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Abstract. A self-stabilizing algorithm converges to its designated be-
havior from an arbitrary initial configuration. It is standard to assume
that each process maintains communication with all its neighbors. We
consider the problem of self-stabilizing construction of a breadth first
search (BFS) tree in a connected network of processes, and consider al-
gorithms which are not given the size of the network, nor even an upper
bound on that size. It is known that an algorithm that constructs a BFS
tree must allow communication across every edge, but not necessarily in
both directions. If m is the number of undirected edges, and hence the
number of directed edges is 2m, then every self-stabilizing BFS tree al-
gorithm must allow perpetual communication across at least m directed
edges. We present an algorithm with reduced communication for the BFS
tree problem in a network with unique identifiers and a designated root.
In this algorithm, communication across all channels is permitted during
a finite prefix of a computation, but there is a reduced set of directed
edges across which communication is allowed forever. After a finite pre-
fix, the algorithm uses only m+n−1 directed edges for communication,
where n is the number of processes in the network and m is the number
of edges.

1 Introduction

A self-stabilizing distributed system [8] can eventually recover its intended be-
havior without external intervention even when started from an arbitrary con-
figuration (or global state). Thus, a self-stabilizing distributed system attains
high tolerance to transient faults and high adaptability to dynamic topology
changes of networks. Self-stabilization is usually implemented by combining a
transient-fault detection mechanism and a fault correction mechanism. The for-
mer guarantees that an alarm is raised at a process if the distributed system is
at an illegitimate configuration. The latter is initiated by the alarmed process
to bring the system to a legitimate configuration.

The fault correctionmechanism can cost dearly in time and/or communication,
since it must make the distributed system recover from any possible configuration.
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Thus, the prime concern in efficiency of self-stabilization considered so far is ef-
ficiency of the fault correction mechanism, for example, the maximum time (sta-
bilization time) required to recover legitimacy from any configuration, and the
maximum number of bits exchanged until the system reaches a legitimate config-
uration from any configuration.

The cost of the transient-fault detection mechanism is another crucial differ-
ence in cost between self-stabilizing protocols and non-self-stabilizing classical
protocols, since the latter (starting from predetermined initial configurations)
need no transient-fault detection. In a self-stabilizing protocol, the transient-
fault detection mechanism requires each process to keep communicating forever
with some of its neighboring processes to check consistency; otherwise, a process
may initially start and remain forever at a state inconsistent with those of its
neighboring processes, and the protocol cannot recover legitimacy.

Cost of the transient-fault detection mechanism has not caused much concern
so far. Most self-stabilizing protocols proposed up to now require every process to
communicate with all of its neighboring processes repeatedly and forever to check
consistency among them. This leads to a high communication load in networks
and makes self-stabilizing protocols unacceptable in some real situations.

It is worth noting that efficiency of transient-fault detection mechanism is
one of the most important concerns of self-stabilization. In self-stabilizing distri-
buted systems, the transient-fault detection mechanism operates almost all the
time, but the fault correction mechanism operates only when necessary. Thus,
efficiency of the transient-fault detection mechanism normally dominates the
efficiency of self-stabilizing distributed systems.

Our Contribution. In this paper, we present a silent and self-stabilizing commu-
nication-efficient algorithm, ROOT-UID, for constructing a breadth-first search
(BFS) tree in a connected networkG with the UID property, i.e., where processes
have unique IDs, and where there is a designated root process, Root . Throughout
this work, we let n be the number of processes in our network, and m the number
of edges. ROOT-UID is ♦-(m + n− 1)-communication-efficient, meaning that,
eventually, communication is needed across only m + n − 1 of the 2m directed
edges of the network. More specifically, there is 2-way communication forever
across each of the BFS tree edges, but communication in only one direction
across each cross edge. ROOT-UID uses the identifiers to decide which direction
is used: if {x, y} is a cross edge (i.e., an edge which does not connect a process
with its parent) and x.id > y.id then, eventually, x can read the variables of y,
but y cannot read the variables of x.

We introduce two techniques designed to cope with the peculiar problems
of communication efficient computation. We introduce the three color control
scheme, which is used to “wake up” processes when necessary, and “put them
back to sleep” when their job is done. This scheme is important because dur-
ing some finite prefix of a computation, processes may need to read all their
neighbors, but after that prefix, only a subset of neighbors.

We also introduce the concept of “net polarity” by which ROOT-UID detects
whether the putative BFS tree contains all processes of the network. Suppose,
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for example, that, at the initial configuration (which is arbitrary) there is a false
BFS tree, a subgraph T ′ rooted at Root , which locally looks exactly like a BFS
tree, but does not contain all processes. Yet because it “looks good” locally,
all processes of T ′ “think” that a final configuration has been reached, and are
resting. In order to restart the BFS tree construction phase of the algorithm,
some process of T ′ must become aware that T ′ does not contain all processes.
We further suppose that the ID of every process in T ′ is smaller than the ID of
any of its neighbors not in T ′, which implies that, since all processes of T ′ are
resting, none of them can read any neighbor not in T ′. The problem is, how can
the resulting deadlock be broken? That is, how can the processes of T ′ detect
that T ′ does not contain all processes in the network?

Related Work. Anguilera et al. [1] introduce the concept of communication effi-
ciency in implementation of a failure detector Ω1 in partially synchronous sys-
tems. Following their work, there was further investigation of the possibility of
communication efficient implementations of failure detector Ω (e.g., [2,3,4,11]).
The aim of communication-efficiency is to reduce the number of indefinitely com-
municating process pairs [1,2,3,11], and to reduce the number of processes that
broadcast indefinitely [4].

Dolev and Schiller [9] introduce the communication adaptive property of self-
stabilizing protocols. A self-stabilizing protocol is communication adaptive if the
communication load of the transient-fault detection mechanism is low, while that
of the fault correction mechanism is high. They present a communication adap-
tive self-stabilizing protocol for group membership service. Its communication
complexity per asynchronous cycle is O(nm logN) bits before convergence to
a legitimate configuration, and reduces to O(n2 logN) bits after convergence,
where n and m are the numbers of processes and links respectively, and N is an
upper bound on the number of processes.

Delporte-Gallet et al. [6] consider self-stabilizing leader election that can tol-
erate process crashes as well as transient faults. They present an algorithm in
the fully-synchronous system that uses only n − 1 unidirectional links to carry
messages repeatedly and forever.

Devismes et al.[7] introduce communication efficiency with a local criterion.
They consider, as communication-efficiency, the number of neighbors that each
process communicates with forever as well as the total number of communicat-
ing process pairs. They investigate communication-efficiency for the maximal
independent set problem and the maximal matching problem.

The most closely related previous work is [13], which considers communication-
efficiency of self-stabilizing spanning-tree construction and gives possibility and
impossibility results. They show that there exists a self-stabilizing communica-
tion-efficient algorithm for spanning tree construction, where only n− 1 process
pairs maintain communication indefinitely, provided a unique root is designated.
Their algorithm constructs an arbitrary spanning tree, not a BFS tree.

1 Roughly speaking, the failure detector Ω eventually provides all processes with the
identifier of a unique correct process (i.e., a leader).
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In the same paper, Masuzawa et al.give an important lower bound. If there is
no designated root process, even if the UID property holds, any communication
efficient self-stabilizing algorithm for spanning tree construction must use every
edge in one or the other direction, yielding a lower bound of m on the communi-
cation efficiency of spanning tree construction when there is no designated root,
where m is the number of edges in the network.

Takimoto et al. [14] consider communication-efficiency in wireless networks
where a communication primitive is a local broadcast that allows a process to
send a message to all of its neighboring processes. They aim to reduce the number
of processes that keep broadcasting forever. The results of [13] and [14] are also
summarized in [12].

Kutten and Zinenko [10] investigate the possibility of self-stabilizing protocols
that are communication-efficient, both during and after convergence to legiti-
macy. They use randomness to achieve communication efficiency, and present
communication efficient self-stabilizing protocols for spanning tree construction,
distributed reset, and unison.

Outline. In Section 2, we define our model, and describe some of the common
features of our algorithms. In Section 3, we present our algorithm ROOT-UID,
a communication-efficient algorithm for constructing a BFS tree in a connected
network with the UID property, given that the network has a distinguished root
process. In 3.4 we explain the three color control scheme, which is used during
error recovery. In Section 3.6, we explain the need for net polarity variables,
which we use to ensure that each edge is used for communication in at least one
direction. Section 4 concludes the paper.

2 Preliminaries

2.1 Self-stabilization

We use the composite atomicity shared memory model of computation [8]. The
program of each process consists of a finite set of actions of the following form:
< label > < guard > −→ < statement >. The guard of an action in the
program of a process x is a Boolean expression involving the variables of x and
its neighbors. The statement of an action of x updates one or more variables of x.
An action can be executed only if it is enabled , i.e., its guard evaluates to true.
A process is said to be enabled if at least one of its actions is enabled. We use the
distributed daemon. If one or more processes are enabled, the daemon selects at
least one of these enabled processes to execute an action. We also assume that
daemon is unfair , i.e., it selects an arbitrary non-empty set of enabled processes
at a step, if there is at least one. Thus, the daemon need never select a given
enabled process unless it becomes the only enabled process. We measure time
complexity in rounds elapsed before the first legitimate configuration. A round
is defined to be a minimal computation sequence during which every process
initially enabled is selected or becomes disabled by the end of the round [8].
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Self-Stabilization. We say that an algorithm A for a problem IP is self-stabilizing
if there is a given class of configurations of A, which we call the legitimate config-
urations of A, such that the following conditions hold: (i) Closure: If a compu-
tation of A starts in a legitimate configuration, all subsequent configurations of
that computation are legitimate. (ii) Convergence: Starting from an arbitrary
configuration, the configuration of any computation of A contains a legitimate
configuration. (iii) Correctness: If configuration is legitimate, the output con-
ditions of IP are satisfied. Note that Closure and Convergence together imply
that every computation is eventually legitimate. We say that a configuration of
a distributed algorithm A is final if, at that configuration, no process is enabled
to execute any action of A. We say that a self-stabilizing distributed algorithm
A is silent if every computation of A contains a legitimate final configuration.

2.2 Communication Efficiency

Informally, an algorithm is communication efficient [7,13] if, eventually, not all
links are used for communication between processes. We say that a computation
of A is r-communication-efficient if the number of directed edges of the network
used by the computation does not exceed r. That is, for every process x there is
a set R(x) ⊆ N(x), where N(x) is the set of neighbors of x, such that x reads
only its own variables and those of members of R(x) during the computation,
where

∑ |R(x)| ≤ r. We say that an algorithmA is♦-r-communication-efficient,
or eventually r-communication-efficient, if every computation of A has a suffix
which is r-communication-efficient.

In an implementation of a distributed algorithm, not only must a process
which executes an action have evaluated the guard of that action to true, but
processes which do not execute must evaluate guards of all actions to false.
More specifically, at any particular step, if correctness of A depends on a process
x not executing a particular action, x must evaluate the guard of that action
to be false. If the value of that guard cannot be computed without using the
values of a neighboring process y, then x must read y at that step. This fact
imposes an interesting condition on a communication efficient algorithm. In any
computation, except for a finite prefix, every process must evaluate every guard
using only its own variables and those of R(x), rather than the variables of all
neighbors.

3 BFS Tree Computation with Distinguished
Root and UID

In this section, we give a distributed algorithm, ROOT-UID, which constructs a
BFS tree in a connected network G with the UID property and a distinguished
process. ROOT-UID is silent and self-stabilizing under the unfair daemon, con-
verges in O(n) rounds, and is♦-(m+n−1)-communication efficient. Eventually,
each tree edge is used in both directions, but each cross edge is used in just
one direction. More specifically, if {x, y} is a cross edge, and x.id < y.id , then
x ∈ R(y) and y /∈ R(x), i.e., eventually, y reads x, but x does not read y.
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3.1 Simple BFS Construction

ROOT-UID is a communication efficient implementations of the algorithm
SIMPLE-TREE given below, a silent self-stabilizing BFS tree construction algo-
rithm for any connected network with a distinguished root, which has only two
variables, level and parent . We assume that Root .levl = 0 and Root .parent = ⊥
are fixed. SIMPLE-TREE is not communication efficient; each process reads all
of its neighbors at every step.

Figure 3.1: Code of SIMPLE-TREE for process x �= Root .

Function: Level(x) = 1 + min {y.level : y ∈ N(x)}
Actions:

3.1.1. x.level �= Level(x) −→ x.level ← Level(x)
3.1.2. (x.level �= 1 + x.parent .level) ∧ (y ∈ N(x)) ∧ (1 + y.level = x.level) −→ x.parent ← y

Remark 1. On a connected network G with a distinguished process Root ,
SIMPLE-TREE is silent and self-stabilizing, and converges in O(d) rounds,
where d is the diameter of G.

Proof Sketch. After t rounds, x.level = ||x,Root || if ||x,Root || ≤ t, and within
one more round, x.parent will be correct. �	

3.2 Variables and Functions of ROOT-UID

In ROOT-UID, each process x has the following variables.
1. x.parent ∈ N(x) ∪ {⊥}.
2. x.level , non-negative integer, the level of x, which is eventually equal to the

distance from x to the root of the BFS tree.

3. x.color ∈ {0, 1, 2}, the color of x, which is used in the three-color control
scheme, which we describe in detail in Section 3.4. If x.color = 0, then x is
resting , while x is alert if x.color ∈ {1, 2}.

4. x.polarity [y] ∈ {−1, 1}, the polarity of the directed edge (x, y), for each
y ∈ N(x). We say that y is a restricted neighbor of x is x.polarity [y] = −1,
otherwise y is an unrestricted neighbor.

5. x.is child [y] for y ∈ N(x), a Boolean array, where x.is child [y] means that
y is a child of x.
Both x.polarity [ ] and x.is child [ ] require O(δx) space, where δx is the degree
of x.

6. x.loc net polarity , integer, which can be positive, negative, or zero. Eventu-
ally, the value of this variable is

∑
y∈N(x) x.polarity [y].

7. x.net polarity , integer. Eventually, x.net polarity =
∑

y∈Tx
y.loc net polarity

for all x, where Tx is the subtree of T rooted at x, and Root .net polarity = 0,
We now list the functions of ROOT-UID, each of which (except Root) is

defined for one process x, or for two processes x and y ∈ N(x). Some functions
have names which are capitalized versions of variable names. In each of those
cases, the function returns the corrected value of the corresponding variable.
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8. Root , a designated process. Let Root .parent = ⊥ be fixed, and Root .level = 0
be fixed.

9. Is Child (x, y) ≡ (y.parent = x) ∧ (y.level = 1 + x.level ), Boolean, meaning
that y is a child of x.

10. Chldrn (x) = {y ∈ N(x) : x.is child [y]}, the set of children of x.

11. Family(x) = {y ∈ N(x) : x.is child [y] ∨ x.parent = y}
12. False Root(x)≡ (x �= Root)∧((x.parent=⊥)∨(x.level �= 1 + x.parent .level )),

Boolean.

13. Is Root (x) ≡ (x = Root) ∨ False Root(x), Boolean, namely x is a root of
the forest T . At any step in the algorithm, T is the directed graph whose
edges are all (x, y) such that Is Child (y, x). Thus T has out-degree at most
1 at each process, and cannot contain a cycle, since the variable x.level is
decreasing along any directed path, and thus T is a forest.

14. Level(x) =

{
0 if Is Root (x)
1 + min {y.level : y ∈ N(x)} otherwise

15. Polarity(x, y) =

{
1 if y.id < x.id

−1 if y.id > x.id

16. Loc Net Polarity(x) =
∑

y∈N(x) x.polarity [y], integer.

17. Net Polarity(x) = x.loc net polarity +
∑

y∈Chldrn (x) y.net polarity , integer.

18. Nbr Ok (x, y) =
(
x.polarity [y] = Polarity(x, y)

)
∧
(
x.is child [y] = Is Child (x, y)

)
∧(

|x.level − y.level | ≤ 1

)
, Boolean, meaning that y appears, to x, to have values

consistent with legitimacy.

19. Unrestricted Nbrs (x) = Family(x) ∪ {y ∈ N(x) : x.polarity [y] = 1}, the set
of neighbors that can be read by x when x is resting .

20. Visible Nbrs (x) =

{
Unrestricted Nbrs (x) if x.color = 0
N(x) otherwise

the neighbors of x that x can read, given its current state.
21. Visible Nbrs Ok (x) ≡ (∀y ∈ Visible Nbrs (x))Nbr Ok (x, y), Boolean.

22. Ok (x) ≡ Visible Nbrs Ok (x) ∧ ¬False Root(x) ∧ (x = Root ⇒ x.net polarity = 0)

Boolean.
The clause that Root .net polarity = 0 is explained in Section 3.6.

23. Color (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if Ok (x) ∧
(
(x = Root) ∨ (x.parent .color = 0)

)
∧

∀y ∈ Chldrn (x)(y.color �= 1)
1 if ¬Ok (x) ∨ ∃y ∈ Chldrn (x)(y.color = 1)
2 if Ok (x) ∧ (x.parent .color �= 0) ∧ ∀y ∈ Chldrn (x)(y.color �= 1)

Additional notation which is common to the rest of this paper includes
– Tx, the subtree of T rooted at x.

– δx = |N(x)|, the degree of x.

– Tree edge, an undirected edge of G that connects some process x with
x.parent .

– Cross edge, an undirected edge of G that is not a tree edge.

– Cross(x) = N(x) \ Family(x), the cross neighbors of x.
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3.3 Actions of ROOT-UID

We classify the actions of ROOT-UID as easy or hard. The guard of an easy
action can be evaluated only by examining unrestricted neighbors, while eval-
uation of the guard of a hard action may require examining all neighbors. If
a process x is resting, meaning that x.color = 0, then x cannot be enabled to
execute a hard action, since one of the clauses of the guard of every hard action
is that x.color �= 0, i.e., x is alert.

Figure 3.2: Code of ROOT-UID for one process x and y ∈ N(x).

Easy Actions:
3.2.1. x.color �= Color (x) −→ x.color ← Color (x)
3.2.2. x.loc net polarity �= Loc Net Polarity(x) −→ x.loc net polarity

← Loc Net Polarity(x)
3.2.3. x.net polarity �= Net Polarity(x) −→ x.net polarity ← Net Polarity(x)
Hard Actions:
3.2.4. x.color �= 0 ∧ x.level �= Level(x) −→ x.level ← Level(x)
3.2.5. x.color �= 0 ∧ x.level �= 1 + x.parent .level ∧ −→ x.parent ← y

y ∈ N(x) ∧ 1 + y.level = x.level
3.2.6. x.color �= 0 ∧ y ∈ N(x) ∧ −→ x.polarity [y] ← Polarity(x, y)

x.polarity [y] �= Polarity(x, y)
3.2.7. x.color �= 0 ∧ y ∈ N(x) ∧ −→ x.is child [y] ← Is Child (x, y)

x.is child [y] �= Is Child (x, y)

Figure 3.2 gives the actions of ROOT-UID. We define a configuration of
ROOT-UID to be legitimate if T is a BFS tree, and if the variables x.polarity [y],
x.is child [y], x.loc net polarity , and x.net polarity have the correct values for all
x and y, and if x.color = 0 for all x.

Construction of the BFS tree T is done by Actions 3.2.4 and 3.2.5, both of
which are hard actions. The purpose of the three color control structure is to
ensure that there is enough communication to enable that construction, and also
to ensure that, once that construction is finished, the algorithm is (m+ n− 1)-
communication efficient. Action 3.2.6 is executed at most once for each ordered
pair (x, y), since Polarity (x, y) never changes.

∑
x∈G

∑
y∈N(x) Polarity(x, y) = 0,

since Polarity(x, y) + Polarity (y, x) = 0 for every edge {x, y}. Actions 3.2.2 and
3.2.3 are both easy, and are bottom-up waves which cause Root .net polarity to be
set to

∑
x∈G

∑
y∈N(x) x.polarity [y] which will be zero if all values of x.polarity [y]

are correct. If not, Ok (Root) = false, and the three color control scheme causes
all processes to become alert, ensuring that polarities become correct.

3.4 The Three Color Scheme

We now describe in detail how the three color scheme is used in ROOT-UID.
We define the predicate ˜Enabled Hard(x) to mean that either x is enabled to
execute a hard action, or that x is resting and would be enabled to execute a
hard action if x.color were changed. In order for the three color structure scheme
to work, Property 1, given below, must hold.
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Property 1. If the current configuration is illegitimate and legitimacy cannot
be achieved by easy actions alone, then there exist processes x, y such that

¬Ok(x) ∧ ˜Enabled Hard(y) either holds or will hold at some later step, and x, y
lie in the same component of T .

not locked
not Root

locked Root Root

not Ok

not locked

(g) (h)

(a) (b) (c) (d)

(e) (f)

color = 0  (resting)

color = 2  (alert)

color = 1  (alert)

locked

Figure 3.3: Some examples of color actions. In each case, the value of x.color changes
to match Color (x).

We say that a process x is locked if x.color = 1, and if either ¬Ok (x) or
y.color = 1 for some y ∈ Chldrn (x). Note that a locked process is not enabled
to change its color. Suppose all processes have color 0, and Ok (x) = false for
some x. Then x executes Action 3.2.1; x.color ← 1, and x becomes locked. In a
convergecast wave, every ancestor of x, including Root , changes color to 1 and
becomes locked. A broadcast wave, initiated by Root and by every other process
of color 1, changes all processes to color 2 except for those which already have
color 1 or 2.

The entire path between x and Root will remain in color 1, and locked, and
all processes will remain alert as long as ¬Ok (x) holds. When Ok holds for all
processes, all color 1 processes except Root will change color to 2 in a bottom-up
wave, after which Root will change color to 0. In a broadcast wave, all processes
will then change color to 0. After possibly more executions of easy actions,
legitimacy will be achieved.

Figure 3.3 shows the effect of Action 3.2.1 in various situations. 3.3(a) shows
a convergecast color 1 wave initiated by a process x whose current color is either
0 or 2, where Ok (x) = false. Then x.color ← 1, starting the wave. The wave
is propagated upward, as shown in 3.3(b) and 3.3(c). Figure 3.3(d) shows how a
process in color 1 initiates a broadcast wave which alerts all processes below it.
In this figure, a resting (color 0) process has a parent of color 1, and becomes
alert by changing color to 2. Propagation of that wave downward is illustrated
in 3.3(e).

The next three parts of Figure 3.3 deal with restoring the resting state.
Figure 3.3(f) illustrates locked processes. Figure 3.3(g) shows propagation of
the convergecast wave which eliminates color 1. If a color 1 process is unlocked,
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indicating that its original purpose has been fulfilled, it changes color to 2, unless
it is Root , in which case it changes color to 0. Once Root .color = 0, a broadcast
wave will change the color of all processes to 0. (Unless, of course, there is a new
instance of a process where Ok does not hold.) The propagation of that wave is
illustrated in Figure 3.3(h).

3.5 Example Computation Showing the Three Color Scheme

In Figure 3.4, each ID is the letter shown inside the circle representing the
process. (The ID of Root is not relevant.) Parent pointers are shown as arrows,
and cross edges as dashed lines. The figure shows an example computation of
ROOT-UID on a network where n = 7 and m = 7.
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Figure 3.4: Example Computation of ROOT-UID. The links of the spanning tree T
are shown as arrows, while other edges of G are shown as dashed lines. Values of level
are shown in red. Initially, T is not a BFS tree. Figure 3.4 (l) shows a configuration in
which T is correct and all processes are resting .

In the initial configuration, shown in Figure 3.4(a), all processes are resting .
T is not correct, since C.parent should be D. The solid outer circle around C

indicates that ˜Enabled Hard(C) = true, while the dashed circle indicates that
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Ok (D) = false. It may seem strange that action by C is required to “fix” the
configuration, but that D, which is far from C in the tree, is the only process
aware of this need. This situation is not unusual. In this case, since C < D, D
can see that C.level = 3, which is inconsistent with its own level, which is 1. On
the other hand, C does not see D, and hence does not notice the inconsistency.

In 3.4(b), D initiates a color 1 convergecast wave, which reachesRoot in Figure
3.4(c). The resulting color 2 broadcast wave, which is initiated by both D and
Root , eventually reaches all processes. As soon as the wave reaches C, in 3.4(f),
that process executes a hard action, changing C.parent to D and C.level to 2.
The configuration is still not legitimate, since now E.level = 4. In this case, there
is a circle of each color around E, since Ok (E) = false, and E is also enabled
to execute a hard action, which it does in the next step, changing its level to 3.
Meanwhile, since D is no longer locked in Figure 3.4(g), it changes its color to
2. If there were more color 1 processes between D and Root , their color would
change from 1 to 2 in a bottom-up wave. Root changes color from 1 directly to
0 at 3.4(i), initiating a broadcast wave that causes all processes to change color
to 0, as shown in Figure 3.4(l).

3.6 The Purpose of Polarity

The purpose of the variables
{
x.polarity [y]

}
is to tell x whether y is a restricted

neighbor, information that x must first obtain by reading y. But that presents
a problem: what if both x and y are initialized in such a way that each believes
the other to be a restricted neighbor? In that case, one of them has the wrong
information, but neither knows it.

We solve thatproblembyusing thenet polarity ofT ,
∑

x∈T

∑
y∈N(x) x.polarity [y].

If all values of the polarity variables are correct, this net polarity will be zero, since
each edge contributes 1 at one endand−1 at the other.Thenetpolarity is computed
bottom up, and the total value is stored at Root .net polarity . If that value is not
zero, there is an error, and Root will send a broadcast wave, alerting all processes.
After sufficiently many actions, both easy and hard, T will be correct.

Figure 3.5 illustrates an example which shows the necessity of the net polarity
variables. Suppose the variables loc net polarity and net polarity as well as Ac-
tions 3.2.2 and 3.2.3 are removed from the definition of ROOT-UID, but all other
variables and actions remain. In this case, there is a configuration, illustrated in
Figure 3.5(a) which is both illegitimate and final, i.e., a deadlock.

In Figure 3.5, each ID is the letter shown inside the circle representing the
process, and E = Root . Parent pointers are shown as arrows, and cross edges as
dashed lines. The “+” and “−” signs at the ends of each edge indicate polarity;
if y ∈ N(x), a plus sign indicates that x.polarity [y] = 1, meaning that x can read
y when x is resting , and a minus sign indicates that x.polarity [y] = −1, meaning
that xmust be alert in order to read y. Note that x.polarity [y] = 1 ⇔ x.id > y.id
in a legitimate configuration. In 3.5(a), there are two places where the legitimacy
fails: D.polarity [B] = −1 when it should be 1, and B.parent = G when it should
be D. Both processes are enclosed with solid circles, indicating that they would
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Figure 3.5: Example showing the necessity of net polarity variables. E = Root . Tree
edges are black arrows, cross edges are dashed, and levels are shown as numerals. A
“+” or “−” near x on the edge between x and y indicates that x.polarity [y] is 1 or −1,
respectively.

be enabled to execute a hard action if they became alert. B would be enabled to
execute Action 3.2.5 if it were alert, while D would be enabled to execute Action
3.2.6 if it were alert. Neither action is enabled, since both processes are resting ,
i.e.,B.color = D.color = 0; in fact no process is enabled. The configuration is a
deadlock.

In Figure 3.5(b), we illustrate the same configuration, but with the values of
loc net polarity and net polarity filled in. The value of x.loc net polarity is shown
as a numeral enclosed in a solid circle, while the value of x.net polarity is shown
as a numeral enclosed in a box. Note that E.net polarity = −2, which means
that Ok (E) = false. since Net Polarity(Root) must be zero in a legitimate
configuration. (Conversely, if Net Polarity(Root) were zero, it would indicate
legitimacy, since if both end processes of an edge have positive polarity, that
error would be detected.) The remaining steps of the computation are not shown,
other than the final configuration at the end. E changes color to 1, triggering a
broadcast wave in which all other processes change color to 2, which means they
are alert and able to execute the needed actions, after which the configuration
is legitimate, as shown in Figure 3.5(c). We list the sequence of changes below.

(a)

(d)

(g)

B.parent ← D

D.loc net polarity ← 0

C.net polarity ← 1

(b)

(e)

(h)

B.level ← 2

D.net polarity ← −2

E.net polarity ← 0

(c)

(f)

D.polarity [B] ← 1

G.net polarity ← 2

3.7 Proof Sketches for ROOT-UID

Lemma 1. The number of steps of any computation of ROOT-UID at which
any hard action is executed is finite.

Proof Sketch. A process can execute Action 3.2.6 at most once in a computation.
We prove by induction on ||x,Root || that a process x can only execute Action
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3.2.4 finitely many times; as a corollary, we have that x can only execute Action
3.2.5 finitely many times. �	
Lemma 2. There is no infinite computation of ROOT-UID during which no
hard action is executed.

Proof Sketch. Suppose Γ is an infinite computation of ROOT-UID, during which
no process executes a hard action. The shape of T does not change, and since
Action 3.2.6 is not executed, the value of x.polarity [y] for any x and y does
not change. Therefore, no process can execute Action 3.2.2 more than once, and
hence there is a last step at which any process executes 3.2.2. After the last
action of Action 3.2.2, the values of x.loc net polarity do not change, and thus
no process can execute Action 3.2.3 more than once thereafter, hence there is a
last step at which any process executes 3.2.3. After the last action of 3.2.3, the
value of Ok (x) does not change for any x. Thus, there is an infinite computation
during which Action 3.2.1 is executed infinitely many times. Finally, we obtain
a contradiction by defining a non-negative integral potential which decreases at
any step at which Action 3.2.1 is executed, but no other action is executed. Since
the potential cannot be less than zero, the computation is finite. �	
Lemma 3. Any configuration of ROOT-UID that is final is also legitimate.

Proof Sketch. Let γ be an illegitimate configuration of ROOT-UID. We break
into cases, and show that in each case, there is some process that is enabled to
execute an action, and thus γ is not final. �	
Theorem 1. ROOT-UID is ♦-(m+n−1)-communication efficient and is silent
and self-stabilizing under the unfair daemon, reaches a legitimate configuration
within O(n) rounds, and uses O(log n+ δx) space per process.

Proof Sketch. The communication efficiency of ROOT-UID follows from Lemmas
1, 2, and 3.

In the initial configuration, the longest chain in T is no longer than n− 1. If
the configuration is not final, every process will be alerted within O(n) rounds.
Thereafter, convergence will occur within O(d) rounds in the same manner as
in SIMPLE-TREE. Thus, ROOT-UID reaches a legitimate configuration within
O(n) rounds.

The value of x.level takes O(log d) space, and x must retain O(1) memory for
each neighbor y to hold the value of x.polarity [y]. The value of x.net polarity is an
integer whose absolute value cannot exceedm, and no other variable requiresmore
space. Thus, the per process space complexity of ROOT-UID is O(log n+δx). �	

4 Conclusion

We have given a self-stabilizing and silent algorithm, ROOT-UID, for BFS con-
struction in a network with the UID property which has a designated root pro-
cess, which is ♦-(m + n − 1)-communication efficient, and which takes O(n)
rounds to reach legitimacy. The space complexity of ROOT-UID is O(logn+δx)
for each process x.
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