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Fernando Lúıs Dotti1, and Fernando Pedone3
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Abstract. State-machine replication is a popular approach to building
fault-tolerant systems, which relies on the sequential execution of com-
mands to guarantee strong consistency. Sequential execution, however,
threatens performance. Recently, several proposals have suggested par-
allelizing the execution model of the replicas to enhance state-machine
replication’s performance. Despite their success in accomplishing high
performance, the implications of these models on checkpointing and re-
covery is mostly left unaddressed. In this paper, we focus on the check-
pointing problem in the context of Parallel State-Machine Replication.
We propose two novel algorithms and assess them through simulation
and a real implementation.
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1 Introduction

State-machine replication (SMR) is a well-established approach to implement-
ing fault-tolerant services. Replicas in state-machine replication start in the same
initial state and execute an identical and ordered set of client commands sequen-
tially and deterministically [10,16]. Therefore, all the replicas traverse the same
sequence of internal states and produce the same outputs. Consensus is often
used to ensure that commands are totally ordered across replicas [11].

Sequential execution of commands can be a performance bottleneck and a
waste of resources, in particular when replicas have access to multicore proces-
sors. To overcome this limitation, techniques that allow concurrent execution of
commands in state-machine replication have been proposed [8,9,12,13]. These
techniques are based on the observation that some commands are independent,
that is, they access disjoint portions of the replica’s state or do not modify
shared parts of the state. Therefore, independent commands can be executed
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concurrently without compromising the service’s consistency. Dependent com-
mands, however, those that modify shared parts of the state, must be executed
sequentially, in the same order across replicas.

This paper focuses on checkpointing in Parallel State-Machine Replication
(P-SMR) [12], a scalable multithreaded replication model, whose scalability
stems from the absence of a centralized component in the execution path of in-
dependent commands (e.g., no local scheduler [9]). In P-SMR, replicas alternate
between the execution of concurrent commands (i.e., those mutually indepen-
dent) and the execution of sequential commands. Recovering a failed replica in
classic SMR requires retrieving the commands the replica executed but “forgot”
due to the failure and the commands the replica missed while it was down. To
speed up recovery, replicas can periodically checkpoint their state against stable
storage so that upon recovering, a replica can start with a state not too far
behind the other replicas, after reading its local checkpoint from stable storage
or retrieving a checkpoint from a remote operational replica. Performing check-
points efficiently in P-SMR is more challenging than in classic SMR because the
checkpoint operation must account for the execution of concurrent commands.

We propose two checkpoint techniques for P-SMR: coordinated and uncoor-
dinated. The coordinated algorithm executes checkpoints when replicas are in
sequential mode. The uncoordinated algorithm is more complex but can check-
point a replica’s state during both sequential and concurrent execution modes.
The fundamental differences between the two approaches are three-fold: (a) With
the coordinated mechanism, any two replicas save the same sequence of check-
points throughout the execution; with uncoordinated checkpoints, replicas may
save different states. Saving the same sequence of checkpoints has performance
implications during recovery, as we explain in the paper. (b) Since an uncoor-
dinated checkpoint can be started while a replica is executing commands con-
currently, faster threads will be idle for shorter periods when waiting for slow
threads in the uncoordinated technique than in the coordinated approach. (c) Co-
ordinated checkpoints incur system-wide synchronization, while uncoordinated
checkpoints are local to a replica. We discuss in the paper the implications of
each technique using simulation models and an in-memory database service.

This paper makes the following contributions: (a) it discusses recovery of
failed replicas in the context of parallel state-machine replication, a topic that
has received little attention until now; (b) it proposes two checkpoint techniques
for P-SMR, coordinated and uncoordinated, and compares their pros and cons;
and (c) it assesses the performance of the two techniques using simulation models
and an in-memory database service.

The remainder of this paper is organized as follows. In Section 2, we present
the system model and assumptions. In Section 3, we recall parallel state-machine
replication and provide a consensus-based algorithm that implements P-SMR. In
Section 4, we discuss recovery in classic state-machine replication and introduce
two checkpoint algorithms for P-SMR. We assess the performance of our pro-
posed algorithms in Section 5 and relate them to the state of the art in Section 6.
We conclude the paper in Section 7.
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2 System Model and Assumptions

We assume a distributed system composed of interconnected processes. There
is an unbounded set C = {c1, c2, . . .} of client processes and a bounded set
R = {r1, r2, . . .} of replica processes. We do not make any assumptions about
the relative speed of processes or message delays, i.e., the system is asynchronous.

We assume the crash-recovery model and exclude malicious or arbitrary be-
havior. A process can be either up or down, and it switches between these two
modes when it fails (i.e., from up to down) and when it recovers (i.e., from down
to up). Replicas are equipped with volatile memory and stable storage. Upon a
crash, a replica loses the content of its volatile memory, but the content of its
stable storage survives crashes.

Processes communicate by message passing, using either one-to-one or one-to-
many communication. One-to-one communication is performed through primi-
tives send(m) and receive(m), where m is a message. If m’s sender transmits m
“enough times” and m’s destination does not fail, then m is eventually received.
One-to-many communication relies on the consensus abstraction, defined next.

The consensus problem can be described in terms of processes that propose
values and processes that must agree upon a decided value. Consensus is de-
fined by the primitives propose(v) and decide(v), where v is an arbitrary value.
A consensus protocol ensures the following safety requirements: (i) any value
decided must have been proposed; (ii) a process can decide at most one value;
and (iii) two different processes cannot decide different values. Solving consensus
requires additional assumptions about the system model [6]. In this paper, we
simply assume consensus can be solved without explicitly extending the model
with these assumptions (e.g., [3,4]).

State-machine replication can be implemented with a sequence of consensus
rounds, where the i-th consensus round decides on the i-th command to be
executed by the replicas. We identify the decision of the i-th consensus round as
decide(i,v). In order to simplify our algorithms, we modify the propose primitive
above such that a value proposed by a non-faulty process is eventually decided
in some consensus round.

Our consistency criterion is linearizability : a system is linearizable if there is a
way to reorder the client commands in a sequence that (i) respects the semantics
of the commands, as defined in their sequential specifications, and (ii) respects
the real-time ordering of commands across all clients [1].

3 Parallel State-Machine Replication

In contrast to classic state-machine replication (SMR), where the execution of
commands is sequential, in parallel state-machine replication (P-SMR) indepen-
dent commands can be executed concurrently. To understand the interdepen-
dencies between commands, assume commands Ci and Cj , where Wi and Wj

indicate the commands’ writeset and Ri and Rj indicate their readset. Accord-
ing to [9], Ci and Cj are dependent if any of the following conditions hold:
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(i) Wi ∩Wj �= ∅, (ii) Wi ∩ Rj �= ∅, or (iii) Ri ∩Wj �= ∅. In other words, if the
writeset of a command intersects with the readset or the writeset of another
command, the two commands are dependent. Two commands are independent
if they are not dependent.

P-SMR parallelizes the agreement and the execution of commands. Instead
of using a single sequence of consensus rounds to order commands as in SMR,
P-SMR uses multiple sequences of consensus. More precisely, if there are n+ 1
threads at each replica, t0, ..., tn, P-SMR requires n + 1 consensus sequences,
γ0, ..., γn, where thread t0 (at each replica) participates in consensus sequence
γ0 only, and thread ti, 0 < i ≤ n, participates in consensus sequences γ0 and γi.
To ensure that ti handles commands in the same order across replicas, despite
participating in two consensus sequences, ti orders messages from its two con-
sensus sequences using a deterministic merge procedure (e.g., handling decisions
for the sequences in round-robin fashion). To ensure progress, every consensus
sequence must have a never-ending stream of consensus rounds, which can be
achieved by having one or more processes proposing nil values if no value is pro-
posed in a consensus sequence after some time [14]. Obviously, replicas discard
nil values decided in a consensus round.

P-SMR ensures two important invariants. First, commands decided in con-
sensus sequence γ0 are serialized with any other commands at a replica and
executed by thread t0 in the same order across replicas (sequential execution
mode). Second, commands decided in the same round in consensus sequences
γ1, ..., γn are executed by threads t1, ..., tn concurrently at a replica (concurrent
execution mode).

Clients propose a command by choosing the consensus sequence that guaran-
tees ordered execution of dependent commands while maximizing parallelism of
independent commands. The mapping of commands onto consensus sequences
is application dependent. In the following, we illustrate two such mappings.

– (Concurrent reads and sequential writes.) Commands that read the replica’s
state are proposed in any arbitrary consensus sequence γi, 0 < i ≤ n; com-
mands that modify the replica’s state are proposed in sequence γ0.

– (Concurrent reads and writes.) Divide the service’s state into disjoint parti-
tions P1, ..., Pn so that commands that access partition Pi only are proposed
in γi and commands that access multiple partitions are proposed in γ0.

Clients must be aware of the mapping of commands onto consensus sequences
and must be able to identify commands that read the service’s state only or
modify the state, in the first case above, or to identify commands that access a
single partition (and which partition) or multiple partitions, in the second case.

Algorithm 1 presents P-SMR in detail. For each thread ti, round[i] (line 3) in-
dicates the number of the next consensus round to be handled (or being handled)
by ti, for all consensus sequences involving ti. Threads use semaphores S[0..n]
(line 4) to alternate between sequential and concurrent modes and, as shown
in the next section, to create a checkpoint. Variable next[i] (line 5) determines
whether ti is in sequential or concurrent mode.
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Thread t0 tracks decisions in consensus sequence γ0 only (line 8). The “de-
cided [γ0](r, 〈−〉) and r = round[0]” condition holds when there is a decision in
consensus sequence γ0 that matches round[0]. If the value decided in round[0] is
a command (line 9), t0 waits for every other thread ti (line 10) and then handles
the request (line 11). After the command is executed, t0 signals the other threads
to continue their execution (line 12). Whatever value is decided in the round,
round[0] is incremented (line 13). Note that a nil decision in consensus sequence
γ0 does not cause threads to synchronize.

Algorithm 1: P-SMR

1: Initialization:
2: for i : 0..n do {for each thread ti:}
3: round[i] ← 1 {all threads start in the same round}
4: S[i] ← 0 {semaphore used to implement barriers}
5: next[i] ← sq {start in sequential mode}
6: start threads t0, ..., tn

7: Thread t0 at a replica executes as follows:
8: upon decided [γ0](r, 〈cid, cmd〉) and r = round[0]
9: if cmd �= nil then {if cmd is a real command...}
10: for i : 1..n do wait(S[0]) {barrier: wait for threads t1, .., tn}
11: execute cmd and reply to cid {execute command and reply to client}
12: for i : 1..n do signal(S[i]) {let threads t1, .., tn continue}
13: round[0] ← round[0] + 1 {pass to the next round}
14: Thread ti in t1, ..., tn at a replica executes as follows:
15: upon decided [γ0](r, 〈cid, cmd〉) and r = round[i] and next[i] = sq
16: if cmd �= nil then {if decided on a real command...}
17: signal(S[0]) {barrier: signal semaphore S[0] (see line 10)}
18: wait(S[i]) {...and wait to continue (see line 12)}
19: next[i] ← cc {set execution mode as concurrent}
20: upon decided [γi](r, 〈cid, cmd〉) and r = round[i] and next[i] = cc
21: if cmd �= nil then {if decided on a command...}
22: execute cmd and reply to cid {execute command and reply to client}
23: next[i] ← sq {set execution mode as sequential}
24: round[i] ← round[i] + 1 {pass to the next round}

Each thread ti, 0 < i ≤ n, alternates between executing in sequential and
concurrent modes (lines 15 and 20). If ti decides a value in consensus sequence
γ0 for its current round and the current execution mode is sequential (line 15),
ti checks whether the command is not nil (line 16) and in such a case ti signals
thread t0 (line 17) and waits for t0 to continue (line 18). Thread ti then sets
next[i] to cc (line 19), meaning that it is in concurrent mode now. When ti
decides a value in consensus sequence γi for round round[i] and next[i] = cc
(line 20), ti executes the command if it is not nil (lines 21–22), sets the execution
mode as sequential (line 23), and passes to the next round (line 24).
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4 Checkpointing in P-SMR

Recovery in classic SMR is conceptually simple: Replicas log commands before
executing them (e.g., as part of consensus) and periodically (e.g., after k com-
mands) save the application state or the changes made since the last recorded
checkpoint in stable storage. When a replica recovers from a failure, it retrieves a
checkpoint from its local storage or from a remote replica and resumes operation
after installing this checkpoint. The recovering replica also needs to recover the
value decided in consensus rounds not included in the installed checkpoint.

Checkpoints speed up recovery and save storage space. Checkpoints shorten
recovery time since a recovering replica does not need to start with an empty
state and (re-)execute every decided command to catch up with the other repli-
cas. Checkpoints save storage space since commands decided in “old” consensus
rounds can be garbage collected. A sufficient condition to remove data related
to the i-th consensus round is that all replicas have recorded a checkpoint con-
taining the effects of the command decided in the i-th round.

We propose next two novel checkpointing algorithms for P-SMR. In the first
algorithm, coordinated checkpointing, replicas must converge to a common state
before taking a checkpoint; in the second algorithm, uncoordinated checkpoint-
ing, replicas take checkpoints independently and may not be in an identical state
when the checkpoint takes place. We conclude the section with a comparison be-
tween the two algorithms.

4.1 Coordinated Checkpointing

The idea behind our coordinated checkpointing algorithm is to force replicas to
undergo the same sequence of checkpointed states. To this end, we define a check-
point command CHK that depends on all other commands. Therefore, CHK is
executed in sequential mode in P-SMR and ordered by consensus sequence γ0.
Since replicas implement a deterministic strategy to merge consensus sequences,
command CHK is guaranteed to be executed after each replica reaches a certain
common state.

Algorithm 2 presents the coordinated checkpoint algorithm in detail. When a
replica recovers from a failure (line 1), it first retrieves the latest checkpoint
stored at the replica or requests one from a remote replica (line 2). Tuple
〈last rnd[0]〉 identifies the retrieved checkpoint. (Every replica stores an ini-
tialization checkpoint, empty and identified by 〈1〉.) The replica then initializes
variables S, round and next (lines 3–10) and starts all threads (line 11).

Thread t0’s only difference with respect to Algorithm 1 is that it must check
whether a decided command is a checkpoint request (line 16), in which case
t0 stores the replica’s state on stable storage and identifies the checkpoint as
〈round[0]〉 (line 17). Threads t1, ..., tn execute the same pseudocode in Algo-
rithms 1 and 2.
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Algorithm 2: Coordinated checkpoint

1: upon starting or recovering from a failure
2: retrieve latest/remote checkpoint, which has id 〈last rnd[0]〉
3: for i : 0..n do {for each thread ti...}
4: S[i] ← 0 {semaphore used to implement barriers}
5: if i = 0 then {thread t0...}
6: round[i] ← last rnd[0] + 1 {goes to the next round in...}
7: next[i] ← sq {...sequential mode}
8: else {threads t1, ..., tn...}
9: round[i] ← last rnd[0] {stay in this round in...}
10: next[i] ← cc {...concurrent mode}
11: start threads t0, ..., tn

12: Thread t0 at a replica executes as follows:
13: upon decided [γ0](r, 〈cid, cmd〉) and r = round[0]
14: if cmd �= nil then {if cmd is a command/checkpoint request...}
15: for i : 1..n do wait(S[0]) {barrier: wait n times on semaphore}
16: if cmd = CHK then {if cmd is a checkpoint request...}
17: store checkpoint with id 〈round[0]〉 {take checkpoint}
18: else {else...}
19: execute cmd and reply to cid {execute command and reply to client}
20: for i : 1..n do signal(S[i]) {let each thread ti continue}
21: round[0] ← round[0] + 1 {one more handled decision}
22: each Δ time units do {ideally done by a single replica only:}
23: propose[γ0](〈t0, CHK 〉) {request a system-wide checkpoint}
24: Thread ti in t1, ..., tn at a replica executes as follows:
25: upon decided [γ0](r, 〈cid, cmd〉) and r = round[i] and next[i] = sq
26: if cmd �= nil then {if cmd is a command/checkpoint request...}
27: signal(S[0]) {implement barrier (see line 15)}
28: wait(S[i]) {...and wait to continue (see line 20)}
29: next[i] ← cc {set execution mode as concurrent}
30: upon decided [γi](r, 〈cid, cmd〉) and r = round[i] and next[i] = cc
31: if cmd �= nil then {if cmd is an actual command...}
32: execute cmd and reply to cid {execute command and reply to client}
33: next[i] ← sq {set execution mode as sequential}
34: round[i] ← round[i] + 1 {one more handled decision}

4.2 Uncoordinated Checkpointing

We now present an alternative algorithm that does not coordinate checkpoints
across replicas: each replica decides locally when checkpoints will happen. Un-
like the coordinated checkpointing algorithm, where all replicas record identical
checkpoints, with the uncoordinated algorithm the checkpoints vary across the
replicas.

The main difficulty with uncoordinated checkpoints is that a checkpoint re-
quest may be received any time during a thread’s execution. Thus, one thread
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may receive a checkpoint request when in sequential execution mode while an-
other thread receives the same request when in concurrent execution mode. Es-
sentially, this happens because we do not order checkpoint requests with con-
sensus decisions, as in the coordinated version of the algorithm.

In brief, our algorithm works as follows. First, thread t0 requests a check-
point by sending a local message to the other threads. Second, the handling of
a checkpoint request at a replica does not change the sequence of commands
executed by threads ti, 0 < i ≤ n, which still alternate between sequential and
concurrent execution modes in each round. To guarantee this property, when t0
requests a checkpoint it tracks the signal it receives from ti: If ti signals t0 upon
receiving the checkpoint request, then after the checkpoint, t0 releases ti so that
ti can proceed with the next command. If ti signals t0 because it started the
sequential execution mode, after the checkpoint t0 keeps ti waiting until t0 also
goes through the sequential execution of commands. In this case, when ti later
receives the checkpoint request, it simply discards it.

Algorithm 3 presents the uncoordinated checkpointing algorithm in detail.
When a replica recovers from a failure, it retrieves the last saved checkpoint
from its local storage or from a remote replica (line 2). This checkpoint identi-
fies the round and the execution mode the thread must be in, after the checkpoint
is installed (lines 4–5). (A replica is initialized with an empty checkpoint, iden-
tified as 〈2, sq[, 1,cc]×n〉.) Variable last sync[i] contains the last round when ti
started in sequential mode and signaled t0 (line 8); waiting[i] tells whether upon
executing a command t0 must wait for ti (line 9).

The execution of a sequential command by t0 is similar in both the coordi-
nated and uncoordinated algorithms, with the exception that t0 only waits for
ti if it is not already in waiting mode (line 14); this happens if ti signals t0
because it started sequential execution mode but t0 started a checkpoint. After
the execution of the sequential command, all threads are released (lines 17–18).
To execute a checkpoint, t0 sends a message to all threads and waits for them
(lines 21–23). If ti signaled t0 because it entered sequential mode in t0’s current
round or some round ahead (line 26), which happens if the value decided in
t0’s current round is nil, t0 keeps track that ti is waiting (line 27); otherwise t0
signals ti to continue (line 29).

The execution of commands for threads t1, ..., tn is similar in both checkpoint
algorithms, with the exception that before signaling the start of sequential execu-
tion mode, ti sets last sync[i] with its round number (line 33). Upon receiving a
checkpoint request 〈r,CHK 〉 that satisfies condition last sync[i] < r ≤ round[i]
(line 42), ti signals t0 and waits for t0’s signal (lines 43–44). If last sync[i] ≥ r,
then it means that ti has already signaled t0 when entering sequential execution
mode; thus, it does not do it again. If r > round[i], then the checkpoint request
is for a round ahead of ti’s current round. This request will be considered when
ti reaches round r.
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Algorithm 3: Uncoordinated checkpoint

1: upon recovering from a failure
2: retrieve checkpoint, which has id 〈rnd[0], nxt[0], ..., rnd[n], nxt[n]〉
3: for i : 0..n do {for each thread ti, 0 ≤ i ≤ n:}
4: round[i] ← rnd[i] {ti’s round and...}
5: next[i] ← nxt[i] {... execution mode when checkpoint taken}
6: S[i] ← 0 {semaphore used to implement barriers}
7: for i : 1..n do {for each thread ti, 1 ≤ i ≤ n:}
8: last sync[i] ← 0 {last round ti entered sequential mode}
9: waiting[i] ← false {initially ti isn’t waiting}
10: start threads t0, ..., tn

11: Thread t0 at a replica executes as follows:
12: upon decided [γ0](r, 〈cid, cmd〉) and r = round[0]
13: if cmd �= nil then {if decided on a command...}
14: for i : 1..n do if ¬waiting[i] then wait(S[0]) {wait for each active ti}
15: execute cmd and reply cid {execute command and reply to client}
16: for i : 1..n do
17: waiting[i] ← false {after sequential mode no thread waits}
18: signal(S[i]) {ditto!}
19: round[0] ← round[0] + 1 {t0 passes to the next round}
20: each Δ time units do {t0 periodically triggers a local checkpoint}
21: for i : 1..n do
22: send 〈round[0],CHK 〉 to ti {send checkpoint request to ti}
23: if ¬waiting[i] then wait(S[0]) {wait for each active thread ti}
24: store checkpoint with id 〈round[0], next[0], round[1], ...〉 {take checkpoint}
25: for i : 1..n do {for each ti}
26: if last sync[i] ≥ round[0] then {if ti entered sequential mode...}
27: waiting[i] ← true {keep ti waiting until t0 catches up}
28: else {else...}
29: signal(S[i]) {let ti proceed}
30: Thread ti in t1, ..., tn at a server executes as follows:
31: upon decided [γ0](r, 〈cid, cmd〉) and r = round[i] and next[i] = sq
32: if cmd �= nil then {if decided on a real command...}
33: last sync[i] ← round[i] {take note that entered sequential mode}
34: signal(S[0]) {implement barrier}
35: wait(S[i]) {...and wait to continue}
36: next[i] ← cc {set execution mode as concurrent}
37: upon decided [γi](r, 〈cid, cmd〉) and r = round[i] and next[i] = cc
38: if cmd �= nil then {if cmd is an actual command...}
39: execute cmd and reply to cid {execute command and reply to client}
40: next[i] ← sq {set execution mode as sequential}
41: round[i] ← round[i] + 1 {pass to the next round}
42: upon receive 〈r,CHK 〉 from t0 and last sync[i] < r ≤ round[i]
43: signal(S[0]) {checkpoints are done in mutual exclusion}
44: wait(S[i]) {ditto!}
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4.3 Coordinated versus Uncoordinated Checkpointing

With coordinated checkpoints, a checkpoint only happens after each thread re-
ceives a CHK request and finishes executing all the commands decided before
the request. With uncoordinated checkpoints, a checkpoint is triggered within a
replica and is not ordered with commands. These mechanisms have important
differences, as we discuss next.

First, with coordinated checkpoints every replica saves the same state upon
taking the k-th checkpoint. Saving the same state across replicas is important
for collaborative state transfer [2], a technique that improves performance by
involving multiple operational replicas in the transferring of a saved checkpoint
to the recovering replica, each replica sending part of the checkpointed state.
Collaborative state transfer is not possible with uncoordinated checkpoints.

Second, coordinated checkpoints take place when replicas are in sequential
execution mode; hence, no checkpoint contains a subset of commands executed
concurrently. Uncoordinated checkpoints, however, can save states of a replica
during concurrent execution mode. The implication on performance is that
threads that execute commands more quickly when in concurrent mode do not
have to wait for slower threads to catch up so that a checkpoint can be taken.

Third, the interval between the time when a checkpoint is triggered at a
replica and the time when it takes place in the replica in the uncoordinated
technique is lower than in the coordinated technique. In addition to requiring a
consensus execution, which introduces some latency, a checkpoint request in the
coordinated technique can only be handled after previously decided commands
are executed at the replicas.

5 Performance Analysis

In this section, we assess the impact of the proposed approaches on the system
performance by means of a simulation model and a prototype. Our simulations
focus mostly on the cost of synchronization due to checkpointing. Aspects inher-
ent to recovery (e.g., state transferring) are highly dependent on the application
and sensitive to the data structures used by the service, the workload, and the
size of checkpoints. We consider such aspects with our prototype, which im-
plements an in-memory database with operations to read and write database
entries. In our experiments, we generate sustained workloads with independent
commands only. With this strategy we maximize the use of threads to execute
commands, removing the possibility of thread idleness due to the synchronization
needed by dependent commands.

5.1 Simulations

We implemented a discrete-event simulation model in C++ and configured each
experiment to run until the 98% confidence interval of the command response
time was a small fraction of the average value. We evaluated replicas without
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checkpointing enabled and with the two proposed checkpoint algorithms, and
considered different classes of workload in terms of requests execution time:
(i) fixed-duration commands (i.e., all commands take the same time to execute),
(ii) uniformly distributed command duration, and (iii) exponentially distributed
command duration. In the last case, a majority of commands have low execution
times, while a small number of commands take long to execute.

We start by evaluating the scalability of both techniques. Figure 1 shows the
maximum throughput achieved by a replica according to the number of threads,
where each thread is associated with a processing unit (i.e., core). In these exper-
iments, we used workloads (i), (ii), and (iii), described above, with average com-
mand execution time of 0.5 units. Checkpoints are taken every 200 time units,
and the checkpoint duration is 0. By not considering the time taken to create
a checkpoint, the results reveal the overhead caused exclusively by checkpoint
synchronization. The throughput of P-SMR without checkpoints scales propor-
tionally to the number of threads. The overhead of uncoordinated checkpointing
is lower than the overhead of the coordinated technique and the difference be-
tween the two increases with the number of threads.

Fig. 1. Throughput of a replica with the number of threads for different commands
execution duration workloads and the ratio of the two techniques with the number of
threads
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The bottom right graph of Figure 1 depicts the throughput ratio between
the uncoordinated and the coordinated techniques under different workloads,
as we increase the number of threads. Two facts stand out: First, uncoordi-
nated checkpointing outperforms coordinated checkpointing in all scenarios and
the difference increases with the number of threads. Second, the difference be-
tween the two techniques is more important when there is more variation in the
command execution time. This happens because “faster threads” (i.e., those ex-
ecuting shorter commands) wait longer for “slow threads” during a checkpoint
in the coordinated technique than in the uncoordinated approach.

Next, we evaluate the impact caused by the checkpoint frequency. Figure 2
shows the throughput and latency of replicas with 16 threads. In this experiment,
the command duration follows the exponential distribution. The checkpointing
interval varies from 12 to 1600 time units and the checkpointing duration is 0.
The workload generated for this experiment reaches a throughput equivalent to
75% of the maximum. Although the uncoordinated checkpointing algorithm out-
performs the coordinated algorithm in all configurations, the difference between
the two decreases as checkpoints become more infrequent.

Fig. 2. Throughput and latency of a replica executing commands with an exponentially
distributed execution time (average of 0.5 time units)

Figure 3 depicts the throughput and latency results for scenarios in which
checkpoints take 5 time units to execute. The overhead introduced by a check-
point has the effect of decreasing the throughput and increasing the average
response time of commands. However, the checkpoint overhead did not change
the trend seen in the previous experiments: uncoordinated checkpointing con-
sistently performs better than coordinated checkpointing, and the difference be-
tween the two reduces as checkpoints are taken less often.

5.2 Implementation

We implemented consensus using Multi-Ring Paxos [14], where each consensus
sequence is mapped to one Paxos instance. To achieve high performance, each
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Fig. 3. Throughput and latency of a replica executing commands with an exponentially
distributed execution time (average of 0.5 time units) and checkpoint duration of 5 time
units

thread ti decides several times on consensus sequence γi before deciding on
sequence γ0. Moreover, multiple commands proposed to a consensus sequence are
batched by the group’s coordinator (i.e., the coordinator in the corresponding
Paxos instance) and order is established on batches of commands. Each batch
has a maximum size of 8 Kbytes. The system was configured so that each Paxos
instance uses 3 acceptors and can tolerate the failure of one acceptor.

The service is a simple in-memory database, implemented as a hash table, with
operations to create, read, write, and remove entries. Each entry has an 8-byte
key and an 8-byte value. A checkpoint duplicates the hash table in memory (using
copy-on-write) and writes the duplicated structure to disk, either synchronously
or asynchronously. We ran our experiment on a cluster with Dell PowerEdge
R815 nodes equipped with four octa-core AMD Opteron processors and 128 GB
of main memory (replicas), and Dell SC1435 nodes equipped with two dual-core
AMD Opteron processors and 4 GB of main memory (Paxos’s acceptors and
clients). Each node is equipped with one 1Gb network interface. The nodes ran
CentOS Linux 6.2 64-bit with kernel 2.6.32.

Figure 4 shows the throughput and the corresponding 90% percentile of the
response time of both techniques. Checkpoints are taken once every 5 seconds
and each one takes approximately 3.2 seconds to complete. When a checkpoint
happens the database has approximately 10 million entries. The results show that
uncoordinated checkpointing has a slight advantage over coordinated checkpoint
in some of the configurations. Given the high rate of commands executed per sec-
ond and the frequency of checkpoints, these results corroborate those presented
in the previous section.

6 Related Work

In this section, we briefly review other models for parallel state-machine replica-
tion and compare their checkpointing mechanisms. A comprehensive survey of
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Fig. 4. Throughput and response time of coordinated and uncoordinated checkpointing
with asynchronous and synchronous disk writes

checkpointing and recovery techniques for message-passing environments can be
found in [5].

In [9], a parallelizer on each replica delivers commands in total order across
replicas and distributes them among a set of threads for parallel execution. The
parallelizer serializes the execution of dependent requests and ensures that their
execution order follows the order decided by the agreement layer. This work also
proposes a synchronization primitive executed on the replicas, but invoked by
the agreement layer, to select a sequence number for checkpoints. Each replica
blocks the execution of all the requests delivered after this sequence number
until the checkpoint is completed. Since the selected sequence numbers may
vary across the replicas, the recorded checkpoints are not identical across the
replicas, similarly to our uncoordinated algorithm.

Eve [8] is a parallel replication model in which replicas first execute commands
and then verify the equality of their states through a verification stage. Eve dis-
tinguishes one of the replicas as the primary to which clients send their requests.
The primary groups commands into batches, assigns to each batch a unique
sequence number, and transmits the batched commands to the other replicas.
All the replicas, including the primary, are equipped with a deterministic mixer
that converts a batch of requests into a set of parallel batches such that all the
requests in a parallel batch can be executed in parallel. Once the execution of
a batch terminates, replicas calculate a token based on their current state and
send it to the verification stage. The verification stage checks the equality of
the tokens. If the tokens are equal, replicas commit the executed batch, update
their most recent stable sequence number, and respond to the clients. Otherwise,
replicas must roll back the execution and re-execute the commands in the order
determined by the primary. In Eve, checkpointing happens after the execution
of each batch of commands and thus is more frequent than in traditional state-
machine replication approach. Similar to a diverging replica, a recovering replica
can request state changes from other replicas to build a consistent state.
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In [7], the authors present Rex, a replication approach that benefits from
multicore architectures. In Rex, one of the replicas, the primary, serves incoming
client requests concurrently. There is no ordering requirements on delivering and
executing client requests. The relative order among conflicting requests is given
by synchronization primitives that coordinate access to shared data. The primary
records causal dependencies among synchronization events during the execution
and periodically proposes up-to-date traces to the secondary replicas, which
reach a consensus on a sequence of traces to be executed. Secondary replicas
faithfully follow the traces to replay the primary’s execution. Checkpoints are
used by Rex to allow a replica to recover from failures, to implement rollback
on a downgrading replica (i.e., a leader replica that switches to a secondary
role), and to facilitate garbage collection [7]. When a checkpoint is created, the
primary pauses all threads before taking on any new requests and marks this
particular point in the trace. A secondary receiving such a trace waits until the
replay of the marked checkpoint and creates a snapshot. Once the checkpoint is
created, the secondary replica resumes its execution and copies the checkpoint
to other replicas in background. Since the checkpoint mark proposed by the
primary establishes a consistent cut among replicas, the checkpoint generated is
identical to each replica, similarly to our coordinated algorithm.

Another parallel replication technique is proposed in [15], where consensus
is implemented to benefit from the multicore processors. Since the execution of
commands is not parallelized on the replicas and follows the order decided by
consensus, recovery can be implemented as in classic state-machine replication.

7 Conclusion

In this paper, we proposed two novel algorithms to address checkpointing in par-
allel state-machine replication [12]. The difference between our algorithms lies in
the way checkpoint requests are synchronized with service commands. In coor-
dinated checkpointing, checkpoints happen either before or after the execution
of a batch of concurrent commands decided in a round. In uncoordinated check-
pointing, a checkpoint can contain states of a replica in between two serialized
commands. These two techniques have implications on performance, which in-
crease in importance as the number of threads augments and checkpoints become
more frequent.
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