detail involved in these 
artifacts. While these descriptions are abbreviations of the documents prepared by our 
advocates, each of those documents is still only one or two pages long. 

3.1 Cognitive Architectures (CA) 

Feature List: Cognitive architectures fit problems with these characteristics: 

• Multiple simultaneous, interleaving tasks that frustrate the development of linear 
procedural code, but can be managed by pattern recognition 

• Ability to handle and categorize special cases with pattern-driven processing  
• Need to execute in real time (not much slower, but also not much faster), using 

least commitment to support rapid computation of an acceptable answer that can be 
refined if time is available 

• Need for rapid reactivity to changed circumstances 
• Need to support explanation of behavior to human stakeholders 
• Real-time learning as the agent executes in the domain. 
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They are a poor choice for problems that involve 

• Rapid processing of large amounts of data (more than 10k items per second) 
• Sequential batch processing 
• Number crunching 
• Execution much faster than real time (as in constructive forecasting) 
• Offline learning 

Case Study: CA would be a good choice for a chef’s decision-support assistant. Rec-
ipes are declarative representations of “how to cook” something. But having a great 
cookbook doesn’t make someone a great chef. A great chef has extensive procedural 
knowledge and the ability to substitute, adapt, and handle interruptions and opportuni-
ties. Recipes are inherently serial, but cooking a meal requires opportunistic paral-
lelism. A complete system would require situation interpretation and human-system 
interaction. The chef domain reflects the need for learning in a number of ways.  

• Recipes are forms of declarative knowledge. 
• Recipes can be taught/demonstrated. 
• There is also “book knowledge” about ingredients, cooking techniques, etc. 
• Recipes can be generalized and decomposed in goal-based fashion. 
• Chefs acquire expertise by practicing cooking. 
• Chefs learn about substitutions, short cuts, and handling unexpected events. 
• Cooking knowledge can be “recomposed” to create new recipes and techniques. 
• Chefs need to communicate with fellow chefs, servers, and suppliers. 

3.2 Intelligent User Interfaces (IUI) 

Feature List: Systems for which development of an IUI is appropriate tend to have 
one or more of the following features: 

• Human-centric: Humans need to control, understand, and trust the system and its 
outputs.  

• Incorporate human knowledge: The operator (or operators) have knowledge, in-
cluding long term domain knowledge and short term situation awareness, that can 
improve system performance and/or outputs. 

• Incorporate human decision-making: The operator(s) can make detections or deci-
sions beyond the system’s capability or authorization. 

• Adaptive / Mixed Initiative: The system needs to adjust its operating characteristics 
to take into account changing operator (or actor) beliefs, desires, and intentions, 
both between and within system execution cycles; alternatively, the system needs 
to prompt the operator (or actor) to adjust their behavior. 

• Representation boundaries: The system needs to mediate between two or more 
frames (typically, a user representation such as a doctrinal air traffic control gram-
mar and a software engineered representation such as an AI planner structure). 

• Naturalistic (multi-modal) usage environment: The system needs to interpret mul-
tiple streams of user input (mouse, voice, text, pointing) and/or coordinate multiple 
streams of output (video, audio, haptic). 
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• Supporting human constraints: The system needs to act for the user in a domain 
that exceeds human scale (either long time intervals, large data sets, fast reaction 
time) or that exceeds the specific operator's ability to act effectively (e.g. expert 
support for novice users, problems of high complexity or very high cost of error). 

• Personalization: The system should be tuned to the specific preferences of a partic-
ular user or user group (or actor/actor group). 

Case Study: It quickly became apparent that any realistic system we discussed would 
need to interact with human stakeholders, and in the end we did not consider a sepa-
rate case for IUI, since we were comfortable that the cases proposed by other advo-
cates would serve well to explore its complementarity with the other technologies. 

3.3 Multi-Agent Systems (MAS) 

AAMAS is accustomed to a broad use of the acronym “MAS” as including any sys-
tem (including, for example, a swarming system) with many interacting agents. For 
our purposes, we focused on coarse-grained MAS techniques that rely on symbolic 
representations. The advocate for this area is expert in agent communication languag-
es, joint intention theory, and related high-level coordination techniques. 

Feature List: Problems that are suggest the need for multi-agent systems exhibit 
some of the following features. 

• Teaming: More than one agent is required to solve a problem. 
• Distributed: Computational solution needs to be divided (e.g., complexity, location, 

incomplete information, role, function, computational space/power). 
• Synergistic: Using multiple agents gives a better solution that using a single one. 
• Robustness: Reduces/removes single point of failure. 
• Decentralized: Advantageous for distinct agents to make independent local deci-

sions, processing (e.g. parallelism), or actions. 
• Asynchronous: computation and interaction aren’t tightly coupled. 
• Organization: Structure (interaction, control) between agents important and/or 

advantageous (e.g., societal, problem structure, communications requirement). 
• Heterogeneous: Distinct agents with differing capabilities. 
• Dynamic teaming: Components (agents) motivated but not required to coordinate. 
• Competitive:  agents can work against each other. 
• Flexibility: Independent contributors to portions of distributed solution. 
• Complexity/Scalability: Multiple agents with localized modeling and reasoning can 

address larger problems. 
• Semantic: Disparate localized representations and meanings. 
• Perspective: Modeling and interpreting other components behavior/state. 
• Opacity/Compartmentalized: Certain aspects of solution need to be hidden. 

Case Study: An MAS approach would be ideal for a mixed team of soldiers and hete-
rogeneous robots. The robots could include ground, air, surface, and subsurface ve-
hicles, each with potentially different types of sensors, effectors, communication 
modes, and levels of local computation. Special attention needs to be paid to the 
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changing roles of each entity in the team. Communications are dynamic, because of 
adversarial jamming, complex terrain that limits propagation, and the need for tight 
coordination. Relations among the units change constantly as the mission unfolds. 

3.4 Statistics and Machine Learning (SML) 

Feature list: Problems that are suitable for SML exhibit some of these features: 

• The availability of large amounts of sensor data (video/audio capture, etc.) to yield 
useful levels of significance; 

• Difficult to reduce data down to a manageable amount of symbolic information, 
whether because 
─ the correct feature set is not known and must be discovered, 
─ the data is intrinsically complex (e.g., speech data), or 
─ different symbolic reductions are appropriate in different contexts; 

• The availability of clear metrics for correctness of data handling to guide learning; 
• Training and testing data available or easy to generate at will; 
• Black-box with correct output is sufficient; no requirement to explain the interpre-

tation of the raw data; 
• Need to handle uncertain inputs, or to produce multiple results with varying levels 

of numerical confidence 

Case Study: Consider the problem of commanding one or many autonomous (or 
partially autonomous) assets using multiple modalities in a naturalistic way. Such a 
system would need to integrate speech recognition, gesture recognition (whether visu-
al or by smartphone or smartwatch with gyro and accelerometer), and sketching, as 
well as traditional computer or mobile device UIs. For user acceptance, the system 
would need to match existing protocols. For example, in a military context, gestures 
should be those already used to command infantry, and structured speech forms such 
as the SALUTE report [6] or the nine-line brief [5] should be followed, so that a mix 
of human and robotic assets can be commanded simultaneously. 

3.5 Swarming (SW) 

Feature List: The advocate for swarming characterized appropriate problems as 

• consisting of discrete parts, such as robotic platforms, people, units of information, 
or events; if the natural decomposition of a problem is functional or assertional, ra-
ther than in terms of a set of entities, another technology may be preferred; 

• consisting of diverse entities, performing diverse functions, and dealing with di-
verse information sources (since individual agents can preserve distinctions that 
would be lost in the mean-field approach of many equation-based formalisms); 

• favoring distribution of computation across multiple platforms, whether because of 
communication limits that hinder centralizing data, or because of the need to paral-
lelize computation in combinatorially large problems. 

• allowing decentralized decision making by individual members of the swarm, 
within bounds established by the operator; 
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• subject to deprivation of computational resources, since swarming coordination 
through shared scalar fields is less demanding than symbolic manipulations; 

• subject to rapid dynamic change that requires constant self-reorganization. 

Case Study: SoarTech has several projects in autonomous systems, such as ground 
robots and UAVs, and our sponsors are interested in assessing the trustworthiness of 
their autonomy software. Conventional assessments of the trustworthiness of an engi-
neered system are based on statistical analysis of a fault tree describing the structure 
of the system [20]. Once we endow a system with autonomy, we must also consider 
different trajectories through mission space and the demands they put on various plat-
form subsystems. We have developed a representation of an extended fault tree that 
combines a conventional fault tree of the platform with a hierarchical task network 
representing mission space, but the resulting structure is too complex to explore ex-
haustively. We propose using swarming agents to compute a probability distribution 
over alternative mission instantiations, and thus compute the probability of mission 
failure, analogous to the Top Undesirable Event in a conventional fault tree analysis.   

3.6 An Observation 

These feature lists and case study nominations were prepared by the advocates inde-
pendently of one another. Not surprisingly, they are difficult to compare directly. 
Some of the features do not distinguish between technologies (for example, the ability 
to respond to dynamic changes in the world). Others have no counterparts across ap-
proaches that would allow direct comparison.  

This incommensurability of features is not surprising. In fact, it reflects the chal-
lenge of designing a hybrid AAMAS system, starting just with a set of technologies. 
The trade-offs among them emerge only when we consider them in the context of 
specific problems, motivating the series of case study discussions that we conducted.  

4 Case Discussions 

After advocates have circulated feature lists, we discuss each proposed case study. As 
suggested in Section 3, each discussion has two phases (though in our experience the 
thread of conversation often switches multiple times between the phases). In the pro-
posal phase, advocates suggest how their technologies could be applied to the case, or 
to extensions of it that might realistically be required. In the fitting phase, the group 
seeks to fit the various technologies into the specific use case, exploring how to ratio-
nalize the role of each technology. This rationalization frequently draws from the 
feature lists originally prepared by the advocates, but instead of being unilaterally 
proposed by the advocates, it is the result of a group consensus. Each of these phases 
yields important insights about the relations among the technologies. 

Each case was suggested by an advocate as ideally suited to one specific technolo-
gy, but the proposal phase of each discussion never lacked for contributions from 
other advocates. As different advocates envisioned how their tools could be applied to 
a case, the problem tended to expand in scope. Sometimes different tools addressed 
the same facet of the problem from a different perspective, but more often the view-
point prompted by a given tool encouraged us to consider a richer, more complex 
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version of the use case, one that looked less like a toy laboratory problem and more 
like a real-world system. This experience reflects the insight about real-world prob-
lems that motivated CaFé in the first place. We hypothesized that such problems 
would benefit by synergy among multiple approaches, and in fact the more approach-
es we considered alongside a problem, the more realistic the problem itself became. 

In the fitting phase of the discussions, we tried to rationalize the complementary 
contributions of each technology to the (sometimes expanded) case. This rationaliza-
tion usually took the form of identifying some feature that distinguished alternative 
technologies in the context of the case under discussion. Sometimes these features 
were already articulated in the feature lists submitted by the advocates in advance, but 
often they became clear only through discussion of a concrete case.  

For example, <<insert case discussion>> 
A central insight resulting from our work on CaFé is the difficulty of comparing 

technologies directly with one another, and the relative ease of comparing them in the 
context of a specific problem. The individual features lists often claim the same prob-
lem characteristics for different technologies, but discussion of a concrete example 
serves as a catalyst to highlight the differences that matter among the various ap-
proaches. Of course, different cases may yield different points of comparison among 
technologies, but in practice, after we had gone through three cases, we began to see 
recurring problem features that repeatedly distinguished between tools. We summa-
rized these features in the final feature synthesis discussion (right-hand side of Fig. 1) 
to define the joint feature space discussed in the next section.  

 

5 The Joint Feature Space 

Two dimensions distinguish four of our 
technologies: CA, MAS, SML, and 
SW. These dimensions are a) high and 
low data integration, and b) high and 
low decomposability (the face of Fig. 2, 
and Table 1). We were unable to local-
ize IUI in this space in a way that 
would distinguish it from the other four. 
Recall that one motive for CaFé is to 
understand what portions of a complex 
problem we should address with which 
technology. To achieve this objective, 
we seek a joint feature space that dis-
tinguishes all of our technologies. To 
meet this criterion for IUI, we pro-
pose a third dimension, c) high vs. 
low human involvement (Table 2). Fig. 2 shows the resulting overall feature space. 
This joint feature space is not a definitive characterization of any of our methods, but 
instead focuses on features that distinguish them from each other.  

 

Fig. 2. Joint Feature Space resulting from our 
execution of the CaFé process
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5.1 Data Integration 

The Data Integration dimension reflects the degree of linkage among the data items 
that the problem presents. High data linkage corresponds to a knowledge-rich domain, 
in which information includes a representation of the semantic relations among data 
items. In a domain with low data linkage, the relationships among data items are yet 
to be discovered. Often, problems with low data linkages present a larger amount of 
data (“data rich” problems), while the knowledge captured in spaces at the high end of 
the dimension allows the system to work with smaller amounts of data. From a sys-
tems perspective, the low integration, data-rich end of the dimension is associated 
with sensors that access the world directly, while the high integration, knowledge-rich 
end deals with analysis of data that has been subject to a fair amount of preprocessing. 
Some aspects of this dimension correspond to the JDL Data Fusion hierarchy [18], in 
which Level 0 deals with raw signal data, Level 1 identifies objects, Level 2 detects 
situations among multiple objects, and Level 3 identifies threats. 

MAS and CA rely on symbolic knowledge representations, and so are most natu-
rally applied to knowledge-rich problems. SW and SML can use data without such a 
knowledge overlay and suggest relations among data items that might later be 
represented explicitly. They can use a knowledge structure as a template against 
which to compare raw data (for example, using SML with a symbolic grammar), but 
they do not require this knowledge to be embedded in the data at the outset. 

Several of the features suggested by the advocates for individual approaches align 
with this dimension.  

• CA identified the need to explain its reasoning to humans, which requires high 
semantic content in its representations. 

• SML recognized that it is most appropriate when the problem needs a “black box” 
solver that cannot explain itself.  

• SW’s use of scalar fields to support deprived applications reflects its focus on data 
with low semantic integration.  

However, by themselves these independent features are not nearly as useful in de-
conflicting the technologies as is the data integration dimension that emerged as we 
discussed the application of these tools to common problems. 

5.2 Decomposability 

The decomposability dimension reflects the degree to which the problem invites solu-
tion by multiple interacting components. For problems with high decomposability, it 
is natural to distribute the solution process across multiple platforms. The most natu-
ral processing approach for problems with low decomposability presumes that all 
information is available on a single platform. 

Where the data integration dimension grouped MAS and CA against SML and SW, 
the decomposability dimension groups MAS and SW against CA and SML. Both 
MAS and SW use multiple computational entities, but differ in how they coordinate 
these entities: the stigmergic coordination common with SW agents is subsymbolic, 
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relying on scalar fields over the environment, while MAS agents exchange symbolic 
information. But in both cases, the information available to individual agents is li-
mited, and differs from agent to agent. CA and SML assume low decomposability. 
Most examples of CA assume a monolithic reasoner (like the human whose cognition 
these architectures are intended to imitate). While some clever methods for distribut-
ing SML computations have been explored, the fundamental model on which SML 
rests is the development of a single joint distribution over the variables of interest, 
which can then be marginalized as required, a computation that is most readily done 
with all the data in one place.  

Again, this dimension reflects some features identified initially by tool advocates: 

• SW is applicable to distributed, decentralized problems. 
• MAS similarly recognized Teaming, Decentralized, and Distributed as problem 

characteristics that favor its application. 

The case discussion, unlike the individual feature lists, showed the need for low 
decomposability for most effective application of SML and CA. 

 
These two di-

mensions effective-
ly distinguish four 
of our approaches 
(Table 1). Howev-
er, IUI did not fit 
neatly into this 
taxonomy, leading 
to a third dimension. 

5.3 Human Involvement 

By definition, IUI technologies facilitate interaction of a human user with an auto-
mated system. One can envision a system drawing on our other approaches that does 
not interact with a human (for example, a closed-loop control system). But when the 
system as a whole requires human involvement, a user interface is required, and in-
creasingly these interfaces use some degree of AI to facilitate the interaction. So we 
distinguish IUI from the other four technologies along a “Human Involvement” di-
mension on which the others are low and IUI is high. 

Though IUI is applicable across the entire space spanned by the two dimensions  
of Table 1, it takes 
different forms in 
different areas of this 
space, depending on 
the other processes 
with whi-ch it inte-
racts, as shown in 
Table 2. 

Table 1. Feature Space (without IUI) 

  Data Integration 
  Low (Data-Rich) High (Knowledge-Rich) 

D
ec

om
-

po
sa

bi
lit

y High (mul-
tiple agents) 

Swarming Multi-Agent Systems 

Low (single 
agents) 

Statistics & Ma-
chine Learning 

Cognitive Architectures 

Table 2. IUI Variants for High Human Involvement 

  Data Integration 
  Low (Data-Rich) High (Knowledge-Rich) 

D
ec

om
-

po
sa

bi
lit

y High (mul-
tiple agents) 

Data Visualizer 
Peer Decision-Maker 

Low (single 
agents) 

Cognitive State Inspec-
tor 
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• In data-rich domains, IUI predominantly supports data retrieval and visualization. 
It allows humans to guide automated reasoners (whether SW or SML) (for exam-
ple, by identifying information requirements, or presenting knowledge templates to 
which data should be fit), and it presents to the user the structures discovered by 
underlying SW or SML processing. It naturally supports an interactive approach to 
data exploration 

• In knowledge-rich, highly decomposable domains, IUI naturally allows humans to 
function as peers alongside computational agents. IUI presents the user with infor-
mation that is sent to her from other agents, and translates human input into mes-
sages that are exchanged with other agents.  

• In knowledge-rich domains with low decomposability, IUI enables the user to inte-
ract with a single CA agent (e.g., to inspect or modify the agent’s state). 

The Human Interaction dimension directly reflects the multiple references to 
people in the original IUI feature list, including “Human centric,” “Incorporate human 
knowledge,” and “Incorporate human decision-making.” 

6 Some New Design Schemata 

One of our motives in developing CaFé was facilitating the design of systems to ad-
dress large, complex problems that require synergy among multiple AI approaches. In 
this section, we sketch a series of design patterns that illustrate the value of the feature 
space that we have developed. We could simply present hybrid designs for the case 
studies that we discussed, but to demonstrate the extensibility of our results, we in-
stead describe a series of concepts distinct from the original case studies, but drawing 
on the same joint feature space.  

It is legitimate to ask how feasible it is to tie these different methods together in a 
single architecture, as these designs suggest. While we have not explored interface 
mechanisms explicitly in CaFé, our experience, shared by others who have built pre-
vious hybrid systems (Section 2.3), is that interfacing components based on different 
technologies is a matter of engineering rather than a major hurdle requiring research. 

6.1 Data Fusion and Shared Situational Assessment 

A common problem in many domains, both military and industrial, is gathering data 
from many sensors monitor-
ing the physical world, 
discovering patterns to de-
velop a knowledge-rich 
characterization of the cur-
rent situation, and then as-
suring that all decision-
makers share a common 
view of that situation. Fig. 3 
shows how our technologies 
might interact in such a 
system. 

 Fig. 3. Schema for Data Fusion and Shared SA 

 

 

Data Visualizer 
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Cognitive State 
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Swarming Multi-Agent Systems 

Statistics & Machine 
Learning 

Cognitive 
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1. Both SW and SML deal with the raw data and detect regularities and patterns, 
which they expose to a human through a data visualizer IUI. The human in turn can 
guide the SW and SML agents to refine her view of the world, and refine and en-
hance the structures that are discovered.  

2. Enriched with explicit knowledge through the actions of the human operating the 
data visualizer, the data can now be consumed by a CA agent that reasons over it in 
the light of other knowledge (including previous states of the world, mission plans 
and objectives, and hypotheses). The CA agent can also identify linkages that the 
human should further explore through the data visualizer IUI. 

3. A cognitive state inspector IUI allows the human to monitor the reasoning of the 
CA agent and perhaps adjust it. 

4. The CA agent shares its conclusions with other agents via MAS interfaces, achiev-
ing shared situational assessment across the team. 

5. Some of these agents may be humans, who participate in the team via a peer deci-
sion-maker IUI. 

We intentionally leave the links between components in this and the following sche-
mata undirected. In general, we believe that information will flow in both directions; a 
more refined design would distinguish the nature of the flows in each direction. 

6.2 Complex Pattern Detection in Data 

Modern data analytics faces 
a tension between data that 
are too atomic to be diagnos-
tic and knowledge that is too 
complex to guide search. For 
example, a single negative 
Tweet about US policy 
might be an isolated com-
ment, part of an emerging 
viral propaganda campaign, 

or motivation for an invita-
tion to a public demonstra-
tion. These alternatives re-
quire different responses, and detecting them depends on patterns involving multiple 
Tweets. Yet traditional methods of matching an overall pattern against high-volume, 
high-velocity data do not scale with the complexity of the pattern, particularly if the 
pattern encompasses several alternative possibilities, only one of which may match. 
Such patterns are too complex for efficient single-item queries, but the processing to 
match complete patterns is combinatorially infeasible.  

We are developing an approach to such problems that fits the schema in Fig. 4. 

1. A major challenge in knowledge-based systems is authoring the knowledge that 
drives the system. Currently, complex queries are assembled manually, but our 
schema anticipates the role of a CA agent in helping a human develop these  
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patterns, perhaps on the basis of learning from past experience (not shown in the 
figure). A cognitive state inspector IUI facilitates this interaction. 

2. This link indicates interaction between two different human roles: the pattern au-
thor (via a cognitive state inspector IUI) and the person using the pattern to interact 
with the data (via a data visualizer IUI). These may be the same person, or different 
specialists. 

3. To avoid the combinatorial complexity of matching the entire pattern at once to 
massive data, we use swarming to evaluate the probability that different portions of 
the pattern are supported by the data, then estimate the value of alternative atomic 
queries in sharpening these distributions, and execute those queries, all under the 
supervision of a human via a data visualizer IUI.  

6.3 Multi-unit Combat Simulator 

A major application area for 
MAS is in constructive com-
bat simulations. Fig. 5 shows a 
schema that supports the de-
velopment of a simulator for a 
multi-component force. 

1. The simulator’s core is a set 
of CA agents, interacting 
through MAS interfaces. 

2. The MAS organization al-
lows humans to participate 
in the simulation via a peer 
decision-maker IUI, realizing the increasingly popular LVC (Live-Virtual-
Constructive) mode of simulation. 

3. One important feature of cognitive reasoning is anticipating future events. CA 
agents include some mechanisms for anticipation, but in anticipating geospatial 
motions, swarming has proven to be a powerful tool. 

4. Human players can also benefit from the anticipatory view provided by swarming, 
via a data visualizer IUI. 

5. The data visualizer and peer decision-maker IUIs in this case may be integrated to 
support a single human player. 

6.4 Model Fitting 

A recent project gathered opinions from humans via a (non-intelligent) interface to fit 
weights to knowledge models that let us estimate the similarity behind the human 
judgments informing the elicited opinions. Fig. 6 shows an expanded version of this 
system. 

1. A CA agent, directed by a human via a cognitive state inspector IUI, develops the 
knowledge model that is to be fitted to the elicited opinions. 
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2. Swarming over the model 
develops the weights on 
individual edges in the 
model. 

3. The differences between 
the spectra of weights 
from different informants 
are evaluated statistically. 

4. The resulting measures of 
informant similarity then 
enable a CA agent (which 
may or may not be the 
same one involved in the original model authoring) to make more intelligent use of 
the opinions elicited from the different informants. 

7 Discussion and Conclusion 

The method described in this paper enabled experts in different AI specialties to de-
velop a shared feature space showing how their tools complement each other. In turn, 
this feature space was effective in initial design of new systems beyond the case stu-
dies that drove the CaFé process itself.  

Our exercise was a prototype of CaFé. We discuss its extensibility and alignment, 
and how this technique might be evaluated. 

By extensibility, we mean the behavior of the feature space as new technologies are 
added to the collection, and as we consider new problems.  

We begin with extensibility to new technologies. The five we considered in this 
exercise do not by any means exhaust the repertoire that we have currently in house, 
not to mention others that we may acquire. One can imagine game theory in its many 
variations, distributed constraint optimization, and logic programming, to name only a 
few. Will adding others require redoing the whole process, yielding a feature space 
that is radically different from what we discovered for our initial five approaches?  

Our experience with IUI is evidence that we can expand the feature space incre-
mentally rather than having to redo it each time we add new technologies with new 
advocates. IUI did not fit cleanly into the two-dimensional space that the other four 
approaches suggested. However, adding the Human Involvement dimension allows us 
to disambiguate it from the other approaches, and careful attention to the nature of the 
original two-dimensional space allows us to tease apart different techniques within 
IUI that do exploit the insights of the two-dimensional space.  

A related aspect of extensibility concerns the robustness of the joint feature space 
as we consider new problems. We developed the design schemata in Section 6 to test 
whether the feature space could be applied to problems other than those that stimu-
lated its definition in our case discussions, and the results encourage us that the space 
is in fact robust across a wide range of problems. 

By alignment, we call attention to the fairly minimal overlap between the original 
feature lists submitted by the advocates, and the dimensions of the resulting feature 
space. Because the Human Interaction dimension was introduced to distinguish IUI 
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from the other approaches, it is not surprising that this dimension corresponds very 
closely to the features enumerated by the IUI advocate. However, other individual 
feature lists include a great deal of information and insight about individual approach-
es that is not captured explicitly in the dimensions of the joint space.  

Some details of the original feature lists do align with the dimensions of the joint 
space. In addition, this observation about alignment reminds us again of the distinc-
tive purpose of the joint space. Unlike the original feature lists, it is not intended to 
define each technology, but rather to show how they complement each other. Unused 
features in the original lists are a reservoir on which we may draw as we consider new 
technologies and new problems, to refine our understanding, not of technologies in 
isolation, but of the joint technical space that we are positioned to exploit. 

An important but complex question is how one might evaluate CaFé. Framing such 
an evaluation would require identifying a) competing approaches, and b) some figure 
of merit. Conceptually, software quality attributes [3,12] provide a disciplined ap-
proach to measuring the merit of a finished system, but in spite of the existence of 
numerous hybrid systems (Section 2.3), we know of no other methodology with 
which one might compare CaFé. We hope that by exhibiting one approach to the 
problem, we will stimulate others to suggest modifications or competing approaches, 
that eventually could support a disciplined evaluation. For now, the performance of 
CaFé can only be evaluated by comparing its products with systems whose technical 
composition is driven by the informal politics of the developing organization. 

Perhaps the most powerful insight from the CaFé experience is the ability of con-
crete problems to facilitate comparison of different technologies. The usefulness of a 
third object for clarifying mappings between two other objects suggests that a catego-
ry theoretic model might be a useful way to formalize the CaFé process and lead to 
automated tools to support it, a direction that we hope to pursue in future work. 
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Abstract. Constrained global types are a powerful means to represent
agent interaction protocols. In our recent research we used them to rep-
resent complex protocols in a very compact way, and we exploited them
to dynamically verify actual agents’ interactions with respect to different
protocols in both Jason and JADE. The main drawback of our previous
approach is the full centralization of the monitoring activity, which is del-
egated to a unique monitor agent in charge of verifying that the messages
exchanged among all the agents are compliant with the protocol. This
approach works well for MASs with few agents, but could become un-
suitable in communication-intensive and highly-distributed MASs where
hundreds of agents should be monitored.

In this paper we define an algorithm for projecting a constrained
global type onto a set of agents Ags, by restricting it to the interac-
tions involving agents in Ags, so that the outcome of the algorithm is
another constrained global type where interactions involve only agents in
Ags. The projection mechanism is the first step towards distributing the
monitoring activity, making it safer and more efficient: the compliance
of a MAS to a protocol could be dynamically verified by suitably parti-
tioning the agents of the MAS into small sets of agents, and by assigning
to each partition Ags a local monitor agent which checks all interactions
involving Ags against the projected constrained global type.

Although the projection of well formed constrained global types can
be always performed, the resulting projected protocol does not always
model all the constraints as the original one. We describe a generate
and test algorithm that provides hints on the correctness of the protocol
distribution, leaving for further investigation the formal characterization
of which protocols can be distributed onto which agents’ subsets.

Keywords: Constrained Global Type, Projection, Dynamic Verifica-
tion, Agent Interaction Protocol.

1 Introduction and Motivation

Distributed monitoring of agent interaction protocols is interesting for various
reasons. First, the distribution of monitoring reduces the bottleneck issue due
to the potentially high number of communications between the central monitor
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and the agents of the system. Consequently, the communications are localized
according to the distribution topology (how many local monitors are available
and where they are localized in the system), improving the efficiency of the
monitoring. As usual, distribution increases the robustness of the whole system
and prevents for a breakdown, crash or failure of the system. In particular,
in the context of distributed environments, having a robust monitoring system
requires to distribute the monitoring on several agents which ensure their prompt
reaction to events. In addition, the distributed approach is more suitable than
the centralized one for asynchronous and/or distributed contexts. Hence, we can
mention at least three classes of applications where the distribution of monitoring
is relevant.

1. MASs dealing with huge number of agents, for example applications in the
context of supervising networks (e.g. [28]). The distribution becomes mandatory
to deal with the complexity of the system and to guarantee its scalability.

2. Distributed MASs dealing with distributed agents because of the intrinsic
geographical distribution of the system. This often happens in the context of
industrial projects.

3. Pervasive MASs: in ambient intelligent systems for instance, agents are
mobile (they move from one locality to another one) and their communication
depends on their location. In such open environments, agents enter and leave the
system and this requires a distributed monitoring of communication (e.g. local
registration, etc.).

Usually, in systems related to the above three classes of applications, an over-
lay of agents is deployed above the real system. Agents are distributed over
the system according to the topology distribution which has to satisfy several
criteria (logical, physical or temporal, etc.) of communication in order to meet
the target application requirements. The induced topology leads the agents to
communicate with their local monitor or with their neighboring agents in order
to exchange information.

In order to distribute the monitoring activity, the first step to face is to design
and implement an algorithm for projecting the protocol specification onto subsets
of agents, and then allow interactions taking place within these subsets to be
monitored by local monitors. This step is the main subject of this paper.

Automatically identifying these subsets of agents in order to guarantee that
the distributed monitoring behaves like the centralized one is the second step to
face. The current solution to this issue is a generate and test algorithm which may
detect the impossibility to distribute the monitoring activity, without however
guaranteeing the possibility to distribute it. We leave for further investigation
the problem of finding suitable partitions of agents in a MAS which provide for-
mal guarantees that verification through projected types and distributed agents
is equivalent to verification performed by a single centralized monitor with a
“centralized” global type.

A third interesting issue concerns dynamic redistribution of monitoring agents;
even if not explored in this work, projected types could be recomputed dynami-
cally to balance the load among localmonitors depending on the currently available
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resources, and according to some “meta-protocol”. Self-adaptation of local moni-
tors along the lines of [13] raises similar issues as dynamic redistribution.

We exploit the formalism of constrained global types [2] for specifying and dy-
namically verifying agent interaction protocols. In our recent research we demon-
strated that they can be used to represent complex protocols in a very compact
way, and we exploited them to detect deviations from the protocol in both Ja-
son1 [3] and JADE2 [8]. Extensions of the original formalism with attributes
have been described [20] and exploited to model a complex, real protocol in the
railway domain [21]. This paper shows how a constrained global type can be
projected onto a set of agents Ags, obtaining another constrained global type
which contains only interactions involving agents in Ags. Although the projec-
tion of a well formed global type is always possible, this does not mean that it
is always meaningful: as an example, the Alternating Bit Protocol (ABP) that
will be introduced later on in this paper can be projected onto any subset of
agents in the MAS, but needs to be monitored in a centralized way to verify
all its constraints. Our generate and test algorithm detects the impossibility to
distribute the monitoring of the ABP, hence providing a useful, although partial,
support to the protocol and MAS developers.

The paper is organized in the following way: the sequel of this section describes
one motivating scenario for our research; Section 2 overviews the state of the
art in runtime monitoring of distributed systems; Section 3 gives the technical
background needed for presenting the projection algorithm in Section 4, Section 5
describes the implementation of the algorithm in SWI Prolog and the projection
at work, and Section 6 concludes.

Motivating scenario. In order to better understand the impact of distributed
monitoring of complex and open systems, let us consider the following scenario:
a humanitarian convoy in charge of food transportation is traversing a poten-
tially hostile country. In order to ensure the convoy safety, a set of autonomous
unmanned aerial vehicles (UAV) is deployed. The goals assigned to the UAVs are
as diverse as: 1. maintaining the convoy within sight of a distant control center
thanks to an embedded camera and data transmission; 2. transmitting images of
the situation ahead of the convoy (to the convoy itself and to the control center);
3. ensuring data transmission from the convoy to the external world and con-
versely; 4. detecting potential hazards and informing the convoy and the control
center; 5. localizing suspicious vehicles; 6. identifying a designated mobile entity,
etc.

Several UAVs are required to achieve some of these goals since they require
being at different locations at the same time (goals 1, 2). On the contrary, some
goals can be assigned to the same UAV, providing the UAV traveling from one
specific location to another one (goals 4, 5, 6). Moreover, some goals can be
shared between UAVs (goal 3). When some UAV becomes unavailable, its goals
must be allocated to another one or a new UAV must take-off depending on the

1 http://jason.sourceforge.net/wp/
2 http://jade.tilab.com/

http://jason.sourceforge.net/wp/
http://jade.tilab.com/
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resources availability. It is the case when communication failures occur, which
might be temporary or permanent. It is also the case of instrument failure on-
board UAVs, of meteorological events, etc. Due to situation-related hazards, the
convoy might (autonomously or by a decision coming from the control center)
decide to change its route. This change has to be taken into account by all the
UAVs, which implies at the same time a re-planning of UAVs trajectories but also
re-planning of the tasks they have been allocated to since their feasibility is not
anymore ensured (fuel resources, communication network, etc.). It is of a major
importance that the protocols implemented in the system are monitored for two
reasons: 1. possible errors in protocols might generate confusion among agents
and generate bad decisions whose consequences might be dramatic; 2. malevolent
actors might try to penetrate the system since humanitarian operations almost
often occur in a tense political context.

Unfortunately, a centralized monitoring is difficult to carry out in such a
system since it forces every agent to communicate with a unique control agent,
which is not always possible due to the physical dispersion of the agents. For
example, a low altitude UAV can only communicate with a distant control center
in gaining altitude, which is incompatible with a permanent monitoring of its
communications since most of the UAV mission takes place close to the ground.
Hence, in an application such as the humanitarian convoy the distribution of
protocol monitoring and the ability of any agent to monitor part of the protocol,
if needed, is a problem that must be addressed. It is not a surprise since the
functions of the application themselves have to be implemented as autonomous
goal-directed agents to be able to tackle the complexity inherent to this kind of
systems. Adding a centralized monitoring is then hopeless.

2 State of the Art

In this section we review the literature on runtime monitoring of interaction
protocols, on the distribution of monitoring among subsets of components with
a specific attention to how decentralized monitoring can ensure global protocol
compliance, and on projections that move from global types to global types in
order to lighten them.

Runtime monitoring of interaction protocols. Many frameworks and formalisms
for monitoring the runtime execution of a distributed system have been proposed
in the last years.

One of the most recent and relevant work in this area is SPY (Session Python)
[24], a tool chain for runtime verification of distributed Python programs against
protocol specifications expressed in Scribble3. Given a Scribble specification of a
global protocol, the tool chain validates consistency properties, such as race-free
branch paths, and generates Scribble (i.e. syntactic) local protocol specifications
for each participant (role) defined in the protocol. At runtime, an independent
monitor (internal or external) is assigned to each Python endpoint and verifies

3 http://www.scribble.org

http://www.scribble.org


250 D. Ancona et al.

the local trace of communication actions executed during the session. That work
shares motivations similar to ours. The main differences lie in the expressive
power of the two languages, which is higher for our formalism of constrained
global types due to the constrained shuffle operator which is missing in Scrib-
ble, and in the availability of tools for statically verifying properties of Scribble
specifications, which are not available for constrained global types.

Many other approaches for runtime monitoring of distributed systems and
MASs exist like those mentioned in the sequel, but with no emphasis on the
projection from global to local monitors. This represents the main difference
between those proposals and ours.

In [17], aspect-oriented development techniques are used to enhance exist-
ing code of runtime monitors, checking the interaction behavior of applications
against their specifications. Message Sequence Charts (MSCs) are exploited to
specify the interaction behavior of distributed systems and as a basis for au-
tomatic runtime monitor generation. An explanation of the monitor generation
procedure and tool set is presented using a case study from the embedded au-
tomotive systems domain. Addressing the need for formal specification and run-
time verification of system-level requirements of distributed reactive systems, [14]
presents a formalism for specifying global system behaviors in terms of MSCs
assertions, with a technique for the evaluation of the likelihood of success of
a distributed protocol under non-trivial communication conditions via discrete
event simulation and runtime execution monitoring.

Moving to the MAS field, a great attention has been recently devoted to
monitoring norms and commitments: formalizing the entities participating to a
protocol and the rules regulating their interaction is in fact an inherent aspect
of normative systems. In [23] a generic architecture for observing agent behav-
iors and recognizing those which comply to or violate the predefined norms is
described. The architecture deploys monitors that receive inputs from observers
and process these inputs together with transition network representations of
individual norms. In this way, monitors determine the fulfillment or violation
status of norms. As far as commitments are concerned, one of the first contri-
butions were Commitment Machines [29], a formalism modeling communication
protocols supplying a content to protocol states and actions in terms of the so-
cial commitments of the participants. The content can be reasoned about by
the agents, thereby enabling flexible execution of the given protocol. In [27] Dis-
tributed Commitment Machines are defined and the properties of Commitment
Machines, both distributed and centralized, are explored. A recent work on re-
lationship between agents and commitment-based protocols is [12], where the
authors specify agents in terms of goal models and protocols in terms of com-
mitments among agents. The semantic relationship between agents and protocols
is formalized exploiting the relationship between goals and commitments. Given
an agent specification and a protocol, it is possible to verify whether the protocol
allows the achievement of particular agent goals, and whether the agent’s specifi-
cation supports the satisfaction of particular commitments. In [4] commitments
are exploited again in normative MASs: the authors focus on JADE and show
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that it is possible to account for interactions by exploiting commitment-based
protocols, by modifying the Jade Methodology so as to include the new features
in a seamless way, and by relying on the notion of artifact.

In [15] a framework for automatic processing of interactions generated using
FIPA-ACL4 is presented. This framework includes three elements: i) an agent
interaction architecture to systematize interaction processing tasks, ii) interac-
tion models to build re-usable validated code used to check different phases of
interaction processing associated with message semantics, and iii) components
and control structures implementing interaction architecture for a particular
agent platform. The paper describes the implementation details of the proposed
approach developed within the CAPNET agent platform.

Finally, [22] describes an architecture for verifying properties of a multiagent
system during its execution. Considering that a correct system is a system verify-
ing the properties specified by the designer, the authors focus on the “property”
notion. The architecture, a MAS itself, is based on a set of agents whose goals
are to check at runtime the whole system’s properties.

Compliance of distributed and centralized monitoring. The problem of distributed
monitoring has been faced by many researchers in MASs, web services, sensor
networks and other distributed systems, but often the proposed solutions either
directly describe a distributed protocol without any central point of control, or
dynamically create groups of entities (agents, services, components) for monitor-
ing different areas with no central representation of the global protocol, making
these approaches and their theoretical foundations not comparable with ours.

Also, some proposals are similar to ours, but no formal justification of the pro-
jection and its coherence with the global protocol is provided. For example, the
idea of “splitting” a global protocol into subprotocols has been proposed thirty
years ago in the area of network communication protocols [18] and more recently
in the one of Web Services choreography [25], but without a theoretical basis.

The formalization and analysis of the relation between a global description of
a distributed system and a more machine-oriented description of a set of compo-
nents that implements it is a problem that has been studied in several contexts
and by different communities, as widely discussed for example in the related
work section of [10]. Projecting a global protocol into a stub of an executable
piece of code, or - on the other way round - verifying at design time that an
executable piece of code respects the global protocol specification are problems
different from what we face: we do not need to know the implementation of the
agents in order to perform a runtime verification of their observable behavior
with respect to the global protocol, and we project global protocols involving
many agents into sub-protocols involving less, and not global protocols into “im-
plementations”.

Although different from ours, contributions dealing with global types pro-
jected onto session types and their declination as choreographies projected onto
contracts, can be a source of inspiration for identifying the syntactic and seman-
tic conditions which make the projection of a constrained global type feasible.

4 http://www.fipa.org/specs/fipa00061/SC00061G.html

http://www.fipa.org/specs/fipa00061/SC00061G.html
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Global types [9,10,16] are behavioral types, whose aim is the specification and
verification of multiparty interactions between distributed components. As sug-
gested by the term “global”, they describe the overall communication behavior
of a distributed system, whereas session types specify the behavior of the single
components of a system.

In [10] Castagna et al. tackle the problem of projecting global to session
types; in particular, projection is well-defined only if well-formedness conditions
are satisfied by global types. Such non trivial conditions are expressed in terms
of the semantics of global types, which corresponds to sets of traces. The defined
projection algorithm is not complete, since it is not defined for all global types
that satisfy the semantic conditions for projectability.

Global types can be seen as web service choreographies5 describing the in-
teraction of some distributed processes connected through a private multi-party
session. Therefore, there is a close relationship between the work of Castagna et
al., and those by Zavattaro et al. [6,19] which concern the projection of chore-
ographies into the contracts of their participants. The projection procedure is
basically an homomorphism from choreographies to the behavior of their partic-
ipants. While [7] gives no conditions to establish which choreographies produce
correct projections, [19] defines three connectedness conditions that guarantee
correctness of the projection for various (synchronous and asynchronous) seman-
tics, solely stated on the syntax of the choreography.

The problem of analyzing choreographies and characterizing their properties
has been addressed also by the MAS community. In particular, Baldoni et al.
[5] propose a notion of interoperable choreography which basically coincides
with Castagna et al.’s notion of liveness: the interaction between the parties
must preserve the ability to reach a state in which every party has successfully
completed its task. Also the notion of conformance between parties defined by
Baldoni et al. may be a basis for proposing methods and algorithms for devising
whether a set of projected protocols expressed in our formalism for constrained
global types can be used to verify the same properties as the global one.

Lightening global types. As seen in the previous paragraph, projection of global
types (resp. choreographies) usually moves from global to session types (resp.
from choreographies to contracts). A very recent proposal by T-C. Chen [11]
shares with ours the purpose of moving from global types to global types, in
order to “lighten” the original global type.

The motivation for Chen’s work is that some interactions in global types
take place just for the purpose of informing receivers that some message will
never arrive or the session is terminated. By decomposing a big global type into
several simpler global types, one can avoid such kind of redundant interactions.
Chen proposes a framework for easily decomposing global types into light global
types, preserving the interaction sequences of the original ones but for redundant
interactions.

5 http://www.w3.org/TR/ws-cdl-10/

http://www.w3.org/TR/ws-cdl-10/
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Although the rationale for our “lightening” function is to remove interactions
not involving some agents rather than removing redundant interactions as in
Chen’s work, her proposal is the only one, to the best of our knowledge, where
projection moves from global types to global types. While Chen demonstrates the
correctness of her lightening function, she did not implement it yet. Conversely,
our projection function is implemented and usable by both JADE and Jason
agents, although we did not formally demonstrate its properties yet.

3 Backgroud

This section briefly recaps on constrained global types, omitting their extension
with attributes [20] because the projection algorithm discussed in Section 4 is
currently defined on “plain” constrained global types only.

Constrained global types (also named “types” in the sequel, when no ambi-
guity arises) are defined starting from the following entities:

Interactions6. An interaction a is a communicative event taking place between
two agents. For example, msg(right robot, right monitor, tell, put sock)

is an interaction involving the sender right robot and the receiver right mo-

nitor, with performative tell and content put sock.
Interaction types. Interaction types model the message pattern expected at a

certain point of the conversation. An interaction type α is a predicate on inter-
actions. For example, msg(right robot, right monitor, tell, put sock) ∈
put right sock means that interaction msg(right robot, right monitor,

tell, put sock) has type put right sock.
Producers and consumers. In order to model constraints across different

branches of a constrained fork, we introduce two different kinds of interaction
types, called producers and consumers, respectively. Each occurrence of a pro-
ducer interaction type must correspond to the occurrence of a new interaction;
in contrast, consumer interaction types correspond to the same interaction speci-
fied by a certain producer interaction type. The purpose of consumer interaction
types is to impose constraints on interaction traces, without introducing new
events. A consumer is an interaction type, whereas a producer is an interaction
type α equipped with a natural superscript n specifying the exact number of
consumer interactions which are expected to coincide with it.

Constrained global types. A constrained global type τ represents a set of pos-
sibly infinite traces of interactions, and is a possibly cyclic term defined on top
of the following type constructors:

– λ (empty trace), representing the singleton set {ε} containing the empty
trace ε.

– αn:τ (seq-prod), representing the set of all traces whose first element is an
interaction a matching type α (a ∈ α), and the remaining part is a trace

6 “Interactions” were named “sending actions” in our previous work. We changed
terminology to be consistent with the one used in the choreography community.
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in the set represented by τ . The superscript7 n specifies the number n of
corresponding consumers that coincide with the same interaction type α;
hence, n is the least required number of times a ∈ α has to be “consumed”
to allow a transition labeled by a.

– α:τ (seq-cons), representing a consumer of interaction a matching type α
(a ∈ α).

– τ1 + τ2 (choice), representing the union of the traces of τ1 and τ2.

– τ1|τ2 (fork), representing the set obtained by shuffling the traces in τ1 with
the traces in τ2.

– τ1 · τ2 (concat), representing the set of traces obtained by concatenating the
traces of τ1 with those of τ2.

Since constrained global types are interpreted coinductively [1], it is possible to
specify protocols that are not allowed to terminate like for example the PingPong
protocol defined by the equation

PingPong = (ping,0):(pong,0):PingPong

where PingPong is a logical variable which is unified with a recursive (or cyclic,
or infinite) term consisting of the producer interaction type ping, followed by
the producer interaction type pong (both requiring 0 consumers), followed by
the term itself. The coinductive interpretation (that is, the greatest fixed point
of the function F corresponding to the recursive definition of PingPong) is the
singleton containing the only valid and infinite interaction trace ping pong ping

pong ping pong .... The inductive interpretation (that is, the least fixed point
of F ) of PingPong is the empty set, since there is no base for the induction; hence,
coinduction [26] is required for correctly dealing with infinite traces.

The valid traces for the type

PingPong = ((ping,0):(pong,0):PingPong) + lambda

instead, are {ε, ping pong, ping pong ping pong, ...}, namely all the traces
consisting of an arbitrary number (even none or infinite) of ping pong.

Let us consider the following simple example where there are two robots (right
and left), two monitors (right and left) associated with each robot, and a plan
monitor which supervises them (Figure 1). The goal of the MAS is to help
mothers in speeding up dressing their kids by putting their shoes on: robots
must put a sock and a shoe on the right (resp. left) foot of the kid they help. As
robots are autonomous, they could perform the two actions in the wrong order,
making the life of the mothers even crazier... Monitors are there to ensure that
wrong actions are immediately rolled back. Robots communicate their actions to
their corresponding monitors, which, in turn, notify the plan monitor when the
robots accomplish their goal. Each robot can start by putting the sock, which
is the correct action to do, or by putting the shoe, which requires a recovery by
the (right or left, resp.) robot monitor.

7 In the examples throughout the paper we use the concrete syntax of Prolog where
producer interaction types are represented by pairs (α,n).
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Fig. 1. The “socks and shoes” MAS

As we will see, the left and right monitors play two different roles: they interact
with robots to detect wrong actions and recover them, and they also verify part of
the protocol, notifying the user of protocol violations. In this MAS, monitors are
part of the protocol itself. In the MASs described in our previous papers, monitors
performed a runtime verification of all the other agents but themselves, and their
sole goal was to detect and signal violations. Extending monitors with other
capabilities (or, taking another perspective, extending “normal” agents with the
capability to monitor part of the protocol) does not represent an extension of
the language or framework. The possibility of having agents that can monitor,
can be monitored, and can perform whatever other action, was already there,
but we did not exploit it before.

The interactions involved in the socks and shoes protocol and their types are
as follows:

msg(right robot, right monitor, tell, put sock) ∈ put right sock

msg(right robot, right monitor, tell, put shoe) ∈ put right shoe

msg(right robot, right monitor, tell, removed shoe) ∈ rem right shoe

msg(right monitor, right robot, tell, obl remove shoe) ∈ obl rem right shoe

msg(right monitor, plan monitor, tell, ok) ∈ ok right

msg(left robot, left monitor, tell, put sock) ∈ put left sock

msg(left robot, left monitor, tell, put shoe) ∈ put left shoe

msg(left robot, left monitor, tell, removed shoe) ∈ rem left shoe

msg(left monitor, left robot, tell, obl remove shoe) ∈ obl rem left shoe

msg(left monitor, plan monitor, tell, ok) ∈ ok left

The protocol can be specified by the following types, where SOCKS corresponds
to the whole protocol.

RIGHT = ((put right sock,0):(put right shoe,0):(ok right,0):lambda) +

((put right shoe,0):(obl rem right shoe,0):(rem right shoe,0):RIGHT),

LEFT = ((put left sock,0):(put left shoe,0):(ok left,0):lambda) +

((put left shoe,0):(obl rem left shoe,0):(rem left shoe,0):LEFT),

SOCKS = (RIGHT | LEFT)

The type SOCKS specifies the shuffle (symbol “|”) of two sets of traces of inter-
actions, corresponding to RIGHT and LEFT, respectively. The shuffle expresses the
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fact that interactions in RIGHT are independent (no causality) from interactions
in LEFT, and hence traces can be mixed in any order.

Types RIGHT and LEFT are defined recursively, that is, they correspond to
cyclic terms. RIGHT consists of a choice (symbol “+”) between the finite trace
(the constructor for trace is “:”) of interaction types (put right sock,0), (put-
right shoe,0), (ok right,0) corresponding to the correct actions of the right
robot, and the trace of interaction types (put right shoe,0), (obl rem right-

shoe,0), (rem right shoe,0) corresponding to the wrong initial action of the
robot, followed by an attempt to perform the RIGHT branch again. Basically,
either the right robot tells the right monitor that it put the sock on first, and
then it can go on by putting the shoe, or it tells that it started its execution by
putting the shoe on. In this case, the right monitor forces the robot to remove the
shoe, the robot acknowledges that it removed the shoe, and then starts again.
The LEFT branch is the same as the RIGHT one, but involves the left robot and
the left node monitor.

An example where sets of traces could be expressed with a fork, but are
not completely independent, is given by the Alternating Bit Protocol ABP. We

Fig. 2. The ABP3 MAS

consider the instance of ABP where six different sending actions may occur
(Figure 2): Bob sends msg1 to Alice (interaction type m1), Alice sends ack1 to
Bob (sending action type a1), Bob sends msg2 to Carol (interaction type m2),
Carol sends ack2 to Bob (sending action type a2), Bob sends msg3 to Dave
(interaction type m3), Dave sends ack3 to Bob (interaction type a3). The ABP
is an infinite iteration, where the following constraints have to be satisfied for
all occurrences of the sending actions:

– The n-th occurrence of an interaction of type m1 must precede the n-th
occurrence of an interaction of type m2 which in turn must precede the n-th
occurrence of an interaction of type m3.

– For k ∈ {1, 2, 3}, the n-th occurrence of msgk must precede the n-th oc-
currence of the acknowledge ackk, which, in turn, must precede the (n + 1)-th
occurrence of msgk .

The ABP cannot be specified with forks of independent interactions, hence
a possible solution requires to take all the combinations of interactions into
account in an explicit way. However with this solution the size of the type grows
exponentially with the number of the different interaction types involved in the
protocol.



Efficient Verification of MASs with Projections 257

With producer and consumer interaction types it is possible to express the
shuffle of non independent interactions which have to verify certain constraints.
In this way the ABP can be specified in a very compact and readable way. The
whole protocol is specified by the following constrained global type ABP3:

M1M2M3=m1:m2:m3:M1M2M3,

M1A1=(m1,1):(a1,0):M1A1,

M2A2=(m2,1):(a2,0):M2A2,

M3A3=(m3,1):(a3,0):M3A3,

ABP3=((M1M2M3|M1A1)|(M2A2|M3A3))

Fork is associative and the way we put brackets in ABP3 does not matter:
((M1M2M3|M1A1)|(M2A2|M3A3))has the samemeaning as (M1M2M3|(M1A1|M2A2)
|M3A3), and as any other association.

4 Projection Algorithm

In the “socks and shoes” example the monitors, besides checking that the robots
accomplish their goal, verify also the compliance of the system to the specifica-
tion of the protocol, given by the type SOCKS. If we assume that the right robot
and the right monitor reside on the same node, then it is reasonable that the
right monitor verifies only the interactions which are local to its node; to do
that, we must project the type SOCKS onto the agents of the node, that is, the
right robot and the right monitor.

What we would like to obtain is the type

RIGHT P = ((put right sock,0):(put right shoe,0):(ok right,0):lambda) +

((put right shoe,0):(obl rem right shoe,0):(rem right shoe,0):RIGHT P),

SOCKS P = (RIGHT P|lambda)

which only contains interactions where the right robot and the right monitor are
involved, either as sender or as receiver.

We can project any protocol onto any set of agents (although it is not neces-
sarily meaningful or useful). For example, projecting the ABP3 on Dave should
result into

ABP3 P compact = (m3,0):(a3,0):ABP3 P compact

which just states that Dave must ensure to respect the order between messages
of type m3 and acknowledges of type a3 between him and Bob. That projected
type can be represented in an equivalent way, even if less compact, as

M1M2M3 P = m3:M1M2M3 P,

M3A3 P = (m3,1):(a3,0):M3A3 P,

ABP3 P =((M1M2M3 P|lambda)|(lambda|M3A3 P))

Projecting the ABP3 on Bob, instead, should result into the ABP3 itself as Bob
is involved in all communications and hence no interaction will be removed from
the projection.
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Since Dave cannot be aware of the order among messages from other agents to
Bob, he can only monitor a part of the protocol. Therefore, distributing the ABP
among Alice, Carol and Dave would result in a partial verification of the protocol
not able to detect all possible errors; indeed, Bob is necessary for checking the
constraints involving m1, m2, m3, and, hence, is the only agent that can monitor
the protocol.

In order to allow agents to verify only a sub-protocol of the global interaction
protocol, we designed a projection algorithm that takes a constrained global type
and a set of agents Ags as input, and returns a constrained global type which
contains only interactions involving agents in Ags. The intuition besides the
algorithm is that interactions that do not involve agents in Ags are removed from
the projected constrained global type. Given the finite set AGS of all the agents
that could play a role in the MAS and an interaction type α, senders(α) is the set
of all the agents in AGS that could play the role of sender in actual interactions
having type α and receivers(α) is the set of all the agents in AGS that could play
the role of receiver in interactions of type α. The involves predicate holds on one
interaction type α and one set of agents Ags, involves(α,Ags), iff (senders(α) ⊆
Ags) ∨ (receivers(α) ⊆ Ags).

Projection can be described as a function Π : CT × P(AGS) → CT where CT

is the set of constrained global types. Π is driven by the syntax of the type to
project8; since Π is defined on cyclic terms, the simplest way to define it would
be by coinduction as follows:

(i) Π(λ,Ags) = λ
(ii) Π(α : τ, Ags) = α : Π(τ, Ags) if involves(α,Ags)
(iii) Π(α : τ, Ags) = Π(τ, Ags) if ¬involves(α,Ags)
(iv) Π(τ ′ op τ ′′, Ags) = Π(τ ′, Ags) op Π(τ ′′, Ags), where op ∈ {+, |, ·}.
However, this definition is not fully correct: it works properly on non cyclic

terms (example 1) and on some cyclic terms (example 2), but does not behave
correctly with other kinds of cyclic terms as shown in examples 3 and 4.

Example 1 (non cyclic terms). Let us consider a simple non cyclic term
T defined by T = a : b : λ. We want to project T on Ags. Suppose that
involves(a,Ags) holds, whereas involves(b, Ags) does not (this assumption will
hold for the following examples too), meaning that interaction type a must be
kept in the projection and b must be removed. From (ii) we get Π(a : b :
λ,Ags) = a : Π(b : λ,Ags) (a is kept in the projection), from (iii) we have
Π(b : λ,Ags) = Π(λ) (b is discarded from the projection), and finally, from (i)
we know that Π(λ) = λ, therefore Π(T,Ags) = a : λ.

Example 2 (cyclic terms without problems). Let us now consider the cyclic
term T s.t. T = a : T ′ and T ′ = b : T .

8 In the sequel of this section we will use “type” and “term” interchangeably, as a
constrained global type (or just type) is represented by a term.
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(a) (b)

(c)

Fig. 3. Correct projection of a cyclic term

Again, the projection is driven by the syntax of T ; by applying the definition of
Π we have given before, we have Π(a : T ′, Ags) = a : Π(T ′, Ags) = a : Π(b :
T,Ags) = a : Π(T ) = a : Π(a : T ′, Ags); while in the previous, non recursive
example we could conclude by applying the definitionΠ(λ,Ags) = λ correspond-
ing to the λ type, in this case we do not have any basis. However, by coinduction
we can conclude that Π(a : T ′, Ags) has to return the unique cyclic term T ′′ s.t.
T ′′ = a : T ′′ (see Figure 3(a)), which corresponds to the correct projection.

Example 3 (cyclic terms with problems - non uniqueness). The defini-
tion of Π needs to be refined because it does not always specify a unique result;
to see that, let us consider the cyclic term T s.t. T = a : T ′ and T ′ = b : T ′ with
the same definition of involves as before. Now from the definitions above we get
Π(a : T ′, Ags) = a : Π(T ′, Ags), Π(T ′, Ags) = Π(b : T ′, Ags) = Π(T ′, Ags);
since Π(T ′, Ags) = Π(T ′, Ags) is an identity, Π is allowed to return any type
when applied to T ′9, while the expected correct type should be λ, so that
Π(a : T ′, Ags) = a : λ (see Figure 3(b)). This example demonstrates that
the definition of Π as given before must be reconsidered for coping with cases
like this one correctly (see the paragraph “Projection function refined” below).

Example 4 (cyclic term with problems - non contractiveness). Fi-
nally, let us consider the cyclic term T s.t. T = (a : T ) + (b : T ); by (iv)
Π(T,Ags) = Π(a : T,Ags) + Π(b : T,Ags), by (ii) Π(a : T,Ags) = a :
Π(T,Ags), and by (iii) Π(b : T,Ags) = Π(T,Ags), therefore by coinduction
the returned type is T ′ s.t. T ′ = (a : T ′) + T ′; although in this case there exists
a unique type that can be returned by Π , such a type is not contractive. A type
is contractive if all possible cycles in it contain an occurrence of the sequence
constructor “:”; Figure 3(c) shows that type T ′ s.t. T ′ = (a : T ′) + T ′ is not
contractive, since the rhs cycle contains only the “+” operator.

Contractive types ensure that runtime verification always terminates and we
want that contractive constrained global types like T s.t. T = (a : T ) + (b : T )
are always projected into contractive constrained global types. The refinement
of Π discussed below copes with this requirement as well.

9 In the same way as the equation X = X is satisfied for any value associated with X.
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Projection function refined. To guarantee that the projection function always
returns a contractive type and that the correct coinductive definition is imple-
mented, we need to keep track of all types visited by Π along a path10; each
type is associated with its depth in the path, and with a fresh variable which
will be unified with the corresponding computed projection. During the visit, the
depth DeepestSeq of the deepest visited sequence operator is kept. If a type τ
has been already visited (and we can detect this situation because we keep track
of all the already visited types, together with their depth and projection), then
a cycle is detected: if its depth is less than DeepestSeq then the cycle contains an
occurrence of the sequence constructor, therefore the projected type associated
with τ is contractive and, hence, is returned; otherwise, the projection would
not be contractive, therefore λ is returned.

Let us consider again the type T = (a : T ) + (b : T ) from example 4; when
computing its projection, the depth of T is 0, and initially we set the value of
DeepestSeq to -1. When visiting the lhs path starting from the “+” operator, the
type a : T is visited at depth 1, and DeepestSeq is set to 1, since the root of a : T
is the sequence constructor. Then T is revisited, and since its depth 0 is less than
DeepestSeq, the projection of the lhs is T ′ = a : T ′. When visiting the rhs path
starting from the “+” operator, DeepestSeq contains again the value -1, and the
type b : T is visited at depth 1, but because involves(b, Ags) does not hold, b is
discarded with the corresponding sequence constructor, hence DeepestSeq is not
updated. Then T is revisited, and since its depth 0 is not less than DeepestSeq,
the projection of the rhs is λ. The next section provides a detailed description
of the implementation of the correct projection algorithm.

5 Implementation and Use

In this section, we show Π ’s implementation and we frame it into our frame-
work for distributed runtime verification of MASs. The framework, depicted in
Figure 4, consists of four layers: (1) a formalism for describing agent interaction
protocols (AIPs) based on constrained global types, along with an algorithm to
validate at design time that the described protocol models the expected traces
of interaction; (2) the projection algorithm, along with a generate and test algo-
rithm for validating at design time that the projection on a given agents’ subset
can be safely used for dynamic verification; (3) a mechanism for verifying at
runtime that interactions are compliant with the AIP; and (4) a mechanism for
intercepting at runtime actual messages involving the agents under monitoring,
be them JADE or Jason ones, in a way as transparent as possible.

Whereas the design time validation algorithms supporting layers 1 and 2 can
only generate and test traces of finite length, the runtime verification of layer 3
could in principle go on forever, if the protocol is an infinite one: the runtime
verification mechanism checks the compliance of each actual interaction taking

10 By “path” we mean the path in the tree associated with the type; for example, if
the type is T s.t. T = (a : T ) + (b : T ), Π will first visit the path associated with
(a : T ) and then that associated with (b : T ).
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Fig. 4. Our modular framework for distributed runtime verification of MASs

place in the MAS w.r.t. the constrained global time and stops only when a
violation is detected.

The choice of JADE and Jason as the two frameworks that we are able to
monitor is due to their widespread adoption in the agent community.

Implementation. The projection algorithm has been implemented in SWI Prolog,
http://www.swi-prolog.org/, which manages infinite terms in an efficient way.
Since we need to record the association between any type and its projection in
order to correctly detect and maage cycles, we exploited the SWI Prolog library
assoc for association lists, http://www.swi-prolog.org/pldoc/man?section
=assoc. The three predicates of the library assoc that we use for our implemen-
tation are

– empty assoc(-Assoc): Assoc is unified with an empty association list.
– get assoc(+Key, +Assoc, ?Value): Value is the value associated with Key

in the association list Assoc.
– put assoc(+Key, +Assoc, +Value, ?NewAssoc): NewAssoc is an association

list identical to Assoc except that Key is associated with Value. This can be
used to insert and change associations.

The projection is implemented by a predicate project(T, ProjAgs, ProjT)

where T is the constrained global type to be projected, ProjT is the result,
and ProjAgs is the set of agents onto which the projection is performed. The
algorithm exploits the predicate involves(IntType, ProjAgs) succeeding if
IntType may involve one agent, as a sender or a receiver, in ProjAgs.

Currently involves looks for actual interactions ActInt whose type is Int-
Type and assumes that senders and receivers in ActInt are ground terms, but
it could be extended to take agents’ roles into account or in other more complex
ways. It uses the “or” Prolog operator ; and the member predicate offered by
the library lists. It exploits the predicate has type(ActInt, IntType) imple-
menting the definition of the type IntType of an actual interaction ActInt.

involves(IntType, List) :-

has type(msg(Sender, Receiver, , ), IntType),

(member(Sender, List);member(Receiver, List)).

http://www.swi-prolog.org/
http://www.swi-prolog.org/pldoc/man?section=assoc
http://www.swi-prolog.org/pldoc/man?section=assoc


262 D. Ancona et al.

For the implementation of project/3we use an auxiliary predicate project/6
with the following three additional arguments:

– an initially empty association A to keep track of cycles;
– the current depth of the constrained global type under projection, initially

set to 0;
– the depth of the deepest sequence operator belonging to the projected type,

initially set to -1.

project(T, ProjAgs, ProjT) :-

empty assoc(A), project(A, 0, -1, T, ProjAgs, ProjT).

The predicate is defined by cases.

1. lambda is projected into lambda.

project( Assoc, Depth, DeepestSeq, lambda, ProjAgs, lambda):- !.

2. If Type has been already met while projecting the global type (get assoc

(Type, Assoc, (AssocProjType,LoopDepth)) succeeds), then its projec-
tion ProjT is AssocProjType if LoopDepth =< DeepestSeq and is lambda

otherwise. The “if-then-else” construct is implemented in Prolog as
Condition -> ThenBranch ; ElseBranch.

project(Assoc, Depth, DeepestSeq, Type, ProjAgs, ProjT) :-

get assoc(Type,Assoc,(AssocProjType,LoopDepth)),!,

(LoopDepth =< DeepestSeq -> ProjT=AssocProjType; ProjT=lambda).

3. T = (IntType:T1).IntType is a consumer since it has no integer number asso-
ciated with it. ProjT is recorded in the association A along with the
current depth Depth (put assoc((IntType:T1),Assoc,(ProjT,Depth),

NewAssoc)). If IntType involves ProjAgs, ProjT=(IntType:ProjT1)where
ProjT1 is obtained by projecting T1 onto ProjAgs,with associationNewAssoc,
depth of the type under projection increased by one, and depth of the deepest
sequence operator equal to Depth. If IntType does not involve ProjAgs, then
the projection on T is the same as T1 with association NewAssoc, depth of the
type under projection equal to Depth, and depth of the deepest sequence op-
erator equal to DeepestSeq.

project(Assoc, Depth, DeepestSeq, (IntType:T1), ProjAgs, ProjT) :- !,

put assoc((IntType:T1),Assoc,(ProjT,Depth),NewAssoc),

(involves(AMsg, ProjAgs) ->

IncDepth is Depth+1,

project(NewAssoc,IncDepth,Depth,T1,ProjAgs,ProjT1),

ProjT=(IntType:ProjT1);

project(NewAssoc,Depth,DeepestSeq,T1,ProjAgs,ProjT)).

4. T = ((IntType,N):T1). (IntType,N) is a producer since it has an integer
number N associated with it. The clause for projection is identical to the
previous case, except for the atom ProjT=(IntType:ProjT1) in the first
branch of the condition which becomes ProjT=((IntType,N):ProjT1).
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5. T = T1 op T2, where op ∈ {+, |, *}: the association between T1 op T2

and the projected type ProjT is recorded in the association Assoc along
with the current depth Depth, T1 and T2 are projected into ProjT1 and
ProjT2 respectively, with association equal to NewAssoc, depth of the type
under projection increased by one and depth of the deepest sequence opera-
tor equal to DeepestSeq. The result of the projection is ProjT=(ProjT1 op

ProjT2). For example, if op is +, the Prolog clause is:

project(Assoc, Depth, DeepestSeq, (T1+T2), ProjAgs, ProjT) :- !,

put assoc((T1+T2),Assoc,(ProjT,Depth),NewAssoc),

IncDepth is Depth+1,

project(NewAssoc, IncDepth, DeepestSeq, T1, ProjAgs, ProjT1),

project(NewAssoc, IncDepth, DeepestSeq, T2, ProjAgs, ProjT2),

ProjT=(ProjT1+ProjT2).

Types SOCKS P and AP3 P shown at the beginning of Section 4 have been
obtained by applying the projection algorithm to types SOCKS and ABP3 respec-
tively. The reason why they are not as compact as possible, which is mainly
evident in AP3 P, is that the projection algorithm does not implement a further
simplification step and hence some types which have been projected into lambda

could have been safely removed.
The result of the projection may be a type equivalent to lambda. For example,

if we project ABP to the set {eric}, no interaction involves it and the result is
(lambda|lambda)|lambda|lambda. Optimizing the algorithm to perform this
simplification step is a forthcoming improvement, easy to face in Prolog. On the
other hand, we have already observed that the projection may be the same as
the projected type. This happens for example if we project ABP to the set {bob},
which interacts with all the agents in the MAS.

Design time validation that centralized protocol behaves as expected. In SWI
Prolog we have implemented a mechanism for generating all the different traces
(sequences of interactions) with length N, where N can be set by the user, that
respect a given protocol. This mechanism is necessary during the design of the
protocol and allows the protocol designer to make an empirical assessment of
the conversations that will be recognized as valid ones during the runtime veri-
fication. We used this mechanism for validating the “centralized” protocols.

For example, Table 1 (left) shows one of the 16380 different traces with length
12 of the SOCKS protocol (for sake of presentation, we abbreviate right robot

in right r, right monitor in right m, left robot in left r, left monitor in
left m, msg in m, and we drop the tell performative from interactions). The
trace corresponds to an execution where the protocol reached a final state and no
other interactions could be accepted after the last one. In the output produced by
the SWI Prolog algorithm, this information is given by means of an asterisk after
the last interaction. Traces that are prefixes of longer (maybe infinite) ones have
no asterisk at their end. Table 1 (right) shows one of the 30713 different traces
with length 16 of the ABP3 protocol. Since the ABP3 is an infinite protocol, all
its traces are prefixes of infinite ones.
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Table 1. Traces of the SOCKS and ABP “centralized” protocols

SOCKS protocol ABP protocol

m(right r, right m, put sock)

m(left r, left m, put shoe)

m(left m, left r, oblige remove shoe)

m(left robot, left m, removed shoe)

m(right r, right m, put shoe)

m(right m, plan monitor, ok)

m(left robot, left m, put shoe)

m(left m, left r, oblige remove shoe)

m(left r, left m, removed shoe)

m(left r, left m, put sock)

m(left r, left m, put shoe)

m(left m, plan monitor, ok)

∗

msg(bob, alice, tell, m1)

msg(bob, carol, tell, m2)

msg(carol, bob, tell, a2)

msg(alice, bob, tell, a1)

msg(bob, dave, tell, m3)

msg(dave, bob, tell, a3)

msg(bob, alice, tell, m1)

msg(bob, carol, tell, m2)

msg(alice, bob, tell, a1)

msg(bob, dave, tell, m3)

msg(bob, alice, tell, m1)

msg(carol, bob, tell, a2)

msg(dave, bob, tell, a3)

msg(bob, carol, tell, m2)

msg(alice, bob, tell, a1)

msg(carol, bob, tell, a2)

By generating traces of different length and inspecting some of them, the pro-
tocol designer can get a clear picture of whether the protocol he/she designed
behaves in the expected way. Of course this manual inspection gives no guaran-
tees of the correctness of the protocol specification, but in our experience it was
enough to early detect flaws.

Design time validation that the projected protocol makes sense. This step was
devised for giving hints on whether the decentralized monitoring can ensure
global protocol compliance. In fact, although all well-formed deterministic and
contractive constrained global types can be projected, not all possible partitions
of a subset of all agents of the system to be verified allows a full distributed
monitoring of the protocol’s properties.

For example, in the case of the SOCKS protocol, deciding which were the
subsets of agents onto which projecting the global protocol in order to distribute
the monitoring activity was easy: interactions induce a graph connecting pairs of
agents that interact at some point, and in this case the graph is a tree as shown
in Figure 1. By projecting onto {left monitor} and allowing left monitor to
monitor its own interactions, we make a complete check of the left branch of
the tree. In the same way, by projecting onto {right monitor} and allowing
right monitor to monitor its own interactions, we make a complete check of
the right branch. Projecting onto {plan monitor} in this case would be useless,
as interactions with this agent are already checked by the left and right monitors
and the plan monitor does not perform further checks; in particular, it does not
check that messages from the left and right monitor arrive in some specific order.
However, projecting onto {plan monitor} would make sense if the MAS were a
“sub-MAS” of a larger system, where more couples of robots exist. In that case,
we might expect that each plan monitor would report the outcome of activities
of its couple of robots to an agent higher in the hierarchy. Interactions with this
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top-level agent should be monitored by the plan monitor (or vice-versa) and
should be transparent to the agents monitoring the robots.

In the MAS implementing the ABP3 protocol shown in Figure 2, things are
different due to the constraints in the fork. Although interactions induce a tree
like in the SOCKS case, projecting onto Alice, Carol and Dave and allowing
these three agents to check their own interactions would not be enough to verify
all the protocol’s constraints, as already observed in Section 4. The ABP3 cannot
be distributed, hence we need a centralized monitor (which might be an external
monitor or Bob himself, as it is involved in all the interactions) that “sniffs”
the interactions among all the agents and verifies their compliance to the ABP3.
None prevents us from projecting ABP3 also onto Alice, Carol and Dave and
asking them to monitor the part of the protocol where they are involved, but this
would be a useless redundancy, as Bob (or the external monitor) would already
verify their part.

In order to detect the fact that, for example, projecting the ABP3 onto Dave
gives no complete information on the protocol properties, we implemented an
empirical method based on a “generate and test” brute force algorithm, consist-
ing in generating all the traces of a given length of the projected protocol, and
verifying if they are compliant with the global protocol. This method works only
on finite traces; furthermore, while all detected positives are true, negatives may
be false.

For example, Table 2 (left) shows one of the 2 different traces with length
12 of the SOCKS protocol projected onto {right robot, right monitor}. All
the traces of length from 1 to 12 of the projected SOCK protocol are compliant
with the global one, hence our compliance algorithms answers “maybe”.

Table 2. Traces of projections of the SOCKS and ABP protocols

SOCKS protocol projected onto
{right robot, right monitor}

ABP3 protocol projected onto {dave}

m(right r, right m, put shoe)

m(right m, right r,

oblige remove shoe)

m(right r, right m,

removed shoe)

m(right r, right m, put shoe)

m(right m, right r,

oblige remove shoe)

m(right r, right m,

removed shoe)

m(right r, right m, put shoe)

m(right m, right r,

oblige remove shoe)

m(right r, right m,

removed shoe)

m(right r, right m, put sock)

m(right r, right m, put shoe)

m(right m, plan monitor, ok)

msg(bob, dave, tell, m3)

msg(dave, bob, tell, a3)

msg(bob, dave, tell, m3)

msg(dave, bob, tell, a3)

msg(bob, dave, tell, m3)

msg(dave, bob, tell, a3)

msg(bob, dave, tell, m3)

msg(dave, bob, tell, a3)

msg(bob, dave, tell, m3)

msg(dave, bob, tell, a3)

msg(bob, dave, tell, m3)

msg(dave, bob, tell, a3)

msg(bob, dave, tell, m3)

msg(dave, bob, tell, a3)

msg(bob, dave, tell, m3)

msg(dave, bob, tell, a3)



266 D. Ancona et al.

Table 2 (right) shows the only trace with length 16 of the ABP3 protocol
projected onto {dave}. This trace, as well as the shorter ones, is not compliant
with the global ABP3 protocol because it does not respect the constraint that
m3 must follow m1 and m2. The compliance algorithm answers “no”, meaning
that when projecting the ABP3 onto Dave we are no longer able to check the
verification of some constraints in the global protocol.

As we have seen in Section 2, tackling the compliance problem in a formal
way is a complex task, which can be faced following different approaches and
heavily depends on the formalism employed for specifying protocols. Despite
this interesting theoretical open problem, the compliance algorithm we have
developed has proved to work well in practice in the case studies we considered.

Runtime verification of actual interactions in Jason and JADE. In our previous
papers we discussed many experiments of the verification mechanism carried out
on both in Jason [3] and JADE [8]. Although those experiments did not deal
with projected types since projection had not been implemented yet, verifying
the compliance of a set of agents w.r.t. a constrained global type works in the
same way whether the type is a centralized or projected. In this paragraph we
limit ourselves to briefly discussing the “socks and shoes” MAS in Jason.

The MAS is represented in Figure 1. We projected the SOCKS constrained
global type shown in Section 3 onto the three sets of agents {left monitor},
{right monitor} and {plan monitor}. The three resulting constrained global
types are used by agents left monitor, right monitor and plan monitor re-
spectively. Each of these agents monitors all the messages that it either receives
or sends, using the “message sniffing” mechanism described in [3]. We run differ-
ent experiments by changing the actual messages sent by the agents in the MAS,
in order to obtain both correct and wrong executions. As an example, Figure 5
shows the output of an interaction where the right monitor sends a message
with content very good to the plan monitor, instead of the ok content foreseen
by the protocol. The plan monitor correctly detects a dynamic type checking
error (last lines of the messages in the screenshot).

Similar experiments have been carried out with JADE; the outcome of the
monitoring activity in both Jason and JADE were the expected ones, both in
case of correct and wrong executions.

6 Conclusions and Future Work

In this paper we have defined an algorithm for projecting a constrained global
type onto a set of agents Ags, to allow distributed dynamic verification of the
compliance of a MAS to a protocol. Besides describing the algorithm and its SWI
Prolog implementation, we have framed it into the context of a full monitoring
framework for agent systems, currently interfaced with Jason and JADE.

For what concerns future work, we are planning to extend the projection
algorithm in order to be able to properly deal with the more general notion of
attribute global type.
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Fig. 5. Projected SOCKS protocol in Jason: the right monitor violates the protocol

Also, we are investigating the possible ways to partition the set of agents for
projecting types, to minimize the number of monitors, while ensuring safety of
dynamic verification. In Section 2 we analyzed many different research areas,
looking for solutions to the problem and for formal demonstrations that the dis-
tribution of the protocol allows monitoring the same properties as the centralized
version, but even the works which seem closer to ours, namely those related with
global and session types, and with choreographies, cannot be directly adopted to
guarantee the correctness of the projection in our context, for four main reasons:

1. we may project on subsets of agents, if needed, and non necessarily onto
individual agents;

2. we project constrained global types into constrained global types, not into
“implementations”: the implementation of the agents is relevant neither for
the projection stage, nor for the monitoring one;

3. the expressive power of our formalism is different from other approaches:
a compliance analysis must take the specific features of the formalism into
account;
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4. all the proposals found in literature to solve the problem of checking the
correctness of projection, simply enforce syntactic restrictions on protocol
specifications (as done in Scribble), whereas we would like to come out with
a less restrictive approach.

While taking inspiration from these approaches will be extremely useful, we
will nevertheless need to develop a new approach, taking the features and the
intended use of our formalism into account.

Finally, in the examples considered in this paper, types are projected stati-
cally (that is, before the system is started) because we have assumed that agents
cannot move among nodes, but monitoring would be also possible in the pres-
ence of agent mobility, as described in the scenario outlined in the introduction.
However, in this case the implementation of a self-monitoring MAS is more chal-
lenging, because monitor agents have to dynamically project the global type in
reaction to any change involving the set of monitored agents. Tackling scenarios
of this kind is the final long term goal of our research.
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Abstract. Many practical problems where the environment is not in the system’s
control can be modelled in game-theoretic logics (e.g., ATL). But most work on
verification methods for such logics is restricted to finite state cases. De Giacomo,
Lespérance, and Pearce have proposed a situation calculus-based logical frame-
work for representing such infinite state game-type problems together with a ver-
ification method based on fixpoint approximates and regression. Here, we extend
this line of work. Firstly, we describe some case studies to evaluate the method.
We specify some example domains and show that the method does allow us to
verify various properties. We also find some examples where the method must
be extended to exploit information about the initial state and state constraints in
order to work. Secondly, we describe an evaluation-based Prolog implementation
of a version of the method for complete initial state theories with the closed world
assumption. It generates successive approximates and checks if they hold in the
situation of interest. We describe some preliminary experiments with this tool and
discuss its limitations.

1 Introduction

Many practical problems where the environment is not completely under the system’s
control, such as service orchestration, contingent planning, and multi-agent planning,
can be modeled as games and specified in game-theoretic logics. There has been much
work to define such logics (e.g., Alternating-Time Temporal Logic (ATL)) and develop
verification methods for them, mainly model checking techniques [1]. However, most
such work is restricted to finite state settings. De Giacomo, Lespérance, and Pearce
[8] (hereafter DLP) have developed an expressive logical framework for specifying
such problems within the situation calculus [16]. In their approach, a game-like prob-
lem/setting is represented as a situation calculus game structure, a special kind of action
theory that specifies who the players are, what the legal moves are, etc. They also de-
fine a logic that combines the μ-calculus, game-theoretic path quantifiers (as in ATL),
and first-order quantification, for specifying properties about such game settings. Ad-
ditionally, they propose a procedural language for defining game settings, GameGolog,
which is based on ConGolog [9]. Finally, they propose a method for verifying temporal
properties over infinite state game structures that is based on fixpoint approximates and
regression.

While DLP give examples to illustrate the expressiveness and convenience of their
formalism, they recognize that their work is essentially theoretical and call for experi-
mental studies to understand whether these techniques actually work in practice. This is
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what we begin to address in this paper. We develop several example problems involving
infinite state domains and represent them as situation calculus game structures. We then
examine whether the DLP fixpoint approximates verification method works to verify
common temporal properties. In many cases, it does indeed work. So to some extent,
our work validates the DLP proposal.

We do however find other examples where the DLP method does not converge in a
finite number of steps. We note that the method uses only the simplest part of the ac-
tion theory, the unique name and domain closure axioms, to try to show that successive
approximates are equivalent (after performing regression). Clearly, using the whole ac-
tion theory is problematic as it includes a second-order axiom to specify the domain of
situations. We show that in some cases, adding a few key facts that are entailed by the
entire theory (from simple axioms about the initial state to state constraints proven by
induction) is sufficient to get convergence in a finite number of steps. This means that
the method can be used successfully in a wider range of problems if we can rely on the
modeler to identify such facts. Thus, our case studies show that the kind of method pro-
posed by DLP (and related approaches like [5,6]) often does work for infinite domains,
where very few verification methods are available, and allows reasoning about a range
of game problems.

Note that in our case studies, the fixpoint approximation method was performed
manually. We also describe an evaluation-based Prolog implementation of a version
of the method for complete initial state theories with the closed world assumption. It
generates successive approximates and checks if they hold in the situation of interest.
We describe some experiments with this tool and discuss its limitations.

The paper is organized as follows. In the sext section, we review the situation cal-
culus and the DLP framework for representing infinite state game problems and their
verification method. In Section 3, we present our three case studies and discuss the re-
sults. In Section 4, we discuss our implementation of the method and how it handles the
problems in two of our case studies. In the last section, we review the contributions of
this work, discuss related work, and mention some issues for future work.

2 Situation Calculus Game Structures

The situation calculus (SitCalc) is a many-sorted predicate logic language for represent-
ing dynamically changing worlds in which all changes are the result of named actions
[16,18]. Actions are terms in the language, e.g., pickup(R,X) could represent an ac-
tion where a robot R picks up an object X . Action terms are denoted by α possibly with
subscripts to differentiate different action terms. Action variables are denoted by lower
case letters a possibly with subscripts. Action types, i.e., actions functions, which may
require parameters, are denoted by upper case letters A possibly with subscripts. Situa-
tions represent possible world histories and are terms in the language. The distinguished
constant S0 denotes the initial situation where no action has yet been performed. The
distinguished function symbol do is used to build sequences of actions such that do(a, s)
denotes the successor situation that results from performing action a in situation s. Flu-
ents are predicates or functions whose values may vary from situation to situation. They
are denoted by symbols that take a situation term as their last argument. A distinguished
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predicate symbol Poss(a, s) is used to state that an action a is physically possible (i.e.
executable) in a situation s.

Given this language, one can specify action theories that describe how the world
changes as the result of the available actions. We focus on basic action theories as
proposed in [18]. We assume that there is a finite number of action types in the domains
we consider. Thus, a basic action theoryD is the union of the following disjoint sets: the
foundational, domain independent axioms of the situation calculus (Σ); precondition
axioms stating when actions are executable (Dposs); successor state axioms describing
how fluents change between situations (Dssa); unique name axioms for actions and
domain closure on action types (Dca); and axioms describing the initial configuration
of the world (DS0). Successor state axioms specify the value of fluents in situation
do(a, s) in terms of the action a and the value of fluents in situation s; they encode the
causal laws of the world and provide a solution to the frame problem.

Situation calculus game structures, proposed by DLP, are a specialization of ba-
sic action theories that allow multi-agent game-like settings to be modeled. In SitCalc
game structures, every action a has an agent parameter and the distinguished function
agent(a) returns the agent of the action. Axioms for the agent function are specified
for every action type and by convention the agent parameter is the first argument of any
action type. It is assumed that there is a finite set Agents of agents who are denoted by
unique names. Actions are divided into two groups: choice actions and standard actions.
Choice actions model the decisions of agents and they are assumed to have no effect on
any fluent other than Poss, Legal, and Control. Standard actions are the other non-
choice actions. Choice actions are always physically possible, i.e., for all choice actions
a and situations s, Poss(a, s). DLP introduce a distinguished predicate Legal(s) that
is a stronger version of possibility/legality and models the game structure of interest. It
specifies what actions an agent may execute and what choices can be made according to
the rules of the game. The axioms provided for Legal specify the game of interest. It is
required that the axioms for Legal entail three properties: (1) Legal implies physically
possible (Poss), (2) legal situations are the result of an action performed in legal situ-
ations, and (3) only one agent can act in a legal situation, i.e., the game is a turn-taking
game. Control(agt, s) holds if agent agt is the one that is in control and can act in a
legal situation s; it is defined as follows:

Control(agt, s)
.
= ∃a.Legal(do(a, s)) ∧ agent(a) = agt.

As a result of the above constraints on Legal, it follows that the predicate Control
holds for only one agent in any given legal situation. As explained in DLP, games
where several agents act simultaneously can often be modeled using a round-robin
of choice actions. If the result of such simultaneous choices is non-deterministic, a
“game master” agent that makes the decision can be introduced. Note however that
the framework assumes that the agents all have complete information and that actions
are fully observable. Note also that the state of the game in situation s is captured
by the fluents. Finally, DLP define a SitCalc game structure to be an action theory
DGS = Σ ∪Dposs ∪Dssa ∪Dca ∪DS0 ∪Dlegal, where Dlegal contains the axioms for
Legal and Control and for the function agent(), and the other components are as for
standard basic action theories [18]. Note that here, a game structure is a type of situation
calculus theory and not a single game model as is often the case.
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DLP introduce a logical language L for expressing temporal properties of game
structures. It is inspired by ATL [1] and based on the μ-calculus [17], as used over
game structures as in [4]. The key element of the L-logic is the 〈〈G〉〉 © ϕ operator
defined as follows:

〈〈G〉〉 © ϕ
.
=

(∃agt ∈ G. Control(agt, now) ∧
∃a. agent(a) = agt ∧ Legal(do(a, now)) ∧ ϕ[do(a, now)]) ∨

(∃agt /∈ G. Control(agt, now) ∧
∀a. agent(a) = agt ∧ Legal(do(a, now)) ⊃ ϕ[do(a, now)])

This operator, in essence, specifies that a coalition G of agents can ensure that ϕ holds
next, i.e., after one more action, as follows. If an agent from the coalition G is in control
in the current situation, then all we need is that there be some legal action that this agent
can perform to make the formula ϕ hold. If the agent in control is not in coalition G,
then what we need is that regardless of the action taken by the in-control agent (for all)
the formula ϕ holds after the action. The whole logic L is defined as follows:

Ψ ::= ϕ | Z(x) | Ψ1 ∧ Ψ2 | Ψ1 ∨ Ψ2 | ∃x.Ψ | ∀x.Ψ |
〈〈G〉〉 © Ψ | [[G]]© Ψ | μZ(x).Ψ(Z(x)) | νZ(x).Ψ(Z(x)).

In the above, ϕ is an arbitrary, possibly open, situation-suppressed situation calculus
uniform formula, Z is a predicate variable of a given arity, 〈〈G〉〉 © Ψ is as defined
above, [[G]] © Ψ is the dual of 〈〈G〉〉 © Ψ (i.e., [[G]] © Ψ ≡ ¬〈〈G〉〉 © ¬Ψ 1), and
μ (resp. ν) is the least (resp. greatest) fixpoint operator from the μ-calculus, where
the argument is written as Ψ(Z(x)) to emphasize that Z(x) may occur free, i.e., not
quantified by μ or ν, in Ψ .

The language L allows one to express arbitrary temporal/dynamic properties. For
example, the property that group G can ensure that eventually ϕ(x) (or has a strategy
to achieve ϕ(x)), where ϕ(x) is a situation suppressed formula with free variables x,
may be expressed by the following least fixpoint construction:

〈〈G〉〉♦ϕ(x) .
= μZ(x). ϕ(x) ∨ 〈〈G〉〉 © Z(x)

Similarly, group G’s ability to maintain a property ϕ(x) can be expressed by the fol-
lowing greatest fixpoint construction:

〈〈G〉〉�ϕ(x)
.
= νZ(x).ϕ(x) ∧ 〈〈G〉〉 © Z(x)

We say that there is a path where ϕ(x) holds next if the set of all agents can ensure
that ϕ(x) holds next: ∃ © ϕ(x)

.
= 〈〈Agents〉〉 © ϕ(x). Similarly there is a path

where ϕ(x) eventually holds if the set of all agents has a strategy to achieve ϕ(x):
∃♦ϕ(x) .

= 〈〈Agents〉〉♦ϕ(x).
DLP propose a procedure based on regression and fixpoint approximation to verify

formulas of logic L given a SitCalc game structure theory. This recursive procedure

1 Although ¬〈〈G〉〉©¬Ψ is not in L according to the syntax, the equivalent formula in negation
normal form is.
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τ(Ψ) tries to compute a first-order formula uniform in current situation now that is
equivalent to Ψ :

τ(ϕ) = ϕ
τ(Z) = Z
τ(Ψ1 ∧ Ψ2) = τ(Ψ1) ∧ τ(Ψ2)
τ(Ψ1 ∨ Ψ2) = τ(Ψ1) ∨ τ(Ψ2)
τ(∃x.Ψ) = ∃x.τ(Ψ)
τ(∀x.Ψ) = ∀x.τ(Ψ)
τ(〈〈G〉〉 © Ψ) = R(〈〈G〉〉 © τ(Ψ))
τ([[G]]© Ψ) = ¬R(〈〈G〉〉 © τ(NNF(¬Ψ)))
τ(μZ.Ψ) = lfpZ.τ(Ψ)
τ(νZ.Ψ) = gfpZ.τ(Ψ)

In the above, R represents the regression operator and 〈〈G〉〉 © Ψ is regressable if
Ψ is regressable, NNF(¬Ψ) denotes the negation normal form of ¬Ψ , and lfpZ.Ψ and
gfpZ.Ψ are formulas resulting from the following least and greatest fixpoint procedures:

lfpZ.Ψ = gfpZ.Ψ =
R := False; R := True;
Rnew := Ψ(False); Rnew := Ψ(True);
while (Dca �|= R ≡ Rnew){ while (Dca �|= R ≡ Rnew){

R := Rnew ; R := Rnew ;
Rnew := Ψ(R) } Rnew := Ψ(R) }

The fixpoint procedures test if R ≡ Rnew is entailed given only the unique name and
domain closure for actions axioms Dca. In general, there is no guarantee that such
procedures will ever terminate i.e., that for some i Dca |= Ri ≡ Ri+1. But if the lfp
procedure does terminate, then DGS |= Ri[S] ≡ μZ.Ψ(Z)[S] and Ri is first-order and
uniform in now (and similarly for gfp ). In such cases, the task of verifying a fixpoint
formula in the situation calculus is reduced to that of verifying a first-order formula. We
have the following result:

Theorem 1. of DLP [8]: Let DGS be a situation calculus game structure and let Ψ
be an L-formula. If the algorithm above terminates, then DGS |= Ψ [S0] if and only if
DSo ∪Dca |= τ(Ψ)[S0].

3 Case Studies

3.1 Light World (LW)

Our first example domain is the Light World (LW), a simple game we designed that
involves an infinite row of lights, one for each integer. A light can be on or off. Each
light has a switch that can be flipped, which will turn the light on (resp., off) if it was
off (resp., on). There are 2 players, X and O. Players take turns and initially it is X’s
turn. The goal of player X is to have lights 1 and 2 on in which case player X wins the
game. Initially, lights 1 and 2 are known to be off and light 5 is known to be on. Note
that this is clearly an infinite state domain as the set of lights that can be turned on or off
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is infinite. Note also that the game may go on forever without the goal being reached
(e.g., if player O keeps turning light 1 or 2 off whenever X turns them on).

We will show that the DLP method can be used to verify some interesting proper-
ties in this domain. We apply the method with one small modification: when checking
whether the two successive approximates are equivalent, we use an axiomatization of
the integers DZ in addition to the unique names and domain closure axioms for actions
DLW

ca , as our game domain involves one light for every integer.2 The game structure
axiomatization for this domain is:

DLW
GS = Σ ∪ DLW

poss ∪DLW
ssa ∪ DLW

ca ∪ DLW
S0

∪DLW
Legal ∪ DZ .

We have only one action flip(p, t), meaning that player p flips light t, with the precon-
dition axiom (inDLW

poss): Poss(flip(p, t), s) ≡ Agent(p). We have the fluentsOn(t, s),
meaning that light t is on in situation s, and turn(s), a function that denotes the agent
whose turn it is in s. The successor state axioms (in DLW

ssa ) are as follows:

On(t, do(a, s)) ≡ ∃p a = flip(p, t) ∧ ¬On(t, s) ∨On(t, s) ∧ ∀p.a = flip(p, t)

turn(do(a, s)) = p ≡ p = O ∧ turn(s) = X ∨ p = X ∧ turn(s) = O

The rules of the game are specified using the Legal predicate. We have the following
axioms in DLW

legal:

Legal(do(a, s)) ≡ Legal(s) ∧ ∃p, t. Agent(p) ∧ turn(s) = p ∧ a = flip(p, t)

Control(p, s)
.
= ∃a.Legal(do(a, s)) ∧ agent(a) = p

agent(flip(p, t)) = p, ∀p.{Agent(p) ≡ (p = X ∨ p = O)}, X = O

Thus legal moves involve the player whose turn it is flipping any switch. We have the
following unique name and domain closure axioms for actions in DLW

ca :

∀a. { ∃p, t. a = flip(p, t)}
∀p, p′, t, t′. { flip(p, t) = flip(p′, t′) ⊃ p = p′ ∧ t = t′ }

Finally, the initial state axioms in DLW
S0

are: turn(S0) = X , ¬On(1, S0), ¬On(2, S0),
On(5, S0), and Legal(S0).

For our first verification example, we consider the property that it is possible for X
to eventually win assuming O cooperates, which can be represented by the following
formula:

∃♦Wins(X)
.
= μZ.Wins(X) ∨ ∃© Z,

where Wins(X, s)
.
= Legal(s) ∧ On(1, s) ∧ On(2, s). We apply the DLP method to

this example. We can show that the regressed approximations simplify as follows (see

2 Our axioms and the properties we attempt to verify only use a very simple part of integer
arithmetic. It should be possible to generate the proofs using the decidable theory of Pres-
burger arithmetic [11] after encoding integers as pairs of natural numbers in the standard way
[12]. Most theorem proving systems include sophisticated solvers for dealing with formulas
involving integer constraints and it should be possible to use these to perform the reasoning
about integers that we require.
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[14] for more detailed versions of all proofs in this paper):

DLW
ca |= R0(s)

.
= Wins(X, s) ∨R(∃ © False) ≡

Legal(s) ∧On(1, s) ∧On(2, s)
This approximation evaluates to true if s is such that X is winning in s already (in no
steps), i.e., if light 1 and light 2 are on in s.

DLW
ca ∪DZ |= R1(s)

.
= Wins(X, s) ∨R(∃©R0) ≡

Legal(s) ∧On(1, s) ∧On(2, s) ∨
Legal(s) ∧ (turn(s) = X ∨ turn(s) = O) ∧On(1, s) ∨
Legal(s) ∧ (turn(s) = X ∨ turn(s) = O) ∧On(2, s)

This approximation evaluates to true if s is such that X can win in at most 1 step; these
are legal situations where player X is already winning or where one of lights 1 or 2 is
on, as X or O can turn the other light on at the next step.

DLW
ca ∪DZ |= R2(s)

.
= Wins(X, s) ∨R(∃©R1) ≡

Legal(s) ∧On(1, s) ∧On(2, s) ∨
Legal(s) ∧ (turn(s) = X ∨ turn(s) = O)

This approximation evaluates to true if s is such that X can win in at most 2 steps; this
is the case if X is winning already or if s is any legal situation where it is X or O’s
turn, as the controlling player can turn light 1 on at the next step and the other player
can and light 2 on at the second step.

DLW
ca ∪DZ |= R3(s) ≡ Wins(X, s) ∨R(∃©R2) ≡

Legal(s) ∧On(1, s) ∧On(2, s) ∨
Legal(s) ∧ (turn(s) = X ∨ turn(s) = O)

The fixpoint iteration procedure converges at the 4th step as we have: DLW
ca ∪ DZ |=

R2(s) ≡ R3(s). Note that it can be shown using the entire theory (by induction on
situations) that DLW

GS |= R2(s) ≡ Legal(s), as it is always either X’s or O’s turn.
Thus, it is possible for X to eventually win in any legal situation. It then follows by
Theorem 1 of DLP that: DLW

GS |= ∃♦Wins(X)[S0] if and only if DLW
GS |= Legal(S0)∧

{On(1, S0)∧On(2, S0)∨turn(S0) = X∨turn(S0) = O}. By the initial state axioms,
the latter holds so DLW

GS |= ∃♦Wins(X)[S0], i.e., player X can eventually win in the
initial situation.

For our second example, we look at the property that X can ensure that he/she
eventually wins no matter what O does, i.e., the existence of a strategy that ensures
Wins(X). This can be represented by the following formula:

〈〈{X}〉〉♦Wins(X)
.
= μZ. Wins(X) ∨ 〈〈{X}〉〉 © Z

We apply the DLP method to try to verify this property. We can show that the regressed
approximations simplify as follows:

DLW
ca ∪ DZ |= R0(s)

.
= Wins(X, s) ∨R(〈〈{X}〉〉 © False) ≡

Legal(s) ∧On(1, s) ∧On(2, s)
This approximation evaluates to true if s is such that X is already winning in s (in no
steps); these are situations where lights 1 and 2 are already on.

DLW
ca ∪ DZ |= R1(s)

.
= Wins(X, s) ∨R(〈〈{X}〉〉 ©R0) ≡

Legal(s) ∧On(1, s) ∧On(2, s) ∨
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Legal(s) ∧ turn(s) = X ∧On(1, s) ∨
Legal(s) ∧ turn(s) = X ∧On(2, s)

This approximation evaluates to true if s is such that X can ensure it wins in at most 1
step. This holds if lights 1 and 2 are already on or if either light 1 or 2 is on and it is
X’s turn, as X can then turn the other light on at the next step.

The next approximate R2 simplifies to the same formula as R1 and DLW
ca ∪ DZ |=

R1(s) ≡ R2(s), so the fixpoint iteration procedure converges in the 3rd step. There-
fore by Theorem 1 of DLP: DLW

GS |= 〈〈{X}〉〉♦Wins(X)[S0] ≡ R1(S0) Since both
lights 1 and 2 are off initially, it follows by the initial state axioms that DLW

GS |=
¬〈〈{X}〉〉♦Wins(X)[S0], i.e., there is no winning strategy for X in S0. However,
we also have that DLW

GS |= 〈〈{X}〉〉♦Wins(X)[S1], where S1 = do(flip(O, 3),
do(flip(X, 1), S0)), i.e., X has a winning strategy in the situation S1 where X first
turned light 1 on and then O flipped light 3, as X can turn on light 2 next.

Note that when the fixpoint approximation method is able to show that a coalition
can ensure that a property holds eventually, the theory is complete, and we have domain
closure, we can always extract a strategy that the coalition can follow to achieve the
property: a strategy works if it always selects actions for the coalition that get it from
one approximate to a lower approximate (Ri to Ri−1).

3.2 Oil Lamp World (OLW)

The DLP method tries to detect convergence by checking if the i-th approximate is
equivalent to the (i+1)-th approximate using only the unique name and domain closure
axioms for actions Dca (to which we have added the axiomatization of the integers). We
now give an example where this method does not converge in a finite number of steps.
However, we also show that if we use some additional facts that are entailed by the
entire theory DOLW

GS , including the initial state axioms, when checking if successive
approximates are equivalent, then we do get convergence in a finite number of steps.

Consider the Oil Lamp World (OLW), a variant of the Light World (LW) domain
discussed earlier. It also involves an infinite row of lamps, one for each integer, which
can be on or off. A lamp has an igniter that can be flipped. When this happens, the lamp
will go on provided that the lamp immediately to the right is already on, i.e., flipping
the igniter for lamp t will turn it on if lamp t+1 is already on. There is only one agent,
X . The goal of X is to have lamp 1 on, in which case X wins. Observe that the game
may go on indefinitely without the goal being reached, e.g., if X keeps flipping a lamp
other than lamp 1 repeatedly.

The game structure axiomatization for this domain is: DOLW
GS = Σ ∪ DOLW

poss ∪
DOLW

ssa ∪ DOLW
ca ∪ DOLW

S0
∪ DOLW

Legal ∪ DZ . As in the previous example, we have only
one action, flip(p, t), meaning that p flips the igniter on light t, with the following
precondition axiom (in DOLW

poss ): Poss(flip(p, t), s) ≡ Agent(p). But there is no turn
taking in this game as there is only one agent X . We have the successor state axiom (in
DOLW

ssa ):

On(t, do(a, s)) ≡ ∃p a = flip(p, t) ∧On(t+ 1, s) ∨On(t, s).

Note that once a lamp is turned on it remains on. The axioms in DOLW
legal specifying the

rules of the game are similar to the ones given earlier for the Light World domain, and
include:
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Legal(do(a, s)) ≡ Legal(s) ∧ ∃p, t. Agent(p) ∧ a = flip(p, t).

Thus legal moves involve X flipping any igniter. The unique name and domain closure
axioms for actions and the initial state axioms are exactly as in the Light World example.

We are interested in verifying the property that it is possible for X to eventually win,
which is represented by the following formula:

∃♦Wins(X)
.
= μZ.{Wins(X) ∨ ∃© Z }

where Wins(X, s)
.
= Legal(s)∧On(1, s). We begin by applying the DLP method and

try to show that successive approximates are equivalent using only the unique name and
domain closure axioms for actions DOLW

ca and the axiomatization of the integers DZ .
We can show that the regressed approximations simplify as follows:

DOLW
ca ∪ DZ |= R0(s)

.
= Wins(X, s) ∨R(∃ © False) ≡ Legal(s) ∧On(1, s)

This approximation evaluates to true if s is such that X is already winning (in no steps);
these are situations where lamp 1 is on.

DOLW
ca ∪ DZ |= R1(s)

.
= Wins(X, s) ∨R(∃ ©R0) ≡

Legal(s) ∧ (On(1, s) ∨On(2, s))
This approximation evaluates to true if s is such that X can win in at most 1 step; these
are legal situations where either lamp 1 is on or where lamp 2 is on, and then X can
turn lamp 1 on at the next step.

DOLW
ca ∪ DZ |= R2(s)

.
= Wins(X, s) ∨R(∃ ©R1) ≡

Legal(s) ∧ (On(1, s) ∨On(2, s) ∨On(3, s))
This approximation evaluates to true if s is such that X can win in at most 2 steps; these
are legal situations where either lamp 1 is on, or where lamp 2 is on (and then X can
turn lamp 1 on at the next step), or where lamp 3 is on (and then X can turn on lamps 2
and 1 at the next steps).

We can generalize and show that for all natural numbers i,

DOLW
ca ∪DZ |= Ri ≡ Legal(s) ∧

∨

1≤j≤i+1

On(j, s).

That is, X can win in at most i steps if some lamp between 1 and i+ 1 is on. It follows
that for all i, DOLW

ca ∪ DZ |= Ri ≡ Ri+1, since one can always construct a model of
DOLW

ca ∪DZ where every light except i+2 is off. Thus, the plain DLP method fails to
converge in a finite number of steps.

Nonetheless, there is a way to strengthen the DLP method to get convergence in a
finite number of steps. The idea is to use some facts that are entailed by the entire theory
in addition to the unique name and domain closure axioms for actions DOLW

ca and the
integer axioms DZ . First, we can show by induction on situations that any lamp that is
on in the initial situation will remain on forever, i.e.,

DOLW
GS |= ∀k(On(k, S0) ⊃ ∀sOn(k, s)).

Then, it follows that for any natural numbers i, j, i ≤ j,

DOLW
ca ∪ DZ ∪ {On(i + 1, S0), ∀k(On(k, S0) ⊃ ∀sOn(k, s))} |= Rj ≡ Legal(s).
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In essence, X can eventually win in any legal situation where some lamp n is known to
be on. It follows that:

DOLW
ca ∪ DZ ∪ {On(i + 1, S0), ∀k(On(k, S0) ⊃ ∀sOn(k, s))} |= Ri ≡ Ri+1.

Thus, the method converges in a finite number of steps if we use the facts that some lamp
n is known to be on initially and that a lamp that is on initially remains on forever. More-
over, our initial state axioms include On(5, S0). Thus, DOLW

GS |= ∃♦Wins(X)[S0],
i.e., X can eventually win in the initial situation, as it is legal and lamp 5 is on.

We can also show by induction on situations that if all lamps are off initially, they
will remain so forever:

DOLW
GS \ DOLW

S0
|= (∀k ¬On(k, S0)) ⊃ (∀s∀k ¬On(k, s)).

Then, we can show by a similar argument as above that the fixpoint approximation
method converges in a finite number of steps if we use the facts that all lamp are off
initially and that if all lamps are off initially, they remain off forever.

3.3 In-Line Tic-Tac-Toe (TTT1D)

Our final example domain is more like a traditional game. It involves a one-dimensional
version of the well-known Tic-Tac-Toe game that is played on an infinite vector of
cells, one for each integer. We show that the DLP method does work to verify both
the possibility of winning and the existence of a winning strategy in this game, al-
though in the former case the proof is long and tedious. There are two players, X
and O, that take turns, with X playing first. All cells are initially blank, i.e., marked
B. Players can only put their mark at the left or right edge of the already marked
area. The functional fluent curn denotes the marking position on the left (negative)
side of the marked area and similarly curp denotes the marking position on the right
(positive) side of the marked area. Initially, curn refers to cell 0 and curp to cell 1.
Player p can put its mark in the cell on the left (negative) side of the marked area,
i.e., the cell referred to by curn, by doing the action markn(p). This also decreases
the value curn by 1 so that afterwards, it points to the next cell on the left. There
is an analogous action markp(p) for marking the cell on the right (positive) side of
the marked area denoted by curp. A player wins if it succeeds in putting its mark
in 3 consecutive cells. E.g., if initially we have the following sequence of moves:
[markp(X),markn(O),markp(X),markn(O),markp(X)], then in the resulting
situation the board is as follows:

. . . , B−3, B−2, O−1, O0, X1, X2, X3, B4, B5, . . .

(with the subscript indicating the cell number) and X wins. Note that the game may go
on indefinitely without either player winning, for instance if player O always mimics
the last move of player X .

The game structure axiomatization for this domain is: DT 31D
GS = Σ ∪ DT 31D

poss ∪
DT 31D

ssa ∪DT 31D
ca ∪DT 31D

S0
∪DT 31D

Legal ∪DZ . The precondition axioms (in DT 31D
poss ) state
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that the actions markn(p) and markp(p) are always possible if p is an agent. The
successor state axioms (in DLW

ssa ) are as follows:

curn(do(a, s)) = k ≡
∃p.{a = markn(p)} ∧ curn(s) = k + 1 ∨ curn(s) = k ∧ ∀p.{a = markn(p)}

curp(do(a, s)) = k ≡
∃p.{a = markp(p)} ∧ curp(s) = k − 1 ∨ curp(s) = k ∧ ∀p.{a = markn(p)}

cell(k, do(a, s)) = p ≡
a = markp(p) ∧ curp(s) = k ∨ a = markn(p) ∧ curn(s) = k ∨
cell(k, s) = p ∧ ¬∃p′.{a = markp(p′) ∧ curp(s) = k}

∧ ¬∃p′.{a = markn(p′) ∧ curn(s) = k}
turn(do(a, s)) = p ≡ agent(a) = X ∧ p = O ∧ turn(s) = X

∨ agent(a) = O ∧ p = X ∧ turn(s) = O

The rules of the game are specified (in DT 31D
legal ) as follows:

Legal(do(a, s)) ≡ Legal(s) ∧
∃p.{ turn(s) = p ∧ agent(a) = p ∧ (a = markn(p) ∨ a = markp(p)) }

Control(p, s)
.
= ∃a.Legal(do(a, s)) ∧ agent(a) = p

agent(markn(p)) = p, agent(markp(p)) = p
∀p. {Agent(p) ≡ (p = X ∨ p = O)}, X = O

The unique name and domain closure axioms for actions are specified in the usual
way. Finally, we have the following initial state axioms in DT 31D

S0
: curn(S0) = 0,

curp(S0) = 1, turn(S0) = X , and Legal(S0).
We first consider whether it is possible for X to eventually win ∃♦Wins(X), where

Wins(p, s)
.
= ∃k(Legal(s) ∧

((curn(s) = k − 2 ∧ cell(k − 1, s) = p ∧ cell(k, s) = p ∧ cell(k + 1, s) = p) ∨
(curp(s) = k + 2 ∧ cell(k + 1, s) = p ∧ cell(k, s) = p ∧ cell(k − 1, s) = p)))

(Note that this simple definition allows both players to win.) If we apply the original
DLP method to this property (using only the unique name and domain closure axioms
for actions DT 31D

ca and the axiomatization of the integersDZ to show that successive ap-
proximates are equivalent), the fixpoint approximation procedure does eventually con-
verge, but only after 11 steps. The proof is very long and tedious and there are numerous
cases to deal with. The reason for this is that we cannot use the fact that curn is always
less than curp and that the cells that are between them are non-blank and that the other
cells are blank; these state constraints are consequences of the initial state axioms and
successor state axioms. So our proof has to deal with numerous cases where there are
non-blank cells to the left of curn or to the right of curp (if we use these state con-
straints, the proof becomes much simpler). We omit the detailed proof (which appears
in [14]). But we have that:

DT 31D
ca ∪ DZ |= R10(s)

.
= Wins(X, s) ∨R(∃© R9) ≡ Legal(s)
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Thus, it is possible for X to win in at most 10 steps in all legal situations. Moreover
we have that DT 31D

ca ∪ DZ |= R10(s) ≡ R11(s), and thus the fixpoint approxima-
tion procedure converges in the 11th step. There are situations where it does take at
least 10 steps/moves for X to win, for instance if we have curp < curn with two
blank cells in between, i.e., ↑p BB ↑n, where ↑n represents the position of curn and
similarly for ↑p and curp, and it is O’s turn. The fact that curp < curn means that
the initial marks that are made will later be overwritten. It is straightforward to check
that it takes at least 10 moves for X to have 3 X’s in a row and win (O wins as well),
for instance if O keeps playing markn and X keeps playing markp. It follows from
our convergence result by Theorem 1 of DLP that: DT 31D

GS |= ∃♦Wins(X)[S0] ≡
R10(S0) ≡ Legal(S0). Since we have Legal(S0) in the initial state axioms, it follows
that DT 31D

GS |= ∃♦Wins(X)[S0], i.e., it is possible for X to win in the initial situation.
Finally, we consider the property that X can ensure that it eventually wins

〈〈{X}〉〉♦Wins(X). We can apply the original DLP method to this property (using
only the unique name and domain closure axioms for actions DT 31D

ca and the axiomati-
zation of the integers DZ to show that successive approximates are equivalent). We can
show that the regressed approximations simplify as follows:

DT 31D
ca ∪DZ |= R0(s)

.
=Wins(X, s)∨R(〈〈{X}〉〉©False) ≡ Wins(X, s)

DT 31D
ca ∪DZ |= R1(s)

.
= Wins(X, s) ∨R(〈〈{X}〉〉© R0)

≡ R0(s) ∨XCanP layToWinNext(s)
where XCanP layToWinNext(s)

.
= Legal(s) ∧ turn(s) = X ∧

(∃k.(curn(s) = k − 1 ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨
∃k.(cell(k − 2, s) = X ∧ cell(k − 1, s) = X ∧ curp(s) = k) ∨
∃k.(cell(k − 2, s) = X ∧ cell(k − 1, s) = X ∧ curn(s) = k ∧ curp(s) = k + 1) ∨
∃k.(curn(s) = k − 2 ∧ curp(s) = k − 1 ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨
∃k.(cell(k − 2, s) = X ∧ curn(s) = k − 1 ∧ cell(k, s) = X ∧ curp(s) = k + 1) ∨
∃k.(curn(s) = k − 2 ∧ cell(k − 1, s) = X) ∧ curp(s) = k ∧ cell(k + 1, s) = X))

This approximation evaluates to true if s is such that X can ensure to win in at most 1
step. These are legal situations where there are 3 X marks in a row on either side, i.e.
↑n XXX or XXX ↑p, or where it is X’s turn and there are 2 X marks already and
X can fill in the missing cell to get 3 in a row, i.e. ↑n XX or XX ↑p or ↑n↑p XX or
XX ↑n↑p or ↑n X ↑p X or X ↑nX ↑p.
DT 31D

ca ∪DZ |= R2(s)
.
= Wins(X, s) ∨R(〈〈{X}〉〉© R1) ≡

R1(s)∨ Legal(s)∧ turn(s) = O ∧
∃m.(curn(s) < m−2∧cell(m−2, s) = X∧cell(m−1, s) = X∧curp(s) = m)∧
∃n.(curn(s) = n− 1 ∧ cell(n, s) = X ∧ cell(n+ 1, s) = X ∧ n+ 1 < curp(s))

This approximation evaluates to true if s is such that X can ensure to win in at most
2 steps. These are legal situations where X can ensure to win in at most 1 step as
above, or where it is O’s turn and we have both XkX ↑p with ↑n< k and ↑n XXk

with ↑p> k; then if O plays markn then X can play markp to win afterwards, and
if O plays markp then X can play markn to win afterwards. The next approxima-
tion R3(s) simplifies to exactly the same formula as R2(s). Thus the procedure con-
verges in the 4th step as we have: DT 31D

GS ∪ DZ |= R2(s) ≡ R3(s). Therefore by
Theorem 1 of DLP: DT 31D

GS |= 〈〈{X}〉〉♦Wins(X)[S0] ≡ R2(S0). It follows by
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the initial state axioms that DT 31D
GS |= ¬〈〈{X}〉〉♦Wins(X)[S0] i.e., there is no win-

ning strategy for X in S0. But DT 31D
GS |= 〈〈{X}〉〉♦Wins(X)[S1], where S1 = do(

[markp(X),markn(O),markp(X),markn(O)], S0), i.e., there is a winning strategy
for X in a situation where X has marked twice on the right and O has marked twice
on the left. We have also developed two other examples of games played on an infinite
vector of cells to evaluate the DLP method; see [14] for details.

4 An Evaluation-Based Verification Tool

To further examine the feasibility of automating the DLP method, we have developed
an evaluation-based Prolog implementation of a version of the method for complete
initial state theories with the closed world assumption. The system can correctly verify
many properties in infinite state game structures. The method is completely automated,
unlike most theorem proving-based approaches. Here “evaluation-based” refers to the
use of evaluation instead of entailment to check state properties under the condition of
complete information (i.e., single model) and the closed-world assumption. The verifier
is domain-independent. One major limitation of the current prototype is that it does
not actually check for convergence of the fixpoint approximation, and thus may not
terminate when the DLP method does, as we discuss later.

Our verifier builds on the logic programming evaluator for situation calculus projec-
tion queries developed by Reiter [18] for complete initial state theories with the closed
world assumption. That approach uses a Prolog encoding of the domain’s basic action
theory as defined in [18]. For example, for the In-Line Tic-Tac-Toe domain, we have:

% Precondition Axioms
poss(markn(P),S) :- agent(P).
poss(markp(P),S) :- agent(P).
% Successor State Axioms
curn(K,do(A,S)) :- A=markn(_), curn(KX,S), K is KX - 1;

not(A=markn(_)), curn(K,S).
curp(K,do(A,S)) :- A=markp(_), curp(KX,S), K is KX + 1;

not(A=markp(_)), curp(K,S).
cell(K,M,do(A,S)) :- A=markp(M), curp(K,S); A=markn(M), curn(K,S);

(not(A=markn(M)); not(curn(K,S))),
(not(A=markp(M)); not(curp(K,S))), cell(K,M,S).

turn(P,do(A,S)) :- turn(x,S), P = o; turn(o,S), P = x.
legal(do(A,S)) :- turn(P,S), (A=markn(P) ; A=markp(P)), legal(S).
% Initial State Axioms
cell(_,b,s0). % all cells are initially blank
curn(0,s0). curp(1,s0). turn(x,s0). legal(s0).

One can evaluate projection queries using such a program, e.g., check whether
cell(2,b,do(markp(x),s0)), i.e., that cell 2 is still blank after agent X marks
right in the initial situation. The program works essentially by regressing the query to
the initial situation and evaluating it against the initial state axioms. Regression involves
replacing fluent atoms by the instantiated right-hand side of their successor state axiom,
thus transforming a query about a situation into an equivalent one about the previous
situation. For example, cell(2,b,do(markp(x),s0)) is regressed into
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markp(x)=markp(b), curp(2,s0);
markp(x)=markn(b), curn(2,s0);
(not(markp(x)=markn(b)); not(curn(2,s0))),
(not(markp(x)=markp(b)); not(curp(2,s0))), cell(2,b,s0)

which succeeds because the last disjunct holds according to the encoded initial state
axioms and the unique name assumption.

Reiter [18] shows how to define an evaluator for a rich set of first-order queries on
top of such an encoding of the basic action theory. Here is some of the evaluator code:

holds(P & Q,S) :-!, holds(P,S), holds(Q,S). % conjunction
holds(P v Q,S) :-!, (holds(P,S); holds(Q,S)). % disjunction
holds(some(V,P),S) :-!, subst(V,_,P,P1), holds(P1,S). %existential
% handled by replacing the variable by a fresh Prolog variable
holds(all(V,P),S) :-!, holds(-some(V,-P),S). % universal
...
% handling negation
holds(-P,S) :- ll_atom(P), !, not(holds(P,S)).
holds(-(-P),S) :- !, holds(P,S).
holds(-(P & Q),S) :- !, holds(-P v -Q,S).
holds(-(P v Q),S) :- !, holds(-P & -Q,S).
...
holds(-all(V,P),S) :- !, holds(some(V,-P),S).
holds(-P,S) :- not(holds(P,S)).
% handling atoms
holds(Pred,S) :- restoreSitArg(Pred,S,PredEx), !, PredEx.

The evaluator recursively evaluates the arguments of conjunctions and disjunctions. Ex-
istential quantification is left for Prolog to handle. Universal quantification is rewritten
using negation and existential quantification. Negation is distributed over conjunction
and disjunction. Finally, atomic fluents are regressed and evaluated using the Prolog
encoding of the basic action theory.

Our verifier checks if a given temporal property expressed in the L-Logic holds for a
given situation. It is defined by extending Reiter’s evaluator. We handle the key temporal
operator 〈〈G〉〉©Ψ [S] essentially by translating it into its situation calculus definition,
and then checking the result in the usual way using a combination of regression and
evaluation:

holds(canEnsureNext(G,F),S) :- !, (
incontrol(G,S), holds(exists_successor(G,F),S);
incontrol(-G,S), holds(forall_successors2(-G,F),S)).

holds(exists_successor(G,F),S) :- !, member(P,G),
agent_action(P, A), S1=do(A,S), legal(S1), holds(F,S1), !.

holds(forall_successors2(-G,F),S) :- !,
not(holds(exists_successor2(-G,-F),S)).

holds(exists_successor2(-G,F),S) :- !, agent(P), not(member(P,G)),
agent_action(P, A), S1=do(A,S), legal(S1), holds(F,S1), !.

The [[G]]© Ψ [S] case is handled as ¬〈〈G〉〉 © ¬Ψ [S].
The μ and ν operators are handled by generating successive fixpoint approximates

Ri as in the DLP method, except that we bound the number of approximates generated
and we do not check for convergence, we simply check if the successive approximates
hold in the situation of interest S:
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holds(mu(z,F),S) :- !, mu_approx(z,F,false,1,S).
holds(nu(z,F),S) :- !, mu_approx(z,F,true,1,S).
mu_approx(Z,F,Int,N,S) :- binding_diameter(Max), N>Max, !,

write(’binding diameter ’), write(N),
write(’ reached - stop’), nl, !, fail.

mu_approx(Z,F,Int,N,S) :- subst(Z,Int,F,Fx), holds(Fx,S), !,
output1(N,Fx).

mu_approx(Z,F,Int,N,S) :- M is N+1, subst(Z,Int,F,Int2), !,
mu_approx(Z,F,Int2,M,S).

By not checking for convergence, i.e. whether D |= Ri+1 ≡ Ri, we avoid the need
for complex logical reasoning requiring theorem proving techniques. The downside is
that the verifier will never terminate on μZ.Ψ queries that are false even if the fixpoint
approximation converges, as it does not detect this. To ensure termination, the user may
impose a bound on the number of approximates that are generated and evaluated. The
idea is similar to the binding diameter concept in bounded model checking [3]. In some
cases, the bound can be a number of moves that is reasonable in the game modeled. The
formula 〈〈G〉〉♦Ψ is defined in terms of the μ operator as μZ.Ψ ∨ 〈〈G〉〉 © Z:

holds(canEnsureEventually(G,F),S):-
!,holds(mu(z,F v canEnsureNext(G,z)),S).

For this, our verifier generates fixpoint approximates and evaluates them in the given
situation S, stopping as soon as one of the approximates evaluates to true:

let R0 := Ψ ∨ 〈〈G〉〉 © False and evaluate R0[S]; if it succeeds, return success;
else let R1 := Ψ ∨ 〈〈G〉〉 ©R0 and evaluate R1[S]; if it succeeds, return success;
. . .
else let Rlimit := Ψ ∨ 〈〈G〉〉 © Rlimit−1 and evaluate Rlimit[S]; if it succeeds,
return success;
else return failure.

We have tested our verifier on some of our infinite state game structure examples.
On the In-Line Tic-Tac-Toe domain, the verifier can confirm that both agents can coop-
erate to ensure that X wins (in 5 steps) in the initial situation, i.e., the following query
succeeds after generating and evaluating 6 approximates:

?- holds(canEnsureEventually([x,o],wins(x)),s0).
trying ##### approximation 1 ---> wins(x) v next([x, o], false)
[...]
trying ##### approximation 6 ---> wins(x) v

next([x, o], wins(x) v
next([x, o], wins(x) v

next([x, o], wins(x) v
next([x, o], wins(x) v

next([x, o], wins(x) v next([x, o], false))))))
[...]
> successor EXISTS for G --->

next([x, o], wins(x) v next([x, o], false)) ---> for
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do(markn(o), do(markp(x), do(markn(o), do(markn(x), s0))))
[...]
> ##### approximation 6 holds --->
[...]
wins(x) v

next([x, o], wins(x) v
next([x, o], wins(x) v

next([x, o], wins(x) v
next([x, o], wins(x) v

next([x, o], wins(x) v next([x, o], false))))))
yes

As part of doing the verification, the system finds a sequence of actions by the two
cooperating agents that allows X to win.

The verifier can also confirm that agent X can ensure that it wins (in 1 step) in the
situation do(markn(o), do(markp(x), do(markn(o), do(markp(x), s0)))), whereX
has already put 2 marks on the right and O had already put 2 marks on the left. How-
ever, if we try to check if X can ensure that it wins in the situation do(markp(x),
do(markn(o), do(markp(x), s0))), where X has already put 2 marks on the right and
O had already put 1 mark on the left, the verifier cannot confirm that the query is in fact
false; it keeps generating successive approximates and eventually gives up after reach-
ing the binding diameter. The problem is that O can always prevent X from winning at
the next step and the verifier is not checking whether it has converged to a fixpoint in
the approximation.

We have also tested our verifier on the Light World domain. This is more challeng-
ing because there are infinitely many legal actions at every state, as any switch can be
flipped. The verifier succeeds in confirming that X can ensure that it wins in the situ-
ation where it flipped light 2 on initially and then O flipped light 4 on, as X can win
in one step by flipping light 1 on next. But it cannot confirm that the two agents can
cooperate to ensure that X eventually wins in the initial situation S0. The problem is
that this requires two steps (where X first flips light 1 or 2 on and then O flips the other
one on) and there is an infinite number of flipping actions that can be performed at the
first step, all of which must be considered before concluding that X cannot win in one
step in S0. If we bound the set of switches that are considered (e.g., only allow flipping
the first 10 switches), then the verifier will be able to successfully verify that the query
holds. It first establishes that X cannot win in one step (e.g., by flipping any of the 10
available switches) and then succeeds in finding a sequence of two actions that allows
X to win. However, bounding the set of switches essentially makes the game finite state
and changes what temporal properties hold. A better approach would be to modify the
game to allow the set of switches considered to be progressively expanded, perhaps by
a neutral agent. The important thing is to allow more actions/branches in a state only as
longer sequences of actions are considered.

Additionally, the verifier cannot show that X cannot ensure that it eventually wins in
the situation where it has already flipped light 2 on (as O can flip it off next and continue
undoing any progress that X makes towards the goal). The verifier succeeds in showing
that O can prevent X from winning at the next step (O can flip any switch except 1). It
then generates the third approximate and tries to show that X can win in one step after
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every action that O makes next. If we bound the set of switches that are considered,
the verifier can confirm that X cannot win in two steps as O can flip light 2 off next.
The verifier keeps generating and evaluating successive approximates and eventually
gives up after reaching the binding diameter. It does not check whether successive ap-
proximates are equivalent, and thus fails to detect that the fixpoint approximation has
converged after generating the fourth approximate.

We have also tested our verifier on a formalization of the standard 2D Tic-Tac-Toe
game (used as an example in [8]), a finite state domain. In this case the verifier can
do a complete search and correctly answers queries about the existence of a winning
strategy. For example, it can confirm that X cannot ensure that it eventually wins in
the initial situation with a blank board; it can also confirm that X can ensure that it
eventually wins in a situation where X has marked the center square and O has then
marked a non-corner square.

To summarize, in finite state domains the verifier correctly answers queries as it can
do a complete search. In infinite state domains, our verifier can often show that least fix-
point queries are true but cannot show that least fixpoint queries are false (and greatest
fixpoint queries are true), because it does not check whether successive approximates
are equivalent. We hope to address this in future work.

In many cases, we would like to verify properties assuming that agents are following
certain strategies, or have certain strategic preferences. For example, in standard 2D Tic-
Tac-Toe, one might know that a player always tries to mark corners first. This would
allow modelling more realistic types of agents. It can also cut down significantly on
the number of alternative actions that must be considered and speed up verification.
Knowing that the opponent follows certain strategic preferences may provide the player
with a way to ensure it eventually wins when it could not otherwise.

We have extended the DLP formalization to support this. There are many ways to
model strategic preferences. A simple approach is to assume that the modeler defines a
predicate Preferred(p, a, s) that holds if and only if action a is a preferred action for
player p in situation s. Note that there may be several alternative preferred actions in a
situation. Other specifications of strategic preferences can be mapped to this form.

It is straightforward to modify the logic to only consider paths where all players
select actions according to their preferences. We change the semantics of the 〈〈G〉〉©Ψ
operator as follows. If a player in G is in control in the current situation, Ψ must hold
after some preferred action for him if there is one; if there is no preferred action, Ψ
must hold after some legal action. If a player not in G is in control, Ψ must hold after
all preferred actions for him if there is some preferred action, and after all legal actions
if there is none. This means that Preferred (p, a, s) represents soft constraints. If there
are no preferred actions in a situation, we revert to considering all legal actions. Our
implementation supports this type of specification of player action preferences and we
have tested it on some standard 2D Tic-Tac-Toe examples.

Our verifier also supports the use of the GameGolog language proposed in DLP to
specify the game structure procedurally. See [14] for more details. The current prototype
implemented in SWI Prolog (www.swi-prolog.org), together with some exam-
ples, is available at www.cse.yorku.ca/∼skmiec/SCGSverifier/. We be-
lieve that our verifier implementation is sound (assuming a “proper” Prolog
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interpreter is used, i.e., one that flounders on negative queries with free variables). It
is not complete, in part for the same reasons that Prolog is not a complete reasoner for
first order logic. We leave the proof of soundness for future work.

5 Discussion and Related and Future Work

In this paper, we described the results of some case studies to evaluate whether the
DLP verification method actually works. We developed various infinite state game-type
domains and applied the method to them. Our example domains are rather simple, but
have features present in practical examples (e.g., the T 31D domain is 1D version of Tic-
Tac-Toe on an infinite board). Our experiments do confirm that the method does work
on several non-trivial verification problems with infinite state space. We also identify
some examples where the method, which only uses the simplest part of the domain
theory, the unique names and domain closure for action axioms, fails to converge in a
finite number of steps. We show that in some of these cases, extending the method to use
some selected facts about the initial situation and some state constraints does allow us to
get convergence in a finite number of steps. Our example domains and properties should
be useful for evaluating other approaches to infinite state verification and synthesis.

We also described an evaluation-based Prolog implementation of a version of the
DLP method for complete initial state theories with the closed world assumption. It
generates successive approximates and checks if they hold in the situation of interest,
but does not check if the sequence of approximates converges. Our verifier is fully auto-
matic, unlike most theorem proving-based tools. We have also extended the framework
to allow agents’ strategic preferences to be represented and used in verification. See [14]
for more details about our verification experiments, proofs, and implemented verifier.

Among related work that deals with verification in infinite-states domains, let us
mention [5,6], which also uses methods based on fixpoint approximation. There, char-
acteristic graphs are introduced to finitely represent the possible configurations that a
Golog program representing a multi-agent interaction may visit. Their specification lan-
guage is rich modal variant of the situation calculus with first and second order quanti-
fiers, temporal operators and path quantifiers as in CTL∗, and dynamic logic operators
labeled with Golog programs. However, the language does not include fixpoint opera-
tors or alternating-time quantifiers, and is not a game structure logic. In their verification
procedure, like DLP, they check for convergence using only the unique name axioms
for actions part of the action theory. Also closely related is [19], which uses a fixpoint
approximation method to compose a target process expressed as a ConGolog program
out of a library of available ConGolog programs. Earlier, [13] proposed a fixpoint ap-
proximation method to verify a class of temporal properties in the situation calculus,
called property persistence formulas. [20] shows how a theorem proving tool can be
used to verify properties of multi-agent systems specified in ConGolog and an extended
situation calculus with mental states. A leading example of a symbolic model checker
for multi-agent systems is MCMAS [15]. [2] shows that model checking of an expres-
sive temporal language on infinite state systems is decidable if the active domain in
all states remains bounded. As well, [10] shows that verification of temporal properties
in bounded situation calculus theories where there is a bound on the number of fluent
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atoms that are true in any situation is decidable. [7] identifies an interesting class of
Golog programs and action theories for which verification is decidable.

In future work, we would like to further develop our evaluation-based verifier. We
plan to extend it to perform limited symbolic reasoning to detect if successive approxi-
mates are equivalent. We will also do more experimental evaluation. We would also like
to implement an open-world symbolic version of the DLP method, perhaps by writing
proof tactics in a theorem proving environment. It would also be desirable to develop
techniques for identifying initial state properties and state constraints that can be used
to show finite convergence in cases where these are needed. More generally, we need a
better characterization of when this kind of method can be used successfully. The DLP
framework assumes that only one agent can act in any situation, and that all agents
have complete knowledge of the situation and that actions are fully observable. As a
first step, it would be interesting to extend it to support synchronous moves by mul-
tiple agents. Going further, the framework should be generalized to deal with private
knowledge and partial observability. Finally, the approach should be evaluated on real
practical problems.
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Abstract. Side effects are an important characteristic of MAS, and
proving them is an interesting issue. They often can be expressed as
liveness properties. But there is no system dedicated to this kind of
proof. The GDT4MAS framework allows to specify and prove the cor-
rectness of multiagent systems. This framework is mainly dedicated to
prove safety properties about the system and to prove that agents achieve
their goal(s). However, there is no proof principle to prove that agents
satisfy liveness properties that are not part of their goal(s). In this arti-
cle, we propose a proof mechanism that addresses this kind of problem:
we show how we can add to GDT4MAS a proof mechanism adapted to
prove leads-to properties, a subclass of liveness properties.

1 Introduction

During the execution of a MAS, unexpected system properties are often ob-
served. These properties can either be useful (they can be for example called
emergent properties) or harmful. In both cases, it may be interesting to prove
that such properties will eventually happen in order to understand how they
happen. However, to our knowledge, there is no system suitable to prove such
properties.

Proving the correctness of multiagent systems is a hard problem that has
been tackled for several years. Most of the works on the subject have established
that a new formal specification and proof system, dedicated to multiagent sys-
tems, should be developed. Among them, GDT4MAS [1] proposes interesting
characteristics. Especially, the proof obligation generation process is fully au-
tomatisable and it can be applied to very large systems, essentially because it
relies on theorem proving and first-order logic rather than on model-checking
and propositional logic.

However, if this system is well-suited to prove invariant properties (also called
safety properties) and to guarantee that agents satisfy their main goal, it does
not propose any proof system to guarantee that an agent establishes liveness
properties that are not part of its main goal, which is necessary when considering
side effects.

So, in this article, we propose to add a new proof system to GDT4MAS
dedicated to the verification of a well-known kind of liveness properties: leads-to
properties.
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Of course, there are techniques to verify leads-to properties in distributed
systems [2,3,4], but these techniques are dedicated to systems where all the
processes are globally taken into account for each proof that must be performed.

Most of these techniques are dedicated to systems where processes work on
independant variables, and synchronize occasionnaly to exchange information
(This for instance the case of the π-calculus [4]).

On the contrary, in a method such as TLA+ [3], shared variables can be
specified, but the proof process requires to consider, for each step of the system
trace, all the actions that may be considered. This is not suitable for multi-
agents systems, because the number of possible actions is very large and thus,
the property to prove would be to complicated to be performed by an automatic
(or human) prover.

To perform efficient proofs on multi-agents systems, a compositional proof
system is required. This is the case of the GDT4MAS proof system, and this
is a property we require for a proof system dedicated to leads-to properties in
multi-agents systems.

In the next section, we briefly introduce the notion of liveness property. In sec-
tion 3, we recall the main concepts of the GDT4MAS framework. The new proof
system we propose is described in section 4, and its application is examplified in
section 5. Finally, a comparison with other works is proposed in section 6.

2 Invariant and Liveness Properties

When dealing with formal verification of software, many kinds of properties may
be considered. In this section, we present two kinds of them: invariant properties
and liveness properties.

2.1 Invariant Properties

Invariant properties specify a set of states the system must satisfy at every
moment. They are often presented as properties specifying that “nothing bad
happens”. Theses properties are mainly safety properties. Indeed, when specify-
ing safety critical systems (as, for instance, a train control system), a first critial
step is to verify that the system does not reach an unsafe state. In a formal
verification system such as the B method, used by corporates developing safety
critical systems, this kind of property is the only one that is formally proven.

Using temporal logic, an invariant property IP is specified as:

�(IP )

However, a system doing nothing may trivially verify such invariant properties.
Indeed, these properties do not specify anything about the task of the system.

2.2 Liveness Properties

Contrary to invariant properties, liveness properties specify how the system
should modify its state. They are often presented as properties specifying that



Side Effects of Agents Are Not Just Random 293

“something good will happen”. There are many kinds of liveness properties. Here
are a small presentation of some of them. More details can be found for instance
in [2,3].

– One-day: a given property OD will eventually become true:

♦(OD)

– Leads-to: a given property LT will eventually become true every time an-
other property P is true:

�(P → ♦LT )

– Until: a given property UP remains true until another property becomes
true (and P will eventually become true):

�(UP → (�(UP ∨ P ) ∧ ♦P )

In the rest of this article, we will only consider leads-to properties. Indeed, a one-
day property is a subtype of a leads-to property (with P � true and LT � OD),
and an until property is also a special kind of leads-to property.

3 The GDT4MAS Framework and the GDT Model

3.1 Main Concepts

In the GDT4MAS framework, the MAS is described by an environment, mainly
specified by variables, an invariant (denoted iE in the sequel) and a population
of agents evolving in this environment. Each agent is described as an instance
of an agent type. As a consequence, in the following, after a short description
of the notations we use, the notions of agent type and of agent behaviour are
described.

3.2 Notation

Notation 1 (primed and unprimed variable)
When the value of a variable v in two execution states is considered, the value
of v in the first state, called the current state, is written v, and its value in the
second state is written v′. For instance, the action consisting in increasing the
value of v by 1 is specified by the postcondition v′ = v + 1.

3.3 Agent Type Specification

Simplified Definition 2 (Agent Type) An agent type t is mainly described
by a name (namet), a set of variables (V arIt), an invariant (iA), and a be-
haviour (bt) defined by a GDT.
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Definition 3 (Goal Decomposition Tree (GDT)). A Goal Decomposition
Tree describes the behaviour of the agents of a given type. Each node of this tree
is a GDT goal. The tree structure is defined thanks to the decomposition of each
GDT goal into subgoals using decomposition operators. A predicate called Trig-
gering Context (TC) is associated to each GDT: an agent begins the execution
of its behaviour every time its TC is true.

Simplified Definition 4 (GDT goal) A GDT goal g is described by a name
(nameg), a satisfaction condition (scg), a gpf (gpfg), a decomposition or an
action and an ns flag (nsg). The satisfaction condition is a predicate specifying
the property the goal must establish when it succeeds, whereas the gpf (Guaranted
Property in case of Failure) is a predicate specifying the property the goal must
establish when its execution fails. The ns flag specifies whether the goal always
succeeds (Necessarily Satsfiable or NS) or not (NNS).

Please notice that when the execution of a node fails, the invariant must still
remain true. The failure of a node represents the fact that, in a real world, an
agent is not always guaranted to succeed in realizing a task dealing with the
environment. For instance, a robot that must move its arm may be blocked by
an object, or its arm may be rusty, reducing the amplitude of its move. However,
even when the execution of a goal fails, the invariant must be preserved, because
the safety of the system must still be ensured.

Simplified Definition 5 (Action) Anaction α is specified by a name (nameα),
a precondition (preα), a postcondition (postα), an ns flag (nsα) and a gpf (gpfα).
The precondition is a predicate specifying when the action is enabled, the postcon-
dition specifies what that action does (x′ = x − 1 for instance expresses that the
action decreases the value of x by 1), the ns flag has the value NS if the action is
guaranteed to always succeed, and NNS if the action may fail. The gpf is a predicate
specifying what is however guaranteed to be true if the action fails.

Definition 6 (Goal decomposition). A GDT goal is either a leaf goal or an
intermediate goal. An action is attached to a leaf goal, whereas an intermediate
goal is decomposed into several subgoals, thanks to a decomposition operator. A
list of decomposition operators can be found in [5].

Among others, we can introduce the following decomposition operators:

– SeqOr: Sequential Or. It decomposes the parent goalN into several subgoals
Ni. Subgoals are executed from the left to the right. If the considered subgoal
succeeds, N is achieved and the execution of the decomposition ends. But
if it fails, the next subgoal is considered. If the last subgoal is executed and
fails, the satisfaction condition of N must be evaluated to know if N is
however achieved or not.

– SeqAnd: Sequential And. It decomposes the parent goal N into several sub-
goals Ni. Subgoals are executed from the left to the right. If the considered
subgoal succeeds, the next one is executed. If the last subgoal is executed
and succeeds, N is achieved. But if a subgoal fails, the satisfaction condition
of N must be evaluated to determine whether N is achieved or not.
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– SyncSeqOr and SyncSeqAnd: These operators are similar to the SeqOr
and SeqAnd operator, but a subset of environment variables can be locked
during the whole execution of the parent goal decomposition.

An example of GDT is given in figure 1. In this figure, goals are described
by their satisfaction condition. Moreover, NS goals are surrounded by a double
ellipse. In satisfaction conditions, x and x′ respectively represent the value of
the variable x before and after the goal execution.

Fig. 1. Simple GDT

3.4 Proof System: General Principles

The proof system for GDT4MAS relies on Proof Schemas (PS). Applying a proof
schema generates Proof Obligations (PO), that may be proven by an automatic
prover, such as PVS [6]. At the moment, PS allow us to prove several kinds of
properties. We first prove invariants at the agent-type level and at the system-
level. Moreover, the proof system of the method verifies that goal decompositions
are valid. Most PS rely on goal contexts. These contexts are computed automat-
ically starting from the root goal. Intuitively, the context CG of a goal G is a
predicate summarizing the state in which goal G will be executed.

3.5 Notations

In this section, we present two notations of GDT4MAS that will be used in the
sequel.

Notation 7 (Priming) Let f be a predicate/expression. If f contains at least
one primed variable, then pr(f) = f . Otherwise, pr(f) is the predicate/expression
derived from f where each unsubscripted variable is primed.

Examples: pr((x = x0)) ≡ (x′ = x0) and pr((x = x′)) ≡ (x = x′).

Notation 8 (Invariant) Let A an agent situated in an environment E. We
write:

– iA the invariant regarding variables of the agent;
– iE the invariant associated to the environment variables;
– iEA the conjunction of iA and iE .
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4 A New Proof Mechanism Dedicated to Leads-to
Properties

This section presents the proof mechanism we propose to verify that some leads-
to properties are established by an agent. Here, we only consider leads-to prop-
erties that are associated to an agent; no other agent is required to establish this
property.

In this section, we consider a leads-to property L defined so:

L ≡ �(PL → ♦QL)

A classical way to establish that a leads-to property is verified by a specifica-
tion consists in associating a variant and a witness to this property [2].

Informally, a variant expresses the progress towards the establishment of QL.
If it is proven that an agent makes a variant decrease and that when this variant
reaches its lower bound,QL is established, then the leads-to property L is proven.
A witness is a property that represents the fact that PL has been true, and thus,
that QL must be established. In this article we propose to adapt this mechanism
to verify leads-to properties of agents.

4.1 Definitions and Notations

We begin by a formal definition of a variant:

Definition 9 (Variant). A variant is a decreasing sequence defined in a well-
founded structure.

Of course, this definition requires to define what a well-founded stucture is.

Definition 10 (Well-founded Structure). A well-founded structure (S,<)
is a set S with an order relation < such that every decreasing sequence in S has
a lower bound. For instance, (N, <) is a well-founded structure.

Corollary 11 A variant has a lower bound. We write V0L the lower bound of a
variant VL.

In this article, we will only consider variants defined on (N, <). This property
must be added to the invariant of the agent.

Definition 12 (Witness). Let L ≡ �(PL → ♦QL) a leads-to property. A wit-
ness is a property that must be true when PL is true, and remains true until QL

is true.

Notation 13 (Variant and Witness) Let L a leads-to property associated to
an agent A. We write:

– VL the variant we associate to L to prove it;
– V0L the lower bound of the variant VL;
– WL the witness we associate to L to prove it.
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4.2 Sketch of the Proof Process

Thanks to the variant and witness we associate to a leads-to property, proving
that an agent establishes a leads-to property L consists in proving that:

1. The chosen variant is a variant:

– when it has reached its lower bound, QL is established;
– once PL has been true and untilQL becomes true, the agent must execute

its gdt.
– there is no other agent that increases the variant;

2. The chosen witness is a witness;

– it is true when PL is true;
– when WL is true, it remains true until QL becomes true.

3. The agent progresses: when the agent executes its gdt, it makes the variant
decrease or it establishes QL.

In the next parts of this section, we detail each of these steps.

4.3 The Chosen Variant Is... a Variant!

To prove that VL is a variant, we have to prove that, when it has reached its
lower bound, the desired property is satisfied. So, we have to add the following
proof obligation:

iEA ∧ (VL = V0L) → QL (1)

Moreover, we also have to prove that once PL has been true, and until QL

becomes true, the agent is activated, and thus executes its GDT. This is estab-
lished by proving the following property, where TCA is the triggering context of
the agent:

iEA ∧WL ∧ ¬QL → TCA (2)

Finally, we also have to prove that no other agent makes the variant increase
once PL has been established until QL is established. So, for each other agent
A in the system, we have to check for every action α used in a leaf goal G (we
recall that post and gpf of actions contain primed variables):

iEA ∧ CG ∧WL ∧ (postα ∨ gpfα) → pr(VL) ≤ VL (3)

4.4 The Witness Property... Is a Witness!

As explained before, we associate to our leads-to property L a witness property
WL that verify both following properties:

– Initialisation : WL must be true when PL is true;
The property that must be verified is the following:

iEA ∧ PL → WL (4)
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– Finalization : WL remains true until QL becomes true.

For each agent, we have to establish that, when it modifies the environment
(that is to say, when it performs an action, whether it succeeds or not), if
the witness is true before the action, then it is still true after the action has
been performed, unless QL has become true. So, for each action α associated
to a leaf goal G of each agent A, we have to verify:

iEA ∧ CG ∧WL ∧ (postα ∨ gpfα) → pr(WL ∨QL) (5)

4.5 The Agent Progresses

In order to prove that each execution of the GDT of an agent defines a progress
towards the establishment of property QL, we have to prove that the execution
of the main goal performs such a progress, that is to say, the main goal of the
agent is a progress goal.

Definition 14 (Progress goal (pg)). We call Progress Goal a goal that either
makes the variant decrease or establishes property QL. For a leads-to property
L, we associate to each goal G a boolean pgLG that is true if and only if G is a
progress goal.

Determining that a goal is a progress goal can be done by inference rules
relying on the structure of the gdt, once we know which leaf goals make progress.
Moreover, as the gdt execution depends on the success status of goals, we must
determine, for each goal, if it is a success progress goal and if it is a failure
progress goal.

Definition 15 (Success Progress Goal (spg)). We call Success Progress
Goal a goal that either makes the variant decrease or establishes property QL

when it is executed and succeeds. For a leads-to property L, we associate to each
goal G a boolean spgLG that is true if and only if G is a success progress goal.

Definition 16 (Failure Progress Goal (fpg)). We call Failure Progress Goal
a goal that either makes the variant decrease or establishes property QL when it
is executed and fails. For a leads-to property L, we associate to each goal G a
boolean fpgLG that is true if and only if G is a failure progress goal.

Corollary 17 A goal is a progress goal if and only if it is a success progress goal
and a failure progress goal. So, for every goal G, we have pgLG = spgLG ∧fpgLG.

In the following paragraphs, we first present how we determine spg and fpg
leaf goals, and then, we show how we infer these properties for non-leaf goals.
Finally, we give proof schemas that we have to associate to non-spg and non-fpg
leaf goals.
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Determining the Set of spg and fpg Leaf Goals. To determine if a goal is
a spg goal, we have to check that when this goal succeeds (and so, establishes its
satisfaction condition), it either makes the variant decrease or establishes QL.
Of course, we must only consider executions of this goal performed when PL has
been true, which is specified by the fact that WL is true. Hence the following
property that must be established by each non lazy1 spg leaf goal G:

(iEA ∧WL ∧CG ∧ pr(scG)) → ((pr(VL) < VL ∨ pr(QL)) (6)

In the same way, a goal G is a fpg leaf goal if and only if it verifies the following
property:

(iEA ∧WL ∧ CG ∧ pr(gpf G)) → ((pr(VL) < VL ∨ pr(QL)) (7)

Please notice that, the gpf of an NS goal being false, such goals are fpg goals.

Inference of spg and fpg Properties. A first way to ensure that a non-leaf
goal is spg or fpg consists in demonstrating that it is a consequence of the decom-
position. In this article, we only detail this process for the SeqAnd/SyncSeqAnd
and SeqOr/SyncSeqOr operators.

SeqAnd and SyncSeqAnd : Let G a goal decomposed into G1 SeqAnd G2.
G is a spg goal, if, in all the cases where G may succeed, the variant decreases.

Goal G may succeed in three cases, detailed below:

– Of course, G succeeds when G1 then G2 succeed. In this case, if either G1

or G2 are spg goals, goal G makes the variant decrease.
– Because of side effects, G may also succeed even if G1 has failed. Then, G1

must be fpg.
– Finally, G may also succeed when G1 has succeeded, leading to the execution

of G2, which has failed. In this case, if G1 is spg or G2 is fpg, then the variant
decreases.

So, we are guaranted that goal G is spg if:

⎧

⎨

⎩

spgLG1
∧ spgLG2

fpgLG1

spgLG1
∧ fpgLG2

As a consequence, here is a sufficient condition to determine that a goal is a
spg goal:

fpgLG1
∧ (spgLG1

∨ pgLG2) → spgLG (8)

1 In this article, we only focus on non lazy goals, that is to say goals that are al-
ways executed even if their satisfaction condition is already true when the goal is
considered.
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Now, to determine if G is a fpg goal, we consider both cases where it can fail,
that is to say when its first subgoal fails or when its second subgoal fails after
the first one has succeded. Hence:

fpgLG1
∧ (spgLG1

∨ fpgLG2
) → fpgLG (9)

SeqOr and SyncSeqOr : Let G a goal decomposed into G1 SeqOr G2.
Goal G may succeed in the three following cases:

– goal G1 succeeds;
– goal G1 fails, and then, goal G2 succeeds.
– goal G1 fails, and then, goal G2 fails but, because of side effects, goal G

succeeds anyway.

So, we have:
spgLG1

∧ (fpgLG1
∨ pgLG2

) → spgLG (10)

The only case where Goal G may fail is when G1 and G2 fail. So, the fact
that one of theses goals is spg ensure that G is spg. Hence:

fpgLG1
∨ fpgLG2

→ fpgLG (11)

Using Satisfaction Conditions to Determine spg Goals Inference rules 8
and 10 to determine if a goal is spg give sufficient properties, but theses properties
are not always necessary. A typical example is when the satisfaction condition
of a non-leaf goal directly establishes either QL or makes the variant decrease.
So, for every non leaf goal G that has not been characterized as a spg goal by
the inference rules described above, we will also verify if property 6 is true. If
this is the case, goal G can be identified as an spg goal. An example of such a
case is given in the case study, section 5.2.

Non-fpg and Non-spg Leaf Goals. When a leaf goal G is not a spg goal, we
however must prove that this goal does not make the variant increase when it
succeeds. So, for each non-spg goal, we have to prove the following formula:

iEA ∧WL ∧ CG ∧ pr(scG) → pr(VL) ≤ VL (12)

In the same way, for each goal G that is not a fpg goal, we must prove:

iEA ∧WL ∧ CG ∧ gpf G → pr(VL) ≤ VL (13)

Indeed, this is necessary to guarantee that between two steps during which
the agent makes the variant decrease, it is not increased in another way.
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5 Application on a Small Example

We choose here of course a very simple example, in order to be able to present
all the principles of the proof. We consider a “multiagent system” with only one
agent modifying the variant.

Please notice that the system may contain several other agents. In this case,
as explained in section 4.3, it has to be proven that their actions do not increase
the variant. Taking into account the dynamicity of the environment relies on
the same principle, because, as explained in previous articles, the dynamicity
of the environment can be modeled by an agent modifiying the state of the
environment.

The environment contains two variables, x and d, and is specified by the
following invariant:

iE =

⎧

⎨

⎩

x ∈ N

d ∈ B

d ↔ (x > 0 ∧ x ≤ 10)
(14)

Our agent has a behaviour described by the GDT given in figure 2. In this figure,
goals names (from A to E) and their simplified satisfaction conditions are given.
By simplified SC, we mean that we did not write the part specifying that the
value of other variables are not modified. For instance, the full SC of node D is
y′ = 2 ∧ x′ = x ∧ d′ = d.

Informally, the goal of this agent is to decrease the value of the environment
variable x, by 2 if possible, and otherwise by 1.

Moreover, the triggering context of the agent, its invariant and the gpf of node
E are defined so:

TCa � d (15)

Ia � (y ∈ N) (16)

gpfE � x′ = x ∧ d′ = d (17)

gpfB � x′ = x (18)

We want to prove that this agent establishes the following leads-to property:

�(x = 10 → ♦x = 0) (19)

As you can see, this is not directly a goal of the agent, whose behaviour only
specifies that it reduces the value of variable x when variable d is true.

We will use x as the variant and d as the witness. To conform to the notation
used in the previous section, we have:

PL � (x = 10) (20)

QL � (x = 0) (21)

VL � (x) (22)

V0L � (0) (23)

WL � (d) (24)
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Fig. 2. GDT of the example

This article beeing focused on the proof of liveness properties, we do not
present other proofs that must be performed to guarantee the correctness of this
specification.

Moreover, in order to give readable formulae, we do not give full contexts of
nodes and thus, hypotheses in theorems to prove are simplified.

5.1 Determining Leaf Progress Goals

goal D As goal D is a NS goal, it is a fpg goal.
To determine if it is spg, we must establish property 6 for this goal. Thus, we

have:
WL � d

CD � d

pr(scD) � (y′ = 2)

Of course, the conjunction of these properties with the invariant does not
imply x′ < x or x′ = 0. So, D is not an spg goal. So:

spgD = false (25)

fpgD = true (26)

goal E When goal E is considered, we have:

WL � d

CE �
{

d−2 ∧ y−1 = 2 ∧ x−1 = x−2

d−1 = d−2 ∧ y = y−1 ∧ x = x−1

pr(scE) � x′ = x− y ∧ (d′ ↔ x′ �= 0)
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The context of goal E given above is calculated by the context inference rules
of the GDT4MAS method. It expresses the fact that goal E is considered only
after goal D has succeeded when it has been executed in its context.

To establish that E is a spg goal, according to 6, we must demonstrate that
the conjunction of these properties imply that the variant decreases, that is to
say x′ < x. This is obvious because, from CE , we can deduce y = 2 and from
pr(scE), we can deduce x′ = x− y. So, E is a spg goal.

We also have to determing if E is a fpg goal, thanks to rule 7. Among the
hypotheses of this rule, we have gpfE (which implies x′ = x, see 17) and requires
as conclusion either x′ < x (which cannot be true!) or x′ = 0 which cannot be
guaranted because the context does not provide any knowledge about the value
of x. So, goal E is not a fpg goal.

So, we have:

spgE = true (27)

fpgE = false (28)

Goal C. About goal C, we have the following properties:

WL � d

CC � (d−2 ∧ x−1 = x−2 ∧ x = x−1)

pr(scC) � (x′ = x− 1 ∧ (d′ ↔ x′ �= 0))

To establish that goal C is a spg goal, we must try to establish rule 6. This rule
requires to prove, from the conjunction of the above properties, that the variant
decreases (x′ < x) or that property QL is true. This is obvious because, from
scC , we deduce that x′ = x − 1, which implies x′ < x. So, goal C is a spg goal.
Moreover, as this goal is a NS goal, this is also a fpg goal. So we have:

spgC = true (29)

fpgC = true (30)

Conclusion. As a conclusion, we know that no leaf goal make the variant
increase. Moreover, spg goals and fpg goals are respectively the following:

SPG = {C,E} (31)

FPG = {C,D} (32)

PG = {C} (33)

5.2 Inference of the Progress Property

Goal B. To determine if goal B is a spg goal, we apply rule 8 that provides the
following sufficient condition to guarantee that goal B is spg:

fpgD ∧ (spgD ∨ pgE)
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However, D is not a spg goal and E is not a pg goal. Thus, with this rule,
we cannot determine that goal B is spg. So, we try to apply rule 6. Considering
goal B, we have:

WL � d

CB � d

pr(scB) � x′ = x− 2

And we have to establish that the conjunction of these formulae implies either
x′ < x of x′ = 0. As scB implies x′ = x − 2, we obviously have x′ < x. So, B is
a spg goal.

We now have to determine if goal B is a fpg goal, applying rule 9:

fpgD ∧ (spgD ∨ fpgE)

As goal E is not a fpg goal and D is not a spg goal, we can deduce that goal
B is not a fpg goal. So we have:

spgB = true (34)

fpgB = false (35)

Goal A To determine if goal A is a spg goal, we apply rule 10, which gives:

spgB ∧ (fpgB ∨ pgC)) → spgA

As we have established before that goal B is spg (34) and that goal C is
pg (33), we can establish that goal A is a spg goal.

Conclusion. Goal A being a NS goal and a spg goal, we now know that each
execution of the GDT of the agent makes the variant decrease.

5.3 The Chosen Variant Is a Variant

Correctness. According to equation 1, to prove that the chosen variant is
effectively a variant, we have to prove:

iEA ∧ x = 0 → x = 0

This is obviously true !

Activation. According to equation 2, we have to prove:

iEA ∧ d ∧ ¬(x = 0) → (x = 10 ∨ d)

Once again, this formula is obviously true.
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5.4 The Witness Is a Witness

Initialisation. From formula 4, weh have to verify:

x = 10 ∧ (d ↔ (x > 0 ∧ x ≤ 10)) → d

This is still an obviously true formula.

Finalization. We have to apply proof schema 5 for every leaf goal (and we
recall here that, according to GDT4MAS principles, the gpf of an NS action is
false).

Goal D. The NS action δ associated to goal D is defined by:

postδ � y′ = 2 ∧ d′ = d

gpfδ � false

So, with the context of goal D given above, we must establish:

iEA ∧ d ∧ d ∧ ((d′ = d ∧ y′ = 2) ∨ false) → pr(d ∨ x = 0)

That can be simplified into:

iEA ∧ d ∧ d′ = d ∧ y′ = 2 → d′ ∨ x′ = 0

This property is obviously true (as d and d′ = d can be found among the
hypotheses).

Goal E The action η associated to goal E is defined by:

postη � x′ = x− y ∧ (d′ ↔ x′ �= 0)

gpfη � x′ = x ∧ d′ = d

Using CE given above, applying proof schema 5, we obtain the following proof
obligation:

iEA ∧ d−2 ∧ y−1 = 2 ∧ x−1 = x−2

d−1 = d−2 ∧ y = y−1 ∧ x = x−1 ∧ d
((x′ = x− y ∧ (d′ ↔ x′ �= 0)) ∨ (x′ = x ∧ d′ = d))
→ pr(d ∨ x = 0)

In order to simplify the explanation of the demonstration (that can be however
easily performed by an automatic prover), we remove useless hypotheses. So, we
have to prove:

(d ∧ x′ = x− y ∧ (d′ ↔ x′ �= 0)) ∨ (d ∧ x′ = x ∧ d′ = d)
→ d′ ∨ x′ = 0

The structure of this formula being a∨b → c, we will successively demonstrate
a → c and b → c.
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– (d ∧ x′ = x− y ∧ (d′ ↔ x′ 	= 0)) → d′ ∨ x′ = 0
We use a proof-by-case on the value of d′. Either d′ is true, and so, the goal
is true, or d′ is false. In the latter case, according hypothesis 2, x′ = 0, and
so the goal is true. QED.

– (d ∧ x′ = x ∧ d′ = d) → d′ ∨ x′ = 0
As d and d′ = d are hypotheses, we obviously deduce d′. QED.

So the proof obligation generated by applying proof schema 5 to goal E is
true.

Goal C The action associated to goal C is defined by:

postγ � x′ = x− 1 ∧ (d′ ↔ x′ �= 0)

gpfγ � false

Using CC and applying proof schema 5 to goal C, we have to prove:

iEA ∧ d−2 ∧ x−1 = x−2 ∧ x = x−1 ∧ d
((x′ = x− 1 ∧ (d′ ↔ x′ �= 0)) ∨ false)

}

→ pr(d ∨ x = 0)

In order to simplify the explanation of the demonstration (that can be however
easily performed by an automatic prover), we remove useless hypotheses. So, we
have to prove:

(d′ ↔ x′ �= 0) → (d′ ∨ x′ = 0)

The proof is obvious: either d′ is true, and so, the goal is true, or d′ is false
and so, from hypotheses, x′ 	= 0 is false, and so, x′ = 0. QED.

5.5 Conclusion

Following the proof system described in section 4, we have been able to establish
that an agent whose behaviour is described by the gdt given in figure 2 satisfies
a liveness property that is not a part of its main goal.

6 Comparison with other Works

Several formal specification languages dedicated to multiagent systems exist.
However, they are often not suited to proof mechanisms. This is for instance the
case of 2APL [7], that is finally more a programming language than a specifica-
tion language suited to proof. MetateM [8] gives the developer a way to specify
properties, and the system controls that the execution does not violate these
properties. However, this is a proof-by-construction process; this means that
the proof is performed only at the execution time, and if the initial conditions
change, a new proof (consisting in an execution of this new initial state) must
be performed.
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Finally, most works dealing with the verification of multiagent systems rely
on model-checking principles. One of the most recent work in this area is the
definition of AJPF [9], a model-checker relying on JPF [10] and the Agent Infras-
tructure Layer AIL. This is, as far as we know, the only system that proposes a
way to verify leads-to properties on multi-agent systems. However, a first draw-
back of the method is the time taken by the system to establish the property
(several hours for a very simple system). Of course, a more optimized model-
checker such as SPIN [11], may greatly reduce the time required. However, such
systems remain dedicated to small-size systems. Moreover, such systems have a
more serious drawback: although they can be used to prove a property such as
the property we have proven in section 5: �(x = 10 → ♦x = 0), they cannot be
applied when the left-hand side property (here, x = 10) characterize an infinite
number of states. For instance, if we would be interested in proving the following
leads-to property: �(x ≥ 10 → ♦x = 0), a model-checking-based method would
fail, whereas the process we propose would be as efficient as it is in the given
example.

The same problem can be found with MCMAS [12], which moreover does
not provide a way to verify leads-to properties. This model-checking technique
tries to verify formulae specified in propositionnal logic, as AJPF. The main
disadvantage of this technique is that, relying on propositionnal logic, proofs
cannot be generalized on systems of any size. For instance, in the cited article, it
is shown that the verification of the dinning cryptographers must be performed
for each number of cryptographers we are interested in. Moreover, even if the time
taken for 10 cryptographers is quite good, performances decrease dramatically
when the number of cryptographers increase. Finally, with such a technique, to
prove that the MAS work with any number of cryprgrapher, an infinite number
of verifications must be performed, requiring, of course, an infinite time.

Indeed, as model checking techniques may be applided on systems with several
millions of states, their complexity is a critical aspect that must be taken into
consideration. But with theorem proving techniques, this criterion is somewhat
less important. Indeed, each proof requires a very short time, and the number of
proofs is very low, compared to the number of states generated in model checking
techniques (for instance, even on a very large industrial system, less that 50,000
proofs had to be verified [13]). For instance, with the GDT4MAS model, if we
call n(t) the number of nodes of an agent type t and T the set of agent types,
the number of proofs to perform is approximately 2Σt∈Tn(t).

7 Conclusion and Perspectives

In this article, we have shown that the GDT4MAS model, that was mainly
dedicated to the proof of invariant properties, can be extended to prove live-
ness properties such as lead-to properties. As other proof obligations of the
GDT4MAS framework, the new proof obligations generated are easily proven
by an automatic theorem prover such as PVS.

This kind of proof can help in analyzing the behaviour of a MAS. In the
work presented here, we have only considered liveness properties associated to
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a single agent. Of course, more general liveness properties at the system level
will have to be considered, especially properties that are established not only
by a single agent, but by a subset of the agents in the system. This is a short-
term perspective. Moreover, at it is classically performed in standard verification
systems, our proof system can only prove leads-to properties P leads− to Q for
which there is a continuous progress to Q once P has been true. In a multiagent
system where agents are fully autonomous, we also have to consider properties
for which this progress is not continuous. This is a long-term perspective for us.
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Abstract. Most multi-agent system (MAS) testing techniques lack empirical 
evidence of their effectiveness. Since finding tests that can reveal a large pro-
portion of possible faults is a key goal in testing, we need techniques to assess 
the fault detection ability of test sets for MAS. Mutation testing offers a direct 
and powerful way to do this: it generates modified versions of the program 
(“mutants”) following a set of rules (“mutation operators”) then checks if a test 
set can distinguish the original program from the (functionally non-equivalent) 
mutants. In this paper, we propose a set of mutation operators for the agent-
oriented programming language Jason, and then introduce a mutation testing 
system for individual Jason agents that implements a subset of our proposed 
mutation operators. We use this subset to assess a test set for a Jason agent that 
meets a combination of existing agent-based coverage criteria. The assessment 
shows that this test set is not adequate to kill all mutants. 

Keywords: Test Evaluation, Mutation Testing, Agent-Oriented Programming, 
Jason. 

1 Introduction 

Multi-agent systems (MAS) are a promising paradigm for engineering autonomous 
and distributed systems. Testing MAS is a challenging activity, however, because of 
the increased complexity, large amount of data, irreproducibility, non-determinism 
and other characteristics involved in MAS [9]. Although many techniques have been 
proposed to address the difficulties in MAS testing, most of them lack empirical evi-
dence of their effectiveness [10]. 

Effective testing requires tests that are capable of revealing a high proportion of 
faults in the system under test (SUT). It can be difficult to find real faulty projects to 
verify the real fault detection ability of a test set; instead, we can use coverage-based 
and fault-based testing techniques. 

For coverage based techniques, the tests or their executions are measured against 
some coverage criteria based on some model of the SUT (or other relevant model); if 
they cover all model elements defined in the coverage criteria, the tests are said to be 
adequate for the coverage criteria – in other words, they examine the involved model 
elements thoroughly. Existing coverage criteria for MAS testing include Low et al.’s 
plan and node based coverage criteria for BDI agents [1], Zhang et al.’s plan and 
event based coverage criteria for Prometheus agents [2], and Miller et al.’s protocol 
and plan based coverage criteria for agent interaction testing [3]. 
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Fault based techniques offer a more direct way to assess the fault detection ability 
of the tests than coverage based ones: faults are seeded into the SUT by some means, 
typically by hand or by mutation [12]. After seeding faults (i.e. producing faulty ver-
sions of the SUT), each test is executed against first the original SUT then each faulty 
version. For each faulty version, if its behaviour differs from the original SUT in at 
least one test, it will be marked as “killed” to indicate that the fault(s) seeded in it can 
be detected by the tests. Therefore, the fault detection ability of the tests can be as-
sessed by the “kill rate” – the ratio of the killed faulty versions to all faulty versions: 
higher the ratio is, more effective the tests are. Those non-killed faulty versions reveal 
the weaknesses of the existing tests so that testers can enhance these tests (in order to 
kill those versions) by improving some of them or adding new ones. 

Mutation is a systematic and automatic way of generating modified versions of the 
SUT (“mutants”) following a set of rules (“mutation operators”). The process of using 
mutation to assess tests is called mutation testing. Mutation is more commonly used 
to seed faults than the hand-seeded way because many theories and empirical evi-
dences support it; for instance [13] shows that it provides an efficient way to seed 
faults that are more representative of realistic faults than hand-seeded ones. However, 
the mutation operators used to guide mutant generation may lead to a large number of 
mutants so that comparing the behaviour of each mutant with that of the original SUT 
in each test is computationally costly. Another problem is that mutation unpredictably 
produces equivalent mutants – alternate implementations of the SUT that are not ac-
tually faulty (as the result, no tests can differentiate the original SUT from them), and 
thus which must be excluded from test evaluation. Although the process of detecting 
equivalent mutants may be partially automated, much manual work is still required. 

Many studies show that mutation testing provides a more rigorous test evaluation than 
coverage-based techniques [11], so it is usually used to evaluate or compare other testing 
techniques (e.g. that are based on some coverage criteria). The key to successful mutation 
testing is to select an appropriate set of mutation operators. Here we define “appropriate” 
in terms of two criteria: effectiveness and efficiency. Effectiveness is the value of the 
individual operators for assessing tests, it requires representativeness, which means a 
mutation operator should be able to guide seeding faults that are representative of realis-
tic ones, and power, which means an operator should be able to guide generating hard-to-
kill non-equivalent mutants. Efficiency is concerned with the computational cost due to 
the operator set, it requires that the operator set generate a reasonable (computationally 
tractable) number of non-equivalent mutants. 

There is some preliminary work on mutation testing for MAS. Nguyen et al. [4] use 
standard mutation operators for Java to assess tests for JADE agents (which are imple-
mented in Java). As to the work on MAS model/language specific mutation operators, 
Adra and McMinn [5] propose a set of mutation operator classes for agent-based models. 
Saifan and Wahsheh [6] propose and classify a set of mutation operators for JADE mo-
bile agents. Savarimuthu and Winikoff [7, 8] systematically derive a set of mutation op-
erators for the AgentSpeak agent language and another set for the GOAL agent language. 
Most existing work focuses on deriving mutation operators from agent mod-
els/languages, a recent paper [8] evaluates the representativeness of the mutation opera-
tors for the agent language GOAL by comparison with realistic bugs. 
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In our work, we aim to explore the use of mutation testing for MAS, with the inten-
tion that our work can be used to assess and enhance the tests derived from existing 
testing techniques (e.g. that are based on some coverage criteria) for MAS. This paper 
presents our preliminary work – in Section 2 we propose a set of mutation operators 
for Jason [14], which is an implementation of the AgentSpeak language; in Section 3 
we introduce a mutation testing system for individual Jason agents that implements a 
subset of our proposed mutation operators; in Section 4 we show the use of our im-
plemented mutation operators in assessing and enhancing a test set (for a Jason agent) 
satisfying some existing agent-based coverage criteria, and the evaluation of the 
power of these operators by observing which one(s) lead to hard-to-kill non-
equivalent mutants; in Section 5 we discuss the relationships between our work and 
previous related work; in Section 6 we summarise our work and make some sugges-
tions for where this work could go in the future. 

2 Mutation Operators for Jason 

Mutation operators are rules to guide mutant generation by making changes to the 
description (syntax) of the program1. For instance, a mutation operator for procedural 
programs called Relational Operator Replacement (ROR) requires that each occur-
rence of one of the relational operators (<, ≤, >, ≥, =, ≠) is replaced by each of the 
other operators [11]. A mutant usually only contains a simple, unary fault (e.g., in the 
above example, each generated mutant only replaces a single relational operator by 
another), because of the two underlying theories [12] in mutation testing: the Compe-
tent Programmer Hypothesis states that programmers create programs that are close 
to being correct; the Coupling Effect states that tests that can detect a set of simple 
faults can also find complex faults. 

Since mutation is typically performed at program level, a set of mutation operators is 
specific to a given programming language. To design mutation operators for a pro-
gramming language, it is common to start by proposing an initial set based on the syntax 
and features of the language, and then to refine an effective set through evaluation. 

The language we chose is Jason, which is a multi-agent system programming lan-
guage that uses the extended AgentSpeak to specify agents in terms of beliefs, initial 
goals and plans, uses Java to customize agent architectures, define agent environ-
ments and implement various extensions. We chose to mutate the extended AgentS-
peak code at first because it directs the behaviour of Jason agents. 
Savarimuthu and Winikoff [7] apply the guidewords of HAZOP (Hazard and Oper-
ability Study) into the syntax of AgentSpeak to systematically derive a set of mutation 
operators. In contrast to their work, firstly we explicitly describe each of our derived 
operators while they do not give and describe their actual full operator set. Secondly 
we mutate the Jason-extended version of AgentSpeak, so some of our operators are 
specific to Jason. Finally, we borrow some ideas from other existing mutation opera-

                                                           
1  This paper only concerns conventional mutation testing, i.e. syntactic mutation testing, 

although some recent work applies mutation testing to program semantics. 
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tors (for both conventional programs and MAS) when deriving ours, in the hope of 
preliminarily refining our set, e.g., by excluding ones that are not sensible. 

We base our work on Jason’s Extended Backus–Naur Form (EBNF), where a list 
of production rules is defined that describe Jason’s grammar. The EBNF we use is a 
simplified version in [14] that does not include some advanced features such as direc-
tives and conditional/loop statements in the plan body. We divide these production 
rules into high-level and low-level ones – the high-level production rules specify the 
main syntactical concepts that are closely related to how Jason agents generally work, 
while the low-level ones specify the basic logical representations forming the Jason 
syntactical concepts. Accordingly our mutation operators for Jason can also be de-
scribed as high- or low-level. In the following two subsections we present these muta-
tion operators according to which production rules they are derived from. 

2.1 High-Level Mutation Operators for Jason 

Fig. 1 shows the high-level production rules in Jason’s EBNF; from this, we have 
derived 13 high-level mutation operators. 

 

Fig. 1. High-level production rules in Jason’s EBNF (Rule 1–11 are slightly adapted from [14], 
12–16 are the ones we added for specifying Jason agent communication) 

Production rule 1 states that an agent is specified in terms of beliefs, initial goals 
and plans. From this rule we derive the following three mutation operators: 

• Belief Deletion (BD): A single belief in the agent is deleted. 
• Initial Goal Deletion (IGD): A single initial goal in the agent is deleted. 
• Plan Deletion (PD): A single plan in the agent is deleted. 
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Production rule 2 states that a belief can be a literal representing some fact, or a rule 
representing some fact will be derived if some conditions get satisfied. The introduc-
tion of rules enables Jason to perform theoretical reasoning [15]. From this produc-
tion rule we derive the following mutation operator: 

• Rule Condition Deletion (RCD): The condition part of a rule is deleted. 

A rule that RCD is applied to will only have its conclusion part – a literal – left, as a be-
lief held by the agent regardless of whether the (now deleted) conditions get satisfied. 

Production rule 6 states that the triggering event of a plan consists of a literal follow-
ing one of the six types: belief addition (+), belief deletion (−), achievement goal addi-
tion (+!), achievement goal deletion (−!), test goal addition (+?) and test goal deletion 
(−?). It can be seen that an event that can be handled by Jason plans represents a change 
– addition or deletion (represented using + or − operator respectively) – to the agent’s 
beliefs or goals. From this rule we derive the following mutation operator: 

• Triggering Event Operator Replacement (TEOR): The triggering event opera-
tor (+ or −) of a plan is replaced by the other operator. 

We don’t have an operator that changes the trigger type i.e. one of achievement goal, 
test goal and belief to another. This is because as learned from [8], this type of change 
doesn’t make sense, and because in the case no events can match the modified trigger 
it will be equivalent to PD (Plan Deletion) anyway. 

Production rule 7 states that the context of a plan can be a logical expression, or be 
always true (the latter is equivalent to the context not being specified at all). The plan 
context defines the condition under which the plan that has been triggered becomes a 
candidate for commitment to execution. From this production rule we derive the fol-
lowing mutation operator: 

• Plan Context Deletion (PCD): The context of a plan is deleted if it is non-empty 
and not set true. 

Production rule 8 states that the body of a plan can be a sequence of formulae, each of 
which will be executed in order, or set true (the latter is equivalent to the body not 
being specified at all). From this rule we derive the following three mutation opera-
tors: 

• Plan Body Deletion (PBD): The body of a plan is deleted if it is non-empty or not 
set true. 

• Formula Deletion (FD): A single formula in the body of a non-empty plan is de-
leted. 

• Formulae Order Swap (FOS): The order of any two adjacent formulae in the 
body of a plan that contains more than one formula is swapped. 

FOS comes from an idea behind some existing mutation operators that the order of 
elements in a sequence is changed. Although elements can be arranged in many ways, 
we choose to only swap two adjacent elements (i.e. formulae) because as suggested in 
[8], it can avoid generating a large number of mutants. 
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In many cases, PBD is equivalent to PD (Plan Deletion). However, since the plan 
context can contain internal actions that may cause changes in the agent’s internal 
state, the plan that PBD is applied to may still have an effect on the agent although its 
body has been deleted, in this case PBD is not equivalent to PD. 

Production rule 9–11 states that a body formula can be one of the six types: 
achievement goal (!literal or !!literal), test goal (?literal), mental note (+literal, −lit-
eral, −+literal), action (atomic_formula), internal action (.atomic_formula or 
.formula_for_comm2) and relational expression. The former three types are involved 
in generating internal events that correspond to changes in achievement goals, test 
goals and beliefs respectively. Similar to how we derived the Triggering Event Opera-
tor Replacement (TEOR) operator, from this production rule we derive the following 
mutation operator:  

• Formula Operator Replacement (FOR): The operator of an achievement goal 
formula (! or !!) is replaced by the other operator, so is that of a mental note for-
mula (+, −, −+).  

It is worth noting that the achievement goal formula has two types: “!” is used to post 
a goal that must be achieved before the rest of the plan body can continue execution, 
“!!” allows the plan containing the goal to run alongside the plan for achieving the 
goal. In the latter case, the two plans can compete for execution due to the normal 
intention selection mechanism. 

We don’t consider changing the formula type i.e. one of achievement goal, test 
goal and belief to another because as noted in [8], this type of change doesn’t make 
sense; neither do we consider the formula type of action, internal action or relational 
expression for the similar reason. 

Production rules 12–16 are the ones we added for specifying Jason agent commu-
nication. It can be seen that two internal actions: .send and .broadcast, are used by 
Jason agents to send messages. The main parameters in these actions include the mes-
sage receiver(s) (only used in .send action) that can be a single or a list of agents  
identified by the agent ID(s), the illocutionary force (tell, untell, achieve, etc.) repre-
senting the intention of sending the message and the message content that can be  
one or a list of propositional contents. From these production rules we derive the  
following three mutation operators: 

• Message Receiver Replacement (MRR): The receiver or the list of receivers in a 
.send action is replaced by another agent ID (or some subset of all the agent IDs in 
the MAS). If the action is .broadcast, it will be first converted to its equivalent 
.send action and then applied this mutation operator. 

• Illocutionary Force Replacement (IFR): The illocutionary force in an action for 
sending messages is replaced by another illocutionary force. 

• Propositional Content Deletion (PCD2): A single propositional content in the 
message content is deleted. 

                                                           
2  formula_for_comm actually belongs to atomic_formula. We separate it in order to specify 

rules for agent communication. 
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It is worth noting that a propositional content is some component of another type 
(e.g., belief, plan, etc.). Therefore, the mutation operators for these components can 
also be applied for mutating agent communication. 

2.2 Low-Level Mutation Operators for Jason 

Fig. 2 shows the low-level production rules in Jason’s EBNF; from this, we have 
derived 11 low-level mutation operators, most of which are borrowed from existing 
operators for conventional programs. 

 

Fig. 2. Low-level production rules in Jason’s EBNF (Source: [14]) 

Production rule 1 states that a literal is an atomic formula or its strong negation 
(~l). Strong negation is introduced to overcome the limitation of default negation in 
logic programming: an agent can explicitly express that something is false by using 
strong negation, or express that it cannot conclude whether something is true or false 
using default negation (i.e. by the simple absence of a belief on the matter). From this 
production rule we derive the following mutation operator: 

• Strong Negation Insertion/Deletion (SNID): The form of a literal (affirmative or 
strong negative) is transformed to the other form. 

Production rule 2 and 3 state that an atomic formula consists of a relation followed by 
a list of annotations. Annotations can be used to provide further information about the 
relation. source is an important annotation that is appended to some atomic formulae 
automatically by Jason is used to represent where the atomic formulae (or the compo-
nent it represents) come from by taking one of the three parameters: percept, self or 
an agent ID. For instance, belief likes(rob, apples)[source(tom)] implies the informa-
tion that rob likes apples comes from agent tom. From these production rules we de-
rive the following two mutation operators: 

• Annotation Deletion (AD): A single annotation of an atomic formula is deleted, if 
one exists. 

• Source Replacement (SR): The source of an atomic formula is replaced by an-
other source, if it exists. 
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Production rule 4 and 5 define logical expressions; rule 6 and 7 define relational ex-
pressions; rule 8 and 9 define arithmetic expressions. Since some mutation operators 
for conventional programs have been designed for these concepts [11], we can just 
slightly adapt so as to use them in the context of Jason: 

• Logical Operator Replacement (LOR): A single logical operator (& or |) is re-
placed by the other operator. 

• Negation Operator Insertion (NOI): The negation operator (“not”) is inserted 
before a (sub) logical expression. 

• Logical Expression Deletion (LED): A single sub logical expression is deleted. 
• Relational Operator Replacement (ROR): A single relational operator (“<”, 

“<=”, “>”, “>=”, “==”, “\==”, “=”, “=..”) is replaced by another operator. 
• Relational Term Deletion (RTD): A single relational term in a relational expres-

sion is deleted. 
• Arithmetic Operator Replacement (AOR): A single arithmetic operator (“+”, 

“−”, “*”, “**”, “/”, “div”, “mod”) is replaced by another operator. 
• Arithmetic Term Deletion (ATD): A single arithmetic term in an arithmetic ex-

pression is deleted. 
• Minus Insertion (MI): A minus (−) is inserted before an arithmetic term. 

3 muJason: A Mutation Testing System for Jason Agents 

We have developed a mutation testing system for individual Jason agents called mu-
Jason3, where we have implemented the 13 high-level mutation operators via Jason 
APIs and Java reflection, both of which can be used to access and modify the archi-
tectural components of the agents and the state of the MAS at runtime. The class dia-
gram and the user interface of muJason are shown in Fig. 3 and Fig. 4 respectively.  

 

Fig. 3. The class diagram of muJason 

                                                           
3  http://mujason.wordpress.com 
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Fig. 4. The user interface of muJason 

muJason can be launched by running the MutationSystem class and passing the name 
of the Jason project configuration file (postfixed with “.mas2j”) as the parameter. 
Then muJason will load the Jason project and display the mutation testing control 
panel (as shown in Fig. 4), where users can configure, start and observe mutation 
testing processes. 

Before initiating a mutation testing process, users need to specify the input of each 
test, the killing mutant criterion (or the oracle) for each test and the TTL (Time to 
Live) of the original/mutated agent under each test in the deploy(testID), isMutant-
Killed(testID) and getAgentTTL(testID) methods provided by the TestBed class (as 
shown in Fig. 3), respectively. Each of these methods is described as follows: 

• deploy(testID): this method sets up the initial configuration of the Jason system 
prior to each test run. It is called each time by taking an ID identifying one of the 
tests, so users can write code to specify the starting configuration as the input of 
each test. 

• isMutantKilled(testID): this method is used to determine whether a mutant under 
some test is killed (as indicated by the Boolean return value). It is called as soon as 
each mutant terminates, and is passed the ID of the current test. Therefore, in this 
method users can write code to check whether the mutated agent has been killed by 
each individual test, in other words, in there users can implement the oracle for 
each test. 

• getAgentTTL(TestID): this method is used to specify the lifetime of the origi-
nal/mutated agent (as the return value) under each test. Since agents usually run in-
definitely, an original/mutated version of the agent can only be allowed to run for a 
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certain period of time so that the next one can run. The whole Jason project will re-
start as soon as one version terminates, so that the next version can be observed 
from (and mutated at) the same starting point of the MAS. The lifetime or TTL of 
an agent is measured by the number of cycles the agent can perform; it must be 
enough for the agent to expose all the behaviour involved in the process of killing 
mutants. The TTL for a test is actually part of the killing mutant criterion/oracle for 
that test. Although there may be ways to automatically terminate the mutant once it 
is observed being killed, for simplicity in the beginning, the TTL for a test is fixed 
and manually set depending on the users’ experience. 

After specifying the input, the killing mutant criterion (oracle) and the TTL for each 
test, users can configure and start a mutation testing process in the mutation testing 
control panel through the following steps (as shown in Fig. 4): 

1. Select an agent and its mutation domain. Since muJason aims at individual agents, 
users need to select one from the MAS, and then they can choose which belief(s), 
initial goals(s) and plan(s) of the selected agent the mutation operators will be ap-
plied into. They can ignore the agents/components unnecessary for testing, e.g., the 
GUI agents and the built-in plans for enabling agent communication. 

2. Select the mutation operators. After specifying the mutation domain of an agent, 
users can select the mutation operators that will be applied into the mutation do-
main. 

3. Start the mutation testing process. After the above steps, users can start the muta-
tion testing, observe its process in the mutation testing control panel and wait for 
its result. The mutation testing process can be described using the following 
pseudo-code: 

1: For each test identified by a testID: 
2:   Set up the starting config as the input of the 
3:    test 
4:   Get the specified TTL for the test 
5:   Run the original Jason project for the TTL 
6:   Restart the Jason project 
7:   Create a mutant generator taking the selected 
     agent, mutation domain and mutation operators 
8:   While the generator can generate another mutant: 
9:      Generate the next mutant 
10:      Run the modified Jason project for the TTL 
11:      Check if the mutant is killed under the 
        current test, if so mark it “killed” 
12:      Restart the Jason project 

4 Evaluation 

To perform a preliminary evaluation of the power of our implemented mutation op-
erators, we use them to guide generating mutants of an agent in a Jason project, then 
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examine whether a test set designed using a combination of existing agent-based cov-
erage criteria can kill all the non-equivalent mutants. We think the operators that can 
guide generating the hard-to-kill non-equivalent mutants are powerful to reveal the 
weaknesses of this test set. 

4.1 Experimental Setup 

The Jason project we chose is available on the Jason website4, and is called Cleaning 
Robots. It involves a cleaner agent, an agent besides an incinerator (we call it incin-
erator agent later for convenience) and several pieces of garbage located in a gridded 
area as shown in Fig. 5 (R1 represents the cleaner agent, R2 represents the incinerator 
agent, G represents the garbage). When this project is launched, the cleaner agent will 
move along a fixed path that covers all grid squares (move from the leftmost square to 
the rightmost one in the first row, then “jump” to the leftmost square in the second 
row and move to the rightmost one in the same row, and so on). If it perceives that the 
square it is in contains garbage, it will pick it up, carry it and then move to the square 
where the incinerator agent is along a shortest path (diagonal movement is allowed). 
The cleaner agent will drop the garbage after arriving so that the incinerator agent can 
take it to burn. After dropping garbage the cleaner agent will return to the square 
where it just found the garbage along a shortest path (diagonal movement allowed), 
and then continue moving along the fixed path until it reaches the last square. 

 

Fig. 5. The Cleaning Robots example 

In order to test the cleaner agent, we specify test inputs that each describe a differ-
ent environment in which the agent is located. We design test inputs according to the 
test coverage criteria proposed by Low et al. [1]. Their criteria are based on plans and 
nodes (formulae) in BDI agents, so they are suitable for the Jason agent paradigm. 
Fig. 6 shows the subsumption hierarchy of their criteria – the criterion at the starting 
point of an arrow subsumes the one at the end of the arrow, e.g., for any agent, a test 
set satisfying node path coverage criterion also satisfies node coverage criterion. This 
Jason project is simple and doesn’t concern plan and node failure, so we ignore the 
                                                           
4  http://jason.sourceforge.net/wp/examples/ 
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related criteria, i.e. node with success and failure coverage criterion and plan with 
success and failure coverage criterion (that is to say, for this project they are equiva-
lent to node coverage criterion and plan coverage criterion respectively). After man-
ual analysis of the AgentSpeak program of the cleaner agent we design ten test inputs 
(different environments) that collectively meet node path coverage criterion, plan 
context coverage criterion and plan path coverage criterion, and for the involved cy-
clic paths we apply the 0-1-many rule. We think this combination forms the most 
rigorous one among Low et al.’s criteria (as can be seen in Fig. 6) and is viable for 
testing the cleaner agent.  
 

 

Fig. 6. The subsumption hierarchy of the coverage criteria proposed by Low et al. (Redrawn 
from [1]) 

These test inputs (environments) differ in at least one of the three variables – the 
location of the incinerator agent, the amount (and locations) of garbage and the prob-
ability the cleaner agent has to pick up each piece of garbage successfully when it 
attempts to. Since the agent environment is hard-coded into a java file, we use text 
replacement and class reload techniques in the deploy(testID) method to modify the 
values of these three variables in order to specify each test input. We consider a mu-
tant to be killed if, at the end of any test, there is any garbage uncollected (in contrast, 
the non-mutated version always collects all the garbage). To implement this crite-
rion/oracle, we use Jason APIs and Java reflection in the ifMutantKilled(testID) 
method to check whether all the squares in the environment are empty except the two 
taken by the cleaner agent and the incinerator agent respectively. In the ge-
tAgentTTL(testID) method, for each individual test, we set the lifetime of the origi-
nal/mutated agent to a value that is enough to collect all garbage. This value equals 
the exact time taken by the original agent to finish its work (we observe this by giving 
the original agent a normal run under that test) plus a modest tolerance value. 

Next we configure a mutation testing process for the cleaner agent as shown in Fig. 
4: first we choose r1 which is the name of the cleaner agent, and then all of its three 
beliefs, one initial goal and nine plans excluding those built-in ones for enabling agent 
communication. Next we check all the implemented operators. After these we start 
and observe the mutation testing itself. 
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4.2 Results 

After the mutation testing, muJason displays the results as shown in the first three col-
umns of the table in Fig. 7: the first column lists the mutation operators we selected, the 
second column lists the total number of mutants generated by each selected operator and 
the third column lists the number of the killed mutants that corresponds to each selected 
operator. From the displayed results we can see that the three operators for agent com-
munication – Message Receiver Replacement (MRR), Illocutionary Force Replacement 
(IFR) and Propositional Content Deletion (PCD2) – are not useful because this Jason 
project doesn’t involve agent communication. We also observe that our implemented 
operators (excepts the ones for agent communication) have resulted in a manageable 
number of mutants, i.e. 70 mutants, among which 60 have been killed while 10 not 
killed. We track these non-killed mutants in the log of the mutation testing process and 
analyse their corresponding changes in the code. We present our analysis results in the 
last two columns, and discuss each non-killed mutant below. 

 

Fig. 7. The results of the mutation testing 

Equivalent Mutants 
The Belief Deletion (BD) operator generates three mutants, in each of which an initial 
belief in the belief base of the agent is deleted. Two mutants are equivalent, however, 
they should not have been generated. Recall that muJason provides access to and 
makes changes to the initial state of the MAS rather than the agent code. This imple-
mentation is equivalent to mutating the code directly because the code will be inter-
preted to the initial state that subsequently affects the MAS behaviour. However, two 
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of the three beliefs we choose – pos(r2, 3, 3) and pos(r1, 0, 0) representing the initial 
positions of the incinerator agent and the cleaner agent respectively, are not defined in 
the agent (AgentSpeak) code – they are from the environment (Java) code, which is 
not our mutation target. Like beliefs from the agent code, they have been automati-
cally added into the belief base by the Jason engine before the initial state of the MAS 
becomes accessible, so they appear as mutation options, which have been selected by 
us. Also, deleting them before the MAS runs will not change the agent behaviour 
because they will be automatically added again soon due to the mechanism of how 
Jason handle beliefs from environments. 

The Plan Deletion (PD) operator generates one equivalent mutant, in which a plan 
that has empty context and empty body is deleted. This plan only exists in the first place 
to prevent a certain source of spurious runtime errors; when it is deleted, the agent will 
throw error messages at runtime, but there is no other effect on the agent behaviour. It 
could be suggested that this is in fact a non-equivalent mutant, but the runtime of the 
system is variable and the difference here is tiny. This mutant is not killed because our 
killing mutant criteria or test oracles don’t check for this source of errors. 

The Triggering Event Operator Replacement (TEOR) operator generates one 
equivalent mutant, in which the triggering event of the empty plan (discussed above 
for the PD operator) is changed from addition to deletion of some goal. This will just 
prevent the error messages discussed above from being thrown, so there is no change 
at all to the agent behaviour. 

The Formula Operator Swap (FOS) operator generates one equivalent mutant, in 
which two formulae whose executions are completely independent (their order 
doesn’t matter) are swapped. Specifically, the original order is first to remember the 
location where the agent just picked up the garbage, and then to move to the incinera-
tor agent; reversing the order makes no difference to the agent behavior because this 
location will be used only after both formulae completes (more precisely, after the 
agent drops the garbage), although the original order seems more rational. 

The Formula Operator Replacement (FOR) operator generates three equivalent 
mutants, in each of which a goal formula type “!” is replaced by “!!” or vice versa. As 
discussed in Section 2, a “!” goal pursuit stops the current plan until completed, while 
a “!!” goal pursuit can carry on in parallel with the rest of the plan. It is not difficult to 
see that in some cases they can be replaced by each other with no changes in the agent 
behaviour (only with semantic difference). 

Non-equivalent Mutants 
The Formula Deletion (FD) operator generates one non-equivalent mutant, in which 
the formula that is used to drop the carried garbage is deleted. It is not killed because 
our killing mutant criteria or test oracles are incomplete: they don’t check whether the 
cleaner agent drops the carried garbage – it can pick up all the garbage without drop-
ping any and still pass the tests. 

The Formula Operator Replacement (FOR) operator produces one non-equivalent 
mutant, in which the formula −+pos(last,X,Y) in plan +!carry_to(R) is replaced by 
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+pos(last,X,Y). The former formula is used to update the belief that keeps last location 
where garbage was found, so that the agent can retrieve then return to this location 
after it drops garbage at the incinerator agent, so as to continue checking the remain-
ing squares along the fixed path. However, when the formula is changed to the new 
version, each time the cleaner agent finds garbage, it will add a new belief represent-
ing the location of this garbage into the belief base rather than replacing the old one. 

The above mutation introduces a fault, because it means that the agent will end up 
with several versions of “last location at which I found garbage” stored in its memory. 
In many cases, this is not a problem. When the cleaner agent has finished at the incin-
erator agent, it will try to take a shortest route back to last location where it found 
garbage. To do this, it queries for its belief about the last location, and it will always 
retrieve the correct one because Jason’s default belief selection mechanism will al-
ways select the matching one that is added to the belief base most recently. 

After each movement step, however, the agent will query "does my current loca-
tion correspond to the last location I found garbage" i.e. should it cease its fast 
movement and go back to its slow side-to-side sweep of the map?  If the agent is at 
any location where it previously found garbage, Jason's belief query mechanism will 
cause the answer to that question to be "yes" – all of the "last garbage location" be-
liefs will be checked for a match. At that point, it will go back into its slow sweep, 
even though (in this simple world) there's no chance of finding new garbage before it 
reaches the actual last garbage location. As a consequence, the whole collection proc-
ess will take longer and the agent may not collect all the garbage within its specified 
time-to-live. 

This fault cannot be detected by any of our tests designed for the cleaner agent, be-
cause in our tests (by chance) it never passes through a previous garbage location 
when returning to last collected garbage location (Fig. 5 shows an example where it 
would happen). In order to detect this fault, we add a test input that satisfies the fol-
lowing three conditions: 

• A piece of garbage, G1, is located in a shortest path between the incinerator agent 
and another piece of garbage G2. 

• G1 is found prior to G2. This requires that G1 and G2 be located after where the 
incinerator agent is along the fixed side-to-side path that the agent uses to check all 
the squares. 

• G1 and G2 are not in the same row. This enables us to observe that the agent does 
indeed return to where G1 was found after dropping either garbage for burning. 

Fig. 8 shows a test that will detect this fault and thus kill this mutant. Under this test, 
the cleaner agent (R1) will always return to the location where G1 was found after 
dropping either G1 or G2 at the incinerator agent (R2). It will then continue moving 
along the fixed side-to-side path from this location, and the second time it does this, 
this wastes time (there is guaranteed to be no further garbage on the way to the G2 
location, since it’s already swept that area). The additional time it spends doing this 
takes it over its time-to-live so the agent fails the test. 
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Fig. 8. A test that can detect the fault of multiple last locations 

4.3 Discussion 

In order to evaluate the power of our implemented high-level mutation operators, we 
used them to assess a test set for a simple Jason agent. We designed the test inputs 
according to what we thought as the most rigorous and viable criterion (a combination 
of three criteria) among those proposed by Low et al. Then we analysed the generated 
mutants that were not killed by the test set. To find out the hard-to-kill non-equivalent 
ones from these mutants, we took the following steps: 

Firstly, we excluded two sources of mutants – those that should not have been gen-
erated and those non-equivalent but non-killed because of the incomplete test oracles 
(see 4.2 for the details). Those two sources are due to weaknesses in our implementa-
tion so they can be avoided. 

Secondly, we excluded the equivalent mutants. Although they are of little interest 
to our current work, the details of them may be of some interest for future studies on 
how to reduce the relevant equivalent mutants. For instance, in some cases changing 
the formula operator “!!” to “!” only affects the agent behaviour in efficiency, so this 
rule can be ignored if this source of difference is not considered when killing mutants. 
Similarly, the Triggering Event Operator Replacement (TEOR) operator should not be 
applied to the empty plans that are only used to prevent spurious runtime messages. 

Finally, we found a non-equivalent mutant that was not killed (regardless of how 
the test oracles are specified). From this, we deduce that Formula Operator Replace-
ment (FOR) that generates this mutant is probably a powerful operator, more precise-
ly, the rule of changing the formula operator “−+” to “+” is powerful. 

5 Comparison with Related Work 

Savarimuthu and Winikoff [7] systematically derive a set of mutation operators from 
the syntax of the AgentSpeak language (except that they derive those for agent com-
munication from the Jason-style code). In contrast to their work, firstly we explicitly 
describe each of our derived operators while they do not give and describe the actual 
full operator set. Secondly we mutate the Jason-extended version of AgentSpeak, so 

G1

G2
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some of our operators are specific to Jason while others are also applicable to 
AgentSpeak. 

Jason-specific examples are the Rule Condition Deletion (RCD) operator that in-
volves rules (introduced by Jason to enable theoretical reasoning), the Formula Op-
erator Replacement (FOR) operator that involves some Jason specific operators (!! 
and −+), the Strong Negation Insertion/Deletion (SNID) operator that involves strong 
negation (introduced by Jason to increase the expressive power), and the Annotation 
Deletion (AD) and Source Replacement (SR) operator that involves annotations (spe-
cific to Jason).  

Finally, we borrow some ideas from other existing mutation operators (for both 
conventional programs and MAS) when deriving ours, in the hope of preliminarily 
refining our set. For instance, changing a belief type to a goal type or vice versa 
doesn’t make much sense (as learned from [8]), so it is not considered; there have 
been some well-defined mutation operators for some traditional concepts that are also 
used in Jason grammar (e.g., arithmetic expression), so we can directly borrow them 
after small adjustments. 

Savarimuthu and Winikoff [8] systematically derive another set of mutation opera-
tors for the GOAL agent language (like AgentSpeak, GOAL is another language for 
programming cognitive agents), and then evaluate the representativeness of their set 
by comparison with some realistic bugs. In contrast, we evaluate the power of our set 
by comparison with some existing coverage criteria. Since an effective operator set 
requires ones that are both representative of realistic faults and powerful to guide 
generation of hard-to-kill mutants, our evaluation approach is complementary to 
theirs.  

We have attempted to compare our evaluation results with theirs and found that our 
Formula Operator Replacement (FOR) operator (which is powerful in our experi-
ment) is similar to one of their mutation rules – A:op1 (changing an operator), which 
doesn’t involve any realistic bug observed in their experiment. However, considering 
our hard-to-kill mutant is generated by changing the mental note formula “−+bel”, 
which is actually a composition of two adjacent formulae “−bel; +bel”, to “+bel”, 
while A:op1 doesn’t involve any composite operator, our mutant is actually the result 
of their another rule – AC:drop (dropping an action), which involves the 4th most 
realistic bugs (i.e. 14 bugs, while the most representative rule involves 31 bugs) ob-
served in their experiment. This comparison is not very convincing since the two 
studies are based on different agent languages, and both are quite preliminary, but it 
shows a way to evaluate the effectiveness of mutation operators, i.e. examining both 
the representativeness and the power of each operator. 

Another related work is Adra and McMinn’s [5]. Although they use a rather differ-
ent agent model, some of their ideas are relevant to our work. They propose four  
mutation operator classes, among which their class for agent communication  
(Miscommunication, Message Corruption) corresponds to our operators for agent 
communication (Message Receiver Replacement, Illocutionary Force Replacement, 
Proposition Content Deletion and other involved high- and low-level operators), and 
their class for an agent’s memory corresponds to our operators for beliefs (Belief 
Deletion, Rule Deletion and other involved low-level operators). Their mutation  
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operator class for agent’s function execution does not directly correspond to our op-
erators since our agent model adopts the BDI reasoning mechanism, while their model 
does not. As to their mutation operator class for the environment, it is not relevant to 
our operators for agents, although environment is an important dimension of MAS. 

6 Conclusions 

In this paper we presented our preliminary work on mutation testing for Jason agents. 
We proposed a set of mutation operators for the Jason-extended AgentSpeak language 
and we described a mutation testing system called muJason, which implements the 
high-level subset of our operators. We then used our implemented operators to assess 
a test set (for an example agent) that satisfies some coverage criteria proposed by Low 
et al. [1]. We found a mutation operator – Formula Operator Replacement (FOR) – 
that guided generation of a non-equivalent mutant that is hard to kill. We are hence 
able to add a test into the test set for killing this mutant (and, probably, similar mu-
tants or faults). 

Our work extends Savarimuthu and Winikoff’s work [7, 8] mainly in two respects: 
first, we extend the mutation operators for AgentSpeak by some operators specific to 
Jason; second, we propose an approach for assessing the power of operators, which is 
complementary to their approach for assessing the representativeness of operators. 

Our work is preliminary and has a number of weaknesses. In terms of deriving mu-
tation operators, we may miss some that may be of interest to our experiment since 
we did not consider the complete syntax of Jason and systematic ways to derive them 
(instead we intended to start with an initial set then implement and evaluate them in 
an incremental way). As to our evaluation, our results are limited as we only consi-
dered a single simple agent and a single source of coverage criteria, and because our 
finding is specific to Jason (the hard-to-kill mutant we found is the result of changing 
the Jason-specific formula operator “−+”). 

Our work also has some scalability issues. Firstly, we did not adopt an appropriate 
testing technique to specify test inputs and oracles; instead we used inefficient ap-
proaches such as manual specification via Java reflection, which are very difficult to 
use to specify a number of tests that are required by complex systems and tests that 
are able to detect small differences to the system behavior (mutants often only lead to 
such small differences). Secondly, in deriving test inputs that satisfies a specific cov-
erage criterion, we did not use any technique for auto-measuring test coverage to 
guide our derivation work; instead we derived them by manual analysis of the pro-
gram, which is impractical for complex programs. 

Future work will first address the above issues. Before further evaluation of the 
power of our mutation operators, we will develop a unit testing technique for Jason 
agents (unit testing provides a flexible way to specify tests that are able to detect 
small differences in behavior) and techniques for auto-measuring test coverage. We 
will then be able to apply our approach to more complex Jason systems and to a range 
of coverage criteria. In the mean time, we will derive more mutation operators for 
Jason agents, then implement and evaluate them, along with the low-level ones that 
we proposed in this paper but did not implement in muJason so far. 
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Other potentially valuable studies include evaluating the representativeness of mu-
tation operators for Jason (or other agent languages), improving the efficiency of mu-
tation testing for multi-agent systems (e.g. by auto-reduction of equivalent mutants) 
and mutation of other aspects of multi-agent systems (e.g., environments, organiza-
tions and semantics). 
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Abstract. In contemporary autonomous systems, like robotics, the need to
apply group knowledge has been growing consistently with the increasing com-
plexity of applications, especially those involving teamwork. However, classical
notions of common knowledge and common belief, as well as their weaker ver-
sions, are too complex. Also, when modeling real-world situations, lack of knowl-
edge and inconsistency of information naturally appear. Therefore, we propose
a shift in perspective from reasoning in multi-modal logics to querying paracon-
sistent knowledge bases. This opens the possibility for exploring a new approach
to group beliefs. To demonstrate expressiveness of our approach, examples of so-
cial procedures leading to complex belief structures are constructed via the use of
epistemic profiles. To achieve tractability without compromising the expressive-
ness, as an implementation tool we choose 4QL, a four-valued rule-based query
language. This permits both to tame inconsistency in individual and group beliefs
and to execute the social procedures in polynomial time. Therefore, a marked im-
provement in efficiency has been achieved over systems such as (dynamic) epis-
temic logics with common knowledge and ATL, for which problems like model
checking and satisfiability are PSPACE- or even EXPTIME-hard.

Keywords: Cooperation, reasoning for robotic agents, formal models of agency,
knowledge representation, tractability.

1 A New Perspective on Beliefs

Classical approaches to common knowledge capture the essence of the mutuality in-
volved in what it means to deal with common knowledge, as contrasted with dis-
tributed knowledge. According to the usual understanding, the essence of these notions
is consensus between group participants. This is clearly visible in the notion of general
knowledge E-KNOWG (every agent in group G knows), and propagation of consensus,
through iterations E-KNOWk

G up to common knowledge C-KNOWG, which informally
can be seen as an infinitely iterated stack of general knowledge operators. This manner
of building common knowledge, originating from epistemology and modal logic, cap-
tures “what every fool knows” [28, 44], [23, Chapter 2]. Indeed common knowledge is
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helpful in drawing common consequences from commonly known premises, which is
invaluable in creating models of others. But this comes at the price of super-polynomial
complexity, causing grave problems when engineering multi-agent systems for use in
time-critical situations [5, 24].

Theories dealing with various notions of knowledge and teamwork in multi-agent
systems have been developed, among them the multi-modal logic TEAMLOG [23].
TEAMLOG allows to precisely model notions motivating agents to cooperate, such as
collective intention, which integrates a strictly cooperative team together into a whole,
and collective commitment, leading directly to team action based on a social plan that
delineates how subgoals have been delegated to agents that have committed to perform
them. Since teamwork occurs in various very diverse forms, it would not suffice to in-
troduce one iron-clad notion of collective intention or collective commitment. Instead,
using the expressive power of TEAMLOG, both notions should be calibrated to fit a va-
riety of circumstances. The elements that vary from context to context are the levels
of agents’ awareness about the agent itself, other agents and the environment. Various
forms of knowledge and beliefs constitute a fundamental layer of TEAMLOG.

As the role of group knowledge has recently evolved, it may instead be useful for
participants to preserve their individual beliefs, while at the same time being a member
of a larger group structure with group beliefs that govern the group’s behavior. Instead
of “what every fool knows”, group knowledge would then tend to express synthetic in-
formation extracted from the information delivered by individuals. Thus, more so than
in classical epistemic and doxastic logical approaches, there should be a clear distinc-
tion between agents’ individual informational stances and the groups’ ones. Consensus
is not a requirement anymore, as group members do not necessarily adopt group con-
clusions. It suffices that during the group’s lifetime they obey them.

In autonomous systems, the need to apply group knowledge has been growing with
the increasing complexity of real-world applications, especially those involving cooper-
ation or teamwork. A field that particularly expanded recently is robotics. In fact, con-
temporary robotics has now advanced so far that it has become necessary to investigate
performance issues. Since more and more intelligent robots are able to autonomously
perform sophisticated and precise maneuvers, we inevitably approach the era of strict
cooperation among robots, software agents and people. Typical examples of such coop-
eration are emergency situations or catastrophes [2, 17, 24, 37, 47].

During robots’ cooperation, an attempt to create consensus seems to be superflu-
ous. Instead, in time-critical situations it is essential to reduce the complexity of both
communication and reasoning. It is often too computationally costly to establish and
reason about common beliefs and common knowledge. Especially when the informa-
tion derives from different sources and is imprecise, problems arise due to the properties
discussed in [21], including limited accuracy of sensors and other devices, restrictions
on time and other resources, unfortunate combinations of environmental conditions,
and limited reliability of physical devices. This combination of properties inevitably
introduces inconsistencies on many different levels: in the information available to in-
dividual agents, between different agents, as well as between agents and groups and
between groups and groups.
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Even though in classical logical approaches, inconsistency immediately trivializes
reasoning — “Ex falso sequitur quodlibet” — we intend to avoid such an effect. Robots
are often sent to unknown terrains and face a need to sensibly proceed regardless of
their ignorance and/or inconsistent information. This leads us to a paraconsistent ap-
proach, i.e., an approach that tolerates inconsistencies.1 Thus, instead of fighting with
inconsistencies, we treat them as first-class citizens. Typically, they need to be resolved
sooner or later, depending on the situation in question, but in some reasonable cases
they can even remain unresolved (see, e.g., [29]).

How to formally model such complicated situations? First of all, Dunin-Kȩplicz and
Szałas [19,21] have proposed a shift in perspective: from reasoning in multi-modal sys-
tems of high complexity to querying (paraconsistent) knowledge bases. This has led
to a novel formalization of complex beliefs. In order to bridge the gap between ideal-
ized logical approaches and their actual implementations, the novel notion of epistemic
profile serves as a tool for transforming preliminary beliefs into final ones.

An epistemic profile reflects an agent’s individual reasoning capabilities: it defines
a schema in which an agent reasons and deals with conflicting information and igno-
rance. These skills are achievable by combining various forms of reasoning, including
belief fusion, disambiguation of conflicting beliefs, and completion of lacking infor-
mation. More formally, an epistemic profile corresponds to a function mapping finite
sets of ground literals to ground literals (see Definition 3.3). As epistemic profiles can
be devised analogously both on an individual and a group level, we achieve a uniform
treatment of individual and group beliefs.

Various challenges occurring when building epistemic profiles can be solved with
the use of 4QL, a four-valued rule-based query language designed by Małuszyński and
Szałas [40, 42, 53].2 Our approach builds on ideas underlying 4QL, which allows for
negation in premises and conclusions of rules. It provides simple, yet powerful con-
structs (modules and external literals) [40, 41] and more general multisource formu-
las [53] for expressing non-monotonic rules reflecting, among others, lightweight forms
of default reasoning [51], auto-epistemic reasoning [45], defeasible reasoning [49], and
the local closed world assumption [27]. Importantly, 4QL enjoys tractable query com-
putation and captures all tractable queries; this means that 4QL can express exactly
those properties which can be checked in deterministic polynomial time with respect
to the size of the database domain (see [41] for details). Therefore, 4QL is a natural
implementation tool opening the space for a diversity of applications by providing firm
foundations for paraconsistent knowledge bases used by external applications. This pa-
per is part of a larger research program started in [18–21, 25]. The main contributions
of this article are (see also Table 1):

– Providing a tractable methodology for modeling group beliefs that ensures a proper
treatment of inconsistent or lacking information, while avoiding unwanted effects
like logical omniscience;

– Implementing examples of social procedures, leading to complex belief structures,
via the use of epistemic profiles and 4QL;

1 Paraconsistency has a long tradition and is intensively investigated (see, e.g., [4]).
2 See also http://4ql.org, which provides an open source experimental interpreter of 4QL.
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Table 1. Shift in perspective on group beliefs

Traditional approaches The new approach

“What every fool knows” Synthetic information extracted from individuals or other
groups

Holistic knowledge Selected aspects only
Consensus Group members not forced to adopt group conclusions: only

required to obey them during the group’s lifetime
Logical omniscience Incomplete/inconsistent beliefs allowed
Monotonicity Non-monotonic resolution of incomplete/inconsistent be-

liefs offered
Homogeneity (typically) Heterogeneity: reasoning is individualized; heterogeneous

information sources allowed
Reasoning intractable Tractability: reasoning in deterministic polynomial time

– Showing how to tame inconsistency and incompleteness in individual and group
beliefs;

– Showing that social procedures for creating group beliefs, expressed in 4QL and
using lightweight forms of non-monotonic reasoning, can be executed in determin-
istic polynomial time.

In this paper we focus on belief formation rather than belief maintenance and revision.
Such dynamic aspects, for which 4QL is eminently suitable, will be presented in future
work.

The rest of the paper is structured as follows. Section 2 presents a robot rescue sce-
nario to be used as running example, while Section 3 presents the logical background
on belief structures, epistemic profiles and 4QL. The heart of the paper includes Sec-
tion 4, which introduces methods for creating group beliefs in 4QL according to agents’
and groups’ epistemic profiles. Section 5 focuses on solving the problem of conflicting
information at the group level. Section 6 provides a formalization of the robot rescue
scenario. Section 7 discusses the influence of group beliefs on members’ individual
beliefs. In Section 8, we show that social procedures expressible in 4QL are in fact
tractable. We end with a discussion and topics for future research in Section 9.

2 Running Example: Robot Rescue Scenario

Consider a group of robots, each equipped with a temperature sensor. In our running
example, their beliefs, as hardwired by the robots’ manufacturer, are expressed by the
following rules:

− if
(

temperature ≤ 65oC
)

then operating is safe; (1)

− if
(

65oC < temperature ≤ 80oC
)

then risk of damage is serious; (2)

− if
(

80oC < temperature
)

then it is certain that operating is impossible. (3)
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Assume that there is fire in certain regions, resulting in a high temperature in these
regions and their neighborhoods. Let a surveillance team team = {r1, . . . , rk} (k > 1)
of robots be formed, whose group beliefs include the one that searching for victims is
more important than preserving robots. An example of a group belief can be:

− enter the affected region and search for victims unless it is certain
that operating in the region is impossible.

(4)

To formalize these and related rules we shall use the following relations, where R rep-
resents regions:

– temp(R, T ): temperature in R is T ;
– risk(R): situation in R is risky;
– allowed(R): entering R is allowed (perhaps also in a risky situation);
– search(R): search for victims in R.

Let us emphasize that each agent (robot) is equipped with its individual knowledge
base, so it has individual beliefs about these relations. We also assume that geographic
information system (GIS)-based information about subregions and robots’ locations is
available via the following relations:

– close(P,R): robot P is close to R;
– subreg(S,R): S is a subregion of R.

We use this robot rescue scenario throughout the paper.

3 Preliminaries

In what follows we assume that domains of objects are finite and that agents’ reasoning
is grounded in knowledge bases rather than in arbitrary theories. That is, in reasoning
we allow rules and facts and consider well-supported models only.

3.1 Language, Belief Structures and Epistemic Profiles

We view epistemic profiles as the general means to express a variety of strategies for
belief acquisition and formation. In order to apply them here, we present a summary
of some of the most important definitions from [19–21, 40, 42]. The semantical struc-
tures constituents and consequents reflect the processes of agents’ belief acquisition
and formation. An agent starts with constituents, i.e., sets of beliefs acquired by per-
ception, expert-supplied knowledge, communication with other agents, and many other
ways. Next, the constituents are transformed into consequents according to the agent’s
individual epistemic profile. Consequents contain final, “mature” beliefs.

In a multi-agent system, for each group, the group epistemic profile is set up, where
consequents of group members become constituents at the group level and such con-
stituents are further transformed into group consequents. Observe that in this way, vari-
ous perspectives of agents involved are taken into consideration and merged. Similarly,
groups may be members of larger groups, perhaps containing individuals, too, etc.
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Table 2. Truth tables for ∧, ∨, → and ¬ (see [40, 54])

∧ f u i t ∨ f u i t → f u i t ¬
f f f f f f f u i t f t t t t f t
u f u u u u u u i t u t t t t u u
i f u i i i i i i t i f f t f i i
t f u i t t t t t t t f f t t t f

As to the language, we use the classical first-order language over a given vocabulary
without function symbols, presented in [21,40,53]. We assume that Const is a fixed set
of constants, Var is a fixed set of variables and Rel is a fixed set of relation symbols.

Definition 3.1. A literal is an expression of the form R(τ̄ ) or ¬R(τ̄ ), with τ̄ being
a sequence of arguments, τ̄ ∈ (Const∪V ar)k , where k is the arity of R. Ground literals
over Const, denoted by G(Const), are literals without variables, with all constants in

Const. If � = ¬R(τ̄ ) then ¬� def
= R(τ̄). �

Though we use classical first-order syntax, the semantics substantially differs from the
classical one as truth values t, i, u, f (true, inconsistent, unknown, false) are explicitly
present; the semantics is based on sets of ground literals rather than on relational struc-
tures. This allows one to deal with lack of information as well as inconsistencies. Be-
cause 4QL is based on the same principles, it can directly be used as implementation
tool.

The semantics of propositional connectives is summarized in Table 2. Observe that
definitions of ∧ and ∨ reflect minimum and maximum with respect to the ordering:

f < u < i < t, (5)

as argued in [1, 40, 54]. Similarly, the semantics of quantifiers in formulas
∀xA(x)/∃xA(x) is defined using ordering (5), by taking the minimum (respectively,
maximum) of the truth values of A(a) for a ∈ Δ, where Δ is the domain of x.

As a reminder from [40, 54], the truth tables for conjunction ∧ and disjunction ∨
are defined as minimum and maximum with respect to the truth ordering, respectively.
The implication → is a four-valued extension of classical implication, and is used to
interpret 4QL-clauses. Whenever the body of a clause has value f or u, the truth value of
the whole clause is defined to be t. This reflects our intention not to draw conclusions
from false or unknown information: a clause with a body that is f or u is always satisfied,
so one does not need to update its head. On the other hand, from an inconsistent body,
we want to conclude that the head is also inconsistent. Thus, for a body with value i,
the implication is t if the head is i, and f otherwise. If the body takes value t and the
head takes value t or i, the implication as a whole is t. Note that, in contrast to classical
two-valued logic, it is not the case that ϕ → ψ is equivalent to ¬ϕ ∨ ψ, so the classical
abbreviations cannot be used.

Let v : Var −→ Const be a valuation of variables. For a literal �, by �(v) we
understand the ground literal obtained from � by substituting each variable x occurring
in � by constant v(x).
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Definition 3.2. The truth value �(L, v) of a literal � with respect to a set of ground
literals L and valuation v, is defined by:

�(L, v)
def
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

t if �(v)∈L and (¬�(v)) 
∈L;
i if �(v)∈L and (¬�(v))∈L;
u if �(v) 
∈L and (¬�(v)) 
∈L;
f if �(v) 
∈L and (¬�(v))∈L. �

Belief structures can now be defined as in [19,21].3 Here, the concept of an epistemic
profile is the key abstraction involved in belief formation. If S is a set, then FIN(S)
represents the set of all finite subsets of S.

Definition 3.3. Let C
def
= FIN(G(Const)) be the set of all finite sets of ground literals

over constants in Const. Then:

– an epistemic profile is any function E : FIN(C) −→ C;
– by a belief structure over epistemic profile E is meant a structure BE = 〈C, F 〉

with C ⊆C being a nonempty finite set of constituents,4 and F
def
= E(C) being the

consequent of BE . �
Importantly, final beliefs are represented as consequents.

3.2 The 4QL Rule Language

The rule language 4QL has been introduced in [40] and further developed in [42, 53].
Beliefs in 4QL are distributed among modules, illustrated by the following example.

Example 3.4. Consider the scenario specified in Section 2. With each robot we asso-
ciate a module containing relations ‘temp’, ‘risk’, ‘search’. With the group ‘team’ we
associate a module containing relations ‘risk’, ‘search’, ‘allowed’. The geographic in-
formation system module ‘gis’ contains relations ‘subreg’ and ‘close’. �

The 4QL language allows for negation in premises and conclusions of rules. It is
based on the four-valued logic described in Section 3.1. The semantics of 4QL is defined
by well-supported models [40–42, 53], i.e., models consisting of (positive or negative)
ground literals, where each literal is a conclusion of a derivation starting from facts. For
any set of rules, such a model is uniquely determined:

“Each module can be treated as a finite set of literals and this set can be com-
puted in deterministic polynomial time with respect to the number of constants
occurring in the module” [40, 42].

Thanks to this correspondence and the fact that 4QL captures PTIME, the constituents
and consequents of Definition 3.3, being PTIME-computable, can be directly imple-
mented as 4QL modules (see also Theorem 8.1).

3 Their indeterministic version is introduced and discussed in [22].
4 That is, a constituent is any set C ∈ C.
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Remark 3.5. Note that this prevents the unfortunate effects of the logical omniscience
problem (for a survey of the problem, see, e.g., [28,38,44,52]): to check whether a for-
mula A belongs to a set of beliefs of an individual or a group, one only has to determine
what is its truth value in the respective consequent. Formula A can be considered as
a query to a corresponding 4QL module, so tractability is preserved. As 4QL allows to
express PTIME-computable queries only, intractable/uncomputable classes of valid for-
mulas (e.g., expressing the consequences of the Peano axioms for first-order arithmetic)
cannot be expressed as valid beliefs unless explicitly added to knowledge bases. �

For specifying rules and querying modules, we adapt the language of [53]. To define
the language, we need the notion of multisource formulas defined as follows.

Definition 3.6. A multisource formula is an expression of the form: m.A or m.A∈T ,
where:

– m is a module name;
– A is a first-order or a multisource formula;
– T ⊆ {t, i, u, f}.

We write m.A = v (respectively, m.A 
= v) to stand for m.A ∈ {v} (respectively,
m.A 
∈{v}). �

The intuitive meaning of a multisource formula m.A is:

“return the answer to query expressed by formula A, computed within the con-
text of module m”.

The value of ‘m.A ∈ T ’ is:
{

t when the truth value of A in m is in the set T ;
f otherwise.

Let A(X1, . . . , Xk) be a multisource formula with X1, . . . , Xk being all its free vari-
ables and let D be a finite set of literals (a belief base). Then A, understood as a query,
returns tuples 〈d1, . . . , dk, v〉, where d1, . . . , dk are database domain elements and the
value of A(d1, . . . , dk) in D is v.

Example 3.7. The following formula:

∃S(gis.subreg(S,R) ∧ temp(S, T ) ∧ T > 65) (6)

states that there is a subregion of R with the temperature T exceeding 65. The
‘gis’ module stores information about subregions; the part ‘gis.subreg(S,R)’ of (6)
uses this module.5 More precisely, formula (6), understood as a query, returns triples
〈region, temperature, value〉 such that the truth value of formula (6) is value when
R = region and T = temperature.

The formula:
(∃S(gis.subreg(S,R) ∧ temp(S, T ) ∧ T > 65)

) ∈ {t, i, u}. (7)

is true when the value of formula (6) is t, i or u, and is false otherwise. �
5 It is assumed that formulas without a module label refer to the current module.
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Definition 3.8.

– Rules are expressions of the form:

conclusion :– premises. (8)

where conclusion is a positive or negative literal and premises are expressed by
a multisource formula.

– A fact is a rule with empty premises (such premises are evaluated to t).
– A module is a syntactic entity encapsulating a finite number of facts and rules.
– A 4QL program is a set of modules, where it is assumed that there are no cyclic

references to modules involving multisource formulas of the form m.A∈T . �

Openness of the world is assumed, but rules can be used to close it locally or globally.
Rules may be distributed among modules. Here follows an example, using the robot
rescue scenario of Section 2.

Example 3.9. Consider the following rules within a module, say m, of a given robot:

risk(R) :– close(R) ∧ [formula (7) = t]. (9)

¬allowed(R) :– temp(R, T ) ∧ T > 80. (10)

Rule (9) expresses the fact that region R is risky for the robot if it is close to R and
formula (7) is true. Rule (10) states that the robot is not allowed to enter regions where
the temperature exceeds 80oC.

One can query module m using multisource formulas like m.risk(R),
m.allowed(R), m.risk(R) ∈ {t, i}, etc. �

4 Between Individual and Group Beliefs

Group beliefs gather conclusions of reasoning processes of the agents involved. There-
fore, they are generally more synthetic than beliefs of group members, and deal with
selected aspects only. If not stated differently, group beliefs prevail over individual ones.
If a group belief about some aspect is missing or is inconsistent, an agent should be able
to grab adequate information from its individual belief base or possibly complete it non-
monotonically. These features should be reflected in the epistemic profiles (as discussed
in Section 3.1).

4.1 Adjusting 4QL to Epistemic Profiles

To simplify formalization of epistemic profiles in 4QL, we shall identify consequents
of robot r (or group of robots G) with a 4QL module having the same name r (respec-
tively, G). For a truth value w, we write:

– m.A = w to stand for m.A ∈ {w};
– m.A 
= w to stand for m.A ∈ {t, i, u, f} − {w}.
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Although all phenomena presented in this paper are expressible in 4QL, we shall also
use notation extending 4QL, yet simplifying the formalizations we need. For a group of
robots G = {r1, . . . , rk} (k ≥ 1), we introduce the following notation:

– ∃r ∈ G[A(r)]
def
= A(r1) ∨ . . . ∨ A(rk);

– ∀r ∈ G[A(r)]
def
= A(r1) ∧ . . . ∧ A(rk);

– #{r ∈ G | A(r)} is the number of members of G making A true (A is assumed
here not to have free variables other than r); we shall also use the abbreviation

#G
def
= #{r ∈ G | t} (the number of members of G).

Example 4.1. Consider the robot rescue scenario. Typical rules for the robots can be:

search(R) :– team.search(R)= t. (11)

¬search(R) :– temp(R, T ) ∧ T > 80. (12)

The first rule states that the robot should start searching for victims in region R if
search(R) = t is a team’s belief. If the temperature excludes the possibility of robots’
operation (see rule (3)), then the conclusion is ¬search(R). Of course, rules (11)–(12)
may lead to inconsistency when the temperature in a given region is over 80oC and
team still believes that searching that region is in order. This inconsistency can easily
be resolved. If rules (11)–(12) are in a module, say m, then the robot may use a rule
like:

¬search(R) :– m.search(R) = i. (13)

Of course, one can define more refined solutions than (13). �

4.2 Establishing Group Belief

Common knowledge and its weaker approximations, such as iterated general knowl-
edge, can be viewed as a paradigmatic form of group knowledge. However, for many
applications this is too much to ask for. After all, when using standard modal logics,
such as in [23,44], the levels of iterated general beliefs harbor the risk of combinatorial
explosion. Even for a group as small as three agents, G = {1, 2, 3}, we have:

E-BELG(p) ⇔ BEL(1, p) ∧ BEL(2, p) ∧ BEL(3, p); (14)

for k ≥ 1: E-BELk+1
G (p) ⇔ E-BELG(E-BELk

G(p)). (15)

Observe that (15), when written in full, has 3k+1 conjuncts, so the complexity of
building levels of general belief is exponential in the number of required levels, there-
fore not computable in polynomial time. Thus, for time-critical applications, one should
completely change the approach to group belief.

Actually, full-fledged general and common belief is not needed for many real-world
applications. The necessary shared belief state may result from agreement, some ex-
ample methods of which will be listed in Section 4.3. On the other hand, the notion of
distributed knowledge is sometimes referred to as “what a wise person would know”.
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Fig. 1. Implementation framework for belief structures and epistemic profiles. Arrows indicate
belief fusion processes.

This wise person would pull together the individual knowledge of group members, and
would draw only classical conclusions from the combined information [44]. Distribu-
tion of reasoning is also an important feature of our approach, but why should we limit
ourselves to classical reasoning only? Group knowledge may go even further than tra-
ditional distributed knowledge or belief: when starting from the same individual beliefs
of the group members, a variety of reasoning methods and other techniques may lead to
much more far-reaching conclusions. Epistemic profiles are introduced to encapsulate
the variety of techniques used.

4.3 Building Epistemic Profiles

Creation of group beliefs takes place in the broader context of producing derivatives,
understood as a complex process of drawing conclusions by different, temporarily ex-
isting, virtual subgroups or intermediate views [20, 21].6 When the final consequent
has been reached, the virtual subgroups involved may (but do not have to) disintegrate,
while the consequent itself is spread among initial group members. This whole process,
reflected in Figure 1 (from [20] with permission), can take place at any level of group
aggregation.7

Using well-known heuristics, agents and groups have the possibility to complete their
knowledge. Several reasoning methods can be used in the context of 4QL, as discussed
in [18, 20, 25]:

– non-monotonic reasoning including the local closed-world assumption;
– default reasoning, circumscription, etc.;
– defeasible reasoning;
– methods inspired by argumentation theory.

A variety of social procedures, in combination with the reasoning methods above, may
be used to establish different types of group knowledge or belief:

6 Note that derivatives do not occur in the definition of belief structures. They are used to define
epistemic profiles in a better structured and more readable manner.

7 Though epistemic profiles may, in general, be of arbitrary complexity, in the current paper we
only allow 4QL-based reasoning guaranteeing tractability.
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– public announcements [16];
– different voting methods [48];
– methods involving power relations [11, 35].

Example 4.2. Assume that agents in group G vote about the truth value of the formula:

temp(R, T ) ∧ T > 65. (16)

A simple way to encode such majority voting is:

risk(R) :– #{r∈G | r.[(16)]= t} > #{r∈G | r.[(16)]= f}.

The above rule can be made more subtle, e.g., by setting:

risk(R) :– #{r∈G | r.[(16)]∈{t, i}} > #{r∈G | r.[(16)]∈{f, u}}.

Of course, such voting may be made more context-dependent by using relations other
than those occurring in (16). �

It may be profitable to investigate the consequences of making group decisions based
on voting rather than, for example, lengthy persuasion dialogues, such as those needed
to establish collective intentions [13].

In appropriate circumstances, one may choose seeing rather than communicating as
a method to create group belief. This can be seen as an analogy to “co-presence” [12]:
by joint attention, the information is seen by everybody and everybody knows that the
others in the group see this, and so on. Formally, this is more restrictive than the majority
voting of the above example; for the robot rescue example such “co-presence” could
follow the rule:

risk(R) :– #{r∈G | r.[(16)]= t} = #G.

The relevant combination of social procedures and reasoning techniques is to be im-
plemented as individual and group epistemic profiles by means of multisource formulas
and 4QL modules.

4.4 Creating Virtual Groups

Sometimes a virtual group is created (among other reasons) in order to establish appro-
priate group beliefs. Whenever this happens, the virtual group’s reasoning method has
to be fixed, either implicitly or explicitly, and then represented in the virtual group’s
epistemic profile.

However complex the process of drawing a consequent from the constituents may be
in terms of subgroups involved, at the end, the resulting consequent is seen by members
of the initial group only. Analogously, in order to answer a question in daily life, you
may look at Wikipedia, ask experts, and ask friends what they think about the issue.
When you have finally drawn your conclusion, you often forget about the details of
this process and do not necessarily communicate your final conclusion to all people
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involved, but only to those who need to know. This makes the process less complex and
safer from the perspective of information security and, not to forget, also more relaxed.

The next important issue is a proper organization of reasoning processes and infor-
mation sharing between different groups and/or agents belonging to different groups
at the same time. As in everyday life, during an agent’s reasoning and activities as
a member of one group, the beliefs of other groups to which the agent belongs are tem-
porarily suspended or hidden. In this situation, the agent sees only its individual and the
current group beliefs. This way, switching between groups becomes simple and compu-
tationally efficient.8 When a group belief is formed, this does not force each member to
change its individual informational stance (Section 7). Relaxing this postulate creates
an important difference from the attainment of common knowledge in the modal logic
framework.

5 Conflicting Information

Whenever conflicting information appears, it may be resolved on the individual or group
level in a similar way. If there is no means to resolve it within a given time and other
constraints, the group can resort to less resource-demanding kinds of heuristics. As to
timing, there are at least three strategies:

– “Killing inconsistency at the root”: to solve them as soon as possible;
– On the other extreme, “living with inconsistency”: to postpone disambiguation to

the last possible moment (or even forever);
– Intermediate: to solve inconsistency each time new relevant information appears.

In the sequel, we focus on techniques for resolving inconsistencies, as those are gener-
ally independent of timing strategies.

5.1 Examples of Techniques

The context of the following simple examples is a group of robots in the rescue scenario
deciding on the truth value of search(X), which is crucial in their decision making
about whether action is needed.

Example 5.1. One can resolve potential inconsistencies using one of the following ex-
ample policies.

– Search if at least one group member is convinced to do this:

search(R) :– ∃r∈ team[r.search(R) = t]. (17)

– Search if no group member opposes:

search(R) :– ∀r∈ team[r.search(R) 
= f]. (18)

8 See also the discussion in Section 7, in particular Figure 2.
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– Search if at least one group member is convinced to do this and no group member
opposes:

search(R) :– (17) ∧ (18). (19)

Of course, there are many other reasonable ways for resolving inconsistencies, some of
them discussed below. �

In more complex scenarios, techniques for resolving inconsistency may reflect
knowledge about the application domain involving legal regulations, argumentation,
or other accepted strategies, such as the social procedures on which we focus next.

5.2 Social Procedures Solving Inconsistencies

In the subsequent example cases, the robots use different procedures to resolve incon-
sistent information about whether an area is risky, risk(reg).

Case A: peer-to-peer Solving inconsistencies among peers may not be immediately
possible. A possibility is to ignore the i-values and decide that on the group level,
risk(reg) is true. This solution takes the majority vote among the t and f votes only
and is computationally very simple, as the following example solutions indicate.

Example 5.2. SupposeG = {r1, r2, r3} and one agent assigns value i to risk(reg) while
two other agents assign t. It seems reasonable that the group then considers risk(reg) to
be true. The following rule formalizes this approach.

risk(reg) :– ∃r ∈ G(r.risk(reg) = i) ∧#{r ∈ G | r.risk(reg) = t} = 2.

Of course, this solution may be modified in particular cases, for example, when the
agent voting for i is much more reliable in estimating risk than other team members.
A rule like the above can be generalized to arbitrary numbers of agents, for example
“the majority among the agents who are voting t or f, assigns t to risk(reg)” can be
formalized as

risk(reg) :– #{r ∈ G | r.risk(reg) = f} < #{r ∈ G | r.risk(reg) = t}. �

Example 5.3. Let again G = {r1, r2, r3}. Now suppose two agents assign value u to
risk(reg), while one agent assigns t to it. What should be done with this lack of infor-
mation? In case of majority voting, it seems fine to ignore the u votes and restrict to
taking the majority among the t and f votes. Also for larger groups, even if there are
many agents assigning u to the formula, it still makes sense to compute the majority
among the t and f votes only, as done in Example 4.2. �

Case B: with authority or outside expert Let us describe several possible procedures
using the framework of 4QL, in the context of the robot rescue scenario.
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Procedure B1: A group belief identified with the leader’s or an expert’s belief

Suppose expLead is a consequent of an expert or leader knowledge base, deciding
whether certain regionsR are risky. If the expert’s or leader’s value of risk(R) = t, then
the group value corresponds. The following rules can then be used to express team’s
consequents as to the risk:

risk(R) :– expLead .risk(R) = t.

¬risk(R) :– expLead .risk(R) ∈ {u, i, f}.

Procedure B2: Conditional choice between leader, expert, and majority

A safer choice is to use all information about risk(R) based on trustworthiness:

“If there is an outside expert on risk (R), then we take his decision that
risk (R) = t as the group decision; else, if the leader’s evaluation of risk(R) is
t, then we take on the leader’s decision as group belief; else, we cast a majority
vote.”

This is reflected in the following rules, where exp is a group of outside experts and lead
is the leader:

risk(R) :– ∃e∈exp[e.risk(R) = t]. (20)

risk(R) :– ∀e∈exp[e.risk(R) 
= t] ∧ lead .risk(R) = t. (21)

risk(R) :– ∀e∈exp[e.risk(R) 
= t] ∧ lead .risk(R) 
= t ∧
‘risk(R) = t wins voting’.

(22)

Note that the voting in the last line can be formalized along the lines of Example 4.2.

To infer negative conclusions as to risk(R), one can add rules negating conclusions
and premises of (20)–(22). For example, adding such negations in rule (20), we obtain:

¬risk(R) :– ¬∃e∈exp[e.risk(R) = t].

One could also close the relation risk in various ways. If rules (20)–(22) are defined
in module m, then the simplest closure can be obtained using the following rule (in
a module other than m):

¬risk(R) :– m.risk(R) 
= t.

6 A Formalization of the Robot Rescue Scenario

Let us now formalize an illustrative example of an epistemic profile for the module team
using the robot rescue scenario of Section 2. Recall that 4QL modules can be identified
with sets of literals. In what follows we use this identification.
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The team’s belief structure consists of constituents:

– consequents of each robot r1, . . . , rk in team;
– the gis module.

To define team’s epistemic profile, we use the following derivatives:

– allClose, containing the relation risk, calculated according to votes of all agents
close to a given region;

– safe, containing the relation allowed, stating that searching a given region is al-
lowed (no certainty of damaging robots there).

The above derivatives are used for illustration purposes only.

The module allClose contains, among others, the following rules:

risk(R) :– #{r ∈ team | gis.close(r, R) = t ∧ r.risk(R) = t} >
#{r ∈ team | gis.close(r, R) = t ∧ r.risk(R) 
= t}.

¬risk(R) :– #{r ∈ team | gis.close(r, R) = t ∧ r.risk(R) = t} ≤
#{r ∈ team | gis.close(r, R) = t ∧ r.risk(R) 
= t}.

The module safe contains the rule:

¬allowed(R):– ∃r∈ team
(

gis.close(r, R)= t ∧ r.temp(R, T )= t ∧ T > 80
)

.

The team’s consequent can be defined, for example, by the following rules:

risk(R) :– allClose.risk(R). (23)

¬risk(R) :– allClose.(¬risk(R)) ∧ safe.allowed(R) 
= f. (24)

search(R) :– safe.allowed(R) 
= f. (25)

Of course, robots may have individual beliefs about risk and search(R) contradict-
ing (23)–(25). These inconsistencies can be resolved by a rule similar to (13), conclud-
ing that a robot cannot search regions where it cannot operate without being damaged.

7 From Groups Down to Agents

Group belief may be naturally used to clarify agents’ individual beliefs. For example,
if for some agent r the value of P is u or i, and for group G the value became one of
t, f, then generally it makes sense for r to adopt this latter truth value. Formally, this
could be handled by a default rule in the agent’s epistemic profile, where we distinguish
between a constituent of r, denoted by c, and its consequent, denoted by r:

if c.P ∈ {i, u} and G.P ∈ {t, f} (prerequisite) and it is consistent that “special
situation (S) does not occur” (justification), then r.P becomes G.P .

This is achieved in 4QL by placing the following rules in the module implementing
consequent r:

P :– c.P ∈ {i, u} ∧G.P = t ∧ S ∈ {f, u}.
¬P :– c.P ∈ {i, u} ∧G.P = f ∧ S ∈ {f, u}.
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This way, coherence of knowledge can be maintained. The process does call for calcu-
lating a new well-supported model. Such downward reflection is useful when the group
decides about critical situations. Then each individual should follow this.

When a decision is not life-critical, different opinions remain possible. For example,
when a jury decides that the Best Paper Prize should be given to A while an individual
jury member would have preferred B, (s)he can keep her/his opinion while the group
decision stands. Similarly when a program chair decides that a certain paper is accept-
able for the proceedings, individual program committee members do not need to agree
to the group decision. The mode of adaptation to group beliefs needs to be included
in everyone’s epistemic profile. This real-world model of the information flow between
a group and its individual members fits to many contexts better than common knowl-
edge.

While 4QL does not allow for circular dependencies between modules, it is important
to note that there may be loops in managing beliefs when circular dependencies among
individuals and groups occur in applications, for example, due to the used updating
policies. However, it is the responsibility of application designers to avoid such loops.
The following example illustrates this issue.

Example 7.1. Consider a module m being a constituent of a group belief structure with
consequent G. Let m consist only of facts of the form:

s(a),¬s(b), s(c), . . . ,
and let G consist of the rule:

r(X) :– m.s(X) = t. (26)

Suppose further that an external application implements the following policy of updates:

m.s(X) becomes false whenever G.r(X) becomes true; (27)

m.s(X) becomes true whenever G.r(X) becomes unknown. (28)

If, at some point, a fact s(d) becomes true in m then rule (26) makes G.r(d) true. How-
ever, when G.r(d) becomes true, the update (27) makes m.s(d) false which, in turn,
makes G.r(d) unknown (the premise of rule (26) becomes false). According to (28),
whenever G.r(d) becomes unknown, m.s(d) becomes true, and a loop occurs. How-
ever, this loop is caused by the design of the update policy, being out of the scope of
4QL itself. �

To avoid loops, no circularity should be allowed. To achieve non-circularity, one may
equip each agent with several belief structures:

– the main one modeling the agent’s beliefs;
– a separate belief structure associated with each group the agent belongs to;
– other structures, when needed.

Figure 2 shows an example of such an architecture. Agent A has its “main” belief struc-
ture B with consequentF , which becomes a constituent of belief structures G1, . . . , Gk
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Fig. 2. Architecture of groups and agents. Arrows indicate the use of consequents of belief struc-
tures as constituents of other belief structures.

of groups A belongs to. For every group belief structure Gi (1 ≤ i ≤ k) there is an as-
sociated belief structure Bi within A, with constituents F and Fi. Each belief structure
Bi exists as long as A is a member of group Gi. This way agent A can easily switch
between belief structures according to the role it plays at a given moment. When Bi

is being deleted, belief structure B may be updated using information from Bi, but
circularity is avoided.

8 Complexity

Consider a static situation without knowledge base updates. Thus, we have a snapshot
of a system consisting of, say, k individuals and n groups, each of them computing its
consequents according to its epistemic profile (Definition 3.3). Since data complexity
of 4QL is PTIME and 4QL captures PTIME (see [41,42]), we have the following result,
where, as usually, finite domains are assumed.

Theorem 8.1. Assume that the number of constituents of each individual as well as
the number of belief structures associated with each individual/group is bounded by
a constant. Let k be the number of agents and let n be the number of groups under
consideration.

– If each constituent and epistemic profile involved is implemented in 4QL, then the
complexity of computing them all is O

(

(k+n)∗p(|Const|)), where p is a polynomial
and Const is the set of constants occurring in constituents and epistemic profiles.

– Every epistemic profile/belief structure computable in deterministic polynomial
time (PTIME with respect to data complexity) can be expressed in 4QL (assum-
ing linear ordering on Const is given). �

Note that in this way, tractability is achieved. Though complexity depends on k and
n, these parameters reflect the numbers of individuals and groups involved in a given
mission. Such individuals and groups must have been generated somehow, so we can
safely assume the existence of computational capacity to handle them.
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If system dynamics is considered, Theorem 8.1 guarantees that every time updates
need to be performed, they can be done in deterministic polynomial time. In fact, the
role of 4QL is to provide firm foundations for knowledge bases used by applications ex-
ternal to 4QL. The application’s behavior and complexity are controlled by its designers
(see also Example 7.1).

Note that there is a price to pay for tractability of our approach. Namely, we neither
allow disjunctive facts nor disjunctive conclusions of rules, so without additional con-
structs we cannot express unrestricted disjunctive reasoning unless PTIME =NPTIME.
On the other hand, all tractable reasoning schemata are captured by our framework, so
all tractable forms of disjunctive reasoning are expressible, too, though not necessarily
directly.

9 Discussion and Conclusions

In the current literature on knowledge and beliefs, modal logic-based approaches are
dominant. Even though they suit very well to idealized epistemic theories, they are
hardly applicable to real-world complex scenarios. In order to apply them one needs
to use some restricted versions of modal logics, like in [36, 46]. However, neither of
these approaches deals with inconsistent knowledge bases and [36] deals solely with
limited forms of incomplete multi-agent knowledge. In contrast, in the current paper
we offer a novel approach to group beliefs, intended to bridge the gap between theory
and applications.

We also introduce a variety of social procedures for creating group beliefs within
a paraconsistent four-valued framework offered by 4QL, allowing for tractable reason-
ing. Importantly, our approach does not share unwanted omniscience effects like closure
under logical consequence or irrelevant belief handling.

To the best of our knowledge, a paraconsistent approach to beliefs has so far mainly
been pursued in the context of belief revision [43, 50], not the creation of group be-
liefs. These other approaches substantially differ from ours. Their models are based on
criteria and rationality indexes [50] or on relevant logic [43].

Accepting four rather than two logical values considerably simplifies our approach
where one is not forced to find general embeddings of {t, i, u, f} into {t, f} that would
work in all considered contexts. Instead, we offer a framework in which such embeddings
can much more easily be obtained either totally or partially, or even avoided altogether,
in a highly context- and user-dependent manner. To our knowledge, such flexibility, ex-
pressiveness and at the same time tractability has not been achieved before.

We have taken into account that agents are heterogeneous in the ways that they rea-
son; this in contrast to classical epistemic logics, which view agents as if they were
homogeneous; a recent exception is the work by Liu [39]. Agents’ reasoning patterns
may differ significantly, which is reflected in the epistemic profiles of individual agents
as well as of different (sub-)groups. Another approach to heterogeneity of information
sources is proposed in [6, 10, 31, 32], where multi-context systems are considered. In-
consistencies in multi-context systems are addressed, e.g., in [7,26]. To fuse knowledge
from various contexts, bridge rules are used. However, the associated reasoning prob-
lems are typically of high complexity [7].
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Developed from logic programming, answer set programming has been used to for-
malize qualitative decision making in individual agents [9, 30]. However, to decide
whether a given program has some answer set is NP-complete already in the proposi-
tional case while non-grounded programs have exponentially higher complexity [8]. In
a multi-agent epistemic context Baral et al. [3] provide an answer set programming ap-
proach to group beliefs; in their approach, reasoning problems such as the muddy chil-
dren puzzle, however, inherit their high complexity from modal logic. In addition, like
the modal approaches discussed above, the above-mentioned answer set programming
approaches allow only consistent models and do not provide means for disambiguating
inconsistencies.

There are also many techniques for resolving inconsistencies other than those pre-
sented and discussed in our paper. In particular, one could apply techniques known from
defeasible reasoning [49]. One could also think of applying Boolean games in which
control over specific literals is assigned to different agents. For some examples from the
extensive literature, we refer to [11, 33, 35, 48].

We have also proposed some extensions to 4QL, allowing one to express a rich reper-
toire of combinations of social procedures with non-monotonic reasoning techniques
and inconsistency disambiguation, based on the possibilities of 4QL. Although these
extensions can be expressed in “pure” 4QL, we have achieved their substantial simpli-
fication here, which also is a novel contribution.

We have represented epistemic profiles, belief structures and social procedures for
creating group belief in 4QL, discussing a number of example procedures of increasing
intricacy. Theorem 8.1 then shows that all these aspects can be executed in polynomial
time. This is a marked improvement over some of the most well-known logics for multi-
agent systems. More precisely, for modal logics incorporating common knowledge or
common belief, model checking is PSPACE-complete, while the satisfiability problem
is EXPTIME-complete [16, 23, 44]. For logics of propositional control and coalition
logics, both model checking and satisfiability are PSPACE-complete [35]. Finally, for
alternating-time temporal logic (ATL), both model checking and satisfiability are even
EXPTIME-complete [34,55]. In real-time applications like time-critical teamwork, the
advantages of using a tractable approach such as the one advocated here are essential.

In future work, we will also apply our approach to finding tractable solutions for
classical puzzles in epistemic logic, such as the wise men, the muddy children, and the
sum and product puzzle. These are classically formalized and solved by constructing
(dynamic) epistemic models, which are often huge in terms of the input [14,15,28,44].

This paper is part of a larger research program. Here, we focus on belief formation in
heterogeneous groups, while dynamical aspects, such as maintenance of group beliefs
and belief revision, are left to future research. A general problem in robotics is how the
activities of different groups dovetail and interleave together. This needs to be smartly
organized to allow agents to smoothly switch between activities in different groups.
While the focus of this paper is agents’ reasoning via individual and group epistemic
profiles, in future work we will discuss the organizational part of group activities.
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4. Bézieau, J.J., Carnielli, W., Gabbay, D. (eds.): Handbook of Paraconsistency. College Publi-
cations (2007)

5. Bordini, R., Dastani, M., Dix, J., El Fallah-Seghrouchni, A. (eds.): Multi-Agent Program-
ming: Languages, Platforms and Applications. Springer (2009)

6. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context systems. In:
Proc. of the 22nd AAAI Conf. on Artificial Intelligence, pp. 385–390. AAAI Press (2007)

7. Brewka, G., Eiter, T., Fink, M., Weinzierl, A.: Managed multi-context systems. In: Walsh, T.
(ed.) Proc. of the 22nd International Joint Conference on Artificial Intelligence, IJCAI 2011,
pp. 786–791. IJCAI/AAAI (2011)

8. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun.
ACM 54(12), 92–103 (2011)

9. Brewka, G.: Answer sets and qualitative decision making. Synthese 146(1-2), 171–187
(2005)

10. Casali, A., Godo, L., Sierra, C.: A language for the execution of graded BDI agents. Logic
Journal of the IGPL 21(3), 332–354 (2013)

11. Chalkiadakis, G., Elkind, E., Wooldridge, M.: Computational Aspects of Cooperative Game
Theory. Morgan & Claypool Publishers (2011)

12. Clark, H., Marshall, C.: Definite reference and mutual knowledge. In: Joshi, A., Webber, B.,
Sag, I. (eds.) Elements of Discourse Understanding, pp. 10–63. Cambridge University Press
(1981)
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Abstract. Integrating knowledge representation approaches with agent program-
ming and automated planning is still an open research challenge. To explore the
combination of those techniques, we present a semantic model of planning do-
mains that can be converted to both agent programming plans as well as planning
problem definitions. Our approach allows the representation of agent plans using
ontologies, enabling the integration of different formalisms since the knowledge
in the ontology can be reused by several systems and applications. Ontologies
enable the use of semantic reasoning in planning and agent systems, and such
semantic web technologies are significant current research trends. This paper
presents our planning ontology, exemplify its use with an instantiation, and shows
how to translate between ontology, agent code, and planning specifications. Al-
gorithms to convert between these formalisms are shown, and we also discuss
future directions towards the integration of semantic representation, automated
planning, and agent programming.

Keywords: ontology, knowledge representation, agent plan, automated planning.

1 Introduction

Knowledge representation approaches using ontologies are being studied as promising
techniques to enable semantic reasoning, knowledge reuse, interoperability, and so on.
However, the use of ontologies integrated with agent systems and planning formalisms
is still a research path at its initial steps. To investigate this issue, we present a semantic
model to represent the knowledge about planning domains.

More specifically, we developed an ontology encoded in OWL (Web Ontology Lan-
guage) [1] to model planning domains based on the HTN (Hierarchical Task Network)
paradigm [2]. This conceptualisation was instantiated in the Protégé1 ontology editor to
model a classical problem, known as “Gold Miners”. This example demonstrates how
planning domains can be modelled in our ontology, and we also show the equivalent
agent plans and planning specifications generated from this scenario.

1 http://protege.stanford.edu/
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Furthermore, we propose algorithms to convert the OWL planning ontology to differ-
ent formalisms, such as agent programming plans in AgentSpeak [3] and planning prob-
lem domain specifications in SHOP (Simple Hierarchical Ordered Planner) [4]. These
algorithms to automatically translate from OWL to other formalisms (and vice-versa)
were implemented in Java using the OWL API [5]. Therefore, planning domains instan-
tiated in the ontology can be automatically converted to AgentSpeak [3] or SHOP [4]
code (and the other way around) using the aforementioned methods. This work aligns
the fields of knowledge representation and reasoning with the domain of automated
planning, and this opens the path to interesting research directions that are still begin-
ning to emerge in the relevant communities.

For instance, our approach enables to derive planning domain models and agent pro-
gramming plans from existing ontological knowledge, and also to convert again from
these formalisms to ontology representations. In other words, this work investigates
the integration of ontologies with agent programming and other planning formalisms
in order to explore semantic representations of planning domains. Thus, our goal is to
explore and demonstrate the utilisation of ontologies more expressively than previous
work in automated planning and agent-oriented development.

This paper is organised as follows. Next section provides a comprehensive back-
ground on ontologies, focusing on preparing the reader to relate ontologies with agent-
oriented programming and planning formalisms. A section of related work is presented
afterwards to map the state of the art on using ontologies in planning systems. Then, a
section explaining our conceptualisation (TBox, i.e., Terminological Box) is presented.
This conceptualisation is composed of classes and properties to represent planning
domains. Next, we show an instantiation (ABox, i.e., Assertion Box) of this TBox
in order to demonstrate how to use the proposed ontology to model a corresponding
planning problem. We explain how to convert from our planning ontology to AgentS-
peak [3] plans; and also from the ontology to SHOP [4] domain definitions. Algo-
rithms coded in Java with the OWL API [5] to make these conversions are discussed
afterwards. Then, we conclude this paper and point out other possible investigations
and research directions towards the integration of ontology, planning and agent
development.

2 Ontologies and OWL

Ontology is defined as an “explicit specification of a conceptualisation” [6]. A con-
ceptualisation stands for an abstract model of some aspect of the world, therefore an
ontology is a knowledge representation structure composed of concepts, properties,
individuals, relationships and axioms [7], as described in sequence. A concept is an
abstract group, set, class or collection of objects that share common properties. A prop-
erty is used to express relationships between concepts in a given domain. More specif-
ically, it describes the relationship between the first concept (i.e., the domain), and the
second, which represents that property range. An individual (also called instance, ob-
ject or fact) is the “ground-level” component of an ontology which represents a specific



Semantic Representations of Agent Plans and Planning Problem Domains 353

element of a concept or class. A relationship is an instance of a property, which relates
two individuals: one in the relationship domain, and one in its range. An axiom is used
to impose constraints on the values of classes or individuals, so axioms are generally
expressed using logic-based languages, such as first-order logic. Axioms, also called
rules, are used to verify the consistency of the ontology and to perform inferences.

The use of ontology empowers the execution of some interesting features, such as
semantic reasoners and semantic queries. Semantic reasoners, for example Pellet [8],
provide the functionalities of consistency checking, concept satisfiability, classifica-
tion and realisation. Consistency checking ensures that an ontology does not contain
contradictory facts; concept satisfiability checks if it is possible for a concept to have
instances; classification computes the subclass relations between every named class to
create the complete class hierarchy; and realisation finds the most specific classes that
an individual belongs to [8]. In other words, semantic reasoners are able to infer log-
ical consequences from a set of axioms. Reasoners are also used to apply rules such
as the ones coded in SWRL (Semantic Web Rule Language) [9]. Moreover, ontologies
can be semantically queried through SQWRL (Semantic Query-enhanced Web Rule
Language) [10], which is a simple and expressive language for implementing seman-
tic queries in OWL. OWL is a semantic web standard formalism intended to explicitly
represent the meaning of terms in vocabularies and the relationships between those
terms [1].

OWL is based on Description Logics (DL), which formed the basis of several on-
tology languages [7]. The name DL is motivated by the fact that the important no-
tions of the domain are specified by concept descriptions, i.e., expressions that are built
from atomic concepts (unary predicates) and atomic roles (binary predicates) using
the concept and role constructors provided by the particular DL. DL systems provide
various inference capabilities to deduce implicit knowledge from the explicitly repre-
sented knowledge [7]. For example, the subsumption algorithm determines subconcept-
superconcept relationships; the instance algorithm infers instance relationships; and the
consistency algorithm identifies whether a knowledge base (consisting of a set of asser-
tions and a set of terminological axioms) is non-contradictory.

Given this technological development, it is natural to think that there would be many
advantages in using it more expressively in agent-oriented software engineering. The
work reported in [11] pointed out to the following advantages of such integration: (i)
more expressive queries in the belief base, since its results can be inferred from the
ontology and thus are not limited to explicit knowledge; (ii) refined belief update given
that ontological consistency of a belief addition can be checked; (iii) the search for a
plan to deal with an event is more flexible because it is not limited to unification, i.e., it
is also possible to consider subsumption relationships between concepts; and (iv) agents
can share knowledge using ontology languages, such as the case of OWL.

This section presented a background on ontologies, where we can observe that sev-
eral advantages can emerge by using them more expressively in agent-oriented software
engineering and planning. Next section investigates the state of the art regarding related
studies integrating ontologies with artificial intelligence planning approaches.
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3 Related Work

The work in [12] explains how an OWL reasoner can be integrated with an artificial
intelligence planner. Investigations on the efficiency of such integrated system and how
OWL reasoning can be optimized for this context were also presented. In their approach,
the reasoner is used to store the world state, answer the planner’s queries regarding the
evaluation of preconditions, and update the state when the planner simulates the effects
of operators. Also, they described the challenges of modelling service preconditions,
effects and the world state in OWL, examining the impact of this in the planning pro-
cess. Specifically, the SHOP2 HTN planning system was integrated with the OWL DL
reasoner Pellet to explore the use of semantic reasoning over the ontology [12].

A generic task ontology to formalise the space of planning problems was proposed
in [13]. According with its authors, this task ontology formalises the nature of the plan-
ning task independently of any planning paradigm, specific domains, or applications
and provides a fine-grained, precise and comprehensive characterization of the space
of planning problems. The OCML (Operational Conceptual Modelling Language) was
used to formalise the task ontology proposed in [13], since it was argued that this
language provides both support for producing sophisticated specifications, as well as
mechanisms for operationalising definitions to provide a concrete reusable resource to
support knowledge acquisition and system development.

Another related work [14] defines a series of translations from ontologies to plan-
ning formalisms: one from OWL-S process models to SHOP2 domains; and another
from OWL-S composition tasks to SHOP2 planning problems. They describe an imple-
mented system which performs these translations using an extended SHOP2 implemen-
tation to plan with over the translated domain, and then executing the resulting plans. In
summary, the work of [14] explored how to use the SHOP2 HTN planning system to do
automatic composition in the context of Web Services described in OWL-S ontologies.

Reference [15] proposes a planning and knowledge engineering framework based
on OWL ontologies that facilitates the development of domains and uses Description
Logic (DL) reasoning during the planning steps. In their model, the state of the world is
represented as a set of OWL facts (i.e., assertions on OWL individuals), represented in
an RDF (Resource Description Framework) graph; actions are described as RDF graph
transformations; and planning goals are described as RDF graph patterns. Their planner
integrates DL reasoning by using a two-phase planning approach that performs DL
reasoning in an off-line manner, and builds plans on-line, without doing any reasoning.
Their planner uses a subset of DL known as DLP (Description Logic Programs) that
has polynomial time complexity and can be evaluated using a set of logic rules.

Several authors are proposing semantic representation of planning domains in on-
tologies. Also, approaches to translate among planning formalisms and ontologies are
usually explored. These approaches can involve the use of semantic reasoners before or
during the planning steps. However, to the best of our knowledge, our work is the first
to address the integration of ontologies in OWL [1] with both the HTN [2] formalism
and with agent programming plans.

Next section explains the proposed planning ontology coded in OWL [1], which is
explored to generate both agent plans in AgentSpeak [3] and SHOP [4] specifications
of planning problem domains.
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4 The Planning Ontology Conceptualisation

In classical planning, the main aim of the planning task is to attain a goal-state, which
is usually specified in terms of a number of desired properties of the world. To model
this domain, we developed an ontology, encoded in OWL [1] and built with Protégé, to
represent HTN planning domains. Protégé is an open source ontology editor which also
enables the visualisation of ontologies in different ways, the execution of semantic rea-
soners, and several other interesting features. The concepts and properties formalized
in our proposed HTN planning ontology can be visualised in Figure 1. The conceptual-
isation was created based on the definitions of [2], [16] and [17], and a description of
these concepts can be found next:

Fig. 1. Concepts and properties of the planning ontology

– DomainDefinition: A domain definition is a description of a planning domain, con-
sisting of a set of methods, operators, and axioms.

– Operator: Each operator indicates how a primitive task can be performed. It is com-
posed of: name, parameters, preconditions, a delete list and an add list giving the
operator’s negative and positive effects.

– Method: Each method indicates how to decompose a compound task into a partially
ordered set of subtasks, each of which can be compound or primitive. The simplest
version of a method has three parts: the task for which it is to be used, the precondi-
tions, and the subtasks that need to be done in order to accomplish it.

– Axiom: Axioms can infer preconditions that are not explicitly asserted in the current
state. The preconditions of methods or operators may use conjunctions, disjunctions,
negations, universals and existential quantifiers, implications, numerical computa-
tions and external function calls.

– Predicate: A predicate has a name and it contains any number of parameters. Pred-
icates are used to represent the preconditions and postconditions of actions, as well
as the state of the world (i.e., the state of affairs).
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– Parameter: A parameter is a variable symbol whose name begins with a question
mark (e.g., as ?x or ?agent), and it is used by operators, methods and predicates.

– MethodFlow: The flows of a method specify how it can be decomposed based on
the current state of the world (which is represented in predicates). Thus, each method
flow contains an ordered list of preconditions and an ordered list of methods or oper-
ators invocations. Each method must contain at least one flow.

– ProblemDefinition: Planning problems are composed of logical atoms (i.e, initial
state) and task lists (high-level actions to perform), which means, a set of goals.

– Goal: Goals in HTN are method invocations with specific parameters that the planner
will have to decompose in a sequence of operators (i.e., a plan).

– InitialState: An instance of initial state models the problem by means of predicates
that represent the state of the world at the beginning of the simulation.

The concepts that are used as domain or range of each property in the proposed HTN
planning ontology are presented in Table 1. This table illustrates formal definitions
that were developed to formalize the knowledge represented in our ontology. Some
object properties have only one concept as domain and/or range (e.g., the property has-
operator has DomainDefinition as domain and Operator as range). However, logical
expressions were also used to include more than one concept in this slot, such as the
case of the has-postcondition property that has the MethodFlow concept as domain and
the expression “Operator or Method” as range.

Table 1. Domain and range of each property in the planning ontology

Domain Property Range
DomainDefinition has-operator Operator
DomainDefinition has-method Method
DomainDefinition has-axiom Axiom
InitialState has-predicate Predicate
Method has-flow MethodFlow
Operator adds-predicate Predicate
Operator deletes-predicate Predicate
Predicate uses-parameter Parameter
ProblemDefinition has-domain DomainDefinition
ProblemDefinition has-goal Goal
Method, Operator or Predicate has-parameter Parameter
MethodFlow or Operator has-precondition Predicate
MethodFlow has-postcondition Operator or Method

Besides the classes and properties, OWL annotations were used to represent addi-
tional information in the relationships of this ontology instantiations. When represent-
ing relationships with predicates or parameters, the order in which they have to appear
must be known, which is annotated when a property targeting one of them is instan-
tiated. Annotations are also the best choice to model logical expressions among pred-
icates and which parameters are required when a method or operator instance relates
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with a predicate. Three new annotations were designed with this purpose: position,
logicalExpression and parameters. The position annotation stores the location where
that element must be written in the corresponding files, and it can be used in the fol-
lowing properties: has-flow, has-precondition, adds-predicate, deletes-predicate, uses-
parameter and has-parameter. The logicalExpression annotation was created to be used
only in relationships involving the has-precondition property. Finally, the parameters
annotation must be used only within the properties has-precondition, adds-predicate
and deletes-predicate. This annotation was employed in order to relate instances of
predicates used to define specific operators and methods with instances of parameters.

Figure 2 illustrates the concepts and properties (with their domain and range) in a
more intuitive way using the OntoGraf2 plug-in, which can be found in Protégé. In this
representation, the ontology is viewed as a graph, where the nodes are concepts and
the edges represent object properties relating the concepts. This section presented how
we modelled the concepts and properties of our HTN planning ontology using OWL.
The next sections show an instantiation (ABox) of this previously explained ontology
conceptualisation (TBox) to model a specific scenario. Then, we show the equivalent
agent programming plans in AgentSpeak [3] and planning domain specifications in
SHOP [4] derived from our ontology representation.

Fig. 2. Visual representation of our planning ontology in Protégé (OntoGraf plug-in)

5 Instantiating the Planning Ontology

To investigate the feasibility of defining a planning domain as an instantiation of our
OWL ontology, we also used the Protégé ontology editor to create a simple definition of
a planning problem domain scenario. We modelled a well-known multi-agent scenario
known as gold miners3, where agents playing the role of miners have to move in an en-
vironment, and search specific positions. Our scenario includes only one instance of the
Operator concept (named move) and one instance of Method (named pursuitPosition).

2 http://protegewiki.stanford.edu/wiki/OntoGraf
3 http://multiagentcontest.org/2006
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The operator move has two preconditions, one negative effect and one positive effect,
all represented as predicates. The method pursuitPosition has two different flows, each
one with its corresponding preconditions and effects. A snapshot of the instantiation us-
ing this scenario (gold miners) can be seen in Figure 3. It is important to highlight that
Figure 3 illustrates the ontology instantiation in Protégé that corresponds exactly to the
previously explained specification. Next we demonstrate that it is possible to convert
from our ontology formalism both to planning specifications and to agent plans. In fact,
this paper explains methods for converting among these different formalisms.

Fig. 3. Instantiating our planning ontology according to the goldminers specific planning domain

An advantage of using ontology editors is the capability of enhancing the graphic
visualisation of planning problem domains instances as well as agent plans and their
relationships, as illustrates Figure 4. This visualisation was obtained using a Protégé
plug-in known as OntoGraf, however it is possible to explore the ontologies using dif-
ferent editors. In this example, the user can visualize domain features such as how the
instances are related, and the visualization can be customized to show only the desired
characteristics of the corresponding instantiation. Moreover, an ontology representation
makes possible to explore features such as rules coded in SWRL [9] and inferences em-
powered by semantic reasoners [8]. The next sections show how to convert from our
planning ontology in OWL both to agent programming plans in AgentSpeak [3] and to
artificial intelligence planners specifications in SHOP [4].

The list of instances and their relationships is presented below, where “a : C” denotes
that the instance ‘a’ is a type of ‘C’, and “(a,b) : R” indicates that the instance ‘a’ is
related to instance ‘b’ through the property ‘R’. This list is a full description of the
example used in this paper, which corresponds to Figures 3 and 4. This example was
instantiated in the ontology to be converted both to a planning specification in SHOP
and agent plans in AgentSpeak.
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Fig. 4. Visualising the instances of our planning ontology in Protégé (OntoGraf plug-in)

domain-definition : DomainDefinition
operator-move : Operator
method-pursuitPosition : Method
pursuitPosition-flow1 : MethodFlow
pursuitPosition-flow2 : MethodFlow
parameter-agent : Parameter
parameter-to : Parameter
parameter-from : Parameter
parameter-x : Parameter
predicate-at : Predicate
predicate-next : Predicate
(domain-definition, operator-move) : has-operator
(domain-definition, method-pursuitPosition) : has-method
(operator-move, parameter-agent) : has-parameter
(operator-move, parameter-from) : has-parameter
(operator-move, parameter-to) : has-parameter
(operator-move, predicate-at) : has-precondition
(operator-move, predicate-next) : has-precondition
(operator-move, predicate-at) : deletes-predicate
(operator-move, predicate-at) : adds-predicate
(method-pursuitPosition, pursuitPosition-flow1) : has-flow
(method-pursuitPosition, pursuitPosition-flow2) : has-flow
(method-pursuitPosition, parameter-agent) : has-parameter
(method-pursuitPosition, parameter-from) : has-parameter
(method-pursuitPosition, parameter-to) : has-parameter
(pursuitPosition-flow1, predicate-at) : has-precondition
(pursuitPosition-flow1, predicate-next) : has-precondition
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(pursuitPosition-flow1, operator-move) : has-postcondition
(pursuitPosition-flow2, predicate-at) : has-precondition
(pursuitPosition-flow2, predicate-next) : has-precondition
(pursuitPosition-flow2, operator-move) : has-postcondition
(pursuitPosition-flow2, method-pursuitPosition) : has-postcondition

Besides the relationships listed above to describe the example instantiated in our
ontology, there is a data property has-name. Also, our instantiation represent positions
and parameters as annotation in these relationships.

5.1 Converting from our OWL Planning Ontology to AgentSpeak Plans

Most techniques for Multi-Agent System development are heavily inspired by the BDI
architecture (Beliefs, Desires and Intentions). For example, the AgentSpeak [18] lan-
guage was introduced in 1996 as a formalisation of BDI agents to enable agent pro-
grams to be written using a notation similar to (guarded) Horn clauses. Agents achieve
their goals through the use of plans that can be composed of sub-plans and that are
ultimately converted into actions. This approach is similar to the one used in the HTN
planning formalism, where methods are decomposed into operators. A plan body coded
in AgentSpeak [3] is typically a sequence of actions to be executed and further goals
to be achieved. AgentSpeak plans have three distinct parts [3]: the triggering event, the
context, and the body. Together, the triggering event and the context are called the head
of the plan. The three plan parts are syntactically separated by ‘:’ and ‘<–’ as follows:

Syntax of AgentSpeak Plans

1 triggering_event : context <- body.

The following code (miner.asl) corresponds to a plan in AgentSpeak generated from
our planning ontology instantiation. The scenario is the gold miners previously ex-
plained, and this example respects the presented AgentSpeak plan syntax [3]. Every
instance of the Operator concept is mapped to an agent plan: its name becomes the
triggering event, its preconditions form the context and its effects becomes the body.
Similarly, each instance of Method is also translated to an AgentSpeak plan, with its
corresponding preconditions and decomposition scheme. Both the operators and meth-
ods mantain their parameters when being converted from the ontology to agent code.

Our gold miners scenario instantiated in the ontology generates the miner.asl code
which is depicted below. It can be noted that the move Operator becomes a plan with
the triggering event +!move(Agent, From, To). The context of this plan is composed of
a conjunction of two instances of Predicate: at(Agent, From) and next(From, To). The
body (or effect) of this plan is to execute the external action move(Agent, From, To) in
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the environment, to remove the belief at(Agent, From), and to add the belief at(Agent,
To). Similarly, our scenario depicts how a Method in our ontology is converted to an
AgentSpeak plan. The main difference from the Operator previously explained is that
the plan body is composed of goals to be achieved by the agent.

miner.asl (AgentSpeak code generated from our planning ontology)

1 +!move(Agent, From, To) :
2 at(Agent, From) & next(From, To) <-
3 move(Agent, From, To);
4 -at(Agent, From);
5 +at(Agent, To).
6

7 +!pursuitPosition(Agent, From, To) :
8 at(Agent, From) & next(From, To) <-
9 !move(Agent, From, To).

10

11 +!pursuitPosition(Agent, From, To) :
12 at(Agent, From) & next(From, X) <-
13 !move(Agent, From, X);
14 !pursuitPosition(Agent, X, To).

The contribution of this section is to sketch how an HTN domain in our ontology can
be mapped into an AgentSpeak program (however, detailed translation algorithms and
implementation are future work).

5.2 Converting from our OWL Planning Ontology to SHOP Domain Definitions

SHOP is a HTN planning system based on ordered task decomposition whose syntax
and semantics are given in [4]. In other words, SHOP is a HTN-planner implementation
which enables domain-independent automated planning. In HTN planning, the objec-
tive is to create a plan to perform a set of tasks (abstract representations of things that
need to be done), starting with an initial state-of-the-world. HTN planning is done by
problem reduction: planners recursively decompose tasks into subtasks until they reach
primitive tasks that can be performed directly by planning operators. A set of methods
is required in order to tell the planner how to decompose nonprimitive tasks into sub-
tasks, where each method is a schema for decomposing a particular kind of task into a
set of subtasks (provided that the preconditions are satisfied).

We briefly highlight SHOP syntax in the code below to facilitate the understanding
of how an instantiation can be converted from our ontology to SHOP specifications.
Similarly to our ontology, the SHOP formalism is composed of operators and methods,
which can contain preconditions and effects.
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Syntax of SHOP Planning Domain Definitions

1 (defdomain domain_name (
2 ( :operator (!operator_name ?parameters)
3 ((preconditions ?parameters))
4 ((negative_effects ?parameters))
5 ((positive_effects ?parameters)))
6

7 ( :method (method_name ?parameters)
8 ((preconditions ?parameters))
9 ((method_or_operator ?parameters)))

10 )

The following code illustrates the corresponding SHOP domain definition (named
gold miners) which corresponds to the previous explained scenario instantantied in our
ontology as example. We can observe that the instances of Operator and Method (and
its corresponding relationships) are converted in the generated miner.jshop specification
depicted below. More details about the algorithms to convert from our planning ontol-
ogy to the SHOP planning domain specifications (and vice-versa) can be found in the
next section of this paper.

miner.jshop (SHOP code generated from our planning ontology)

1 (defdomain goldminers (
2 ( :operator (!move ?agent ?from ?to)
3 ((at ?agent ?from) (next ?from ?to))
4 ((at ?agent ?from))
5 ((at ?agent ?to)))
6

7 ( :method (pursuitPosition ?agent ?from ?to)
8 ((at ?agent ?from) (next ?from ?to))
9 ((!move ?agent ?from ?to)))

10

11 ( :method (pursuitPosition ?agent ?from ?to)
12 ((at ?agent ?from) (next ?from ?x))
13 ((!move ?agent ?from ?x) (pursuitPosition ?agent ?x ?to)))
14 )

6 Planning and Ontology Conversions

This section demonstrates, in a high level of abstraction, the algorithms implemented in
Java to convert OWL ontologies to SHOP specification files, and vice-versa, which is
from SHOP domain definitions to the corresponding OWL ontology instances. Thus, we
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established a bidirectional mapping among the elements of our OWL planning ontology
and the elements represented in the SHOP domain specifications. The same principle
might be applied to convert among our ontology and AgentSpeak code, such as previ-
ously demonstrated with an example in this paper, however algorithms for doing that
are not presented in this work.

6.1 Converting from the OWL Ontology to SHOP

The OWL API [5] was used to read the ontology elements and parse each one of them,
and Java was used to write them in a corresponding jshop file. OWL API is an open
source Java API (Application Programming Interface) for creating, manipulating and
serialising OWL ontologies.

The instances, concepts, properties and annotations in the ontology previously pre-
sented are queried and the corresponding SHOP component is generated to that specific
ontology element to construct the corresponding jshop file. For example, Operator’s
instances might be related with Parameter’s instances through the has-parameter prop-
erty, and with instances of Predicate by means of the properties has-precondition, adds-
predicate and deletes-predicate. The algorithm for converting the OWL to a jshop file
is the following:

for each instance df of DomainDefinition concept do
create the jshop corresponding file
operators ← has-operator relationships of df
for each Operator op in operators do

extract op information from the ontology
write op parameters, conditions and effects in order

end for
methods ← has-method relationships of df
for each Method met in methods do

extract met information from the ontology
write met parameters and flows in order

end for
end for

6.2 Converting from SHOP to the OWL Ontology

Previous section demonstrated how one example is converted from our ontology both
to SHOP specifications and AgentSpeak code. This section shows the algorithms to
convert both from the ontology to SHOP domain, and vice-versa, which are already
implemented. However, the algorithms to convert between ontology and agent plans
are currently being developed, but we already exemplified how this conversion can be
made in this paper.

The OWL API [5] was also used to write the ontology elements, after implementing
a parser in Java to read and interpret the jshop file. This approach makes the opposite
direction from the previous one, which converted from the OWL planning ontology to
a specification in SHOP.
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In this algorithm, for each component found when parsing the jshop file, such as a
new operator or method, then the equivalent OWL individual is created with the OWL
API and included in the ontology instantiation being created (which can be instances,
object properties, data properties or annotations). For example, when reading an Oper-
ator, it is required to extract its parameters, preconditions and effects; however while
reading a Method, the information to be extracted concerns about its parameters and
flows. The algorithm to convert a jshop file to a corresponding instantation of our OWL
planning ontology is the following:

while there are tokens remaining in the jshop file do
token ← nextToken()
if token = defdomain then

create corresponding DomainDefinition instance
end if
if token = operator then

create corresponding Operator instance
read its parameters, preconditions and effects
create the corresponding ontology elements

end if
if token = method then

create corresponding Method instance
read its parameters and flows
create the corresponding ontology elements

end if
end while

7 Final Remarks

We presented an investigation towards the integration of agent-oriented programming
and automated planning with semantic technologies. More specifically, this paper pro-
posed an ontology to represent planning formalisms. Our ontology was developed in
OWL [1] to represent HTN [2] domains and problems in the context of automated
planning and agent-oriented programming. The proposed ontology was instantiated to
exemplify its use and to demonstrate its feasibility. Also, we presented algorithms to
convert specifications between different formalisms such as OWL [1] and SHOP [4].
The algorithms have been coded in Java using the OWL API [5].

Given the similarities among planning formalisms and agent programming plans, we
also explored how to generate a corresponding AgentSpeak [3] code, which is a logical
language to program agent plans. As examples of relations between concepts in these
two formalisms we can currently highlight: method & plan; precondition & context;
and operator & external action. Thus, we also explored how to convert from our OWL
[1] planning ontology to AgentSpeak [3] plans, and vice-versa. In other words, our
approach enables new ways to derive both planning specifications and agent code.



Semantic Representations of Agent Plans and Planning Problem Domains 365

As pointed out in [15], the use of OWL ontologies as a basis for modelling domains
allows the reuse of knowledge in the semantic web. However, research in this direction
is still in their initial steps. We have briefly discussed the state of the art of approaches
that integrate ontologies with planning and agent-oriented programming, commenting
on their findings and contributions.

As future work, we plan to investigate ontology reasoning mechanisms and semantic
technologies features within the scope of our planning ontology. One example would
be creating rules (e.g., in SWRL [9]) to infer knowledge such as inconsistencies in on-
tology instantiations. The ability to use ontologies to infer and generate knowledge over
a domain is a motivation to investigate how ontology representations can be integrated
with planning and agent-oriented programming. Thus, as next step in this direction, we
will explore advantages of using the semantic reasoning enabled by ontologies.

Another interesting area to explore is extending the planning ontology to address
further planning characteristics, such as non-deterministic HTN planning formalisms.
However, if the conceptualisation changes, the parsers may have to be adjusted ac-
cordingly to handle new concepts and properties in the ontology. Currently, we plan to
continue assessing the correctness of our algorithms (for converting between OWL [1]
to SHOP [4]) by testing them with more examples. Moreover, we are currently coding
the algorithms to convert beween the ontology and AgentSpeak [3].

This work investigated the conversion from OWL [1] ontologies to both SHOP [4]
and AgentSpeak [3], since these languages are used in our research project, but in a
similar way different planning systems and agent programming languages could also
be explored. The inclusion of ontology-based semantic technologies in such complex
multi-agent platforms is expected to bring together the power of knowledge-rich ap-
proaches and complex distributed systems.
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Abstract. Normative systems offer a means to govern agent behaviour in dy-
namic open environments. Under the governance, agents themselves must be able
to reason about compliance with state- or event-based norms (or both) depending
upon the formalism used. This paper describes how norm awareness enables a
BDI agent to exhibit norm compliant behaviour at run-time taking into account
normative factors. To this end, we propose N-Jason, a run-time norm compliant
BDI agent framework supporting norm-aware deliberation as well as run-time
norm execution mechanism, through which new unknown norms are recognised
and bring about the triggering of plans. To be able to process a norm such as an
obligation, the agent architecture must be able to deal with deadlines and prior-
ities, and choose among the plans triggered by a particular norm. Consequently,
we extend the syntax and the scheduling algorithm of AgentSpeak(RT) to operate
in the context of Jason/AgentSpeak(L) and provide ‘real-time agency’, which we
explain through a detailed examination of the operational semantics of a single
reasoning cycle.

Keywords: Norms, BDI, Agent Programming Language, Normative System.

1 Introduction

In conventional development of BDI agents, norm compliance is typically achieved by
design. That is, by specifying plans that are triggered by detached norms, because the
agent programmer knows which norms the agent shall adopt, and then prioritising those
rules so that the supporting norms are chosen over those preferred by the agent’s mental
attitudes, in order to suppress conflicts between the normative and the agent’s existing
goals. This creates an undesirable dependence between the agent implementation and
the norm implementation, which creates two issues:

1. When an agent encounters new and unknown norms, which were not taken into
account at design time, there is typically no plan to deal with those norms in the
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plan library at run-time. Hence, norm compliant behaviour cannot normally be ex-
hibited because the norms are unavoidably ignored. Yet worse, agents may suffer a
punishment from the enforcement of the normative system as a result of a violation
caused by their incapacity to process the normative event.

2. The hierarchical prioritisation of normative over ordinary plans deprives an agent
of its autonomy, since the norms in effect are treated as hard constraints, whose
violation is not possible.

We believe that such tensions can be resolved by the use of an extended model of
norm awareness. In the literature on BDI agents, norm awareness, which is a precursor
to norm compliance, is typically manifested in two places: (i) at the perception level,
by taking new unknown norms into account as part of the generic execution mecha-
nism [13,14] and (ii) at the deliberation level, by attempts to resolve the conflict be-
tween normative factors and agents’ mental attitudes [1,9]. We propose to coalesce
these approaches into one ‘sense–think–act’ reasoning cycle informed by the concept
of awareness, which Charlton [4] describes as the capacity “to select and integrate
relevant inputs from a complex environment to enable humans or animals to choose be-
tween a large repertoire of behavioural responses”. This definition reminds us that, in
order to be norm aware, agents should have knowledge (or understanding) about norms
in respect of: (i) what (state) the norms intend to reach or to achieve, (ii) which action
plans are appropriate to execute norms and (iii) which behaviour agents should prefer
between normative goals and the agent’s own interests.

Thus, this paper addresses the convergence of these approaches in the context of the
BDI agent architecture, in order to be able to ground the discussion of how the extended
model of norm awareness enables a BDI agent to exhibit norm compliant behaviour at
run-time. To do so, we propose N-Jason, a run-time norm-compliant BDI agent frame-
work supporting a run-time norm execution mechanism, under which new and unknown
norms are recognised and enable the triggering of an appropriate plan (if present), in
conjunction with norm-aware deliberation [1]. To be able to process a norm such as an
obligation, the agent architecture should be able to deal with deadlines and priorities,
and choose among plans triggered by a particular norm. Consequently, we extend the
syntax and the scheduling algorithm of AgentSpeak(RT) [15] to operate in the context
of Jason/AgentSpeak(L) [3] and provide ‘real-time agency’, which we explain through
a detailed examination of the operational semantics of a single reasoning cycle.

The paper is organised as follows. In §2 an institutional framework and semantics of
norms considered in N-Jason are introduced. It is followed by §3, where we present a
run-time norm compliant BDI agent framework including programming language and
interpreter. After the operational semantics in §4, related work and the contribution of
this work are contrasted in §5. The conclusion and future work are discussed in §6.

2 Institutional Framework

Normative frameworks can be viewed as a kind of external repositories of (normative)
knowledge from which (normative) guidance may be delivered to agents. Usually, a nor-
mative framework is composed of a set of rules whose purpose is to model the normative
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positions established by the actions of agents and hence realise the governance of indi-
vidual agents in the society. These rules are not hard-coded recipes presenting reactive
behaviours, such as those in the static expert systems, but rather describe consequences
arising from observations for the purpose of reasoning about the current context, result-
ing in situation-specific norms. The framework identifies not only correct and incorrect
actions but also norms such as obligations, permissions and prohibitions through the
institutional trace that records its evolving internal state, subject to observed external
events representing actions in the external world.

Depending on the formalism of the normative system, norms can be categorised as
state- or event-based. State-based norms usually express higher level norms that impose
desirable or required states on the system (or an environment), often as a logical combi-
nation of institutional facts, which should be brought about by the actions of agents [8].
In contrast, event-based norms generally represent relatively lower level activities ad-
dressing possibly executable events (or actions) at the individual agent level [7]. In this
paper, we use Cliffe’s institutional model [5] for the purpose of providing detached
event-based norms, upon which we develop the run-time norm compliance model pre-
sented here.

The institutional framework provides a formal action language InstAL to specify
norms, describing coordinations and interactions between agents and (or) environments
in the context of an institution. The normative specification is translated to a computa-
tional model that utilises Answer Set Programming (ASP) [10], which enables reason-
ing about the current context described in the institution. The institution is composed
of a set of institutional states, evolving over time triggered by the occurrence of both
internal and external events. An institutional state is a set of fluents which are present
(denoting true) or absent (denoting false) at a given time instant. In addition, such insti-
tutional fluents are divided into domain fluents and normative fluents which are further
partitioned into: (i) power (W) – indicates events that are empowered to bring about
institutional change (ii) permission (P) – indicates events that can occur without vio-
lation, and (iii) obligations (O) – specifies events that are obliged to happen before the
occurrence of a deadline (e.g. a timeout), or else a violation occurs.

These normative fluents represent the normative consequences of particular
behaviours which should be achieved by agents in a certain context. For example, if
an agent X is obliged to carry out an action act by deadline deadline otherwise the vio-
lation event violation is generated, the form of the normative information is represented
as:

obl(act, deadline, violation) (obligation)

Also if an agent X is permitted to perform an action act, then the representation is:

perm(act) (permission)

The determination of those normative consequences is carried out using an answer set
solver driven by a rule-based specification (InstAL ) which explores all possible out-
comes derivable from the institutional state arising from the occurrence of a single
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event1 as determined by the generation and consequence rules that comprise the insti-
tutional model.

Lee et al. [12] demonstrate a governance mechanism using this institutional model
that shows how the normative consequences of particular actions can be delivered to
agents’ minds as percepts (to conventional Jason agents rather than the variety de-
scribed here) either on request or by subscription, making them available for the agent
reasoning process. The components in this case comprise: (i) the virtual agents (VA)
in Second Life, (ii) an institutional model for social norm reasoning, and (iii) BDI
agents that are responsible for individual reasoning, as illustrated in Figure 1. The vir-
tual agents (VA) in the virtual world appear as sensors to the rest of the system: as soon
as virtual world events are detected in Second Life (SL), the VA turns them into sym-
bolic representations and publishes them, while both the BDI agent and the institution
subscribe to that topic. When the institution receives this information, it triggers the
social norm reasoning process, which determines the new normative positions of the
actors and identifies appropriate behaviours for the current (social) situation. This in-
formation is then published as perm(act) or obl(act, deadline, violation)
for the BDI agent to incorporate into its reasoning process, following the principles set
out in [1]. When the decision making process (for norm compliance) is completed, the
action plans are published, which are then interpreted by the VA using the atomic ac-
tions available in the virtual world – because the virtual agent actions are typically more
primitive that those of the intelligent agent.

With regards to the norm compliance in BDI agents, as described in Figure 1, van
Riemsdijk et al. suggest in [14] that one feasible approach for run-time norm execution
is the use of “pre-existing capabilities” in the agent program when an agent encounters

1 Note: the institutional model can also function as a normative oracle for an agent, if presented
with a sequence of events, in which case it derives all the possible outcomes from all possible
orderings of those events, subject to whatever constraints are specified on the ordering.
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new and unknown norms. This assumes that event-based norms can identify the asso-
ciated necessary actions, since event-based norms typically refer to relatively low-level
activities that address possibly executable events (or actions) at the individual agent
level [7]. If appropriate information can be extracted from the detached norm, such that
it is recognisable to an agent, in this way an agent presumably may execute unknown
norms and so exhibit a form of norm compliance at run-time.

For example, the act term in an obligation represents a similar level of knowledge
to plans or events in a BDI agent program. If an agent can retrieve and recognise what
action (or event) is required to be achieved, then it can trigger certain plans and at-
tempt to carry out such behaviour even though the norm is not handled explicitly in the
agent specification. With regard to the norm-aware reasoning, an agent may deduce a
preference, if it is able to know the relative priorities, and critical impact or the dead-
line of normative factors by extracting deadline and violation information. This
norm-aware reasoning may allow an agent to pursue its own preferences between its
own goals, norms and sanctions by measuring feasibility, as proposed by Alechina et
al. [1]. In this paper, we only use obligations for such purpose, in order to focus on the
essential aspects of the agent’s internal reasoning process. Additionally, we consider the
handling of prohibitions for the compatibility with other normative systems, however
they are not explicit in the institution mechanism employed here.

3 The N-Jason BDI Agent Framework

In this section we outline N-Jason, a norm aware BDI agent interpreter and its pro-
gramming language for run-time norm compliant agent behaviour. In principle, it ex-
tends Jason/AgentSpeak(L) syntactically, semantically and in the reasoning process of
the interpreter. In practice, N-Jason is conceptually similar to AgentSpeak(RT) [15],
which is capable of dealing with deadlines and priorities and scheduling intentions with
the aim of providing real-time agency. N-Jason is conceptually a superset of AgentS-
peak(RT), to which it adds normative concepts (i.e. obligations, permissions, prohibi-
tions, deadlines, priorities and durations) and norm aware deliberation.

We firstly examine work to date with regards to the programming language aspect.
This is followed by an informal explanation of the N-Jason reasoning cycle. Subse-
quently, we show how the extended model of norm awareness in BDI agents is estab-
lished by the combination of the run-time norm execution mechanism and norm-aware
deliberation.

3.1 The N-Jason Agent Programming Language

A N-Jason agent consists of four main components: beliefs, goals, events and a set
of plans. Beliefs and goals are identical to those in standard Jason, while events and
plans are extended. We now give a brief summary of the extended features of the ba-
sic elements in the agent specification. We take advantage of Jason’s plan annotation
mechanism to provide deadline, duration and priority information, so that each feature
is simply a term, such as deadline(X), duration(Y) or priority(Z), where the
parameters are (positive) integer literals. The interpretation of these annotations and
examples are covered in the following.
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Belief: A belief represents agent’s information (e.g. initial states of an agent, inter-
nal knowledge established through the reasoning cycle) and its knowledge about
the environments wherein agents are situated (e.g. percepts observed by agents,
messages containing the information about other agents and norms delivered from
normative frameworks). Typically, a belief is represented as a grounded atomic for-
mula. The collection of beliefs is referred to as a belief base, which contains belief
literals in the form of belief atoms and negations.

Goal: A goal is one of two basic types: an achievement goal or a test goal. The former
are usually specified as predicates prefixed by the ‘!’ operator. This specifies a
certain state of the environment that the agent wants to achieve, which is indicated
when the predicate associated with its achievement goal is true. The latter test goal,
for which the prefix is the ‘?’ operator, indicates that agents want to know whether
the associated predicate is a true belief.

Event: An event is the main component for triggering agent’s plans. In principle,
changes in agent’s mental attitudes (i.e. beliefs, goals and intentions) give rise to
events. There are two types of events: one is an addition event denoted by ‘+’, which
means the addition of a belief or an achievement goal. The other is a deletion event
denoted by ‘–’, referring to a recantation of a base belief.

As in Jason, an addition event is categorised by a belief addition event denoted
by ‘+’ and a goal addition event jointly denoted by ‘+’ and ‘!’. All external be-
lief changes bring about belief addition events, so as to initiate the execution of
corresponding plans. In contrast, the goal addition event results from both inter-
nal and external changes in goals. In other words, explicit goals from the users or
other agents result in a goal addition event, but also a goal addition event can be
generated by internal operations affecting the agent’s mental attitude, such as the
execution of subgoals triggered in response to an external event.

Support for normative concepts is provided by an extension of the syntax for
an event by the addition of deadline and priority information. The deadline is a
real time value indicating a deadline by which an intention should be achieved.
It is expressed in a some adequate unit of real world time. When the deadline is
passed, it is no longer feasible to achieve an intention or to give a response with
a belief change. The priority is a positive integer value that expresses the relative
importance between the achievement of an intention and responding to changes in
a belief. A larger value reflects a higher priority. Both can optionally be specified
in the annotation (a list of terms in between square brackets “[” and “]”) at the end
of an event. For example the event:

+!at(X, Y)[deadline(900), priority(10)]

specifies the goal adoption that an agent moves to the coordinate (X, Y), by the
deadline 900, with priority 10. By default, the deadline is taken as infinity and the
priority as zero. Note that the deadline and priority annotations do not play a part
in unification at plan selection stage.

Plan: A plan is a sequence of actions (and subgoals) which is a means to achieve a
(main) goal or a means to respond to changes in beliefs by agents. The plan typ-
ically consists of a head and a body, but sometimes an optional plan label, which
defines an index, a name and other information, can be specified. The head is
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composed of a triggering event, which specifies an event for which the plan is to be
used and a context specifying the condition which must be true for the plan to be a
candidate for execution. The body is a series of actions and subgoals to achieve a
main goal.

The plan is extended to support normative concepts. Given the three main ele-
ments, a duration is proposed in N-Jason, specifically in order to enable assessment
of the feasibility of the plan associated with the deadline (see §3.4). The duration
is a non-negative integer value representing a required time to execute the plan. In
principle, the duration may be determined by the summation of an execution time
of each external action in the plan body. For simplicity, we follow the assumption
described in [1], that the estimated time for each external action is fixed and already
known. Like deadline and priority, a duration can be optionally specified in the plan
label in the form of an annotation (a list of terms in between square brackets “[”
and “]”). For example, the plan:

@plan[duration(50)]
+!at(X, Y) : req(ag)
<- move_toward(X, Y); !ack(ag).

is triggered by the request from the agent ag to move to the coordinate (X, Y), and
then to send back an acknowledgement to ag. The required (or estimated) execution
time of the plan is 50.

3.2 The N-Jason Interpreter

The interpreter plays an important role in the operationalisation of agent programs.
The agent’s belief base, intentions and events are manipulated by the interpreter, and
practical reasoning consisting of deliberation and means-ends reasoning is performed
to achieve a goal or to respond to environmental changes.

During a single reasoning cycle, run-time norm compliance is accomplished by an
extended model of norm awareness that has three steps:

1. Event Reconsideration, to find out what the norm is intended to achieve or to reach,
2. Option Reconsideration, to identify which plan is the most appropriate in response

to the norm,
3. Intention Scheduling, to confirm the decision about which behaviour agent would

prefer between goals, norms and sanctions.

The interpreter code of N-Jason is shown in Algorithm 1. B is the belief base, E is
the event base, G is a set of goals and I is a set of intentions of an agent. The func-
tion create-tevent encodes a percept as a triggering event and returns it. The function
add-event updates the agent’s event base with an event which is a pair of a trigger-
ing event and an intention. The function update-belief updates the agent’s belief base
with a percept p. The function type returns a type of p, either obligation or prohibition,
if p is a norm. The function edp constructs a triggering event using the terms in the
event-based norm, if the type of p is a norm (e.g. obligations). The functions EVENT-
and OPTION-RECONSIDERATION accomplish the run-time norm execution mecha-
nism described in §3.3. The main algorithm of the SCHEDULE function which carries
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Algorithm 1. N-Jason Interpreter Reasoning Cycle
1: B :=B0 /* B0 are initial beliefs */
2: G :=G0 /* G0 are initial goals */
3: E :=E ∪G
4: P :=P ∪N /* P are percepts and N are norms */
5: for all p ∈ P and p /∈ B do
6: tep = create-tevent(p)
7: Rtep := {πθ | θ is a mgu for tep and plan π}
8: if Rtep �= ∅ then
9: E :=add-event(E, tep)

10: else if Rtep = ∅ and type(p) = (obl | proh) then
11: E :=EVENT-RECONSIDERATION(p)
12: end if
13: B :=update-belief(B, p)
14: end for
15: for all 〈te, τ 〉 ∈ E do
16: Ote := {πθ | θ is an applicable unifier for te and plan π}
17: πθθ′ := SO(Ote) where θ′ is a context unifier for te and plan π
18: if πθθ′ = nil then
19: πθθ′ := OPTION-RECONSIDERATION(te)
20: end if
21: if πθθ′ �= nil and τ /∈ I then
22: I := I ∪ πθθ′

23: else if πθθ′ �= nil and τ ∈ I then
24: I := (I\τ ) ∪ push (πθθ′σ, τ ) where σ is an mgu for πθθ′ and τ
25: else if πθθ′ = nil and τ ∈ I then
26: I := (I\τ )
27: end if
28: I :=SCHEDULE(I)
29: if I �= ∅ then
30: I :=EXECUTE(I)
31: end if
32: end for

out norm-aware intention scheduling is shown in §3.4. The internal operation of the
N-Jason interpreter is extended from [15]. We use the same notations as in [15] for
consistency and comparability.

We now give an informal explanation of one reasoning cycle in the interpreter. At the
start (lines 1–4), we assume that an agent perceives knowledge (P ) from its environment
and about its normative positions (N ) (e.g. obligations) from one or more institutional
frameworks. N is treated just like P , that is a form of percept at this stage, by the
interpreter (line 4).

The belief base (B) and the event base (E) are updated by P in the belief update pro-
cess (belief-update-function (buf) more precisely) (see lines 6–13). This belief update
involves the creation/addition of events in response to each new percept. Once a percept
(p) is encoded as a triggering event (tep) by the function create-tevent, the interpreter
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checks whether tep has a set of relevant plans Rtep
2 in the plan library Π . If Rtep is

retrieved, thenE is updated with the event, a pair of tep and its intention, by the function
add-event. If no relevant plan is retrieved, tep is ignored but B is updated in any case
with p by the function update-belief. The same approach is taken for norms when the
norms and its relevant plans are already specified in the agent program. Otherwise, the
event reconsideration process (line 11) starts to find out what the norms are intended to
achieve, as the first step in run-time norm execution.

Next, the interpreter starts the reasoning process in order to determine an applicable
plan3 in the selected set of applicable plans (Ote). The selection function SO chooses
a single option from Ote as a result of the unification of event and context. If SO re-
trieves nothing (denoted by nil), then the interpreter follows exactly the same path as
described above. The option reconsideration process (line 19) tries to find out which
action plans are appropriate to execute unknown norms, as the second step in run-time
norm execution. See lines 17–20.

If one single applicable plan is successfully retrieved by SO, then the means-ends
reasoning adds the applicable plan (π) as an intended means (IM ) on top of an intention
(I). If te of π is an internal event then π added in the existing I , otherwise a new I is
created with π to be added in there (line 21–27). This is followed by the intention
scheduling process which returns a preference maximal set of intentions in deadline
order (line 28). Afterwards, one intention selected by the intention selection function
SI is finally executed (line 30). The details of the remainder are exactly the same as in
[3] or [15].

3.3 Run-Time Norm Execution

In §3.2, we explained that run-time norm execution is realised by two steps: (i) event
reconsideration and (ii) option reconsideration. Prior to defining those reconsideration
processes, we firstly define a property of the executability of norms at run-time. We say
that a norm such as obl(evt, deadline, violation), is executable at run-time
iff:

1. p ∈ P and type(p) = (obligation | prohibition), where p is a percept, formed
from a list of terms such as term(“,” term)∗, in a set of newly observed percepts
P at run-time;

2. tep /∈ E, where tep is a triggering event generated from the percept p, and E is an
event base, which is a set of events {(te, τ), (te′, τ ′), . . .}, where an event is a pair
of a triggering event and an intention (te, τ);

3. edp(p) �= nil and {(teedp(p), τedp(p))} ∩ E �= ∅, where edp(p) is a function ex-
tracting the obliged event together with its deadline and priority from p, teedp(p)
is a triggering event of the edp(p), an event term in the norm, and τedp(p) is an
intention of teedp(p) and

4. Rteedp(p) �= ∅, where Rteedp(p) is a set of relevant plans.

2 A relevant plan for a particular event is a plan whose triggering event matches the particular
event. There can be many relevant plans for each triggering event in general [3].

3 An applicable plan is a candidate plan for execution, which has a context that evaluates to true
given the agent’s current beliefs [3].
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Algorithm 2. Event Reconsideration
Require: P :=P ∪N
Require: tep = create-tevent(p)
1: if p ∈ P and type(p) = obligation then
2: teedp(p) = create-tevent(edp(p))
3: Rteedp(p)

:= {πθ | θ is a mgu for teedp(p) and plan π}
4: if Rteedp(p) �= ∅ then
5: E :=add-event(E, tep)
6: end if
7: else if p ∈ P and type(p) = prohibition then
8: Ξ :=add-prohibition(Ξ, edp(p))
9: end if

The executability determines the necessity of further reconsideration for the new
and unknown norms. If those norms are judged executable at the perception stage, the
event-reconsideration process starts for the addition of such norms to the event base as
triggering events. Similarly, the executability also enables the option-reconsideration in
order to execute an applicable plan in relation to the triggering events derived from the
norms.

Event Reconsideration aims to verify that a norm perceived at run-time is executable
although no corresponding plan exists in the agent program. If an event extracted from
a detached norm has a relevance to a certain set of plans, it thus has potential to trigger
specific ones, and it is then concluded that the norm is executable. If the norm is proven
to be executable, the interpreter adds the norm to the event base E as an achievement
goal addition event. The procedure for event reconsideration is as follows (see Algo-
rithm 2):

1. Extract the terms representing an obliged event, a deadline and its priority4 from
the obligation by the function edp, whose practical implementation may vary, de-
pending on norm representations in various systems (line 2),

2. Construct a new triggering event (an achievement goal addition event in this case)
from the combination of extracted terms (line 2),

3. Query the existence of a set of relevant plans with such a constructed triggering
event (line 3),

4. Add such triggering event to E, if relevant plans are successfully retrieved (line 5)
and

5. If the norm is a prohibition, then the extracted event is added into the prohibition
base (Ξ) (line 7 - 8) and will be revisited at the norm deliberation stage 5.

For example, suppose there is a detached obligation obl(at(X, Y), 1030, 10).
If relevant plans are not found in the agent program (plan library of an agent, to be

4 In principle, the last term is an event which arises when a violation occurs. This value normally
indicates the criticality of such a violation. Higher values represents a higher priority.

5 N-Jason supports prohibitions as described above, and is therefore compatible with normative
systems supporting prohibitions, but we note that the institutional model described in §2 does
not have an explicit representation of prohibition, but only the absence of permission.
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precise) in response to the obligation, the function edp firstly extracts the event (at(X,
Y)), deadline (1030) and priority (10) from the obligation. Next, the interpreter con-
structs a new triggering event (an achievement goal addition event as described above)
such as +!at(X,Y)[deadline(1030), priority(10)] using the extracted infor-
mation. Subsequently, the interpreter queries the existence of relevant plans to SR once
again with a new triggering event, +!at(X,Y)[deadline(1030), priority(10)].
If the retrieval of relevant plans is successful, then the original event, +!obl(at(X,
Y), 1030, 10), is added to E.

One exceptional aspect in event-reconsideration is the addition of a deontic event tep
(which is a detached norm) instead of a normal event teedp(p) (which is a newly con-
structed triggering event) into the event base E. In so doing, we intend to distinguish
norm-triggered intentions from ordinary intentions that normal events trigger, so as to
facilitate norm-aware deliberation (see §3.4) in N-Jason. In principle, Jason creates
different intentions in response to different triggering events. Given this characteristic,
both a deontic and a normal event create a deontic and a normal intention in N-Jason,
respectively. The intended means included in both intentions are identical since a de-
ontic and a normal event trigger exactly the same plan in an agent program. However,
the properties (e.g. deadline and priority) of each intention are different. The normal
intention follows the original deadline and priority specified in the plan. In contrast, the
deontic intention has different deadline and priority, which are inherited from those in
the detached norm. As a result, these intentions are the main source of norm-aware de-
liberation. An agent is able to deliberate on norms and agent’s private goals through the
evaluation of the relative importance and urgency using norm-triggered (i.e. deontic)
intentions and ordinary event-triggered (i.e. normal) intentions.

Suppose a plan whose label is example, is specified in an agent program:

@example[duration(50)]
+!at(X, Y)[deadline(1000), priority(5)]
<- move_toward(X, Y); !ack(ag).

Assuming that a normal event triggering example is added to event base E. Then it
creates a normal intention using a pair of normal event and its associated plan plan_-
example, whose deadline and priority are 1000 and 5, respectively. Later, a detached
obligation obl(at(X, Y), 1030, 10) is received. Following Algorithm 2, the de-
ontic event +!obl(at(X, Y), 1030, 10) is added to E, since a relevant plan
example is found. Consequently a deontic intention is created using a pair of a de-
ontic event and its associated plan example. Its deadline and priority are 1030 and
10, respectively, which are different from those in the normal intention. Obviously, we
have two intentions whose properties are different, although the intended means are ab-
solutely same. Hence, N-Jason is able to carry out norm-aware deliberation on norms
and the agent’s own goals using those intentions. If N-Jason simply adds a normal event
instead of a deontic event when an obligation is detached, then norm-aware deliberation
may not be feasible since there must be only one normal intention.

Option-Reconsideration is a central element in the practical reasoning process
whereas the event reconsideration happens at the perception stage. The main objec-
tive of option reconsideration is the determination of an applicable plan corresponding
to the new and unknown norm – whose executability is already verified – and is thus
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Algorithm 3. Option Reconsideration
Require: 〈tep, τ 〉 ∈ E where tep is an event and τ is an intention
Ensure: πθθ′ where θ′ is a context unifier for teedp(p) and plan π
1: if type(p) = obligation then
2: teedp(p) = create-tevent(edp(p))
3: Rteedp(p)

:= {πθ | θ is a mgu for teedp(p) and plan π}
4: if Rteedp(p) �= ∅ then
5: Oteedp(p)

:= {πθ | θ is an applicable unifier for teedp(p) and plan π}
6: πθθ′ := SO(Oteedp(p)) where θ′ is a context unifier for teedp(p) and plan π
7: end if
8: end if

added to E as an achievement goal addition event. If the applicable plan is chosen,
then it will probably be used to enact a norm-compliant behaviour, unless it is infeasi-
ble as judged by intention scheduling (described in §3.4). The procedure is shown in
Algorithm 3.

Like Event-Reconsideration, tep is generated by a new and unknown norm that does
not have any relevant plans Rtep at this moment. Thus at the beginning of the option
reconsideration, the interpreter carries out the same process for event reconsideration:

1. Extract the event term edp(p) of the norm in order to retrieve relevant plansRteedp(p)

(as before), if the type of p is a norm (i.e. an obligation) (line 1 - 2),
2. Retrieve the relevant plans corresponding to the teedp(p) by the unification of an

atomic-formula in a triggering event and each plan in an agent (line 3),
3. Determine a set of applicable plans with the constructed triggering event (line 5)

and
4. Select a single applicable plan as an intended means to which to commit, through

the extended unification of a triggering event, a plan and a context (line 6).

3.4 Norm Awareness in Deliberation

Norm awareness in the deliberation process is achieved by the scheduling of intentions
with deadlines and priorities. We extend the algorithm proposed in [15] with the con-
sideration of prohibitions in order to establish a conflict-free preference maximal set of
intentions. In effect, this is like [1] who proposes a scheduling algorithm that brings
about a preference maximal set of intentions, but that depends upon (N-)2APL’s paral-
lel execution of plans, whereas here the scheduling algorithm for (N-)Jason has to take
account of the single-threaded plan execution model in Jason.

The scheduling algorithm is introduced in Algorithm 4. A set of candidate intentions
IC = {τ, τ ′, . . . }, which is sorted in descending order of a priority, is inserted into
a scheduling process. If each intention is feasible, i.e. a plan on top of the intention
can be executed before the deadline and is not prohibited by a set of prohibition Ξ =
{ξ, ξ′, . . . }, then the intention is added to the preference maximal set (Γ ) whose criteria
are defined as follows:
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Algorithm 4. Scheduling of Intentions
1: Γ := ∅, Ξ ′ := ∅

2: for all τ ∈ I in descending order of priority do
3: if {τ} ∪ Γ is feasible then
4: if τ /∈ Ξ then
5: Γ := {τ} ∪ Γ
6: else
7: for all ξ ∈ Ξ do
8: Ξ ′ := {τθ | θ is a mgu for ξ and intention τ}
9: end for

10: if priority(τ ) > max{priority(ξ),∀ξ ∈ Ξ ′} then
11: Γ := {τ} ∪ Γ
12: end if
13: end if
14: end if
15: end for
16: sort Γ in order of increasing deadline
17: return Γ

1. An intention is feasible iff the execution of the intention is completed before its
deadline, that is, for τ ,

ne(τ) + et(τ) − ex(τ) ≤ dl(τ)

where τ denotes an intention, ne(τ) is the time at which τ will next execute, et(τ)
is the time required to execute τ , denoted in the plan label, ex(τ) is the elapsed time
to execute τ to this point, and dl(τ) is the deadline for τ specified in the plan [1].

2. The intention should not be prohibited, that is, for τ
– τ /∈ Ξ or
– τ ∈ Ξ , then ∀ξ ∈ Ξ , τ = ξ and priority(τ) > max{priority(ξ), ∀ξ ∈ Ξ}

where τ is an intention, ξ is a prohibited event in the prohibition base Ξ and priority
is a priority retrieval function.

Scheduling in N-Jason is also pre-emptive in that the adoption of a new intention
τ may prevent scheduled intentions with lower priority than τ (including currently ex-
ecuting intentions) being added to the new schedule just as in N-2APL and AgentS-
peak(RT). Intentions that cannot meet their deadline are dropped.

3.5 Implementation

We have implemented N-Jason on top of the existing code base for Jason version
1.3.6. The latest prototype6 of N-Jason implements the core language extensions (i.e.
syntax, semantics) described in §3.1 and the extensions (e.g. run-time norm execution,
norm-aware deliberation) described in §3.3 and §3.4. In addition, we implement a norm

6 N-Jason is available via http://bsf.googlecode.com/svn/tags/njason-0.0.1/

http://bsf.googlecode.com/svn/tags/njason-0.0.1/
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Fig. 2. Extended Features of N-Jason on Jason/AgentSpeak(L)

adoption mechanism in N-Jason, so that an agent under the governance of institutional
frameworks is able to receive situationally appropriate norms and subsequently add
them as percepts for processing by the reasoning cycle.

Figure 2 shows the extended features7 and how they fit into the Jason interpreter.
The language extensions, run-time norm execution and norm-aware deliberation are
implemented as part of the reasoning cycle of the Jason interpreter. The norm adoption
mechanism is implemented as an extension of the AgArch class.

In brief, one reasoning cycle of Jason is modelled as a transition system over states.
The configuration of a Jason agent [3], contains the current state, denoted s, where s ∈
{ProcMsg, SelEv, RelPl, ApplPl, AddIM, SelInt, ExecInt, ClrInt}. Each state has a
corresponding procedure – applyProcMsg(), applySelEv(), applyRelPl(),
applySelAppl(), applyFindOp(), applyAddIM(), applyProcAct(),
applySelInt(), applyExecInt() – which are internal to the reasoningCycle()
method in the transition system. To this transition system, we add the states RcvNorm
and schInt and customise the procedures reasoningCycle(), applyRelPl(),
applyFindOp(), applySelInt(). The complete states are detailed in §4.1.

We now sketch some details of the implementation. To begin with, we extend the
Jason agent reasoning architecture class (AgArch) by subclassing in order to facilitate
the norm adoption mechanism (2checkNorms). Run-time norm execution is achieved

7 Grey boxes with numbers 2, 4, 10, 12 in Figure 2 are new features. For more explanation about
other white boxes see Chapter 4 of [3].
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by Event- and Option-Reconsideration as described in Algorithms 2 and 3 above. The
former, 4EV TRECON in Figure 2, is implemented by customising the native belief
update function (buf()) which is a subroutine ofreasoningCycle()to implement Al-
gorithm 2. For the latter, 10OPTRECON in Figure 2, we customise the native option
selection function (applyFindOp()) to implement Algorithm 3. Norm-aware deliber-
ation, 12IntentionScheduling in Figure 2, is accomplished by an intention scheduler
with deadlines and priorities implemented in a newly created IntentionScheduler
class. The scheduling (schedule()) method in this class is inserted just before
the intention selection function (selectIntention()) which is a part of the
applySelInt() procedure.

Apart from the above changes to the interpreter, the language syntax extensions are
implemented by the customisation of the annotation processing routine (setLabel()
and setTEvent()) in the Plan class.

3.6 Example

As an example, we consider robots serving beer in a pub, whose main role is to get an
order and to deliver a beer to the customer. We assume the existence of some institutions
delivering desirable social norms, subject to the observations of participants, and that
all agents are governed by such systems. A part of the agent program is shown below:

@P1[duration(5)]
+!at(X, Y) : not at(X, Y) <- moveToward(X, Y).

@P2[duration(10)]
+!order(X, Y) <- get(beer); moveToward(X, Y).

// A request from customer seated at (X, Y).
// The deadline is D and the priority is P.
+request(X, Y)[deadline(D), priority(P)]
<- !order(X, Y)[deadline(D), priority(P)].

At time 100, the robot receives the following events:

E1: +!request(2, 3)[deadline(130), priority(20)]
A request from customer seated at (2, 3).
The deadline is 130 and the customer is important so the priority is 20.

E2: +!request(1, 1)[deadline(115), priority(10)]
A request from customer seated at (1, 1).
The deadline is 115 and the the priority is 10.

E3: +!request(3, 3)[deadline(130), priority(10)]
A request from customer seated at (3, 3).
The deadline is 130 and the the priority is 10.

These three events trigger the plan P2, and give rise to three possible intentions τ1
(P2 triggered by (2, 3)), τ2 (P2 triggered by (1, 1)) and τ3 (P2 triggered by (3, 3)). τ2 is
not feasible, thus it is dropped, whereas τ1 and τ3 are feasible, so scheduled in deadline
order: τ1 is scheduled first between 100 and 110 since it has an earlier deadline followed
by τ3 between 110 and 120. Now the agent starts the execution of τ1.
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Let consider an announcement of a fire alarm by one of the normative frameworks. It
broadcasts an obligation containing the coordinates of an exit to all participants so they
may escape from the building. Suppose the norm is obl(at(0, 0), 115, 100).
Although the obligation is not stated in the agent’s program, it is executable since the
agent has a pre-existing moving ability !at(X, Y), which is enough to satisfy the
obligation. With the event- and option-reconsideration, the event :

E4: +!at(0, 0)[deadline(115), priority(100)] is generated from the obli-
gation, thus adoption the plan P1, bringing about an intention τ4 (P1 triggered by
(0, 0)). During the execution of τ1, τ3 and τ4 are inserted into a new schedule in
deadline order: since the priority of τ4 is greater than τ3 and τ4 has a more ur-
gent deadline, the agent starts to execute τ4, triggered by the obligation, before the
execution of τ3.

Notwithstanding, that this example is extremely simple, it provides a useful in-
principle illustration of norm-aware deliberation – as performed by intention schedul-
ing – as well as the run-time norm execution mechanism in N-Jason.

4 Operational Semantics

In this section, we present a theoretical foundation for the N-Jason programming lan-
guage with semantics based upon an extension of the operational semantics for Ja-
son/AgentSpeak(L). Given the formal semantics of Jason we extend the transition
rules which transform one extended configuration into another. To begin with, we show
a configuration of individual N-Jason agents which is almost unchanged except for
norm configuration. In the following section, we describe the transition rules that give
rise to a configuration change at each state in a single reasoning cycle. For consistency
and comparability, we follow exactly the same notations as those in published Jason
descriptions excepting the normative aspects.

4.1 N-Jason Configuration

The configuration of N-Jason is a tuple 〈ag, C,N, T, s〉 where:

– ag is an agent program consisting of a set of beliefs bs and a set of plans ps, as
defined by the EBNF in [3].

– An agent’s circumstance C is a tuple 〈I, E,A〉, where I is a set of intention
{i, i′, . . .}, E is a set of events {(te, i), (te′, i′), . . .}, in which event is a pair of a
triggering event and an intention (te, i) and A is a set of actions an agent performs
in the external environment.

– N is a tuple 〈Γ,Ξ〉 denoting normative consequences delivered from normative
systems, where Γ is a set of obligations {γ, γ′, . . .} and Ξ is a set of prohibition
{ξ, ξ′, . . .}.

– T is a tuple 〈R,Ap, ι, ε, ρ 〉 defining a trace of provisional information required
for subsequent steps within a single reasoning cycle, where R is the set of relevant
plans, Ap the sets of applicable plans, and ι, ε and ρ record an intention, event, and
applicable plan (respectively) at a specific moment under consideration within the
execution of a single reasoning cycle.
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– The current state s within an agent’s reasoning cycle is denoted by s ∈ {RcvNorm,
ProcMsg, SelEv, RelPl, ApplPl, AddIM, SchInt, SelInt, ExecInt, ClrInt}.

4.2 Transition Rules

The execution of the N-Jason program leads the modification of the initial configuration
of an agent via transition rules given below. For the sake of brevity, we do not repeat
the communication semantics, since these are unaffected by the changes in relation to
norms.

In general, the transition would normally start from the state ProcMsg, but we pro-
pose a preceding step RcvNorm, as described in §2 because this provides the hook for
the consideration of the norm as part of the reasoning cycle. Thus, note that the initial
configuration of this model is 〈ag, C,N, T,RcvNorm〉, where ag is specified by the
agent program and other all components are empty, and the reasoning cycle starts from
RcvNorm with the transition rules given below.

Receiving Detached Norms: As described in §2, institutional frameworks may dis-
tribute norms via broadcasting when a norm is activated by the fulfilment of institutional
states triggered by external events in the environment. As soon as the event-based norms
are received, the norms effectively act like an ordinary event thus trigger the transition
of the agent’s mental state. Rule RcvNorm (see Figure 3) updates the agent belief base
and an event base component CE associated with adding new norms, specifically in
case of obligations in an obligation base NΓ . Otherwise, only a prohibition is added
into the prohibition base and there are no updates to other components.

Relevant Plans: (see Figure 4) If the transition of states (RcvNorm 	→ SelEv) is suc-
cessful after RcvNorm and the state SelEv selects one event from the component E of
which event is either 〈te, i〉 or 〈γ, i〉, rule Rel_1 starts to assign the set of relevant plans
to component TR in the state RelPl. Rule Rel_2 indicates the reconsideration situation
where a new triggering event extracted from the obligation is assigned to the compo-
nent CE , where Evt(γ) is a function constructing a triggering event by the retrieval of
information from γ. Rule Rel_3 assigns a set of relevant plans to TR in respect of the
reconsidered event. Rule Rel_4 and Rel_5 cope with the situation where no relevant
plan is retrieved. In those cases, events (both ordinary event and reconsidered event) are
simply ignored and the state returns to SelEv.

Since transition rules between (AppPl 	→ AddIM) are almost same as those in Jason
we give a brief description of each rule at each state from here. If T ′

R is successfully
assigned then it is followed by: (i) AppPl which assigns a set of applicable plans to TAP

by retrieving those relevant plans whose contexts are believed to be true, (ii) SelAppl
which assigns a particular intended means selected by an option selection function SO

to Tρ, and (iii) AddIM which adds a selected intended means to CI which is an existing
intention or a newly created one. If transitions fail between (AppPl 	→ AddIM), then
the state SelInt becomes the next step. For more information, see [3].

Scheduling of Intentions: Rule SchInt (see Figure 5) updates the componentC′
I by the

function SCHEDULE(CI ). Note that the scheduling function, SCHEDULE(CI ), sorts
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N �= {}
〈ag,C,N, T,RcvNorm〉 → 〈ag′, C,N ′, T,SelEv〉 (RcvNorm)

where: ag′bs = agbs ∪ {γ}
N ′

Γ = NΓ ∪ {γ} ∨N ′
Ξ = NΞ ∪ {ξ}

Fig. 3. Transition Rule for Receiving a Norm

Tε = 〈te, i〉 RelPlans(agps, te) �= {}
〈ag,C,N, T,RelPl〉 → 〈ag,C,N, T ′,ApplPl〉 (Rel_1)

where: T ′
R = RelPlans(agps, te)

Tε = 〈γ, i〉 RelPlans(agps, γ) = {}
〈ag,C,N, T,RelPl〉 → 〈ag,C′, N, T,RelPl〉 (Rel_2)

where: C′
E = {〈Evt(γ), i〉}

Tε = 〈Evt(γ), i〉RelPlans(agps,Evt(γ)) �= {}
〈ag,C,N, T,RelPl〉 → 〈ag,C,N, T ′,ApplPl〉 (Rel_3)

where: T ′
R = RelPlans(agps,Evt(γ))

RelPlans(agps, te) = {}
〈ag,C,N, T,RelPl〉 → 〈ag,C,N, T,SelEv〉 (Rel_4)

RelPlans(agps,Evt(γ)) = {}
〈ag,C,N, T,RelPl〉 → 〈ag,C,N, T,SelEv〉 (Rel_5)

Fig. 4. Transition Rules for Relevant Plans

Tρ = {}
〈ag,C,N, T,SchInt〉 → 〈ag,C′, N, T,SelInt〉 (SchInt)

where: C′
I = SCHEDULE(CI)

Fig. 5. Transition Rule for Scheduling Intentions

intentions in order of priority and deadline so as to determine the preference maximal
set of intentions discussed in §3.4.

After this step, the transition system follows the same rules as presented in [3] in
order to execute an intended means in an particular intention selected by SI in between
SelInt, ExecInt and ClrInt.
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5 Related Works

There has been much research over a number of years on the matter of norm compliance
through the combination of normative frameworks and classical (BDI-type) cognitive
agents [2,11]. However, research on compliance of norms at the individual agent level
has received less attention. As discussed in §1, this problem can be decomposed into
two perspectives: to facilitate a generic norm execution mechanism at run-time, and to
focus on the rational decision making between norms and existing goals.

Alechina et al. [1] introduce N-2APL, a norm-aware BDI agent architecture and its
programming language. It is able to carry out norm-aware deliberation, which aims to
permit agents to resolve the conflicts between an agent’s own goals, normative goals and
sanctions. This is accomplished by a deadline- and priority-based intention scheduling
algorithm, which weighs the feasibility for all intentions that may bring about conflicts.
The (potential) sanctions may affect agent decision making, but violations are possi-
ble in this approach. Given N-2APL, Dybalova et al. [9] demonstrate norm-compliant
agents in location-based gaming environments in conjunction with the organisational
framework, 2OPL [6]. There, once organisations have broadcast state-based norms to
all participants, the individual agents achieve a state of the environment described in
the norms using a design-based approach. N-Jason is also able to support norm-aware
deliberation in conjunction with an institutional model, which is similar to the combi-
nation of N-2APL and 2OPL, but extends the concept of norm awareness to the whole
reasoning cycle. As a result, it supports agents in being design-based norm compliant,
but can additionally deliver run-time compliance through norm execution.

Meneguzzi et al. [13] focuses on norm awareness at the perception level, by extend-
ing the AgentSpeak(L) BDI architecture with a run-time plan modification technique.
It enables agents to behave appropriately in response to newly accepted norms at run-
time. However, it assumes that the norms are non-conflicting, so it does not consider
scheduling of plans with regards to their deadlines or possible sanctions in accordance
with existing goals in agents. Whereas [13] takes a rather practical perspective, van
Riemsdijk et al. [14] introduce a formal framework for generic norm execution, which
allows agents to be norm compliant by triggering or preventing actions in new and un-
known norms at design time. However the agent in [14] works at the level of individual
actions (its decision mechanism chooses actions rather than plans) and the norms are
specified in terms of actions, making in effect a norm-reactive agent, and it is unclear
how the decision mechanism can combine actions to achieve goals and thereby the ob-
jective of a norm-deliberative agent. In N-Jason, run-time norm execution is in practice
accomplished at the level of plans to achieve goals, and norms indicate a sort of event
that triggers plans. Moreover, in N-Jason run-time norm compliance is achieved on top
of the norm aware decision making and in conjunction with the execution mechanism.

Notwithstanding the benefits of N-Jason, there are some issues to highlight in respect
of the mechanism for run-time norms. The norm compliance strategy is hard-coded in
the semantics of the language, leaving only a capacity for configuration via the plan
annotations, whereas the strategy is programmable through agent plans (i.e. supporting
the design of strategy by an agent programmer) in JaCaMo [2] and N-2APL [1]. Thus,
the proposal presented here provides a pre-packaged approach to normative reasoning,
since it deprives the agent of the scope to change plans dynamically or mis-behave
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intentionally, based on rules the agent programmer designs. However, the mechanism
put forward here does enable legacy agents, which have no compliance rule or strategy
in their specification, to become norm-aware automatically. Thus, those agents’ be-
haviour can be coordinated through the governance of normative frameworks without
further engineering effort.

Another issue lies in the simple mechanism for the operationalisation of norms in
run-time norm execution. The approach described here means the ontology and syntax
of norms that can be executed are limited to those present in the plan library of an
agent. In consequence, some detached norms, that may correspond semantically to one
of an agent’s plans, but which are ontologically different from the plan, will be ignored
or violated. We are considering how to generalise the execution mechanism with the
analysis of semantics of norms, following [14], in conjunction with plan synthesis.

6 Conclusion and Future Works

In this paper, we have presented a design for a norm-aware BDI agent, N-Jason, that
enables the exhibition of norm compliance at run-time. Basically N-Jason offers a
generic norm execution mechanism on top of norm-aware deliberation to contribute
to the exploitation of run-time norm compliance. Run-time norm execution specifi-
cally focuses on the operationalisation of new and unknown (event-based) norms not
stated in the agent program at run-time. By judging the executability of them, N-Jason
agents executes those norms following an extended model of norm awareness consist-
ing of: (i) event reconsideration, to find out what the norm is intended to achieve or
to reach, and (ii) option reconsideration, to identify which plan is the most appropri-
ate in response to the norm. The selection of norm compliant behaviour is achieved
in the norm-aware deliberation process by intention scheduling with deadlines, priori-
ties and prohibitions which confirms the decision about which behaviour agent would
prefer between goals, norms and sanctions. It brings about a preference maximal set
of intentions in order to realise the norm compliance. N-Jason is implemented in Ja-
son/AgentSpeak(L) and extends its syntax and semantics to create N-Jason.

We believe that run-time norm compliance model is beneficial for the enhancement
of both a norm compliance capability and agent autonomy from the agent’s perspective.
However, we note that the behaviour triggered by run-time norm execution may look
like unpredictable/unwanted behaviour from the agent programmer’s perspective.

Although this paper particularly considers the execution of event-based norms at
run-time in conjunction with the institutional model, the extension to support state-
based norms and its normative systems can easily be incorporated into N-Jason agents
and will be as future work. We also plan to detect violations which are generated in
the norm aware deliberation, particularly when the normative goals are dropped during
scheduling. This offers a potentially useful link for enforcement in the context of nor-
mative system implementation. In addition, both empirical and analytical evaluation of
the performance of N-Jason requires proper investigation.
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Abstract. This work presents an agent typing system, that differently
than most of other proposals relies on notions that are typical of agent
systems instead of relying on a functional approach. Specifically, we use
commitments to define types. The proposed typing includes a notion of
compatibility, based on subtyping, which allows for the safe substitution
of agents to roles along an interaction that is ruled by a commitment-
based protocol. Type checking can be done dynamically when an agent
enacts a role. The proposal is implemented in the 2COMM framework
and exploits Java annotations. 2COMM is based on the Agent & Artifact
meta-model, exploit JADE and CArtAgO, by using CArtAgO artifacts
in order to reify commitment protocols.

Keywords: Commitments, Static and dynamic type checking, Agents
and Artifacts, JADE, Implementation.

1 Introduction

Software infrastructures are quickly changing, becoming more and more global,
pervasive and autonomic. Computing is becoming ubiquitous, with embedded
and distributed devices interacting with each other. Multi-Agent Systems (MAS)
have been recognized to be a promising paradigm for this kind of scenarios,
however, as the complexity of programming these systems increases, the need
for effective tools for reasoning on properties of programs becomes stronger and
stronger. This is particularly true in the case of open systems, where heteroge-
neous and autonomously developed agents may need to interact. MAS usually
rely on interaction protocols (or other kinds of “contract”) to specify the in-
teracting behavior that is expected of the agents. How can, then, an agent, a
designer, the system verify that the agent has the the means for carrying on the
encoded interaction? How to decide whether the agent is capable of behaving in
a certain way or whether it shows specific skills/properties?

One way is to rely on some typing of agents, in a way that is similar to the
typing of objects. Typing provides abstractions to perform sophisticated forms
of program analysis and verifications: it helps performing compile-time/run-time
error checking, modeling, documentation, verification of conformance and of com-
pliance, reasoning about programs and components. It also allows a simple form
of (a priori/runtime) verification. To the best of our knowledge, Zapf and Geihs
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[34] were the first to propose the use of a type system for (mobile) agents, and
they also introduced the idea of using sub-typing for the substitution of more spe-
cific subclasses in places where more general classes are expected, thus supporting
safe extension and program re-use. More recent examples include [18,19,1,26]. In
particular, [26] describes an agent-oriented programming language with a type
checking that is inspired by mainstream object-oriented languages, and [1] uses
global session types for realizing monitors of the interaction.

Differently than [18,19,26], we believe that, since types are abstraction tools
for easily programming and modeling, for typing MAS it is necessary to rely
on concepts that are typical abstractions of MAS, rather than relying on ab-
stractions from other programming paradigms. Similarly to [1], our proposal is
centered around interaction, which we believe to be one essential aspect of MAS.
Differently than [1], we rely on commitments rather than on global session types.
Commitments [13,28] are one of the fundamental abstractions for ruling agent
interaction while preserving agent autonomy. For this reason, we discuss how
commitments can be used for typing MAS and why it is interesting to rely on
them. Specifically, we report the first steps towards a definition of a behavioral-
based typing system for autonomous agents. The proposal is not bound to a
specific agent programming language but, rather, it can be implemented in dif-
ferent frameworks. In the paper we describe an implementation in 2COMM [2].
The paper is organized as follows. Section 2 reports and comments the relevant
literature motivating our proposal. Section 3 describes the 2COMM system that
we used for the implemantation. Section 4 introduces the type system, while
Section 5 describes its implementation. Conclusions end the paper.

2 Background and Motivation

The notion of “typing an agent” requires a precise, crisp definition. In pro-
gramming languages, type systems are used to help designers and developers in
avoiding code errors, bugs, that can entail unpredictable results. Type systems
can be weak or strong, static or dynamic, but at the end they all share the same
goal: support the development of error-free and human-readable code.

Most agent system implementations (JADE [9], Jack [20], A-Globe [29]) are
based on programming languages like Java and do not supply agent type support
but rather rely on the typing system of the language used for developing the
system. Zapf and Geihs [34] underlined the importance of using a type system
which allows dynamic type checking and proposed to base agent typing (1) on the
externally visible actions of the agents, that they identify as being the messages
agents accept and send, (2) on the meaning of the messages agents can exchange
which includes, through the special symbol self, a characterization of the agent
itself, (3) on the used communication protocol. They structure an agent type as
a triple. The first component is the syntactic type, which is stateless and consists
of the set of the input messages and of the set of output messages. The second
is a transition type, i.e. a finite state automaton capturing a communication
protocol similarly to regular types [22]. The third and last component is the
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semantic type, an annotation aimed at checking behavior-compatibility, based
on J. F. Sowa’s conceptual graphs.

We agree on the importance of dynamic type checking for verifying that an
agent fits the requirements for interacting in an open MAS in the moment the
agent decides to enter the interaction, because it may have the required proper-
ties only when it enters the system; on the importance of relying only on exter-
nally visible actions, because the agents’ internal states are not inspectable; on
the importance of accounting for the interaction protocol, because it captures
the rules of encounter of the agents, ruling their interaction. What we disagree
with is the solution adopted by the authors of relying on finite state automata
for describing the interaction as well as for describing the agents’ behavior. This
hinders the agent’s autonomy in two ways. The first reason is that agents must
supply a description of their behavior. Secondly, this description concerns how
to do things, rather than what to do: it is prescriptive. An agent may have the
possibility (and the capability) of doing something in different ways. We think
that the typing system should be capable of featuring a more flexible represen-
tation of the behavior, with the possibility of leaving the choice of how to act
up to the agent.

The main claim of [1] is the importance of using interaction protocols for
representing the functioning of a system. To this aim, they use global session
types as an abstraction tool, which allows automatically generating monitors
that are aimed at verifying the correctness of on-going, multi-party interactions.
In particular, the global session type is used to automatically generate a monitor
agent, which intercepts all the exchanged messages and verifies whether the
protocol is respected. This proposal is implemented in Jason [12]; a global session
type is represented by a cyclic Prolog term, which is consumed as messages are
sniffed. Along the line of the previous proposal, [1] focuses on externally visible
actions (message exchanges) and on the use of interaction protocols. It differs
from the previous one in that there is no actual type system, but rather global
session types are used for specifying the interaction of a system from a global
perspective. Since agents are not typed, when they enter a system, it is not
possible to verify whether their behavior is compatible with the protocol nor
it is possible to search for agents showing characteristics which allow them to
successfully take part to the system. It is up to the monitor agent to check
the exchanged messages. This is surely an important functionality but it is not
type checking. In other words, the representation does not clearly express what
an agent can do nor what is expected of an agent. Moreover, we disagree with
the choice of realizing the monitor as an agent. In order for the system to be
transparent, the monitor should be inspectable by the interacting agents, and the
infrastructure should guarantee that the monitor is notified of all the exchanged
messages. We believe that the environment should supply proper monitoring
services, or an artifact, but not another autonomous agent.

Ricci and Santi [25,26] defined the SimpAL language, where types are seen
as useful for realizing integrated development environments, and they imple-
mented an Eclipse plugin [27]. The approach to typing is a classic one, grounded
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on interfaces. This is the way in which most programming languages assure co-
herence, and prevent (statically) or detect (dynamically) logical errors. SimpAL
extends the notion of interface to the agent abstraction level, introducing the
notion of role as a collection of tasks, that an agent is capable to perform. A role
will be implemented by an agent script, containing the behavioural logic of the
agent. Specifically, a SimpAL role is an interface, while a role task is a method
signature, which includes a list of formal parameters needed for its completion,
that are expressed as pairs 〈name : Type〉. SimpAL provides environment typ-
ing and organizational typing too, used for programming coordination, resources
and interactions between agents.

A typing of agents merely based on syntactic interfaces is criticized in [34],
where the authors explain how conventional typing does not suffice the context
of agent systems. The critic bases upon work by Nierstrasz [22] on active objects,
that showed how the enumeration of the possible input and output messages is
not sufficient to guarantee the interoperability. It is advisable to rely, instead,
on some sort of behavioral type, including semantic information. Moreover, in
SimpAL agent type checking is static. This is not a major concern in a homoge-
neous, single application environment. However, in an open MAS, where agents
may be composed dynamically, static type checking is not enough; instead, it
is necessary to rely on dynamic type checking and on monitoring. In this set-
ting, agents themselves may verify their conformance to a role in order to decide
whether to enter an interaction as well as to decide whether adopting new be-
haviors. As a consequence, the notion of type not only is a tool that supports
the programmer’s work but it becomes an programming element, that is used
by agents in order to take decisions.

The proposal that we present in this paper concerns an agent typing system,
which is characterized by (1) being based on typical agent society abstractions
(social relationships), (2) being based on the agents’ observable behavior, (3)
dynamically checking if agents satisfy role requirements, (4) supplying a run-
time monitoring environment. The implementation is provided in 2COMM, a
middleware for developing open MAS whose interaction is commitment-based [2],
which combines the well-known JADE [9] and CArtAgO [24] platforms. JADE
agents interact based on commitment protocols. Each interaction protocol is
realized as a CArtAgO artifact. Such an artifact provides social relationships as
environmental resources. Dynamic checks are realized based on Java annotations.

3 Reference Framework

This proposal relies on the 2COMM middleware [2,3] for developing Multi-Agent
Systems. In 2COMM, the MAS is specified as a set of social relationships, that
govern the behavior of the agents taking part into the system. In a system
made of autonomous and heterogeneous actors, social relationships cannot but
concern the observable behavior [17]: for this reason, and in order to give them
that normative value which allows them to create social expectations, we realize
social relationships by means of commitments [28].
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On the other hand, we need social relationships to be accepted explicitly by
the participants to the interaction, and possibly to be inspected by the agents,
in order to decide whether conforming to them. To this aim, we need to explic-
itly model social relationships as resources, that are available to the interacting
peers. Given that agents and social relationships are both first-class entities, that
interact in a bi-directional manner, we adopt the Agents and Artifacts (A&A)
meta-model [32,23], that extends the agent paradigm with another primitive
abstraction, the artifact. A&A provides abstractions for environments and arti-
facts, that can be acted upon, observed, perceived, notified, and so on. When
embodied inside artifacts, social relationships can be examined by the agents (to
take decisions about their behavior), as advised in [14], used (which entails that
agents accept the corresponding regulations), constructed, e.g., by negotiation,
specialized, composed, and so forth.

2COMM1 [2] provides a middleware for programming social relationships, by
exploiting a declarative, interaction-centric approach. It is based on a combina-
tion of JADE [9] and CArtAgO [24]. JADE provides the agent platform, charac-
terized by a FIPA compliant communication framework, and an agent-developing
middleware. CArtAgO is a framework based on the A&A meta-model which ex-
tends the agent programming paradigm with the first-class entity of artifact : a
resource that an agent can use. CArtAgO provides a way to define and organize
workspaces, that are logical groups of artifacts, and that can be joined by agents
at runtime. The environment is itself programmable and encapsulates services
and functionalities. CArtAgO provides an API to program artifacts that agents
can use, regardless of the agent programming language or the agent framework
used. CArtAgO artifacts reify communication and interaction, represented in
terms of commitment-based protocols. From an organizational perspective, a
protocol is structured into a set of roles. A role represents a way of manipulating
the social state and belongs to the artifact which reifies a protocol. Roles and
agents are different entities, and we assume that roles cannot live autonomously:
they exist in the system in view of the interaction, because agents, for interact-
ing, use artifacts and execute actions on them [8]. Agents will use an interaction
artifact to establish a channel of normed, mediated communication. The roles
of such an artifact specify how agents can manipulate it: by enacting a role,
an agent receives social powers by the artifact. Social powers have different and
public social consequences, that we express in terms of commitments.

In 2COMM interaction is ruled by commitment-based protocols. A commitment
C(x, y, r, p) represents a directed obligation between a debtor x and a creditor y
to bring about the consequent condition p when the antecedent condition r holds.
A commitment may be manipulated by means of a set of primitives: delegate,
assign, release [30]. They represents contractual relationships between agents,
thus agents have the social expectation that an agent involved in a commitment
as a debtor will realize the consequent condition; the debtor is responsible for the
violation of a commitment. A commitment protocol defines a collection of actions,

1 The source files of the system and examples are available at the URL
http://di.unito.it/2COMM

http://di.unito.it/2COMM
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whose social effects are expressed in terms of commitment primitives, e.g., adding
a new commitment, releasing another agent from some commitment, satisfying
a commitment, see [33]. We assume that commitment conditions are yielded
by the execution of artifact operations. For example, having a commitment C1
= C(x, y, r, p ∧ q), a protocol artifact needs to supply at least an operation
that makes r true, at least an operation that makes p true and at least an
operation that makes q become true. The use of commitments gives a normative
characterization to agent coordination [13,28]. When an agent uses a protocol
artifact it accepts the regulations it contains and, in particular, that by executing
certain actions it will be the debtor of some commitments. Public acceptance
of the regulations is extremely important because it allows reasoning about the
agents’ behavior [15].

Figure 1 shows an excerpt of the 2COMM UML diagram. Overall the mid-
dleware is organized as follows: JADE supplies standard agent services (message
passing, distributed containers, naming and yellow pages services, agent mobil-
ity); when needed, an agent can enact a protocol role, thus using a communi-
cation artifact – implemented by exploiting CArtAgO, which provides a set of
operations by means of which agents participate in a mediated interaction ses-
sion. Each communication artifact corresponds to a specific protocol enactment
and maintains an own social state and an own communication state.

Class CommunicationArtifact (CA for short) provides the basic communica-
tion operations in and out for allowing mediated communication. by means of
which agents respectively ask to play or to give up playing a role. CA extends
an abstract version of the TupleSpace CArtAgO artifact: briefly, a blackboard
that agents use as a tuple-based coordination means. In and out are, then, op-
erations on the tuple space. CA also traces who is playing which role by using
the property enactedRoles.

Class Role extends the CArtAgO class Agent, and contains the basic ma-
nipulation logic of CArtAgO artifacts. Thus, any specific role, extending this
super-type, will be able to perform operations on artifacts, whenever its player
will decide to do so. Role provides static methods for creating artifacts and for
enacting/deacting roles. This is done by passing a reference to the JADE agent
behavior that will actually play the role. The class CARole is an inner class of
CA and extends the Role class. It provides the send and receive primitives, by
which agents can exchange messages. Send and receive are implemented based
on the in and out primitives provided by CA.

ProtocolArtifact (PA for short) extends CA and allows modeling the social
layer with the help of commitments. It maintains the state of the on-going
protocol interaction, via the property socialState, a store of social facts and
commitments, that is managed only by its container artifact. This artifact im-
plements the operations needed to manage commitments (create, discharge, can-
cel, release, assign, delegate). PA realizes the commitment life-cycle and for
the assertion/retraction of facts. Operations on commitments are realized as
internal operations, that is, they are not invokable directly: the protocol so-
cial actions will use them as primitives to modify the social state. Being an
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Observable Properties
socialState: SocialState

<< Artifact >>
ProtocolArtifact

Artifact Operations

# create (commit: Commitment)
# discharge (commit: Commitment)
# cancel (commit: Commitment)
# release (commit: Commitment)
# assign (commit: Commitment, role: Role)
# delegate (commit: Commitment, role: Role)
# assertFact (fact: LogicalExpression)

commitments: Commitment [0…*] 
facts: SocialFact [0…*]
context: 
   CommitmentCommunicationArtifact

SocialState

+ getFacts ()
+ getCommitments()
+ addFact (fact: SocialFact)
+ addCommitment (commit: Commitment)
+ removeFact (fact: SocialFact)
+ removeCommitment (commit: Commitment)
+ getContext()

creditor: Role
debtor: Role
antecedent: SocialFact [1…*]
consequent: SocialFact [1…*]
status : enum {created, discharged, ...}

Commitment

+ getCreditor()
+ setCreditor (role: Role)
+ getDebtor ()
+ setDebtor (role: Role)
+ getStatus ()
+ setStatus (status: enum)

# id: RoleId
# agent: AID
# artid: ArtifactId
# player: Behaviour

Role

+ createArtifact (artifactName: String, 
artifactClass: Class<? extends Artifact) : void
+ enact (roleName: String, artifact: ArtifactID, 
agent: AID, offeredPlayerBehaviour: 
Behaviour) : Role
+ deact (role: RoleId, artifact: ArtifactID, agent: 
AID, offeredPlayerBehaviour: Behaviour) : void

predicate: String
arguments: Object [0…*]

SocialFact

+ getPredicate ()
+ setPredicate (pred: String)
+ getArguments ()
+ setArguments (list: Object [1…*] )
+ getFact ()

0…*

0…*

1…*

Observable Properties
enactedRoles: Role [1…*]
tset: TupleSet

<< Artifact >>
CommunicationArtifact

Artifact Operations
+ in(message: CAMessage): void
+ out(): CAMessage

#checkRoleRequirements(roleName: String, 
offeredBehaviour:Behaviour)

Agent Platform A&A Platform
CArtAgO

ACLMessage

Agent

Agent
AbstractTuple

Space

<< Role >>
CARole

+ send(message: 
CAMessage)
+ receive(): 
CAMessage

+

<< Role >>
PARole

+ hasCommitmentInvolving(c: 
Commitment): boolean
+ socialFactExists(f: 
SocialFact): boolean

...query operations on
 SocialState ...

+

2COMM

1

1

Behaviour

1...n

Artifact

<< interface >>
ProtocolObserver

+ handleEvent (event: 
SocialEvent, args: Object[ ])

+

Fig. 1. UML Architecture of 2COMM

extension of CA, PA maintains two levels of interaction: the social one (based
on commitments), and the communication one (based on message exchange).
The class PARole is an inner class of PA and extends the CARole class. It
provides the primitives for querying the social state, e.g. for asking the com-
mitments in which a certain agent is involved, and the primitives that allow
an agent to become, through its role, an observer of the events occurring in
the social state. For example, an agent can query the social state to verify if it
contains a commitment with a specific condition as consequent, via the method
existsCommitmentWithConsequent(InteractionStateElement el). Alterna-
tively, an agent can be notified about the occurrence of a social event, provided
that it implements the inner interface ProtocolObserver. Afterwards, it can start
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observing the social state. PARole also inherits the communication primitives
defined in CARole.

In order to specify a commitment-based interaction protocol, it is necessary to
extend PA by defining the proper social and communicative actions as operations
on the artifact itself. Actions can have guards that correspond to context precon-
ditions : each such condition specifies the context in which the respective action
produces the described social effect. Since we want agents to act on artifacts only
through their respective roles, when defining a protocol it is also necessary to
create the roles. We do so by creating as many extensions of PARole as protocol
roles. These extensions are realized as inner classes of the protocol: each such
class will specify, as methods, the powers of a role. Powers allow agents who
play roles to actually execute artifact operations. The reification of commitment
protocols by way of artifacts has many advantages: by exploiting the distributed
nature of artifacts it is possible to naturally rely on a modularization that helps
the re-use of software, it is possible to implement run-time monitoring function-
alities, and it is possible to provide a normative characterization of interaction
thanks to commitments.

4 Typing MAS

To the aim of defining an agent typing system, we assume each agent a to be
characterized by a set of behaviors {b1, . . . , bm}, enabling a to perform various
activities. Along the lines of [22], we view types as partial specifications of be-
havior, which support in using agents to play protocol roles safely. A type τ is a
set of commitments {c1, c2, . . . , cn}, defined inside a collection of definitions of
artifacts, that represents the environmental setting. The debtor, creditor, condi-
tions of each commitment are defined as roles and actions inside some artifact,
i.e. artifact definitions provide name spaces. Commitments, by having a norma-
tive value, can be seen as specifications of behavior because the debtor agents
are expected to behave so as to satisfy them. A behavior b has type τ , denoted
as b : τ , if it is capable of satisfying the commitments in the type. This means
that it allows to make the consequent conditions in the commitments become
true.

Definition 1 (Type). Given an agent a, with a set of behaviors b1 : τ1, . . . ,
bm : τm, we say that a has type τ =

⋃m
i=1 τi, denoted as a : τ .

Let P = r1 ◦ . . . ◦ rn be an interaction protocol, where ri are all the protocol
roles. Let p be a protocol action, whose execution creates the commitments
c1, . . . , cn, (conditionally) binding the executor to achieve some conditions.
This represents the fact that p requires the executor can satisfy (directly or
indirectly – i.e. by way of other agents) c1, . . . , cn. So, we say that p has type
τ = {c1, . . . , cn}, denoted as p : τ .

Definition 2 (Role and Protocol Types). Let p1 : τ1, . . . , pm : τm be the
actions of P that the role rj allows to execute together with their respective types.
The type of role rj is τj =

⋃m
i=1 τi. Finally, the type of P is {r1 : τ1, . . . , rn : τn}.
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We, now, introduce a notion of subtype, that is inspired to the width subtyping
used for records. Given two types τ1 and τ2, we say that τ1 is a subtype of τ2,
denoted by τ1 ≤ τ2, when the set of commitments of τ2 is included in the one
of τ1, i.e. τ2 ⊆ τ1. A subtype is a stronger specification which guarantees that
the set of values satisfying it is a subset of the set of values of the supertype.
What kinds of properties should types specify? According to the principle of
substitutability [31] an instance of a subtype can always be used in any context
in which an instance of the supertype is expected. A subtype at least guarantees
the “promises” of the supertype, at least the same commitments, and possibly
more, are satisfiable.

Since our subtyping relationship is defined based on subset inclusion, it is
easy to see that subtyping is a partial order, and thus shows the properties of
reflexivity, antisimmetry, and transitivity. More interestingly, the subsumption
property also holds: consider an agent a : τ and suppose τ ≤ τ ′, then a : τ ′.

The rationale of the proposed subtyping relationship is that we mean to sup-
port the substitution of an actual agent and its behaviors to the specification of
requirements that is given by a role: any behavior which is capable of achieving
a superset of the required commitments will fit our case. Any operation feasible
on the supertype will be supported by the subtype. This definition makes it
possible to introduce a notion of compatibility of agents with roles.

Definition 3 (Compatibility). An agent a : τ is compatible with a protocol
role r : τ ′ if τ ≤ τ ′.

In fact, since a : τ and τ ≤ τ ′, by subsumption a : τ ′. So, we are guaranteed
that a can achieve the commitments it could get engaged into, when playing r,
directly or by relying on other agents. Generally, a will have a more specialized
behavior w.r.t. what the role demands.

We, now, show that subtyping guarantees substitutability: namely, that sub-
stituting a role by an agent that is compatible with it preserves the type of
the protocol. Such a verification should be performed dynamically during the
enactment of the protocol role.

Property 1 (Substitutability). Let P = r1 ◦ . . . ◦ rn be an interaction protocol of
type τ . The system obtained by the enactment of the protocol, performed by
the set of agents a1, . . . , an, each compatible with its respective P role, preserves
the type τ .

The proof is trivially obtained by considering the above definitions.
Besides the behavioural-oriented notion of typing described above, we rely on

Java to perform event (action) type checking. In fact, since they are implemented
as artifact operations, when an agent uses an operation, through a role, the Java
compiler checks the correctness of the parameters.

By adopting classical depth and width subtyping rules for records, i.e. {r1 :
τ1, . . . , rn : τn} ≤ {r1 : τ ′1, . . . , rm : τ ′m} if m ≤ n and τi ≤ τ ′i , for all i from 1 to
m, it is possible to introduce also a notion of protocol specialization.

Definition 4 (Specialization). Let P : τ and P ′ : τ ′ be two interaction proto-
cols with their respective types. We say that P ′ is a specialization of P if τ ′ ≤ τ .
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5 Implementing the typing in 2COMM

Let us, now, introduce the way in which we implemented the proposed typing
system in 2COMM. The implementation relies on Java annotations2. These are
commonly used to provide meta-data about a program which can be used by
the compiler, or be used at deploy time or, as in our case, at run-time.

definition: Commitment [1…*]

Type

+ equals(t: Type) : boolean
+ isIncluded(t: Type) : boolean
+ merge(types: Type[]) : void

creditor: Role
debtor: Role
antecedent: SocialFact [1…*]
consequent: SocialFact [1…*]
status : enum {created, discharged, ...}

Commitment

+ getCreditor()
+ setCreditor (role: Role)
+ getDebtor ()
+ setDebtor (role: Role)
+ getStatus ()
+ setStatus (status: enum)

Observable Properties
enactedRoles: Role [1…*]
tset: TupleSet

<< Artifact >>
CommunicationArtifact

Artifact Operations
+ in(message: CAMessage): void
+ out(): CAMessage

#checkRoleRequirements(roleName: String, 
offeredBehaviour:Behaviour)

<<Annotation>>
RoleType

+ requirements() : Class<? extends Type>
+ interactionCardinality() : int

<<Annotation>>
BehaviourType

+ capabilities() : Class<? extends Type>

TypeInitiator TypeParticipant InitiatorRequirements ParticipantRequirements

InitiatorBehaviour

+ action()

ParticipantBehaviour

+ action()

Initiator Participant

Artifact-sideAgent-side

CNPBehaviourType BehaviourType RoleType RoleType

Fig. 2. UML Architecture of the typing system

With reference to Figure 2, we introduced two annotations, one for interaction
protocol roles, the other for agent behaviors. They are respectively @RoleType
and @BehaviourType. They both represent commitment sets. The former via
the annotation property requirements, the latter via the annotation property ca-
pabilities. @RoleType also contains a property interactionCardinality, specifying
whether a role can be concurrently played by many agents – as it is, for instance,
the case of the Contract Net Protocol role Participant.

In our implementation, a type (Definition 1) is specified as an object of sort
Type, which is an abstract class which contains the field definition (an array of
commitments).

2 More information about Java annotations can be retrieved at
http://docs.oracle.com/javase/tutorial/java/annotations/

http://docs.oracle.com/javase/tutorial/java/annotations/
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1 public abstract class Type {
2 f ina l private ArrayList<Commitment> d e f i n i t i o n ;
3 protected Type(Commitment [ ] commitsDe f in i t ion ) {
4 d e f i n i t i o n = new ArrayList<Commitment>() ;
5 for (Commitment c : commitsDe f in i t ion ) {
6 d e f i n i t i o n . add ( c ) ;
7 }
8 }
9 public boolean i s I n c l uded (Type inc luderType ) {

10 boolean i nc luded = true ;
11 for (Commitment c : this . d e f i n i t i o n ) {
12 i f ( inc luded ) {
13 i nc luded = fa l se ;
14 for (Commitment d : inc luderType . d e f i n i t i o n ) {
15 i f ( c . equa l s (d ) ) {
16 i nc luded = true ;
17 break ;
18 }
19 }
20 }
21 else break ;
22 }
23 return i nc luded ;
24 }
25 public boolean equa l s (Type t ) {
26 return this . i s I n c l uded ( t ) && t . i s In c l uded ( this ) ;
27 }
28 public static Type merge ( ArrayList<Type> typesToMerge ) {
29 . . .
30 }
31 . . .
32 }

Type must be subclassed by actual types, whose constructors will invoke the
superconstructor and specify proper arrays of commitments. Moreover, Type
specifies two methods, equals and isIncluded (that we report hereafter) which
respectively verify if a type (set of commitments) is identical to another and if a
type is subtype of another. A static, utility method merge is provided too, that
creates a new Type object from the union of commitments of types passed as
parameters.

The equals method considers two commitments equal if all their components
are respectively equal.

1 public boolean equa l s ( Soc ia lStateElement e l ) {
2 i f ( e l . getElType ( ) != SocialStateElementType .COMMITMENT)
3 return fa l se ;
4 Commitment c = (Commitment ) e l ;
5 return ( this . g e tCred i t o r ( ) . equa l s ( c . g e tCred i t o r ( ) ) &&
6 this . getDebtor ( ) . equa l s ( c . getDebtor ( ) ) &&
7 this . getAntecedent ( ) . equa l s ( c . getAntecedent ( ) ) &&
8 this . getConsequent ( ) . equa l s ( c . getConsequent ( ) )
9 ) ;

10 }

Antecedent and consequent formulas have to match exactly, while the identities
of creditors and debtors are checked as follows:

1 public boolean equa l s ( RoleId otherRole Id ) {
2 i f ( this . type == otherRole Id . type && this . type == PARTICULAR ROLE)
3 return this . id == otherRole Id . id ;
4 else
5 return this . getRoleName ( ) . equa l s ( othe rRole Id . getRoleName ( ) ) ;
6 }
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The implementation can compare commitments that are instantiated and involve
specific agents or that are “generic”, in that they involve protocol roles. To
separate the two cases, in the former the debtor and creditor of a commitment
are associated to the case PARTICULAR ROLE while in the latter they are
associated to the case GENERIC ROLE. This information is used by the method
equals : A debtor/creditor identity is considered equal to that of another in two
cases: (1) when the two refer to the very same enactment of a certain role (i.e.
they refer to the same agent); (2) when one or both identities refer to a role type
(e.g. the initiator) and the respective role names are equal.
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Behavior

use-operation

use-operation

h
o

w social meaning

Role

Operation

Operation

social meaning
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Fig. 3. Agent typing and roles definition

With reference to Figure 3, type checking amounts to verifying if the com-
mitments specified in the capabilities property of annotation @BehaviourType
include the commitments specified in the requirements of the annotation @Ro-
leType. The check is performed by the method checkRoleRequirements which is
included in the class CommunicationArtifact. This method, which is executed in
the context of enactRole, uses the set of behaviors of an agent and the role this
means to play, and computes an answer by extracting at run-time the informa-
tion contained in the involved annotations. An agent can successfully enact a
role only if it is compatible with it (Definition 3), i.e. only if its type is a subtype
of that of the role. For the property of substitutability, the enactment preserves
the type of the protocol, thereby assuring safety.

1 public abstract class CommunicationArti fact extends AbstractTupleSpace {
2 . . .

3 protected boolean checkRoleRequirements ( S t r i ng roleName ,

4 Behaviour [ ] o f f e r edP layerBehav i ou r s ) {
5 // check the r eques t ed Role Name

6 i f ( ! enab ledRoles . containsKey ( roleName ) ) {
7 l ogg e r . debug ( " Role "+roleName+" not fo u n d a mo n g e n a b l e d r o l e s . " ) ;

8 return fa l se ;

9 }
10 // con t ro l i s exc luded f o r r o l e ”CA Role”

11 i f ( roleName . equa l s (CA ROLE))

12 return true ;

13 Class<? extends Behaviour> behClass ;

14 ArrayList<Annotation> behaviourTypeAnnotations

15 = new ArrayList<Annotation >() ;

16 Annotation behav i ou rSat i s fyAnnotat ion ;

17 for ( Behaviour beh : o f f e r edP layerBehav i ou r s ) {
18 behClass = beh . ge tCl as s ( ) ;

19 behaviourTypeAnnotation
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20 = behClass . getAnnotation ( BehaviourType . class ) ;

21 i f ( behaviourTypeAnnotation == null )

22 // i f nu l l , c o r r e c t annotat ion i s miss ing

23 return fa l se ;

24 Class<?> r o l eC l a s s ;

25 try {
26 St r i ng roleClassName = ( this . ge tCl as s ( ) . getName ( ) )

27 + " $ " + roleName ;

28 r o l eC l a s s = Class . forName ( roleClassName ) ;

29 } catch ( ClassNotFoundException e ) {
30 return fa l se ;

31 }
32 Annotation roleAnnotat ion =

33 r o l eC l a s s . getAnnotation (RoleType . class ) ;

34 i f ( rol eAnnotat ion == null ) {
35 return fa l se ;

36 }
37 // Both annotat ions r e t r i e v e d

38 // Getting in s t anc e s f o r r e t r i e v ed types

39 ArrayList<Type> typesToMerge = new ArrayList<Type>() ;

40 Type behaviourType ;

41 Type roleType ;

42 Type mergedType ;

43 for ( Annotation ann : behaviourTypeAnnotations ) {
44 behaviourType = (( BehaviourType ) ann ) . c a p a b i l i t i e s ( )

45 . getDeclaredConstructor ( ) . newInstance ( ) ;

46 typesToMerge . add ( behaviourType ) ;

47 }
48 roleType = ( ( RoleType ) rol eAnnotat ion ) . requ i rements ( )

49 . getDeclaredConstructor ( ) . newInstance ( ) ;

50 mergedType = Type . merge ( typesToMerge ) ;

51

52 return roleType . i s I n c l ud ed (mergedType ) ;

53 }
54 }

When an agent tries to enact a role, the artifact, whose role is being enacted,
is in charge for checking the compliance between the agent’s behaviour and the
role requirements. The method checkRoleRequirements of the class Commitmen-
tArtifact performs these controls. This implementation realizes the principle of
compatibility: an agent can enact a role provided it has a (set of) behaviour(s)
that are compatible with the type of the role.

The Type abstract class, together with the @RoleAnnotation and@Behaviour-
Type annotation classes, allows constructing types as Java structures, an ap-
proach similar to the one proposed in [34], where each agent carries an object
representing its type.

Let us, now, show an example of annotation added on top of an implemen-
tation of the Contract Net Protocol presented in [3]. We will focus on the role
Initiator and on an agent willing to play that role.

1 public class CNPArtifact extends Pro t o c o lA r t i f a c t {
2 . . .
3 @RoleType( requ i rements = In i t i a t o rRequ i r emen t s . class )
4 public class I n i t i a t o r extends PARole {
5 public I n i t i a t o r ( Behaviour player , AID agent ) {
6 super (INITIATOR ROLE, player , agent ) ;
7 }
8 . . .
9 }

10 }
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The role Initiator is tagged by the @RoleType annotation, whose value for the
property requirements is set to InitiatorRequirements.class, a class that builds
the set of commitments that defines the type of the role. InitiatorRequirements
is specified in this way:

1 public class In i t i a t o rRequ i r emen t s extends Type {
2 public In i t i a t o rRequ i r emen t s ( ) throws MissingOperandException ,
3 WrongOperandsNumberException {
4 super (new Commitment [ ] {
5 new Commitment ( CNPArtifact . INITIATOR ROLE,
6 CNPArtifact .PARTICIPANT ROLE, " propose" ,
7 new CompositeExpression ( LogicalOperatorType .OR,
8 new Fact ( " accept" ) , new Fact ( " reject" ) ) )
9 } ) ;

10 }
11 . . .
12 }

Specifically, this class contains the commitment C(CNPArtifact.INIT IATOR
ROLE, CNPArtifact.PARTICIPANT ROLE, propose, accept ∨ reject),
where CNPArtifact is the CommitmentArtifact which realizes the Contract
Net Protocol.

On the agent’s side, an agent willing to play the role Initiator must offer a set
of behaviors that are typed accordingly. In our case, we suppose that the agent
offers the following behavior:

1 @BehaviourType ( c a p a b i l i t i e s = Type In i t i a t o r . class )
2 public class I n i t i a t o rBehav i ou r extends OneShotBehaviour implements
3 CNPInit iatorObserver {
4 . . . .
5 }

where the class TypeInitiator specifies the capabilities shown by the agent through
the behavior. Once again, this is a set of commitments the behavior can satisfy.
TypeInitiator is a subclass the Type:

1 public Type In i t i a t o r ( ) throws MissingOperandException ,
2 WrongOperandsNumberException {
3 super (new Commitment [ ] {
4 new Commitment ( CNPArtifact . INITIATOR ROLE,
5 CNPArtifact .PARTICIPANT ROLE, " propose " ,
6 new CompositeExpression( LogicalOperatorType .OR,
7 new Fact ( " accept" ) , new Fact ( " reject" ) ) ) ,
8 new Commitment ( TradeArt i f ac t .BUYER ROLE,
9 TradeArt i f ac t .SELLER ROLE, " pay " , " deliver"

10 )
11 } ) ;
12 }
13 . . .
14 }

It is easy to see that the commitment perfectly matches the requirements, and so
the enactment will succeed. Notice that the presented implementation is slightly
different w.r.t. the definition of compatibility with a role (Definition 3): it uses a
collection of behaviours instead of an agent because in JADE there is no reference
to the agents that we could exploit. The result is a more restrictive test, which
does not necessarily account for the whole agent but considers only the set of
behaviors the agent displays.
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6 Discussion and Future Work

This paper presented a typing system for MAS. The key characteristic of the
proposal is that the typing system is defined based on notions that are typical
of agents rather than on a functional approach. Specifically, it relies on the
“social capabilities” of the agents. As such, the proposal represents a novelty
w.r.t. previous work on agent typing, which applies the functional type theory
[18,19,26]. The functional approach benefits of the results of a vast literature,
but types should be aimed at providing abstraction/modeling features that help
the programmer. Functional typing systems discard the typicalities of agents
and, thus, in our view, they do not accomplish their aim.

Besides providing the basic notions of type, subtype, compatibility and substi-
tutability, we implemented the proposal in the context of the 2COMM framework
[2]. 2COMM allows programming social relationships by exploiting a declarative,
interaction-centric approach, and was developed by relying on existing technolo-
gies as far as possible. In particular, the social relationships that arise along
the interaction among agents are captured as social commitments – realized as
first-class objects –, while interaction is mediated by protocol artifacts.

The choice of relying on commitments is motivated by the desire of typing
agents and roles in a way that results minimally prescriptive, so to preserve the
autonomy of the agents as far as possible. Indeed, we agree with [22,34] that the
typing system should include a representation of the behavior but, differently
than in those works – which deal with objects, we are also convinced of the need
of a representation which does not hinder the agents’ autonomy. For this reason,
a prescriptive representation, based on finite state automata – as the one intro-
duced in those works, would not be adequate. Commitments allow specifying the
expected behavior of agents without imposing unnecessary restrictions. In case
a more expressive language for specifying constraints is needed, it is possible
to rely either on proposals like [21], where conditions inside commitments can
express temporal regulations, or on proposals like 2CL [6], where commitment
protocols are enriched with explicit temporal constraints on the evolution of the
social state. This kind of extension is one of our next goals.

Clearly, a type system allows only a light check of the behavior of the involved
agents, being more concerned with a safe usage rather than a full behavioral
compatibility. It does not imply that an agent which has the same type of another
agent will display the same behavior. This does not exclude the possibility to
integrate deeper checks, for instance based on model checking such as [10].

The described agent typing system will help realizing both static, compile-time
coding support and dynamic, run-time type checking. Inspired by [27], the former
can be realized by developing a plugin for an IDE that provides coding support,
like smart code completion or type warning or error. The latter, instead, amounts
to the development of tools for verifying, at run-time, the compliance between
the agent’s logics and the role requirements, signalling the occurrence of wrong
enactments when needed. Altogether similar tools based on the substitutability
property, which guarantees the safe replacement of agents to roles, when they
have the same type or the agent has a subtype of the role. In the current proposal
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such a verification is performed as a syntactic inclusion of commitment sets. This
is limitating because it does not consider logical expressions inside commitment
antecedent and consequent conditions. To solve the problem we mean to study
the applicability of complex typing systems, relying on union and intersection
types [16].

Type checking as a light verification adopts notions, e.g. substitutability, that
are used also for facing the issues of interoperability and conformance discussed
in [7,5]. The conformance verification aims at guaranteeing that when an agent
plays a role, or substitutes another agent in an on-going interaction, the inter-
operability of the system is preserved – in the present paper, when an agent
plays a role, the protocol type is preserved. In [7,5], protocols are represented
by way of a sort of finite state automata. Thus, the approach suffers from the
drawbacks due to a prescriptive description, that, as we explained (Section 2,
see the comments to the approach in [1]), does not suit well the autonomy of
the agents. Another direction of research that we mean to pursue is to explore
how commitment-based types can be adapted to solve the issue of conformance
in MAS.

Finally, in [4], we presented an extension of JaCaMo [11] that, analogously to
2COMM, allows reasoning about social relationships in Jason agents. We aim to
introduce the use of the proposed typing system also in that setting. This would
allow an even deeper comparison to SimpAL, which is built on top of the same
platform.

Acknowledgements. We thank the anonymous reviewers for their helpful com-
ments, which gave us important suggestions for future developments.
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(2005)

30. Telang, P.R., Singh, M.P.: Specifying and Verifying Cross-Organizational Business
Models: An Agent-Oriented Approach. In: IEEE Transactions on Services Com-
puting, pp. 1–14 (2011)

31. Wegner, P., Zdonik, S.B.: Inheritance as an Incremental Modification Mechanism
or What Like Is and Isnt Like. In: Gjessing, S., Nygaard, K. (eds.) ECOOP 1988.
LNCS, vol. 322, pp. 55–77. Springer, Heidelberg (1988)

32. Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in mul-
tiagent systems. Autonomous Agents and Multi-Agent Systems 14(1), 5–30 (2007)

33. Yolum, p., Singh, M.P.: Commitment machines. In: Meyer, J.-J.C., Tambe, M.
(eds.) Intelligent Agents VIII. LNCS (LNAI), vol. 2333, pp. 235–247. Springer,
Heidelberg (2002)

34. Zapf, M., Geihs, K.: What type is it? a type system for mobile agents. In: 15th
European Meeting on Cybernetics and Systems Research (EMCSR) (2000)



Robust Collaboration:

Enriching Decisions with Abstract Preferences
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Abstract. Aspects of human societies provide a rich source of inspira-
tion for influencing individual and social behaviors in order to achieve
collaboration in a MAS. This article particularly investigates how human
cultures and particularly human values can be used as an inspiration for
achieving collaboration. Indeed, human values abstractly set what indi-
viduals consider as important, driving them towards similar individual
and social outcomes, helping them to work together. We want to repro-
duce the same type of behaviors in MASs, even if we do not aim at
faithfully reproducing human behavior.

Preferences are used for modeling values. But, specifically for values,
preference functions order abstract yet driving criteria (e.g. “security vs.
freedom” instead of “blue vs. red”). Values support abstract decisions,
which drive agents to make local decisions that support some coherence
at the collective level.

We show that integrating values as a design constraint have many
benefits for designing collaborative MAS. In particular, they offer greater
flexibility and robustness to the system. Furthermore, values provide a
top-down perspective for designing MASs which can be combined with
traditional methods (e.g. norms, organizations) for lowering overall de-
sign complexity.

Keywords: Agent Oriented Software Engineering, Methodology, Col-
laboration, Values, Preferences.

1 Introduction

“The firefighter agent is about to enter in the burning house in order to extin-
guish the fire and rescue victims. Should it immediately enter the house or spend
precious seconds in order to first double check that tasks of other colleagues that
support the agent’s entrance have been completed?”

Current methods for supporting collaboration have troubles for solving such a
dilemma, particularly in complex environments (e.g. quick evolution, adversar-
ial agents, numerous interactions between environmental variables, partly visible
dynamics, many possible contexts). Current methods for supporting collabora-
tion specify decisions to be taken for concrete and expected choices. But by
definition of complex environments, these choices are numerous and there is
rarely a single simple rule which determines the best answer for any situation.
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How many norms have to be created in order to cope with those dilemmas?
How large should a protocol be? With cooperation, how many details have to
be considered before performing any action? Without mentioning the difficulty,
as a system designer, to predict all those possible dilemmas which may lead to
collaboration failures.

Looking at humans, they generally manage to cope quite well with such a
dilemma. Maybe we can get some inspiration from their reasonings. Our goal
consists in building models inspired by the way human solve some problems
with the aim of transposing this solution to their artificial counterparts. Plenty
of former methods use similar inspirations for designing agents and improving
collaboration (e.g. BDI, norms, organizations, protocols). In human societies,
norms and protocols1, despite being particularly extensive in the domain of fire
fighting, do not specify how to resolve the dilemma presented in introduction.
Norms and protocols are used in human societies for coping with limited and
well-expected technical issues (e.g. sensing pain in the hand while watering means
electrical hazard. Change watering to “spread” mode in order to limit conduc-
tivity; techniques for manipulating the water hose). But, the relative success
of human societies given this lack of formal control suggests that humans have
other mechanisms for both to making decisions and creating expectations about
others. But which ones?

As a possible answer, we propose to investigate at cultures. Cultures can
be seen as a set of shared mental attitudes which exist within a society or a
group. These mental attitudes have many influences: they can range from values
which are big abstract principles about how to behave in life (e.g. timeliness,
relationship with authority) to practices which are more local and concrete (e.g.
greeting protocols). Those influences tend to support each other (e.g. if timeliness
is important, concrete rules tend to support timeliness). As a rule of thumb,
humans tend to use the most concrete rule available when making decisions and
rely on values when no rule is available, for more exceptional decisions.

Back to our dilemma from that human perspective, consider that our team
of firefighters has a culture which favors a value of timeliness. Assume also that
for that specific dilemma, no practice or rule explicitly states how individuals
should behave. In such a situation, individuals investigate their values and know
that “timeliness” is an important value for the group. In other words, individuals
are culturally willing to sacrifice local utility for being in time, considering for
instance that group success is more important than individual success. In that
case, any agent supporting the firefighter would do his or her best in order to be
on time, possibly sacrificing some local utility (e.g. preferring to delay rescuing a
victim for making sure that the water hose is operational on time). Thus, culture
influences decisions of individuals. In addition, cultures also influence expecta-
tions that individuals can create about others. For instance, the firefighter agent
which is about to enter the burning house, knows that timeliness is important.
Thus, if he or she do the best to be on time and assumes that the work of

1 See some documentations for training firefighters at
http://www.udsp34.org/index.php?p=pres&Ctt_Doc_Categorie=4

http://www.udsp34.org/index.php?p=pres&Ctt_Doc_Categorie=4
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others is done. So the firefighter can accurately decide to enter without having
to double-check.

Back to the MAS-design perspective, we propose to inspire from cultures in
order to solve MAS problems2. Practices are already well-handled by existing
literature for promoting collaboration (e.g. norms, protocols). To that extent,
practices are not further investigated in this article, even if they can be related
with techniques for achieving collaboration which are further investigated in
this article. Contrarily, values, which importance for driving collaboration has
just been illustrated, are relatively new to the design of methods for supporting
collaboration. Values are abstract but broadly influential. They offer principled
and justifiable answers to dilemmas that agents can encounter. Values drive
individuals and societies towards environmental or social outcomes which are
culturally preferable without strongly constraining decisions. Values provide offer
another possibility for system designers to drive agents, since system designers
determine what agents culturally prefer.

Values are complementary with existing solutions for achieving collaboration.
Indeed, values support abstract complex decisions that agents have to make
(e.g. buying a house). Nevertheless, they are inappropriate for driving simple
and more standardized decisions that agents have to make (e.g. moving to the
house). Such decisions are more appropriately handled by practices. Thus, values
are not an alternative but an additional method for achieving collaboration.
Values cope with some problems which are hard to handle with more concrete
approaches, while these latter approaches cope with problems hard to handle
with values.

From a modeling perspective, we propose to model value systems in using
preferences. Indeed, the core property of a value system drive what consider as
important by determining the relative importance of their values. Nevertheless,
human values are not any preference (e.g. preferring red over blue). Human val-
ues encompass abstract aspects which can be related to many decisions (e.g.
timeliness, respect of authority). This article provides some principles for deter-
mining what values are to be integrated within a value systems and their possible
influence of agents.

More technically, value systems are abstract preferences, which raise some
technical challenges for designing agents. Indeed, they are inadequate for man-
aging concrete agents decision, because values are abstract (e.g. no need to reason
about one’s values to determine which foot to start walking with). For those par-
ticular decisions, more appropriate tools should be used, such as BDI agents or
protocols. Nevertheless, in order to avoid conflicting specifications, these con-
crete behaviors should support and thus be related with the value system of an
agent. This article proposes solutions for bridging the gap in terms of abstraction
between abstract preferences to concrete action.

2 Disclaimer : this article aims at providing a solution for engineering MASs. Values
are just inspirations, we do not aim at faithfully replicating their influence on behav-
ior but instead at finding in which context they are useful. We prefer “incredible”
working solutions than credible human-like failures.
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The content of this paper is organized as follows. Section 2 describes a running
example illustrating our concepts throughout the article. Section 3 describes the
related work. Section 4 describes solutions for integrating preferences in agent
decision processes. Section 5 describes the use of shared preferences for achieving
collaboration. Section 6 describes examples of human cultures that can be used
as inspiration for designing shared preference. The main contributions of this
article correspond to the content of Section 4 and Section 5.

2 Running Example

A running example is used in order to better illustrate concepts and methods
described throughout this article.

Consider a MAS supporting a team of fire fighters. Each fire fighter has his
own agent. Each agent keeps track of the information of the fire fighter’s situation
and can confer with the other agents about which information or action advise
to give to its fire fighter. We may also assume that agents can be involved within
the system for supporting humans. In the following we identify the agents with
the persons they support for ease of reference. The mission (or goal) of the agents
consists in extinguishing fires and rescuing people who got injured due to the
crisis. In addition to fire fighters, a special agent called the “fire commander”
(represented by afc) located in the firetruck can communicate with the fire
fighters using point to point communication.

In this setting, an agent (indicated by a1) is about to make a decision. The
situation of a1 is as follows: The fire commander planned for me. I have to be at
the fire place at time T . There, I will support agent a2 for extinguishing the fire.
While moving to the fire, I spotted a person nearby.

a1 has to chose between three available options:

1. Rescue: a1 delays its action to move towards the fire and rescues the victim
instead. The time required to rescue the victim is unpredictable: if the victim
is healthy, the action can be very quick (ask the victim to leave), if the victim
is injured this action can take much longer (the agent has to stabilize and to
carry the victim out of the danger zone). The fire fighter regulations state
that a1 is forbidden to leave a victim if a victim is injured.

2. Report : a1 delays its action to move towards the fire and warns the fire
commander about the presence of a person. This action takes some time but
is quicker than helping.

3. Ignore: the agent stores the information that a person has been spotted and
keeps moving towards the fire.

If a1 has some available time before T , the situation is referred to as dt.
Otherwise (a1 is short in time), the situation is referred to as dt̄.

A warning has to be issued before going further. In order to be easily under-
standable, we keep that example simple. But simple examples are easily coped
by other methods (e.g. a single norm can state: “obliged to report spotted vic-
tims”). Nevertheless, we aim at considering complex and dynamic environments.
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To that extent, when considering this running example, consider that the de-
cision to be made can be done in many different contexts (e.g. in an isolated
house, in a skyscraper, in a warzone). In that case, methods for designing simple
constraints require much more design efforts. Indeed, these methods are more
appropriate for driving behavior in well-expected scenarii but at less adequate
when the context have multiple influences on many decisions (e.g. need three
norms just depending on the location: rescuing victims in an isolated house;
rushing to the fire in a skyscraper; determining origins of casualties in war-
zones). Contrarily, we aim at showing that such a complex problem is better
handled by values. While this example is purposefully very simple and specific
in order to be understandable, desirable solutions for this outcome are expected
to be adaptable for a wide variety of contexts.

3 Previous Work

This section introduces two categories of related work. First, Section 3.1 presents
existing work for achieving collaboration. This work is encompasses cultural
practices that we do not further model in this article. Furthermore, presenting
this previous work allows to better display how our work contributes to that
field. Second, Section 3.2 presents existing frameworks for modeling preferences
which are used in order to model our values.

3.1 Driving Collaboration

Former research in MAS extensively investigated the design of multi-agent so-
lutions for reaching system goals via the collective action of individual agents
[10,13,15,27]. Indeed, these methods are particularly useful for solving collective
problems or for supporting interactions of self-interested agents, which are the
main practical applications of MASs. Since this article aims at driving collec-
tive action, these methods require to be introduced. They are introduced from
a decreasing order of the influence from system designers on collective action.

Determining which method should be selected highly depends on the prob-
lem complexity. As a general rule, the more system designers restrict behaviors
of individuals, the more system designers can drive collective action, the more
complex is the task of the system designer. To that extent, methods which give
the most influence to system designers are also the ones which are the most
limited by environmental complexity. In addition, those methods allow to reach
the highest efficiency but their closeness to environmental constraints tend to
limit their flexibility and robustness.

Methods. From an extreme perspective, system designers can be totalitarian by
completely restricting agent behavior. The main frameworks of this perspective
can be related to MDP-like approaches (DEC-MDP, DEC-POMDP, POSG [3])
for collaborative agents and Game Theory [5] for selfish agents.

Some methods give further methods by only partly constraining agent behav-
iors. More pragmatically, these methods aim at being just enough constraining
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for making sure that agents cannot go against desirable collective outcomes.
Some of them are inspired by natural social systems [1], stygmergy [23] or hu-
man societies (e.g. norms, organizations, protocols). Norms [6] are rules which
forbid collectively harmful behaviors. Organizations [12] allocate roles and create
obligations between individuals. Protocols [14] standardize patterns of interac-
tions.

Some other methods offer even further freedom to agents. These methods rely
on abstract rules. These abstract rules do not aim at tightly enforcing concrete
collective action (e.g. be at the meeting point at time T ). Instead they aim at
providing abstract and general rules to agent (e.g. forbidden to be late). Agents
are free enough to circumvent the rules, but they are expected not to and to
be intelligent enough to comply with norms. To our knowledge frameworks for
modeling abstract representations are limited to rule-based methods (norms,
organizations and protocols) such as OperA[2].

On another extreme, system designers completely hand off direct control on
agents. In that case, agents do not have any behavioral restrictions by design.
Desirable collective outcomes are expected to be reached by the action of benevo-
lent (namely, being cooperative [9]) agents. In general, these agents are provided
with important reasoning capabilities (e.g. explicit representation of the envi-
ronment, capable of automatically proposing coordination solutions).

Relation with Our Work. There are two relations between these methods and
ours. The first relation concerns the integration of some of these methods in our
framework of cultures. Indeed, our cultures are composed of two parts: values
and practices. The former is explored by this paper but the latter is encompassed
by that previous work. Practices correspond to standardized restrictions on be-
haviors. Practices conceptually directly encompass (abstracted or not) norms
and protocols. By extension, practices can contain any other approaches which
aim at restraining concrete agent behaviors.

The second relation consists in integrating values within this framework of
methods. Values belong to the set of abstract methods. Thus, values should be
used in complex in dynamic environments. They aim at promoting flexible and
robust collaboration but are not the best tool for achieving efficiency.

3.2 Preferences

Preferences [7] are used for ordering a set of objects Ω. Formally, preferences are
a transitive binary relation � over Ω. For instance, “I prefer apple over oranges”
can be represented by “apple�orange”. In our setting, Ω is the set of expected
outcomes that can result from a decisions made by agents.

Representing preferences can be a difficult task when Ω is large, because
many objects have to be compared with one another. In spite of the cost of
time, humans have difficulties to express object-to-object comparisons and prefer
instead to use more generic statements (e.g. I prefer blue over red). In order to
efficiently designing preference functions in using human-like descriptions, former
research [7,25] proposes some core principles and solutions.
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Efficient representations generally rely on the existence of criteria3 which eval-
uate objects (e.g. cost in time, money or human lives). If criteria are independ,
each independent criteria can be internally ordered (e.g. saving 200e from the
flames is preferred than saving 100 e from the flames), allowing to use the
Ceteris Paribus ordering method (e.g. any outcome which saves 200e from
the flames is better than any other outcome saving 100 e from the flames
with all other criteria being equal). Furthermore, ordering outcomes can also be
achieved in integrating evaluations of criteria within the order (e.g. saving lives is
more important than anything else, saving one hour of activity for an agent is as
important as saving the equivalent of 100e from the fire). These methods for ef-
ficiently representing preferences are particularly interesting in our setting, since
they offer a more efficient and justifiable representation of desirable outcomes.

Preferences and Self-oriented Reasoning. Preferences can drive self-oriented
agents for making complex decisions. Indeed, preferences can provide principle
for supporting agent decisions. These principles are particularly relevant for re-
solving dilemmas (e.g. I have to visit A and B. Shall I start with A or B?). In
particular, using criteria for designing preferences can help justifying their deci-
sions made using values (e.g. human victims are more likely to be found in the
housing location A there than in the warehouse B which contains many precious
items. Since saving human lives is preferred on saving wealth, I go first in A).
[25] propose a framework for supporting decisions using user values. [17] propose
a framework for integrating preferences for making decisions in GOAL.

Preferences are inadequate for making very concrete decisions. Indeed, pref-
erences require to estimate the outcome of decisions. When evaluating very con-
crete decisions (e.g. starting to walk using the right or left foot), preferences
either have to integrate overly concrete aspects (e.g. I prefer starting walking
using the right foot) or to include complex predictions about preference out-
comes for these decisions (e.g. starting with the left foot is quicker in order to
go to A but may induce extra costs), even if they may be adequate for punctual
decisions. In the first case, the complexity of the preference function explodes
with environment complexity. In the second case, this is the complexity of the
estimation function which explodes.

Instead, preferences are appropriate for making more abstract decisions. These
decisions which tend to be less frequent, lowering the number of outcomes to be
estimated and the number of preferences this function should encompass. In ad-
dition, abstract decisions can be more easily connected with abstract preferences,
which allow to keep the preference function simple.

Preferences are to be distinguished with goals. Goals correspond to concrete
situations which can be achieved. They are either achieved, failed or ongoing.
Preferences, instead, correspond to preferable situations. Preference cannot be
“achieved” or “satisfied” but they permanently pursued and optimized against
(unlike maintenance goals which are either maintained or failed). The same ap-
plies with norms which are either violated or not.

3 Also known as perspectives.
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Making preferences public help agents to create expectations about each other
and to use preferences of other agents for adequately interacting with them. As
an illustration of the difficulties triggered by hiding preferences, [4] propose a
negotiation framework for agreeing on individually preferred outcomes without
revealing private preferences. The effort which is deployed in this article in order
to efficiently reach an agreement in spite of benevolent agents show the inherent
difficulties for working together with private preferences. This inherent difficulty
incited us to assume that in our framework preferences are visible by other
agents.

Preferences and Collective Reasoning Preferences can be used for making
decisions which takes into consideration preferences of other agents. This topic
is particularly investigated by Game Theory [5]. Game Theoretical representa-
tions model for each agent in a group the desirability of collective outcomes
for each possible collective actions of that group. These outcomes are ordered
in terms of preferences for each agent. In this setting, agents are assumed to
be rational, i.e. they should select an action which allow them to get the best
outcome assuming that other agents are also rational. To that extent, Game
Theoretical frameworks allow to make decisions while taking other agents into
consideration. Nevertheless, Game Theory suffer multiple restrictions in terms
of modeling: outcomes, other agents and their preferences should be known. In
addition, predicting possible outcomes is intractable in presence of many agents
with multiple choices.

Preferences can be used for directly driving collective action. This frame-
work corresponds to mechanism design or implementation theory [19]. These
frameworks extensively rely on Game Theory frameworks and thus suffer simi-
lar limitations caused by complexity.

Relation with Our Work Our work is tightly connected to these former works
in several points. Indeed, our model of values relies on those models of prefer-
ences. Furthermore, we also want to use values for driving decisions of individuals
but also to create expectations about behaviors of others.

We also aim at contributing to that domain. We propose a method for achiev-
ing collaboration in complex environments. We somehow expanding the chal-
lenges tackled by mechanism design but for complex problems.

4 Integrating Values in Decisions

This section presents how to integrate values within agent decisions. As a first
step, we present as an inspiration how values influence humans decisions. Then,
we use this inspiration for proposing a model and a possible implementation
of the integration of values within agent decision processes. Next, present some
advantages sharing values when designing agents: creating expectations about
other agents and better interacting with humans. Finally, we conclude this sec-
tion by relating the decision process with our running example.
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Fig. 1. Onion diagram, abstractly modeling the contents of cultures, from [18]

4.1 Inspiration

Before going into details of modeling values, let us first investigate more in
details what human values are about. Values belong to cultures. Cultures are
broadly investigated in social sciences [16,18]. These studies acknowledge that
cultures are particularly fuzzy and difficult to grasp (unlike emotions which are
relatively easier to pinpoint for instance). Nevertheless, these studies propose
some simplified models in order to see the main influences of cultures which can
be easily used as an inspiration for designing MAS.

These studies model cultures as collectively shared values (representing what
individuals consider important, such as being normal or being rational) and
practices (e.g. greeting by bowing or shaking hands), as illustrated in Figure 1.
Practices are more visible, standardized, easy to change and situation dependent.
Values are more internalized, implicit and all encompassing.

In this article, we discard the creation of models for driving practices. Indeed,
these models have been extensively studied by the MAS community through
norms, protocols, partly organizations and so on. Thus we leave interested read-
ers consulting the rich and available literature about that topic.

Values are the most subtle part of cultures. Let us consider how they impact
on decisions in order to model them. Cultural studies state that decisions made
by individuals are influenced by human nature and cultures and personality.
Human nature can be considered as individual rationality (e.g. selecting options
leading to goal achievement). Personality corresponds to an individual variance
for considering problems. This aspect does not seem relevant with regard to our
goal for supporting collaboration, so it is left out in this article. Cultures are
values and practices. As a rule of the thumb, when making a decision, agents
consider how to achieve their goals (driven by human nature and possible exter-
nal constraints such as protocols) while being conform with their practices (e.g.
not violating cultural norms). If there are still multiple options available, values
influence which option to select. This rule is of course not an absolute truth (e.g.
values sometimes drive people to go against their self-interest or against prac-
tices, a model of such decisions is proposed in [11]), but it covers the standard
decision process while remaining simple enough to model.

The term “values” can introduce some confusion and requires to be fur-
ther introduced. A value is an abstract and broad perspective for considering a
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situation (e.g. achievement, self-direction, more examples are given in Section
6). The values of an individual are informally the set of values which are given
some importance by an individual. Nevertheless, values of an individual are not
binary (e.g. either caring about achievement or discarding it) but relative with
each other (e.g. giving relatively more importance to achievement than to self-
direction). In the following values are referred to as “value systems”.

With that new information in mind, value systems seems to match well with
preferences. [17,25] propose to use preferences as soft constraints, which allow to
decide when multiple rationally and norm-compliant choices are available. Nev-
ertheless, value systems are more specific than any preference function. Indeed,
value systems should order abstract and driving values.

4.2 Integrating Value Systems in Agent Decision Processes

In order to make decisions which are streamlined with their value systems, agents
require two capabilities: they have to be capable of estimating the outcomes of
their decisions and order these outcomes using their preference function. These
two capabilities are combined in order to make the decision which achieve the
preferred estimated outcome according to agent’s value system.

Estimating Outcomes Decision outcomes model the estimated effects of mak-
ing a decision (e.g. performing an action) in a given situation. We talk about
estimated effects, because they cannot be predicted for sure (e.g. actions might
fail, the environment or other agents can interfere). Several solutions exist for
representing and estimating about the consequences of decisions.

[22] uses a planning approach, assuming a bounded search span. The outcome
of action corresponds to the expected satisfaction of the final situations which
would be reached assuming that the agent selects the most satisfactory actions
in the future. This representation implies some assumptions for the model. First,
this model discards the presence of other agents. Second, expected outcomes are
limited to single-dimensional real numbers in order to limit complexity. Third,
a complete environment model is required.

[25, p. 109-136] uses a more logic-based approach, which consists in estimating
“by hand” the consequence of a decision using qualitative tags. For instance,
the expected effect of performing the “rescue” action is that the victim will be
rescued, the agent will probably be late and the agent will be near the victim.
Such representation should also describe longer term or uncertain consequences
of decisions. For instance, hiding in the fire truck is immediately “safe” but
“unsafe” situation if the fire is expected to spread.

Estimating long-term consequences of decisions can be difficult if these de-
cisions are too concrete. This difficulty is caused by possible incompleteness of
the environmental model, partial information and collective action. If all these
elements would be modeled through some uncertainty factors, one would soon
reach a point where the effects of actions are completely unknown.

The representation of [25] allows to cut short the search for all possible ef-
fects (which is intractable) by heuristically estimating consequences of decisions.
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Fig. 2. Preference decomposition of firefighter agents. Each node of the thee is further
specified by its children. Leafs are to be directly connected with evaluation outcomes.

However, this approach is more suitable for making strategic actions (e.g. whether
to collaborate with a specific agent) rather than low-level decisions (e.g. whether
to send a specific message or another the other agent). The reason being that
the range of outcomes and of possible situations explodes when being concrete,
thus making intractable the design of heuristics.

Ordering Preferences. Preferences are used for modeling the value system of
agents. Technically, preferences are used for ordering the values of agents.

Ordering outcomes require to connect the value system to outcomes. Never-
theless but value systems are too abstract to be easily connected with concrete
decisions (e.g. evaluating the safeness of the route to take). In order to better
evaluate the desirability of an outcome for a given value, we propose to use more
concrete criteria for supporting this evaluation. For instance, the evaluation of
the safeness of a route can be supported by the three criteria: “avoiding risky
situation”, “avoiding self-damage” and “watching battery”. Of course, these cri-
teria are just a guidance and the decision tree may not be complete. Decisions
which badly fulfills these more specific criteria can still be preferred (e.g. going
through the fire without recharging is bad for all three options but still better
than getting around the fire which would certainly lead to burning the agent).

Similarly, these criteria can be further related with more concrete criteria.
Indeed, these criteria can still be abstract and evaluating them can rely on other
and more concrete criteria (e.g. relating “avoid risky situations” with “avoid
fire” and “avoid collapse risks”). From a more global perspective, value systems
can be represented as a generalization tree4, in which children of a criteria are
specific criteria which can be used as a support for evaluating its parent. An
illustration of that tree is proposed in Figure 2.

From a collective perspective, this generalization tree is partly shared by
agents. More precisely, the highest part of the tree is shared by all agents. Then,
this tree can be refined locally by specifying criteria.

4 Or directed acyclic graph, since multiple criteria can rely on similar more concrete
criteria.
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From a design perspective, this representation combines a top-down and a
bottom-up approach. Indeed, abstract value systems can be connected to more
concrete decisions in further specifying them. The other way around, designers
can aim at making abstract decisions which outcomes can be connected to more
abstract criteria.

Using such a generalization tree has multiple advantages. First, designers of
preference functions can connect their abstract decisions in a step-wise way,
by adding criteria in an increasing order of concreteness. This decomposition
has the advantage of avoiding to connect a value to far too many criteria for
making principled decisions. Furthermore, each criteria can be related to sub-
criteria which are not too far enough in terms of abstraction, helping to better
justify decisions. Third, each criteria can be reused used as a sub-criteria multiple
times, lowering the cost of designing criteria (e.g. “avoiding self-damage” can be
used as a sub-criterion for both “safety” and “limiting costs” criteria). Last but
not least, this representation leaves a lot of freedom about using criteria when
designing preferences. For instance, just by changing how a criteria relies on its
sub-criteria, agents can be driven to extreme safety ; extreme punctuality ; or a
balanced combination of the two.

4.3 Towards Hybrid Agents Using Values

Value systems are adequate for supporting decisions with abstract reasoning, but
they are impractical for handling concrete behavior. Concrete behavior is better
handled by traditional solutions for designing agents or coordinating them (like
plain code, BDI, planning, protocols), but those solutions are less adapted for
integrating abstract drives. These two solutions are complementary and there is
a clear gain in connecting both together. This section proposes some principles
for an implementation model of the influence of value systems on decisions.

A first solution consists in implicitly integrating value systems within deci-
sions, i.e. without explicitly relating a model preferences with decisions. This ap-
proach has the advantage of shortcutting the design of a complete value function
and avoiding to evaluate outcomes of actions. But, this approach has multiple
limitations. First, value systems cannot be changed without having to directly
change agent decision process. Second, value-related decisions are less justifiable,
introducing subjectivity. This subjectivity can be difficult to handle if preferences
are related to multiple criteria and each criteria can encompass a wide range of
evaluations (e.g. if timeliness and safety are both relatively important and enter
into consideration for a decision, hard to compare each solution). In such a case,
it may become difficult to determine which decision to select in a principled way.

Most of these issues can be solved by explicitly integrating value systems
within agent decision processes. Multiple solutions can be investigated for achiev-
ing that. For instance, [17] proposes to integrate preferences for determining
which plan to select when multiple plans can be fired in a given situation.

As an extension, we suggest to use a hybrid model. This model would be
composed of three layers. A tactical layer would cope with concrete decisions. A
strategical layer using abstract value systems would manage abstract longer-term
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decision, as suggested by [25]. These two layers would be connected through an
interaction layer. In this layer, strategical decisions can influence tactical de-
cisions, for instance by changing goals, activating a module[8] or executing a
protocol. In return, strategical decisions are influenced by tactical outcomes, for
instance through belief updates, goal fulfillment, or a specific procedure state is
reached. Hybrid agent architectures are not new. The more adequate one for that
purpose that we found in the literature is inteRRaP [21]. inteRRaP proposes dif-
ferent reasoning layers with different internal logics (reacting to the environment,
planning from a single agent point of view, planning from a group point of view).
Nevertheless, such architectures tend to focus on different perspective than ours
(social versus individual or system reactivity). They do not seem immediately
applicable in our context but propose an interesting inspiration.

As a closing word, the aim of this subsection consists in showing the type
of decisions which are adequately connected with value systems. In particular,
value systems appear particularly useful for supporting and influencing abstract
strategical decisions. This type of decisions show the ease to connect value sys-
tems with hybrid models. Nevertheless, the global aim of this article is not to
provide a very concrete implementation of one solution for using value systems,
even if such an implementation is an immediate follow-up. Instead, we want to
show how value systems can be beneficial for designing MAS and this subsection
highlights how easily they can be implemented.

4.4 Benefits of Value-Based Agents

Creating Expectations about Other Agents. Since value systems are ex-
pected to be shared within the agent community, agents can create expectations
about each other drives and resulting behaviors. Furthermore, value systems can
be used for creating expectations about the environment and the society. For in-
stance, if timeliness is important, then other agents are assumed to be on time.
As a result, agents can create the social assumption that schedules are reliable.
Thus agents can plan while tightly optimizing their schedules, leading to overall
higher performance. The same can be applied for environmental assumptions
(e.g. if timeliness is important, resources are assumed to be available on time).

Expectations can be integrated in several ways. A first solution consists in in-
tegrating them by design. Designers can integrate them knowing what is collec-
tively considered as important (e.g. if timeliness is important, then other agents
prefer not to accept too many tasks at once). This solution requires human in-
tervention, but it allows to shortcut the need for creating these expectations on
the fly. Furthermore, designers can integrate their insights, providing a richer
variety of expectations within agents.

A second solution consists in automatically creating expectations about be-
haviors of other agents. This solution can be achieved in relying on the assump-
tion that value systems are shared. Agents can use these systems for making
Game-Theoretical expectations about behaviors of other agents in estimating
their preferences, if the setting is simple enough. Agents can also be used for
evaluating the responses of other agents. Such an expectation is particularly
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useful for achieving cooperation. Indeed, preferences can be used for driving the
generation and the selection collective plans as well as justifying them to other
agents, which is a basic task of cooperation. Nevertheless, agents only share the
most abstract part of their value systems and only partly their beliefs. Thus,
estimating other’s preferred outcomes may be imperfect but should still be rel-
atively close to reality.

Making the comparison with other approaches, expectations created by value
systems are more abstract and less certain than those resulting from concrete
approaches for collaboration (e.g. norms). Indeed, expectations for value sys-
tems are not adequate for sharply predicting concrete behaviors. For instance,
“saving humans” does not mean than agents will rescue victims as soon as pos-
sible. Instead, agents may believe that more lives can be saved by extinguishing
the fire (e.g. as in the running example in a skyscraper). Nevertheless, if some
option is clearly better than other, agents are very likely to create adequate ex-
pectations about other agents. Furthermore, the more the value tree is shared,
the more agents are more likely to create adequate expectations. At the oppo-
site, expectations provided by other methods for achieving collaboration (e.g.
norms) are more concrete and specific to a situation or interaction (e.g. proto-
cols). Thus, these expectations tend to be relatively precise and accurate. As a
concluding word, both expectations are complementary. Combining them offers
useful perspectives.

Value Systems: Towards Human-Agent Interaction? Value systems are
particularly useful for supporting interactions between human and agents. Using
value systems for linking human and agents is relatively little cumbersome for
humans. Indeed, value systems are relatively intuitive to grasp (e.g. efficiency,
comfort, timeliness). They avoid the learning curve induced by understanding the
possibilities of more concrete approaches which restrict behaviors of agents. Fur-
thermore, humans can intuitively adapt value systems of agents to their needs,
without requiring specific programming capabilities. From the agent side, given
an allocated value system, agents can determine which expectations human users
make about them. They can also use value systems for creating more concrete
rules for interacting with humans.

Value-based systems are also appropriate for avoiding systems to be rejected
due to their complexity. Indeed, decisions are supported by value systems. Thus,
decisions can be explained in terms that humans can understand (e.g. “I extin-
guished the fire because I think it will save more lives”). Consequently, agent
decisions appear less arbiraty to humans, which can then better support collab-
orative interactions with humans, in human-agent societies.

Finally, value systems provide a simple model of human psychology. Conse-
quently, agents can use value systems of humans in order to create expectations
about them, as they would with other agents with value systems. Value systems
are abstract enough to create some abstract expectations about human behav-
ior, while not creating expectations about concrete human behavior. These latter
expectations are likely to mismatch, unless strong restrictions are imposed to hu-
mans behaviors.
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Fig. 3. Decision process for an agent with preference function p1 in situation dt̄ Bold
lines and text highlight choices made by the agent. If a1 uses preference p2, then the
selected action is “ignore”.

4.5 Running Example

Perspectives In this example, four preferences are considered: safety p1, punc-
tuality p2 and combinations of these two. The whole decision process is illustrated
in Figure 3.

Estimating Outcomes. If “rescue” tactical action is performed, a1 expects
ors: late(a1), at(injured person). If “report” is performed in dt, a1 expects
orp: in time(a1), reported(a1, person), at(unknown position). If “report” is per-
formed in dt̄, a1 expects or̄p: late(a1), at(unknown position). If “ignore” is per-
formed, a1 expects oi: in time(a1), unreported(person), at(fire).

Preference Functions. Safety is represented by the following order: situa-
tions with the property safe are better than those with the property tiny risk
which are better than those with the property unsafe. safe is true if the agent
is far from fire (e.g. rescuing the injured person, thus at(injured person) is
true), tiny risk is true the agent may be have to move to the fire (e.g. when
at(unknown position) is true, for instance when the agent waits for leader in-
structions) and unsafe if the agent is near a fire (thus at(fire) is true). Punctu-
ality is represented by the following order: situations with in time(a1) are better
than those with late(a1).

p1 and p2 are combinations of safety and punctuality. p1 compromises punctu-
ality and safety. p2 drastically favors punctuality over safety: for two situations
s1 and s2; s1 is better than s2 if, for timeliness s1 is better than s2 or they are
incomparable with regard to timeliness and for safety s1 is better than s2.

5 Integrating Value Systems in Collaboration

This section investigates the benefits of integrating value systems for improving
collaboration from a collective perspective. As a first observation, value systems
alone insufficient for achieving collaboration alone. First, because values support
drives which are not directly related to system goals. Second, because value
systems are too abstract for constraining concrete agent behaviors, which are
particularly important for conducting concrete interactions with other agents
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(e.g. value systems are not adequate for determining whether to drive on the left
or on the right). These more concrete interactions are better supported by more
traditional methods (e.g. norms, organizations, cooperation). In the following,
we aim at combining value systems with such methods.

This section investigates first the influence of value systems over collaboration
in human societies using concrete methods for supporting collaboration. Then,
we use this link as an inspiration for improving collaboration in artificial societies
using value systems.

5.1 Inspiration

The relationship between cultures and collective performance has been broadly
studied for human societies. These studies focus on generalist influences of cul-
tures on collective behaviors but some studies focus more specifically of this in-
fluence in the context of organizations or corporations. Figure 4 illustrates such
an observed correlations between some cultural features (power distance and un-
certainty avoidance) and preferred organizational patterns. These patterns drive
in turn the type of collective performance profiles which can be achieved (e.g.
bureaucracies are fitter for simple and static environments while adhocracies
are fitter for more complex and dynamic environments [20]). This section aims
at replicating such a property, in investigating how value systems can improve
collaboration in a MAS.

These studies give high importance to the influence of culture, for the main
reason that they drive individuals towards common individual and collective out-
comes. This drive helps individuals to understand and create expectations about
each other. Furthermore, value systems also highlight what is important for in-
dividuals and drive them towards similar outcomes. Thus, individuals decisions
tend to be streamlined when having multiple possible choices (e.g. 5 minutes
late for a meeting versus gaining 10 minutes for oneself), allowing to support
abstract collective properties.

5.2 Combining Values and Former Approaches for Collaboration

Value systems and concrete approaches tackle very different problems. This sec-
tion aims at considering these differences and how they can be combined with
each other.

Abstract Values and Concrete Collaboration The higher is a criteria in
the value tree, the more this criteria is abstract and thus the least environment-
dependent it is. Value systems are relatively reusable, even if they may require to
be locally adapted to specific environments. Nevertheless, they are not perfectly
adequate for making very concrete decisions.

Value systems enforce properties which are abstract and relatively indepen-
dent from a given system (e.g. being in time, not causing others do be delayed).
Conversely, traditional methods for achieving collaboration tend to be more re-
lated to environmental or interaction properties (e.g. concrete norms, protocols).
Thus, these approaches tend to better enforce concrete decisions.



422 L. Vanhée, F. Dignum, and J. Ferber

Value systems appear to combine well with other solutions for achieving col-
laboration. They offer generic and abstract drives which lead to useful system
properties (e.g. timeliness, degree of independence of agents) without strictly
forbidding any concrete behaviors. In addition, value systems help agents to
make abstract actions which influence more concrete decisions (e.g. which goal
to select, which abstract method to use in order to tackle a given problem).
Nevertheless, collaboration solutions are still crucial for enforcing concrete envi-
ronmental and interaction properties, which are required for tightly connecting
agent actions.

Drives versus Constraints. Value systems determine what agents should con-
sider as important, given some abstract and generic perspectives. Value systems
can be seen as drives. In particular, value systems are shared within the commu-
nity. Thus, agents are all driven towards similar outcomes and all consider the
same things as important. This shared drives is crucial for avoiding individuals
go against expectations of others. Furthermore, this shared drive helps behav-
iors to conflict with each other, given value-driven properties. For instance, with
timeliness all agents know the importance of deadlines, which drive agents and
are used for creating assumptions. Thus, no agent jeopardizes these deadlines
without a good reason.

Value systems systems and other approaches complement well with regard to
this aspect. Indeed, value systems can be used for determining what is important
for agents in general. Conversely, other approaches determine how to behave in
given expectable situations. Value systems help to abstractly and collectively
drive agents towards desirable collaborative behavior. Value systems systems
provide to agents some high-level guidelines about what agents should pursue
when using the more concrete tools for collaborating (e.g. do not circumvent a
safety rule by doing something dangerous). This link is particularly relevant for
achieving cooperation. Indeed value systems can be used for determining collec-
tive goals and plans and for creating expectations about behavior of individuals
with regard to that plan (e.g. with timeliness, sub-plans are likely to be assigned
deadlines, which are highly used for optimizing global plans).

Furthermore, value systems guide agents in situations where agents are given
some freedom. Such a situation can be desired by system designers. But this
situation can happen if the agent has to perform an unexpected decision, in
which rules do not apply. In that case, supporting agent decision is crucial in
order to prevent the agent to go against the system due to a lack of guidance.

Performance. The influence of value systems on collaboration is relatively inde-
pendent from the environment. To that extent, collaboration promoted by value
systems tend to be relatively less sensitive to failures or to unexpected events,
supporting robust and flexible collaboration. Nevertheless, this relative indepen-
dence with the environment makes difficult to tightly optimize interactions of
agents, making more difficult to pursue high efficiency.

This influence is relative to other approaches and provided in a general con-
text. Indeed, value systems support a wide variety of behaviors with different
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performance profiles (e.g. timeliness tend to improve time to completion at the
expense of robustness) and other approaches can be particularly robust or flex-
ible.

Value systems are adequate for handling complex and dynamic environments.
Indeed, value systems do not restrain agent behavior for resolving complex prob-
lems. To that extent agents are not restricted in the way they resolve problems
and can thus develop more freely adaptive solutions. Such possibility is crucial
for complex and dynamic environments for which restricting concrete behaviors
may be hard to determine or can become inadequate.

Designing Collaboration with Value Systems. Integrating value systems
raises now perspectives for designing collaboration.

Top Down vs. Bottom Up Concrete approaches restrain local behaviors and
generally aim at achieving more abstract properties, using a bottom-up ap-
proach. Abstract approaches provide abstract constraints and are made more
concrete, in a top-down approach. Value systems expand the latter category,
which is at the moment composed of abstract normative and organizational sys-
tems (e.g. OperA [2]).

These two approaches can be combined together in order to leverage design
costs. Indeed, reaching concreteness with abstract methods and abstraction with
concrete methods is particularly expensive. Combining the two allows to use each
method for the problems they are is adequate for.

Design Guidelines for Agents Value systems determine what agents consider
as important. To that extent, they provide clear guidelines about what agents
should focus on and thus the type of mechanisms they should encompass (e.g.
time management for timeliness). From a collective perspective, value systems
help to determine the set of concepts that agents can use for interacting with
each other (e.g. deadlines for timeliness).

Designing Drives Designing value systems differ from former approaches
because system designers have to drive agents instead of restricting their be-
havior. With value systems, system designers can only determine agents prefer-
ences and connect these preferences with the environment and decisions to be
made. This form of design can appear difficult on first glance because design-
ers cannot directly affect behaviors but instead about drives which would lead
to desired behaviors. Idem, when debugging, system designers have to investi-
gate whether agents making undesired decisions wrongly estimated outcomes or
whether agents are not inclined enough towards a more adequate value.

Designing the Whole System As a recommendation, value systems and other
methods for collaborating should be streamlined by design. For instance, if time-
liness important, then time should play a crucial role in norms and organizations.
Norms should determine time limitations, such that agents which rely on these
norms can integrate them in their schedule in order to be sure they do not miss
deadlines. If that is not the case, value systems may conflict with other methods
of collaboration, leading to counter-productive behaviors.
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As a future work, we consider the integration of value systems with sys-
tems including dynamic constraints for supporting collaboration (e.g. dynamic
environments and norm base). In such scenario, we may expect agent to adapt
the constraints base to the environment but also to value systems (e.g. remov-
ing safety rules leading to further danger). If value systems are also assumed
to change, we suggest to make the value-base less dynamic than more concrete
aspects, since value systems should be less sensitive to the environment.

6 Example of Useful Values for Improving Collaboration

In previous sections, we presented how value systems can be integrated in the
design of MASs. This section proposes more concrete examples of what kind
of objects can be integrated as a value. In particular, these examples of value
systems are inspired by in human cultures. The core aim of showing these exam-
ples, in addition to provide immediate solutions, is to give an idea of the level
of abstraction that we have in mind when we discuss about value systems. In
addition, we want to show that each value has an important impact potential
on plenty of individual and collective decisions. This impact has in turn plenty
of consequences on design perspective (e.g. which norm to combine with a given
preference).

As a disclaimer, these examples should serve as an inspiration of solutions
which can be used for improving collaboration. Nevertheless, the model pre-
sented in this article does not aim at faithfully replicating human behaviors.
Consequently, we kept only examples of cultural influences which are relevant
for improving collaboration in MAS. Aspects which are too human oriented (e.g.
desire from hedonism, ways to express emotions) are left out in this article.

Value systems are not a new topic and former researchers have empirically
established them for human societies. The most used model is the Schwartz
value model [24]. Schwartz empirically recognizes 10 value systems: stimulation,
self-direction, universalism, benevolence, conformity, tradition, security, power,
achievement and hedonism. These value systems can directly be used as criteria
for modeling artificial value systems, as proposed in this article.

Cultural dimensions provide another source of inspiration for designing value
systems. Each dimension evaluates cultural responses to dilemmas, like “What
is more important, rules or relationships?” [16]. These dilemmas highlight some
abstract choice which impact plenty of decisions. These choices indicates the in-
fluence of underlying value systems which can be integrated in our value-model
(even if cultural dimensions are not value systems). On the track of linking cul-
ture and collective behavior in MASs, [26] conceptualize links between cultural
dimensions, individual behavior, emerging collective behavior and performance.

In the rest of this section, we briefly introduces cultural dimensions from
[16,18] which highlight crucial dilemma can be considered when integrating value
systems in collaborative MASs.
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Fig. 4. Culture and preferred organizational pattern, from [18]

6.1 Power Distance (PDI)

[18] defines Power Distance as the cultural relative importance given to formal
and informal statuses.

In high PDI, subordinates prefer to give information and decision power to
leaders. Leaders are expected to decide and assign clear orders for subordinates.
As a result, in such a culture, leaders tend to have the more information and
can thus make well-informed decisions. In addition, leaders can further optimize
subordinate schedules because subordinates tend to be expected to wait for and
comply with instructions, allowing to increase collective efficiency. From the
perspective of system performance, high PDI tends to lower system robustness:
leaders are bottlenecks (in particular in information-rich or complex environ-
ments). Thus, failing or missing leaders leads to a collapse of the communication
and decision structures. In the running example, agents with high PDI value
systems are likely to perform the “report” action. Indeed, this action makes sure
that leaders possess the adequate information without going against orders given
by agents. If agents run out of time or the leader is assumed to already have
the information, they can also “ignore” the victim. “Rescue” is unlikely trig-
gered because they are not supported to take that initiative without receiving
the authorization.

In low PDI, individuals give less power to statuses. They consider themselves
as independent and of equal value with regard to information and decisions.
They are likely to take more initiatives and carry their own tasks. As a re-
sult, individuals have locally more information but leaders are less informed to
technical details, providing with higher-level feedback. Such a culture is likely to
increase system robustness, since no agent is critical to the system. Nevertheless,
the lack of centralization of information and decisions tends to lower efficiency.
In the running example, the lack of strong leadership is likely to let a1 deter-
mine which action to pick, maximizing utility from an individual perspective.
To that extent, “rescue” the victim is the most likely option, unless the task to
be achieved by the a1 particularly important. In the latter case, the agent may
“report” if given enough time or “ignore” if lacking time.
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6.2 Uncertainty Avoidance (UAI)

[18] depicts uncertainty avoidance the cultural sensitivity of individuals towards
the certainty of their situations and their decisions.

In high UAI, individuals prefer to can create strong assumptions about their
beliefs. To this extent, they either try to lower this uncertainty either by getting
more information or by making assumptions about it (e.g. someone will support
me when I will enter the burning house). As a result, individuals prefer to behave
according to standards, further reducing uncertainties for itself as well as for oth-
ers. Thus, as a an emerging property, individuals can expect less variability from
actions of other agents or environmental states, further enforcing the benefits of
making assumptions. High UAI is very efficient for static environment because
a lot of assumptions can be made about the environment allowing to optimize
collective action. Nonetheless, this preference is not flexible: if the environment
is dynamic, either agents constantly update their procedures or they may try
to apply mis-adapted procedures leading to failures. In the running example, an
agent with high UAI is likely to pick a solution which minimizes generated un-
certainty. “Rescue” is the most unlikely option, because it may prevent the agent
to be at the fireplace while it should to be there, creating uncertainty for others
which is particularly undesirable. “Ignore” may lead to the casualty of the victim
which is mixed feelings. “Report” seems the best option, since it would lower
uncertainties of the fire commander without creating so many uncertainties for
the firefigter.

In low UAI, individuals are less sensitive to uncertainty. Their behavior is
more directed by goals than by procedures. To that extent, behaviors are likely
to be more adaptive, leading to more variability in environmental situation. In
that case, this variability is not problematic because other agents expect the
environment to be uncertain. They do not make inappropriate assumptions.
This adaptability tends to raise collective flexibility but lowers efficiency due to
difficulty for standardizing. In the running example, an agent with a low UAI
value system has little incentive for following standards. Such an agent is likely
to make similar decisions as a low PDI agent, thus maximizing local utility.

6.3 Sequential versus Synchronous Perception of Time

[16] describes two paradigms to consider time management: sequential and syn-
chronous.

In sequential time, individuals consider time as a sequence of events. Re-
specting deadlines is very important to not delay this time-line. As consequence,
timeliness is expected from other individuals. From a collective perspective dead-
lines and schedules are expected to be more reliable. Thus, such an APF is likely
to improve efficiency and lower time to completion in allowing accurate planning
of tight schedules. But, this approach fails when time considerations cannot be
estimated accurately (lower flexibility) and is sensitive to failures, missing agents
and congestion (lower robustness). In the example agents with sequential value-
systems will do their best in order to be on time. In any situation they are
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likely to “ignore” the victim. Nevertheless, if timeliness is not set to an extreme
importance, they are likely to “report” in dt.

In synchronous time, time is considered as a resource to be planned against. To
that extent, individuals prefer to locally maximize their efficiency, for instance by
taking opportunities. With this consideration of time, timeliness is less important
than lowering efficiency, so individuals tend to be late. Other individuals can
expect delays and thus can, for instance, prepare activities for filling waiting
time. This form of time management can also lead to high efficiency, if the
environment is suitable for “filling in” waiting time. A negative point concerns
the unpredictability of time to completion: an agent can continuously delay a
task because of getting opportunities to perform other tasks more efficiently. In
the example, synchronous agents select which action to perform in comparing the
time cost incurred by selecting one of the other option (time for extinguishing a
wider fire if “help” and time for getting back and rescuing for “ignore”, estimated
cost for sending someone else rescuing for “report”).

7 Conclusion

With a similar idea than BDI, norms, organizations and protocols, this article
proposes to use aspects of human societies, namely cultures, as an inspiration
for improving collaboration in problem-solving MAS. Cultures provide a rich in-
spiration for MAS, by distinguishing two levels of influences: abstract values and
concrete practices. The latter being already well studied (e.g. norms, protocols),
we focus on the former. We propose solutions for expanding agent design in order
to incorporate value systems and we investigate the benefits of integrating value
systems on top of practices for driving agent societies.

Value systems are abstract drives shared by agents. Value systems specify
uniformly to all agents some abstract aspects that they should consider as im-
portant when making decisions. By sharing a similar emphasis on what is im-
portant, agents can more easily determine which decisions are streamlined with
collaboration. From a collective perspective, this drive allows the emergence of
abstract desirable properties (e.g. deadlines tend to be reliable). Value systems
can also be used by agents for creating some weak expectations about drives of
other agents, their behaviors, the environment and the society (e.g. an agent in
a culture promoting safety can expect support from the others).

Value systems offer a complementary perspective to existing approaches for
supporting collaboration. Existing methods for supporting collaboration would
gain in also integrating value systems. From an individual perspective, value
systems are abstract enough for driving decisions in possibly any situation, par-
ticularly in unexpected scenarii, which may be above the limits of more concrete
methods. From a collective perspective, value systems provide abstract directions
about what agents shall pursue while practices describe more concretely how
agents should behave. This complementarity has numerous benefits. The main
one being that they provide cross views for tackling problems. This crossed view
allows to avoid inherent explosion in terms of design complexity which happens
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for solving problems with an inappropriate approach. For instance, individual
sharp and well expected behavior is relatively captured by norms while abstract
collective patterns are more easily driven by abstract value systems. From a per-
formance perspective, concrete approaches are appropriate for achieving high
efficiency by providing tight guidance in standard situations. Value systems of-
fer high flexibility and robustness in providing agents core principles for making
principled decisions when rules fail to direct them. This decision support makes
of value an adequate solution for coping with complex and dynamic environ-
ments.

Concerning possible applications of value systems, we identified three cate-
gories of applications: Unknown, evolving environments (e.g. exploration, build-
ing dynamic sensor networks). In such an environment, system designers cannot
easily determine beforehand adequate patterns of collaboration. Agents should
rather do it on the fly, depending on the situation. Value systems offer an ade-
quate guidance for driving collaboration in these many possible situations.

Adversarial environments (e.g. military applications, game-oriented applica-
tions). In such an environment, concrete approaches are risky because they tend
to force some behavioral patterns for achieving collaboration. These patterns
put the system at risk of being exploited (e.g. trigger an emergency call in order
to attract all the drones around, weakening the main entrance). Instead, value
systems offer versatile and adaptive behavior which still aims at promoting col-
laboration.

Human-machine interactions (e.g. health-care robots, serious gaming). As
further advocated in this article, value systems are numerous advantages for
connecting humans with software agents. Value systems are intuitive, easy to
adapt, provide a simple model of human drives and agents can use value systems
for justifying their decisions.

For future work, we plan to integrate value systems within an agent. We plan
on using the hybrid agent, which combines a value-driven strategical layer with a
tactical layer influenced by traditional design tools. The layer for practices should
encompass a high-level BDI representation such as 2APL or GOAL. Then, we
plan to create a society of such hybrid agents and investigate their individual
and collective behavior on a concrete problem. This implementation allows us to
confront ourselves to technical issues raised by real problems and to investigate
how far value systems can be used. From this confrontation, we expect to gain
further knowledge about methodologies which are relevant for the designing
value-based agents and about the connexion between value-systems with other
methods for supporting collaboration.
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Abstract. Interaction is a subject widely investigated in multi-agent systems
(MASs), but some issues are still open. While most of current approaches of
interaction in MAS just consider the interaction between agents, some problems
are better modeled when the MAS is composed of agents, environment, inter-
action, and organization. In our approach, we integrate the interaction with the
other MAS components, like the organization and the environment, keeping it as
a first class abstraction. In this paper we present a conceptual model for the inter-
action component, a programming language to specify the interaction, and how
our approach was integrated in an MAS platform. The main result of this paper is
the conception of the interaction as a first class abstraction considering an MAS
composed of agents, environment, interaction, and organization.

1 Introduction

It is quite common in MAS that the agents need to interact to achieve their goals. Some-
times an MAS can be composed of Agent, Environment, Interaction, and Organization
as introduced in [15,23]. In this kind of MAS, the interaction does not concern only the
agents, it is strongly related to the environment and the organization of the system. For
instance, besides interacting directly with other agents, agents also interact with objects
in their environment by means of acting and sensing.

Many works already exist about agents, organization, and environment. There are
tools to specify, develop, and execute each of these components. For example, an MAS
developer is able to build the environment by means of CArtAgO [40], the organiza-
tion by means of AGR [21], ISLANDER [20], Moise [27], and so forth, and finally,
the agents by means of GOAL [24], JADE [11], 2APL [13], Jason [10], and so on.
There are also tools to link these components to work together, such as EIS [5] and
JaCaMo [9]. This separation of concerns can improve the maintenance, modularity, or-
ganization, reuse of code, etc. It is also easy to see that each of these components can
be programmed by different developers, which also facilitates the division of tasks.

In addition, several approaches defend the idea of keeping the interaction as a first
class abstraction [14, 32–34, 43, 44]. However, none of current works (Sec. 2) provide
us features to specify and execute the interaction considering the existence of the other
MAS components, that is, to allow the specification, development, and execution of the
interaction not considering only agents, but also considering the environment and the
organization.

F. Dalpiaz et al. (Eds.): EMAS 2014, LNAI 8758, pp. 431–450, 2014.
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We already introduced a conceptual model and a programming language for the in-
teraction considering the other MAS components in previous works [49, 50]. In this
paper we focus on the integration of the interaction with the JaCaMo platform. JaCaMo
is a project that allows the developer to consider each one of the MAS components as
first class abstraction. Although the agent, environment, and organization components
are already considered by this platform, the interaction component was not properly
integrated. In this platform, the interaction is not a first class abstraction, it is simply re-
duced to messages coded inside the agents program. For instance, it is not easy to find
in the code how the system interaction is programmed (it is indeed spread in several
agent programs).

The aim of our work about interaction (conceptual model (Sec. 3), programming
language (Sec. 4), and integration with JaCaMo (Sec. 5)) is to provide a mechanism to
institutionalize how the agents may interact with the different elements in an MAS to
achieve the organizational goals. We are linking the organization (e.g. its goals) to the
agents (that should fulfill them) and to the environment (by defining interaction proto-
cols that could be used as guidelines for the achievement of the goals). By considering
the interaction with the environment, we can formalize more general situations in a pro-
tocol, where the agents should interact with the environment by means of performing
actions and perceiving changes. We are looking for an interaction component that is
able to deal with the other three MAS components. It means that we are considering a
more complex MAS, composed of Agent, Environment, Interaction, and Organization.
The main results that we got with our approach are detailed in Sec. 6 while further
works and conclusions are presented in Sec. 7.

2 Related Work

In this section, we present the interaction problematic and some related work. We start
with the works focused on interaction between agents, followed by those that consider
the interaction with the environment, and in the following, the works that regard the
interaction with the organization. Finishing this section, we mention some works that
have already introduced the interaction problematic considering the integration with the
three other components.

2.1 Interaction and Agents

There are several drawbacks of specifying the interaction inside of the agents code
[19, 32, 44]. One of them is related to the maintainability of the system. If the interac-
tion specification is modified, it is necessary to update the code of each agent involved.
Another one is related to the protocol composition. The protocols could not be com-
posed at run-time in order to allow more complex interactions.

As pointed by some approaches, it is unnecessary to keep the interaction control in-
side the agents code [31–33, 35, 44]. The separation of the two issues simplifies the de-
velopment of applications, leading to a modular approach [22]. Consequently, protocols
can be used to compose more complex protocols [12, 16, 17, 28, 37, 38]. In [28, 38, 44],
other advantages of a modular approach are presented such as the specification of



The Interaction as an Integration Component for the JaCaMo Platform 433

reusable protocols, the improvements in the validation process, and the capacity to share
protocols between agents at run-time.

2.2 Interaction and Environment

One of the main limitations in most of works is to consider the interaction only by means
of message exchange between agents, not considering the agent interaction with the
environment [2, 3, 6]. Some examples that justify this kind of interaction are presented
in [2,3]. One of these examples refers to the election in the human world. When people
have to do an election, they do not say the candidate name. They use their hands to
interact with the electronic ballot box or simply raise them without saying any word. On
the one hand, the electronic ballot box is responsible for computing the votes and notify
the winner. On the other hand, by raising their hands, people also may discover the
winner of some election only by counting the upper hands. In both cases, the interaction
occurs by actions and percepts in the environment and not by speech acts.

There are some works that consider the relation between interaction and environ-
ment. In [39] and [42], it is presented a model that allows some different kinds of
interaction, called overhearing, or eavesdropping. In this kind of interaction, the agent
intercepts messages of others by using the environment. The environment is a way to
send and receive messages. In [30], the aim is to conceive an environment as a way
to allow indirect interaction. Their focus is on interaction like stigmergy, which is the
interaction used by several natural systems such as amoebae and ants. In [35], the en-
vironment is considered as a mediator between agents and not a proper first class ab-
straction. In [31], the environment is also considered by another perspective: the agents
could recognize other agents by the concept of neighborhood. The agents are only able
to communicate with others depending on how far they are from each other. In both
cases [31, 35], it is not considered the actions or percepts performed by the agents in
the environment. Moreover, although their approach consider the concept of roles, such
roles are not related to organizational roles. As a consequence, the specification may
lack coherence since different role conceptualization may exist in different components.
A role, for example, while existing inside a protocol, may not exist in the organization.

The MERCURIO framework [2,3], a very similar work to ours, focus on integration
of the interaction model regarding agents and environment. The environment considers
the actions performed by the agents and the percepts that the agents may sense. How-
ever, the main aim of MERCURIO is to deploy the interaction with the environment,
thus the interaction is also not strongly connected with the organization. As in [31, 35],
the roles in the interaction are not the same roles as in the organization.

Finally, in [4, 41] the authors use artifacts to handle the interaction between the
agents. In [41], the aim is to provide a communication infrastructure based on arti-
facts. The implementation of such infrastructure is done in JaCaMo platform [9] and the
authors provide the representation of two kinds of artifacts. The former has the aim
to represent the interaction protocol itself and allows the specification of a sequence
of messages. The latter defines each speech act individually. In [4], the authors use
CArtAgO artifacts to embed commitment-protocols following the model introduced
in [46–48]. Their work also enriches the JADE [7] with mechanisms to exploit the
use of commitments and protocols based on commitments. Each artifact keeps a
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social state, which is composed of social facts and commitments. Thus, the agents are
able to reason about the interaction by means of observing the social state evolution. In
both cases [4,41], instead of the agents exchange messages directly, they use the opera-
tions provided by the artifacts. For example, in the contract-net protocol, the operations
of the artifact can be cfp, propose, refuse, accept, reject, done, and failure.
Moreover, the communication artifacts have the aim to notify the receiver about the
messages.

2.3 Interaction and Organization

The relation between interaction and organization is also important. The GAIA method-
ology [45], for instance, has already defined a role as a composition of four main
attributes: responsibilities, permissions, activities, and protocols. The protocols are re-
sponsible for specifying the interaction between the agents that are playing the organi-
zational roles.

Some works about organization already relate the interaction with the organization
by means of a dialogical dimension [8, 18, 20, 21, 25]. In this case, they use several
organizational concepts, like goals, roles, and obligations. Each of these concepts is
strongly connected with the interaction concepts, which means that, for example, the
roles in the interaction are the same roles as in the organization.

2.4 Summary

Although none of the presented works addresses the integration of the interaction with
the three other components in order to allow its specification, development, and execu-
tion, some works already address this topic in an AOSE perspective. MAS-ML [43] and
O-MaSE [14] are a modeling language and methodology, respectively, which consider
the interaction integration with the three other components. However, both approaches
are conceived for the specification phase and do not consider the implementation and
execution phases. In addition, even providing tools to generate code, they do not gener-
ate the interaction code.

Thus, even if some authors are concerned with the interaction between agents and
some of the other components, none of them integrates the interaction with the three
components in a unified perspective and consider the development and execution phases.
Moreover, in some of them, the interaction specification is conceived to be handled by
humans during the MAS design and does not allow the agents to read it (or eventually
to change it) at run-time. By not considering the interaction as a first class entity and
by lacking an integration with the other three components, we may have a series of
difficulties in the development of some applications: (i) it is difficult to have an overall
view of the interaction in the MAS because the interaction code is spread in several
parts of the system (e.g. it is only possible to see the interaction if we open the code of
each agent involved in the interaction); (ii) the MAS developer is not able to formalize
(by means of a programming language) the expectations about the MAS evolution con-
sidering the interaction both with the environment and with other agents; (iii) it is not
possible to provide a more detailed specification for the agents to help them to achieve
organizational goals, especially if the agents need to interact with the environment; and
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Fig. 1. Conceptual model

(iv) agents in open systems have more difficulties to interact because the interaction
protocols are not explicitly specified and available at run-time.

3 Conceptual Model

This section briefly presents how the several MAS components are conceptually inte-
grated with the interaction. Only the core ideas of the model are described here. More
details can be found in [49].

Fig. 1 shows the four MAS components and the relations between the interaction
and the others. In order to keep the figure clear and clean, we only show the concepts
that were directly related to the interaction. The most important concept in our model
is the interaction protocol1, which is basically composed of a set of participants, transi-
tions, states, and goals. Each transition links two states (one source state and one target
state) and it can be fired by an event, a message, or an action. When some transition is
fired, a new state is achieved and the protocol execution progresses. In order to separate
the protocol specification and the protocol execution, we call scene an instance of a
protocol. It is possible for a protocol to have several scenes executing at the same time.

The organizational concepts used in our model (top of Fig. 1) are based on the or-
ganizational models presented in [18, 27]. The interaction is related to organization in

1 In this paper, we consider the definition of protocol presented in [29].
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four points. Firstly, the protocols are related to organizational goals. A protocol specifies
a possible interaction scheme to achieve them. When a protocol finishes successfully,
the organizational goal is considered achieved. For example, if there is an organizational
goal for an agent to contract a company to build a house, such goal can be achieved by
the use of a contract-net protocol. The protocol is just one (and not the only or even a
mandatory) way for the agents to achieve the organizational goals. It can exists several
protocols to achieve the same goal and the agents could also achieve a goal using other
means. We could also imagine the existence of protocols without a relation to organi-
zational goals, however, in this work, our main objective with the use of protocols is
to help the agents to achieve the organizational goals. Thus, we are not interested in
the representation of protocols that do not drive the agent to accomplish organizational
goals and neither about what the agents do for achieving their own (not organizational)
goals.

The second organizational concept used in our model is obligation. The transitions
of a protocol are related to organizational obligations. Obligations are created for the
agents to perform the action that fires some enabled transition of the scene and thus
evolve its execution. For example, if there is a transition in a protocol that specifies that
some agent needs to tell the price of a product to another agent, an obligation with this
information will be created as soon as the transition is enabled. Furthermore, the use
of obligations does not hinder the agents from trying other means to achieve the goals.
The agents are free to violate them.

Thirdly, the participants of a protocol are related to organizational roles. To be a par-
ticipant in a protocol, an agent must previously play a role in the organization (e.g. the
role baker or manager). Since the organization constraints the role adoption based on
the agent skills, the agent will be able to perform the activities required as a participant
in the protocol. Finally, the organization also provides operations, which are the actions
that some agent can perform in the organization such as adopts or leaves some role,
commits to some mission or goal, and achieves some goal.

The environmental concepts used in our model (bottom of Fig. 1) are based on the
A&A meta-model introduced in [36]. We map the concept of artifact onto a partici-
pant in the interaction component, which constrains the participation of artifacts in the
protocol; the operations, which represent the actions that the agents can perform in the
environment (for example, the agent can execute actions to regulate the temperature of
an oven, such as turns the oven on or off); and finally, the observable events, which
agents can perceive in the environment, such as an alarm indicating that the tempera-
ture of an oven is too high, the color of something, the sound of a machine, etc. It is
important to notice that the artifacts are not an autonomous entity and, in our approach,
we are not trying to define what the artifacts should do. Rather, the protocol defines
which actions the agents should do on them. Besides the actions, the use of protocols is
a way to handle the observable events that are being produced by the artifacts.

The agent component (right side of Fig. 1) provides the concepts of action, which
can be some action performed in the environment or in the organization, and the mes-
sage exchange, which represents the use of communicative acts (e.g. tell, achieve)
in order to interact with the other agents. The actions that the agents perform in the
environment or in the organization are mapped onto their respective concepts in their
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respective components. An action performed by the agent in the organization is mapped
onto the concept of action in the organization component while an action performed by
the agent in the environment is mapped onto the concept of action in the environment
component. Finally, the concept of message exchange is directly mapped onto the con-
cept of message in the interaction component.

The conceptual model introduced in this section is a generic solution for the inte-
gration of the organization, environment, and agents based on the concepts depicted in
Fig. 1. For example, if the organization provides concepts like goals, roles, and obli-
gations, it can fit very well in the proposed model. Moreover, the model can also be
adapted to other organizations, environments, or agents. One of the core ideas of this
paper is to take advantage of using a formal representation for the interaction consider-
ing the environment and the organization. A well-detailed protocol (specified by means
of messages, actions, and events) can help the development of open systems or help
the agents that do not know how to achieve some organizational goal. Thus, protocols
are used to define a more general behavior for a system and not simply to define the
behavior of the agents using message exchange.

4 A Language to Specify Interaction Protocols

In this section, we map the concepts presented in Fig. 1 onto a programming language
used to specify interaction protocols.2 The language is mostly presented by means of
two examples. The aim of the first example is to provide a typical sequence of steps used
to write a protocol in our approach. For this first example, we consider a simplified
situation where an agent must make a cake. The protocol shows especially how an
agent interacts with the environment by means of actions and percepts. The second
example illustrates more features of the language, such as the specification of message
exchanges and timeouts. In both examples, we present very simple situations, however
the real advantages of the proposed interaction protocols are better noticed in large
MAS, where the system is composed of hundreds of agents with complex tasks and
interactions.

The first step to build a protocol with the proposed language is to decide which or-
ganizational goals the protocol must achieve. For example, to make a cake for a bakery
organization, we can conceive a protocol as a way to achieve the goal “to make a cake”.
When the cake is done, the goal “to make a cake” can be set as achieved.

In the following, we need to decide who will be the participants of the protocol.
Using the example of the cake, we can assume that in the bakery organization there are
the roles baker and cake decorator. The baker is responsible for the cake production
while the cake decorator is responsible for the cake decoration. Therefore we can define
baker and cake decorator as participants of the protocol. In addition, we may include
some environment elements that will participate of this scenario. For example, we will
need an oven, a blender, a clock, etc.

Then we specify the states of the protocol and the order that they should be achieved.
The states of a protocol can be achieved by means of transitions that can be fired by

2 We will only briefly present the most important parts of the language, since more details can
be found in [50].
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Algorithm 1. Making a cake protocol
1. protocol making a cake {
2. description: "Tell the agent how to make a cake";
3. goals: "to make a cake";
4. participants:
5. agBaker agent "baker";
6. agCakeDecorator agent "cake decorator";
7. artBlender artifact "artifacts.Blender";
8. artOven artifact "artifacts.Oven";
9. artClock artifact "artifacts.Clock";

10. states:
11. n1 initial; n2; n3; n4; n5; n6 final;
12. transitions:
13. n1 - n2 # agBaker -- action "mixIngredients" -> artBlender;
14. n2 - n3 # agBaker -- action "putCake" -> artOven;
15. n3 - n4 # agBaker -- action "setTimer" -> artClock;
16. n4 - n5 # artClock -- event "alarm" -> agCakeDecorator;
17. n5 - n6 # agCakeDecorator -- action "takeCake" -> artOven;
18. }

actions that the agents perform in the environment, events that the agents can perceive,
and messages that the agents can exchange. Back to the making a cake scenario we can
see some transitions. We can define as a first transition that the agent with the role baker
needs to mix the ingredients using the blender. In the second transition, the baker needs
to put the cake into the oven and finally it needs to set the clock with the required time.
After the time elapses, the clock emits a sound, which can notify the cake decorator
that the cake is done. Thus, the cake decorator can take the cake out of the oven. In
Sec. 5, we give more details about how transitions produce obligations.

Finally, we can define a name, some description, the initial state, and the final states.
Notice that we can have several final states, however we can only have one initial state.
In the making a cake scenario, we can set the initial state as when there is “nothing” of
the cake. As a final state, we can set the state after the agent takes the cake out of the
oven. Therefore, when this final state is achieved, the goal to make a cake is achieved
in the organization. A possible implementation of this protocol is presented in Code 1.

The advantage of using protocols in the case of the making a cake scenario is the
openness. A new agent, which has never made a cake before, can adopt the role baker
and follow the protocol specification. The protocol is a way to guide the new agent to
make the cake. Therefore, we can replace the agents and if they know how to follow
protocols, they can make a cake easily. Another aspect of this example is that we only
used actions and events, such as put the cake into the oven, take the cake out of the
oven, set the time in the clock, and the sound emitted by the clock. Both actions and
events are related to environmental concepts. Although the transitions in our example
represent macro-tasks, we could detail the protocol as much as we need. For example,
the transition n5 - n6 could be detailed using other actions. Instead of simply taking
the cake out of the oven, we could specify that the agent should turn the oven off, open
the oven door, take the cake out of the oven, and close the oven door.

Code 2 presents another example of protocol, where the aim is to serve a customer
in a store and the sellers do an election in order to decide which one will serve the
customer. The participation of the agents is defined in lines 5 and 6, which state that they
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Algorithm 2. Attending protocol
1. protocol attending {
2. description: "Serve a customer";
3. goals: "chooseSeller";
4. participants:
5. playerCustomer agent "customer";
6. playerSeller agent "seller" all;
7. artBallotBox artifact "artifacts.BallotBox";
8. states: k1 initial; k2; k3; k4 final;
9. transitions:

10. k1 - k2 # playerCustomer -- message[tell] "needSeller" -> playerSeller;
11. k2 - k3 # playerSeller -- action "vote(X)" -> artBallotBox

: ".string(X) & .is_agent(X)";
12. k2 - k3 # timeout 30000;
13. k3 - k4 # artBallotBox -- event "winner(Y)" -> playerSeller;
14. }

must play the role customer (line 5) or the role seller (line 6) in the organization.
The protocol also includes the participation of a ballot box artifact to help the agents to
vote in an anonymous approach (line 7).

The protocol is composed of four states (line 8): k1, k2, k3, and k4, where k1 is
the initial state and k4 is the final state. On the one hand, the available transition from
state k1 is defined in line 10. It defines that the agent who is playing the participant
playerCustomer must send a message to the agents who are playing the participant
playerSeller informing them that it needs some seller. On the other hand, the avail-
able transitions from state k2 are those defined in lines 11 and 12. The former can be
triggered only by agents participating as playerSeller in the protocol by doing the ac-
tion vote(X) on the artifact artBallotBox (the ballot box). The latter is defined with
a timeout statement (line 12). The timeout is important in situations where temporal
constraints are fundamental, such as the time that an agent must wait for the proposals
of the others in an auction.

An important mechanism used in the language is the unification, which is equiv-
alent with the traditional unification mechanism of several agent languages and also
Prolog. When an agent performs the action vote or the environment produces the
event winner, it must unify with their respective expressions vote(X) and winner(Y),
where X and Y are variables. Notice that in transition k2 - k3 we have specified the
test ".string(X) & .is agent(X)" which means that the agent performs the action
vote(X), the X must be both a String and an existing agent in the MAS. Moreover, it
is important to notice that this test expression is any String, which means we can have
many ways to evaluate some action. More details about this mechanism is explained
afterwards.

Finally, the last transition of the protocol (line 13) defines that the artBallotBox

counts the votes and emits an observable event named winner(Y), where Y is the win-
ner name. With the successful termination of the protocol, the goal chooseSeller is
achieved in the organization (line 3).

It is also possible to specify different ways to fire transitions. Fig. 2 presents the
language grammar with its non-terminal symbols. The non-terminal duty defines what
must happen to fire the transitions and each transition may have several different
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Fig. 2. Language grammar [50]

Algorithm 3. Reply to call-for-proposals in the contract-net protocol
1. no2 - no3 # seller -- message[tell] "replyCFP(CNPId)" -> client

trigger "refuse(CNPId)" : ".number(CNPId)";
trigger "propose(CNPId,Offer)" : ".number(CNPId) & .number(Offer)";

verifications (represented by the non-terminal trigger) to make sure whether some oc-
currence is valid to fire it. For example, in Code 3, we specified part of the contract-net
protocol. In this part, the agents playing the participant seller must answer the call-
for-proposals (replyCFP(CNPId)) sent by the agent playing the participant client.
The triggers define the two possible answers that the agents could use to fire the transi-
tion no2 - no3. The former indicates that the seller could refuse to make a proposal
(refuse(CNPId)), while the latter indicates that the seller could send a proposal
(propose(CNPId,Offer)). In the previous protocols, presented in Code 1 and Code 2,
we do not have such kind of situation because for each transition there is only one way
to fire it. However, as presented in Code 3, we can represent transitions that could be
fired using other ways.

The non-terminal trigger is composed of an expression to evaluate the occurrence
pattern (represented by the non-terminal pattern) and an expression to evaluate the oc-
currence content (represented by the non-terminal content). For example, in Code 3,
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Algorithm 4. Protocol composition
1. y2 - y3 # import "election.ptl"

mapping {
employee elector;

};

the pattern is represented by "refuse(CNPId)" and "propose(CNPId,Offer)",
while the evaluation of the content is represented by ".number(CNPId)" and
".number(CNPId) & .number(Offer)", respectively. If the occurrence satisfies the
pattern, then we can evaluate the content of the variables (if there are variables in the
pattern).

If the pattern is omitted, the expression defined in the non-terminal duty will be
considered as the pattern. For example, the pattern is omitted in the case of the proto-
cols presented in Code 1 and Code 2. Considering the transition k2 - k3 presented in
Code 2 (line 11), the expression specified in the duty (vote(X)) is used as the pattern.
Next to the symbol : (line 11), it is defined the expression to evaluate the content of
the action. Suppose the agent tries to execute something like vote("Ana",22). This
action is not valid because it does not unify with the pattern vote(X), then the action is
discarded. However, suppose that the agent performs the action vote(22). This action
follows the pattern because it unifies the pattern (with X = 22), however the action is
invalid because 22 is not a String, as required by the content. Finally, suppose the
agent tries to execute the action vote("Ana"). We have X = "Ana" and "Ana" is a
String. If Ana is also an agent, the action is valid to fire the transition.

Other features of the language are the composition of protocols and the cardinal-
ity. The composition is made by using the import directive. The import directive
needs the information about the file of the sub-protocol and a mapping between the
participants of the protocol and the sub-protocol. The mapping is necessary because,
sometimes, the protocols may not have the same participants. An example of composi-
tion is presented in Code 4. In this case, the transition y2 - y3 will be fired after the
election protocol be accomplished. The mapping in this protocol is made by defining
that the participant employee will be the participant elector in the election protocol.
Although the election protocol needs a goal related to it, during the composition its goal
will be ignored. Only the goals related to the main protocol will be used at run-time.

The language also provides two different kinds of cardinality: the participant car-
dinality and the transition cardinality. The former is related to the required number of
entities playing some participant in the protocol. The latter is related to the number of
entities that are necessary to perform the duty specified in some transition. For example,
we can have several attendants in a call-center, however we just need one to answer the
phone. In an election, we have electors and it is necessary that all of them participate.
Therefore, with cardinality mechanisms we can define these situations. Such features
are presented in more details in [50].
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Fig. 3. Concern separation

5 Integrating with JaCaMo

The main aim of the integration of our interaction approach with JaCaMo is to provide
an MAS programming platform supporting concerns separation also considering the
interaction.3 Fig. 3 shows a general idea of the integration. In JaCaMo platform, the
MAS developer can already program each of the three components separately and each
component can be programmed with specific tools and languages. The organization
can be programmed using Moise, the agents can be programmed using Jason, and the
environment can be programmed by using CArtAgO. In our work, we also enrich the
JaCaMo platform with the interaction component, which also has its proper tool and
language. The next two sections detail how the integration was made.

5.1 Mapping the Conceptual Model onto JaCaMo Platform

In order to integrate our approach into JaCaMo platform, we map the model presented
in Fig. 1 onto the JaCaMo platform. Since the components of agent, organization, and
environment in JaCaMo already use the same concepts, we need to integrate the rela-
tions between the interaction component and the other ones. As part of the integration,
we introduce an interaction artifact (SceneArtifact), which allows the agents to work
with the interaction component. A similar integration was already done with the orga-
nization by means of ORA4MAS artifacts [26].

Basically, when the agent receives an organizational obligation to achieve some orga-
nizational goal, it can verify which protocol can be used to help the accomplishment of

3 The full implementation of our approach can be found at
https://sourceforge.net/projects/intmas/ .

https://sourceforge.net/projects/intmas/
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Algorithm 5. Handling the organizational obligations created by the scene artifact.
1. +obligation(MyName, _Scene,

transition(_CurrentState, _GotoState, _TriggerType, _Target, Duty),
_Deadline):

2. .my_name(MyName)
3. <-
4. !Duty.

the goal. The agent can instantiate the protocol by informing its specification. Each in-
stance of a protocol is executed in a different instance of the SceneArtifact, which al-
lows the agent to follow the execution of each scene individually. The SceneArtifact
reads the protocol specification and convert it in several observable properties to guide
the agents during the scene execution.

The relation between the protocol and the organizational goal (Fig. 1) is reified by
using a link between the artifact SceneArtifact and the artifact SchemeBoard of
the organization. The artifact SchemeBoard is the responsible to deal with the or-
ganization goals in the organizational component of JaCaMo. Therefore, when the
SceneArtifact achieves the final state of a protocol, it changes the state of the goals
related to the protocol in the organization by means of that link.

An important part of our approach is the use of obligations, represented by the re-
lation between transition and obligation (Fig. 1). Everytime the scene achieves a new
state, new obligations are created to help the agents to accomplish the protocol. For ex-
ample, suppose the protocol presented in Code 2. When the state k1 is enabled, an obli-
gation related to the transition k1 - k2 is created. This obligation defines that the agent
playing the participant playerCustomer should send a message needSeller, using
the performative tell, to the agents playing the participant playerSeller. When
the messages are sent, the scene moves from state k1 to k2 and the obligation is ac-
complished. As a consequence, new obligations will be created. In this case, it will be
created an obligation related to the transition k2 - k3 for the agents playing the par-
ticipant playerSeller to perform the action vote(X) on the artifact artBallotBox.
In addition, this new obligation will have a timeout of 30000 milliseconds, as defined
in line 12. Although created from a fact in the interaction component, the obligations
exist in the organizational component of the MAS.

The agents in JaCaMo already knows how to handle organizational obligations be-
cause it is a concept already used in Moise. Thus, it is not necessary to build any new
specific mechanism for the agents to work with the obligations created by the inter-
action component. The main advantage of using obligations is that they are created at
run-time, which also means that the protocols can be updated at run-time. For example,
if the order of the transitions is modified in the protocol specification, the next obliga-
tions will be created respecting the new order of the transitions. Therefore, the agents
code usually does not need to be modified all the time that the protocol is modified,
since the agents simply follow the obligations.

The Jason code presented in Code 5 illustrates how the agents can deal with the
obligations created by the interaction component. In line 1, it is indicated that the agents
perceive an obligation to do a duty in a certain moment of the scene execution. That duty
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Fig. 4. Scene artifact

must be done in order to fire the enabled transition. As soon as the agents perceive that
obligation, they create a new goal to accomplish that duty (line 4). Notice that it is only
necessary to add the code presented in Code 5 in the agents program to make the agents
able to create their own goals to accomplish the duties of the protocol. If the protocol
is modified, other obligations for the agents are created and the agents will be able to
continue following the protocol in the same way.

Fig. 4 shows the interface of the SceneArtifact, with its operations and observ-
able properties. The operations allow the agents to play some participant of the scene
(joinScene), to leave the scene (leaveScene), add and remove artifacts of the scene
(addArtifact and removeArtifact, respectively), and to start (start), stop (stop),
or continue (goOn) the scene execution. Moreover, by means of observable properties,
the agents can get some information about the scene. For example, they can see the
current state of the scene (Current State), the enabled transitions (by means of the
Current State property), their obligations (Obligations), the entities that are play-
ing the participants (Entities), the protocol specification (Specification), etc.

Since CArtAgO uses the concept of links to allow the representation of “operations”
that can be accessed by other artifacts, we specify some links to allow the development
of tools to monitor the scene execution. In that sense, there are links to add and remove
some listener (addListener and removeListener, respectively). The general idea of
these links is to allow other artifacts to receive information about the scene evolution.
For example, it is possible to get information about the enabled states and transitions,
the fired transitions and the actions, messages, and events that were responsible to fire
each transition.

The last link (updateRolePlayers) is necessary because the interaction mecha-
nism needs to know which are the agents playing each role in the organization. This
information is used to handle the cardinalities and to make sure that certain agent is re-
ally playing some role. The Moise GroupBoard artifact already provides a link to add
listeners and gets such information. In the same way, we need to handle the cardinalities
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Fig. 5. Interception model

of artifacts and verify if certain artifact is of some kind. Therefore, we created a link
(getArtifactList) into the WorkspaceArtifact in CArtAgO. This link has the aim
to return the list of all artifacts and their kinds in some workspace. Such mechanisms
are introduced to reify the relations between interaction participant with organizational
role and environmental artifact, as presented in the conceptual model (Fig. 1).

5.2 Getting Messages, Actions, and Events

All the messages, actions, and events must be intercepted and sent to the scenes. Fig. 5
shows the interception model. It shows messages, actions, and events being intercepted
during their occurrences. The agents do not need to notify the scene artifact about what
they are doing explicitly, since they could try to cheat the interaction mechanism. For
example, they could notify the interaction about things that they have never done.

Some related work use a mediator agent to get the necessary information [1], how-
ever the mediator agent is an autonomous entity and then it is possibly malicious. Our
approach to get messages, actions, and events is similar to the approach presented
in [3, 35], where the authors define a layer that behaves like a filter to consider only
the correct messages to change the interaction state. In order to do that in JaCaMo plat-
form, in a first moment, we modified the agent architecture. The new agent architecture
intercepts the messages exchanged between the agents, the events that occurs in the en-
vironment, and the actions that the agents perform in the environment. Notice that the
agents interact with the organization in JaCaMo by means of organizational artifacts
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in the environment, therefore it is not necessary to create a specific mechanism to deal
with the actions performed in the organization. In the end, the messages, actions, and
events that were intercepted are delivered to the scenes that the agents are attending.
Then, they will be processed and evaluated in order to fire the enabled transitions.

6 Results and Discussion

Our main contribution in this paper is the integration of the interaction component into
the JaCaMo platform. With this integration we have an MAS platform to program the
agents, the environment, the organization, and the interaction, all of them as first class
abstractions. We can now specify the interaction in a separated component, avoiding
specifying the interaction inside the code of agents or other components.

As another result, we can also specify the agents more independent of the applica-
tion. Before the integration of our approach into JaCaMo, it was necessary to specify
how the agents interact with the other MAS components in their own code. With the in-
teraction integrated into JaCaMo by means of artifacts and assuming the fact that agents
already know how to deal with artifacts and organization, the agents do not need any
specific mechanism to deal with the interaction. Even in the case of open and hetero-
geneous MAS, a global behavior can be defined for the overall system by means of the
interaction. It is possible because the interaction allows the definition of the desired se-
quence of steps to achieve the organizational goals. Moreover, while the organizational
goals provide information about what the agents need to do, the interaction protocols
provide a more detailed description about how to behave to achieve them.

The integration with the JaCaMo platform allowed us to evaluate our interaction
proposal and also to provide an example of how to integrate it into an MAS platform
composed of agents, environment, and organization. In our experiments, we saw sev-
eral advantages considering the interaction as a first class abstraction. For example, we
can update the interaction without changing the code of the other MAS components.
We also got some positive results with the relations that we made between the interac-
tion and the other MAS components. For example, the obligations facilitate the agent
programming and allow the agents to reason about them, specially whether the agents
already can handle organizational obligations, as in the case of JaCaMo platform. We
can change the sequence of transitions of protocols and, because the obligations are
created in execution time regarding to transitions, we do not need to update the agents
code. Moreover, in future works, norms and obligations will allow us to create punish-
ment and reward mechanisms to prevent malicious behavior and reward the agents with
good performances. The relation between participant in the interaction and role in the
organization allows the agents to search for partners to cooperate because the protocols
specify which roles they must interact with. The relation between interaction and envi-
ronment by means of artifacts permits the specification of how the agents must proceed
to interact with the artifacts by means of actions and observable events.

As some drawbacks of the integration with JaCaMo platform, we noticed a decrease
in performance and some negative impact related to scalability. In fact, it was an ex-
pected impact because we did not focused on performance and scalability issues in this
first moment. The main reason for this negative impact is the interception and manage-
ment of messages, actions, and events that happen in the MAS execution. Since most
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of them could be relevant to the scenes, after the interception mechanism catch such
occurrences we need to send them to the scenes and process them. So far, we built a
centralized solution to process such occurrences in each scene, however it seems not
the best solution for an MAS where there are many messages exchanges, actions, and
events. The improvement of these issues remains as future work.

Another questionable point of our approach is related to the number of different lan-
guages that the developer should learn in order to implement an MAS using JaCaMo
platform. With the integration of the interaction component into JaCaMo platform, the
MAS developer will have four different languages to learn, each one dedicated to spec-
ify one of its components (agents, organization, environment, and interaction). Indeed,
learning four languages would require more time and investments from the MAS de-
velopers. However, all the four languages are more suitable to implement their own
concerns. For example, in order to specify the environment, it is better to use a specific
environmental language than to specify the environment by means of an agent language.
Naturally, when it is necessary to implement a simple MAS, most of times, the agents
themselves are enough to solve the problems. The organization, environment, and inter-
action are better suitable to implement large and complex systems, where the separation
of concerns is underlying.

Finally, our approach is not the only one to deal with interaction and some of the
other components. As we presented in Sec. 2, there are several approaches of inter-
action, however, none of them integrate the interaction with all the other three MAS
components in a unified way. Some of them handle the interaction between agents,
others deal with the interaction and the environment or organization. Furthermore, our
proposal is focused on more complex MAS, composed of agents, environment, and or-
ganization. Our aim is to integrate these components by means of the interaction and
explore the advantages of this kind of MAS.

7 Conclusions and Future Works

In this paper we presented the integration of an approach of interaction considering
agents, environment, and organization into the JaCaMo platform. Although we present
the integration with the JaCaMo platform, our approach can also be integrated with
other MAS platforms. We also highlighted the interaction model and the programming
language. As future works, we intend to evaluate the use of this proposal in the devel-
opment of large systems and also to verify protocols that are created by some agent,
since the agents could create protocols at run-time and execute it. Other interesting sub-
jects to explore are how the agents could reason about a protocol in order to optimize
its execution, and a proposal of a mechanism to specify and handle exceptions. Finally,
mechanisms of punishment and reward should be studied for the purpose of evaluating
the performance of the agents when they are participating of some scene.
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