
Verifying the Consistency of Remote Untrusted Services
with Commutative Operations

Christian Cachin1 and Olga Ohrimenko2,∗

1 IBM Research - Zurich, Switzerland
cca@zurich.ibm.com

2 Microsoft Research, Cambridge, United Kingdom
oohrim@microsoft.com

Abstract. A group of mutually trusting clients outsources a computation service
to a remote server, which they do not fully trust and that may be subject to at-
tacks. The clients do not communicate with each other and would like to verify
the correctness of the remote computation and the consistency of the server’s
responses. This paper first presents the Commutative-Operation verification Pro-
tocol (COP) that ensures linearizability when the server is correct and preserves
fork-linearizability in any other case. All clients that observe each other’s oper-
ations are consistent, in the sense that their own operations and those operations
of other clients that they see are linearizable. Second, this work extends COP
through authenticated data structures to Authenticated COP , which allows con-
sistency verification of outsourced services whose state is kept only remotely, by
the server. This yields the first fork-linearizable consistency verification protocol
for generic outsourced services that (1) relieves clients from storing the state,
(2) supports wait-free client operations, and (3) handles sequences of arbitrary
commutative operations.

Keywords: cloud computing, fork-linearizability, data integrity, verifiable com-
putation, commutative operations, Byzantine emulation.

1 Introduction

With the advent of cloud computing, most computations run in remote data centers and
no longer on local devices. As a result, users are bound to trust the service provider
for the confidentiality and the correctness of their computations. This work addresses
the integrity of outsourced data and computations and the consistency of the provider’s
responses. Consider a group of mutually trusting clients who want to collaborate on
a resource that is provided by a remote partially trusted server. This could be a wiki
containing data of a common project, an archival document repository, or a groupware
tool running in the cloud. A subtle change in the remote computation, whether caused
inadvertently by a bug or deliberately by a malicious adversary, may result in wrong
responses to the clients. The clients trust the provider only partially, hence, they would
like to assess the integrity of the computation, to verify that responses are correct, and
to check that they all get consistent responses.

∗ Work done at IBM Research - Zurich and at Brown University.

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 1–16, 2014.
c© Springer International Publishing Switzerland 2014



2 C. Cachin and O. Ohrimenko

In an asynchronous network model without communication among clients such as
considered here, the server may perform a forking attack and omit the effects of op-
erations by some clients in her responses to other clients. Not knowing which opera-
tions other clients execute, the forked clients cannot detect such violations. The best
achievable consistency guarantee in this setting is captured by fork-linearizability, in-
troduced by Mazières and Shasha [23] for storage systems. Fork-linearizability ensures
that whenever the server in her responses to a client C1 has ignored an operation exe-
cuted by a client C2, then C1 can never again observe an operation by C2 afterwards
and vice versa. This property ensures clearly defined service semantics in the face of an
attack and allows clients to detect server misbehavior easily.

Several conceptual [8, 21, 5, 6] and practical advances [29, 13, 20, 27] have recently
been made that improve consistency checking and verification with fork-linearizability
and related notions. The resulting protocols ensure that when the server is correct, the
service is linearizable and (ideally) the algorithm is wait-free, that is, every client’s
operations complete independently of other clients. It has been recognized, however,
that read/write conflicts cause such protocols to block; this applies to fork-linearizable
semantics [23, 8] and to other forking consistency notions [5, 6].

In this paper, we go beyond storage services and verify the consistency of remote
computation on a Byzantine server. The Commutative-Operation verification Proto-
col or COP imposes fork-linearizable semantics for arbitrary functionalities, exploits
commuting operations, and allows clients to operate concurrently without blocking un-
less operations conflict. Furthermore, the extension to Authenticated COP also relieves
clients from storing the computation state and from executing all operations. Fork-
linearizability makes it easy to expose Byzantine behavior of the server. For instance,
the clients may exchange a message outside the model over a low-bandwidth channel
and thereby verify the correctness of a service in an end-to-end way.

Efficient handling of wait-free operations is a key feature for collaboration with re-
mote coordination, as geographically separated clients may operate at different speed.
Consequently, previous work has devoted a lot of attention to identifying and avoiding
blocking [23, 8, 19]. For example, read operations in a storage service commute and
do not lead to a conflict. On the other hand, when a client writes a data item concur-
rently with another client who reads it, the reader has to wait until the write operation
completes; otherwise, fork-linearizability is not guaranteed [8]. If all operations are to
proceed without blocking, though, it is necessary to weaken the consistency guarantees
to weak fork-linearizability [6], for instance. COP is wait-free and never blocks because
it aborts non-commuting operations that cannot proceed.

The Blind Stone Tablet (BST) protocol [29], the closest predecessor of this work,
supports an encrypted remote database hosted by an untrusted server that is accessed
by multiple clients. Its consistency checking algorithm allows some commuting client
operations to proceed concurrently, but only to a limited extent, as we explain below.
Every client has to maintain the complete service state and to execute all operations,
in contrast to this work. Furthermore, the BST protocol guarantees fork-linearizability
only for database state updates, but does not ensure it for all responses output by a
client.



Verifying the Consistency of Remote Untrusted Services 3

SPORC [13] considers a groupware collaboration service whose operations may
not commute, but can be made to commute by applying operational transformations.
Through this mechanism, different execution orders still converge to the same state. All
SPORC operations are wait-free but respect only fork-* linearizability, which is weaker
than fork-linearizability.

Contributions. This paper considers a generic service executed by an untrusted server
and provides new protocols for consistency verification through fork-linearizable se-
mantics. More concretely, it introduces the Commutative-Operation verification Proto-
col (COP) and its extension to Authenticated COP (called ACOP) with the following
properties:

1. COP is the first wait-free, abortable consistency verification protocol that emulates
an arbitrary functionality on a Byzantine server with fork-linearizability and ex-
ploits commuting operation sequences. (See Sect. 3.)

2. ACOP is the first wait-free fork-linearizable consistency verification protocol for
services, where the state is maintained by the server and the clients do not execute
every operation. (See Sect. 4.)

3. COP comes with a formal analysis that proves fork-linearizable semantics for
generic service execution; previous work did not establish this notion.

COP and ACOP follow the general pattern of most previous fork-linearizable emulation
protocols. For determining when to proceed with concurrent operations, we consider
sequences of operations that jointly commute and the state of the service, in contrast
to earlier protocols, which considered only isolated operations. For lack of space, some
definitions and the formal analysis are contained in the full version [7].

For computations supported by suitable authenticated data structures, ACOP enables
authenticated remote computation, where operations are executed by the server and the
clients no longer need to maintain the state of the computation. In contrast to previous
work, this enables ACOP to handle services with large state.

1.1 Related Work

Storage protocols. Fork-linearizability has been introduced (under the name of fork con-
sistency) together with the SUNDR storage system [23, 18]. Conceptually SUNDR op-
erates on storage objects with simple read/write semantics. Subsequent work of Cachin
et al. [8] improves the efficiency of untrusted storage protocols. A lock-free storage pro-
tocol with abortable operations, which lets all operations complete in the absence of step
contention, has been proposed by Majuntke et al. [21].

FAUST [6] and Venus [27] go beyond the fork-linearizable consistency guarantee
and model occasional message exchanges among the clients. This allows FAUST and
Venus to obtain stronger semantics, in the sense that they eventually reach consistency
(i.e., linearizability) or detect server misbehavior. In the model considered here, fork-
linearizability is the best possible guarantee [23]. The relation of these protocols and
others to COP is summarized in Tab. 1.



4 C. Cachin and O. Ohrimenko

Table 1. Summary of related protocols. In this table under function, the BST protocol supports
only a single commuting operation and does not achieve wait-freedom (as indicated by the paren-
theses in the first column); SPORC is wait-free for generic functions that have operational trans-
forms; COP and ACOP are wait-free for generic commuting operation sequences. Weak fork-
linearizability (or fork-* consistency) allows the last operation of a client to be inconsistent com-
pared to fork-linearizability; however, BST and SPORC do not guarantee their consistency notion
for client responses, only for state changes that may occur much later (as indicated by the paren-
theses). The execution column indicates whether the clients compute operations and maintain
state or whether this is done by the server.

Protocol Wait-free Function Consistency Execution
SUNDR [23, 18] — storage fork-lin. server
FAUST & Venus [6, 27] � storage weak fork-lin. server
BST [29] (�) single comm. op. (fork-lin.) clients
SPORC [13] � generic o.-t. op. (weak fork-lin.) clients
COP (Sec. 3) � generic comm. op. fork-lin. clients
ACOP (Sec. 4) � generic comm. op. fork-lin. server

Blind Stone Tablet (BST). The BST protocol [29] considers transactions on a database,
coordinated by the remote server. A client first simulates a transaction on its own copy,
potentially generating local output, then coordinates with the server for ordering the
transaction. From the server’s response it determines if a transaction commutes with
other, pending transactions invoked by different clients that were reported by the server.
If they conflict, the client undoes the transaction and basically aborts; otherwise, he
commits the transaction and relays it via the server to other clients. When a client re-
ceives such a relayed transaction, the client applies the transaction to its database copy.

BST has several limitations: First, because a client applies his own transactions only
when all pending transactions by other clients have been applied to his own state, up-
dates induced by his transactions are delayed in dependence on other clients. Thus,
he cannot always execute his next transaction from the modified state and produce the
correct output. This implies the client is blocked and the protocol is not “wait-free” as
claimed [29]. Second, the notion of “trace consistency” in the analysis of BST considers
only transactions that have been applied to the local state, not the responses as required
to satisfy fork-linearizability. However, a transaction may be applied long after its re-
sponse was output, hence, client operations might not be fork-linearizable. In contrast,
the analysis of COP shows it is fork-linearizable for all responses output by clients.
Finally, every client in BST maintains a copy of the database and replays all operations
locally, which is not necessary in ACOP.

COP extends BST and allows one client to execute multiple operations indepen-
dently of the other clients, as long as his sequence of operations jointly commutes with
the sequence of pending operations by other clients, considering the current service
state. BST considers only the commutativity of individual operations. Note that two
operations o1 and o2 may independently commute with an operation o3 from a partic-
ular starting state, but their concatenation, o1 ◦ o2, may not commute with o3. Opera-
tion sequences and state-based commutativity have recently been exploited for building
scalable services on multicore systems [10].



Verifying the Consistency of Remote Untrusted Services 5

Non-blocking protocols. SPORC [13] is a group collaboration system where operations
do not need to be executed in the same order at every client by virtue of employing op-
erational transforms. The latter concept allows for shifting operations to a different
position in an execution by transforming them according to properties of the skipped
operations. Differently ordered and transformed variants of a common sequence con-
verge to the same end state. SPORC is claimed to provide fork-* linearizability [19],
which is almost the same as weak fork-linearizability [6]; both notions are strict re-
laxations of fork-linearizability that permit concurrent operations to proceed without
blocking, such that protocols become wait-free. The increased concurrency is traded
for weaker consistency, as up to one diverging operation may exist between two clients.
Moreover, there is no formal analysis for SPORC. As in BST, SPORC addresses only
the updates of client states and does not consider local outputs; however, for showing
linearizability, one has to consider the respones of operations.

FAUST [6], mentioned before, never blocks clients and enjoys eventual consistency,
but guarantees only weak fork-linearizability. Abortable operations have been intro-
duced in this context by Majuntke et al. [21] for data storage.

In contrast to SPORC and FAUST, COP ensures the stronger fork-linearizability
condition, where every operation is consistent as soon as it completes. In terms of ex-
pressiveness, SPORC is neither weaker nor stronger than COP: On one hand, SPORC
seems more general as it never blocks clients even for operations that do not appear to
commute; on the other hand, SPORC is limited to functions with transformable oper-
ations and does not address conflicting operations (which exist in some functions [8]);
COP, however, works for arbitrary functions.

In BST and SPORC, all clients execute all operations. ACOP eliminates this draw-
back and shifts the state and the computation to the server by exploiting the notion of
authenticated data structures, as suggested by Cachin [3] in a more restricted setting. In
storage protocols (SUNDR and FAUST), clients do not “execute” each other’s opera-
tions due to the limited functionality.

Last but not least, the protocol of Cachin [3] provides also fork-linearizable execution
for generic services like COP. However, the protocol is inherently blocking.

2 Definitions

System model. We consider an asynchronous distributed system with n clients, C1, . . . ,
Cn and a server S, modeled as processes. Each client is connected to the server through
an asynchronous, reliable communication channel that respects FIFO order. A protocol
specifies the operations of the processes. All clients are correct and follow the protocol,
whereas S operates in one of two modes: either she is correct and follows the protocol
or she is Byzantine and may deviate arbitrarily from the specification.

Functionality. We consider a deterministic functionality F (also called a type) defined
over a set of states S and a set of operations O. F takes as arguments a state s ∈ S and
an operation o ∈ O and returns a tuple (s′, r), where s′ ∈ S is a state that reflects any
changes that o caused to s and r ∈ R is a response to o i.e., (s′, r) = F (s, o). This is
also called the sequential specification of F .



6 C. Cachin and O. Ohrimenko

We extend this notation for executing a sequence of operations 〈o1, . . . , ok〉, start-
ing from an initial state s0, and write (s′, r) = F (s0, 〈o1, . . . , ok〉) for (si, ri) =
F (si−1, oi) with i = 1, . . . , k and (s′, r) = (sk, rk). Note that an operation in O may
represent a batch of multiple application-level operations.

Commutative Operations. Commutative operations of F play a role in protocols that
may execute multiple operations concurrently. Two operations o1, o2 ∈ O are said to
commute in a state s if and only if these operations, when applied in different orders
starting from s, yield the same respective states and responses. Formally, if (s′, r1) ←
F (s, o1), (s′′, r2) ← F (s′, o2); and (t′, q2) ← F (s, o2), (t′′, q1) ← F (t′, o1),
then r1 = q1, r2 = q2, and s′′ = t′′. Furthermore, we say two operations o1, o2 ∈ O
commute when they commute in any state of S.

Also sequences of operations can commute. Suppose two sequences ρ1 and ρ2 con-
sisting of operations in O are mixed together into one sequence π such that the partial
order among the operations from ρ1 and from ρ2 is retained in π, respectively. If exe-
cuting π starting from a state s gives the same respective responses and the same final
state as for every other such mixed sequence, in particular for ρ1 ◦ ρ2 and for ρ2 ◦ ρ1,
where ◦ denotes concatenation, we say that ρ1 and ρ2 commute in state s. Analogously,
we say that ρ1 and ρ2 commute if they commute in any state.

Operations that do not commute are said to conflict. We define a Boolean predicate
commuteF (s, ρ1, ρ2) that is true if and only if ρ1 and ρ2 commute in s according to F .
W.l.o.g. we assume all operations of F and commuteF are efficiently computable.

Abortable services. When operations of F conflict, a protocol may either decide to
block or to abort. Aborting and giving the client a chance to retry the operation at his
own rate often has advantages compared to blocking, which might delay an application
in unexpected ways.

As in previous work that permitted aborts [1, 21], we allow operations to abort and
augment F to an abortable functionality F ′ accordingly. F ′ is defined over the same
set of states S and operations O as F , but returns a tuple defined over S and R∪ {⊥}.
F ′ may return the same output as F , but F ′ may also return ⊥ and leave the state un-
changed, denoting that a client is not able to executeF . Hence,F ′ is a non-deterministic
relation and satisfies F ′(s, o) =

{
(s,⊥), F (s, o)

}
. Since F ′ is not deterministic, a se-

quence of operations no longer uniquely determines the resulting state and response
value.

Abortable functionalities may be seen as obstruction-free objects [1, 15] and vice
versa; such objects guarantee that every client operation completes assuming the client
eventually runs in isolation.

Operations, histories, and consistency properties. Clients interact with F via opera-
tions. Every operation at a client Ci is associated with an invocation and a response
event that occurs at Ci. We say that Ci executes an operation between the correspond-
ing invocation and response events. We use the standard notions of events, precedence,
and histories.

The condition of linearizability [16] requires that the operations of all clients appear
to execute atomically in one sequence, and its extension to fork-linearizability [23, 8],



Verifying the Consistency of Remote Untrusted Services 7

which relaxes the condition of one sequence to permit multiple “forks” of an execution.
Under fork-linearizability, every client observes a linearizable history and when some
operation is observed by multiple clients, the history of events up to this operation is
the same.

Our protocol provides a fork-linearizable Byzantine emulation [8] of the service on
an untrusted server. This notion ensures two dual properties: first, when the server is
correct, then the service should guarantee the standard notion of linearizability; other-
wise, the protocol should ensure fork-linearizability to the clients. Formal definitions
appear in the full version [7].

Cryptography. We make use of two cryptographic primitives, namely a collision-free
hash function hash and a digital signature scheme, with operations denoted by signi
and verifyi for signatures computed by Ci. As our focus lies on concurrency and cor-
rectness and not on cryptography, we model both as ideal, deterministic functionalities
implemented by a trusted entity (see [4]).

3 The Commutative-Operation Verification Protocol

Notation. The function length(a) for a list a denotes the number of elements in a and ‖
denotes concatenation of strings. Several variables are dynamic arrays or maps, which
associate keys to values. A value is stored in a map H by assigning it to a key, denoted
H [k] ← v; if no value has been assigned to a key, the map returns ⊥. Recall that F ′ is
the abortable extension of functionality F .

Overview. COP, presented in Algorithms 1–3, adopts the structure of previous protocols
that guarantee fork-linearizable semantics [23, 29, 3]. It aims at obtaining a globally
consistent order for the operations of all clients, as determined by the server.

When a client Ci invokes an operation o, he sends an INVOKE message to the
server S. He expects to receive a REPLY message from S telling him about the posi-
tion of o in the global sequence of operations. The message contains the operations that
are pending for o, that is, operations that Ci may not yet know and that are ordered be-
fore o by a correct S. (A Byzantine S may introduce consistency violations here.) We
distinguish between pending-other operations invoked by other clients and pending-self
operations, which are operations executed by Ci up to o.

Client Ci then verifies that the data from the server is consistent. If this or any other
verification step fails, the formal protocol simply halts; in practice, the clients would
then recover the service state, abandon the faulty S, and switch to another provider. In
order to ensure fork-linearizability for the response values, the client first simulates the
pending-self operations and tests if o commutes with the pending-other operations. If
the test succeeds, he declares o to be successful, executes o, and computes the response r
according to F ; otherwise, O is aborted and the response is r = ⊥. According to this,
the status of o is a value in Z = {SUCCESS, ABORT}. Through these steps the client
commits o. Then he sends a corresponding COMMIT message to S and outputs r.

The (correct) server records the committed operation and relays it to all clients via
a BROADCAST message. When the client receives such a broadcast operation, he ver-
ifies that it is consistent with everything the server told him so far. If this verification



8 C. Cachin and O. Ohrimenko

succeeds, we say that the client confirms the operation. If the operation’s status was
SUCCESS, then the client executes it and applies it to his local state.

Data structures. Every client locally maintains a set of variables during the proto-
col. The state s ∈ S is the result of applying all successful operations, received in
BROADCAST messages, to the initial state s0. Variable c stores the sequence num-
ber of the last operation that the client has confirmed. H is a map containing a hash
chain computed over the global operation sequence as announced by S. The contents
of H are indexed by the sequence number of the operations. Entry H [l] is computed as
hash(H [l− 1]‖o‖l‖i), with H [0] = NULL, and represents an operation o with sequence
number l executed by Ci. (The notation ‖ stands for concatenating values as bit strings.)
A variable u is set to o whenever the client has invoked an operation o but not yet com-
pleted it; otherwise u is ⊥. Variable Z maps the sequence number of every operation
that the client has executed himself to the status of the operation. The client only needs
the entries in Z with index greater than c.

The (correct) server also keeps several variables locally. She stores the invoked oper-
ations in a map I and the completed operations in a map O, both indexed by sequence
number. Variable t determines the global sequence number for the invoked operations.
Finally, variable b is the sequence number of the last broadcast operation and ensures
that S disseminates operations to clients in the global order.

Protocol. When client Ci invokes an operation o, he stores it in u and sends an INVOKE

message to S containing o, c, and τ , a digital signature computed over o and i. In
turn, a correct S sends a REPLY message with the list ω of pending operations; they
have a sequence number greater than c. Upon receiving a REPLY message, the client
checks that ω is consistent with any previously sent operations and uses ω to assemble
the successful pending-self operations μ and the pending-other operations γ. He then
determines whether o can be executed or has to be aborted.

In particular, during the loop in Algorithm 1, for every operation o in ω, Ci deter-
mines its sequence number l and verifies from the digital signature that o was indeed
invoked by Cj . He computes the entry of o in the hash chain from o, l, j, and H [l− 1].
If H [l] = ⊥, then Ci stores the hash value there. Otherwise, H [l] has already been set
and Ci verifies that the hash values are equal; this means that o is consistent with the
pending operation(s) that S has sent previously with indices up to l.

If operation o is his own and its saved status in Z[l] was SUCCESS, then he appends
it to μ. The client remembers the status of his own operations in Z , since commuteF
depends on the state and that could have changed if he applied operations after commit-
ting o.

Finally, when Ci reaches the end of ω (i.e., when Ci considers o = u), he checks
that ω is not empty and that it contains u at the last position. He then creates a tem-
porary state a by applying μ to the current state s, and tests whether u commutes with
the pending-other operations γ in a. If they do, he records the status of u as SUCCESS

in Z[l] and computes the response r by executing u on state a. If u does not commute
with γ, he sets status of u to ABORT and r ← ⊥. Then Ci signs u together with its se-
quence number, status, and hash chain entry H [l] and includes all values in the COMMIT

message sent to S.



Verifying the Consistency of Remote Untrusted Services 9

Algorithm 1. Commutative-operation verification protocol (client Ci)

State
u ∈ O ∪ {⊥}: the operation being executed currently or ⊥ if no operation runs, initially ⊥
c ∈ N0: sequence number of the last operation that has been confirmed, initially 0
H : N0 → {0, 1}∗: hash chain (see text), initially containing only H [0] = NULL

Z : N0 → Z: status map (see text), initially empty
s ∈ S : current state, after applying operations, initially s0

upon invocation o do
u ← o
τ ← signi(INVOKE‖o‖i)
send message [INVOKE, o, c, τ ] to S

upon receiving message [REPLY, ω] from S do
γ ← 〈〉 // list of pending-other operations
μ ← 〈〉 // list of successful pending-self operations
k ← 1
while k ≤ length(ω) do

(o, j, τ ) ← ω[k]
l ← c+ k // promised sequence number of o
if not verifyj(τ, INVOKE‖o‖j) then

halt
if H [l] = ⊥ then

H [l] ← hash(H [l − 1]‖o‖l‖j) // extend hash chain
else if H [l] �= hash(H [l− 1]‖o‖l‖j) then // server replies are inconsistent

halt
if j = i ∧ Z[l] = SUCCESS ∧ k < length(ω) then

μ ← μ ◦ 〈o〉
else if j �= i then

γ ← γ ◦ 〈o〉
k ← k + 1

if k = 1 ∨ o �= u ∨ j �= i then // variables o, j, and l = c+ length(ω) keep their values
halt // last pending operation must equal the current operation

(a, r) ← F (s, μ) // compute temporary state with successful pending-self operations
if commuteF (a, 〈u〉, γ) then // u = o is the current operation

(a, r) ← F (a, u) // compute response to u
Z[l] ← SUCCESS

else
r ← ⊥
Z[l] ← ABORT

φ ← signi

(
COMMIT‖u‖l‖H [l]‖Z[l]

)

send message [COMMIT, u, l, H [l], Z[l], φ] to S
u ← ⊥
return r



10 C. Cachin and O. Ohrimenko

Algorithm 2. Commutative-operation verification protocol (client Ci, continued)

upon receiving message [BROADCAST, o, q, h, z, φ, j] from S do
if not

(
q = c+ 1 and verifyj(φ, COMMIT‖o‖q‖h‖z)) then // server replies are not

consistent
halt

if H [q] = ⊥ then // operation has not been pending at client
H [q] ← hash(H [q − 1]‖o‖q‖j)

if h �= H [q] then
halt // server replies are not consistent

if z = SUCCESS then // at this point, the operation is confirmed
(s, r) ← F (s, o) // apply the operation and ignore response

c ← c+ 1

Algorithm 3. Commutative-operation verification protocol (server S)

State
t ∈ N0: sequence number of the last invoked operation, initially 0
b ∈ N0: sequence number of the last broadcast operation, initially 0
I : N → O × N0 × {0, 1}∗: invoked operations (see text), initially empty
O : N → O × {0, 1}∗ × Z × {0, 1}∗ × N: committed operations (see text), initially empty

upon receiving message [INVOKE, o, c, τ ] from Ci do
t ← t+ 1
I [t] ← (o, i, τ )
ω ← 〈I [b+ 1], . . . , I [t]〉 // include non-committed operations and o
send message [REPLY, ω] to Ci

upon receiving message [COMMIT, o, q, h, z, φ] from Ci do
O[q] ← (o, h, z, φ, i)
while O[b + 1] �= ⊥ do // broadcast operations ordered by their sequence number

b ← b+ 1
(o′, h′, z′, φ′, j) ← O[b]
send message [BROADCAST, o′, b, h′, z′, φ′, j] to all clients

Upon receiving a COMMIT message for an operation o with sequence number q, the
(correct) server records its content as O[q] in the map of committed operations. Then she
is supposed to send a BROADCAST message containing O[q] to the clients. She waits
with this until she has received COMMIT messages for all operations with sequence
number less than q and broadcast them. This ensures that completed operations are
disseminated in the global order to all clients. Waiting here leads to blocking in BST,
as mentioned in the Introduction. In COP, this does not forbid clients from progressing
with their own operations as we explain below.

In a BROADCAST message received by client Ci, the committed operation is rep-
resented by a tuple (o, q, h, z, φ, j). The client conducts several verification steps; if
successful, we say o is confirmed. Subsequently he applies o to his state s. In more



Verifying the Consistency of Remote Untrusted Services 11

detail, the client first verifies that the sequence number q is the next operation accord-
ing to c; hence, o follows the global order and the server did not omit any operations.
Second, he uses the digital signature φ on the message to verify that Cj indeed com-
mitted o. Lastly, Ci computes his own hash-chain entry H [q] for o and confirms that
it is equal to the hash-chain value h from the message. This ensures that Ci and Cj

have received consistent operations from S up to o. Once the verification succeeds, the
client applies o to his state s only if its status z was SUCCESS, that is, when Cj has not
aborted o.

Commuting operation sequences. Consider the following example F of a counter re-
stricted to non-negative values: Its state consists of an integer s; an add(x) operation
adds x to s and returns TRUE; a dec(x) operation subtracts x from s and returns TRUE

if x ≤ s, but does nothing and returns FALSE if x > s. Suppose the current state s at
Ci is 7 and Ci executes dec(4) and subsequently dec(6). During both operations of Ci,
the server announces that add(2) by another client is pending. Note that Ci executes
dec(4) successfully but aborts dec(6) because dec(6) does not commute with add(2)
from 3, the temporary state (a in Algorithm 1) computed by Ci after the pending-self
operation. However, the latter two operations, add(2) and dec(6), do commute in the
current state 7. This shows why the client executes the pending-self operations before
testing the current operation for a conflict.

Suppose now the current state s is again 7 and Ci executes dec(4). The server reports
the pending sequence 〈dec(2), dec(3)〉. Thus, Ci aborts dec(4). Even though dec(4)
commutes with dec(2) and with dec(3) individually in state 7, it does not commute
with their sequence. This illustrates why COP checks for a conflict with the sequence
of pending operations.

Memory requirements. For saving storage space, the client may garbage-collect entries
of H and Z with sequence numbers smaller than c. The server can also save space by
removing the entries in I and O for the operations that she has broadcast. However, if
new clients are allowed to enter the protocol, the server should keep all operations in O
and broadcast them to new clients upon their arrival.

With the above optimizations the client has to keep only pending operations in H
and pending-self operations in Z . The same holds for the server: the maximum number
of entries stored in I and O is proportional to the number of pending operations at any
client.

Communication. Every operation executed by a client requires him to perform one
roundtrip to the server: send an INVOKE message and receive a REPLY. For every ex-
ecuted operation the server simply sends a BROADCAST message. Clients do not com-
municate with each other in the protocol. However, as soon as they do, they benefit
from fork-linearizability and can easily discover a forking attack by comparing their
hash chains.

Messages INVOKE, COMMIT, and BROADCAST are independent of the number of
clients and contain only a description of one operation, while the REPLY message con-
tains the list of pending operations ω. If even one client is slow, then the length of ω
for all other clients grows proportionally to the number of further operations they are
executing. To reduce the size of REPLY messages, the client can remember all pending
operations received from S, and S can send every pending operation only once.



12 C. Cachin and O. Ohrimenko

Aborts and wait-freedom. Every client executing COP can proceed with an operation o
for F as long as it does not conflict with pending operations of other clients. Observe
that the state used by the client for executing o reflects all of his own operations executed
so far, even if he has not yet confirmed or applied them to his state because operations of
other clients have not yet completed. After successfully executing o, the client outputs
the response immediately after receiving the REPLY message from S. A conflict arises
when o does not commute with the pending operations of other clients. In this case, the
client aborts o and outputs ⊥, according to F ′.

Hence, for F where all operations and operation sequences commute, COP is wait-
free. For arbitrary F , however, no fork-linearizable Byzantine emulation can be wait-
free [8]. COP avoids blocking via the augmented functionality F ′. Clients complete
every operation in the sense of F ′, which includes aborts; therefore, COP is wait-free
for F ′. In other words, regardless of whether an operation aborts or not, the client may
proceed executing further operations.

To mitigate the risk of conflicts, the clients may employ a synchronization mech-
anism such as a contention manager, scheduler, or a simple random waiting strategy.
Such synchronization is common for services with strong consistency demands. If one
considers also clients that may crash (outside our formal model), then the client group
has to be adjusted dynamically or a single crashed client might hold up progress of
other clients forever. Previous work on the topic has explored how a group manager
or a peer-to-peer protocol may control a group membership protocol [18, 27]; these
methods apply also to COP.

Analysis. COP emulates the abortable functionalityF ′ on a Byzantine server with fork-
linearizability. Furthermore, all histories of COP where the clients execute operations
sequentially are fork-linearizable w.r.t. F (no operations abort), and if, additionally, the
server is correct, then all such histories are also linearizable w.r.t. F . Here we give only
a brief summary of this result; the details appear in the full version [7].

There are two points to consider. First, with a correct S, we show that the output
of every client satisfies F ′ also in the presence of many pending-self operations. The
check for commutativity, applied after simulating the client’s pending-self operations,
ensures that the client’s response is the same as if the pending-other operations would
have been executed before the operation itself.

The second main innovation lies in the construction of a view for every client that
includes all operations that he has executed or applied, together with those of his opera-
tions that some other clients have confirmed. Since these operations may have changed
the state at other clients, they must be considered. More precisely, some Ck may have
confirmed an operation o executed by Ci that Ci has not yet confirmed or applied. In
order to be fork-linearizable, the view of Ci must include o as well, including all oper-
ations that were “promised” to Ci by S in the sense that they were announced by S as
pending for o. It follows from the properties of the hash chain that the view of Ck up
to o is the same as Ci’s view including the promised operations. The view of Ci further
includes all operations that Ci has executed after o. Taken together this demonstrates
that every execution of COP is fork-linearizable w.r.t. F ′.



Verifying the Consistency of Remote Untrusted Services 13

4 Authenticated Computation

In this section, we introduce Authenticated COP or ACOP , which shifts state
maintenance and service execution to the server and lets clients only perform verifi-
cation. ACOP extends COP with an authenticated data structure [24] for the service
functionality. It enables authenticated remote computation for many realistic services
with complex interfaces[12, 25, 9, 17], such as indexed databases, search trees, docu-
ment processing services, and generic storage schemes; typically their operations per-
mit queries and updates. Recent advances in cryptographic tools for verifying remote
computation suggest that it may even become feasible to construct authenticators for
generic computations while preserving the privacy of the inputs [14, 2].

4.1 Authenticated COP

We consider a server that stores shared state and executes operations of the function-
ality F invoked by clients. When F supports an authenticated data structure [24], the
clients may verify the integrity of a response to an operation from a cryptographic proof
in the form of an authenticator for the response. ACOP results from integrating the au-
thenticated data structure into COP and ensures the fork-linearizability of the service,
retaining all other benefits of COP.

More formally, suppose S maintains the state of F in variable x, called the server’s
state; when S receives an operation o from a client, she should update the state by
executing (x′, r) ← F (x, o) and send the response r to the client. For adding authenti-
cation, the server’s state is extended to include authentication data, and an authenticator
α is computed with the response as (x′, α, r) ← authexecF (x, o). The server sends r
together with α to the client. The client maintains a digest d between operations, which
authenticates the (potentially large) state of F maintained by S. For checking the cor-
rectness of the response, the client computes (d′, r′) ← verifyF (d, α, o, r), whereby
r′ = ⊥ indicates that the verification failed, and otherwise, r′ = r is the correct re-
sponse. The authexecF and verifyF operations encapsulate the authenticated data struc-
ture; more information can be found in the rich literature on the subject [28, 22]. For
practical authentication techniques such as hash trees and authenticated dictionaries, α
is usually much smaller than the full state.

We now describe how to extend Algorithms 1–3 for ACOP.

4.2 Server

We start with the changes for S. As part of her state, S additionally maintains a state
map X : N0 → {0, 1}∗ indexed by operations, where X [0] = s0 is the initial state.
Entry X [b] is assigned when the server broadcasts an operation with sequence number b
such that X [b] contains the result of executing the operations with sequence numbers
from 1, . . . , b.

When the server receives the INVOKE message from Ci with an operation o, she
increments the index t and considers the pending operations ω with index between b
and t. Then S executes the pending-self operations ν of Ci, which include o, to obtain
the response and authenticator for o as (x′, α, r) ← authexecF (X [b], ν); she sends ω



14 C. Cachin and O. Ohrimenko

and r to Ci together with α. Note that x′ is discarded and that S uses X [b] to compute
the result using the operation sequence ν, which includes o, as Ci has only applied the
operations with sequence numbers 1, . . . , b at the time when he invokes o.

In COP the client checks for commutativity between an invoked operation and the
pending operations by himself. With the above modification, S also needs to abort op-
erations as the client would determine from commuteF when computing r and α, and
S must include additional information that allows the client to execute commuteF . In
practice, the server may store only the latest state X [b] and the changes induced by the
operations with lower sequence numbers. Moreover, once S learns from INVOKE mes-
sages that all clients have received and applied all operations with sequence number q,
then she may discard the state changes for q as well.

4.3 Client

The clients no longer maintain state s and instead store a digest map G : N0 → {0, 1}∗
indexed by operations, where G[q] authenticates the state resulting from executing the
operations with index up to q, starting from s0. The client uses G to verify the server’s
responses to his operations in a REPLY message. In particular, for operation o, client Ci

runs Algorithm 1, executes its pending-self operations (μ) upon input G[c] to obtain a
temporary state a and a corresponding digest g, performs the commutativity check, and,
if successful, computes (d′, r′) ← verifyF (g, α, o, r). The client halts if the original
algorithm halts or if r′ = ⊥; otherwise, the response is r ← r′. The client augments
the COMMIT message with α and r′ and signs the entire message. Note that d′ is again
used only temporarily for verifying the pending-self operations and is discarded when
the method returns.

Upon receiving a BROADCAST message when the last confirmed operation has in-
dex c, the client verifies the signature from client Cj that invoked the operation and the
hash value as before. Then Ci intends to verify that the response and digest are con-
sistent (between him and Cj ) and to compute the next digest G[c + 1]. Note that Ci

cannot use α, however, to update the digest, as α authenticates o in the state where Cj

committed it, but this state may differ from the state at index c, which is current for Ci.
We therefore require that S sends an additional authenticator α′ for o in state X [c]. The
client verifies that α′ and r correspond to o by executing (G[c + 1], r′) ←
verifyF (G[c], α′, o, r), and verifying that r′ �= ⊥. The client may garbage-collect en-
tries in G in a similar way as for the hash chain in COP.

5 Conclusion

This paper has introduced COP and ACOP, two variants of the Commutative-Operation
verification Protocol, which allow a group of clients to execute a generic service coordi-
nated by a remote untrusted server. COP ensures fork-linearizability and allows clients
to easily verify the consistency and integrity of the service responses. In contrast to pre-
vious work, COP is wait-free and supports commuting operation sequences (but may
sometimes abort conflicting operations); ACOP extends COP by shifting state and op-
eration execution from the clients to the server.



Verifying the Consistency of Remote Untrusted Services 15

Given the popularity of outsourced computation and cloud computing, the problem
of checking the results of remote computations cryptographically has received a lot of
attention recently [11, 26, 14, 2]. However, these protocols typically address only a two-
party model and, with some exceptions [2], do not support state changes. An important
direction for future work lies in integrating these verifiable computation protocols into
COP and related protocols for guaranteeing cryptographic integrity in the sense of fork-
linearizability for multiple clients.

Acknowledgments. We thank Marcus Brandenburger for interesting discussions and
valuable comments.

This work has been supported in part by the European Union’s Seventh Framework
Programme (FP7/2007–2013) under grant agreement number ICT-257243 TCLOUDS.

References

[1] Aguilera, M.K., Frølund, S., Hadzilacos, V., Horn, S.L., Toueg, S.: Abortable and query-
abortable objects and their efficient implementation. In: Proc. 26th ACM Symposium on
Principles of Distributed Computing (PODC) (2007)

[2] Braun, B., Feldman, A.J., Ren, Z., Setty, S.T.V., Blumberg, A.J., Walfish, M.: Verifying
computations with state. In: Proc. 24th ACM Symposium on Operating Systems Principles
(SOSP), pp. 341–357 (2013)

[3] Cachin, C.: Integrity and consistency for untrusted services. In: Černá, I., Gyimóthy, T.,
Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011.
LNCS, vol. 6543, pp. 1–14. Springer, Heidelberg (2011)

[4] Cachin, C., Guerraoui, R., Rodrigues, L.: Introduction to Reliable and Secure Distributed
Programming, 2nd edn. Springer (2011)

[5] Cachin, C., Keidar, I., Shraer, A.: Fork sequential consistency is blocking. Information Pro-
cessing Letters 109(7), 360–364 (2009)

[6] Cachin, C., Keidar, I., Shraer, A.: Fail-aware untrusted storage. SIAM Journal on Comput-
ing 40(2), 493–533 (2009), preliminary version appears In: Proc. DSN 2009

[7] Cachin, C., Ohrimenko, O.: Verifying the consistency of remote untrusted services with
commutative operations. Report arXiv:1302.4808v2, CoRR (December 2013),
http://arxiv.org/abs/1302.4808v2

[8] Cachin, C., Shelat, A., Shraer, A.: Efficient fork-linearizable access to untrusted shared
memory. In: Proc. 26th ACM Symposium on Principles of Distributed Computing (PODC),
pp. 129–138 (2007)

[9] Canetti, R., Paneth, O., Papadopoulos, D., Triandopoulos, N.: Verifiable set operations over
outsourced databases. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 113–130.
Springer, Heidelberg (2014)

[10] Clements, A.T., Kaashoek, M.F., Zeldovich, N., Morris, R.T., Kohler, E.: The scalable com-
mutativity rule: Designing scalable software for multicore processors. In: Proc. 24th ACM
Symposium on Operating Systems Principles (SOSP), pp. 1–17 (2013)

[11] Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with streaming
interactive proofs. In: Proc. 3rd Conference on Innovations in Theoretical Computer Science
(ITCS), pp. 90–112 (2012)

[12] Crosby, S.A., Wallach, D.S.: Authenticated dictionaries: Real-world costs and trade-offs.
ACM Transactions on Information and System Security 14(2) (2011)

http://arxiv.org/abs/1302.4808v2


16 C. Cachin and O. Ohrimenko

[13] Feldman, A.J., Zeller, W.P., Freedman, M.J., Felten, E.W.: SPORC: Group collaboration
using untrusted cloud resources. In: Proc. 9th Symp. Operating Systems Design and Imple-
mentation (OSDI) (2010)

[14] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct
NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 626–645. Springer, Heidelberg (2013)

[15] Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchronization: Double-ended
queues as an example. In: Proc. 23rd Intl. Conference on Distributed Computing Systems,
(ICDCS) (2003)

[16] Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems 12(3), 463–492 (1990)

[17] Kosba, A.E., Papadopoulos, D., Papamanthou, C., Sayed, M.F., Shi, E., Triandopoulos, N.:
TRUESET: Nearly practical verifiable set computations. In: Proc. 23rd USENIX Security
Symposium (2014)

[18] Li, J., Krohn, M., Mazières, D., Shasha, D.: Secure untrusted data repository (SUNDR).
In: Proc. 6th Symp. Operating Systems Design and Implementation (OSDI), pp. 121–136
(2004)

[19] Li, J., Mazières, D.: Beyond one-third faulty replicas in Byzantine fault-tolerant systems.
In: Proc. 4th Symp. Networked Systems Design and Implementation (NSDI) (2007)

[20] Mahajan, P., Setty, S., Lee, S., Clement, A., Alvisi, L., Dahlin, M., Walfish, M.: Depot:
Cloud storage with minimal trust. In: Proc. 9th Symp. Operating Systems Design and Im-
plementation (OSDI) (2010)

[21] Majuntke, M., Dobre, D., Serafini, M., Suri, N.: Abortable fork-linearizable storage. In:
Abdelzaher, T., Raynal, M., Santoro, N. (eds.) OPODIS 2009. LNCS, vol. 5923, pp. 255–
269. Springer, Heidelberg (2009)

[22] Martel, C., Nuckolls, G., Devanbu, P., Gertz, M., Kwong, A., Stubblebine, S.G.: A general
model for authenticated data structures. Algorithmica 39, 21–41 (2004)

[23] Mazières, D., Shasha, D.: Building secure file systems out of Byzantine storage. In: Proc.
21st ACM Symposium on Principles of Distributed Computing (PODC) (2002)

[24] Naor, M., Nissim, K.: Certificate revocation and certificate update. IEEE Journal on Se-
lected Areas in Communications 18(4), 561–570 (2000)

[25] Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal verification of operations on
dynamic sets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 91–110. Springer,
Heidelberg (2011)

[26] Setty, S., Vu, V., Panpalia, N., Braun, B., Blumberg, A.J., Walfish, M.: Taking proof-based
verified computation a few steps closer to practicality. In: Proc. 21st USENIX Security
Symposium (2012)

[27] Shraer, A., Cachin, C., Cidon, A., Keidar, I., Michalevsky, Y., Shaket, D.: Venus: Verifica-
tion for untrusted cloud storage. In: Proc. Cloud Computing Security Workshop (CCSW).
ACM (2010)

[28] Tamassia, R.: Authenticated data structures. In: Di Battista, G., Zwick, U. (eds.) ESA 2003.
LNCS, vol. 2832, pp. 2–5. Springer, Heidelberg (2003)

[29] Williams, P., Sion, R., Shasha, D.: The blind stone tablet: Outsourcing durability to un-
trusted parties. In: Proc. Network and Distributed Systems Security Symposium (NDSS)
(2009)


	Verifying the Consistency of Remote Untrusted Services with Commutative Operations
	1
Introduction
	1.1
Related Work

	2
Definitions
	3
The Commutative-Operation Verification Protocol
	4
Authenticated Computation
	4.1
Authenticated COP
	4.2
Server
	4.3
Client

	5
Conclusion
	References




