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Abstract. In the population protocol model Angluin et al. proposed in
2004, there exists no self-stabilizing protocol that solves leader election
on complete graphs without knowing the exact number of nodes. To cir-
cumvent the impossibility, we previously introduced the concept of loose-
stabilization, which relaxes the closure requirement of self-stabilization.
A loosely-stabilizing protocol guarantees that starting from any initial
configuration a system reaches a loosely-safe configuration, and after
that, the system keeps its specification (e.g. the unique leader) not for-
ever, but for a sufficiently long time. Our previous work presented a
loosely-stabilizing protocol that solves the leader election on complete
graphs using only the upper bound N of n, not the exact value of n. We
take this work one step further in this paper: We propose two loosely-
stabilizing protocols that solve leader election for arbitrary graphs. One is
a deterministic protocol that uses the identifiers of nodes while the other
is a probabilistic protocol that works on anonymous networks. Given the
upper bounds N and Δ of the number of nodes and the maximum degree
of nodes respectively, both protocols keep a unique leader for Ω(NeN )
expected steps after entering a loosely-safe configuration. The former
enters a loosely-safe configuration within O(mΔN log n) expected steps
while the latter does within O(mΔ2N3 logN) expected steps where m
is the number of edges of the graph.

Keywords: Loose-stabilization, Population protocols, Leader election.

1 Introduction

The population protocol (PP) model, which was presented by Angluin et al.[1],
represents wireless sensor networks of mobile sensing devices that cannot control
their movement. Two devices (say agents) communicate with each other only
when they come sufficiently close to each other (we call this event an interaction).
One example represented by this model is a flock of birds where each bird is
equipped with a sensing device with a small transmission range; each device
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can communicate with another device only when the corresponding birds come
sufficiently close to each other. This unique but meaningful model has attracted
broad attention, and there have been numerous studies involving it.

Self-stabilizing leader election (SS-LE) requires that starting from any con-
figuration, a system (say population) reaches a safe-configuration in which a
unique leader is elected, and after that, the population has the unique leader
forever. Self-stabilizing leader election is important in the PP model because
(i) many population protocols in the literature work on the assumption that a
unique leader exists [1,2,3], and (ii) self-stabilization tolerates any finite num-
ber of transient faults and this property suits systems consisting of numerous
cheap and unreliable nodes. (Such systems are the original motivation of the
PP model.) However, there exists strict impossibility of SS-LE in the PP model:
no protocol can solve SS-LE for complete graphs, arbitrary graphs, trees, lines,
degree-bounded graphs and so on unless the exact size of the graph (the num-
ber of agents n) is available [3]. This impossibility holds even if we strengthen
the PP model by assigning unique identifies to agents, allowing agents to use
random numbers, introducing memory of communication links (mediated pop-
ulation protocols [10]), or allowing more than two agents (k agents) to interact
at the same time (the PPk model [5]).

Accordingly, many studies of SS-LE took either one of the following two ap-
proaches. One approach is to accept the assumption that the exact value of n
is available and focus on the space complexity of the protocol. Cai et al. [6]
proved that n states of each agent is necessary and sufficient to solve SS-LE for
a complete graph of n agents. Mizoguchi et al.[12] and Xu et al.[14] improved the
space-complexity by adopting the mediated population protocol model and the
PPk model respectively. The other approach is to use oracles, a kind of failure
detectors. Fischer and Jiang [8] took this approach for the first time. They intro-
duced oracle Ω? that informs all agents whether at least one leader exists or not
and proposed two protocols that solve SS-LE for rings and complete graphs by
using Ω?. Beauquier et al.[4] presented an SS-LE protocol for arbitrary graphs
that uses two copies of Ω?. Canepa et al.[7] proposed two SS-LE protocols that
use Ω? and consume only 1 bit of each agent: one is a deterministic protocol for
trees and the other is a probabilistic protocol for arbitrary graphs although the
position of the leader is not static and moves among the agents.

Our previous work [13] took another approach to solve SS-LE. We introduced
the concept of loose-stabilization, which relaxes the closure requirement of self-
stabilization: we allow protocols to deviate from the specification after following
it for a sufficiently long time. Concretely, starting from any initial configura-
tion, the population must reach a loosely-safe configuration within a relatively
short time; after that, the specification of the problem (the unique leader) must
be kept for a sufficiently long time, though not forever. We then proposed a
loosely-stabilizing protocol that solves leader election on complete graphs using
only an upper bound N of n, not using the exact value of n. Starting from any
configuration, the protocol enters a loosely-safe configuration within O(nN logn)
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expected steps. After that, the unique leader is kept for Ω(NeN ) expected steps.
Since the specification is kept for an exponentially long time, we can say this
loosely-stabilizing protocol is practically equivalent to a self-stabilizing leader
election protocol. Furthermore, this protocol works on any complete graph whose
size is no more than N while protocols using the exact value of n work only on
the complete graph of size n.

Some works on population protocols assume the probabilistic distribution re-
garding the interactions of agents: any interaction occurs uniformly at random
[1,2,13]. This assumption have been used partly for evaluating the time com-
plexity of protocols. We also adopt this assumption because the measure of time
is crucial in the concept of loose-stabilization.

1.1 Our Contribution

In this paper, we consider loosely-stabilizing leader election for arbitrary undi-
rected graphs. We adopt two settings: the population with agent-identifiers as
in [9] 1 and the population in which agents can use random numbers for state-
transition as in [7]. As mentioned above, no self-stabilizing protocol can solve
SS-LE for arbitrary graphs, even in these settings, unless the exact value of n is
available. For each setting, we propose two protocols PID and PRD respectively.
To elect the unique leader, we take “the minimum ID selection” approach for
PID utilizing the identifiers of agents while we take a novel approach we call
“virus war mechanism” for PRD utilizing random numbers.

Given upper bounds N of n and Δ of the maximum degree of nodes, both
protocols keep the unique leader for Ω(NeN ) expected steps after entering a
loosely-safe configuration. Protocol PID enters a loosely-safe configuration within
O(mNΔ log n) expected steps while PRD does within O(mN3Δ2 logN) expected
steps where m is the number of edges of the graph. Both protocols consume
only O(logN) bits of each agent’s memory. We can say this space complexity is
small because even space optimal self-stabilizing protocols that use exact value
of n consume O(log n) bits of each agent[6,12]. For simplicity, our protocols are
presented for undirected graphs. However, they work on directed graphs with
slight modification which is discussed in the conclusion.

Angluin et al.[1] proves that for any population protocol P working on com-
plete graphs, there exists a protocol that simulates P on any arbitrary graph.
However, this simulation can be achieved assuming that all the agents have the
common initial states at the start of the execution. Since we cannot assume
the specific initial states (This is the essence of self-stabilization), we cannot
translate our previous loosely-stabilizing algorithm[13] for complete graphs to a
loosely-stabilizing algorithm that works for arbitrary graphs.

1 Strictly speaking, our model with identifiers is stronger than the model in [9]. We
use identifiers to compare their values while Guerraoui et al.[9] only allow equality-
test of identifiers and prohibited any other calculation of identifiers such as value-
comparing.
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2 Preliminaries

This section defines the model we consider for this paper. The model includes
both agent-identifiers and random numbers while protocols PID and PRD use
only one of them. In what follows, we denote set {z ∈ N | x ≤ z ≤ y} by [x, y].

A population is a simple and weakly-connected directed graph G(V,E, id)
where V (|V | ≥ 2) is a set of agents, E ⊆ V × V is a set of directed edges
and id defines unique identifiers of agents. Each edge represents a possible
interactions (or communication between two agents): If (u, v) ∈ E, agents
u and v can interact with each other where u serves as an initiator and v
serves as a responder. Each agent v has the unique identifier id(v) ∈ I (I =
[0, idmax], idmax ∈ O(nc) for constant c). We say that G is undirected if it sat-
isfies (u, v) ∈ E ⇔ (v, u) ∈ E. We define n = |V | and m = |E|.

A protocol P (Q, Y, I, R, T,O) consists of a finite set Q of states, a finite set
Y of output symbols, a set of possible identifiers I, a range of random numbers
R ⊂ N, transition function T : (Q × I) × (Q × I) × R → Q × Q, and output
function O : (Q × I) → Y . When an interaction between two agents occurs, T
determines the next states of the two agents based on the current states of the
agents, identifiers of the two agents, and a random number r ∈ R generated at
each interaction. The output of an agent is determined by O: the output of agent
v with state q ∈ Q is O(q, id(v)). We assume that the set of possible identifiers
I is a given parameter and not subject to protocol design.

A configuration is a mapping C : V → Q that specifies the states of all the
agents. We denote the set of all configurations of protocol P by Call(P ). We say
that configuration C changes to C′ by interaction e = (u, v) and integer r ∈ R,

denoted by C
e,r→ C′, if we have (C′(u), C′(v)) = T (C(u), id(u), C(v), id(v), r) and

C ′(w) = C(w) for all w ∈ V \ {u, v}. A scheduler determines which interaction
occurs at each time. In this paper, we consider a uniformly random scheduler
Γ = Γ0, Γ1, . . . : each Γt ∈ E is a random variable such that Pr(Γt = (u, v)) =
1/m for any t ≥ 0 and any (u, v) ∈ E. We also define the random number
sequence as Λ = R1, R2, . . . : each number Rt ∈ R is a random variable such that
Pr(Rt = r) = 1/|R| for any t ≥ 0 and r ∈ R. Given an initial configuration C0,
Γ , and Λ, the execution of protocol P is defined as ΞP (C0, Γ, Λ) = C0, C1, . . .

such that Ct
Γt,Rt→ Ct+1 for all t ≥ 0. We denote ΞP (C0, Γ, Λ) simply by ΞP (C0)

when no misunderstanding can arise.
The leader election problem requires that every agent should output L or F

which means “leader” or “follower” respectively. We say that a finite or infi-
nite sequence of configurations ξ = C0, C1, . . . preserves a unique leader, de-
noted by ξ ∈ LE , if there exists v ∈ V such that O(Ct(v), id(v)) = L and
O(Ct(u), id(u)) = F for any t ≥ 0 and u ∈ V \ {v}. For ξ = C0, C1, . . . ,
the holding time of the leader HT(ξ,LE ) is defined as the maximum t ∈ N

that satisfies (C0, C1, . . . , Ct−1) ∈ LE . We define HT(ξ,LE ) = 0 if C0 /∈ LE .
We denote E[HT(ΞP (C),LE )] by EHTP (C,LE ). Intuitively, EHTP (C,LE ) is
the expected number of interactions for which the population keeps the unique
leader after protocol P starts from configuration C. For configuration sequence
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ξ = C0, C1, . . . and a set of configurations C, we define convergence time CT(ξ, C)
as the minimum t ∈ N that satisfies Ct ∈ C. We define CT(ξ, C) = |ξ| if Ct /∈ C
for any t ≥ 0, where |ξ| is the length of ξ. We denote E[CT(ΞP (C), C)] by
ECTP (C, C). Intuitively, ECTP (C, C) is the expected number of interactions by
which the population enters a configuration in C after P starts from C.

Definition Protocol P (Q, Y, I, R, T,O) is an (α, β)-loosely-stabilizing leader
election protocol if there exists set S of configurations satisfying two inequali-
ties maxC∈Call(P ) ECTP (C,S) ≤ α and minC∈S EHTP (C,LE ) ≥ β.

2.1 Chernoff Bounds

In this section, we quote the three variants of Chernoff bounds [11] used in
several proofs of this paper.

Lemma 1 (from Eq. (4.2) in [11]). The following inequality holds for any
binomial random variable X:

Pr(X ≥ 2E[X ]) ≤ e−E[X]/3.

Lemma 2 (from Eq. (4.5) in [11]). The following inequality holds for any
binomial random variable X:

Pr(X ≤ E[X ]/2) ≤ e−E[X]/8.

Lemma 3 (from Eq. (4.5) in [11]). The following inequality holds for any
binomial random variable X:

Pr(X ≤ E[X ]/4) ≤ e−9E[X]/32.

3 Leader Election with Identifiers

This section presents loosely-stabilizing leader election protocol PID, which works
on arbitrary undirected graphs with unique identifiers of agents (Protocol 1). In
the protocol description, we regard a state of agents as a collection of variables
(e.g. timer), and denote a transition function as pseudo code that updates vari-
ables of initiator x and responder y. We denote the value of variable var of agent
v ∈ V by v.var. We also denote the value of var in state q ∈ Q by q.var.

This protocol elects the agent with the minimum identifier, denoted by vmin,
as the leader. Each agent v tries to find the minimum identifier and stores it
on v.lid. At interaction, two agents x and y compare their lid and store the
smaller value on their lid (Lines 3 and 6), by which the smallest identifier
id(vmin) eventually spreads to all the agents. Then, after some point, vmin is
the unique leader because output function O makes only agents v satisfying
id(v) = v.lid output L and other agents output F .
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Protocol 1. Leader Election with Identifiers PID

Variables of each agent:

lid ∈ I , timer ∈ [0, tmax]

Output function O:

if v.lid = id(v) holds, then the output of agent v is L; Otherwise, F .

Interaction between initiator x and responder y:

1: if x.lid > id(x) then x.lid ← id(x) endif
2: if x.lid < y.lid then
3: y.lid ← x.lid
4: x.timer ← y.timer ← max(x.timer− 1, 0)
5: else if x.lid > y.lid then
6: x.lid ← y.lid
7: x.timer ← y.timer ← max(y.timer− 1, 0)
8: else // x.lid = y.lid at this time
9: x.timer ← y.timer ← max(x.timer− 1, y.timer− 1, 0)
10: end if
11: if id(x) = x.lid or id(y) = y.lid then // a leader resets timers
12: x.timer ← y.timer ← tmax

13: else if x.timer = 0 then // a new leader is created at timeout
14: x.lid ← y.lid ← min(id(x), id(y))
15: x.timer ← y.timer ← tmax

16: end if

However, in the initial configuration, some agents may have false identifiers (or
the integers that are not identifiers of any agent in the population) on lid. A false
identifier may spread to the population instead of id(vmin) if it is smaller than
id(vmin). We define ID = {id(v) | v ∈ V }, which is the correct identifiers set
(Note that ID ⊆ I). Protocol PID removes false identifiers i /∈ ID from lid of
all the agents by the timeout mechanism. Specifically, if x.lid 	= y.lid, we take
the timer value of the agent with smaller lid, decrease it by one, and substitute
the decreased value into x.lid and y.lid (Lines 4 and 7). If x.lid = y.lid, we
take the larger value of x.timer and y.timer, decrease it by one, and substitute
the decreased value into x.lid and y.lid (Line 9). We call this event larger value
propagation. If x or y is a leader, both timers are reset to tmax (Line 12).We call this
event timer reset. When a timer becomes zero, agents x and y suspect that there
exists no leader in the population. In this case, they elect the one with a smaller
identifier as a leader by substituting min(id(x), id(y)) into x.lid and y.lid (Line
14).We call this event timeout. Agents with false identifiers never experience timer
reset; thus, their timers keep on decreasing. Hence, timeout eventually occurs and
their lids satisfy lid ∈ ID. Thismechanism rarely ruins the stability of the unique
leader because agents with lid ∈ ID keep high value timers because of timer reset
and lager value propagation.

ComplexityAnalysis Theupper bound tmax of variable timer is the only parameter
of PID, which affects the correctness and complexities of the protocol. We assume
tmax ≥ 8δmax(d, 2 + logn) where δ is the maximum degree of the agents and
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d is the diameter of population G. (Note that δ is an even number because G is
undirected. ) We prove the following equations under this assumption:

maxC∈Call
ECTPID(C,Sid) = O(mδτ logn), (1)

minC∈Sid
EHTPID(C,LE ) = Ω(τeτ ), (2)

where τ = tmax/(8δ) and Sid is the set of configurations in which v.lid =
id(vmin) and v.timer > tmax/2 hold for all v ∈ V and vmin.timer = tmax holds.
When upper bounds N of n and Δ of δ are available and we assign tmax = 8NΔ,
protocol PID is an (O(mΔN logn), Ω(NeN ))-loosely-stabilizing leader election
protocol.

First, we analyze the expected holding time. Let C0 ∈ Sid and ΞPID(C0) =
C0, C1, . . . . To prove (2), it suffices to show that both C0, . . . , C2mτ ∈ LE and
C2mτ ∈ Sid hold with probability at least psuc = 1 − O(ne−τ ). Then, we have
minC0∈Sid

EHTPID(C0,LE ) ≥ 2mτ/(1− psuc) = Ω(τeτ ).

Lemma 4. The probability that every v ∈ V joins only less than tmax/2 inter-
actions among Γ0, . . . , Γ2mτ−1 is at least 1− ne−τ .

Proof. For any v ∈ V and t ≥ 0, v joins interaction Γt with probability at
most δ/m. Thus, the number of interactions v joins during the 2mτ interactions
is bounded by binomial random variable X ∼ B(2mτ, δ/m). Applying a variant
of Chernoff bound (Lemma 1), we have

Pr(X ≥ tmax/2) = Pr(X ≥ 2E[X ]) ∵ tmax = 8δτ

≤ e−E[X]/3

= e−2δτ/3 (By Chernoff Bound of Lemma 1)

≤ e−τ . ∵ δ ≥ 2

Summing up the probabilities for all v ∈ V gives the lemma. ��

Lemma 5. Let C0 ∈ Llid and ΞPID(C0) = C0, C1, . . . . Then, we have the fol-
lowing inequality:

Pr(∀v ∈ V, C2mτ (v).timer > tmax/2) ≥ 1− 2ne−τ .

Proof. It suffices to show Pr(C2mτ (v).timer > tmax/2) ≥ 1 − 2e−τ for any
agent v ∈ V . We denote the shortest path from vmin to v by (v0, v1, . . . , vk)
where v0 = vmin, vk = v, 0 ≤ k ≤ d and (vi−1, vi) ∈ E for all i = 1, . . . , k.
For any t ∈ [0, 2mτ ], we define vhead(t) as vl with maximum l ∈ [1, k] such
that there exist t1, t2, . . . , tl satisfying 0 ≤ t1 < t2 < · · · < tl < t and Γti ∈
{(vi−1, vi), (vi, vi−1)} for i = 1, 2, . . . , l. We define vhead(t) = v0 if such l does
not exist. Intuitively, vhead(t) is the head of the agents in path (v0, v1, . . . , vk) to
which a large timer value is propagated from vmin. (Remember that vmin resets
the timers to tmax.) We define J(t) as the number of integers i ∈ [0, t] such that
vhead(i) joins interaction Γi. Intuitively, J(t) is the number of interactions that
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the head agent joins among Γ0, . . . , Γt. Obviously, we have Ct(vhead(t)).timer ≥
tmax − J(t) for any t ≥ 0.

In what follows, we prove Pr(vhead(2mτ) = v) ≥ 1 − e−τ and Pr(J(2mτ) <
tmax/2) ≥ 1 − e−τ , which give Pr(C2mτ (v).timer > tmax/2) ≥ 1 − 2e−τ . For
any i ∈ [1, k], a pair vi−1 and vi interacts with probability 2/m at each in-
teraction. Hence, we can say each interaction makes vhead forward with prob-
ability 2/m. Therefore, by letting Z be a binomial random variable such that
Z ∼ B(2mτ, 2/m), we have

Pr(vhead(t) = v) = 1− Pr(Z < k)

≥ 1− Pr(Z < d)

≥ 1− Pr

(
Z <

1

4
·E[Z]

)
∵ d ≤ τ =

1

4
· E[Z]

≥ 1− e−9E[Z]/32 (By Chernoff bound of Lemma 3)

> 1− e−τ .

The probability that vhead(t) joins interaction Γt is at most δ/m regardless of t.
Hence, by letting Z ′ be a binomial random variable such that Z ′ ∼ B(2mτ, δ/m),
we have

Pr(J(2mτ) < tmax/2) > 1− Pr(Z ′ ≥ tmax/2)

= 1− Pr(Z ′ ≥ 2E[Z ′])

> 1− e−E[Z′]/3 (By Chernoff bound of Lemma 1)

= 1− e−2δτ/3

> 1− e−τ . ∵ δ ≥ 2

Thus, we have shown Pr(C2mτ (v).timer > tmax/2) ≥ 1− 2e−τ . ��
Lemma 6. minC∈Sid

EHTPID(C,LE ) = Ω(τeτ ).

Proof. We have C0, . . . , C2mτ ∈ LE and C2mτ ∈ Sid if C0 ∈ Sid holds, no
timeout happens, and any agent interacts at most tmax/2 times during 2mτ
interactions. Hence, probability psuc discussed in the beginning of this section is
at least 1− 3ne−τ by Lemmas 4 and 5, which leads to the lemma. ��

Next, we analyze the expected convergence time. To prove (1), we define two
sets of configurations: Clid = {C ∈ Call(PID) | ∀v ∈ V,C(v).lid ∈ ID} and
Llid = Clid ∩ {C ∈ Call(PID) | C(vmin).lid = id(vmin) ∧ C(vmin).timer = tmax}.
Lemma 7. maxC∈Call(PID) ECTPID(C, Clid) = O(mδτ logn).

Proof. Let z be the maximum value of v.timer such that v.lid /∈ ID. This z
decreases by one every time all interactions of E occur. Thus, it takes at most
m
m + m

m−1 + . . . m1 ≤ m(1 + logm) expected steps to decrease z by one. Hence,
maxC∈Call(PID) ECTPID(C, Clid) ≤ tmaxm(1 + logm) = O(mδτ log n). ��
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Lemma 8. maxC∈Clid
ECTPID(C,Llid) = O(m).

Proof. We have vmin.lid = id(vmin) and vmin.timer = tmax just after vmin

interacts in any configuration of Clid. This takes O(m) expected interactions. ��
Lemma 9. maxC∈Llid

ECTPID(C,Sid) = O(mτ).

Proof Sketch. Let C0 ∈ Llid and ΞPID(C0) = C0, C1, . . . . By similar argument
to Lemmas 4 and 5, we can prove Pr(C2mτ ∈ Sid) > 1− 2ne−τ . Since C ∈ Llid

cannot change to D /∈ Llid, we have maxC∈Llid
ECTPID(C,Sid) ≤ 2mτ +3ne−τ ·

maxC∈Llid
ECTPID(C,Sid). Solving this inequality gives the lemma. ��

The following lemma immediately follows from Lemmas 7, 8, and 9.

Lemma 10. maxC∈Call(PID) ECTPID(C,Sid) = O(mδτ logn).

Lemmas 6 and 10 gives the following theorem.

Theorem 1 Protocol PID is a (O(mδτ logn), Ω(τeτ )) loosely-stabilizing leader
election protocol for arbitrary graphs when tmax ≥ 8δmax(d, 2 + logn).

Therefore, given upper bound N and Δ of n and δ respectively, we get a
(O(mΔN logn), Ω(NeN )) loosely-stabilizing leader election protocol for arbi-
trary graphs by assigning tmax = 8NΔ.

4 Leader Election with Random Numbers

This section presents loosely-stabilizing leader election protocol PRD. It works
on arbitrary undirected anonymous graphs with a random number generated at
each interaction (Protocol 2). Random numbers are used in Line 11: When the
protocol enters Line 11, the code is executed with probability p = 1/|R|. This is
implemented as the code is executed only when a specific number is generated.
For example, p = 0.01 if we assign R = [0, 99] and treat 0 as a specific number.

Each agent has binary variable DoA ∈ {DEAD,ALIVE} and three timers
timerL, timerV and timerS. The output function defines leaders based on DoA :
agent v is a leader if v is alive (or v.DoA = ALIVE), and a follower if v is dead (or
v.DoA = DEAD). Protocol PRD consists of a timeout mechanism (Lines 1-7) and
a virus-war mechanism (Lines 8-14). By using timerL, the timeout mechanism
creates a leader when it is suspected that no leader exists. By using timerV and
timerS, the virus-war mechanism reduces the number of leaders.

The timeout mechanism is almost the same as PID. By the timer reset and
the larger value propagation, timeout eventually occurs when no leader exists,
and all agents keep high timer values with high probability when one ore more
leaders exist. At timeout, a dead agent becomes a leader (Line 5).

In the virus-war mechanism, each leader tries to kill other leaders by viruses
and become the unique leader. We say that agent v has a virus if v.timerV > 0,
and v wears a (head) shield if v.timerS > 0. A leader creates a new virus with
probability p when it interacts as an initiator (Line 11). When creating a virus,
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Protocol 2. Leader Election with Random Numbers PRD

Variables of each agent:

DoA ∈ {DEAD, ALIVE}, timerL ∈ [0, tmax], timerV ∈ [0, tvirus], timerS ∈ [0, tshld]

Output function O:

if v.DoA = ALIVE holds, then the output of agent v is L, otherwise F .

Interaction between initiator x and responder y:

1: x.timerL ← y.timerL ← max(x.timerL − 1, y.timerL − 1, 0)
2: if x.DoA = ALIVE or y.DoA = ALIVE then
3: x.timerL ← y.timerL ← tmax // a leader resets timer
4: else if x.timerL = 0 then // a new leader is created at timeout
5: x.DoA ← ALIVE
6: x.timerL ← y.timerL ← tmax

7: end if
8: x.timerV ← y.timerV ← max(x.timerV − 1, y.timerV − 1, 0)
9: x.timerS ← max(0, x.timerS − 1)
10: if x.DoA = ALIVE then
11: Execute (x.timerV ← tvirus, x.timerS ← tshld) with probability p

// An alive initiator creates a new virus and a new shield with probability p.
12: end if
13: if x.timerV > 0 and x.timerS = 0 then x.DoA ← DEAD endif
14: if y.timerV > 0 and y.timerS = 0 then y.DoA ← DEAD endif

the agent wears a shield so as not to be killed by the new virus (Line 11). A virus
spreads among agents by interactions (Line 8), and an agent is killed when it
has a virus without a shield (Lines 13-14). A virus has TTL (time to live), which
is memorized on timerV and decreased by one at each interaction of its owner
(line 8). When timerV becomes zero, the virus vanishes and looses the ability to
kill agents. A shield also has TTL, which is memorized on timerS and decreased
by one at each interaction of its owner (Line 9). When timerS becomes zero, the
shield vanishes and looses the ability to protect its owner from viruses.

The virus-war mechanism correctly works if p is sufficiently small and tshld
is sufficiently greater than tvirus. Consider the case multiple leaders exist. Since
p is small, all viruses and shields eventually vanishes. After that, some agent
eventually creates a new virus and shield. The created virus kills all other agents
unless some of them also create a new virus and shield before the virus reaches
them. Since p is sufficiently small, the probability of the latter is small. Thus,
the unique leader is elected within a relatively short time. Even after that, the
unique leader keeps on creating new viruses, each of which may kill the leader.
However, the leader is not killed for an extremely long time: since tshld � tvirus,
the leader’s shield rarely vanishes before all viruses vanish from the population.

Complexity Analysis We have four parameters in PRD: three upper bounds
tmax, tvirus, and tshld of the timers, and probability p. We assume tvirus =
tmax/2, tmax ≥ 8δmax(d, 2 + log(13nδ�logn�)), tshld ≥ 2δtmax�logn� and p ≤
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(4mtshld)
−1. We prove the following equations under this assumption:

maxC∈Call
ECTPRD(C,SRD) = O(mp−1), (3)

minC∈SRD EHTPRD(C,LE ) = Ω(τeτ ), (4)

where τ = tmax/(8δ) and SRD is the set of configurations we define later. When
upper bounds N and Δ are available and we assign tmax = 8NΔ, tshld =
2Δtmax�logN� and p = (4N2tshld)

−1 (i.e., R = [0, 4N2tshld − 1]), then PRD

is an (O(mΔ2N3 logN), Ω(NeN ))-loosely-stabilizing leader election protocol.
Before proving equations (3) and (4), we define five sets of configurations:

Ghalf = {C ∈ Call(PRD) | ∃v ∈ V, C(v).DoA = ALIVE ∧ C(v).timerS > tshld/2},
Vclean = {C ∈ Call(PRD) | ∀v ∈ V, C(v).timerV = 0},
Lhalf = {C ∈ Call(PRD) | #L(C) ≥ 1 ∧ ∀v ∈ V, C(v).timerL > tmax/2},
Lone = {C ∈ Call(PRD) | #L(C) = 1},
SRD = (Ghalf ∪ Vclean) ∩ Lhalf ∩ Lone,

where #L(C) denotes the number of leaders in configuration C. Note that Ghalf

requires that not all agents but at least one leader has timerS more than tshld/2.
First, we analyze the expected holding time. Let C0 ∈ SRD and ΞPRD(C0) =

C0, C1, . . . . To prove (4), it suffices to show that both C0, . . . , C8mδτ�logn� ∈ LE
and C8mδτ�logn� ∈ SRD hold with probability no less than psuc = 1−O(nδ logn ·
e−τ ). Then, minC0∈SRD EHTPRD(C0,LE ) ≥ 8mδτ�logn�τ/(1− psuc) = Ω(τeτ ).

We define two predicates PROPi and HALFi for any i ≥ 0: PROPi = 1 if
C2mτ(i+1)(v).timerL > ti − tmax/2 for all v ∈ V , otherwise PROPi = 0, where
ti = maxv∈V C2mτi(v); HALFi = 1 if every agent joins only less than tmax/2
interactions among Γ2mτi, . . . , Γ2mτ(i+1)−1, otherwise HALFi = 0. Intuitively,
PROPi = 1 means the maximum value of timerL propagates to all the agents
well during the 2mτ interactions, and HALFi = 1 means every agent does not
interact so much during the 2mτ interactions.

Lemma 11. Let C0 ∈ SRD and ΞPRD(C0) = C0, C1, . . . . Then, we have both
C0, . . . , C8mδτ�log n� ∈ LE and C8mδτ�log n� ∈ SRD if the following conditions
hold:
(A) #L(Ct) ≥ 1 for all t = 0, . . . , 8mδτ�logn�,
(B) C8mδτ�log n� ∈ Ghalf ∪ Vclean,
(C) PROPi = 1 for all i = 0, . . . , 4δ�logn� − 1, and
(D) HALFi = 1 for all i = 0, . . . , 4δ�logn� − 1.

Proof. We have C2mτi(v).timerL > tmax/2 for any i ∈ [0, 4δ�logn�] from (A)
and (C). Since no agent interacts more than tmax/2 times among each 2mτ inter-
actions (i.e. (D)), timeout does not occur at any interaction Γ0, . . . , Γ8mδτ�log n�−1,
by which we obtain C0, . . . , C8mδτ�logn� ∈ LE . We also obtain C8mδτ�log n� ∈
Lhalf ∩ Lone ∩ (Ghalf ∪ Vclean) = SRD from above discussion and (B). ��
Lemma 12. The probability that every agent joins only less than tshld/2 inter-
actions as an initiator among Γ0, . . . , Γ8mδτ�logn�−1 is at least 1− ne−δτ .



350 Y. Sudo et al.

Proof. For any v ∈ V and t ≥ 0, v joins interaction Γt as an initiator with
probability at most δ/(2m) since v has at most δ/2 outgoing edges. Thus, the
number of interactions v joins as an initiator during the 8mδτ�logn� interactions
is bounded by binomial random variable X ∼ B(8mδτ�log n�, δ/(2m)). We have

Pr(X ≥ tshld/2) ≤ Pr(X ≥ 8δ2τ�logn�) ∵ tshld ≥ 16δ2τ�logn�
= Pr(X ≥ 2E[X ])

≤ e−E[X]/3 (By Chernoff Bound of Lemma 2)

= e−4δ2τ�logn�/3

= e−δτ .

Summing up these probabilities gives the lemma. ��

Lemma 13. Let C0 ∈ SRD and ΞPRD(C0) = C0, C1, . . . .
Then, we have Pr(∀t ∈ [0, 8mδτ�logn� − 1], #L(Ct) ≥ 1) ≥ 1− ne−δτ .

Proof. By Lemma 12, it suffices to show that #L(Ct) ≥ 1 holds for all t ∈
[0, 8mδτ�logn�] when we assume every agent joins only less than tshld/2 inter-
actions as an initiator among Γ0, . . . , Γ8mδτ�logn�−1. Since C0 ∈ SRD, we have
C0 ∈ Ghalf∪Vclean. If C0 ∈ Ghalf , there exists a leader v such that C0(v).timerS >
tshld/2. By the assumption, v decrease its timerS by at most tshld/2; thus, v is
never killed and remains a leader in C0, . . . , C8mδτ�logn�. If C0 ∈ Vclean, no leader
is killed before a new virus is created. Even if some leader u creates a new virus
at interaction Γt (0 ≤ t < 8mδτ�log n�), u wears a new shield at the same time.
Hence, u remains a leader in Ct, . . . , C8mδτ�log n� by the assumption. ��

We define the first round time RTΓ (1) as the minimum t satisfying ∀e ∈
E, 0 ≤ ∃t′ ≤ t, Γt′ = e. For any i ≥ 2, we define the i-th round time RTΓ (i)
as the minimum t satisfying ∀e ∈ E, RTΓ (i − 1) < ∃t′ ≤ t, Γt′ = e. Lemma 15
bounds RTΓ (i) from above with high probability. To prove the lemma, we firstly
prove Lemma 14.

Lemma 14. Let v1, v2, . . . , vl be any l (l < n) agents in V . There exists at least
2l edges of E that are incident to at least one of the l agents.

Proof. Since l < n, there exists agent r ∈ V that differs from any v1, v2, . . . , vl.
Since G is strongly connected, there exists a rooted spanning tree T on G where
r is the root agent of T . Then, every vi (i ∈ [1, k]) has two edges between vi and
the parent agent of vi in T . (Remind that G is undirected, that is, (u, v) ∈ E ⇔
(v, u) ∈ E for any u, v ∈ V .) These edges are mutually exclusive. Thus, we have
2l edges of E that are incident to at least one of the l agents. ��

Lemma 15. Pr(RTΓ (i) < 2im�logn�) ≥ 1− ne−i/4 holds for any i ≥ 1.

Proof. Each round j (j ≥ 1) finishes when every agent v ∈ V interacts in round
j. Consider the case that k (k ≥ 1) agents have not yet interacted in round j and
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only n−k agents have interacted in round j. We call the former uninvolved agents
and the latter involved agents. If k < n, one of the k uninvolved agents joins the
next interaction and becomes an involved agent with probability more than 2k/m
by Lemma 14. If k = n, some uninvolved agent joins the next interaction with
probability 1. Let Xj,k (j ≥ 1, k ≥ 1) be the random variable that corresponds
to the number of trials to the first success in which the success probability of
each trial is 2k/m. From the above discussion, we obtain

Pr(RTΓ (i) ≥ 2im�logn�) ≤ Pr

⎛
⎝ i∑

j=1

(
1 +

n−1∑
k=1

Xj,k

)
≥ 2im�logn�

⎞
⎠

≤ Pr

⎛
⎝n−1∑

k=1

i∑
j=1

Xj,k ≥ 2im�logn� − i

⎞
⎠ .

(5)

For binomial random variable Yk ∼ B(� im
k �, 2km ), we have Pr(

∑i
j=1 Xj,k > im

k ) ≤
Pr(

∑i
j=1 Xj,k ≥ � im

k �) ≤ Pr(Yk ≤ i). Hence, we have

Pr

⎛
⎝ i∑

j=1

Xj,k >
im

k

⎞
⎠ ≤ Pr(Yk ≤ i)

≤ Pr

(
Yk ≤ 1

2
· E[YK ]

)

≤ e−E[Yk]/8 (By Chernoff Bound of Lemma 2)

≤ e−i/4.

(6)

From Inequalities (5) and (6), we have

Pr(RTΓ (i) ≥ 2im�logn�) ≤ Pr

⎛
⎝n−1∑

k=1

i∑
j=1

Xj,k ≥ 2im�logn� − i

⎞
⎠

≤ Pr

⎛
⎝n−1∑

k=1

i∑
j=1

Xj,k >
n−1∑
k=1

im

k

⎞
⎠

≤
n−1∑
k=1

Pr

⎛
⎝ i∑

j=1

Xj,k >
im

k

⎞
⎠

≤ ne−i/4,

where
∑n−1

k=1
im
k ≤ im(1 + logn) − i < 2im�logn� − i is used for the second

inequality. Thus, Pr(RTΓ (i) < 2im�logn�) ≥ 1− ne−i/4 holds. ��
Lemma 16. Let C0 ∈ SRD and ΞPRD(C0) = C0, C1, . . . .
Then, we have Pr(C8mδτ�log n� ∈ Ghalf ∪ Vclean) ≥ 1− 2ne−δτ .
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Proof. Assume that RTΓ (tvirus) < 8mδτ�logn� holds and every agent joins
only less than tshld/2 interactions as an initiator among Γ0, . . . , Γ8mδτ�logn�−1.
These assumptions lead to C8mδτ�logn� ∈ Ghalf ∪ Vclean as follows. If a new
virus is not created among Γ0, . . . , Γ8mδτ�logn�−1, then all viruses in the initial
configuration vanish during the period since each round decreases the maximum
value of timerV by at least one. Thus, C8mδτ�log n� ∈ Vclean holds. If some agent
v creates a new virus at Γt, then v wears a new shield at the same time. Thus,
Ct+1(v).timerS = tshld. Since v interacts as an initiator only less than tshld/2
times among Γt+1, . . . , Γ8mδτ�log n�−1, we have C8mδτ�log n�(v).timerS > tshld/2,
which means C8mδτ�log n� ∈ Ghalf . By tvirus = 4δτ and Lemmas 12 and 15, the

probability that the two assumptions hold is at least 1− 2ne−δτ . ��
Lemma 17. Pr(PROPi = 1) ≥ 1− 2ne−τ for any i ≥ 0.

Proof. The same argument as the proof of Lemma 5 gives the lemma. ��
Lemma 18. Pr(HALFi = 1) ≥ 1− ne−τ for any i ≥ 0.

Proof. Each interaction is independent. Thus, Lemma 4 gives the lemma. ��
Lemma 19. minC∈SRD EHTPRD(C,LE ) = Ω(τeτ ).

Proof. Probability psuc, discussed in the beginning of this section, is at least
1− 3ne−δτ − 4δ�logn� · 3ne−τ ≥ 1− 13nδ�logn�e−τ by Lemmas 11, 13, 16, 17
and 18, which leads to the lemma. ��

Next, we analyze the expected convergence time. We define two sets of con-
figurations: NoVG = {C ∈ Call(PRD) | ∀v ∈ V, C(v).timerV = C(v).timerS = 0}
and L = {C ∈ Call(PRD) | #L(C) ≥ 1}.
Lemma 20. maxC∈Call(PRD) ECTPRD(C,SRD) = O(mp−1).

Proof Sketch. Probability p, with which a leader creates a virus at each in-
teraction, is sufficiently small (p < 1/(4mtshld)). Thus, the probability that all
viruses and shields vanish (i.e. the population enters a configuration of NoVG)
within 2mtshld interactions is at least 1−(2mtshld·p+O(ne−τ)) > 1/2−O(ne−τ).
Even if the reached configuration of NoVG does not have any leader, the timeout
mechanism creates a leader, and the population enters a configuration of NoVG∩
L. This takes less than 16mδτ�logn� interactions with probability 1−O(ne−τ).
After the population enters into NoVG∩L, additional �m/p� interactions create a
new virus with probability 1−e−2. Let v be a leader that creates the virus. Since
v wears a new shield at the same time, v is not killed and remains a leader during
the next 2mτ interactions with probability 1−O(e−τ ). On the other hand, the
virus spreads to all the agents within these 2mτ interactions with probability
1−O(ne−τ ), killing all the agents other than v. A leader other than v may create
a new virus during the 2mτ interactions, and survives with a shield. However, this
probability is at most 2mτ · p ≤ 1/4. Hence, v becomes the unique leader within
the 2mτ interactions with probability 3/4−O(ne−τ). After the 2mτ interactions,
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all the agents have timerL > tmax/2 with probability 1−O(ne−τ ) by the larger
value propagation, and v.timerS > tshld/2 holds with probability 1 − O(ne−τ ).
Hence, the population enters a configuration of Lone∩Lhalf ∩Ghalf ⊂ SRD within
the 2mτ interactions with probability 3/4−O(ne−τ ). As a result, starting from
any configuration, the population enters into SRD within O(mp−1) interactions
with probability 1/4− e−2−O(ne−τ ) > 0.11− o(1), which gives the lemma. ��
Lemmas 19 and 20 gives the following theorem.

Theorem 2 Protocol PRD is a (O(mp−1), Ω(τeτ )) loosely-stabilizing leader elec-
tion protocol for arbitrary graphs when tmax ≥ 8δmax(d, 2 + log(13nδ�logn�)),
tvirus = tmax/2, tshld ≥ 2δtmax�logn� and p ≤ (4mtshld)

−1.

Therefore, given upper bound N and Δ of n and δ respectively, we get a
(O(mΔ2N3 logN), Ω(NeN )) loosely-stabilizing leader election protocol for ar-
bitrary graphs by assigning tmax = 8NΔ, tvirus = tmax/2, tshld = 2Δtmax�logN�
and p = (4N2tshld)

−1.

5 Conclusion

We have presented two loosely-stabilizing leader election protocols for arbitrary
undirected graphs in the PP model: one works with agent-identifiers and the
other works with random numbers. Both protocols keep a unique leader for an
exponentially long expected time after entering a loosely-safe configuration. The
protocols use only upper bounds N of n and Δ of δ while any self-stabilizing
leader election protocol needs the exact knowledge of n. The restriction of the
protocols to undirected graph is only for simplicity of protocol description and
complexity analysis. The proposed protocols also work on arbitrary directed
graphs with slight modification: it is only necessary that a responder also ex-
ecutes some actions of an initiator (Line 1 of Protocol 1 and Lines 10-12 of
Protocol 2). Our future work is to develop a loosely-stabilizing leader election
protocol without agent-identifiers or random numbers for arbitrary graphs. We
will also tackle with loosely-stabilizing leader election for some classes of graphs
(e.g. rings and trees). We are also interested in the empirical evaluation of the
holding time of loosely-stabilizing protocols. Since our probabilistic evaluation
of the holding time in this paper is not tight, the actual holding time of the
protocols should be much longer. By simulation experiments, we will empirically
evaluate the actual holding time (and convergence time) for various network
sizes and graph topologies.
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