
Marcos K. Aguilera
Leonardo Querzoni
Marc Shapiro (Eds.)

 123

LN
CS

 8
87

8

18th International Conference, OPODIS 2014
Cortina d’Ampezzo, Italy, December 16–19, 2014
Proceedings

Principles
of Distributed Systems

Lecture Notes in Computer Science 8878
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Marcos K. Aguilera Leonardo Querzoni
Marc Shapiro (Eds.)

Principles
of Distributed Systems

18th International Conference, OPODIS 2014
Cortina d’Ampezzo, Italy, December 16-19, 2014
Proceedings

1 3

Volume Editors

Marcos K. Aguilera
Mountain View, CA, USA
E-mail: mkaguilera@gmail.com

Leonardo Querzoni
Sapienza University of Rome, Italy
E-mail: querzoni@dis.uniroma1.it

Marc Shapiro
Inria Paris-Rocquencourt
and Sorbonne Universités
UPMC Univ Paris 06, LIP6
Paris, France
E-mail: marc.shapiro@acm.org

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-14471-9 e-ISBN 978-3-319-14472-6
DOI 10.1007/978-3-319-14472-6
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014958596

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

On behalf of the Technical Committee of the International Conference on Prin-
ciples of Distributed Systems, we are very pleased to present in this volume the
proceedings of the 18th edition of the conference, which was held during 16 to
19 December 2014, in Cortina d’Ampezzo, Italy.

OPODIS, the International Conference on Principles of Distributed Systems,
is an international forum for the exchange of state-of-the-art knowledge on dis-
tributed computing and systems among researchers from around the world. All
aspects of distributed systems are within the scope of OPODIS, including theory,
specification, design, performance, and system building. OPODIS has tradition-
ally been strong in the theoretical aspects of distributed systems. Since the 2013
edition, OPODIS is seeking to expand its coverage to include the overlap between
theoretical solutions and practical implementations, as well as experimentation
and quantitative assessments.

Papers were sought soliciting original research contributions to the theory,
specification, design, and implementation of distributed systems. In response to
the call for papers, 98 submissions were received. In a first round, each paper was
reviewed by at least three members of the Program Committee (PC), sometimes
with the help of external reviewers. The 69 top papers went through a second
round of reviewing and received more PC reviews. After some online exchanges,
the PC held a physical meeting, to select the 32 papers of this edition. Rigorous
reviewing and vigorous discussion ensured a high-quality selection process. We
would like to thank the Programme Committee members, as well as the external
reviewers, for their fundamental contribution in selecting the best papers.

In addition to the technical papers, the program included a keynote presenta-
tion from Lorenzo Alvisi (University of Texas at Austin, USA) and two tutorial
presentations from Yann Busnel (Crest - Ensai, Rennes and LINA - University of
Nantes, France) and Christian Cachin (IBM Research Zürich, Switzerland). This
edition also had a co-located workshop, the Second Workshop on Distributed
Computing: Computability and Complexity. We would like to thank the tuto-
rial and workshop chair Étienne Rivière (University of Neuchâtel, Switzerland)
for his help in attracting tutorial proposals and for helping with the workshop
co-location.

This event would not have been possible without the technical and adminis-
trative support of Gabriella Caramagno and Giuliana Bottaro. We also wish to
express

VI Preface

our gratitude to our supporting institutions: la Sapienza University of Rome,
the Research Center for Cyber Intelligence and Information Security (CIS), and
CINI.

November 2014 Marcos K. Aguilera
Leonardo Querzoni

Marc Shapiro

Organization

General Chair

Leonardo Querzoni Sapienza University of Rome, Italy

Program Co-chairs

Marcos K. Aguilera Unaffiliated
Marc Shapiro Inria and UPMC-LIP6, France

Steering Committee

Roberto Baldoni Sapienza University of Rome, Italy
Antonio Fernandez Anta Institute IMDEA Networks, Spain
Paola Flocchini University of Ottawa, Canada
Giuseppe Prencipe University of Pisa, Italy
Binoy Ravindran Virginia Tech, USA
Nicola Santoro Carleton University, Ottawa, Canada
Maarten van Steen VU University Amsterdam, The Netherlands

Strategic Advisory Committee

Alain Bui University of Versailles S.Q., France
Marc Bui LAISC, EPHE, Paris, France
Nicola Santoro Carleton University, Canada
Philippas Tsigas Chalmers University of Technology, Sweden

Program Committee

Marco Aiello University of Groningen, The Netherlands
François Bonnet JAIST, Japan
Allen Clement Google and Max Planck Institute for Software

Systems, Switzerland and Germany
Paolo Costa Microsoft Research Cambridge, UK
Carole Delporte Université Paris Denis Diderot, France

VIII Organization

Murat Demirbas University at Buffalo, USA
Sameh Elnikety Microsoft Redmond, USA
Hugues Fauconnier Université Denis Diderot LIAFA, France
Pascal Felber Université de Neuchâtel, Switzerland
Pierre Fraigniaud CNRS and University Paris Diderot, France
Alexey Gotsman IMDEA Software Institute, Spain
Tim Harris Oracle Labs, UK
Maurice Herlihy Brown University, USA
Konrad Iwanicki University of Warsaw, Poland
Márk Jelasity University of Szeged, Hungary
Alex Kogan Oracle Labs, USA

Tamer Öszu University of Waterloo, Canada
Boaz Patt-Shamir Tel Aviv University, Israel
Fernando Pedone University of Lugano, Switzerland
Maria Potop-Butucaru Université Pierre et Marie Curie-LIP6, France
Nuno Preguiça Universidade Nova de Lisboa, Portugal
Sergio Rajsbaum UNAM, Mexico
Lúıs Rodrigues INESC-ID, Universidade de Lisboa, Portugal
Paolo Romano INESC-ID and IST, Universidade de Lisboa,

Portugal
Marco Serafini Qatar Computing Research Institute, Qatar
Liuba Shrira Brandeis, USA
Peter Van Roy Université Catholique de Louvain, Belgium
Jennifer Welch Texas A&M University, USA
Yukiko Yamauchi Kyushu University, Japan

Additional Reviewers

Ailidani Ailijiang Ilche Georgievski Iulian Moraru
Hagit Attiya Emmanuel Godard Calvin Newport
Mor Baruch Lukasz Golab Fukuhito Ooshita
Samuel Benz Heerko Groefsema Leandro Pacheco
Giovanni Bernardi Urs Hengartner Ricardo Padilha
Eduardo Bezerra Taisuke Izumi Giuliano Andrea Pagani
Frank Blaauw Tomoko Izumi Roberto Palmieri
Manuel Bravo Vasiliki Kalavri Marcelo Pasin
Doina Bucur Sayaka Kamei Ruma Paul
Zuhal Can Sven Kohler Erez Petrank
Hyun Chul Chung Amos Korman Seth Pettie

Christian Colombo Saptaparni Kumar Étienne Rivière
Stefano Coniglio Shay Kutten Stéphane Rovedakis
Shantanu Das Anissa Lamani Daniele Sciascia
Diego Didona Alexander Lazovik Pierre Sutra
Nuno Diegues Zhongmiao Li Edward Talmage
Sérgio Duarte Ying Liu Serafettin Tasci

Organization IX

Ando Emerencia José Legatheaux Martins Jeremy Topolski
Guy Even Hugues Mercier Corentin Travers
Leszek A. Gasieniec Sayan Mitra Jons-Tobias Wamhoff

Organizing Committee

Silvia Bonomi
(Publicity Chair) Sapienza University of Rome, Italy

Gabriella Caramagno Sapienza University of Rome, Italy
Leonardo Querzoni

(General Chair) Sapienza University of Rome, Italy

Étienne Rivière
(Workshop and

Tutorials Chair)
Université de Neuchâtel, Switzerland

Salt: Combining ACID and BASE in a

Distributed Database
(Invited Talk)

Lorenzo Alvisi

The University of Texas at Austin, USA

Abstract. What is the right abstraction to support scalable and avail-
able storage and retrieval of data in a distributed database? Today’s
options—ACID transactions and BASE implementations—force devel-
opers to compromise either ease of programming or performance. This
talk will discuss Salt, a new database that allows the ACID and BASE
paradigms to coexist in order to combine the desirable qualities of both.
Salt is based on the observation, rooted in Pareto’ s principle, that, when
an application outgrows the performance and availability offered by an
ACID implementation, it is often because of the requirements of only a
few transactions: most transactions never test the limits of what ACID
can offer. Through the new abstraction of BASE transactions, Salt allows
to safely “BASE-ify” only those few performance-critical ACID transac-
tions, without compromising the ACID guarantees enjoyed by the re-
maining transactions: in so doing, Salt can reap most of the performance
benefits of the BASE paradigm, without unleashing the cost and com-
plexity that traditionally come with it.

Distributed Large-Scale

Data Stream Analysis
(Tutorial)

Yann Busnel

Crest - Ensai, Rennes, France

LINA - University of Nantes, France

Abstract. This tutorial aims to survey some existing algorithms that
process huge amount of data inline, efficiently in term of space and time
complexity. The interest of estimating metrics or identify specific pat-
terns between several (a.k.a. distributed) data streams is important in
data intensive applications. Many different domains are concerned by
such analyses including machine learning, data mining, databases, infor-
mation retrieval, and network monitoring. In all these applications, it is
necessary to quickly and precisely process a huge amount of data. For in-
stance, in IP network management, the analysis of input streams allows
to rapidly detect the presence of anomalies or intrusions when changes
in the communication patterns occur. The problem of extracting perti-
nent information in a data stream is similar to the problem of identifying
patterns that do not conform to the expected behaviour, which has been
an active area of research for many decades. For instance, depending on
the specificities of the domain considered and the type of outliers consid-
ered, different methods have been designed, namely classification-based,
clustering-based, nearest neighbour based, statistical, spectral, and infor-
mation theory. We aim to propose a comprehensive survey of these tech-
niques, their advantages and their drawbacks in this tutorial. A common
feature of these techniques is their space complexity and their compu-
tational cost, as they rely on small space approximation algorithms for
analysing their data.

Integrity, Consistency, and Verification of

Remote Computation
(Tutorial)

Christian Cachin

IBM Research Zurich, Switzerland

Abstract. With the advent of cloud computing, many clients have out-
sourced computation and data storage to remote servers. This has led
to prominent concerns about the privacy of the data and computation
placed outside the control of the clients. On the other hand, the in-
tegrity of the responses from the remote servers has been addressed in-
depth only recently. Violations of correctness are potentially more dan-
gerous, however, in the sense that the safety of a service is in danger
and that the clients rely on the responses. Incidental computation er-
rors as well as deliberate and sophisticated manipulations on the server
side are nearly impossible to discover with today’s technology. Over the
last few years, there has been rising interest in technology to verify the
results of a remote computation and to check the consistency of re-
sponses from a cloud service. These advances rely on recently introduced
cryptographic techniques, including authenticated data types (ADT),
probabilistically checkable proofs (PCPs), fully-homomorphic encryption
(FHE), quadratic programs (QP), and more. With multiple clients ac-
cessing the remote service, a further dimension is added to the problem
in the sense that clients isolated from each other need to guarantee that
their verification operations relate to the same “version” of the server’s
computation state. This tutorial will survey the recent work in this area
and provide a broad introduction to some of the key concepts underlying
verifiable computation, towards single and multiple verifiers. The aim is
to give a systematic survey of techniques in the realm of verifiable com-
putation, remote data integrity, authenticated queries, and consistency
verification.

The approaches rely on methods from cryptography and from dis-
tributed computing. The presentation will introduce the necessary back-
ground techniques from these fields, describe key results, and illustrate
how they ensure integrity in selected cases.

The tutorial consists of three parts: i) verifiable computation, ii) au-
thenticated data types and iii) distributed consistency enforcement.

Table of Contents

Consistency

Verifying the Consistency of Remote Untrusted Services with
Commutative Operations . 1

Christian Cachin and Olga Ohrimenko

Logical Physical Clocks . 17
Sandeep S. Kulkarni, Murat Demirbas, Deepak Madappa,
Bharadwaj Avva, and Marcelo Leone

Be General and Don’t Give Up Consistency in Geo-Replicated
Transactional Systems . 33

Alexandru Turcu, Sebastiano Peluso, Roberto Palmieri,
and Binoy Ravindran

Distributed Graph Algorithms

Distributed Local Approximation of the Minimum k -Tuple Dominating
Set in Planar Graphs . 49

Andrzej Czygrinow, Michal Hanćkowiak, Edyta Szymańska,
Wojciech Wawrzyniak, and Marcin Witkowski

Time Lower Bounds for Distributed Distance Oracles 60
Taisuke Izumi and Roger Wattenhofer

Fault Tolerance

Erasure-Coded Byzantine Storage with Separate Metadata 76
Elli Androulaki, Christian Cachin, Dan Dobre, and Marko Vukolić

BChain: Byzantine Replication with High Throughput and Embedded
Reconfiguration . 91

Sisi Duan, Hein Meling, Sean Peisert, and Haibin Zhang

RoBuSt: A Crash-Failure-Resistant Distributed Storage System 107
Martina Eikel, Christian Scheideler, and Alexander Setzer

Checkpointing in Parallel State-Machine Replication 123
Odorico M. Mendizabal, Parisa Jalili Marandi,
Fernando Lúıs Dotti, and Fernando Pedone

XVI Table of Contents

Models

Strong Equivalence Relations for Iterated Models . 139
Zohir Bouzid, Eli Gafni, and Petr Kuznetsov

The Opinion Number of Set-Agreement . 155
Pierre Fraigniaud, Sergio Rajsbaum, Matthieu Roy,
and Corentin Travers

On the Importance of Registers for Computability 171
Rati Gelashvili, Mohsen Ghaffari, Jerry Li, and Nir Shavit

Radio Networks

Scalable Wake-up of Multi-channel Single-Hop Radio Networks 186
Bogdan S. Chlebus, Gianluca De Marco, and Dariusz R. Kowalski

A Disruption-Resistant MAC Layer for Multichannel Wireless
Networks . 202

Henry Tan, Chris Wacek, Calvin Newport, and Micah Sherr

Robots

Distributed Computing by Mobile Robots: Solving the Uniform Circle
Formation Problem . 217

Paola Flocchini, Giuseppe Prencipe, Nicola Santoro,
and Giovanni Viglietta

Approximation Algorithms for the Set Cover Formation by Oblivious
Mobile Robots . 233

Tomoko Izumi, Sayaka Kamei, and Yukiko Yamauchi

Fast Collisionless Pattern Formation by Anonymous, Position-Aware
Robots . 248

Tamás Lukovszki and Friedhelm Meyer auf der Heide

Tradeoffs between Cost and Information for Rendezvous and Treasure
Hunt . 263

Avery Miller and Andrzej Pelc

Self-Stabilization

Maintaining a Spanning Forest in Highly Dynamic Networks:
The Synchronous Case . 277

Matthieu Barjon, Arnaud Casteigts, Serge Chaumette,
Colette Johnen, and Yessin M. Neggaz

Table of Contents XVII

A Communication-Efficient Self-stabilizing Algorithm for Breadth-First
Search Trees . 293

Ajoy K. Datta, Lawrence L. Larmore, and Toshimitsu Masuzawa

Self-stabilizing Algorithms for Connected Vertex Cover and Clique
Decomposition Problems . 307

François Delbot, Christian Laforest, and Stéphane Rovedakis

Fast and Compact Distributed Verification and Self-Stabilization of a
DFS Tree . 323

Shay Kutten and Chhaya Trehan

Loosely-Stabilizing Leader Election on Arbitrary Graphs in Population
Protocols . 339

Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa,
and Toshimitsu Masuzawa

Shared Data Structures

LCD: Local Combining on Demand . 355
Dana Drachsler-Cohen and Erez Petrank

ParMarkSplit: A Parallel Mark-Split Garbage Collector Based on a
Lock-Free Skip-List . 372

Nhan Nguyen, Philippas Tsigas, and H̊akan Sundell

Practical Concurrent Unrolled Linked Lists Using
Lazy Synchronization . 388

Kenneth Platz, Neeraj Mittal, and Subbarayan Venkatesan

Shared Memory

Space- and Time-Efficient Long-Lived Test-And-Set Objects 404
Zahra Aghazadeh and Philipp Woelfel

WFR-TM: Wait-Free Readers without Sacrificing Speculation
of Writers . 420

Panagiota Fatourou, Eleni Kanellou, Eleftherios Kosmas,
and Md. Forhad Rabbi

On Developing Optimistic Transactional Lazy Set . 437
Ahmed Hassan, Roberto Palmieri, and Binoy Ravindran

Synchronization and Universal Construction

On the Mailbox Problem . 453
Uri Abraham and Gal Amram

XVIII Table of Contents

Distributed Universality . 469
Michel Raynal, Julien Stainer, and Gadi Taubenfeld

A Practical Distributed Universal Construction with Unknown
Participants . 485

Pierre Sutra, Étienne Rivière, and Pascal Felber

Author Index . 501

Verifying the Consistency of Remote Untrusted Services
with Commutative Operations

Christian Cachin1 and Olga Ohrimenko2,∗

1 IBM Research - Zurich, Switzerland
cca@zurich.ibm.com

2 Microsoft Research, Cambridge, United Kingdom
oohrim@microsoft.com

Abstract. A group of mutually trusting clients outsources a computation service
to a remote server, which they do not fully trust and that may be subject to at-
tacks. The clients do not communicate with each other and would like to verify
the correctness of the remote computation and the consistency of the server’s
responses. This paper first presents the Commutative-Operation verification Pro-
tocol (COP) that ensures linearizability when the server is correct and preserves
fork-linearizability in any other case. All clients that observe each other’s oper-
ations are consistent, in the sense that their own operations and those operations
of other clients that they see are linearizable. Second, this work extends COP
through authenticated data structures to Authenticated COP , which allows con-
sistency verification of outsourced services whose state is kept only remotely, by
the server. This yields the first fork-linearizable consistency verification protocol
for generic outsourced services that (1) relieves clients from storing the state,
(2) supports wait-free client operations, and (3) handles sequences of arbitrary
commutative operations.

Keywords: cloud computing, fork-linearizability, data integrity, verifiable com-
putation, commutative operations, Byzantine emulation.

1 Introduction

With the advent of cloud computing, most computations run in remote data centers and
no longer on local devices. As a result, users are bound to trust the service provider
for the confidentiality and the correctness of their computations. This work addresses
the integrity of outsourced data and computations and the consistency of the provider’s
responses. Consider a group of mutually trusting clients who want to collaborate on
a resource that is provided by a remote partially trusted server. This could be a wiki
containing data of a common project, an archival document repository, or a groupware
tool running in the cloud. A subtle change in the remote computation, whether caused
inadvertently by a bug or deliberately by a malicious adversary, may result in wrong
responses to the clients. The clients trust the provider only partially, hence, they would
like to assess the integrity of the computation, to verify that responses are correct, and
to check that they all get consistent responses.

∗ Work done at IBM Research - Zurich and at Brown University.

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 1–16, 2014.
c© Springer International Publishing Switzerland 2014

2 C. Cachin and O. Ohrimenko

In an asynchronous network model without communication among clients such as
considered here, the server may perform a forking attack and omit the effects of op-
erations by some clients in her responses to other clients. Not knowing which opera-
tions other clients execute, the forked clients cannot detect such violations. The best
achievable consistency guarantee in this setting is captured by fork-linearizability, in-
troduced by Mazières and Shasha [23] for storage systems. Fork-linearizability ensures
that whenever the server in her responses to a client C1 has ignored an operation exe-
cuted by a client C2, then C1 can never again observe an operation by C2 afterwards
and vice versa. This property ensures clearly defined service semantics in the face of an
attack and allows clients to detect server misbehavior easily.

Several conceptual [8, 21, 5, 6] and practical advances [29, 13, 20, 27] have recently
been made that improve consistency checking and verification with fork-linearizability
and related notions. The resulting protocols ensure that when the server is correct, the
service is linearizable and (ideally) the algorithm is wait-free, that is, every client’s
operations complete independently of other clients. It has been recognized, however,
that read/write conflicts cause such protocols to block; this applies to fork-linearizable
semantics [23, 8] and to other forking consistency notions [5, 6].

In this paper, we go beyond storage services and verify the consistency of remote
computation on a Byzantine server. The Commutative-Operation verification Proto-
col or COP imposes fork-linearizable semantics for arbitrary functionalities, exploits
commuting operations, and allows clients to operate concurrently without blocking un-
less operations conflict. Furthermore, the extension to Authenticated COP also relieves
clients from storing the computation state and from executing all operations. Fork-
linearizability makes it easy to expose Byzantine behavior of the server. For instance,
the clients may exchange a message outside the model over a low-bandwidth channel
and thereby verify the correctness of a service in an end-to-end way.

Efficient handling of wait-free operations is a key feature for collaboration with re-
mote coordination, as geographically separated clients may operate at different speed.
Consequently, previous work has devoted a lot of attention to identifying and avoiding
blocking [23, 8, 19]. For example, read operations in a storage service commute and
do not lead to a conflict. On the other hand, when a client writes a data item concur-
rently with another client who reads it, the reader has to wait until the write operation
completes; otherwise, fork-linearizability is not guaranteed [8]. If all operations are to
proceed without blocking, though, it is necessary to weaken the consistency guarantees
to weak fork-linearizability [6], for instance. COP is wait-free and never blocks because
it aborts non-commuting operations that cannot proceed.

The Blind Stone Tablet (BST) protocol [29], the closest predecessor of this work,
supports an encrypted remote database hosted by an untrusted server that is accessed
by multiple clients. Its consistency checking algorithm allows some commuting client
operations to proceed concurrently, but only to a limited extent, as we explain below.
Every client has to maintain the complete service state and to execute all operations,
in contrast to this work. Furthermore, the BST protocol guarantees fork-linearizability
only for database state updates, but does not ensure it for all responses output by a
client.

Verifying the Consistency of Remote Untrusted Services 3

SPORC [13] considers a groupware collaboration service whose operations may
not commute, but can be made to commute by applying operational transformations.
Through this mechanism, different execution orders still converge to the same state. All
SPORC operations are wait-free but respect only fork-* linearizability, which is weaker
than fork-linearizability.

Contributions. This paper considers a generic service executed by an untrusted server
and provides new protocols for consistency verification through fork-linearizable se-
mantics. More concretely, it introduces the Commutative-Operation verification Proto-
col (COP) and its extension to Authenticated COP (called ACOP) with the following
properties:

1. COP is the first wait-free, abortable consistency verification protocol that emulates
an arbitrary functionality on a Byzantine server with fork-linearizability and ex-
ploits commuting operation sequences. (See Sect. 3.)

2. ACOP is the first wait-free fork-linearizable consistency verification protocol for
services, where the state is maintained by the server and the clients do not execute
every operation. (See Sect. 4.)

3. COP comes with a formal analysis that proves fork-linearizable semantics for
generic service execution; previous work did not establish this notion.

COP and ACOP follow the general pattern of most previous fork-linearizable emulation
protocols. For determining when to proceed with concurrent operations, we consider
sequences of operations that jointly commute and the state of the service, in contrast
to earlier protocols, which considered only isolated operations. For lack of space, some
definitions and the formal analysis are contained in the full version [7].

For computations supported by suitable authenticated data structures, ACOP enables
authenticated remote computation, where operations are executed by the server and the
clients no longer need to maintain the state of the computation. In contrast to previous
work, this enables ACOP to handle services with large state.

1.1 Related Work

Storage protocols. Fork-linearizability has been introduced (under the name of fork con-
sistency) together with the SUNDR storage system [23, 18]. Conceptually SUNDR op-
erates on storage objects with simple read/write semantics. Subsequent work of Cachin
et al. [8] improves the efficiency of untrusted storage protocols. A lock-free storage pro-
tocol with abortable operations, which lets all operations complete in the absence of step
contention, has been proposed by Majuntke et al. [21].

FAUST [6] and Venus [27] go beyond the fork-linearizable consistency guarantee
and model occasional message exchanges among the clients. This allows FAUST and
Venus to obtain stronger semantics, in the sense that they eventually reach consistency
(i.e., linearizability) or detect server misbehavior. In the model considered here, fork-
linearizability is the best possible guarantee [23]. The relation of these protocols and
others to COP is summarized in Tab. 1.

4 C. Cachin and O. Ohrimenko

Table 1. Summary of related protocols. In this table under function, the BST protocol supports
only a single commuting operation and does not achieve wait-freedom (as indicated by the paren-
theses in the first column); SPORC is wait-free for generic functions that have operational trans-
forms; COP and ACOP are wait-free for generic commuting operation sequences. Weak fork-
linearizability (or fork-* consistency) allows the last operation of a client to be inconsistent com-
pared to fork-linearizability; however, BST and SPORC do not guarantee their consistency notion
for client responses, only for state changes that may occur much later (as indicated by the paren-
theses). The execution column indicates whether the clients compute operations and maintain
state or whether this is done by the server.

Protocol Wait-free Function Consistency Execution
SUNDR [23, 18] — storage fork-lin. server
FAUST & Venus [6, 27] � storage weak fork-lin. server
BST [29] (�) single comm. op. (fork-lin.) clients
SPORC [13] � generic o.-t. op. (weak fork-lin.) clients
COP (Sec. 3) � generic comm. op. fork-lin. clients
ACOP (Sec. 4) � generic comm. op. fork-lin. server

Blind Stone Tablet (BST). The BST protocol [29] considers transactions on a database,
coordinated by the remote server. A client first simulates a transaction on its own copy,
potentially generating local output, then coordinates with the server for ordering the
transaction. From the server’s response it determines if a transaction commutes with
other, pending transactions invoked by different clients that were reported by the server.
If they conflict, the client undoes the transaction and basically aborts; otherwise, he
commits the transaction and relays it via the server to other clients. When a client re-
ceives such a relayed transaction, the client applies the transaction to its database copy.

BST has several limitations: First, because a client applies his own transactions only
when all pending transactions by other clients have been applied to his own state, up-
dates induced by his transactions are delayed in dependence on other clients. Thus,
he cannot always execute his next transaction from the modified state and produce the
correct output. This implies the client is blocked and the protocol is not “wait-free” as
claimed [29]. Second, the notion of “trace consistency” in the analysis of BST considers
only transactions that have been applied to the local state, not the responses as required
to satisfy fork-linearizability. However, a transaction may be applied long after its re-
sponse was output, hence, client operations might not be fork-linearizable. In contrast,
the analysis of COP shows it is fork-linearizable for all responses output by clients.
Finally, every client in BST maintains a copy of the database and replays all operations
locally, which is not necessary in ACOP.

COP extends BST and allows one client to execute multiple operations indepen-
dently of the other clients, as long as his sequence of operations jointly commutes with
the sequence of pending operations by other clients, considering the current service
state. BST considers only the commutativity of individual operations. Note that two
operations o1 and o2 may independently commute with an operation o3 from a partic-
ular starting state, but their concatenation, o1 ◦ o2, may not commute with o3. Opera-
tion sequences and state-based commutativity have recently been exploited for building
scalable services on multicore systems [10].

Verifying the Consistency of Remote Untrusted Services 5

Non-blocking protocols. SPORC [13] is a group collaboration system where operations
do not need to be executed in the same order at every client by virtue of employing op-
erational transforms. The latter concept allows for shifting operations to a different
position in an execution by transforming them according to properties of the skipped
operations. Differently ordered and transformed variants of a common sequence con-
verge to the same end state. SPORC is claimed to provide fork-* linearizability [19],
which is almost the same as weak fork-linearizability [6]; both notions are strict re-
laxations of fork-linearizability that permit concurrent operations to proceed without
blocking, such that protocols become wait-free. The increased concurrency is traded
for weaker consistency, as up to one diverging operation may exist between two clients.
Moreover, there is no formal analysis for SPORC. As in BST, SPORC addresses only
the updates of client states and does not consider local outputs; however, for showing
linearizability, one has to consider the respones of operations.

FAUST [6], mentioned before, never blocks clients and enjoys eventual consistency,
but guarantees only weak fork-linearizability. Abortable operations have been intro-
duced in this context by Majuntke et al. [21] for data storage.

In contrast to SPORC and FAUST, COP ensures the stronger fork-linearizability
condition, where every operation is consistent as soon as it completes. In terms of ex-
pressiveness, SPORC is neither weaker nor stronger than COP: On one hand, SPORC
seems more general as it never blocks clients even for operations that do not appear to
commute; on the other hand, SPORC is limited to functions with transformable oper-
ations and does not address conflicting operations (which exist in some functions [8]);
COP, however, works for arbitrary functions.

In BST and SPORC, all clients execute all operations. ACOP eliminates this draw-
back and shifts the state and the computation to the server by exploiting the notion of
authenticated data structures, as suggested by Cachin [3] in a more restricted setting. In
storage protocols (SUNDR and FAUST), clients do not “execute” each other’s opera-
tions due to the limited functionality.

Last but not least, the protocol of Cachin [3] provides also fork-linearizable execution
for generic services like COP. However, the protocol is inherently blocking.

2 Definitions

System model. We consider an asynchronous distributed system with n clients, C1, . . . ,
Cn and a server S, modeled as processes. Each client is connected to the server through
an asynchronous, reliable communication channel that respects FIFO order. A protocol
specifies the operations of the processes. All clients are correct and follow the protocol,
whereas S operates in one of two modes: either she is correct and follows the protocol
or she is Byzantine and may deviate arbitrarily from the specification.

Functionality. We consider a deterministic functionality F (also called a type) defined
over a set of states S and a set of operations O. F takes as arguments a state s ∈ S and
an operation o ∈ O and returns a tuple (s′, r), where s′ ∈ S is a state that reflects any
changes that o caused to s and r ∈ R is a response to o i.e., (s′, r) = F (s, o). This is
also called the sequential specification of F .

6 C. Cachin and O. Ohrimenko

We extend this notation for executing a sequence of operations 〈o1, . . . , ok〉, start-
ing from an initial state s0, and write (s′, r) = F (s0, 〈o1, . . . , ok〉) for (si, ri) =
F (si−1, oi) with i = 1, . . . , k and (s′, r) = (sk, rk). Note that an operation in O may
represent a batch of multiple application-level operations.

Commutative Operations. Commutative operations of F play a role in protocols that
may execute multiple operations concurrently. Two operations o1, o2 ∈ O are said to
commute in a state s if and only if these operations, when applied in different orders
starting from s, yield the same respective states and responses. Formally, if (s′, r1) ←
F (s, o1), (s′′, r2) ← F (s′, o2); and (t′, q2) ← F (s, o2), (t′′, q1) ← F (t′, o1),
then r1 = q1, r2 = q2, and s′′ = t′′. Furthermore, we say two operations o1, o2 ∈ O
commute when they commute in any state of S.

Also sequences of operations can commute. Suppose two sequences ρ1 and ρ2 con-
sisting of operations in O are mixed together into one sequence π such that the partial
order among the operations from ρ1 and from ρ2 is retained in π, respectively. If exe-
cuting π starting from a state s gives the same respective responses and the same final
state as for every other such mixed sequence, in particular for ρ1 ◦ ρ2 and for ρ2 ◦ ρ1,
where ◦ denotes concatenation, we say that ρ1 and ρ2 commute in state s. Analogously,
we say that ρ1 and ρ2 commute if they commute in any state.

Operations that do not commute are said to conflict. We define a Boolean predicate
commuteF (s, ρ1, ρ2) that is true if and only if ρ1 and ρ2 commute in s according to F .
W.l.o.g. we assume all operations of F and commuteF are efficiently computable.

Abortable services. When operations of F conflict, a protocol may either decide to
block or to abort. Aborting and giving the client a chance to retry the operation at his
own rate often has advantages compared to blocking, which might delay an application
in unexpected ways.

As in previous work that permitted aborts [1, 21], we allow operations to abort and
augment F to an abortable functionality F ′ accordingly. F ′ is defined over the same
set of states S and operations O as F , but returns a tuple defined over S and R∪ {⊥}.
F ′ may return the same output as F , but F ′ may also return ⊥ and leave the state un-
changed, denoting that a client is not able to executeF . Hence,F ′ is a non-deterministic
relation and satisfies F ′(s, o) =

{
(s,⊥), F (s, o)

}
. Since F ′ is not deterministic, a se-

quence of operations no longer uniquely determines the resulting state and response
value.

Abortable functionalities may be seen as obstruction-free objects [1, 15] and vice
versa; such objects guarantee that every client operation completes assuming the client
eventually runs in isolation.

Operations, histories, and consistency properties. Clients interact with F via opera-
tions. Every operation at a client Ci is associated with an invocation and a response
event that occurs at Ci. We say that Ci executes an operation between the correspond-
ing invocation and response events. We use the standard notions of events, precedence,
and histories.

The condition of linearizability [16] requires that the operations of all clients appear
to execute atomically in one sequence, and its extension to fork-linearizability [23, 8],

Verifying the Consistency of Remote Untrusted Services 7

which relaxes the condition of one sequence to permit multiple “forks” of an execution.
Under fork-linearizability, every client observes a linearizable history and when some
operation is observed by multiple clients, the history of events up to this operation is
the same.

Our protocol provides a fork-linearizable Byzantine emulation [8] of the service on
an untrusted server. This notion ensures two dual properties: first, when the server is
correct, then the service should guarantee the standard notion of linearizability; other-
wise, the protocol should ensure fork-linearizability to the clients. Formal definitions
appear in the full version [7].

Cryptography. We make use of two cryptographic primitives, namely a collision-free
hash function hash and a digital signature scheme, with operations denoted by signi
and verifyi for signatures computed by Ci. As our focus lies on concurrency and cor-
rectness and not on cryptography, we model both as ideal, deterministic functionalities
implemented by a trusted entity (see [4]).

3 The Commutative-Operation Verification Protocol

Notation. The function length(a) for a list a denotes the number of elements in a and ‖
denotes concatenation of strings. Several variables are dynamic arrays or maps, which
associate keys to values. A value is stored in a mapH by assigning it to a key, denoted
H [k] ← v; if no value has been assigned to a key, the map returns ⊥. Recall that F ′ is
the abortable extension of functionality F .

Overview. COP, presented in Algorithms 1–3, adopts the structure of previous protocols
that guarantee fork-linearizable semantics [23, 29, 3]. It aims at obtaining a globally
consistent order for the operations of all clients, as determined by the server.

When a client Ci invokes an operation o, he sends an INVOKE message to the
server S. He expects to receive a REPLY message from S telling him about the posi-
tion of o in the global sequence of operations. The message contains the operations that
are pending for o, that is, operations that Ci may not yet know and that are ordered be-
fore o by a correct S. (A Byzantine S may introduce consistency violations here.) We
distinguish between pending-other operations invoked by other clients and pending-self
operations, which are operations executed by Ci up to o.

Client Ci then verifies that the data from the server is consistent. If this or any other
verification step fails, the formal protocol simply halts; in practice, the clients would
then recover the service state, abandon the faulty S, and switch to another provider. In
order to ensure fork-linearizability for the response values, the client first simulates the
pending-self operations and tests if o commutes with the pending-other operations. If
the test succeeds, he declares o to be successful, executes o, and computes the response r
according to F ; otherwise, O is aborted and the response is r = ⊥. According to this,
the status of o is a value in Z = {SUCCESS, ABORT}. Through these steps the client
commits o. Then he sends a corresponding COMMIT message to S and outputs r.

The (correct) server records the committed operation and relays it to all clients via
a BROADCAST message. When the client receives such a broadcast operation, he ver-
ifies that it is consistent with everything the server told him so far. If this verification

8 C. Cachin and O. Ohrimenko

succeeds, we say that the client confirms the operation. If the operation’s status was
SUCCESS, then the client executes it and applies it to his local state.

Data structures. Every client locally maintains a set of variables during the proto-
col. The state s ∈ S is the result of applying all successful operations, received in
BROADCAST messages, to the initial state s0. Variable c stores the sequence num-
ber of the last operation that the client has confirmed. H is a map containing a hash
chain computed over the global operation sequence as announced by S. The contents
ofH are indexed by the sequence number of the operations. EntryH [l] is computed as
hash(H [l− 1]‖o‖l‖i), withH [0] = NULL, and represents an operation o with sequence
number l executed byCi. (The notation ‖ stands for concatenating values as bit strings.)
A variable u is set to o whenever the client has invoked an operation o but not yet com-
pleted it; otherwise u is ⊥. Variable Z maps the sequence number of every operation
that the client has executed himself to the status of the operation. The client only needs
the entries in Z with index greater than c.

The (correct) server also keeps several variables locally. She stores the invoked oper-
ations in a map I and the completed operations in a map O, both indexed by sequence
number. Variable t determines the global sequence number for the invoked operations.
Finally, variable b is the sequence number of the last broadcast operation and ensures
that S disseminates operations to clients in the global order.

Protocol. When clientCi invokes an operation o, he stores it in u and sends an INVOKE

message to S containing o, c, and τ , a digital signature computed over o and i. In
turn, a correct S sends a REPLY message with the list ω of pending operations; they
have a sequence number greater than c. Upon receiving a REPLY message, the client
checks that ω is consistent with any previously sent operations and uses ω to assemble
the successful pending-self operations μ and the pending-other operations γ. He then
determines whether o can be executed or has to be aborted.

In particular, during the loop in Algorithm 1, for every operation o in ω, Ci deter-
mines its sequence number l and verifies from the digital signature that o was indeed
invoked by Cj . He computes the entry of o in the hash chain from o, l, j, andH [l− 1].
If H [l] = ⊥, then Ci stores the hash value there. Otherwise, H [l] has already been set
and Ci verifies that the hash values are equal; this means that o is consistent with the
pending operation(s) that S has sent previously with indices up to l.

If operation o is his own and its saved status in Z[l] was SUCCESS, then he appends
it to μ. The client remembers the status of his own operations in Z , since commuteF
depends on the state and that could have changed if he applied operations after commit-
ting o.

Finally, when Ci reaches the end of ω (i.e., when Ci considers o = u), he checks
that ω is not empty and that it contains u at the last position. He then creates a tem-
porary state a by applying μ to the current state s, and tests whether u commutes with
the pending-other operations γ in a. If they do, he records the status of u as SUCCESS

in Z[l] and computes the response r by executing u on state a. If u does not commute
with γ, he sets status of u to ABORT and r ← ⊥. Then Ci signs u together with its se-
quence number, status, and hash chain entryH [l] and includes all values in the COMMIT

message sent to S.

Verifying the Consistency of Remote Untrusted Services 9

Algorithm 1. Commutative-operation verification protocol (client Ci)

State
u ∈ O ∪ {⊥}: the operation being executed currently or ⊥ if no operation runs, initially ⊥
c ∈ N0: sequence number of the last operation that has been confirmed, initially 0
H : N0 → {0, 1}∗: hash chain (see text), initially containing only H [0] = NULL

Z : N0 → Z: status map (see text), initially empty
s ∈ S : current state, after applying operations, initially s0

upon invocation o do
u ← o
τ ← signi(INVOKE‖o‖i)
send message [INVOKE, o, c, τ] to S

upon receiving message [REPLY, ω] from S do
γ ← 〈〉 // list of pending-other operations
μ ← 〈〉 // list of successful pending-self operations
k ← 1
while k ≤ length(ω) do

(o, j, τ) ← ω[k]
l ← c+ k // promised sequence number of o
if not verifyj(τ, INVOKE‖o‖j) then

halt
if H [l] = ⊥ then

H [l] ← hash(H [l − 1]‖o‖l‖j) // extend hash chain
else if H [l] �= hash(H [l− 1]‖o‖l‖j) then // server replies are inconsistent

halt
if j = i ∧ Z[l] = SUCCESS ∧ k < length(ω) then

μ ← μ ◦ 〈o〉
else if j �= i then

γ ← γ ◦ 〈o〉
k ← k + 1

if k = 1 ∨ o �= u ∨ j �= i then // variables o, j, and l = c+ length(ω) keep their values
halt // last pending operation must equal the current operation

(a, r) ← F (s, μ) // compute temporary state with successful pending-self operations
if commuteF (a, 〈u〉, γ) then // u = o is the current operation

(a, r) ← F (a, u) // compute response to u
Z[l] ← SUCCESS

else
r ← ⊥
Z[l] ← ABORT

φ ← signi

(
COMMIT‖u‖l‖H [l]‖Z[l]

)
send message [COMMIT, u, l, H [l], Z[l], φ] to S
u ← ⊥
return r

10 C. Cachin and O. Ohrimenko

Algorithm 2. Commutative-operation verification protocol (client Ci, continued)

upon receiving message [BROADCAST, o, q, h, z, φ, j] from S do
if not

(
q = c+ 1 and verifyj(φ, COMMIT‖o‖q‖h‖z)

)
then // server replies are not

consistent
halt

if H [q] = ⊥ then // operation has not been pending at client
H [q] ← hash(H [q − 1]‖o‖q‖j)

if h �= H [q] then
halt // server replies are not consistent

if z = SUCCESS then // at this point, the operation is confirmed
(s, r) ← F (s, o) // apply the operation and ignore response

c ← c+ 1

Algorithm 3. Commutative-operation verification protocol (server S)

State
t ∈ N0: sequence number of the last invoked operation, initially 0
b ∈ N0: sequence number of the last broadcast operation, initially 0
I : N → O × N0 × {0, 1}∗: invoked operations (see text), initially empty
O : N → O × {0, 1}∗ × Z × {0, 1}∗ × N: committed operations (see text), initially empty

upon receiving message [INVOKE, o, c, τ] from Ci do
t ← t+ 1
I [t] ← (o, i, τ)
ω ← 〈I [b+ 1], . . . , I [t]〉 // include non-committed operations and o
send message [REPLY, ω] to Ci

upon receiving message [COMMIT, o, q, h, z, φ] from Ci do
O[q] ← (o, h, z, φ, i)
while O[b + 1] �= ⊥ do // broadcast operations ordered by their sequence number

b ← b+ 1
(o′, h′, z′, φ′, j) ← O[b]
send message [BROADCAST, o′, b, h′, z′, φ′, j] to all clients

Upon receiving a COMMIT message for an operation o with sequence number q, the
(correct) server records its content asO[q] in the map of committed operations. Then she
is supposed to send a BROADCAST message containing O[q] to the clients. She waits
with this until she has received COMMIT messages for all operations with sequence
number less than q and broadcast them. This ensures that completed operations are
disseminated in the global order to all clients. Waiting here leads to blocking in BST,
as mentioned in the Introduction. In COP, this does not forbid clients from progressing
with their own operations as we explain below.

In a BROADCAST message received by client Ci, the committed operation is rep-
resented by a tuple (o, q, h, z, φ, j). The client conducts several verification steps; if
successful, we say o is confirmed. Subsequently he applies o to his state s. In more

Verifying the Consistency of Remote Untrusted Services 11

detail, the client first verifies that the sequence number q is the next operation accord-
ing to c; hence, o follows the global order and the server did not omit any operations.
Second, he uses the digital signature φ on the message to verify that Cj indeed com-
mitted o. Lastly, Ci computes his own hash-chain entry H [q] for o and confirms that
it is equal to the hash-chain value h from the message. This ensures that Ci and Cj

have received consistent operations from S up to o. Once the verification succeeds, the
client applies o to his state s only if its status z was SUCCESS, that is, when Cj has not
aborted o.

Commuting operation sequences. Consider the following example F of a counter re-
stricted to non-negative values: Its state consists of an integer s; an add(x) operation
adds x to s and returns TRUE; a dec(x) operation subtracts x from s and returns TRUE

if x ≤ s, but does nothing and returns FALSE if x > s. Suppose the current state s at
Ci is 7 and Ci executes dec(4) and subsequently dec(6). During both operations of Ci,
the server announces that add(2) by another client is pending. Note that Ci executes
dec(4) successfully but aborts dec(6) because dec(6) does not commute with add(2)
from 3, the temporary state (a in Algorithm 1) computed by Ci after the pending-self
operation. However, the latter two operations, add(2) and dec(6), do commute in the
current state 7. This shows why the client executes the pending-self operations before
testing the current operation for a conflict.

Suppose now the current state s is again 7 andCi executes dec(4). The server reports
the pending sequence 〈dec(2), dec(3)〉. Thus, Ci aborts dec(4). Even though dec(4)
commutes with dec(2) and with dec(3) individually in state 7, it does not commute
with their sequence. This illustrates why COP checks for a conflict with the sequence
of pending operations.

Memory requirements. For saving storage space, the client may garbage-collect entries
of H and Z with sequence numbers smaller than c. The server can also save space by
removing the entries in I and O for the operations that she has broadcast. However, if
new clients are allowed to enter the protocol, the server should keep all operations in O
and broadcast them to new clients upon their arrival.

With the above optimizations the client has to keep only pending operations in H
and pending-self operations in Z . The same holds for the server: the maximum number
of entries stored in I and O is proportional to the number of pending operations at any
client.

Communication. Every operation executed by a client requires him to perform one
roundtrip to the server: send an INVOKE message and receive a REPLY. For every ex-
ecuted operation the server simply sends a BROADCAST message. Clients do not com-
municate with each other in the protocol. However, as soon as they do, they benefit
from fork-linearizability and can easily discover a forking attack by comparing their
hash chains.

Messages INVOKE, COMMIT, and BROADCAST are independent of the number of
clients and contain only a description of one operation, while the REPLY message con-
tains the list of pending operations ω. If even one client is slow, then the length of ω
for all other clients grows proportionally to the number of further operations they are
executing. To reduce the size of REPLY messages, the client can remember all pending
operations received from S, and S can send every pending operation only once.

12 C. Cachin and O. Ohrimenko

Aborts and wait-freedom. Every client executing COP can proceed with an operation o
for F as long as it does not conflict with pending operations of other clients. Observe
that the state used by the client for executing o reflects all of his own operations executed
so far, even if he has not yet confirmed or applied them to his state because operations of
other clients have not yet completed. After successfully executing o, the client outputs
the response immediately after receiving the REPLY message from S. A conflict arises
when o does not commute with the pending operations of other clients. In this case, the
client aborts o and outputs ⊥, according to F ′.

Hence, for F where all operations and operation sequences commute, COP is wait-
free. For arbitrary F , however, no fork-linearizable Byzantine emulation can be wait-
free [8]. COP avoids blocking via the augmented functionality F ′. Clients complete
every operation in the sense of F ′, which includes aborts; therefore, COP is wait-free
for F ′. In other words, regardless of whether an operation aborts or not, the client may
proceed executing further operations.

To mitigate the risk of conflicts, the clients may employ a synchronization mech-
anism such as a contention manager, scheduler, or a simple random waiting strategy.
Such synchronization is common for services with strong consistency demands. If one
considers also clients that may crash (outside our formal model), then the client group
has to be adjusted dynamically or a single crashed client might hold up progress of
other clients forever. Previous work on the topic has explored how a group manager
or a peer-to-peer protocol may control a group membership protocol [18, 27]; these
methods apply also to COP.

Analysis. COP emulates the abortable functionalityF ′ on a Byzantine server with fork-
linearizability. Furthermore, all histories of COP where the clients execute operations
sequentially are fork-linearizable w.r.t. F (no operations abort), and if, additionally, the
server is correct, then all such histories are also linearizable w.r.t. F . Here we give only
a brief summary of this result; the details appear in the full version [7].

There are two points to consider. First, with a correct S, we show that the output
of every client satisfies F ′ also in the presence of many pending-self operations. The
check for commutativity, applied after simulating the client’s pending-self operations,
ensures that the client’s response is the same as if the pending-other operations would
have been executed before the operation itself.

The second main innovation lies in the construction of a view for every client that
includes all operations that he has executed or applied, together with those of his opera-
tions that some other clients have confirmed. Since these operations may have changed
the state at other clients, they must be considered. More precisely, some Ck may have
confirmed an operation o executed by Ci that Ci has not yet confirmed or applied. In
order to be fork-linearizable, the view of Ci must include o as well, including all oper-
ations that were “promised” to Ci by S in the sense that they were announced by S as
pending for o. It follows from the properties of the hash chain that the view of Ck up
to o is the same as Ci’s view including the promised operations. The view of Ci further
includes all operations that Ci has executed after o. Taken together this demonstrates
that every execution of COP is fork-linearizable w.r.t. F ′.

Verifying the Consistency of Remote Untrusted Services 13

4 Authenticated Computation

In this section, we introduce Authenticated COP or ACOP , which shifts state
maintenance and service execution to the server and lets clients only perform verifi-
cation. ACOP extends COP with an authenticated data structure [24] for the service
functionality. It enables authenticated remote computation for many realistic services
with complex interfaces[12, 25, 9, 17], such as indexed databases, search trees, docu-
ment processing services, and generic storage schemes; typically their operations per-
mit queries and updates. Recent advances in cryptographic tools for verifying remote
computation suggest that it may even become feasible to construct authenticators for
generic computations while preserving the privacy of the inputs [14, 2].

4.1 Authenticated COP

We consider a server that stores shared state and executes operations of the function-
ality F invoked by clients. When F supports an authenticated data structure [24], the
clients may verify the integrity of a response to an operation from a cryptographic proof
in the form of an authenticator for the response. ACOP results from integrating the au-
thenticated data structure into COP and ensures the fork-linearizability of the service,
retaining all other benefits of COP.

More formally, suppose S maintains the state of F in variable x, called the server’s
state; when S receives an operation o from a client, she should update the state by
executing (x′, r) ← F (x, o) and send the response r to the client. For adding authenti-
cation, the server’s state is extended to include authentication data, and an authenticator
α is computed with the response as (x′, α, r) ← authexecF (x, o). The server sends r
together with α to the client. The client maintains a digest d between operations, which
authenticates the (potentially large) state of F maintained by S. For checking the cor-
rectness of the response, the client computes (d′, r′) ← verifyF (d, α, o, r), whereby
r′ = ⊥ indicates that the verification failed, and otherwise, r′ = r is the correct re-
sponse. The authexecF and verifyF operations encapsulate the authenticated data struc-
ture; more information can be found in the rich literature on the subject [28, 22]. For
practical authentication techniques such as hash trees and authenticated dictionaries, α
is usually much smaller than the full state.

We now describe how to extend Algorithms 1–3 for ACOP.

4.2 Server

We start with the changes for S. As part of her state, S additionally maintains a state
map X : N0 → {0, 1}∗ indexed by operations, where X [0] = s0 is the initial state.
EntryX [b] is assigned when the server broadcasts an operation with sequence number b
such that X [b] contains the result of executing the operations with sequence numbers
from 1, . . . , b.

When the server receives the INVOKE message from Ci with an operation o, she
increments the index t and considers the pending operations ω with index between b
and t. Then S executes the pending-self operations ν of Ci, which include o, to obtain
the response and authenticator for o as (x′, α, r) ← authexecF (X [b], ν); she sends ω

14 C. Cachin and O. Ohrimenko

and r to Ci together with α. Note that x′ is discarded and that S uses X [b] to compute
the result using the operation sequence ν, which includes o, as Ci has only applied the
operations with sequence numbers 1, . . . , b at the time when he invokes o.

In COP the client checks for commutativity between an invoked operation and the
pending operations by himself. With the above modification, S also needs to abort op-
erations as the client would determine from commuteF when computing r and α, and
S must include additional information that allows the client to execute commuteF . In
practice, the server may store only the latest state X [b] and the changes induced by the
operations with lower sequence numbers. Moreover, once S learns from INVOKE mes-
sages that all clients have received and applied all operations with sequence number q,
then she may discard the state changes for q as well.

4.3 Client

The clients no longer maintain state s and instead store a digest mapG : N0 → {0, 1}∗
indexed by operations, where G[q] authenticates the state resulting from executing the
operations with index up to q, starting from s0. The client uses G to verify the server’s
responses to his operations in a REPLY message. In particular, for operation o, client Ci

runs Algorithm 1, executes its pending-self operations (μ) upon input G[c] to obtain a
temporary state a and a corresponding digest g, performs the commutativity check, and,
if successful, computes (d′, r′) ← verifyF (g, α, o, r). The client halts if the original
algorithm halts or if r′ = ⊥; otherwise, the response is r ← r′. The client augments
the COMMIT message with α and r′ and signs the entire message. Note that d′ is again
used only temporarily for verifying the pending-self operations and is discarded when
the method returns.

Upon receiving a BROADCAST message when the last confirmed operation has in-
dex c, the client verifies the signature from client Cj that invoked the operation and the
hash value as before. Then Ci intends to verify that the response and digest are con-
sistent (between him and Cj) and to compute the next digest G[c + 1]. Note that Ci

cannot use α, however, to update the digest, as α authenticates o in the state where Cj

committed it, but this state may differ from the state at index c, which is current for Ci.
We therefore require that S sends an additional authenticator α′ for o in stateX [c]. The
client verifies that α′ and r correspond to o by executing (G[c + 1], r′) ←
verifyF (G[c], α′, o, r), and verifying that r′ �= ⊥. The client may garbage-collect en-
tries in G in a similar way as for the hash chain in COP.

5 Conclusion

This paper has introduced COP and ACOP, two variants of the Commutative-Operation
verification Protocol, which allow a group of clients to execute a generic service coordi-
nated by a remote untrusted server. COP ensures fork-linearizability and allows clients
to easily verify the consistency and integrity of the service responses. In contrast to pre-
vious work, COP is wait-free and supports commuting operation sequences (but may
sometimes abort conflicting operations); ACOP extends COP by shifting state and op-
eration execution from the clients to the server.

Verifying the Consistency of Remote Untrusted Services 15

Given the popularity of outsourced computation and cloud computing, the problem
of checking the results of remote computations cryptographically has received a lot of
attention recently [11, 26, 14, 2]. However, these protocols typically address only a two-
party model and, with some exceptions [2], do not support state changes. An important
direction for future work lies in integrating these verifiable computation protocols into
COP and related protocols for guaranteeing cryptographic integrity in the sense of fork-
linearizability for multiple clients.

Acknowledgments. We thank Marcus Brandenburger for interesting discussions and
valuable comments.

This work has been supported in part by the European Union’s Seventh Framework
Programme (FP7/2007–2013) under grant agreement number ICT-257243 TCLOUDS.

References

[1] Aguilera, M.K., Frølund, S., Hadzilacos, V., Horn, S.L., Toueg, S.: Abortable and query-
abortable objects and their efficient implementation. In: Proc. 26th ACM Symposium on
Principles of Distributed Computing (PODC) (2007)

[2] Braun, B., Feldman, A.J., Ren, Z., Setty, S.T.V., Blumberg, A.J., Walfish, M.: Verifying
computations with state. In: Proc. 24th ACM Symposium on Operating Systems Principles
(SOSP), pp. 341–357 (2013)

[3] Cachin, C.: Integrity and consistency for untrusted services. In: Černá, I., Gyimóthy, T.,
Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011.
LNCS, vol. 6543, pp. 1–14. Springer, Heidelberg (2011)

[4] Cachin, C., Guerraoui, R., Rodrigues, L.: Introduction to Reliable and Secure Distributed
Programming, 2nd edn. Springer (2011)

[5] Cachin, C., Keidar, I., Shraer, A.: Fork sequential consistency is blocking. Information Pro-
cessing Letters 109(7), 360–364 (2009)

[6] Cachin, C., Keidar, I., Shraer, A.: Fail-aware untrusted storage. SIAM Journal on Comput-
ing 40(2), 493–533 (2009), preliminary version appears In: Proc. DSN 2009

[7] Cachin, C., Ohrimenko, O.: Verifying the consistency of remote untrusted services with
commutative operations. Report arXiv:1302.4808v2, CoRR (December 2013),
http://arxiv.org/abs/1302.4808v2

[8] Cachin, C., Shelat, A., Shraer, A.: Efficient fork-linearizable access to untrusted shared
memory. In: Proc. 26th ACM Symposium on Principles of Distributed Computing (PODC),
pp. 129–138 (2007)

[9] Canetti, R., Paneth, O., Papadopoulos, D., Triandopoulos, N.: Verifiable set operations over
outsourced databases. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 113–130.
Springer, Heidelberg (2014)

[10] Clements, A.T., Kaashoek, M.F., Zeldovich, N., Morris, R.T., Kohler, E.: The scalable com-
mutativity rule: Designing scalable software for multicore processors. In: Proc. 24th ACM
Symposium on Operating Systems Principles (SOSP), pp. 1–17 (2013)

[11] Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with streaming
interactive proofs. In: Proc. 3rd Conference on Innovations in Theoretical Computer Science
(ITCS), pp. 90–112 (2012)

[12] Crosby, S.A., Wallach, D.S.: Authenticated dictionaries: Real-world costs and trade-offs.
ACM Transactions on Information and System Security 14(2) (2011)

http://arxiv.org/abs/1302.4808v2

16 C. Cachin and O. Ohrimenko

[13] Feldman, A.J., Zeller, W.P., Freedman, M.J., Felten, E.W.: SPORC: Group collaboration
using untrusted cloud resources. In: Proc. 9th Symp. Operating Systems Design and Imple-
mentation (OSDI) (2010)

[14] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct
NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 626–645. Springer, Heidelberg (2013)

[15] Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchronization: Double-ended
queues as an example. In: Proc. 23rd Intl. Conference on Distributed Computing Systems,
(ICDCS) (2003)

[16] Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems 12(3), 463–492 (1990)

[17] Kosba, A.E., Papadopoulos, D., Papamanthou, C., Sayed, M.F., Shi, E., Triandopoulos, N.:
TRUESET: Nearly practical verifiable set computations. In: Proc. 23rd USENIX Security
Symposium (2014)

[18] Li, J., Krohn, M., Mazières, D., Shasha, D.: Secure untrusted data repository (SUNDR).
In: Proc. 6th Symp. Operating Systems Design and Implementation (OSDI), pp. 121–136
(2004)

[19] Li, J., Mazières, D.: Beyond one-third faulty replicas in Byzantine fault-tolerant systems.
In: Proc. 4th Symp. Networked Systems Design and Implementation (NSDI) (2007)

[20] Mahajan, P., Setty, S., Lee, S., Clement, A., Alvisi, L., Dahlin, M., Walfish, M.: Depot:
Cloud storage with minimal trust. In: Proc. 9th Symp. Operating Systems Design and Im-
plementation (OSDI) (2010)

[21] Majuntke, M., Dobre, D., Serafini, M., Suri, N.: Abortable fork-linearizable storage. In:
Abdelzaher, T., Raynal, M., Santoro, N. (eds.) OPODIS 2009. LNCS, vol. 5923, pp. 255–
269. Springer, Heidelberg (2009)

[22] Martel, C., Nuckolls, G., Devanbu, P., Gertz, M., Kwong, A., Stubblebine, S.G.: A general
model for authenticated data structures. Algorithmica 39, 21–41 (2004)

[23] Mazières, D., Shasha, D.: Building secure file systems out of Byzantine storage. In: Proc.
21st ACM Symposium on Principles of Distributed Computing (PODC) (2002)

[24] Naor, M., Nissim, K.: Certificate revocation and certificate update. IEEE Journal on Se-
lected Areas in Communications 18(4), 561–570 (2000)

[25] Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal verification of operations on
dynamic sets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 91–110. Springer,
Heidelberg (2011)

[26] Setty, S., Vu, V., Panpalia, N., Braun, B., Blumberg, A.J., Walfish, M.: Taking proof-based
verified computation a few steps closer to practicality. In: Proc. 21st USENIX Security
Symposium (2012)

[27] Shraer, A., Cachin, C., Cidon, A., Keidar, I., Michalevsky, Y., Shaket, D.: Venus: Verifica-
tion for untrusted cloud storage. In: Proc. Cloud Computing Security Workshop (CCSW).
ACM (2010)

[28] Tamassia, R.: Authenticated data structures. In: Di Battista, G., Zwick, U. (eds.) ESA 2003.
LNCS, vol. 2832, pp. 2–5. Springer, Heidelberg (2003)

[29] Williams, P., Sion, R., Shasha, D.: The blind stone tablet: Outsourcing durability to un-
trusted parties. In: Proc. Network and Distributed Systems Security Symposium (NDSS)
(2009)

Logical Physical Clocks

Sandeep S. Kulkarni1, Murat Demirbas2,
Deepak Madappa2, Bharadwaj Avva2, and Marcelo Leone1

1 Computer Science & Engineering, Michigan State University
2 Computer Science & Engineering, University at Buffalo, SUNY

Abstract. There is a gap between the theory and practice of distributed systems
in terms of the use of time. The theory of distributed systems shunned the notion
of time, and introduced “causality tracking” as a clean abstraction to reason about
concurrency. The practical systems employed physical time (NTP) information
but in a best effort manner due to the difficulty of achieving tight clock syn-
chronization. In an effort to bridge this gap and reconcile the theory and practice
of distributed systems on the topic of time, we propose a hybrid logical clock,
HLC, that combines the best of logical clocks and physical clocks. HLC captures
the causality relationship like logical clocks, and enables easy identification of
consistent snapshots in distributed systems. Dually, HLC can be used in lieu of
physical/NTP clocks since it maintains its logical clock to be always close to the
NTP clock. Moreover HLC fits in to 64 bits NTP timestamp format, and is mask-
ing tolerant to NTP kinks and uncertainties. We show that HLC has many benefits
for wait-free transaction ordering and performing snapshot reads in multiversion
globally distributed databases.

1 Introduction

1.1 Brief History of Time

Logical Clock (LC). LC [15] was proposed in 1978 by Lamport as a way of times-
tamping and ordering events in a distributed system. LC is divorced from physical time
(e.g., NTP clocks): the nodes do not have access to clocks, there is no bound on message
delay and on the speed/rate of processing of nodes. The causality relationship captured,
called happened-before (hb), is defined based on passing of information, rather than
passing of time [15]. While being beneficial for the theory of distributed systems, LC
is impractical for today’s distributed systems: 1) Using LC, it is not possible to query
events in relation to physical time. 2) For capturing hb, LC assumes that all communi-
cation occurs in the present system and there are no backchannels. This is obsolete for
today’s integrated, loosely-coupled system of systems.

In 1988, the vector clock (VC) [9,22] was proposed to maintain a vectorized version
of LC. VC maintains a vector at each node which tracks the knowledge this node has
about the logical clocks of other nodes. While LC finds one consistent snapshot (that
with same LC values at all nodes involved), VC finds all possible consistent snapshots,
which is useful for debugging applications. In Figure 1, while LC would find (a,w) as
a consistent cut, VC would also identify (b,w), (c,w) as consistent cuts. Unfortunately,

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 17–32, 2014.
c© Springer International Publishing Switzerland 2014

18 S.S. Kulkarni et al.

(a) LC and VC timestamping (b) Inconsistent snapshot in TT

Fig. 1. LC/VC timestamping and TT timestamping

the space requirement of VC is on the order of nodes in the system, and is prohibitive,
and it stays prohibitive with optimizations (e.g., [25]) that reduce the size of VC.

Physical Time (PT). PT leverages on physical clocks at nodes that are synchronized
using the Network Time Protocol (NTP) [23]. Since perfect clock synchronization is
infeasible for a distributed system [24], there are uncertainty intervals associated with
PT. While PT avoids the disadvantages of LC by using physical time for timestamping,
it introduces new disadvantages: 1) When the uncertainty intervals are overlapping,
PT cannot order events. NTP can usually maintain time to within tens of milliseconds
over the public Internet, and can achieve one millisecond accuracy in local area net-
works under ideal conditions, however, asymmetric routes and network congestion can
occasionally cause errors of 100 ms or more. 2) PT has several kinks such as leap
seconds [16, 17] and non-monotonic updates to POSIX time [10] which may cause the
timestamps to go backwards.

TrueTime (TT). TrueTime is proposed recently by Google for developing Spanner [2],
a multiversion distributed database. TT relies on a well engineered tight clock synchro-
nization available at all nodes thanks to GPS clocks and atomic clocks made avail-
able at each cluster. However, TT introduces new disadvantages: 1) TT requires special
hardware and a custom-build tight clock synchronization protocol, which is infeasible
for many systems (e.g., using leased nodes from public cloud providers). 2) If TT is
used for ordering events that respect causality then it is essential that if e hb f then
tt.e < tt.f . Since TT is purely based on clock synchronization of physical clocks, to
satisfy this constraint, Spanner delays event f when necessary. Such delays and reduced
concurrency are prohibitive especially under looser clock synchronization.

HybridTime (HT). HT, which combines VC and PT clocks, was proposed for solving
the stabilizing causal deterministic merge problem [13]. HT maintains a VC at each
node which includes knowledge this node has about the PT clocks of other nodes. HT
exploits the clock synchronization assumption of PT clocks to trim entries from VC and
reduces the overhead of causality tracking. In practice the size of HT at a node would
only depend on the number of nodes that communicated with that node within the last
ε time, where ε denotes the clock synchronization uncertainty. Recently, Demirbas and
Kulkarni [3] explored how HT can be adopted to solve the consistent snapshot problem
in Spanner [2].

Logical Physical Clocks 19

1.2 Contributions of This Work

In this paper we aim to bridge the gap between the theory (LC) and practice (PT) of
timekeeping and timestamping in distributed systems and to provide guarantees that
generalize and improve that of TT.

– We present a logical clock version of HT, which we name as Hybrid Logical Clocks
(HLC). HLC refines both the physical clock (similar to PT and TT) and the logical
clock (similar to LC). HLC maintains its logical clock to be always close to the
NTP clock, and hence, HLC can be used in lieu of physical/NTP clock in several
applications such as snapshot reads in distributed key value stores and databases.
Most importantly, HLC preserves the property of logical clocks (e hb f ⇒ hlc.e <
hlc.f) and as such HLC can identify and return consistent global snapshots without
needing to wait out clock synchronization uncertainties and without needing prior
coordination, in a posteriori fashion.

– HLC is backwards compatible with NTP, and fits in the 64 bits NTP timestamp.
Moreover, HLC works as a superposition on the NTP protocol (i.e., HLC only
reads the physical clocks and does not update them) so HLC can run alongside
applications using NTP without any interference. Furthermore HLC is general and
does not require a server-client architecture. HLC works for a peer-to-peer node
setup across WAN deployment, and allows nodes to use different NTP servers.1

In Section 3, we present the HLC algorithm and prove a tight bound on the space
requirements of HLC and show that the bound suffices for HLC to capture the LC
property for causal reasoning.

– HLC provides masking tolerance to common NTP problems (including nonmo-
notonous time updates) and can make progress and capture causality information
even when time synchronization has degraded. HLC is also self-stabilizing fault-
tolerant [4] and is resilient to arbitrary corruptions of the clock variables, as we
discuss in Section 4.

– We implement HLC and provide experiment results of HLC deployments under
various deployment scenarios. In Section 5, we show that even under stress-testing,
HLC is bounded and the size of the clocks remain small. These practical bounds
are much smaller than the theoretical bounds proved in our analysis. Our
HLC implementation is made available in an anonymized manner at
https://github.com/AugmentedTimeProject

– HLC has direct applications in identifying consistent snapshots in distributed
databases [2, 14, 18, 19, 27, 29]. It is also useful in many distributed systems
protocols including causal message logging in distributed systems [1], Byzantine
fault-tolerance protocols [11], distributed debugging [26], distributed filesystems
[21], and distributed transactions [30]. In Section 6, we showcase the benefits
of HLC for snapshot reads in distributed databases. An open source implemen-
tation of Spanner [2] that uses HLC is available at https://github.com/
cockroachdb/cockroach.

1 HLC can also work with ad hoc clock synchronization protocols [20] and is not bound to NTP.

https://github.com/AugmentedTimeProject
https://github.com/cockroachdb/cockroach
https://github.com/cockroachdb/cockroach

20 S.S. Kulkarni et al.

2 Preliminaries

A distributed system consists of a set of nodes whose number may change over time.
Each node can perform three types of actions, a send action, a receive action, and a
local action. The goal of a timestamping algorithm is to assign a timestamp to each
event. We denote a timestamping algorithm with an all capital letters name, and the
timestamp assigned by this algorithm by the corresponding lower case name. E.g., we
use LC to denote the logical clock algorithm by Lamport [15], and use lc.e to denote
the timestamp assigned to event e by this algorithm.

The notion of happened before hb captures the causal relation between events in
the system. As defined in [15], event e happened before event f (denoted by e hb f)
is a transitive relation that respects the following: e and f are events on the same node
and e occurred before f , or e is a send event and f is the corresponding receive event.
We say that e and f are concurrent, denoted by e||f , iff ¬(e hb f) ∧ ¬(f hb e). Based
on the existing results in the literature, the following are true:

e hb f ⇒ lc.e < lc.f
lc.e = lc.f ⇒ e||f
e hb f ⇔ vc.e < vc.f

3 HLC: Hybrid Logical Clocks

In this section, we introduce our HLC algorithm starting with a naive solution first.
We then prove correctness and tight bounds on HLC. We also elaborate on the useful
features of the HLC for distributed systems.

3.1 Problem Statement

The goal of HLC is to provide one-way causality detection similar to that provided by
LC, while maintaining the clock value to be always close to the physical/NTP clock.
The formal problem statement for HLC is as follows.

Given a distributed system, assign each event e a timestamp, l.e, such that

1. e hb f ⇒ l.e < l.f ,
2. Space requirement for l.e is O(1) integers,
3. l.e is represented with bounded space,
4. l.e is close to pt.e, i.e., |l.e− pt.e| is bounded.

The first requirement captures one-way causality information provided by HLC. The
second requirement captures that the space required for l.e is O(1) integers. To prevent
encoding of several integers into one large integer, we require that any update of l.e is
achieved by O(1) operations. The third requirement captures that the space required to
represent l.e is bounded, i.e., it does not grow in an unbounded fashion. In practice, we
like l.e to be the size of pt.e, which is 64 bits in the NTP protocol.

Finally, the last requirement states that l.e should be close to pt.e. This enables us to
utilize HLC in place of PT. To illustrate this consider the case where the designer wants
to take a snapshot at (physical) time t. Given that physical clocks are not perfectly

Logical Physical Clocks 21

synchronized, it is not possible to get a consistent snapshot by just reading state at
different nodes at time t as shown in Figure 1. On the other hand, using HLC we can
obtain such a snapshot by taking the snapshot of every node at logical time t. Such a
snapshot is guaranteed to be consistent, because from the HLC requirement 1 we have
l.e= l.f ⇒ e||f . In Section 6, we discuss in more detail how HLC enables users to take
uncoordinated a-posteriori consistent snapshots of the distributed system state.

3.2 Description of the Naive Algorithm

Given the goal that l.e should be close to pt.e, in the naive algorithm we begin with the
rule: for any event e, l.e ≥ pt.e. We design our algorithm as shown in Figure 2. This
algorithm works similar to LC. Initially all l values are set to 0. When a send event,
say f , is created on node j, we set l.f to be max(l.e+1, pt.j), where e is the previous
event on node j. This ensures l.e < l.f . It also ensures that l.f ≥ pt.f . Likewise, when
a receive event f is created on node j, l.f is set to max(l.e + 1, l.m+ 1, pt.j), where
l.e is the timestamp of the previous event on j, and l.m is the timestamp of the message
(and, hence, the send event). This ensures that l.e < l.f and l.m < l.f .

Initially lc.j := 0

Send or local event
l.j := max(l.j + 1, pt.j)
Timestamp with l.j

Receive event of messagem
l.j := max(l.j + 1, l.m+ 1, pt.j)
Timestamp with l.j

Fig. 2. Naive HLC algorithm for node j Fig. 3. Counterexample for Naive Algorithm

It is easy to see that the algorithm in Figure 2 satisfies the first two requirements in
the problem statement. However, this naive algorithm violates the fourth requirement,
which also leads to a violation of the third requirement for bounded space representa-
tion. To show the violation of the fourth requirement, we point to the counterexample in
Figure 3 which shows how |l.e− pt.e| grows in an unbounded fashion. The messaging
loop among nodes 1, 2, and 3 can be repeated forever, and at each turn of the loop the
drift between logical clock and physical clock (the l−pt difference) will keep growing.

The root of the unbounded drift problem is due to the naive algorithm using l to
maintain both the maximum of pt values seen so far and the logical clock increments
from new events (local, send, receive). This makes the clocks lose information: it be-
comes unclear if the new l value came from pt (as in the message from node 0 to node 1)
or from causality (as is the case for the rest of messages). As such, there is no suitable
place to reset l value to bound the l − pt difference, because resetting l may lead to
losing the hb relation, and, hence, a violation of requirement 1.

22 S.S. Kulkarni et al.

Initially l.j := 0; c.j := 0

Send or local event
l′.j := l.j;
l.j := max(l′.j, pt.j);
If (l.j= l′.j) then c.j := c.j + 1

Else c.j := 0;
Timestamp with l.j, c.j

Receive event of message m
l′.j := l.j;
l.j := max(l′.j, l.m, pt.j);
If (l.j= l′.j= l.m)

then c.j := max(c.j, c.m)+1
Elseif (l.j= l′.j) then c.j := c.j + 1
Elseif (l.j= l.m) then c.j := c.m+ 1
Else c.j := 0

Timestamp with l.j, c.j

Fig. 4. HLC algorithm for node j Fig. 5. Fixing the Counterexample in Figure
3 with Algorithm in Figure 4

Note that the counterexample holds even with the requirement that the physical clock
of a node is incremented by at least one between any two events on that node. However,
if we assume that the time for send event and receive event is long enough so that the
physical clock of every node is incremented by at least one, then the counterexample
on Figure 3 fails, and the naive algorithm would be able to maintain |l − pt| bounded.
However, instead of depending upon such assumption, we show how to properly achieve
correctness of bounded HLC, next.

3.3 HLC Algorithm

We use our observations from the counterexample to develop the correct HLC algo-
rithm. In this algorithm, the l.j in the naive algorithm is expanded to two parts: l.j and
c.j. The first part l.j is introduced as a level of indirection to maintain the maximum of
pt information learned so far, and c is used for capturing causality updates only when l
values are equal.

In contrast to the naive algorithm where there was no suitable place to reset l without
violating hb , in the HLC algorithm, we can reset c when the information heard about
maximum pt catches up or goes ahead of l. Since l denotes the maximum pt heard
among nodes and is not continually incremented with each event, within a bounded
time, either one of the following is guaranteed to occur: 1) a node receives a message
with a larger l, and its l is updated and c is reset to reflect this, or 2) if the node does not
hear from other nodes, then its l stays the same, and its pt will catch up and update its
l, and reset the c.

The HLC algorithm is as shown in Figure 4. Initially, l and c values are set to 0. When
a new send event f is created, l.j is set tomax(l.e, pt.j), where e is the previous event

Logical Physical Clocks 23

on j. Similar to the naive algorithm, this ensures that l.j ≥ pt.j. However, because we
have removed the “+1”, it is possible that l.e equals l.f . To deal with this, we utilize
the value of c.j. By incrementing c.j, we ensure that 〈l.e, c.e〉 < 〈l.f, c.f〉 is true with
lexicographic comparison.2 If l.e differs from l.f then c.j is reset, and this allows us to
guarantee that c values remain bounded. When a new receive event is created, l.j is set
to max(l.e, l.m, pt.j). Now, depending on whether l.j equals l.e, l.m, both or neither,
c.j is set.

Let’s reconsider the counterexample to the naive algorithm. This example replayed
with the HLC algorithm is shown in Figure 5. When we continue the loop among nodes
1, 2, 3, we see that pt at nodes 1, 2 and 3 catches up and exceeds l=10 and resets c to
0. This keeps the c variable bounded at each node.

To prove the correctness of the HLC algorithm as well as to prove that it satisfies
requirement 4 (closeness between HLC value and PT), we present the following two
theorems, whose proofs follow trivially from HLC implementation. (Proofs of other
theorems is presented in [12].)

Theorem 1. For any two events e and f , e hb f ⇒ (l.e, c.e) < (l.f, c.f) ��

Theorem 2. For any event f , l.f ≥ pt.f ��

Theorem 3. l.f denotes the maximum clock value that f is aware of. In other words,
l.f > pt.f ⇒ (∃g : g hb f ∧ pt.g = l.f)

Physical clocks are synchronized to be within ε. Hence, we cannot have two events
e and f such that e hb f and pt.e > pt.f+ε. Hence, combining this with Theorem 3,
we have

Corollary 1. For any event f , |l.f − pt.f | ≤ ε

Finally, we prove requirement 3, by showing that c value of HLC is bounded as well.
To this end, we extend Theorem 3 to identify the relation of c and events created at a
particular time. As we show in Theorem 4, c.f captures information regarding events
created at time l.f .

Theorem 4. For any event f ,
c.f = k ∧ k > 0
⇒ (∃g1, g2, · · · , gk :

(∀j : 1 ≤ j < k : gi hb gi+1) ∧ (∀j : 1 ≤ j ≤ k : l.(gi) = l.f) ∧ gk hb f)

From Theorem 4, the following corollary follows.

Corollary 2. For any event f c.f ≤ |{g : g hb f ∧ l.g = l.f)}|.

Theorem 5. For any event f , c.f ≤ N ∗ (ε + 1)

We note that the above bound is almost tight and can be shown to be so with an
example similar to that in Figure 3. However, if we assume that message transmission
delay is large enough so that the physical clock of every process is increased by at least
d, where d is a given parameter, we can reduce the bound on c further. For reasons of
space, the proof of this claim is relegated to [12].

2 (a, b) < (c, d) iff ((a < c) ∨ ((a = c) ∧ (b < d))).

24 S.S. Kulkarni et al.

3.4 Properties of HLC

HLC algorithm is designed for arbitrary distributed architecture and is also readily ap-
plicable to other environments such as the client-server model.

We intentionally chose to implement HLC as a superposition on NTP. In other words,
HLC only reads the physical clock but does not update it. Hence, if a node receives a
message whose timestamp is higher, we maintain this information via l and c instead
of changing the physical clock. This is crucial in ensuring that other programs that use
NTP alone are not affected. This also avoids the potential problem where clocks of
nodes are synchronized with each other even though they drift substantially from real
wall-clock. Furthermore, there are impossibility results showing that accepting even tiny
unsynchronization to adjust the clocks can lead to diverging clocks [8]. Finally, while
HLC utilizes NTP for synchronization, it does not depend on it. In particular, even when
physical clocks utilize any ad hoc clock synchronization algorithm [20], HLC can be
superposed on top of such a service, so can also be used in ad hoc networks.

4 Resilience of HLC

4.1 Self-stabilization

Here we discuss how we design self-stabilizing [4] fault-tolerance to HLC, which en-
ables HLC to be eventually restored to a legitimate state, even when HLC is per-
turbed/corrupted to an arbitrary state.

Stabilization of HLC rests on the superposition property of HLC on NTP clocks.
Since HLC does not modify the NTP clock, it does not interfere with the NTP correct-
ing/synchronizing the physical clock of the node. Once the physical/NTP clock stabi-
lizes, HLC can be corrected based on observations in Theorem 2 and Corollaries 5 and
2. These results identify the maximum permitted value of l−pt and the maximum value
of c. In the event of extreme clock errors by NTP or transient memory corruption, the
application may reach a state where these bounds are violated. In that case, we take the
physical clock as the authority, and reset l and c values to pt and 0 respectively. In other
words the stabilization of HLC follows that of stabilization of pt via NTP clock.

In order to contain the spread of corruptions due to bad HLC values, we have a rule
to ignore out of bounds messages. We simply ignore reception of messages that cause
l value to diverge too much from pt. This prevention action fires if the sender of the
message is providing a clock value that is significantly higher suggesting the possibility
of corrupted clock. In order to contain corruptions to c, we make its space bounded, so
that even when it is corrupted, its corruption space is limited. This way c would in the
worst case roll over, or more likely, c would be reset to an appropriate value as a result
of l being assigned a new value from pt or from another l received in a message.

Note that both the reset correction action and the ignore out-of-bounds message ac-
tion are local correction actions at a node. If HLC fires either of these actions, it also logs
the offending entries for inspection and raises an exception to notify the administrator.

4.2 Masking of Synchronization Errors

In order to make HLC resilient to common NTP synchronization errors, we assign suffi-
ciently large space to l − pt drift so that most (99.9%) NTP kinks can be

Logical Physical Clocks 25

masked smoothly. While Theorem 2 and Corollaries 5 and 2 state that l−pt stay within
ε the clock synchronization uncertainty (crudely two times the NTP offset value), we set
a very conservative value,Δ, on the l− pt bound. The boundΔ can be set to a constant
factor of ε, and even on the order of seconds depending on the application semantics.
This way we tolerate and mask common NTP clock synchronization errors within nor-
mal operation of HLC. And whenΔ bound is violated, the local reset correction action
and the ignore message prevention action fire as discussed in the previous subsection.

Using this approach, HLC is robust to stragglers, nodes with pt stuck slightly in
the past. Consider a node that lost connection to its NTP server and its clock started
drifting behind the NTP time. Such a straggler can still keep up with the system for some
time and maintain up-to-date and bounded HLC time: As long as it receives messages
from other nodes, it will learn new/higher l values and adopt them. This node will
increment its c by 1 when it does not adopt a new l value, but this does not cause the
c rise excessively for the other nodes in the system. Even if this node sends a message
with high c number, the other nodes will have up-to-date time and ignore that c and
will use c = 0. Similarly, HLC is also robust to the rushers, nodes with pt slightly
ahead of others. The masking tolerance of HLC makes it especially useful for last write
wins (LWW) database systems like Cassandra [10, 17]. We investigate this tolerance
empirically in the next section.

5 Experiments

5.1 AWS Deployment Results

The experiments used Amazon AWS xlarge instances running Ubuntu 14.04. The ma-
chines were synchronized to a stratum 2 NTP server, 0.ubuntu.pool.ntp.org.
In our basic setup, we programmed all the instances to send messages to each other
continuously using TCP sockets, and in a separate thread receive messages addressed
to them. The total messages sent range from 75,000 to 425,000.

Using the basic setup (all nodes are senders and sending to each other) within the
same AWS region, we get the following results. The value “c” indicates that the value of
the c component of the HLC at the nodes. The remaining columns show the frequency:
the percentage of times the HLC at the nodes had the corresponding c values out of the
total number of events. For each setup, we collected data with two different NTP syn-
chronization levels, indicated by the average offset of nodes’ clocks from NTP. When
we allow the NTP daemons at the nodes more time (a couple hours) to synchronize, we
get lower NTP offset values. We used “ntpdc -c loopinfo” and “ntpdc -c kerninfo” calls
to obtain the NTP offset information at the nodes.

The experiments with 4 nodes show that the value of c remains very low, less than 4.
This is a much lower bound than the worst case possible theoretical bound we proved
in Section 3. We also see that the improved NTP synchronization helps move the c
distribution toward lower values, but this effect becomes more visible in the 8 and 16
node experiments. With the looser NTP synchronization, with average offset 5 ms, the
maximum l − pt difference was observed to be 21.7 ms. The 90th percentile of l − pt
values correspond to 7.8 ms, with their average value computed to be 0.2 ms. With the
tighter NTP synchronization, with average offset 1.5 ms, the maximum l−pt difference

0.ubuntu.pool.ntp.org

26 S.S. Kulkarni et al.

was observed to be 20.3 ms. The 90th percentile of l − pt values correspond to 8.1 ms,
with their average value computed to be 0.2 ms.

The experiments with 8 nodes highlights the lowered c values due to improved NTP
synchronization. For the experiments with average NTP offset 9ms, the maximum l−pt
difference was observed to be 107.9 ms. The 90th percentile of l−pt values correspond
to 41.4 ms, with their average value computed to be 4.2 ms. For the experiments with
average NTP offset 3ms, the maximum l−pt difference was observed to be 7.4 ms. The
90th percentile of l−pt values correspond to 0.1 ms, with their average value computed
to be 0 ms.

Using 4 m1.xlarge nodes
c offset=5ms offset=1.5ms
0 83.90 % 83.66 %
1 12.12 % 12.03 %
2 3.37 % 4.09 %
3 0.24 % 0.21 %

Using 8 m1.xlarge nodes
c offset=9ms offset=3ms
0 65.56 % 91.18 %
1 15.39 % 8.82 %
2 8.14 % 0 %
3 5.90 %
4 2.74 %
5 1.39 %
6 0.56 %
7 0.20 %
8 0.08 %
9 0.03 %

Using 16 m1.xlarge nodes
c offset=16ms offset=6ms
0 66.96 % 75.43 %
1 19.40 % 18.51 %
2 7.50 % 3.83 %
3 4.59 % 1.84 %
4 1.76 % 0.32 %
5 0.61 % 0.06 %
6 0.14 % 0.01 %
7 0.02 %

The 16 node experiments also showed very low c values despite all nodes sending to
each other at practically at the wire speed. For the experiments with average NTP offset
16ms, the maximum l − pt difference was observed to be 90.5 ms. The 90th percentile
of l− pt values correspond to 25.2 ms, with their average value computed to be 2.3 ms.
For the experiments with average NTP offset 6ms, the maximum l − pt difference was
observed to be 46.8 ms. The 90th percentile of l− pt values correspond to 8.4 ms, with
their average value computed to be 0.3 ms.

WAN Deployment Results. We deployed our HLC testing experiments on a WAN
environment as well. Specifically, we used 4 m1.xlarge instances each one located at
a different AWS region: Ireland, US East, US West and Tokyo. Our results show that
with 3ms NTP offset, the c = 0 values constitute about 95% of the cases and c =
1 constitute the remaining 5%. These values are much lower than the corresponding
values for the single datacenter deployment. The maximum l − pt difference remained
extremely low, about 0.02 ms, and the 90th percentile of l − pt values corresponded
to 0. These values are again much lower than the corresponding values for the single
datacenter deployment.

The reason for seeing very low l−pt and c values in the WAN deployment is because
the message communication delays across WAN are much larger than the ε, the clock
synchronization uncertainty. As a result, when a message is received, its l timestamp is
already in the past and is smaller than the l value at the receiver which is updated by its
pt. Since the single cluster deployment with short message delays is the most demand-
ing scenario in terms of HLC testing we focused on those results in our presentation.

Logical Physical Clocks 27

5.2 Stress Testing and Resilience Evaluation in Simulation

To further analyze the resiliency of HLC, we evaluated it in scenarios where it will
be stressed, e.g., where the event rate is too high and where the clock synchronization
is significantly degraded. In our simulations, we considered the case where the event
creation rate was 1 event per millisecond and clock drift varies from 10ms to 100ms.
Given the relation between l and pt from Theorem 2, the drift between l and pt is limited
to the clock drift. Hence, we focus on values of c for different events.

In these simulations, a node is allowed to advance its physical clock by 1ms as long
as its clock drift does not exceed beyond ε. If a node is allowed to advance its physical
clock then it increases it with a 50% probability. When it advances its clock, it can send
a message with certain probability (All simulations in this section correspond to the
case where this probability is 100%). We deliver this message at the earliest possible
feasible time, essentially making delivery time to be 0. The results are as shown in
Figure 6. As shown in these figures, the distribution of c values was fairly independent
of the value of ε. Moreover, for more than 99% of events, the c value was 4 or less. Less
than 1% of events had c values of 5-8.

To evaluate HLC in the presence of degraded clock synchronization, we added a
straggler node to the system. This node was permitted to violate clock drift constraints
by always staying behind. We consider the case where the straggler just resides at the
end of permissible boundary, i.e., its clock drift from the highest clock is ε. We also
consider the case where straggler violates the clock drift constraints entirely and it is
upto 5ε behind the maximum clock. The results are as shown in Figures 7 and 8. Even
with the straggler, the c value for 99% events was 4 or less. However, in these simu-
lations, significantly higher c values were observed for some events. In particular, for
the case where the straggler remained just at the end of permissible boundary, events
with c value of upto 97 were observed at the straggler node. For the case where the
straggler was permitted to drift by 5ε, c value of upto 514 was observed again only at
the straggler node. The straggler node did not raise the c values of other nodes in the
system.

We also conducted the experiments where we had a rusher, a node that was exces-
sively ahead. Figures 9 and 10 demonstrate the results. The maximum c value observed
in these experiments was 8. And, the number of events with c value greater than 3 is
less than 1%.

As a result of these experiments we conclude that the straggler node affects the c
value more than the rusher node, but only for itself. In our experiments, each node
selects the sender randomly with uniform distribution. Hence, messages sent by the
rusher node do not have a significant cumulative effect. However, messages sent by all
nodes to the straggler node causes its c value to grow.

6 Discussion

In this section, we discuss application of HLC for finding consistent snapshots in dis-
tributed databases, compact representations of l and c, and other related work.

28 S.S. Kulkarni et al.

Fig. 6. c value distribution for varying ε Fig. 7. c value distribution with ε straggler

Fig. 8. c value distribution with a 5ε straggler Fig. 9. c value distribution with a ε rusher

Fig. 10. c value distribution with a 5ε rusher

6.1 Snapshots

In snapshot read, the client is interested in obtaining a snapshot of the data at a given
time. HLC can be used to perform snapshot read similar to that performed by TrueTime.
In other words, with HLC, each process simply needs to choose the values with a given
timestamp (as described below) to obtain a consistent snapshot. Unlike approaches with
VC where checking concurrency of the chosen events is necessary, the events chosen
by our approach are guaranteed to be concurrent with each other. Moreover, unlike TT ,
there is no need to delay any transaction due to uncertainty in the clock values.

Logical Physical Clocks 29

To describe our approach more simply, we introduce the concept of virtual dummy
events. Let e and f be two events on the same node such that l.e < l.f . In this case,
we introduce dummy (internal) events whose l value is in the range [l.e + 1, l.f] and
c.f = 0. (If c.f = 0 then the last event in the sequence is not necessary.) Observe
that introducing such dummy events does not change timestamps of any other events
in the system. However, this change ensures that for any time t, there exists an event
on every node where l value equals t and c value equals 0. With the virtual dummy
events adjustment, given a request for snapshot read at time t, we can obtain the values
at timestamp 〈l= t, c=0〉.3 Our adjustment ensures that such events are guaranteed to
exist. And, by the logical clock hb relationship mentioned in requirement 2, we have
hlc.e = hlc.f ⇒ e||f and so we can conclude that the snapshots taken at this time are
consistent with each other and form a consistent global snapshot. Moreover, based on
Theorem 3 and Corollary 2, this snapshot corresponds to the case where the global time
is in the window [t − ε, t]. We refer the reader to Figure 11 for an example of finding
consistent snapshot read at time t = 10.

Fig. 11. Consistent snapshot for t=10 in HLC trace

6.2 Compact Timestamping Using l and c

NTP uses 64-bit timestamps which consist of a 32-bit part for seconds and a 32-bit part
for fractional second. (This gives a time scale that rolls over every 232 seconds—136
years— and a theoretical resolution of 2−32 seconds—233 picoseconds.) Using a single
64-bit timestamp to represent HLC is also very desirable for backwards compatibility
with NTP. This is important because many distributed database systems and distributed
key-value stores use NTP clocks to timestamp and compare records.

There are, however, several challenges for representing HLC as a single 64-bit times-
tamp. Firstly, the HLC algorithm maintains l and c separately, to differentiate between
increases due to the physical clock versus send/receive/local events. Secondly, by track-
ing the pt, the size of l is by default 64-bits as the NTP timestamps.

We propose the following scheme for combining l and c and storing it in single 64
bit timestamp. This scheme involves restricting l to track only the most significant 48
bits of pt in the HLC algorithm presented in Figure 4. Rounding up pt values to 48 bits l
values still gives us microsecond granularity tracking of pt. Given NTP synchronization

3 Actually we can obtain snapshot reads for any 〈l= t, c=K〉 and not just at 〈l= t, c=0〉.

30 S.S. Kulkarni et al.

levels, this is sufficient granularity to represent NTP time. The way we round up pt is
to always take the ceiling to the 48th bit. In the HLC algorithm in Figure 4, l is updated
similarly but is done for 48 bits. When the l values remain unchanged in an event, we
capture that by incrementing c following the HLC algorithm in Figure 4. 16 bits remain
for c and allows it room to grow up to 65536, which is more than enough as we show
in our experiments in Section 5.

Using this compact representation, if we need to timestamp (message or data item
for database storage), we will concatenate c to l to create the HLC timestamp. The
distributed consistent snapshot finding algorithm described above is unaffected by this
change to the compact representation. The only adjustment to be made is to round up
the query time t to 48 bits as well.

6.3 Other Related Work

Dynamo [28] adopts VC as version vectors for causality tracking of updates to the
replicas. Orbe [5] uses dependency matrix along with physical clocks to obtain causal
consistency. In the worst case, both these solutions require large timestamps. Cassandra
uses PT and LWW-rule for updating replicas. Spanner [2] employs TT to order dis-
tributed transactions at global scale, and facilitate read snapshots across the distributed
database. In order to ensure e hb f ⇒ tt.e < tt.f and provide consistent snapshots,
Spanner requires waiting-out uncertainty intervals of TT at the transaction commit time
which restricts throughput on writes. However, these “commit-waits” also enable Span-
ner to provide a stronger property, external consistency (a.k.a, strict serializability): if a
transaction t1 commits (in absolute time) before another transaction t2 starts, then t1’s
assigned commit timestamp is smaller than t2’s.

HLC does not require waiting out the clock uncertainty, since it is able to record
causality relations within this uncertainty interval using the HLC update rules. HLC
can also be adopted for providing external consistency and still keeping the throughput
on writes unrestricted by introducing client-notification-wait after a transaction ends.

An alternate approach for ordering events is to establish explicit relation between
events. This approach is exemplified in the Kronos system [7], where each event of
interest is registered with the Kronos service, and the application explicitly identifies
events that are of interest from causality perspective. This allows one to capture causal-
ity that is application-dependent at the increased cost of searching the event dependency
relation graph. By contrast, LC/VC/PT/HLC assume that if a node performs two con-
secutive events then the second event causally depends upon the first one. Thus, the
ordering is based solely on the timestamps assigned to the events.

Clock-SI [6] work considers the snapshot isolation problem for distributed data-
bases/data stores. In contrast to the conventional snapshot isolation implementations
that use a centralized timestamp authority for consistent versioning, Clock-SI proposes
a way to use NTP-synchronized clocks to assign snapshot and commit timestamps to
transactions. HLC improves the Clock-SI solution if it is used instead of NTP-clocks
in Clock-SI. HLC avoids incurring the clock-uncertainty wait-out delay in Figure 1 of
Clock-SI work [6], because HLC also uses hb information as encoded in HLC clocks.

Logical Physical Clocks 31

7 Conclusion

In this paper, we introduced the hybrid logical clocks (HLC) that combines the benefits
of logical clocks (LC) and physical time (PT) while overcoming their shortcomings.
HLC guarantees that (one way) causal information is captured, and hence, it can be
used in place of LC. Since HLC provides nodes a logical time that is within possi-
ble clock drift of PT, HLC is substitutable for PT in any application that requires it.
HLC is strictly monotonic and, hence, can be used in place of applications in order to
tolerate NTP kinks such as non-monotonic updates. HLC can be implemented using
64 bits space, and is backwards compatible with NTP clocks. Moreover, HLC only
reads NTP clock values but does not change it. Hence, applications using HLC do
not affect other applications that only rely on NTP. HLC is highly resilient. Since its
space requirement is bounded by theoretical analysis and is shown to be even more
tightly bounded by our experiments, we use this as a foundation to design stabiliz-
ing fault tolerance to HLC. snapshot read. Moreover, since the drift between HLC and
physical clock is less than the clock drift, a snapshot taken with HLC is an acceptable
choice for a snapshot at a given physical time. Thus, HLC is especially useful as a
timestamping mechanism in multiversion distributed databases. For example in Span-
ner, HLC can be used in place of TrueTime (TT) to overcome one of the drawbacks
of TT that requires events to be delayed/blocked in the clock synchronization uncer-
tainty window. An open source implementation of Spanner that uses HLC is available
at https://github.com/cockroachdb/cockroach.

Acknowledgment. The material is based upon work supported by National Science
Foundation awards NS-1329807 and CNS-1318678.

References

1. Bhatia, K., Marzullo, K., Alvisi, L.: Scalable causal message logging for wide-area environ-
ments. Concurrency and Computation: Practice and Experience 15(10), 873–889 (2003)

2. Corbett, J., Dean, J., et al.: Spanner: Google’s globally-distributed database. In: Proceedings
of OSDI (2012)

3. Demirbas, M., Kulkarni, S.: Beyond truetime: Using augmentedtime for improving google
spanner. In: Workshop on Large-Scale Distributed Systems and Middleware (LADIS) (2013)

4. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communications of
the ACM 17(11) (1974)

5. Du, J., Elnikety, S., Roy, A., Zwaenepoel, W.: Orbe: Scalable causal consistency us-
ing dependency matrices and physical clocks. In: Proceedings of the 4th Annual Sym-
posium on Cloud Computing, SOCC 2013, pp. 11:1–11:14. ACM, New York (2013),
http://doi.acm.org/10.1145/2523616.2523628

6. Du, J., Elnikety, S., Zwaenepoel, W.: Clock-SI: Snapshot isolation for partitioned data stores
using loosely synchronized clocks. In: IEEE Symposium on Reliable Distributed Systems
(SRDS), pp. 173–184 (2013)

7. Escriva, R., Dubey, A., Wong, B., Sirer, E.: Kronos: The design and implementation of an
event ordering service. In: EuroSys (2014)

8. Fan, R., Lynch, N.: Gradient clock synchronization. In: PODC, pp. 320–327 (2004)
9. Fidge, J.: Timestamps in message-passing systems that preserve the partial ordering. In: Pro-

ceedings of the 11th Australian Computer Science Conference, vol. 10(1), pp. 56–66 (1988)

 https://github.com/cockroachdb/cockroach
http://doi.acm.org/10.1145/2523616.2523628

32 S.S. Kulkarni et al.

10. Kingsbury, K.: The trouble with timestamps,
http://aphyr.com/posts/299-the-trouble-with-timestamps

11. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: Speculative byzantine
fault tolerance. SIGOPS Oper. Syst. Rev. 41(6), 45–58 (2007)

12. Kulkarni, S., Demirbas, M., Madeppa, D., Avva, B., Leone, M.: Logical physical clocks and
consistent snapshots in globally distributed databases. Tech. Rep. 2014-04, SUNY Buffalo
(May 2014)

13. Kulkarni, S., Ravikant: Stabilizing causal deterministic merge. J. High Speed Net-
works 14(2), 155–183 (2005)

14. Lakshman, A., Malik, P.: Cassandra: Structured storage system on a p2p network. In: Pro-
ceedings of the 28th ACM Symposium on Principles of Distributed Computing, PODC 2009,
p. 5 (2009)

15. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Communica-
tions of the ACM 21(7), 558–565 (1978)

16. The future of leap seconds,
http://www.ucolick.org/˜sla/leapsecs/onlinebib.html

17. Another round of leapocalypse, http://www.itworld.com/
security/288302/another-round-leapocalypse

18. Li, C., Porto, D., Clement, A., Gehrke, J., Preguiça, N., Rodrigues, R.: Making geo-replicated
systems fast as possible, consistent when necessary. In: Symposium on Operating Systems
Design and Implementation (OSDI 2012), pp. 265–278 (2012)

19. Lloyd, W., Freedman, M., Kaminsky, M., Andersen, D.: Don’t settle for eventual: Scalable
causal consistency for wide-area storage with cops. In: SOSP, pp. 401–416 (2011)

20. Maroti, M., Kusy, B., Simon, G., Ledeczi, A.: The flooding time synchronization protocol.
In: SenSys (2004)

21. Mashtizadeh, A., Bittau, A., Huang, Y., Mazières, D.: Replication, history, and grafting in
the ori file system. In: SOSP, pp. 151–166 (2013)

22. Mattern, F.: Virtual time and global states of distributed systems. In: Parallel and Distributed
Algorithms, pp. 215–226 (1989)

23. Mills, D.: A brief history of ntp time: Memoirs of an internet timekeeper. ACM SIGCOMM
Computer Communication Review 33(2), 9–21 (2003)

24. Patt-Shamir, B., Rajsbaum, S.: A theory of clock synchronization (extended abstract). In:
ACM Symposium on Theory of Computing (STOC), pp. 810–819 (1994)

25. Saito, Y.: Unilateral version vector pruning using loosely synchronized clocks. Tech. rep.,
HP Labs (2002)

26. Sigelman, B., Barroso, L., Burrows, M., Stephenson, P., Plakal, M., Beaver, D., Jaspan, S.,
Shanbhag, C.: Dapper, a large-scale distributed systems tracing infrastructure. Tech. rep.,
Google, Inc. (2010),
http://research.google.com/archive/papers/dapper-2010-1.pdf

27. Sovran, Y., Power, R., Aguilera, M., Li, J.: Transactional storage for geo-replicated systems.
In: SOSP, pp. 385–400 (2011)

28. Vogels, W.: Eventually consistent. Communications of the ACM 52(1), 40–44 (2009)
29. Wu, Z., Butkiewicz, M., Perkins, D., Katz-Bassett, E., Madhyastha, H.: Spanstore: Cost-

effective geo-replicated storage spanning multiple cloud services. In: SOSP, pp. 292–308
(2013)

30. Zhang, Y., Power, R., Zhou, S., Sovran, Y., Aguilera, M., Li, J.: Transaction chains: Achiev-
ing serializability with low latency in geo-distributed storage systems. In: SOSP, pp. 276–291
(2013)

http://aphyr.com/posts/299-the-trouble-with-timestamps
http://www.ucolick.org/~sla/leapsecs/onlinebib.html
http://www.itworld.com/security/288302/another-round-leapocalypse
http://www.itworld.com/security/288302/another-round-leapocalypse
http://research.google.com/archive/papers/dapper-2010-1.pdf

Be General and Don’t Give Up Consistency

in Geo-Replicated Transactional Systems

Alexandru Turcu, Sebastiano Peluso, Roberto Palmieri, and Binoy Ravindran

Virginia Tech, ECE Department, Blacksburg VA 24061, USA
{talex,peluso,robertop,binoy}@vt.edu

Abstract. We present Alvin, a system for managing concurrent trans-
actions running on a set of geographically distributed sites. Alvin sup-
ports general-purpose transactions, and guarantees strong consistency
criteria. Through a novel partial order broadcast protocol, Alvin maxi-
mizes the parallelism of ordering and local transaction processing. Alvin

processes read-only transactions either locally or globally, according to
the selected consistency criterion, and orders only conflicting transac-
tions across all sites. We built Alvin in the Go language and con-
ducted an evaluation study relying on the Amazon EC2 infrastructure
and Paxos- and EPaxos-based state machine replication protocols as
competitors. Our experimental results reveal that Alvin provides sig-
nificant speed up for read-dominated TPC-C workloads and on 7 data-
centers by as much as 4.8x when compared to EPaxos, and up to 26%
in write-intensive workloads.

Keywords: Geo-Replication, Transaction, Distributed System.

1 Introduction

In the recent years, transaction processing on geographically distributed com-
puter systems (or “GDS”) received significant research interest [22,12,23,5,17].
Geo-replicated concurrency control protocols can be classified in two approaches.
The first approach ensures high consistency, but restricts the type of transactions
that are allowed [23,17]. This enables exploiting specific protocol optimizations
to achieve high performance. The second approach allows general-purpose trans-
actions, but weakens the consistency criterion for better performance [2,22]. This
has the negative effect of reduced programmability, as programmers must cope
with potential inconsistent states in application behaviors.

Motivated by this gap between strong consistency/poor performance and weak
consistency/good performance, we propose a geo-replicated transactional system
called Alvin, which finds an effective tradeoff between performance and strong
consistency. At the core of Alvin is a novel Partial Order Broadcast protocol
(POB) that globally orders only conflicting transactions and minimizes the num-
ber of communication steps for non-conflicting transactions. While the idea of
defining the agreement of consensus on the basis of message semantics is not new
and has been previously introduced in Generalized Consensus [13] or Generic

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 33–48, 2014.
c© Springer International Publishing Switzerland 2014

34 A. Turcu et al.

Broadcast [19], POB encompasses a novel approach for ordering transactions’
commits that overcomes the limitations of existing single leader-based solutions
(i.e., Generalized Paxos [13]) when deployed in GDS. POB does not rely on a
designated leader to either order transactions or support conflict resolution in
case of conflicting concurrent transactions.

POB has been designed to inherit the benefits of state-of-the-art, multi-leader,
state machine replication protocols specifically proposed for GDS such as Men-
cius [16] and EPaxos [17], and, at the same time, to overcome their drawbacks.
In particular, POB, like Mencius [16], has the advantages of defining the final
order of messages on the sender nodes. Typically, this technique avoids expensive
distributed decisions by determining an a priori assignment of delivered positions
to messages. This approach suffers from potentially expensive waiting conditions
that are needed to ensure that the delivery of a message in position p does not
precede the delivery of a message in position p′ < p. However, POB, unlike Men-
cius, relies on a quorum of replies, instead of waiting for the information about
delivered positions from all nodes. This makes POB’s performance robust even
in scenarios where nodes are far apart (as is often the case in GDS), or when
the message sending rate is unbalanced among nodes.

On the other hand, POB, like EPaxos [17], may adjust the order of a message
that has been already proposed, according to its dependencies, to reduce com-
munication steps in scenarios of no conflicting proposals of dependent messages.
However, unlike EPaxos, POB does not need to build a dependency graph of re-
ceived messages and avoids the execution of complex tasks on that graph. Such
housekeeping operations can be significantly expensive in transaction processing:
the number of dependencies in the dependency graph can rapidly grow when a
transaction’s size and data contention increases.

Roughly, in POB, each node is the leader of transactions originating on it
and is responsible for assigning a final position to those transactions. A node
has a predefined and exclusive subset of positions that can be used for the
assignment. As in Mencius, transactions can be delivered in the order defined by
their position numbers. However, unlike Mencius, the delivery of a transaction
at a certain position does not need to wait for the notification of all previous
positions. This is because, besides a position, a transaction T is associated with
a set of dependencies, namely, the set of transactions conflicting with T that
must precede T in the order defined by POB. T ’s leader computes the position
and the dependencies of T on the basis of a partial view of the system built by
means of quorums. POB ensures that for any pair of transactions T1 and T2, if
T1 is in T2’s dependencies, then the position of T1 is less than the position of
T2. Therefore, a transaction T is delivered on a node after all transactions in T ’s
dependencies have been delivered on that node.

POB’s advantages are fully exploited by P-CC, a local parallel concurrency
control layer that we propose. P-CC commits non-conflicting transactions in
parallel with conflicting transactions, thereby increasing the parallelism.

Alvin’s processing model allows clients to execute transactions locally on the
spawning site, whose execution is globally certified against concurrent

Be General and Don’t Give Up Consistency 35

transactions at other sites. To this goal, POB disseminates transactions and P-
CC locally validates and commits them according to the delivery order provided
by POB using a timestamp-based multi-versioning scheme. This combination
allows all transactions, including those aborted, to always observe a consistent
state. This property is mandatory for in-memory deployment in order to avoid
unexpected failures due to inconsistent memory accesses [8].

In addition to these features, Alvin exports design choices to programmers
to customize the POB and P-CC according to the needs of the application and
system at hand. As an example, Alvin offers two strong consistency criteria
that programmers can select, namely, Serializability (SR) [3] and Extended Up-
date Serializability (EUS) [1,20] (i.e., PL-3U [1]). With the former, transactions
that never write (i.e., read-only) must be broadcast through POB. In contrast,
with the latter, such transactions execute locally at the cost of generating some
non-serializable schedules, which, however, are usually silent to the application.
Another example is the potential for computing a fast decision on the transaction
delivery order, at the cost of quorum bigger than that for a classic decision.

We built Alvin in the Go programming language and evaluated on the Ama-
zon EC2 infrastructure using up to 7 sites, and benchmarks including Bank [11]
and TPC-C [6]. As competitors, we implemented two certification-based trans-
actional systems [18] that rely on MultiPaxos [14] and EPaxos [17] for their
ordering layer. Our experiments reveal that Alvin provides significant speed up
for TPC-C workloads and 7 datacenters by as much as 4.8× when compared to
EPaxos and configured for exploiting EUS. This significant gain is due to a more
efficient execution of read-only workload, which is enabled by EUS’s semantics.
Rather, if Alvin runs under SR, it gains up to 26% over EPaxos because it does
not pay the cost of graph analysis needed by EPaxos for delivering transactions.
On Bank, due to its small transactions and trivial dependency graphs, that cost
is not significant, thus EPaxos behaves similarly to Alvin. MultiPaxos highlights
the drawbacks of having a single leader in GDS, thus its performance is lower
than other (multi-leader) competitors.

The paper makes the following contributions: (1)Alvin, the first geo-replicated
transactional system that guarantees a strong consistency level and supports the
execution of general-purpose transactions in classic asynchronous environments;
(2) a novel multi-leader protocol for partially ordering transactions, enabling high
scalability in geo-replicated environments. In addition, the protocol does not need
complex local processing for determining the final delivery order, yielding reduced
client-perceived latency; (3) a publicly available prototype1, which can be cus-
tomized for coping with different execution environments.

2 Related Work

Many modern transactional systems employ geo-replication as a means to reduce
data access latency and to provide fault-tolerance and disaster recovery.

1 http://www.hyflow.org/software.html

36 A. Turcu et al.

Spanner [5] is Google’s globally-replicated database. It provides externally-
consistent transactions, but its architecture is complex: it relies on the TrueTime
API, which exposes the absolute time and the uncertainty of the time measure-
ment. Alvin’s architecture is more general and suited for easier deployment.

Walter [22] and MDCC [12] are two solutions designed for geo-replicated trans-
actional systems. Walter ensures Parallel Snapshot Isolation, which allows non-
conflicting write transactions that span multiple sites to commit even if they
observed incompatible histories. Alvin ensures that all update transactions are
serializable. On the other hand, MDCC commits transactions by using one in-
stance of Multi-Paxos [14] (or Generalized Paxos [13] to exploit commutative
operations) per replication group containing the accessed data items and, if a
transaction touches multiple replication groups, an additional phase is required
to reach a consensus among the leaders of the various groups.

Lynx [23] is a geo-distributed transactional storage that works by chopping
transactions into sequences of pieces. Each piece executes at a different datacen-
ter, and the system usually replies to clients after the first hop. Lynx’s drawback
is that it does not tolerate aborts after a chain’s first segment.

Finally, we consider EPaxos [17] and Mencius [16] as the closest approaches
to Alvin. EPaxos [17] proposes a partial order protocol for ordering conflicting
commands and it uses a per-command leader to avoid the designated leader of
(Generalized) Paxos. It considers two types of quorums for executing a command:
one is used for implementing a fast-path of one round-trip of communication in
case the command does not conflict with other concurrent commands; the other
is used in case two phases of communication are required to agree on the order.

EPaxos yields high performance but it has several drawbacks when plugged
in transactional processing or in the presence of read operations. In fact, af-
ter having agreed on the dependency set for a command, each node adds that
command to a dependency graph and its execution is in accordance with an
order computed over the strongly connected components of that graph. In case
a command represents a transaction or even a read operation, the client has to
wait until the command’s outcome is available, thus putting the graph analysis
into the execution’s critical path. Alvin is not based on graph analysis because
dependencies are already available when the transaction attempts to commit,
thus resulting in better performance.

At the core of Mencius’ [16] ordering protocol there is the fixed assignment
of sending slots to nodes. A sender can decide the order of a message only after
hearing from all nodes. This approach results in poor performance in case there
is a slow or faraway node, as in geo-replication.

3 Assumptions and System Model

We assume a set of geographically distributed sites Π = {P1, P2, . . . , PN} that
cooperate to synchronize their activities on common shared data. They rely on
a wide area network as the communication infrastructure, therefore we assume
an asynchronous distributed system. We do not assume any specific distribution

Be General and Don’t Give Up Consistency 37

of network delays and we do not upper-bound them either. Every message may
experience an arbitrarily large, although finite, delay.

Each site (or node) can be seen as a logical representation of a datacenter.
Managing the synchronization within each datacenter is an orthogonal problem
which we scope out in this paper. Each site is equipped with the entire shared
data set, thus transactions running on that site can access data locally.

We assume that the total number of sites is equal to N , where at most f <⌈
N
2

⌉
of them can be faulty at any time, thus at least a majority of nodes is

always correct. In this paper we assume sites fail according to the crash-stop
failure model [3] and we scope out any malicious behavior. In any ordering
communication step, a node contacts all the sites and waits for a quorum Q of
replies. We define two types of quorum size: a classic quorum (CQ) size and a
fast quorum (FQ) size. We assume that both CQ and FQ are at least equal to⌊
N
2

⌋
+ 1. This way any two quorums always intersect, thus ensuring that, even

though f failures happen, there is always at least one site with the last updated
information that we can use for recovering the system. The values assumed by
CQ and FQ are configuration-dependent, and they will be specified throughout
the presentation of the communication layer.

In order to eventually reach an agreement on the order of transactions when
sites are faulty (e.g., a datacenter is unreachable), we assume that the system
can be enhanced with the weakest type of unreliable failure detector [10] that is
necessary to implement a leader election service [9].

4 Alvin: Geo-Replicated Transactional System

We propose simple object-oriented interfaces, where all accesses (Read, Write)
to shared objects are enclosed between Begin and Commit operations.

Alvin bases its benefits on the exploitation of a partial order of transactions
rather than a total order. In fact, ordering all the transactions’ commits on all
nodes is sufficient to guarantee that all nodes execute the same state transitions,
but it is too strong as a condition, especially in GDS, because it enforces that the
finalization of a transaction is delayed by the completion of even non-conflicting
transactions, thus hampering the system’s scalability. On the contrary, enforcing
that only conflicting transactions are ordered on all nodes (as in Alvin) has
a twofold benefit: it still guarantees that all nodes eventually converge on a
common state, and it allows a degree of parallelism needed for scaling in low
inter-datacenter conflict scenarios (which are the expected workloads in GDS).

The software architecture of Alvin includes two fundamental layers: the Par-
tial Order Broadcast layer (POB) and the Parallel Concurrency Control layer
(P-CC). POB is in charge of broadcasting transactions to certify and commit
them according to the certification-based approach [18] and in a way such that
conflicting transactions are always delivered in the same order on all nodes. P-
CC is responsible for optimistically executing transactions by always providing
a consistent view of the transactional state, and applying the updates of write
transactions that can commit. This makes Alvin a geo-replication solution also

38 A. Turcu et al.

suitable for in-memory transactional systems, which require that all transactions
(even those aborted) do not observe incorrect states. This requirement has been
defined to be desirable for non-sandboxed environments [8] because reading from
an inconsistent snapshot could generate an application’s unrecoverable failure.

The transactional application executing on top of the platform is composed
of multiple threads balanced on all nodes. According to the certification-based
replication scheme [18], each thread activates and executes a transaction T at
the same node where it is running, recording objects read from and written to in
private spaces called the read-set (T.RS) and the write-set (T.WS) respectively.
T is optimistically executed under the control of P-CC and, when it reaches

the stage where all of its operations have been executed, the executing thread
broadcasts T via the POB layer and waits until T is globally validated and either
aborted or committed. In the former case the application thread has to re-issue
T from its very beginning; in the latter case T ’s updates are applied to the
transactional shared state after the commit of any other transaction preceding T
in the order defined by POB. During the optimistic execution of a transaction,
in fact, the updates of write operations are only buffered in the transaction’s
write-set and they cannot be directly applied to the shared state because the
transaction could abort later on.

The POB layer provides two interfaces to send and receive a transaction T :
POBroadcast(T), used for broadcasting a transaction T along with its read-set
and write-set; PODeliver(T, {T1, · · · , Tm}), used for delivering a transaction
T to nodes, along with the set of transactions {T1, · · · , Tm}, defined as depsT ,
which conflict with T and must be processed (i.e., certified and possibly com-
mitted) before T . Formally, two transactions T and T ′ are conflicting if at least
one of the following three conditions are verified: (i) T.WS ∩ T ′.WS �= ∅, (ii)
T.WS ∩ T ′.RS �= ∅, (iii) T.RS ∩ T ′.WS �= ∅.

4.1 Partial Order Broadcast Layer

The core idea behind the design of POB is guaranteeing that all nodes agree on
the same delivery order for conflicting transactions. This is because, if two trans-
actions do not conflict, then they can be validated and committed (or aborted)
in any order (i.e., all the orders are equivalent due to the absence of conflicts).
Formally, POB guarantees that any pair of conflicting transactions – i.e., two
transactions that access at least one common object, where at least one of the
accesses is a write operation – are not delivered in different orders on two nodes.

Therefore POB guarantees the following properties:
- P1: Strong Uniform Conflicting Order. If some node delivers message m =

[T, depsT] before messagem′ = [T ′, depsT ′] and transactions T and T ′ conflict,
then every node delivers m′ only after m.

- P2: Local Dependency. For any node that delivers message m = [T, depsT]
before message m′ = [T ′, depsT ′] and T and T ′ conflict, then T ∈ depsT ′ and
T ′ �∈ depsT (i.e., no circular dependency between conflicting transactions).
Property P1 is defined as strong because it does not allow omission of mes-

sages. It is in contrast with the weak order property that, instead, allows the

Be General and Don’t Give Up Consistency 39

omission of messages despite the fact that the order of delivery on all nodes is
still preserved. In particular, POB does not allow a scenario in which a node Pi

delivers m before m′ while a node Pj delivers m′ without delivering m, where
m and m′ contain two conflicting transactions. We need the strong version of
this property because in transaction processing, even if the partial order is not
violated, the aforementioned scenario can generate two different outcomes for
the same transaction T ′, enclosed in m′, on the nodes Pi and Pj . As an example,
the P-CC on Pi could abort T ′ because its execution has been invalidated by
transaction T contained in m, while Pj commits T ′.

The property P2 regards the semantics of the interfaces exposed to P-CC. In
particular, when POB delivers a message m′ = [T ′, depsT ′] to P-CC, transaction
T ′ has to wait for the completion of all the transactions in depsT ′ before deter-
mining its outcome. This condition is sufficient for ensuring that all transactions
are processed in accordance with the partial order defined by POB. In addi-
tion, POB also guarantees the typical properties of a reliable broadcast service
(Validity, Integrity, Uniform Agreement) [7].

Due to space constraints we report the detailed correctness proofs of POB in
the technical report.

Overview. The idea of enforcing an order only among conflicting commands
has already been specified by the Generalized Consensus [13] and Generic Broad-
cast [19] problems and followed by a set of implementations, e.g., Generalized
Paxos [13], EPaxos [17]. POB improves the above proposals by relying on a fully
decentralized design without leveraging on a stable leader to establish the order
of transactions and without expensive housekeeping computations before issuing
the delivery of a transaction.

The main idea behind POB is to define a deterministic scheme for the as-
signment of delivery slots (i.e., positions in the final order that are associated
with positive integers) to submitted transactions, by following the general design
of communication history-based total order broadcast protocols [7,16] in which
the delivery order of messages is determined by the senders. In POB, for each
transaction T we define a unique transaction leader tlT that establishes the final
delivery position of T by applying the following rules:
- Rule 1. If a node Pi is T ’s leader (i.e., tlT), then T can only be delivered in

unused positions numbered with posT , such that posT mod N = i.
- Rule 2. Transaction T ′ is delivered in position posT ′ if and only if, for each

conflicting transaction T delivered in position posT > posT ′ , T ′ ∈ depsT and
T �∈ depsT ′ , where depsT (respectively depsT ′) is the set of transactions which
T (respectively T ′) depends on.
Rule 1 guarantees that two transactions from different leaders cannot occupy

the same position. However, Alvin is also able to concurrently broadcast mul-
tiple requests from the same node and, as it will be clear later, this could cause
two transactions from the same leader to be assigned the same position number.
Such transactions are deterministically ordered using the transaction identifier.
On the other hand, Rule 2 is specifically defined for satisfying property P2.

40 A. Turcu et al.

The transaction leader tlT for a transaction T is either the sender of T , or any
other elected node if T ’s sender is suspected as crashed by the failure detector.

Protocol. A transaction T , that is submitted to the POB service via the PO-

Broadcast(T) interface, goes through four phases: Proposal phase, Decision
phase, Accept phase and Delivery phase.

Proposal phase. The node Pi, acting as the leader of T (i.e., tlT), selects the
next available position number for T to be proposed to all the other nodes. This
position, named posT , is the smallest number among the ones allowed by Rule
1 and greater than any other position that Pi has observed as already used. Pi

also selects the set depsT of dependencies, namely all transactions T ′ conflicting
with T and having a (even temporary) position less than posT .

Subsequently, Pi broadcasts a Propose message with the tuple 〈T , posT ,
depsT , e〉 to all nodes. By broadcasting a transaction T we mean broadcasting
T ’s identifier (T.tid), read-set (T.RS) and write-set (T.WS).

The e value is an epoch number associated with transaction T and the mes-
sages containing T . It identifies the epoch in which messages for T can be ex-
changed. A transition to a new epoch is forced by T ’s new elected leader when
T ’s old leader is suspected as crashed. Messages associated with an epoch e1
cannot be processed by nodes that have already executed a transition to an
epoch e2, with e2 > e1. In the Propose message, the epoch number is 0 since
it identifies the initial epoch of T in which T ’s sender is recognized by default
as the initial leader tlT of T .

A node Pj receiving a Propose message for T , replies with an AckPropose

message in order to update Pi with the set of transactions conflicting with T and
observed by Pj so far, i.e., newDepsjT , and a possibly new position to be chosen

for T , i.e., newPosjT . In particular, let us define tempjT as the smallest number
among the ones allowed by Rule 1 for Pi and greater than any other position used
by transactions conflicting with T and already received by Pj . Then newPosjT
is equal to tempjT in case tempjT is greater than posT (the position proposed by

Pi); otherwise it is equal to posT . On the other hand, newDepsjT is the set of all
transactions T ′ conflicting with T and having a (even temporary) position less
than newPosjT .

A transaction T received during this phase is marked as Pending and it is
inserted in a data structure named delivery queue (DQueue). On each node Pj ,
DQueue is a queue storing the transactions received by Pj as tuples 〈T , posT ,
depsT , status〉, where status has values in {Pending, Accepted, Stable}.
The tuples in the DQueue are totally ordered according to their posT ’s values.

Decision phase. Transaction T ’s leader Pi waits for a quorum of FQ replies
from the previous phase. It then computes the final position posT and final
dependencies depsT that are used for the delivery of T in the next phases as
follows: posT is the maximum position among the proposals (newPosjT) in the

quorum, while depsT is the union among the dependency sets (newDepsjT) pro-
posed in the quorum. Afterwards, Pi broadcasts an Accept message for T with
the final position and dependencies in order to request to other nodes to accept

Be General and Don’t Give Up Consistency 41

the delivery of T . The value of FQ in the base configuration of POB is equal to
f + 1. Section 4.1 shows how to enable a so called fast transaction decision by
changing the value of FQ.

Accept phase. A node Pj receiving T updates its DQueue accordingly. This
means changing the status of T to Accepted and replacing the old values of
posT and depsT with the ones received in this phase. Then Pj replies with an
AckAccept message by including posT and a possibly new set of dependencies
newDepsjT . In fact, in this phase Pj can also attach an additional set deltadepsT
to depsT , if it detects that it received transactions T δ conflicting with T and
having a position in between the old and the new values of posT in DQueue.
This is because, Pj could have been received T δ after that depsT was computed

in the Proposal phase. More formally, newDepsjT is equal to depsT ∪deltadepsT ,
where deltadepsT is the set of all transactions T ′ �∈ depsT conflicting with T and
having a (even temporary) position less than posT .

Delivery phase. T ’s leader Pi waits for a quorum of CQ replies from the previ-
ous phase, where CQ is equal to f + 1, to be sure that its decision will be stable
even if f failures (including itself) occur. After that, it broadcasts its decision
via a Stable message including posT , which was already decided in the Decision
phase, and depsT , which is computed as the union of the newDepsjT collected
during the previous phase.

A node receiving the Stable message for T marks T as Stable in its DQueue
by also replacing the old values of posT and depsT with the ones received in this
phase. Then, the node can deliver the message [T, depsT] to the concurrency
control when all transactions in depsT have been already delivered by triggering
PODeliver(T, depsT).

Since the position of a transaction T ′ can change throughout the execution of
the POB protocol, there might be scenarios in which a transaction T ′′ ∈ depsT ′

becomes Stable with a position posT ′′ greater than the final position of T ′,
which would lead T ′ to wait infinitely for a conflicting transaction that is actually
ordered after it. To address this problem, in such a case T ′′ is removed from the
depsT ′ set. Note that, when this condition is true, T ′ is guaranteed to be already
present in depsT ′′ .

Failure Recovery. When a node Pk detects that T ’s current leader Pi crashed,
and Pk has not yet marked T as Stable, it attempts to become T ’s new leader by
executing a classic Paxos Prepare phase [14]. Therefore, Pk broadcasts an epoch
number e for T greater than the last one observed for T . Then it waits for a
Promise from a quorum Q of f+1 nodes, meaning that they will not participate
in any new Prepare phase or Proposal/Accept phases for T associated with an
epoch number less than e. The nodes in Q also send back the latest status known
for T and identified by the most recent tuple 〈T , posT , depsT , status〉 they have
in their DQueue. This allows Pk to take a final decision that cannot differ from
the one Pi took (if any).

Therefore, we distinguish three cases depending on the value of status:

42 A. Turcu et al.

- At least one 〈T , posT , depsT , Stable〉 is received from Q. In this case, Pk

starts a Delivery phase by broadcasting a Stable message for T with posT
and depsT .

- At least one 〈T , posT , depsT , Accepted〉 is received from Q and no Stable

status is present. In this case, Pk starts an Accept phase by broadcasting an
Accept message for T with posT and depsT .

- Neither Accepted nor Stable value is received from Q. In this case, Pk

selects a new position available for T by restarting a new instance of the
protocol starting from the Proposal phase for T .

Fast Transaction Decision. POB can be configured to allow a so called fast
transaction decision about the order of a transaction if there are no concurrent
conflicting transactions. The idea is the same as adopted in [15,17] and entails
that a transaction leader can determine the final position of a transaction early,
i.e., after only two communication steps, because it has received all equal Ack-

Propose messages from a quorum of nodes in the Decision phase. Enabling the
fast decision introduces a trade-off. On the one hand, the leader can define the
order of a transaction in fewer communication delays, but on the other hand,
quorum sizes become bigger and the recovery phase more complex.

When fast decisions are enabled, POB must use a size FQ greater than CQ,
i.e., fast quorums bigger than classic quorums, otherwise a fast ordering decision
by a transaction leader Pi could be irrecoverable after the fault of Pi. Specifically,
the new leader of a transaction T , e.g., Pk, has to decide in the same way the
old leader of T , e.g., Pi, decided.

First of all, we have to notice that in case Pi had a fast decision for T by
including (respectively not including) a concurrent and conflicting transaction
T ′ in its dependencies, it would be impossible that the leader of T ′ also had
a fast decision by including (respectively not including) T in its dependencies,
due to the definition of quorums. Therefore, a trivial recovery of Pk would be
contacting the leader of T ′ to know the final decision for T ′ with respect to T .
On the contrary, in case the new leader of T , i.e., Pk, is not able to contact the
current leaders of the transactions conflicting with and concurrent to T , it must
take a decision by analyzing collected replies.

If Pi had a fast decision for T , i.e., it collected all equal proposals for T hence it
decided in two communication steps, we have to enforce a deterministic behavior
on the quorum of replies collected by Pk during recovery. Specifically, in that

case, we want Pk to have a majority (i.e.,
⌊
CQ
2

⌋
+ 1) of values equal to the fast

decision in the quorum of replies collected during recovery. In other words, when
the new leader of T collects a classic quorum in the recovery phase, then the
number of replies different from a possible fast decision of the old leader (and
that do not include the reply from the leader of a generic conflicting transaction),

i.e., N −FQ− 1, has to be less than the majority in the quorum, i.e.,
⌊
CQ
2

⌋
+1.

Equation 1 follows.

Be General and Don’t Give Up Consistency 43

In addition to the above, another constraint is needed to avoid two new leaders
of two conflicting and concurrent transactions T and T ′, here called opponents,
both believing that the associated old leaders of T and T ′ respectively had fast
decisions. So after f failures and ignoring the reply from the other opponent,
i.e., −1, two opponents cannot both collect a sufficient number of replies, i.e.,
N−f
2 , that summed up f form a fast quorum. Equation 2 follows.

N − FQ− 1 <

⌊
CQ

2

⌋
+ 1 (1)

N − f
2

+ f − 1 < FQ (2)

If we minimize the ratio N
f by still considering f <

⌈
N
2

⌉
, e.g., N = 2f +1, we

obtain the following sizes for the classic and fast quorums, respectively:

CQ = f + 1 (3) FQ = f +

⌊
f + 1

2

⌋
(4)

Note that CQ and FQ in Equations 3 and 4 have the same values adopted by
EPaxos. The new recovery phase that applies under this optimization is a trivial
extension of the recovery procedure as presented in EPaxos.

By using these new values for CQ and FQ, the fast transaction decision works
as follows. After having collected FQ AckPropose in the Proposal phase for
transaction T , T ’s leader can directly send the final decision via the Stable

message if all the collected proposals are the same. Otherwise it proceeds in the
classic way by entering the Accept phase.

4.2 Parallel Concurrency Control Layer

Each node in the system is equipped with a Parallel Concurrency Control layer
(P-CC) that is responsible for executing transactions submitted by clients as
well as processing the commit of transactions delivered by POB.

We can split P-CC’s operations into two parts. The first part, the execu-
tion phase, is responsible for executing transactions optimistically. Following the
classic multi-version concurrency control scheme implemented in state-of-the-art
in-memory transactional systems [4], a transaction executes its read operations
on the snapshot of memory present at the time of its beginning (i.e., which in-
cludes the set of commits applied before the transaction began), while its writes
are buffered and can be applied atomically on all nodes only if the transaction
can commit. At this stage, the transaction’s read-set and write-set are also built.

The second part, the commit phase, is responsible for validating and com-
mitting the optimistic execution of transactions on all nodes. This is done by
sending the commit message of a transaction T with T ’s read-set and write-set
via the POB layer, and triggering the validation of T as soon as T is delivered
by POB. A sufficient condition to guarantee that T appears as executed atomi-
cally on all nodes is to validate it by checking that no value read by T has been
updated in between its beginning and its finalization.

44 A. Turcu et al.

The P-CC layer guarantees that i) every transaction, including aborted ones,
observes a consistent state, and ii) the set of committed transactions satisfies
Serializability (SR). Even if SR is one of the reference consistency criteria for
transactional systems, it might be considered not necessary for several types of
applications [20]. Such applications stand to benefit from requiring: i) that the
transactional state never performs a transition to an incorrect state, and ii) that
all operations always observe consistent states. While the former requires that
only update transactions appear as executed sequentially (as demanded by SR),
the latter allows to implement read-only transactions with lower guarantees.

In order to take advantage of the above considerations, Alvin supports an-
other strongly consistent criterion, besides SR, named Extended Update Serial-
izability (EUS) [1], which can be considered as strong as Serializability for many
common workloads [20,6]. Roughly speaking, EUS preserves Serializability of
committed update transactions and disallows any transaction to observe incor-
rect states. However, with EUS, two read-only transactions might observe two
different non-compatible histories of commits, caused by a different perceived
commit order of non-conflicting update transactions. EUS gives the necessary
flexibility to Alvin for committing two update non-conflicting transactions Th
and Tk in an arbitrary order thanks to the POB layer, such that Th completes
before Tk on a node Pi, and vice-versa on another node Pj . At that point, trans-
actions Tq and Tw that are executing on nodes Pi and Pj respectively, are allowed
to observe two different serializations of Th and Tk without providing any incon-
sistent view to the application. Then, in case Tq and Tw are read-only, they are
also allowed to commit under EUS.

Therefore, in order to allow behaviors like the one described above, and to
support EUS, P-CC can be configured to avoid the global certification of read-
only transactions through POB at commit time, so that a read-only transaction
can safely commit as soon as it has been processed locally. In fact, as described
in [21], certification-less read-only transactions disallow Serializabiliy in case a
total order on the commit of update transactions is not enforced.

Summarizing, since POB ensures a total order among commits of conflicting
(both read-only and update) transactions and P-CC ensures that the read-set
of committed transactions is not invalidated by concurrent transactions, then
Alvin enforces SR [21]. Moreover, P-CC guarantees that all read operations re-
turn the last value committed before the beginning of the transaction execution.
This way, any transaction can never observe inconsistent states. Therefore, if
read-only transactions are only processed locally without being submitted for a
global certification, Alvin guarantees SR restricted to committed update trans-
actions, as demanded by EUS.

5 Evaluation

We evaluate Alvin by comparing it against two certification-based transaction
execution protocols [18] that rely on MultiPaxos [14] and EPaxos [17] for their
ordering layer. MultiPaxos ensures serializability by total-ordering the commit

Be General and Don’t Give Up Consistency 45

(a) Write-intensive workload for {3,5,7}
sites and {1,3} nodes per site.

(b) 50% and 90% read-only transactions.
One node per site.

Fig. 1. Throughput of TPC-C benchmark

requests for all write transactions, while serving read-only transactions locally
leveraging multi-versioning. However, MultiPaxos is sequencer-based, thus the
location of the node designated as the leader significantly affects its performance.
In order to conduct a fair comparison, we used two versions of MultiPaxos: one
with the leader located at a node with a point-to-point latency to other nodes
that is higher than the average (Paxos-HI), and another where the connection
latency is lower (Paxos-LO). We implemented Alvin and competitors in the
same transaction processing framework, using Go as the programming language.

We used two benchmarks in the evaluation: TPC-C [6] and Bank [11]. The
former is a well known benchmark representative of on-line transaction process-
ing workloads; the latter mimics operations of a monetary application where
each transaction transfer amount of money among bank accounts. We ran our
experiments on the Amazon EC2 infrastructure, using r3.2xlarge nodes in up
to 7 geographically distributed sites (three in Asia, two in North America, one
in South America and Europe). Each node has 8 CPU cores and 61GB RAM.
Results are the average of 7 samples.

Figure 1 reports Alvin’s throughput of TPC-C benchmarks by varying the
number of geographically distributed sites {3,5,7}. In Figure 1(a) we also changed
the number of nodes per site as {1,3}, using a write intensive workload (<3%
read-only). Results on read-dominated workloads are showed in Figure 1(b).
Here we change the percentage of read-only transactions from 50% to 90% while
using one node per datacenter. In this read dominated scenario we explore both
versions of Alvin, ensuring SR (Alvin-SR) and EUS (Alvin-EUS), with the
purpose of assessing the effectiveness of EUS. In all depicted scenarios, we con-
figured Alvin to run with fast decisions enabled. We batch messages for all
competitors, using a window of 20 to 50 msec, according to the nodes deployed.

TPC-C’s transactions access several shared objects and have a non-negligible
computation. This results in long transaction execution time and a complex
dependency graph to be analyzed during the processing of commit requests in
EPaxos. Rather, Alvin is able to improve the parallelism thanks to the different
delivery rules of POB, gaining up to 26% in throughput against EPaxos. Both
EPaxos and Alvin sustain their throughput while increasing the system’s load

46 A. Turcu et al.

until 9 nodes (3 datacenters with 3 nodes each), then the system becomes over-
loaded and performance degrades due to increasing contention. MultiPaxos in
both its configurations performs worse than others due to the presence of single
remote leader that slows down the entire system’s progress. In addition, here
transactions are long thus the sequential certification limits its performance.

Figure 1(b) shows the effectiveness of exploiting EUS in read-dominated work-
loads by avoiding to broadcast read-only transactions via the ordering layer.
Therefore Alvin-EUS provides a speed up of up to 4.8× in throughput when
compared to Alvin-SR and EPaxos. It is important to notice that in these
scenarios, MultiPaxos is also able to take advantage of local computation of
read-only transactions. In fact, its Paxos-LO configuration performs similar to
EPaxos and Alvin-SR for the case of 90% of read-only transactions and 3 dat-
acenters. In other scenarios, Paxos-LO saturates its leader’s resources, slowing
down the ordering process. As before, Paxos-HI exposes poor performance due
to the high communication latency with the faraway designated leader. Regard-
ing the comparison between EPaxos and Alvin-SR, they follow about the same
trend observed in Figure 1(a) because they both process read-only transactions
in the same way.

(a) Alvin Vs EPaxos on 5 sites. (b) Impact of fast decision.

Fig. 2. Throughput Vs Latency using TPC-C benchmark varying application threads

In Figure 2(a) we plot the latency increasing the system’s load by adding
application threads per node from 15 to 125. Here, we used 5 sites and TPC-C
as the benchmark, adopting the same workload as in Figure 1(a). For increasing
the readability of the plot we excluded MultiPaxos because its results were 3×
slower than the other competitors. From the analysis of EPaxos’s and Alvin’s
trends we observe that Alvin has a lower transaction latency and it sustains its
throughput better than EPaxos. Specifically, with 85 threads per site EPaxos
stops scaling while Alvin is still able to serve more requests. Alvin reaches its
saturation point running 125 threads per site.

With the plot in Figure 2(b) we highlight the importance of configuring Alvin

without the fast decision in high contention scenarios. In these situations, the
probability of taking a fast decision after having collected a fast quorum of
replies is low. Therefore the POB layer always pays the maximum number of
communication steps to reach a decision by contacting a fast quorum of nodes
in the Proposal phase and then falling back to the Accept phase. Disabling the

Be General and Don’t Give Up Consistency 47

fast decision forces the leader to always collect replies from a classic quorum.
We configured TPC-C as in Figure 1(a) with 7 sites and one node each, and we
increased the load as before. Alvin-NF (fast decisions disabled) improves the
latency of Alvin-F (fast decisions enabled) up to 30 msec, confirming that, in
some scenarios, waiting for an unlikely fast decision does not pay off.

Fig. 3. Throughput under write-intensive workload for {3,5,7} sites and {1,3} nodes
per site using Bank benchmark

The Bank benchmark has very small transactions (only few operations) and
the amount of transactional work can be considered as negligible when compared
to the coordination steps required for establishing the agreement on the global
ordering. This makes the results of both Alvin and EPaxos comparable in almost
all configurations tested as we showed in Figure 3. Bank’s accesses are uniformly
distributed across all objects and we managed the total number of shared objects
for having an average transaction’s abort rate in the range of 10-20%.

EPaxos’s dependency graph analysis does not slow down the transaction’s
critical path significantly because the strongly connected components with more
than one node are only 1.7% of all, thus the main impacting factor on the perfor-
mance is the number of communication delays used for delivering transactions
and, with fast decisions enabled, both Alvin and EPaxos use the same commu-
nication delays for delivering. However, it is worth noticing that all competitors
relying on partial order instead of total order sustain their throughput when we
increase the number of nodes until 7 datacenters, where they start degrading.
MultiPaxos in both its configurations performs worse than others due to the
presence of single remote leader that slows down the entire system’s progress.
The exception is Paxos-LO, which is the closest to others because it benefits
from having a low latency leader when site count is limited.

6 Conclusion

At its core, the design of Alvin shows that it is possible to achieve an effective
tradeoff between performance and programmability in geo-replicated environ-
ments. An important insight of our work is that partial ordering of transactions
can be significantly exploited to speed up local concurrency control through par-
allelism and that it can be determined without a unique leader, which increases
scalability in a geo-replicated setting.

48 A. Turcu et al.

Acknowledgments. This work is supported in part by US National Science
Foundation under grant CNS-1217385.

References

1. Adya, A.: Weak Consistency: A Generalized Theory and Optimistic Implementa-
tions for Distributed Transactions. PhD thesis AAI0800775. MIT (1999)

2. Almeida, S., Leitão, J., Rodrigues, L.: ChainReaction: A Causal+ Consistent Data-
store Based on Chain Replication. In: 8th ACM EuroSys, pp. 85–98. ACM (2013)

3. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery
in Database Systems. Addison-Wesley (1987)

4. Cachopo, J., Rito-Silva, A.: Versioned Boxes As the Basis for Memory Transactions.
Sci. Comput. Program. 63(2), 172–185 (2006)

5. Corbett, J.C., et al.: Spanner: Google’s Globally Distributed Database. ACM
Trans. Comput. Syst. 31(3), 8:1–8:22 (2013)

6. TPC-C Benchmark, http://www.tpc.org/tpcc/
7. Défago, X., Schiper, A., Urbán, P.: Total Order Broadcast and Multicast Algo-

rithms: Taxonomy and Survey. ACM Comput. Surv. 36(4), 372–421 (2004)
8. Guerraoui, R., Kapalka, M.: On the Correctness of Transactional Memory. In: 13th

ACM SIGPLAN PPoPP, pp. 175–184. ACM (2008)
9. Guerraoui, R., Rodrigues, L.: Introduction to Reliable Distributed Programming.

Springer (2006)
10. Guerraoui, R., Schiper, A.: Genuine Atomic Multicast in Asynchronous Distributed

Systems. Theor. Comput. Sci. 254, 297–316 (2001)
11. Hirve, S., Palmieri, R., Ravindran, B.: Archie: A Speculative Replicated Transac-

tional System. In: 15th ACM/IFIP/USENIX Middleware. ACM (2014)
12. Kraska, T., Pang, G., Franklin, M.J., Madden, S., Fekete, A.: MDCC: Multi-data

Center Consistency. In: 8th ACM EuroSys, pp. 113–126. ACM (2013)
13. Lamport, L.: Generalized Consensus and Paxos. Technical report MSR-TR-2005-

33, Microsoft Research (2005)
14. Lamport, L.: The Part-time Parliament. ACM Trans. Comput. Syst. 16(2), 133–169

(1998)
15. Lamport, L.: Fast Paxos. Distributed Computing 19(2), 79–103 (2006)
16. Mao, Y., Junqueira, F.P., Marzullo, K.: Mencius: Building Efficient Replicated

State Machines for WANs. In: 8th USENIX OSDI, pp. 369–384. USENIX (2008)
17. Moraru, I., Andersen, D.G., Kaminsky, M.: There is More Consensus in Egalitarian

Parliaments. In: 24th ACM SOSP, pp. 358–372. ACM (2013)
18. Pedone, F., Guerraoui, R., Schiper, A.: The Database State Machine Approach.

Distrib. Parallel Databases 14(1), 71–98 (2003)
19. Pedone, F., Schiper, A.: Generic Broadcast. In: Jayanti, P. (ed.) DISC 1999. LNCS,

vol. 1693, pp. 94–106. Springer, Heidelberg (1999)
20. Peluso, S., Ruivo, P., Romano, P., Quaglia, F., Rodrigues, L.: When Scalability

Meets Consistency: Genuine Multiversion Update-Serializable Partial Data Repli-
cation. In: 32nd ICDCS, pp. 455–465. IEEE Computer Society (2012)

21. Schmidt, R., Pedone, F.: A Formal Analysis of the Deferred Update Technique.
In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS, vol. 4878, pp.
16–30. Springer, Heidelberg (2007)

22. Sovran, Y., Power, R., Aguilera, M.K., Li, J.: Transactional Storage for Geo-
replicated Systems. In: 23rd ACM SOSP, pp. 385–400. ACM (2011)

23. Zhang, Y., Power, R., Zhou, S., Sovran, Y., Aguilera, M.K., Li, J.: Transaction
Chains: Achieving Serializability with Low Latency in Geo-distributed Storage
Systems. In: 24th ACM SOSP, pp. 276–291. ACM (2013)

http://www.tpc.org/tpcc/

Distributed Local Approximation

of the Minimum k-Tuple Dominating Set
in Planar Graphs∗

Andrzej Czygrinow1, Michal Hanćkowiak2, Edyta Szymańska2,
Wojciech Wawrzyniak2, and Marcin Witkowski2

1 School of Mathematical and Statistical Sciences,
Arizona State University, Tempe, AZ,85287-1804, USA

aczygri@asu.edu
2 Faculty of Mathematics and Computer Science,
Adam Mickiewicz University, Poznań, Poland
{mhanckow,edka,wwawrzy,mw}@amu.edu.pl

Abstract. In this paper we consider a generalization of the classical
dominating set problem to the k-tuple dominating set problem (kMDS).
For any positive integer k, we look for a smallest subset of vertices D ⊆ V
with the property that every vertex in V \ D is adjacent to at least k
vertices of D. We are interested in the distributed complexity of this
problem in the model, where the nodes have no identifiers. The most
challenging case is when k = 2, and for this case we propose a distributed
local algorithm, which runs in a constant number of rounds, yielding a
7-approximation in the class of planar graphs. On the other hand, in
the class of algorithms in which every vertex uses only its degree and the
degree of its neighbors to make decisions, there is no algorithm providing
a (5 − ε)-approximation of the 2MDS problem. In addition, we show a
lower bound of (4 − ε) for the 2MDS problem even if unique identifiers
are allowed.

For k ≥ 3, we show that for the problem kMDS in planar graphs, a
trivial algorithm yields a k/(k − 2)-approximation. In the model with
unique identifiers this, surprisingly, is optimal for k = 3, 4, 5, and 6, as
we provide a matching lower bound.

1 Introduction

Let G = (V,E) be a graph with |V | = n and |E| = m. By NG(v) = {u ∈ V : uv ∈
E} we denote the neighborhood of a vertex v ∈ V and by NG[v] = NG(v) ∪ {v}
the closed neighborhood of v. A set D ⊆ V is called a dominating set of G
if every vertex in V \ D is adjacent to a vertex in D. Equivalently, a subset
D ⊆ V is a dominating set of G if |NG(v) ∩ D| ≥ 1 for every v ∈ V \ D.
A minimum dominating set of a graph G, is a dominating set of G with the
minimum cardinality and we refer to the problem of finding such a set as the
MDS problem.

∗ The research is supported by grant N N206 565740.

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 49–59, 2014.
c© Springer International Publishing Switzerland 2014

50 A. Czygrinow et al.

One way of generalizing this notion, often desired in practice, is to look for
a ‘stronger’ domination, where every vertex in G is dominated more than once.
For any positive integer k, a k-tuple dominating set in G is a subset D ⊆ V such
that for every v ∈ V \ D, |N(v) ∩ D| ≥ k, that is, for every vertex v ∈ V , v
is in D or v has at least k neighbors in D. In particular, a 1-tuple dominating
set is simply a dominating set and the case when k = 2 is often called double
domination. This paper is concerned with the problem of finding a minimum
k-tuple dominating set called the kMDS problem.

Related notions of k-domination have been considered. For example, Harary
and Haynes in [5] defined a generalization of domination by considering k-tuple
total domination. In this, more restricted variant of the problem, for a positive
integer k, a subset D ⊆ V is called a k-tuple total dominating set of G if for
every vertex v ∈ V , |N [v] ∩ D| ≥ k, that is, either v is in D and has at least
k− 1 neighbors in D, or v is in V \D and has at least k neighbors in D. Clearly,
for a graph to have a k-tuple total dominating set its minimum degree must be
at least k − 1.

The minimum dominating set problem has been in the main stream of inter-
est for computer science due to its various applications and its complexity has
been studied extensively in different classes of graphs. In general, the MDS prob-
lem is NP-hard [3], and moreover, it is also NP-hard to compute a (C logΔ)-
approximation [11], for any constant C > 0, where Δ denotes the maximum
degree of the graph. A simple sequential approximation algorithm matching this
bound can be found in [7]. The complexity of the k-tuple total dominating prob-
lem was studied in [8], where the authors describe a O(ln |V |+1)-approximation
algorithm in general graphs, and show that it cannot be approximated within
the ratio of (1 − ε) ln |V |, for any ε > 0 unless NP ⊆ DTIME

(
|V |O(log log |V |)).

They also give a constant approximation algorithm for this version of the prob-
lem in the class of graphs of bounded degree and p-claw free graphs. Note that
the algorithmic results carry over to the kMDS problem considered here.

The MDS and kMDS problems are particularly interesting in the distributed
setting, where there is no central control. Then, to be able to perform efficient
routing, communication or localization, one often looks for a partitioning of the
nodes into clusters which in many situations can be obtained by means of a
dominating set.

The same hardness result which holds for the sequential model, remains true
in the distributed setting. In distributed systems a graph is an instance of the
MDS problem and, at the same time, describes the communication network. In
each synchronous round, each node may send a (different) message to each of its
neighbors, receive messages from all of its neighbors and may perform arbitrary
local computations. A distributed algorithm is called local if the number of
its synchronous communication rounds is constant, independent of the size of
the network. In addition, the following variations of the local model may be
considered:

Distributed Local Approximation of the Minimum k-Tuple Dominating Set 51

– ID model - each node in the networks is given a unique identifier (O(log n)-bit
label). This model is consistent with LOCAL model from [10] using constant
time.

– PO model (also known as anonymous network with a port numbering and
orientation) - each node of degree d has a linear order on the incident edges
1, 2, . . . , d, and for each edge, there is a linear order on the incident nodes
and for oriented edges each endpoint knows which of them is the head and
which is the tail.

– fully anonymous model - each node in the network makes a decision based
on its degree and the degrees of its neighbors which are available to it.

The ID model is most general and in the case of local algorithms unique iden-
tifiers are often unnecessary [4]. Distributed approximation of the MDS problem
has been considered for different classes of graphs (UDGs, bounded arboricity)
both in the ID model and the PO model. In particular, the problem is much more
tractable in the case of planar graphs. The current best deterministic approxi-
mation algorithm for the MDS problem in planar graphs was given in [9]. The
algorithm there uses long messages (more than O(log n) bits) and its approxi-
mation ratio has been recently improved by Wawrzyniak in [13] to 52. At the
same time, he proposed in [12] an algorithm which returns a 636-approximation
of the minimum dominating set in planar graphs utilizing messages of length at
most O(log n). In addition, the algorithm from [12] works in the PO model.

In this paper we study the distributed complexity of the kMDS problem in
planar graphs. We extend the result from [12] and prove that there exists a
constant approximation of the kMDS problem in planar graphs in the distributed
local PO model. We are not aware of any prior work on the kMDS problem in
the distributed model.

Although the case of the total domination is not addressed in the paper (and
it would make sense only for small values of k), it would not be surprising if
the techniques developed here applied to this variant of the problem mutatis
mutandis.

In the remainder of the paper we call a k-tuple dominating set a k-dominating
set for short.

First, we observe that for any k ≥ 3, the set V of all vertices of a planar
graph yields a constant approximation of the minimum k-dominating set. Recall
that every planar graph on n vertices contains at most 3n − 6 edges and if, in
addition, it does not contain any triangles (i.e. is bipartite) then it is even more
sparse and contains at most 2n− 4 edges. We use these facts in our proofs.

Lemma 1. LetG = (V,E) be a planar graph andD∗ be a minimum k-dominating
set in G. Then, for every k ≥ 3,

|V \D∗| < 2

k − 2
|D∗|.

Proof. Let H = (V,E(H)) be a spanning subgraph of G = (V,E), such that
E(H) = {uv ∈ E : u ∈ D∗ ∧ v ∈ V \D∗}. Then H is a planar bipartite graph
and thus, |E(H)| ≤ 2|V (H)| − 4 < 2|V \D∗| + 2|D∗|.

52 A. Czygrinow et al.

Furthermore, each vertex v ∈ V \D∗ is k-dominated by the vertices from D∗.
Hence, |E(H)| ≥ k|V \D∗|. Using both inequalities we obtain, that

k|V \D∗| ≤ |E(H)| < 2|V \D∗| + 2|D∗|.

An immediate consequence of the above lemma is the following corollary which
says that a trivial algorithm, i.e. an algorithm including all nodes into the kMDS,
yields a good approximation of the optimum.

Corollary 1. Let k ≥ 3 be a fixed integer. Then a trivial distributed algorithm
finds a k/(k − 2)-approximation of the minimum k-dominating set problem in
every planar graph.

The above result is, in fact, best possible, as one can see in Lemma 3 given in
Section 2.

The situation becomes more complicated when k = 2 and most part of our
paper is devoted to this case. Our main result is a 7-approximation of the mini-
mum double dominating set problem in planar graphs. Specifically, in Section 4
we give a distributed algorithm, called 2MDS, and prove the following.

Theorem 1. The distributed algorithm 2MDS finds a 7-approximation of the
minimum double dominating set problem in every planar graph in the port num-
bering model.

Next, we show a lower bound which gives some information on the quality
of the algorithm, though does not quite match it. Namely, we prove that in the
fully anonymous computation model (as defined above), there is no algorithm
providing a (5 − ε)-approximation of the 2MDS in planar graphs.

All graphs considered in this paper are planar and we often identify a planar
graph with its plane embedding.

The rest of the paper is organized as follows. In the next section we show
the already mentioned lower bound. Also, we complement Cor.1 by providing
a matching lower bounds for k = 3, 4, 5, 6 in the ID model and get (4 − ε) for
k = 2. In Section 3, we introduce the notion of bunches and prove some facts
about them useful in the analysis. In Section 4, we present our main algorithm
and prove Theorem 1.

2 Lower Bounds

In this section we prove two lower bounds. The first result is in a very restrictive
model in which every vertex makes the decision based on its degree and the
degrees of its neighbors which we shall call a fully anonymous model. On the
other hand our algorithm 2MDS has precisely this property and so the bound
can be compared with Theorem 1. The second bound shows that the trivial
algorithm from Corollary 1 cannot be improved even when vertices have unique
identifiers.

Distributed Local Approximation of the Minimum k-Tuple Dominating Set 53

Lemma 2. For any ε > 0 there is no deterministic algorithm in the fully anony-
mous model, computing a (5−ε)-approximation of a minimum double dominating
set in planar graphs.

Proof. Consider the following graph. Let H be obtained from the square of an
even cycle C = v1v2 . . . v2nv1 by adding two new vertices v, w and edged vv2i−1,
wv2i, for i = 1, . . . , n. Note that H is planar (see Figure 1) and |V (H)| = 2n+2.
Clearly,H has diameter three and for every constant d and vi, the graph induced
by {u | distH(u, vi) ≤ d} is isomorphic to the same subgraph of H . As a result,
every vertex vi has the same information available to decide if it should be
included in a double dominating set or not. Since any double dominating set in
H contains vertices from C, a solution obtained by an algorithm will have at
least 2n vertices. At the same time any optimal solution has 2+ �2n/5� vertices.
Since 2n + 2 > (5 − ε)(2 + �2n/5�), no local algorithm in the fully anonymous
model can find a (5 − ε)-approximation.

v

w

Fig. 1. Proof of Lemma 2

Corollary 2. For every ε > 0, there is a planar graph G such that algorithm
2MDS cannot find a (5 − ε)-approximation of the 2MDS problem in G.

We now turn our attention to the case when k ≥ 3. In this case, surprisingly,
the trivial approach from Corollary 1 is the best one can do in a constant number
of rounds. Moreover, we cannot provide a better algorithm even for the LOCAL
([10]) model of computations, in which vertices have unique identifiers from
{1, ..., n}, where n is the number of nodes. Notice that it carries over to the PO
model automatically.

Lemma 3. For k = 3, 4, 5, 6 and any ε > 0, there is no deterministic local
algorithm computing in O(1) rounds a (k

k−2 − ε)-approximation of a minimum
k-dominating set in planar graphs. Moreover, for k = 2 there is no deterministic
local algorithm computing a (4 − ε)-approximation of the 2MDS problem in a
constant number of rounds.

54 A. Czygrinow et al.

Proof. This result follows in a quite straightforward way from previous work.
In particular, we use the strategy of repeated applications of Ramsey’s theorem
from [1] which was used in [6] to show a lower bound of (7 − ε) on the approxi-
mation ratio for the MDS problem in planar graphs. We sketch the idea of the
proof indicating the places, where some adjustment for our case is needed. Let
Ak be a deterministic distributed algorithm in LOCAL model, working in time
T = O(1) and finding a k-dominating set Dk in any planar graph G.

Let G = G(r,m) be a planar graph given in [6], which is composed of r blocks
of identical three-way grids of sizem×m, which are connected in a linear manner
with additional ‘parallel’ edges as shown in Figure 2 a) (r = 3, m = 7). It is
shown in [6] (see Lemma 1 therein) that for sufficiently large r and m there is
an assignment of unique identifiers such that algorithm A1 appends almost all
vertices of G to D1. The same remains true for Ak, that is, |Dk| > (1 − ε)n,
where Dk = Ak(G) and n = |G| = rm2.

To prove our lemma it is enough to show that in G there exist: a 2-dominating
set D2 such that |D2| < (14 + ε)n, and a k-dominating set Dk with |Dk| <
(k−2

k + ε)n.
Such sets indeed exist as depicted in Figure 2 (b) for D2 and in Figure 3 for

Dk, where k = 3, 4, 5, 6.
While looking at a single row of vertices in G, one can see that for D2 there are

repeating patterns of four vertices with one of them black, for Dk, k = 3, 4, 5, 6
there are patterns of k vertices with k − 2 of them black.

Notice that for k ≥ 7 this construction does not work.

Fig. 2. a) A construction of G(m, r) with T = 1, r = 3, m = 7. b) Black dots represent
a 2-dominating set that contains 1/4 fraction of vertices.

Fig. 3. Examples of 3, 4, 5 and 6-dominating sets that contain 1/3, 2/4, 3/5 and 4/6
fraction of vertices, respectively

Distributed Local Approximation of the Minimum k-Tuple Dominating Set 55

3 Notation and Tools

In the analysis of the algorithm from Section 4 we use some structural properties
of planar graphs. In particular, the proof of its correctness relies on the concept
of a bunch (introduced in [12]) which we discuss in this section. We follow the
graph theoretic terminology of Diestel [2].

3.1 Bunches

Let G = (V,E) be a plane embedding of a planar graph and let S,U be two
disjoint subsets of V . A path vuw is called an S-U -S-path if v, w ∈ S and u ∈ U.
We use P to denote the set of all S-U -S-paths in G and Q ⊆ P to denote a
maximal subset of S-U -S paths in P such that every vertex u ∈ U belongs to
at most one path in Q. In other words, if there is more than one S-U -S path in
P , which contains a vertex u ∈ U , then we discard all but one such path.

We say that G has a S-U -S-bunch of length m with poles at vertices v and
w , where v �= w, if G contains a sequence of S-U -S-paths P1, P2, . . . , Pm ∈ Q
with the following properties. Each Pi joins v with w. Furthermore, for each
i = 1, . . . ,m − 1, the inner face of the cycle Pi ∪ Pi+1 contains no vertex of S
(it may, however, contain some vertices of V \ S). The inner face of the cycle
Pi ∪ Pi+2 contains Pi+1 − {v, w}. Moreover, this sequence of paths is maximum
in the sense that it is not possible to find a longer sequence. If B is an S-U -S-
bunch of length m, then the vertices of U ∩ (V (P1)∪V (Pm)) are called boundary

vertices and the remaining vertices of U in B, that is, U ∩ (
⋃m−1

i=2 V (Pi)) are
called internal vertices of B. A bunch of length m = 1 is a single path and
it possesses only one boundary vertex and no internal vertices. An example of
S-U -S-bunches is illustrated in Fig. 4.

B B
1 2

s

s'

s''
s'''

Fig. 4. An example of two S-U -S-bunches, B1 of length 3 and B2 of length 2;
s, s′, s′′, s′′′ ∈ S

Let B be the set of all S-U -S-bunches in a plane graph G with respect to Q.
The lemma below provides a bound on the size of B.

56 A. Czygrinow et al.

Lemma 4. |B| ≤ 3|S| − 5.

Proof. Let b = |B|. We first define an auxiliary plane multigraph H = H(G) =
(V (H), E(H)), where V (H) = S and for each S-U -S-bunch B we pick exactly
one path vuw in B and contract one of vu, uw preserving the topology of G.
As a result, H is a plane multigraph with the property that each face of a cycle
formed by two parallel edges contains a vertex from S. Moreover, e := |E(H)|
equals the number of S-U -S-bunches in G. Let |S| = s and suppose that H has
k components. Add k − 1 edges to H so that the new graph H ′ is plane and
connected. Let e′ := |E(H ′)|. Note that s ≥ 2 and so e′ ≥ 1. We have

2 = s− e′ + l, (1)

where e′ = e+ k − 1 and l denotes the number of faces of H ′.
Note that every face of H ′, except possibly the outer face, has at least three

edges on its boundary. Indeed, for every two parallel edges e1, e2 of H ′, each of
the two faces of e1 ∪ e2 contains a vertex from S and so a face of H ′ cannot be
bounded by just e1, e2. Therefore,

3(l − 1) ≤ 2e′ − 2,

as every edge of H ′ lies on the boundary of at most two faces and if l > 1 then
the outer face is bounded by at least two edges. As a result,

l ≤ 2e′+1
3 . (2)

By (1) and (2),

s = 2 + e′ − l ≥ 2 + e′ − 2e′+1
3

and so,

3s ≥ 6 + 3e′ − 2e′ − 1 = 5 + e′ ≥ 5 + e.

Thus,

e = |E(H)| = b ≤ 3s− 5.

4 The 7-Approximation

In this section we give our main algorithm and show that it finds a double dom-
inating set of size at most seven times the optimal. The algorithm is relatively
simple and works as follows. In the first round all vertices of degree less than
two or at least five are added to a 2-dominating set D. In the second round all
vertices outside D which are not double dominated yet, are included in D.

Note that the only information required by a vertex to execute 2MDS is its
degree, available in one communication round in the PO model and so, indeed,
the algorithm works in the distributed setting where no identifiers are required.

Distributed Local Approximation of the Minimum k-Tuple Dominating Set 57

Algorithm 1. 2MDS

1: D := ∅.
2: for v ∈ V in parallel do
3: if d(v) < 2 or d(v) ≥ 5 then
4: D := D ∪ {v}
5: end if
6: end for
7: for v ∈ V \D in parallel do
8: if |N(v) ∩D| < 2 then
9: D := D ∪ {v}

10: end if
11: end for

4.1 The Proof of Theorem 1

Now we are ready to prove Theorem 1. To this end, let D∗ be a minimum double
dominating set in G and let D be a double dominating set computed by 2MDS.
In addition, let

D∗
1 = {v ∈ D∗ : d(v) ≥ 5}, D∗

2 = D∗ \D∗
1 .

Let B1 be the set of all D∗
1-(V \ D∗)-D∗

1 bunches and let
V1 =

⋃
B∈B1

V (B), that is, the set of all vertices belonging to a bunch of B1.
Note that every vertex of D is either in D∗ or is double dominated by vertices
from D∗. As a result, every vertex x ∈ D \ D∗ belongs to a bunch B in B1 or
has at least one neighbor in D∗

2 . Thus, to bound |D|, it is sufficient to bound the
number of vertices in D \D∗ coming from the bunches of B1, and the number of
vertices of D \D∗ adjacent to D∗

2 and add the vertices from D∗
1 that lie outside

all bunches in B1.
First observe that, since the poles of every bunch B ∈ B1 have degree at least

five, they are added to D in the first round of the algorithm (Step 4). In addition,
in the same round, the algorithm can add at most two of the boundary vertices
of B to D \D∗

1 and possibly some of its internal vertices of degree at least five.
Let v be an internal vertex of B with d(v) ≥ 5. More precisely, say, let v be the
internal vertex of a path P ∈ B, and P−, P+ be the paths in B such that no
path of B goes through the two inner faces of P− ∪ P ∪ P+.

Since d(v) ≥ 5, there is a vertex w in one of the two inner faces of P−∪P ∪P+,
say the inner face f of P−∪P . Next we show that the inner face f must contain
a vertex belonging to D∗

2 . The situation is depicted in Figure 5. Now recall that
by definition of the bunches in B1, the inner face f contains no vertex of D∗

1 .
Moreover, if w /∈ D∗

2 , it must have at least two neighbors in D∗. However, since
no path of B goes through the inner face f , there is a vertex w′ inside f that
belongs to D∗

2 .
In view of the above, for every v ∈ D, which is an internal vertex of bunch B,

we have that v is adjacent to at least one face that contains a vertex in D∗
2 . It is

possible, however, that two internal vertices of B are adjacent to the same face

58 A. Czygrinow et al.

P
P

P

+

-
v

w

w'

Fig. 5. Illustration of the proof of Theorem 1

f with w′ ∈ D∗
2 . As a result, the set D contains at most 2|D∗

2| internal vertices
of bunches in B1.

Every pole of a bunch from B1 is in D∗
1 and every other vertex in the bunch

is double dominated by the poles. Thus, every vertex of D which belongs to a
bunch from B1 has degree at least five in G. Consequently, we have

|D ∩ V1| ≤ |D∗
1 ∩ V1| + 2 · 3|D∗

1| + 2|D∗
2 |.

Indeed, every bunch has at most two boundary vertices, and the number of
bunches in B1, by Lemma 4, is less than 3|D∗

1 |. In addition, as argued above, the
number of internal vertices of degree at least five is at most 2|D∗

2 |.
Now, observe that every vertex v ∈ V \

⋃
B∈B1

V (B) belongs to D∗
2 or has a

neighbor in D∗
2 or belongs to D∗

1 . Also, every vertex in D∗
2 has degree at most

four. Hence, the number of vertices that do not belong to B1 and could be added
to D by the algorithm is at most

|D∗
1 \ V1| + |D∗

2 | + 4|D∗
2 | = |D∗

1 \ V1| + 5|D∗
2 |.

Therefore, in total, we have,

|D| ≤ |D∗
1 ∩ V1| + |D∗

1 \ V1| + 6|D∗
1 | + 7|D∗

2| ≤ 7(|D∗
1 | + |D∗

2 |) = 7|D∗|.

5 Summary

In this paper we present a simple distributed algorithm finding a 7-approximation
of the minimum double dominating set problem in planar graphs. On the other
hand, we show that in a planar graph, which is a subgraph of a three-way
grid there is a lower bound of 5 − ε for the approximation ratio in the class of
algorithms in which every vertex makes its decision based on its degree and the

Distributed Local Approximation of the Minimum k-Tuple Dominating Set 59

degree of its neighbors. At the same time, a lower bound of (4 − ε) holds even if
the vertices are equipped with unique identifiers.

Göös et al. asked a general question whether unique identifiers are needed for
local approximation algorithms and in [4] they proved that port numbering is
sufficient and equally efficient for a large class of problems in bounded degree
graphs closed under lifts. It seems to us that the kMDS problem is a good
candidate for a counterexample to this general hypothesis in planar graphs which
may give different bounds in the ID model and the PO model.

References

1. Czygrinow, A., Hańćkowiak, M., Wawrzyniak, W.: Fast distributed approximations
in planar graphs. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 78–92.
Springer, Heidelberg (2008)

2. Diestel, R.: Graph Theory, 4th edn. Graduate texts in mathematics, vol. 173, pp.
I–XVIII, 1–436. Springer (2012) ISBN 978-3-642-14278-9

3. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman (1979)
4. Göös, M., Hirvonen, J., Suomela, J.: Lower bounds for local approximation. J.

ACM 60(5), 39 (2013)
5. Harary, F., Haynes, T.W.: Double domination in graphs. Ars Combinatoria 55,

201–213 (2000)
6. Hilke, M., Lenzen, C., Suomela, J.: Brief announcement: Local approximability

of minimum dominating set on planar graphs. In: 33rd ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, PODC 2014, Paris, France
(July 2014)

7. Johnson, D.: Approximation Algorithms for Combinatorial Problems. Journal of
Computer and System Sciences 9(3), 256–278 (1974)

8. Klasing, R., Laforest, C.: Hardness results and approximation algorithms of k-tuple
domination in graphs. Information Processing Letters 89(2), 75–83 (2004)

9. Lenzen, C., Pignolet, Y.A., Wattenhofer, R.: Distributed minimum dominating set
approximations in restricted families of graphs. Distrib. Comput. 26(2), 119–137
(2013)

10. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. Society for In-
dustrial and Applied Mathematics, Philadelphia (2000)

11. Raz, R., Safra, S.: A Sub-Constant Error-Probability Low-Degree Test, and a Sub-
Constant Error-Probability PCP Characterization of NP. In: Proc. 29th Sympo-
sium on Theory of Computing (STOC), pp. 475–484 (1997)

12. Wawrzyniak, W.: Brief announcement: A local approximation algorithm for MDS
problem in anonymous planar networks. In: PODC 2013, pp. 406–408 (2013)

13. Wawrzyniak, W.: A strengthened analysis of a local algorithm for the minimum
dominating set problem in planar graphs. Inf. Process. Lett. 114(3), 94–98 (2014)

Time Lower Bounds

for Distributed Distance Oracles�

Taisuke Izumi1 and Roger Wattenhofer2

1 Nagoya Institute of Technology,
Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan

t-izumi@nitech.ac.jp
2 ETH Zurich, 8092 Zurich, Switzerland

wattenhofer@ethz.ch

Abstract. Distributed distance oracles consist of a labeling scheme
which assigns a label to each node and a local data structure deployed
to each node. When a node v wants to know the distance to a node u,
it queries its local data structure with the label of u. The data structure
returns an estimated distance to u, which must be larger than the actual
distance but can be overestimated. The accuracy of the distance oracle
is measured by stretch, which is defined as the maximum ratio between
actual distances and estimated distances over all pairs (u, v).

In this paper, we focus on the time complexity of constructing dis-
tributed distance oracles with a given stretch. We show a number of
time lower bounds depending on the stretch:

– Under the assumption that the popular combinatorial girth con-
jecture is true, any distributed algorithm constructing oracles with
stretch 2t requires Ω̃(n1/(t+1)) rounds in unweighted graphs. This
bound holds even if we only consider constant diameter graphs.

– For oracles with stretch 2t in weighted graphs, we have a lower bound

of Ω(n
1
2
+ 1

5t) rounds, assuming the girth conjecture. This bound
holds even if we only consider O(log n) diameter graphs.

– If we restrict the label size of oracles to o(nε) bits, where ε =
1/2t(t+1) in unweighted graphs and ε = (1/5t2) in weighted graphs,
the same lower bounds are obtained without assuming the girth con-
jecture.

To the best of our knowledge, this paper is the first that exhibits a
non-trivial trade-off between time and stretch for distributed distance
oracles.

1 Introduction

1.1 Background

The primary objective of routing protocols is to identify paths from sources to
destinations, in order to route packets efficiently. While there are a number of

� This work is supported in part by KAKENHI No.25106507 and No.25289114.

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 60–75, 2014.
c© Springer International Publishing Switzerland 2014

Time Lower Bounds for Distributed Distance Oracle 61

criteria to measure efficiency (delay, bandwidth, reliability, and so on), the most
popular choice for selecting a good path is the path’s length (i.e., distance be-
tween two nodes). In other words, Internet routing is still often synonymous
to shortest path routing. A well-known example is the distance-vector routing
protocol BGP. Often, real-world routing protocols weigh the edges of the net-
work to measure distance more precisely. Sometimes, this weight information is
somewhat hidden. In the case of BGP, for example, a technique called AS-path
prepending is used, where a node includes itself in the route several times in
order to give an edge more weight, i.e. to discourage other nodes from routing
through it.

Regarding distributed complexity, many distance problems are recognized as
so-called global problems. That is, their distributed time-complexity is Ω(Δ),
where Δ is the unweighted (hop-count) diameter of the network. A common
naive solution for such global problems is the centralized approach: A single node
aggregates the whole topological information of the network (and the weights of
all edges in the case of weighted graphs), and computes the solution locally. This
solution gives a O(Δ)-time matching upper bound for the model with unbounded
communication on each edge. However, for large networks, this unbounded (often
also called LOCAL) message passing model becomes unreasonable. Instead one
should assume that communication messages are limited. An established model
for distributed computation is the so-called CONGEST message passing model.
It allows each message to have at most O(log n) bits, where n is the number
of all nodes in the network. In this model, it is known that the conventional
all-pairs distance computation or approximation requires Ω̃(n) rounds [5,11]
even in unweighted graphs with constant diameters.1 On the other hand, near
tight upper bounds are also known for both weighted and unweighted graphs.
In unweighted graphs, there is an algorithm constructing all-pair shortest paths
in O(n) rounds [9,6], and in weighted graphs, there is an algorithm computing
an (1 + o(1))-approximation of all-pairs distances in Õ(n) rounds [11]. These
results imply that all-pairs distance computation is an expensive task, even in
the approximation case.

1.2 Distance Oracles

The inherent difficulty behind the all-pairs distance computation is that each
node must fill out its own distance table of n−1 entries (one of which corresponds
to the distance to some other node). In other words, it is inherently necessary
that each node must receive Ω(n) bits of information to fill out the table of size
Θ(n). However, if we can have a more compact representation of distance tables,
its construction can be achieved in sublinear time. This observation yields to
the problem of distributed distance oracles. A distance oracle is a subquadratic-
size data structure storing all-pairs approximated distances, which was originally
introduced in the context of centralized algorithms [14]. A distributed distance

1 The tilde complexity notation Õ(f(n)) hides a polylogarithmic factor in n, usually,
in this line of work, caused by the O(log n) bits allowed in each message.

62 T. Izumi and R. Wattenhofer

oracle consists of a labeling scheme giving a label to each node and a local data
structure deployed to each node v in the network. When a node v wants to know
the distance to another node u, v queries its local data structure with the label of
u. The data structure returns an estimated distance to u, which must be larger
than the actual distance but can be overestimated. The approximation factor
of distance oracles is also called stretch, which is defined as the maximum ratio
between actual distances and estimated distances over all pairs (u, v).

There have been two results about the construction time of distributed dis-
tance oracles so far. The first one is by Das Sarma et al. [1], which gives an algo-
rithm guaranteeing stretch 2t − 1, Õ(n1/t)-bit label size, and Õ(n1/tΔ′)-round
construction time, where t is a parameter trading time, space, and stretch, and
Δ′ is the shortest-path diameter of the graph (i.e., the maximum hop length over
all-pairs shortest paths.2. Since Δ′ can become linear of n at the worst-case, the
construction time of this algorithm can be superlinear. A second paper by Lenzen
and Patt-Shamir [8] proposes an algorithm with stretch 2t(8t−3), O(t(log n))-bit
label size, and Õ(n1/2+1/2k +Δ)-round construction time. It also shows that any
distributed distance oracle algorithm achieving an arbitrary non-trivial stretch
must have Ω̃(

√
n) construction time.

1.3 Our Contribution

In this paper, we present several time lower bounds for the construction of dis-
tributed distance oracles. The primary results of our paper are new improved
lower bounds depending on stretch. More precisely, our contributions are as
follows:

– Under the assumption that the popular combinatorial girth conjecture is
true, any distributed algorithm constructing oracles with stretch 2t requires
Ω̃(n1/(t+1)) rounds in unweighted graphs. This bound holds even if we only
consider constant diameter graphs.

– For oracles with stretch 2t in weighted graphs, we have a lower bound of
Ω(n

1
2+

1
5t) rounds, assuming the girth conjecture. This bound holds even if

we only consider O(log n) diameter graphs.
– If we restrict the label size of oracles to o(nε) bits, where ε = 1/2t(t + 1)

in unweighted graphs and ε = (1/5t2) in weighted graphs, the same lower
bounds are obtained without assuming the girth conjecture.

To the best of our knowledge, these are the first results that exhibit a non-
trivial trade-off between construction time and stretch.

1.4 Related Work

For unweighted graphs, there has been a lot of progress to understand the dis-
tributed complexity [9,5,6,12,2] of distance problems such as the single-source

2 Note that Δ ≤ Δ′ always holds because for the pair (u, v) giving the hop-count
diameter path, the hop-length of the shortest path between u and v cannot be
shorter than Δ.

Time Lower Bounds for Distributed Distance Oracle 63

shortest paths, all-pairs shortest paths, diameter, and distance oracles. A first
paper by Frischknecht et al. [5] showed an Ω̃(n)-time lower bound for the ex-
act diameter computation in unweighted networks with constant diameters. A
matching upper bound was shown by Holzer at al. [6], and Lenzen and Peleg [9];
they concurrently and independently proposed almost the same O(n)-time al-
gorithm for all-pairs shortest paths. The hardness of the approximated diame-
ter computation is also considered. An easy solution for a 2-approximation of
the diameter is to construct a shortest path tree rooted at an arbitrary node
u. Since shortest path trees and breadth-first search (BFS) are equivalent in
unweighted networks, a 2-approximation is trivially achieved in O(Δ) time by
running a simple BFS-tree construction. A result by [5] also showed that any
3/2-approximation algorithm for the diameter problem requires Ω̃(

√
n) time.

This lower bound is improved to Ω̃(n) by [6]. Interestingly, regarding upper
bounds, Peleg et al. showed that a 3/2-approximated value of Δ is computable
in Õ(

√
nΔ) time [12]. A recent paper [9] improves this time bound for a 3/2-

approximation to an additive Õ(
√
n + Δ) time. Holzer and et al. [6] show a

more accurate approximation algorithm for the network diameter problem with
O(n/Δ + Δ) running time. Its approximation factor is (1 + ε) for an arbitrary
small constant ε < 1.

While a rich literature exists for unweighted networks, only a few papers
consider distance problems in weighted networks. To the best of our knowledge,
there are three papers directly related to weighted graphs. Das Sarma et al. [1]
and Lenzen and Patt-Shamir [8] we already discussed in the introduction. The
paper by Lenzen and Patt-Shamir [8] also considers several related problems,
including (all-pairs) shortest paths or diameter. In addition there is a very recent
result by Nanongkai [11]. It proposes faster distributed approximation algorithms
for single-source shortest paths and all-pairs shortest paths.

1.5 Roadmap

The paper is organized as follows: We introduce fundamental definitions and
notations in Section 2. In Section 3, we give our lower bound proof for unweighted
graphs. It is extended to the weighted case in Section 4. The case for bounded
label size oracles is considered in Section 5. Finally in Section 6, we conclude
this paper.

2 Preliminaries

2.1 Round-Based Synchronous Systems

A distributed system consists of n nodes interconnected with communication
links. We model it by a weighted undirected graph G = (V,E,w), where V =
{v0, v1, · · · , vn−1} is the set of nodes, E ⊆ V × V is the set of links (edges), and
w : E → N is the edge-weight function. Since we consider undirected graphs,
w(u, v) = w(v, u) holds for any u, v ∈ V . We also consider the system modeled

64 T. Izumi and R. Wattenhofer

by unweighted graphs, which is a special case of weighted graphs where every
edge has weight one.

Executions of the system proceed with a sequence of consecutive rounds. In
each round, each process sends a (possibly different) message to each neighbor,
and within the round, all messages are received. After receiving its messages,
each process performs local computation. Throughout this paper, we restrict the
number of bits transmittable through any communication link per one round to
O(log n) bits. This is known as the CONGEST model. Note that in weighted
networks the weight of each edge does not imply the delay of communication.
It is guaranteed that messages transferred through weighted edges reach their
destinations within one round.

A path P between u and v is a sequence u = u0, u1, · · ·uk = v such that
(ui−1, ui) ∈ E holds for any i (1 ≤ i ≤ k). The distance between u and v in
graph G is the weighted length of the shortest path between them, which is
denoted by dG(u, v).

2.2 Problem Definition

The distributed distance oracle is defined as the problem of constructing a la-
beling scheme λ : V → L, where L is the domain of labels, and a local data
structure destv : L → Z deployed to each node v ∈ V , which locally computes
the distance estimation from v by giving the label λ(u) of any target node u. The
value destv(λ(u)) returned by the local oracle at node v is always lower at least
the actual distance dG(u, v). The stretch of a distributed distance oracle is de-
fined as maxu,v∈V destv(λ(u))/dG(v, u). The label size of a distributed distance
oracle is defined as �log |L|�.

3 Lower Bound for Unweighted Graphs

3.1 Two-Party Communication Complexity

Communication complexity, which was first introduced by Yao [15], reveals the
amount of communication to compute a global function whose inputs are dis-
tributed in the network. The most successful scenario in communication com-
plexity is two-party communication complexity, where two players, called Alice
and Bob, have x-dimensional 0-1 vectors a and b respectively, and compute a
global function f : {0, 1}x×{0, 1}x → {0, 1}. The communication complexity of
a two-party protocol is the number of one-bit messages exchanged by the pro-
tocol for the worst case input (if the protocol is randomized, it is defined as the
expected number of bits exchanged for the worst-case input). One of the most
useful problems in communication complexity theory is set-disjointness:

Definition 1. The x-bit set-disjointness function disj x : {0, 1}x × {0, 1}x →
{0, 1} is defined as follows:

disj x(a,b) =

{
1 if ∃i ∈ [0, x− 1] : ai = bi = 1,
0 otherwise

Time Lower Bounds for Distributed Distance Oracle 65

For this problem, the following theorem is known [13,7].

Theorem 1. The communication complexity of the x-bit set-disjointness prob-
lem is Ω(x).

In the following argument, we use a slightly different form of the set-disjointness
problem: We first introduce a base graphH = (W,F) such that |W | = N , |F | = M
for some value N > 0 and M > 0. Alice and Bob respectively have subsets Fa

and Fb of F as their inputs. The goal of the two-party computation is to decide
if (W,Fa ∪ Fb) = H holds or not. This problem is equivalent to the M -bit set-
disjointness problem, i.e., each edge inG is one-bit entry of the set-disjointness, and
e ∈ Fa (resp. e ∈ Fb) implies that Alice’s (resp. Bob’s) corresponding bit is set to
zero. Thus by Theorem 1, the communication complexity of this problem isΩ(M).
In what follows, we refer to this form of the set-disjointness problem as the graphic
set-disjointness overH . If an instance (Fa, Fb) satisfies Fa ∪ Fb = F , we say that
(Fa, Fb) is disjoint. Otherwise we say that (Fa, Fb) is intersecting. Two examples
of the graphic set-disjointness are shown in Figure 1, where one instance is disjoint
and another is intersecting. The black (resp. gray) lines represent the edges Alice
and Bob have (resp. does not have), and the dotted line in the intersecting case is
the the edge commonly lost by both players).

(a) Base graph
(N=6, M =7)

(b) Input for Alice and Bob (disjoint case)
Alice Bob

(c) Input for Alice and Bob (intersecting case)
Alice Bob

Fig. 1. Two examples of graphic set-disjointness instances

66 T. Izumi and R. Wattenhofer

3.2 Gadget Construction

The core of the lower bound proof is a reduction from the graphic set-disjointness
over some large-girth graph. The reduction scheme itself is similar to one intro-
duced by [5]. This subsection shows the construction of the gadget for the reduc-
tion from the graphic set-disjointness over H = (W,F). The constructed graph
is denoted by ΓH,γ(Fa, Fb), where γ is a design parameter and (Fa, Fb) is any
instance of the graphic set-disjointness over H . Letting ΓH,γ(Fa, Fb) = (V,E),
V and E are constructed by the following steps:

1. The set of nodes V consists of two groups of N nodes W a =
{wa

0 , w
a
1 , · · · , wa

N−1} and W b = {wb
0, w

b
1, · · · , wb

N−1}.
2. For any i, 0 ≤ i ≤ N − 1, each pair (wa

i , w
b
i) is connected by an edge. The

path (of length one) added in this step is called an intra-cluster path.
3. Each pair (wa

i , w
a
j) ∈ W a (resp. (wb

i , w
b
j) ∈ W b) is connected by a path of

length γ if and only if (wi, wj) ∈ Fa (resp. (wi, wj) ∈ Fb) (γ > 0). The path
added in this step is called an inter-cluster path.

Informally,ΓH,γ(Fa, Fb) behaves as the weighted version of graphH ′ = (W,Fa∪
Fb) (where each edge has weight γ). We can observe its behavior easily by clustering
node pairwa

i andwb
i for each i ∈ [0, N−1]. Figure 2 gives an alternative drawing of

ΓH,γ(Fa, Fb) for the instance shown in Figure 1. Each light-gray band corresponds
to an edge e in H , which contains at least one actual path of length γ if and only
if e ∈ Fa or e ∈ Fb holds. For this construction, we can show the following lemma:

Path of length

Simulated by BobSimulated by Alice

Path of length one

Fig. 2. Construction of ΓH,γ(Ea, Eb) for the disjoint instance in Figure 1

Lemma 1. Let (Fa, Fb) be an instance of the graphic set-disjointness over H =
(W,F), H ′ = (W,Fa∪Fb), and Γ = ΓH,γ(Fa, Fb) for short. Then, for any integer
k > 0, the following two properties hold:

Time Lower Bounds for Distributed Distance Oracle 67

Fig. 3. An alternative view of ΓH,γ(Ea, Eb) shown in Figure 2

– If dH′ (wi, wj) = 1 (i �= j), dΓ (wa
i , w

a
j) ≤ γ + 2.

– If dH′ (wi, wj) = k (k > 1, i �= j), dΓ (wa
i , w

a
j) ≥ kγ.

Proof. If dH′ (wi, wj) = 1, (wi, wj) ∈ Fa or (wi, wj) ∈ Fb holds. It implies that Γ
contains an inter-cluster path between wa

i and wa
j or wb

i and wb
j . Since Γ always

contains the edges (wa
i , w

b
i) and (wb

j , w
b
j), the first property obviously holds.

We look at the second property. Suppose for contradiction that there exists a
simple path P between wa

i and wa
j whose length is less than kγ. Note that P is

a concatenation of several inter-cluster paths and intra-cluster paths. It implies
that P contains at most k−1 inter-cluster paths. Now let P ′ be the path obtained
from P by contracting all the intra-cluster paths. Since P ′ is the concatenation
of several inter-cluster paths, it can be represented by some sequence of the
nodes where two inter-cluster paths are concatenated. Let wα0

β0
, wα1

β1
, · · · , wαl

βl
be

that sequence (0 < l ≤ k − 1). Then, for any x ∈ [0, l − 1], wαx

βx
and w

αx+1

βx+1

must be connected by an inter-cluster path. That is, either (wβx , wβx+1) ∈ Fa

or (wβx , wβx+1) ∈ Fb must hold. However, it implies that H ′ = (W,Fa ∪ Fb)
contains a path from wi to wj with length l(< k). It is a contradiction. ��

The main theorem utilizes the conjecture below:

Conjecture 1 (Girth conjecture). For any integers N and t, there exists a graph
Ht,N of N nodes and Θ(N1+1/t) edges whose girth is at least 2t+ 2.

Theorem 2. Assume that the girth conjecture is true for some constant t > 0.
Let ALG be a distributed algorithm constructing distance oracles with stretch 2t.

Then, its worst-case running time τ(n) must satisfy τ(n) ≥ Ω
(
n

1
t+1 / logn

)
.

Proof. The theorem is proved by the reduction from the graphic set-disjointness
over Ht,N claimed in Conjecture 1 (the value of N is determined later). That is,
we construct from ALG a two-party protocol solving the graphic set-disjointness

68 T. Izumi and R. Wattenhofer

problem over Ht,N for any instance (Fa, Fb). The core of the construction is to
simulate the run of ALG in ΓHt,N ,8t(Fa, Fb). Let Γ = ΓHt,N ,8t(Fa, Fb) for short.
Alice simulates all the processes in W a and Bob those in W b. To make the sim-
ulation proceed, both Alice and Bob need to obtain the messages exchanged on
intra-cluster paths in the run of ALG. Since there are N intra-cluster paths, the
amount of the information transmitted through the paths is at most O(N logn)
bits per one round. Thus to complete the simulation, it suffices that Alice and
Bob totally exchange O(τ(n)N logn)-bit messages. After the simulation, Al-
ice checks the distance of each pair (wa

i , w
a
j) ∈ F by querying it to wa

i ’s local
oracle. Note that this query is locally processed at Alice. From Lemma 1, if
(wa

i , w
a
j) ∈ Fa ∪Fb holds, the distance between wa

i and wa
j in Γ is at most 8t+2

(remind γ = 8t). Hence the distance estimated by the oracle is at most 2t(8t+2).
On the other hand, if (wi, wj) �∈ Fa ∪ Fb, the distance between wi and wj in
the graph Ht,N \ (wi, wj) is at least 2t+ 1 because the girth of Ht,N is at least
2t+2. Thus, by Lemma 1, the distance between wa

i and wb
j is at least 8t(2t+1).

These two facts imply that Alice can determine the disjointness of (Fa, Fb) from
the query results: If all the queries return values at most 2t(8t+ 2), (Fa, Fb) is
disjoint. Otherwise, it is intersecting. Finally Alice sends one-bit information of
the decision.

The two-party protocol explained above totally consumes O(τ(n)N logn)
bits in the worst case, which must be lower bounded by the communication
complexity of the graphic set-disjointness over Ht,N , that is, Ω(N1+1/t) bits.
Now we rewrite variable N by using only n and t. Since the number n of
nodes in ΓHt,N ,8t(Fa, Fb) is 2N + (8t − 1) · Θ(N1+1/t) = Θ(tN1+1/t), N =

Θ((n/t)t/(t+1)) holds. Since t is a constant, we have N = Θ(nt/(t+1)). Thus
the total amount of messages exchanged by the proposed two-party protocol is
Θ((nt/(t+1) ·(τ(n) log n)). Since this is bounded by Ω(N1+1/t) = Ω(n). It follows
that τ(n) = Ω(n1/(t+1)/ logn). The theorem is proved. ��

4 Lower Bound for Weighted Graphs

The lower bound in the previous section is extended to a stronger lower bound
for weighted graphs. The fundamental idea of the extension is to utilize the
framework by Das Sarma et al. [2]. Given values N and t, let N− = N

1
2−

1
5t and

N+ = N
1
2+

1
5t for short. For simplicity, we assume that N+ is a power of two.

Note that this assumption is not essential and easily removed without affecting
the asymptotic complexity we prove in this section. The gadget graph Γ ′

H(Fa, Fb)
(say Γ ′ for short) is built by the following steps:

1. We first prepare N− paths of length N+, each of which is denoted by
Pi (0 ≤ i ≤ N− − 1). The nodes constituting Pi are identified by
v(i,0), v(i,1), · · · , v(i,N+−1) from left to right. The weight of each edge con-
stituting these paths is one. Furthermore, we give an alias to each end-
point node. We refer to nodes v(i,0) and v(i,N+−1) as wa

i and wb
i respec-

tively (0 ≤ i ≤ N− − 1). We also define W a = {wa
0 , w

a
1 , · · ·wa

N−−1} and

W b = {wb
0, w

b
1, · · ·wb

N−−1}.

Time Lower Bounds for Distributed Distance Oracle 69

2. Construct a complete binary tree with N+ leaves. The leaf nodes in the tree
are labeled by u0, u1, · · ·uN+−1 from left to right. The weight of edges in the
tree is 100N+N−t2.

3. Add edges (ui, v(j,i)) for any i ∈ [0, N+−1] and j ∈ [0, N−−1]. These edges
also has weight 100N+N−t2.

4. Encode the instance (Fa, Fb) to the graph induced by W a and W b. That is,
an edge (wa

i , w
a
j) (resp. (wb

i , w
b
j)) is connected by an edge of weight 8tN+ if

and only if (wi, wj) ∈ Fa (resp. (wi, wj) ∈ Fb).

The whole construction is illustrated in Figure 4. Note that the number n of
nodes in Γ ′

H(Fa, Fb) is Θ(N), and its diameter is D = O(log n). This gadget has
a structure similar to the unweighted case. We have the following lemma:

Lemma 2. Let (Fa, Fb) be an instance of the graphic set-disjointness problem
over H = (W,F), and H ′ = (W,Fa ∪Fb) for short. Then, for any integer k > 0,
the following two properties hold:

– If dH′ (wi, wj) = 1 (i �= j), dΓ ′ (wa
i , w

a
j) ≤ (8t+ 2)N+.

– If dH′ (wi, wj) = k (k > 1, i �= j), dΓ ′(wa
i , w

a
j) ≥ 8tkN+.

Proof. Since all the edges augmented in Step 2 and 3 of the construction are
too heavy, they are not contained in the shortest path between wa

i and wb
j for

any i and j. Thus we can omit those edges in the proof (in Figure 4, they
are grayed out). Then, the graph Γ ′ = Γ ′

H(Fa, Fb) can be seen as a weighted
version of Γ = ΓH,8t(Fa, Fb): The length of the path between wa

i and wb
i (0 ≤

i ≤ N− − 1) is N+ (which corresponds to intra-cluster paths in Γ) and each
edge between (wa

i , w
a
j) ∈ Fa (resp. (wb

i , w
b
j) ∈ Fb) has weight 8tN+. That is, we

have dΓ ′(wa
i , w

a
j) = N+ · dΓ (wa

i , w
a
j). Consequently, the lemma is deduced from

Lemma 1. ��

The following theorem is the core of the reduction.

Theorem 3 (Das Sarma et al. [2]). Let ALG be any algorithm running on
the graph Γ ′, where H is an arbitrary graph of N− nodes. Then there exists a
two-party protocol satisfying the following three properties:

– At the beginning of the protocol, Alice (resp. Bob) knows the whole topological
information of Γ ′ except for the subgraph induced by W b (resp. W a),

– after the run of the protocol, Alice and Bob output the internal states of the
processes in W a and W b at round N+/2 in the execution of ALG, respec-
tively, and

– the protocol consumes at most O(N+(logn)2)-bit communication.

While the graph used in this paper is a slightly modified version of the original
construction in [2], the theorem above is proved in the almost same way. So we
just quote it without the proof.

The theorem above induces our lower bound via a reduction from two-party
graphic set-disjointness:

70 T. Izumi and R. Wattenhofer

���

���

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�������

�
�
�
�
�

���

���

���

Fig. 4. Construction of Γ ′
H(Fa, Fb)

Theorem 4. Assume that the girth conjecture is true for some constant t > 0.
Let ALG be an algorithm constructing distributed (weighted) distributed distance
oracles with stretch 2t. Then, its worst-case running time τ(n) must satisfy

τ(n) = Ω(N+) = Ω
(
n

1
2+

1
5t

)
.

Proof. The proof is almost the same as Theorem 2. Letting Ht,N− be the graph
claimed in Conjecture 1 and (Fa, Fb) be any instance of the graphic set-disjointness
overHt,N− , we consider the run of ALG in the graph Γ ′

Ht,N− (Fa, Fb). Suppose for

contradiction that τ(n) < N+/2 holds. Then, by Theorem 3, we can have a two-
party protocol where Alice and Bob simulate the run of ALG at the processes
in W a and W b respectively. After the simulation, Alice queries the distance be-
tween wa

i and wb
j for each (wi, wj) ∈ F . Then, by Lemma 2 and the same argu-

ment as the proof of Theorem 2, Alice can determine the disjointness of (Fa, Fb).
That is, if all the queries return values at most 2t(8t+ 2)N+, (Fa, Fb) is disjoint.
Otherwise, it is intersecting. Finally Alice sends the one-bit information of the
decision. By Theorem 3, this protocol consumes only O(N+(logn)2)-bit commu-
nication for deciding the disjointness of (Fa, Fb). However, the communication
complexity of the graphic set-disjointness overHt,N− is bounded by the number of
edges in the base graphHt,N− . That is, from Conjecture 1, it is lower bounded by

Ω((N−)(1+1/t)) = Ω((N
1
2−

1
5t)(1+1/t)) = Ω(N

1
2+

1
5t+ε) = ω(N+(log n)2), where ε

is a small constant (depending on t). It is a contradiction. ��

Time Lower Bounds for Distributed Distance Oracle 71

5 Lower Bound for Bounded Label Size Oracles

In this section, we present an unconditional lower bound for the case of bounded
label size oracles. For lack of space, we only focus on the bound for unweighted
graphs, but its result is easily extended to the weighted case by combining the
argument in Section 4.

The fundamental idea follows the proof in Section 3. We construct a reduction
from the two-party graphic set-disjointness. The main difference is that we use
a graph of Θ(N1+1/t−ε) nodes with girth (2t + 2) as the base graph (where ε
is a small constant depending on t), but augment only N intra-cluster paths
crossing Alice and Bob sides. The following lemma is an alternative to the girth
conjecture.

Lemma 3. Let ε ≤ 1/2t2. For any sufficiently large integer N , there exists a
bipartite graph H = (U ∪ W,F) such that |U | = N1+1/t−ε, |W | = N , and
|F | = N1+1/t hold and the girth is at least 2t+ 2.

Proof. The proof idea is based on the seminal one by Erdos’s probabilistic
method, which shows an existence of the graph with high chromatic number
and girth [3,4]. We consider the random construction of a bipartite graph H∗

whose node set is U ∪ W . That is, fixing the vertex set U and W , for each
pair (u,w) ∈ U ×W , we add an edge with probability 1/N1−ε. Then the graph
H∗ satisfies the following two properties with a non-zero probability: (1) The
number of edges is Ω(N1+1/t), and (2) there are only o(N1+1/t) cycles with a
length less than or equal to 2t. Once we find a graph H∗ with both properties,
the desired graph H is obtained from H∗ by removing o(N1+1/t) edges from
each short cycle, which still have Ω(N1+1/t) edges but there is no cycle with
length less than 2t+ 2 (remind that the graph is bipartite and thus there is no
cycle of length 2t+ 1). Thus the remaining part of the proof is to show that the
properties (1) and (2) are simultaneously satisfied with a non-zero probability.
More precisely, it suffices to show that each property is satisfied with a proba-
bility more than 1/2. Then using the union bound, the probability that either
property (1) or (2) fails becomes strictly smaller than one.

The first property is almost trivial. Let X be the number of edges in H ′. Since
the variable X is the sum of independent Poisson trials, we can apply Chernoff
bounds [10]. Then it is not difficult to obtain Pr[X < E[X]/2] = o(1). That is,
X ≥ E[X]/2 holds with probability more than 1/2. The expected number E[X]
of edges in H ′ is |U ||W | · (1/N1−ε) = N1+1/t, and thus the first property holds.

We look at the second property. Let Y be the number of cycles with length
less than 2t+2 in H ′. The probability that a given sequence of 2k nodes (k ≤ t)
form a cycle is obviously bounded by (1/N1−ε)2k. Since we assume ε ≤ 1/2t2,
the expected number E[Y] is bounded as follows:

72 T. Izumi and R. Wattenhofer

E[Y] =
t∑

k=1

(
N1+ 1

t −ε

k

)(
N

k

)
·
(

1

N1−ε

)2k

≤ tN t(1+ 1
t −ε)N t ·N−2t(1−ε)

≤ tN1+εt

≤ O(N1+1/2t),

Using Markov’s inequality [10], we can have

Pr[Y ≥ 3E[Y]] ≤ E[Y]/(3E[Y]) = 1/3.

Thus the property (2) is also satisfied with probability more than 1/2. The
lemma is proved. ��

Let H = (U ∪W,F) be the graph proposed in Lemma 3 for ε = 1/2t2. The
gadget graph Γ̂H,8t(Fa, Fb) to encode the graphic set-disjointness (Fa, Fb) overH
is constructed similarly to ΓH,8t(Fa, Fb) in Section 3. Only the difference is that
we connect Alice and Bob sides only by edges (wa

i , w
b
i) for any i (0 ≤ i ≤ N−1),

but not connect uai and ubi . The constructed gadget is presented in Figure 5. We
define Ua = {ua0 , ua1, · · · , uaN−1} and U b = {ub0, ub1, · · · , ubN−1}.

Path of length

Simulated by BobSimulated by Alice

Path of length one

�
�
�

�
�
� �
�
�

�
�
�

Fig. 5. Construction of Γ̂H,8t(Fa, Fb)

For this construction, we can have a lemma analogous to Lemma 1.

Lemma 4. Let (Fa, Fb) be an instance of the graphic set-disjointness over H,
H ′ = (U,W,Fa ∪ Fb), and Γ̂ = Γ̂H,8t(Fa, Fb) for short. Then, for any integer
k > 0, the following two properties hold:

Time Lower Bounds for Distributed Distance Oracle 73

���

���

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�������

���

���

���

Fig. 6. Construction of the gadget for weighted and bounded label-size oracles

– If (wi, uj) ∈ Fb, dΓ̂ (wa
i , u

b
j) ≤ (8t+ 1).

– If (wi, uj) �∈ Fa ∪ Fb, dΓ̂ (wa
i , u

b
j) ≥ 8t(2t+ 1).

While the proof is omitted for lack of space, it is almost the same as that for
Lemma 1. We show the main theorem:

Theorem 5. Let ALG be an algorithm constructing distributed distance oracles
with stretch 2t and o(n1/2t(t+1))-bit label size. Then, its worst-case running time

τ(n) must satisfy τ(n) ≥ Ω
(
n

1
t+1 / logn

)
.

Proof. The proof basically follows that for Theorem 2. To construct a two-party
graphic set-disjointness protocol, Alice and Bob simulate the internal states of
the processesW a and Ua, andW b and U b in the run of ALG, respectively. After
the simulation, since Bob knows all the labels assigned to the nodes in U b, it sends
them to Alice. This information allows Alice to estimate the distance between
wa

i and ubj for any i and j locally. Then, by Lemma 4, Alice can determine the

existence of the edge (wb
i , u

b
j) for i, j such that (wa

i , u
a
j) �∈ Fa holds. That is,

Alice first queries the distance between wa
i and ubj, and then if the estimated

distance is less than or equal to 2t(8t+ 1), it decides (wa
i , u

b
j) ∈ Fb. Repeating

this kind of queries, Alice can determines the disjointness of (Fa, Fb).
Compared to the protocol proposed in the proof of Theorem 2, the extra

communication incurred by this protocol is to send the labels of the nodes in U b

from Bob to Alice. Since the label size for one node is o(n1/2t(t+1)) = o(N1/2t2)

74 T. Izumi and R. Wattenhofer

bits, the amount of the extra communication is o(N1/2t2) · |U b| = o(N1+1/t) bits,
which is not a dominant part of the protocol communication because solving the
graphic set-disjointness requires Ω(N1+1/t)-bit communication. Consequently,
the amount of the communication spent for the simulation must be Ω(N1+1/t)
bits, and thus we have the same bound for τ(n) as Theorem 2. ��

By applying the same approach, we can also obtain the lower bound for
weighted graphs. The gadget construction is illustrated in Figure 6. The en-
coding of H is similar with the construction of Γ̂ . For Alice (resp. Bob) side,
only the nodes in W a (resp. W b) overlap the endpoints of the paths. Following
the arguments in Theorem 4 and 5, we can show the theorem below:

Theorem 6. Let ALG be a distributed algorithm constructing weighted distance
oracles with stretch 2t and and o(n1/5t

2

)-bit label size. Then, its worst-case run-

ning time τ(n) must satisfy τ(n) = Ω
(
n

1
2+

1
5t

)
.

6 Conclusion

We presented time lower bounds for the distributed distance oracle construc-
tion. Our primary result is to exhibit a trade-off between construction time and
stretch. More precisely, given stretch factor 2t, our lower bounds have the form of
Ω̃(n1/O(t)) rounds for unweighted graphs, and the form of Ω̃(n1/2+1/O(t)) rounds
for weighted graphs. While we assume that the girth conjecture is true for prov-
ing the bounds, we can bypass it when we consider bounded label-size ofracles.
Restricting the label size to nε for a small constant ε depending on t, the same
lower bounds are unconditionally obtained. An open problem related to our re-
sults is to find algorithms whose running time gets close to our lower bounds.
The currently best algorithm in weighted graphs takes O(n

1
2+

1
2t) rounds for the

construction and achieves O(t2) stretch. The algorithm whose stretch linearly

depends on t but achieving O(n
1
2+

1
O(t))-round construction time is still open.

Faster solutions for unweighted graphs are also not known.

References

1. Das Sarma, A., Dinitz, M., Pandurangan, G.: Efficient computation of distance
sketches in distributed networks. In: Proc. of the 24th ACM Symposium on Par-
allelism in Algorithms and Architectures (SPAA), pp. 318–326 (2012)

2. Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G.,
Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed
approximation. In: Proc. of the 43rd Annual ACM Symposium on Theory of Com-
puting, pp. 363–372 (2011)

3. Diestel, R.: Graph Theory, 4th edn., vol. 173. Springer (2012)
4. Erdös, P.: Graph theory and probability. In: Classic Papers in Combinatorics, pp.

276–280 (1987)
5. Frischknecht, S., Holzer, S., Wattenhofer, R.: Networks cannot compute their di-

ameter in sublinear time. In: Proc. of the Twenty-Third Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pp. 1150–1162 (2012)

Time Lower Bounds for Distributed Distance Oracle 75

6. Holzer, S., Wattenhofer, R.: Optimal distributed all pairs shortest paths and ap-
plications. In: Proc. of the 2012 ACM Symposium on Principles of Distributed
Computing (PODC), pp. 355–364 (2012)

7. Kalyanasundaram, B., Schintger, G.: The probabilistic communication complexity
of set intersection. SIAM Journal on Discrete Mathematics 5(4), 545–557 (1992)

8. Lenzen, C., Patt-Shamir, B.: Fast routing table construction using small messages:
Extended abstract. In: Proc. of the 45th Annual ACM Symposium on Symposium
on Theory of Computing (STOC), pp. 381–390 (2013)

9. Lenzen, C., Peleg, D.: Efficient distributed source detection with limited band-
width. In: Proc. of the 2013 ACM Symposium on Principles of Distributed Com-
puting (PODC), pp. 375–382 (2013)

10. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press (2005)

11. Nanongkai, D.: Distributed approximation algorithms for weighted shortest paths.
In: Proc. of the 46th Annual ACM Symposium on Theory of Computing (STOC),
pp. 565–573 (2014)

12. Peleg, D., Roditty, L., Tal, E.: Distributed algorithms for network diameter and
girth. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012,
Part II. LNCS, vol. 7392, pp. 660–672. Springer, Heidelberg (2012)

13. Razborov, A.A.: On the distributional complexity of disjointness. Theoretical Com-
puter Science 106(2), 385–390 (1992)

14. Thorup, M., Zwick, U.: Approximate distance oracles. Journal of the ACM 52(1),
1–24 (2005)

15. Yao, A.C.-C.: Some complexity questions related to distributive computing (pre-
liminary report). In: Proc. of the 11th Annual ACM Symposium on Theory of
Computing (STOC), pp. 209–213 (1979)

Erasure-Coded Byzantine Storage
with Separate Metadata

Elli Androulaki1, Christian Cachin1, Dan Dobre2, and Marko Vukolić3

1 IBM Research - Zurich, Rüschlikon, Switzerland
{lli,cca}@zurich.ibm.com

2 Work Done at NEC Labs Europe, Germany
dan@dobre.net

3 Department of Computer Science, ETH Zurich, Switzerland and Eurécom,
Sophia Antipolis, France
vukolic@eurecom.fr

Abstract. Although many distributed storage protocols have been introduced, a
solution that combines the strongest properties in terms of availability, consis-
tency, fault-tolerance, storage complexity, and concurrency has been elusive so
far. Combining these properties is difficult, especially if the resulting solution is
required to be efficient and incur low cost.

We present AWE, the first erasure-coded distributed implementation of a
multi-writer multi-reader read/write register object that is, at the same time: (1)
asynchronous, (2) wait-free, (3) atomic, (4) amnesic, (i.e., nodes store a bounded
number of values), and (5) Byzantine fault-tolerant (BFT), using the optimal
number of nodes. AWE maintains metadata separately from bulk data, which is
encoded into fragments with a k-out-of-n erasure code and stored on dedicated
data nodes that support only simple reads and writes. Furthermore, AWE is the
first BFT storage protocol that uses only n = 2t + k data nodes to tolerate t
Byzantine faults, for any k ≥ 1. Metadata, on the other hand, is stored using an
atomic snapshot object, which may be realized from 3t + 1 metadata nodes for
tolerating t Byzantine faults.

AWE is efficient and uses only lightweight cryptographic hash functions. More-
over, we show that hash functions are needed by any BFT distributed storage
protocol that stores the bulk data on 3t or fewer data nodes.

1 Introduction

Erasure coding is a key technique that saves space and retains robustness against faults
in distributed storage systems. In short, an erasure code splits a large data value into
n fragments such that from any k of them the input value can be reconstructed. Erasure
coding is used by several large-scale storage systems [24, 28] that offer large capacity,
high throughput, resilience to faults, and efficient use of storage space.

Whereas the storage systems in production use today only tolerate crashes or out-
ages, storage systems in the Byzantine failure model survive also more severe faults,
ranging from arbitrary state corruption to malicious attacks on processes. In this pa-
per, we consider a model where multiple clients concurrently access a storage service
provided by a distributed set of nodes , where t out of n nodes may be Byzantine. We
model the storage service as an abstract read/write register object.

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 76–90, 2014.
c© Springer International Publishing Switzerland 2014

Erasure-Coded Byzantine Storage with Separate Metadata 77

Although Byzantine-fault tolerant (BFT) erasure-coded distributed storage systems
have received some attention in the literature [5, 9, 15, 18, 21], our understanding of
their properties is not mature. The role of different quorums, the semantics of concur-
rent access, the latency of protocols, and the processing capabilities of the nodes have
been investigated thoroughly for protocols based on replication [12,27]; in contrast, our
knowledge about erasure-coded distributed storage is far more limited. In fact, the exist-
ing BFT erasure-coded storage protocols suffer from multiple drawbacks: some require
nodes to store an unbounded number of values [18] or rely on node-to-node commu-
nication [9], others need computationally expensive public-key cryptography [9, 21] or
may block clients due to concurrent operations of other clients [21].

Contribution. This paper introduces AWE, the first erasure-coded distributed imple-
mentation of a multi-reader multi-writer (MRMW) register that is, at the same time, (1)
asynchronous, (2) wait-free, (3) atomic, (4) amnesic, (5) tolerates the optimal number
of Byzantine nodes, and (6) does not use public-key cryptography.

These properties are desirable, as wait-freedom [22] and atomicity (or linearizabil-
ity) [23] are not only the most fundamental but also the strongest liveness and consis-
tency properties (respectively) of distributed storage. Roughly, wait-free liveness means
that any correct client operation terminates irrespective of the behavior of the faulty
nodes and clients, whereas atomicity means that all operations appear to take effect in-
stantaneously. Therefore, guaranteeing wait-freedom and atomicity under the weakest
possible assumptions (asynchrony, Byzantine faults) is highly desirable. Furthermore,
amnesic storage [11] in combination with erasure-coding minimizes the storage over-
head, another important measure for distributed storage. Roughly speaking, in amnesic
storage nodes store a bounded number of values and erase obsolete data. Finally, the ab-
sence of public-key cryptography contributes to an efficient implementation of AWE.
Although different subsets of these robustness properties have been demonstrated so
far, they have never been achieved together for erasure-coded storage. Combining these
desirable properties, has been a longstanding open problem [18].

AWE distinguishes between metadata (short control information) and bulk data (the
erasure-coded stored values) and introduces two separate classes of nodes that store
metadata and bulk data. With this approach, AWE beats the lower bound of n > 3t
nodes needed for distributed BFT storage [26], for the class of data nodes (that store
bulk data). This makes AWE novel, as all known erasure-coded BFT storage solutions
comply with this bound for their bulk data storage.

More specifically, with a k-out-of-n erasure code, protocol AWE needs only 2t+ k
data nodes, for any k ≥ 1. This approach saves resources in practice, as storage costs
for the bulk data often dominate. The data nodes may be passive objects that support
read and write operations but cannot execute code, as in Disk Paxos [1]. In practice,
such services may be provided by the key-value stores (KVS) popular in cloud storage.

We formulate AWE in a modular way using an abstract metadata service that stores
control information with an atomic snapshot object. A snapshot object may be realized
in a distributed asynchronous system from simple read/write registers [3]. For making
this implementation fault-tolerant, these registers must still be emulated from n > 3t
different metadata nodes , in order to tolerate t Byzantine nodes.

78 E. Androulaki et al.

Finally, AWE uses simple cryptographic hash functions but no expensive public-
key operations. To explain the use of cryptography in AWE, we show that separating
data from metadata and reducing the number of data nodes to 3t or less implies the use
cryptographic techniques. This result is interesting in its own right, as it implies that any
distributed BFT storage protocol that uses 3t or fewer nodes for storing bulk data must
involve cryptographic hash functions and place a bound on the computational power of
the Byzantine nodes. As all existing BFT erasure-coded storage protocols (including
AWE) rely on cryptography, this result does not pose a restriction on practical systems.
However, it illustrates a fundamental limitation that is particularly relevant for k = 1,
i.e., for replication-based BFT storage protocols.

Structure. The paper continues with the overview of related work in Section 2. The
model is given in Section 3 and Protocol AWE is presented in Section 4. The commu-
nication and storage complexities of AWE are compared to those of existing protocols
in Section 5. Section 6 establishes the necessity of cryptographic assumptions for BFT
storage with less than 3t data nodes. Finally, Section 7 concludes the paper. Detailed
proofs appear in a technical report [4].

2 Related Work

Table 1 summarizes this section that gives a brief overview of the relevant related work.
Earlier designs for erasure-coded distributed storage have suffered from potential

aborts due to contention [16] or from the need to maintain an unbounded number of
fragments at data nodes [18]. In the crash-failure model, ORCAS [15] and CASGC [10]
achieve optimal resilience n > 2t and low communication overhead, combined with
wait-free (ORCAS) and FW-termination (CASGC), respectively. FW-termination en-
sures that read operations always progress only in executions with a finite number of
writes.

In the model with Byzantine nodes, Cachin and Tessaro (CT) [9] introduced the first
wait-free protocol with atomic semantics and optimal resilience n > 3t. CT uses a ver-
ifiable information dispersal protocol but needs node-to-node communication, which
lies outside our model. Hendricks et al. (HGR) [21] present an optimally resilient proto-
col that comes closest to our protocol among the existing solutions. It offers many desir-
able features, that is, it has as low communication cost, works asynchronously, achieves
optimal resilience, atomicity, and is amnesic. Compared to our work, it (1) uses public-
key cryptography, (2) achieves only FW-termination instead of wait-freedom, and (3)
requires processing by the nodes, i.e., the ability to execute complex operations beyond
simple reads and writes.

To be fair, much of the (cryptographic) overhead inherent in the CT and HGR pro-
tocols defends against poisonous writes from Byzantine clients, i.e., malicious client
behavior that leaves the nodes in an inconsistent state. We do not consider Byzantine
clients in this work, since permitting arbitrary client behavior is problematic [20]. Such
a client might write garbage to the storage system and wipe out the stored value at any
time. However, even without the steps that protect against poisonous writes, HGR still
requires processing by the nodes and is not wait-free.

Erasure-Coded Byzantine Storage with Separate Metadata 79

Table 1. Comparison of erasure-coded distributed storage solutions. An asterisk (∗) denotes op-
timal properties. The column labeled Type states the computation requirements on nodes: Proc.
denotes processing; Msg. means sending messages to other nodes, in addition to processing; R/W
denotes a read/write register.

Protocol BFT Liveness Data nodes Type Amnesic Cryptogr.
ORCAS [15] — Wait-free 2t+ 1 Proc. — N/A
CASGC [10] — FW-term. 2t+ 1 Proc. �∗ N/A
CT [9] �∗ Wait-free ∗ 3t+ 1 Msg. — Public-key
HGR [21] �∗ FW-term. 2t+ k, for k > t Proc. �∗ Public-key
M-PoWerStore [13] �∗ Wait-free ∗ 3t+ 1 Proc. — Hash func. ∗

DepSky [5] �∗ Obstr.-free 3t+ 1 R/W ∗ — Public-key
AWE (Sec. 4) �∗ Wait-free ∗ 2t+ k, for k ≥ 1 ∗ R/W ∗ �∗ Hash func. ∗

The M-PoWerStore protocol [13] employs a cryptographic “proof of writing” for
wait-free atomic erasure-coded distributed storage without node-to-node communica-
tion. Similar to other protocols, M-PoWerStore uses n > 3t nodes (with processing
capabilities) and is not amnesic.

Several systems have recently addressed how to store erasure-coded data on multi-
ple redundant cloud services but only few of them focus on wait-free concurrent ac-
cess. HAIL [6], for instance, uses Byzantine-tolerant erasure coding and provides data
integrity through proofs of retrievability; however, it does not address concurrent oper-
ations by different clients. DepSky [5] achieves regular semantics and uses lock-based
concurrency control; therefore, one client may block operations of other clients.

A key aspect of AWE lies in the differentiation of (small) metadata from (large)
bulk data: this enables a modular protocol design and an architectural separation for
implementations. The concept also resembles the separation between agreement and
execution used in the context of BFT replicated state machines in partially synchronous
systems [29].

FARSITE [2] first introduced such a separation of metadata and data for replicated
storage; their data nodes and their metadata abstractions require processing, however,
in contrast to AWE. Non-explicit ways of separating metadata from data can already be
found in several previous erasure coding-based protocols. For instance, the cross check-
sum, a vector with the hashes of all n fragments, has been replicated on the data nodes
to ensure consistency [9, 18]. Separation of metadata has been also used in practical
replicated crash-tolerant systems such as Hadoop Distributed File System.

Finally, Cachin et al. [7] have recently shown in a predecessor to this work that also
with replication, separating metadata from bulk data has benefits. Their asynchronous
wait-free BFT distributed storage protocol, called MDStore, reduces the number of data
nodes to only 2t+ 1. When protocol AWE is reduced to use replication with the trivial
erasure code (k = 1), it uses as few nodes as MDStore to achieve the same wait-free
atomic semantics; unlike AWE, however, MDStore is not amnesic and uses processing
nodes.

The connection between separating data from metadata, reducing the number of data
nodes, and the necessity of cryptographic techniques appears novel. In a sense, this
paper shows a novel connection between the resilience of a distributed BFT protocol
and the existence of a cryptographic primitive.

80 E. Androulaki et al.

3 Definitions

We use a standard asynchronous deterministic distributed system of processes that com-
municate with each other. Processes comprise a set C ofm clients, and a set D of n data
nodes d1, . . . , dn. Clients can only crash and up to t data nodes can be Byzantine and
exhibit NR-arbitrary faults.

Protocols are presented in a modular event-based notation [8]. Processes interact
through events that are qualified by the process identifier to which the event belongs.
An event Sample of a process m with a parameter x is denoted by 〈 m-Sample | x 〉.
Processes execute operations, defined in terms of invocation and response events. We
use the standard notions of operation precedence, histories, and linearizability [23].

A read/write register r is an object that stores a value from a domain V and supports
exactly two operations: (1) a Write operation to r with invocation 〈 r-Write | v 〉, taking
a value v ∈ V that terminates with a response 〈 r-WriteAck 〉; and (2) a Read operation
from r with invocation 〈 r-Read 〉 that terminates with a response 〈 r-ReadResp | v 〉,
containing a parameter v ∈ V . The behavior of a register is given through its sequential
specification, which requires that every r-Read operation returns the value written by
the last preceding r-Write operation in the execution, or the special symbol ⊥ �∈ V if
no such operation exists.

The goal of this work is to describe a protocol that emulates a linearizable register
abstraction among the clients; such a register is also called atomic. Some of the clients
may crash and some nodes may be Byzantine. A protocol is called wait-free [22] if
every operation invoked by a correct client eventually completes, irrespective of how
other clients and nodes behave.

We make use of cryptographic hash functions modeled by a distributed oracle ac-
cessible to all processes [8]. A hash function H maps a bit string x of arbitrary length
to a short, unique representation of fixed length. We use a collision-free hash function;
this property means that no process, not even a Byzantine process, can find two distinct
values x and x′ such thatH(x) = H(x′).

4 Protocol AWE

Erasure code. An (n, k)-erasure code (EC) with domain V is given by an encoding al-
gorithm, denoted Encode, and a reconstruction algorithm, called Reconstruct. We con-
sider only maximum-distance separable codes, which achieve the Singleton bound in
the following sense. Given a (large) value v ∈ V , algorithm Encodek,n(v) produces a
vector [f1, . . . , fn] of n fragments, which are from a domain F . A fragment is typically
much smaller than the input, and any k fragments contain all information of v, that is,
|V| ≈ k|F|.

For an n-vector F ∈
(
F ∪ {⊥}

)n
, whose entries are either fragments or the sym-

bol ⊥, algorithm Reconstructk,n(F) outputs a value v ∈ V or ⊥. An output value of ⊥
means that the reconstruction failed. The completeness property of an erasure code re-
quires that an encoded value can be reconstructed from any k fragments. In other words,

Erasure-Coded Byzantine Storage with Separate Metadata 81

for every v ∈ V , when one computes F ← Encodek,n(v) and then erases up to n − k
entries in F by setting them to ⊥, algorithm Reconstructk,n(F) outputs v.

Metadata service. The metadata service is implemented by a standard atomic snapshot
object [3], called dir, that serves as a directory. A snapshot object extends the simple
storage function of a register to a service that maintains one value for each client and
allows for better coordination. Like an array of multi-reader single-writer (MRSW)
registers, it allows every client to update its value individually; for reading it supports
a scan operation that returns the vector of the stored values, one for every client. More
precisely, the operations of dir are:

– An Update operation to dir is triggered by an invocation 〈 dir-Update | c, v 〉 by
client c that takes a value v ∈ V as parameter and terminates by generating a
response 〈 r-UpdateAck 〉 with no parameter.

– A Scan operation on dir is triggered by an invocation 〈 dir-Scan 〉 with no parame-
ter; the snapshot object returns a vector V of m = |C| values to c as the parameter
in the response 〈 r-ScanResp | V 〉, with V [c] ∈ V for c ∈ C.

The sequential specification of the snapshot object follows directly from the specifica-
tion of an array of m MRSW registers (hence, the snapshot initially stores the special
symbol ⊥ �∈ V in every entry). When accessed concurrently from multiple clients, its
operations appear to take place atomically, i.e., they are linearizable. Snapshot objects
are weak — they can be implemented from read/write registers [3], which, in turn, can
be implemented from a set of a distributed processes subject to Byzantine faults. Wait-
free amnesic implementations of registers with the optimal number of n > 3t processes
are possible using existing constructions [14, 19].

Data nodes. Data nodes provide a simple key-value store interface. We model the state
of data nodes as an array data[ts] ∈ Σ∗, initially ⊥, for ts ∈ Timestamps. Every value is
associated to a timestamp, which consists of a sequence number sn and the identifier c
of the writing client, i.e., ts = (sn, c) ∈ Timestamps = N0 × (C ∪ {⊥}); timestamps
are initialized to T0 = (0,⊥). Data node di exports three operations:

– 〈 di-Write | ts, v 〉, which assigns data[ts] ← v and returns 〈 di-WriteAck | ts 〉;
– 〈 di-Read | ts 〉, which returns 〈 di-ReadResp | ts, data[ts] 〉; and
– 〈 di-Free | TS 〉, which assigns data[ts] ← ⊥ for all ts ∈ TS, and returns 〈 di-

FreeAck | TS 〉.

4.1 Protocol Overview

AWE uses the metadata directory dir to maintain pointers to the fragments stored at the
data nodes. The directory stores an entry for every writer; it contains the timestamp of
its most recently written value, the identities of those nodes that have acknowledged to
store a fragment of it, a vector with the hashes of the fragments for ensuring data in-
tegrity, and additional metadata to support concurrent reads and writes. The linearizable
semantics of protocol AWE are obtained from the atomicity of the metadata directory.

At a high level, the writer first invokes dir-Scan on the metadata to read the high-
est stored timestamp, increments it, and uses this as the timestamp of the value to be
written. Then it encodes the value to n fragments and sends one fragment to each

82 E. Androulaki et al.

data node. The data nodes store it and acknowledge the write. After the writer has re-
ceived acknowledgments from t+ k data nodes, it writes their identities (together with
the timestamp and the hashes of the fragments) to the metadata through dir-Update. The
reader proceeds accordingly: it first invokes dir-Scan to obtain the entries of all writers;
it determines the highest timestamp among them and extracts the fragment hashes and
the identities of the data nodes; finally, it contacts the data nodes and reconstructs the
value after obtaining k fragments that match the hashes in the metadata.

Although this simplified algorithm achieves atomic semantics, it does not address
timely garbage-collection of obsolete fragments, the main problem to be solved for
amnesic erasure-code distributed storage. If a writer would simply replace the fragments
with those of the value written next, it is easy to see a concurrent reader may stall.

Protocol AWE uses two mechanisms to address this: first, the writer retains those
values that may be accessed concurrently and exempts them from garbage collection so
that their fragments remain intact for concurrent readers, which gives the reader enough
time to retrieve its fragments. Secondly, some of the retained values may also be frozen
in response to concurrent reads; this forces a concurrent read to retrieve a value that
is guaranteed to exist at the data nodes rather than simply the newest value, thereby
effectively limiting the amount of stored values. A similar freezing method has been
used for wait-free atomic storage with replicated data [14, 19], but it must be changed
for erasure-coded storage with separated metadata. The retention technique together
with the separation of metadata appears novel. More specifically, metadata separation
prevents straightforward applications of existing “freezing” techniques, whereas storage
that is simultaneously wait-free and amnesic requires garbage collection method that we
show here for the first time.

For the two mechanisms, i.e., retention and freezing, every reader maintains a reader
index, both in its local variable readindex and in its metadata. The reader index serves
for coordination between the reader and the writers. The reader increments its index
whenever it starts a new r-Read and immediately writes it to dir, thereby announcing
its intent to read. Writers access the reader indices after updating the metadata for a
write and before (potentially) erasing obsolete fragments. Every writer w maintains
a table frozenindex with its most recent recollection of all reader indices. When the
newly obtained index of a reader c has changed, then w detects that c has started a new
operation at some time after the last write of w.

When w detects a new operation of c, it does not know whether c has retrieved the
timestamp from dir before or after the dir-Update of the current write. The reader may
access either value; the writer therefore retains both the current and the preceding value
for c by storing a pointer to them in frozenptrlist and in reservedptrlist. Clearly, both
values have to be excluded from garbage collection by w in order to guarantee that the
reader completes.

However, the operation of the reader c may access dir after the dir-Update of one
or more subsequent write operation by w, which means that the nodes would have to
retain every value subsequently written by w as well. To prevent this from happening
and to limit the number of stored values, w freezes the currently written timestamp (as
well as the value) and forces c to read this timestamp when it accesses dir within the
same operation. In particular, the writer stores the current timestamp in frozenptrlist at

Erasure-Coded Byzantine Storage with Separate Metadata 83

index c and updates the reader index of c in frozenindex; then, the writer pushes both
tables, frozenindex and frozenptrlist, to the metadata service during its next r-Write.
The values designated by frozenptrlist (they are called frozen) and reservedptrlist (they
are called reserved) are retained and excluded from garbage collection until w detects
the next read of c, i.e., the reader index of c increases. Thus, the current read may span
many concurrent writes ofw and the fragments remain available until c finishes reading.

On the other hand, a reader must consider frozen values. When a slow read operation
spans multiple concurrent writes, the reader c learns that it should retrieve the frozen
value through its entry in the frozenindex table of the writer.

The protocol is amnesic because each writer retains at most two values per reader, a
frozen value and a reserved value. Every data node therefore stores at most two frag-
ments for every reader-writer pair plus the fragment from the currently written value.
The combination of freezing and retentions ensures wait-freedom.

4.2 Details

Data structures. We use abstract data structures for compactness. In particular, given
a timestamp ts = (sn, c), its two fields can be accessed as ts.sn and ts.c. A data
type Pointers denotes a set of tuples of the form (ts, set, hash) with ts ∈ Timestamps,
set ⊆ [1, n], and hash[i] ∈ Σ∗ for i ∈ [1, n]. Their initialization value is Nullptr =
((0,⊥), ∅, [⊥, . . . ,⊥]).

A Pointers structure contains the relevant information about one stored value. For ex-
ample, the writer locally maintains writeptr ∈ Pointers designating to the most recently
written value. More specifically, writeptr.ts contains the timestamp of the written value,
writeptr.set contains the identities of the nodes that have confirmed to have stored the
written value, and writeptr.hash contains the cross checksum, the list of hash values of
the data fragments, of the written value.

The metadata directory dir contains a vector M with a tuple for every client p ∈ C
of the form

M [p] =
(
writeptr, frozenptrlist, frozenindex, readindex

)
,

where the field writeptr ∈ Pointers represents the written value, the field frozenptrlist
is an array indexed by c ∈ C such that frozenptrlist[c] ∈ Pointers denotes a value frozen
by p for reader c, and the integer readindex denotes the reader-index of p.

For preventing that concurrently accessed fragments are cleaned up too early, the
writer maintains two tables, frozenptrlist, and reservedptrlist, each containing one Point-
ers entry for every reader in C. The second one, reservedptrlist, is stored only locally,
together with the frozenindex table, which denotes the writer’s most recently obtained
copy of the reader indices. For the operations of the reader, only the local readindex
counter is needed.

Every client maintains the following variables between operations: writeptr, frozen-
ptrlist, frozenindex, and reservedptrlist implement freezing, reservations, and retentions
for writers as mentioned, and readindex counts the reader operations. When clients
access dir, they may not be interested to retrieve all fields or to update all fields; for
clarity, we replace the fields to be ignored by ∗ in dir-Scan and dir-Update operations.

84 E. Androulaki et al.

Algorithm 1. Protocol AWE, atomic register instance r for client c (part 1).

State
// State maintained across write and read operations
writeptr ∈ Pointers, initially Nullptr // Metadata of the currently written value
frozenptrlist[p] ∈ Pointers, initially Nullptr, for p ∈ C // Frozen and retained for p
reservedptrlist[p] ∈ Pointers, initially Nullptr, for p ∈ C // Reserved and retained for p
frozenindex[p] ∈ N0, initially 0, for p ∈ C // Last known reader index of p
readindex ∈ N0, initially 0 // Reader index of c
// Temporary state during operations
prevptr ∈ Pointers, initially Nullptr // Metadata of the value written by c before
readptr ∈ Pointers, initially Nullptr // Metadata of the value to be read by c
readlist[i] ∈ Σ∗, initially ⊥, for i ∈ [1, n] // List of nodes that have responded during read

upon 〈 r-Write | v 〉 do
prevptr ← writeptr
invoke 〈 dir-Scan 〉; wait for 〈 dir-ScanResp | M 〉
(wsn, ∗) ← max{M [p].writeptr.ts | p ∈ C} // Highest ts field in a writeptr in M
writeptr.ts ← (wsn + 1, c) // Construct metadata of the currently written value
writeptr.set ← ∅
[v1, . . . , vn] ← Encodek,n(v)
forall i ∈ [1, n] do

writeptr.hash[i] ← H(vi)
invoke 〈 di-Write | writeptr.ts, vi 〉

upon 〈 di-WriteAck | ats 〉 such that ats = writeptr.ts ∧ |writeptr.set| < t+ k do
writeptr.set ← writeptr.set ∪ {i}
if |writeptr.set| = t+ k then

// Update metadata at dir with currently written value and with frozen values
invoke 〈 dir-Update | c, (writeptr, frozenptrlist, frozenindex, ∗) 〉
wait for 〈 dir-UpdateAck 〉
// Obtain current reader indices
invoke 〈 dir-Scan 〉; wait for 〈 dir-ScanResp | M 〉
freets ← {prevptr.ts}
forall p ∈ C \ {c} do

(∗, ∗, ∗, index) ← M [p]
if index > frozenindex[p] then

// Client p may be concurrently reading prevptr or writeptr
freets ← freets ∪ {frozenptrlist[p].ts, reservedptrlist[p].ts}
frozenptrlist[p] ← writeptr; frozenindex[p] ← index
reservedptrlist[p] ← prevptr

freets ← freets \
⋃

p∈C{frozenptrlist[p].ts, reservedptrlist[p].ts}
forall j ∈ [1, n] do // Clean up fragments except for current, frozen, and reserved

invoke 〈 dj-Free | freets 〉
invoke 〈 r-WriteAck 〉

Operations. At the start of a write operation, the writer w saves the current value of
writeptr in prevptr, to be used later during its operation, if w should reserve and retain

Erasure-Coded Byzantine Storage with Separate Metadata 85

Algorithm 2. Protocol AWE, atomic register instance r for client c (part 2).

upon 〈 r-Read 〉 do
forall i ∈ [1, n] do readlist[i] ← ⊥
readindex ← readindex + 1
invoke 〈 dir-Update | c, (∗, ∗, ∗, readindex) 〉; wait for 〈 dir-UpdateAck 〉
// Parse the content of dir and extract the highest timestamp, potentially frozen for c
invoke 〈 dir-Scan 〉; wait for 〈 dir-ScanResp | M 〉
readptr ← highestread(M, c, readindex)
if readptr.ts = (0,⊥) then

invoke 〈 r-ReadResp | ⊥ 〉
else // Contact the data nodes to obtain the data fragments

forall i ∈ readptr.set do
invoke 〈 di-Read | readptr.ts 〉

upon 〈 di-ReadResp | vts, v 〉 such that vts = readptr.ts ∧ readlist[i] = ⊥ do
if v �= ⊥ ∧H(v) = readptr.hash[i] then

readlist[i] ← v
if
∣∣{j|readlist[j] �= ⊥}

∣∣ = k then
readptr ← Nullptr
retval ←Reconstructk,n(readlist)
invoke 〈 r-ReadResp | retval 〉

that value. Thenw determines the timestamp of the current operation, which is stored in
writeptr.ts. After computing the fragments of v, sending them to the data nodes, and ob-
taining t+k acknowledgements, the writer updates its metadata entry. It writes writeptr,
pointing to v, together with frozenptrlist and frozenindex, as they resulted after the previ-
ous write to dir. Then w invokes dir-Scan and acquires the current metadataM , which
it uses to determine values to freeze and to retain. It compares the acquired reader in-
dices with the ones obtained during its last write (as stored in frozenindex). When w
detects a read operation by c because M [c].readindex > frozenindex[c], it freezes the
current value (by setting frozenptrlist[p] to writeptr) and reserves the previously written
value (by setting reservedptrlist[p] to prevptr). Finally, the writer deletes all fragments
at the data nodes except for those of the currently written and the retained values.

To determine the timestamps for retrieving fragments, the reader uses the following
two functions:

function readfrom(M, c, p, index) is
if index > M [p].frozenindex[c] then

returnM [p].writeptr
else // index = M [p].frozenindex[c]

returnM [p].frozenptrlist[c]

function highestread(M, c, index) is
max ← Nullptr
forall p ∈ C do

ptr ← readfrom(M, c, p, index)
if ptr.ts > max.ts then

max ←ptr
return max

86 E. Androulaki et al.

Upon retrieving the arrayM from dir, the reader sets

readptr ← highestread(M, c, readindex),

which implements the logic of accessing frozen timestamps. The details of AWE appear
in Algorithms 1–2.

Remarks. AWE does not rely on a majority of correct data nodes for correctness, as
this is encapsulated in the directory service. For liveness, though, the protocol needs
responses from t + k data nodes during write operations, which is only possible if
n ≥ 2t + k. Furthermore, several optimizations may reduce the storage overhead in
practice, e.g., readers can clean up values that are no longer needed by anyone.

5 Complexity Comparison

This section compares the communication and storage complexities of AWE to existing
erasure-coded distributed storage solutions, in a setting with n data nodes andm clients.
We denote the size of each stored value v ∈ V by � = �log2 |V|�. In line with the
intended deployment scenarios, we assume that � is much larger (by several orders of
magnitude) than n2 andm2 , i.e., �� n2 and �� m2.

We examine the worst-case communication and storage costs incurred by a client
in protocol AWE and distinguish metadata operations (on dir) from operations on the
data nodes. The metadata of one value written to dir consists of a pointer, containing the
cross checksum with n hash values, the t+k identities of the data nodes that store a data
fragment, and a timestamp. Moreover, the metadata entry of one writer contains also the
list of m pointers to frozen values, the m indices relating to the frozen values, and the
writer’s reader index. Assuming a collision-resistant hash function with output size λ
bits and timestamps no larger than λ bits, the total size of the metadata is O(m2nλ). In
the remainder of this section, the size of the metadata is considered to be negligible and
is ignored, though it would incur in practice.

According to the above assumption, the complexity of AWE is dominated by the
data itself. When writing a value v ∈ V , the writer sends a fragment of size �/k and a
timestamp of size λ to each of the n data nodes. Assuming further that �� λ, the total
storage space occupied by v at the data nodes amounts to n�/k bits. Similarly, a read
operation incurs a communication cost of (t+ k)k/� bits.

With respect to storage complexity, protocol AWE freezes and reserves two time-
stamps and their fragments for each writer-reader pair, and additionally stores the frag-
ments of the last written value for each writer. This means that the storage cost is at most
2m2n�/k bits in total. The improvement described in a remark of Section 4.2 reduces
this to 2mn�/k in the best case.

Table 2 shows the communication and storage costs of protocol AWE and the related
protocols. Observe that in CASGC [10] and HGR [21], a read operation concurrent
with an unbounded number of writes may not terminate, hence we state their cost as ∞.
Moreover, in contrast to AWE, DepSky [5] is neither wait-free nor amnesic and M-
PoWerStore [13] is not amnesic. It is easy to see that the communication complexity of
AWE is lower than that of most storage solutions.

Erasure-Coded Byzantine Storage with Separate Metadata 87

Table 2. Comparison of the communication and space complexities of erasure-coded distributed
storage solutions. There are m clients, n data nodes, the erasure code parameter is k = n − 2t,
and the data values are of size
 bits. An asterisk (∗) denotes optimal properties.

Protocol Communication cost Storage cost
Write Read

ORCAS-A [15] (1 +m)n
 2n
 n

ORCAS-B [15] (1 +m)n
/k 2n
/k mn
/k

CASGC [10] n
/k ∗ ∞ mn
/k

CT [9] (n+m)n
/(k + t)
 ∗ n
/(k + t) ∗

HGR [21] n
/k ∗ ∞ mn
/k

M-PoWerStore [13] n
/k ∗ n
/k ∞
DepSky [5] n
/k ∗ n
/k ∞
AWE (Sec. 4) n
/k ∗ (t+ k)
/k 2m2n
/k

6 Necessity of Cryptography

In this section, we show that every BFT storage protocol that maintains bulk data (as op-
posed to short metadata) on 3t or fewer nodes while tolerating tByzantine faults implies
the existence of cryptographic hash functions. We strengthen this result by considering
single-writer single-reader implementations of a register object with value domain V
where n data nodes are aided by one metadata service (MDS) process; intuitively, the
role of the MDS in an implementation is to store coordination data, but not values. Up
to t data nodes may exhibit Byzantine faults, yet the MDS is a correct process. We do
not rely on self-verifying data [25] — the processes have no way to check to tell apart
“valid” from “invalid” values.

We consider a computational model and adopt a cryptographic security notion [17].
Let κ be a security parameter. Suppose every process is implemented by an efficient al-
gorithm, that is, an algorithm whose running time is bounded by some polynomial in κ;
the length of the input values and the internal state of every process are also bounded
by this polynomial. We assume the storage emulation takes inputs of length �(κ), a
polynomial in κ, i.e., |V| ≤ 2�(κ). Suppose that any MDS implementation has small
state in the sense that its internal memory is restricted to φ(κ) bits such that there exists
a constant c > 1 such that for all κ > 0, �(κ) > φ(κ)c. This ensures that a register
emulation cannot simply store the written at the MDS.

We abstract the hash function as follows.

Definition 1 (Digest oracle). A digest oracle D is a distributed atomic object accessi-
ble to all processes. It supports only one operation that takes a bit string x of arbitrary
length as input and outputs a bit string d (denotedD(x)) of fixed length λ(κ), where λ
is a polynomial in κ.

The operation of D may be probabilistic but it implements a mathematical function
in the sense that when queried with an input that has already been queried before, it re-
turns again the same output. Furthermore,D satisfies the following collision-resistance
property. Consider any efficient adversarial process A with access to D that attempts
to find a collision in D. The probability that A outputs two values x and x′ such that

88 E. Androulaki et al.

D(x) = D(x′) is negligible in κ. (A function μ is called negligible when for every
integer c > 0 there exists an integer κc such that for all κ > κc, it holds |μ(κ)| < κ−c.)

The principal result of this section, stated next in Theorem 1, combines a standard in-
distinguishability argument about a concurrent system with a cryptographic reduction.

Theorem 1. Consider a deterministic emulation Π of a safe register, which uses a
meta-data service MDS and n ≤ 3t data nodes such that up to t of the data nodes
may be Byzantine and controlled by an adversary. If MDS has small state, then a
collision-free digest oracleD can be implemented.

Proof. We first defineD, which is implemented from a simulation of the storage proto-
col Π that uses MDS. More precisely, to compute the digest of a value x, a simulator
executesΠ by simulating one writer processw that executes write(x), the n data nodes,
and MDS. Then the simulator outputs the internal state md of process MDS as the
return value ofD. WheneverD is invoked, the simulator starts from the initial state and
uses the same schedule; this ensures that two invocations ofD with the same input give
the same output.

We now show thatD constructed fromΠ is collision-free. Towards a contradiction,
assume there exist two distinct values a and b in V such that D(a) = D(b). We now
argue that Π is not a safe register emulation by describing multiple executions of Π .
For simplicity, assume that n = 3t and divide the n data nodes into three groups of t
each, called A, B, and F .

Consider first an execution α of Π where initially w writes a using the schedule of
the emulation ofD. Suppose the nodes in A and F participate in this emulation and let
tα denote the time when the simulation ofD returnsmda, the state ofM . No messages
from the writer are delivered to nodes in B.

Second, in execution β of Π , the value b is written. The execution is the same as
α, except that the nodes in B participate instead of those in A and no messages from
the writer are delivered to nodes in A. Note that mdb = D(b) = D(a) = mda by
the assumption on a and b — the state of MDS is the same after write(a) in α as
after write(b) in β.

Consider now an execution ᾱ that extends α beyond tα. At time tα, the processes
in A are being delayed indefinitely and do not take any further steps; as in α, no mes-
sages from w to nodes in B are ever delivered before the execution ends and the nodes
in B continue operating from their initial state. Next, a reader r invokes read, interacts
with the nodes in B ∪F and withMDS, and returns a according to the safety property
of the storage emulation.

Finally, consider an execution β̄ that extends β beyond tα. Here, the processes in
B are delayed indefinitely from time tα onward. Again, the nodes in A have still their
initial state and continue now to participate in the execution. Furthermore, all nodes
in F exhibit a Byzantine fault and replace their state with their state at time tα in α;
after that they again followΠ . Next, a reader r invokes read and only interacts with the
nodes in A ∪ F and with MDS. Recall the state of MDS in β is the same as in α at
time tα. Since the nodes in A have the initial state and those in F and process MDS
have the same state as in α at time tα, execution β̄ resumes from the same state as in ᾱ
except that the roles of the nodes in A andB are exchanged. However, as the emulation

Erasure-Coded Byzantine Storage with Separate Metadata 89

is deterministic, the reader cannot distinguish β̄ from ᾱ and returns a. This violates the
safety of the storage emulation as write(b) precedes read in β̄ but read returns a. A
contradiction.

7 Conclusion

This paper has presented AWE, the first erasure-coded distributed implementation of a
multi-writer multi-reader read/write register object that is, at the same time, (1) asyn-
chronous, (2) wait-free, (3) atomic, (4) amnesic, (i.e., with data nodes storing a bounded
number of values) and (5) Byzantine fault-tolerant (BFT) using the optimal number of
nodes. AWE is efficient since it does not use public-key cryptography and requires data
nodes that support only reads and writes, further reducing the cost of deployment and
ownership of a distributed storage solution. Notably, AWE stores metadata separately
from k-out-of-n erasure-coded fragments. This enables AWE to be the first BFT proto-
col that uses as few as 2t+ k data nodes to tolerate t Byzantine nodes, for any k ≥ 1.

Future work should address how to optimize protocol AWE and to reduce the stor-
age consumption for practical systems; this could be done at the cost of increasing its
conceptual complexity and losing some of its ideal properties. For instance, when the
metadata service is moved from a storage abstraction to a service with processing, it is
conceivable that fewer values have to be retained at the nodes.

Acknowledgment. We thank Radu Banabic, Nikola Knežević, and Alessandro Sorniotti
for inspiring discussions during the early stages of this work. This work is supported in
part by the EU CLOUDSPACES (FP7-317555) and SECCRIT (FP7-312758) projects.

References

[1] Abraham, I., Chockler, G., Keidar, I., Malkhi, D.: Byzantine disk Paxos: Optimal resilience
with Byzantine shared memory. Distributed Computing 18(5), 387–408 (2006)

[2] Adya, A., Bolosky, W.J., Castro, M., Cermak, G., Chaiken, R., Douceur, J.R., Howell, J.,
Lorch, J.R., Theimer, M., Wattenhofer, R.P.: FARSITE: Federated, available, and reliable
storage for an incompletely trusted environment. In: Proc. Symp. Operating Systems Design
and Implementation (2002)

[3] Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots of
shared memory. Journal of the ACM 40(4), 873–890 (1993)

[4] Androulaki, E., Cachin, C., Dobre, D., Vukolić, M.: Erasure-coded Byzantine storage with
separate metadata. Report arXiv:1402.4958, CoRR (2014)

[5] Bessani, A., Correia, M., Quaresma, B., André, F., Sousa, P.: DepSky: Dependable and
secure storage in a cloud-of-clouds. In: Proc. European Conference on Computer Systems,
pp. 31–46 (2011)

[6] Bowers, K.D., Juels, A., Oprea, A.: HAIL: A high-availability and integrity layer for cloud
storage. In: Proc. ACM Conference on Computer and Communications Security, pp. 187–
198 (2009)

[7] Cachin, C., Dobre, D., Vukolić, M.: Separating data and control: Asynchronous BFT storage
with 2t + 1 data replicas. In: Felber, P., Garg, V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 1–17.
Springer, Heidelberg (2014)

90 E. Androulaki et al.

[8] Cachin, C., Guerraoui, R., Rodrigues, L.: Introduction to Reliable and Secure Distributed
Programming, 2nd edn. Springer (2011)

[9] Cachin, C., Tessaro, S.: Optimal resilience for erasure-coded Byzantine distributed storage.
In: Proc. Dependable Systems and Networks, pp. 115–124 (2006)

[10] Cadambe, V.R., Lynch, N., Medard, M., Musial, P.: Coded atomic shared memory emu-
lation for message passing architectures. CSAIL Technical Report MIT-CSAIL-TR-2013-
016. MIT (2013)

[11] Chockler, G., Guerraoui, R., Keidar, I.: Amnesic distributed storage. In: Pelc, A. (ed.) DISC
2007. LNCS, vol. 4731, pp. 139–151. Springer, Heidelberg (2007)

[12] Chockler, G., Guerraoui, R., Keidar, I., Vukolić, M.: Reliable distributed storage. IEEE
Computer 42(4), 60–67 (2009)

[13] Dobre, D., Karame, G., Li, W., Majuntke, M., Suri, N., Vukolić, M.: PoWerStore: Proofs
of writing for efficient and robust storage. In: Proc. ACM Conference on Computer and
Communications Security (2013)

[14] Dobre, D., Majuntke, M., Suri, N.: On the time-complexity of robust and amnesic storage.
In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 197–216.
Springer, Heidelberg (2008)

[15] Dutta, P.S., Guerraoui, R., Levy, R.R.: Optimistic erasure-coded distributed storage. In:
Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 182–196. Springer, Heidelberg
(2008)

[16] Frølund, S., Merchant, A., Saito, Y., Spence, S., Veitch, A.: A decentralized algorithm
for erasure-coded virtual disks. In: Proc. Dependable Systems and Networks, pp. 125–134
(2004)

[17] Goldreich, O.: Foundations of Cryptography, vol. I & II. Cambridge University Press
(2001–2004)

[18] Goodson, G.R., Wylie, J.J., Ganger, G.R., Reiter, M.K.: Efficient Byzantine-tolerant
erasure-coded storage. In: Proc. Dependable Systems and Networks, pp. 135–144 (2004)

[19] Guerraoui, R., Levy, R.R., Vukolić, M.: Lucky read/write access to robust atomic storage.
In: Proc. Dependable Systems and Networks, pp. 125–136 (2006)

[20] Hendricks, J.: Efficient Byzantine Fault Tolerance for Scalable Storage and Services. Ph.D.
thesis, School of Computer Science, Carnegie Mellon University (2009)

[21] Hendricks, J., Ganger, G.R., Reiter, M.K.: Low-overhead Byzantine fault-tolerant storage.
In: Proc. ACM Symposium on Operating Systems Principles (2007)

[22] Herlihy, M.: Wait-free synchronization. ACM Transactions on Programming Languages
and Systems 11(1), 124–149 (1991)

[23] Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems 12(3), 463–492 (1990)

[24] Huang, C., Simitci, H., Xu, Y., Ogus, A., Calder, B., Gopalan, P., et al.: Erasure coding in
Windows Azure Storage. In: Proc. USENIX Annual Technical Conference (2012)

[25] Malkhi, D., Reiter, M.K.: Byzantine quorum systems. Distributed Computing 11(4), 203–
213 (1998)

[26] Martin, J.P., Alvisi, L., Dahlin, M.: Minimal Byzantine storage. In: Malkhi, D. (ed.) DISC
2002. LNCS, vol. 2508, pp. 311–325. Springer, Heidelberg (2002)

[27] Vukolić, M.: Quorum Systems: With Applications to Storage and Consensus. Synthesis
Lectures on Distributed Computing Theory. Morgan & Claypool (2012)

[28] Wong, W.: Cleversafe grows along with customers’ data storage needs. Chicago Tribune
(2013)

[29] Yin, J., Martin, J.P., Alvisi, A.V.L., Dahlin, M.: Separating agreement from execution in
Byzantine fault-tolerant services. In: Proc. ACM Symposium on Operating Systems Princi-
ples, pp. 253–268 (2003)

BChain: Byzantine Replication with High Throughput
and Embedded Reconfiguration

Sisi Duan1, Hein Meling2, Sean Peisert1, and Haibin Zhang1

1 University of California, Davis, USA
{sduan,speisert,hbzhang}@ucdavis.edu

2 University of Stavanger, Norway
hein.meling@uis.no

Abstract. In this paper, we describe the design and implementation of BChain, a
Byzantine fault-tolerant state machine replication protocol, which performs com-
parably to other modern protocols in fault-free cases, but in the face of failures
can also quickly recover its steady state performance. Building on chain replica-
tion, BChain achieves high throughput and low latency under high client load. At
the core of BChain is an efficient Byzantine failure detection mechanism called
re-chaining, where faulty replicas are placed out of harm’s way at the end of
the chain, until they can be replaced. Our experimental evaluation confirms our
performance expectations for both fault-free and failure scenarios. We also use
BChain to implement an NFS service, and show that its performance overhead,
with and without failures, is low, both compared to unreplicated NFS and other
BFT implementations.

1 Introduction

Building online services that are both highly available and correct is challenging. Byzan-
tine fault tolerance (BFT), a technique based on state machine replication [25,31], is the
only known general technique that can mask arbitrary failures, including crashes, ma-
licious attacks, and software errors. Thus, the behavior of a service employing BFT is
indistinguishable from a service running on a correct server.

There are two broad classes of BFT protocols that have evolved in the past decade:
broadcast-based [5,24,1,12] and chain-based protocols [18,34]. The main difference be-
tween these two classes is their performance characteristics. Chain-based protocols aim
at achieving high throughput, at the expense of higher latency. However, as the number
of concurrent client requests grows, it turns out that chain-based protocols can actually
achieve lower latency than broadcast-based protocols. The downside however, is that
chain-based protocols are less resilient to failures, and typically relegate to broadcast-
ing when failures are present. This results in a significant performance degradation.

In this paper we propose BChain, a fully-fledged BFT protocol addressing the perfor-
mance issues observed when a BFT service experiences failures. Our evaluation shows
that BChain can quickly recover its steady-state performance, while Aliph-Chain [18]
and Zyzzyva [24] experience significantly reduced performance, when subjected to a
simple crash failure. At the same time, the steady-state performance of BChain is com-
parable to Aliph-Chain, the state-of-the-art, chain-based BFT protocol. BChain also

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 91–106, 2014.
© Springer International Publishing Switzerland 2014

92 S. Duan et al.

Table 1. Characteristics of state-of-the-art BFT protocols tolerating f failures with batch size
b. Bold entries mark the protocol with the lowest cost. The critical path denotes the number of
one-way message delays. ∗Two message delays is only achievable with no concurrency.

PBFT Q/U HQ Zyzzyva Aliph Shuttle BChain-3 BChain-5

Total replicas 3f + 1 5f + 1 3f + 1 3f + 1 3f + 1 2f + 1 3f + 1 5f + 1

Crypto ops 2+ 8f+1
b

2+8f 4+4f 2+ 3f
b

1+ f+1
b

2+ 2f
b

1+ 3f+2
b

1+ 4f+2
b

Critical path 4 2∗ 4 3 3f + 2 2f + 2 2f + 2 3f + 2

Additional
Requirements

None None None Correct
Clients

Protocol
Switch

Olympus;
Reconfig.

Reconfig. None

outperforms broadcast-based protocols PBFT [5] and Zyzzyva with a throughput im-
provement of up to 50% and 25%, respectively. We have used BChain to implement
a BFT-based NFS service, and our evaluation shows that it is only marginally slower
(1%) than a standard NFS implementation.

BChain in a Nutshell. BChain is a self-recovering, chain-based BFT protocol, where
the replicas are organized in a chain. In common case executions, clients send their
requests to the head of the chain, which orders the requests. The ordered requests are
forwarded along the chain and executed by the replicas. Once a request reaches a replica
that we call the proxy tail , a reply is sent to the client.

When a BFT service experiences failures or asynchrony, BChain employs a novel
approach that we call re-chaining. In this approach, the head reorders the chain when a
replica is suspected to be faulty, so that a fault cannot affect the critical path.

To facilitate re-chaining, BChain makes use of a novel failure detection mechanism,
where any replica can suspect its successor and only its successor. A replica does this by
sending a signed suspicion message up the chain. No proof that the suspected replica
has misbehaved is required. Upon receiving a suspicion, the head issues a new chain
ordering where the accused replica is moved out of the critical path, and the accuser is
moved to a position in which it cannot continue to accuse others. In this way, correct
replicas help BChain make progress by suspecting faulty replicas, yet malicious replicas
cannot constantly accuse correct replicas of being faulty.

Our re-chaining approach is inexpensive; a single re-chaining request corresponds
to processing a single client request. Thus, the steady-state performance of BChain has
minimal disruption. The latency reduction caused by re-chaining is dominated by the
failure detection timeout.

Our Contributions in Context. We consider two variants of BChain—BChain-3 and
BChain-5, both tolerating f failures. BChain-3 requires 3f + 1 replicas and a recon-
figuration mechanism coupled with our detection and re-chaining algorithms, while
BChain-5 requires 5f + 1 replicas, but can operate without the reconfiguration mech-
anism. We compare BChain-3 and BChain-5 with state-of-the-art BFT protocols in
Table 1. All protocols use MACs for authentication and request batching with batch
size b. The number of MAC operations for BChain at the bottleneck server tends to one
for gracious executions. While this is also the case for Aliph-Chain [18], Aliph requires
that clients take responsibility for switching to another slower BFT protocol in the

BChain: Byzantine Replication with High Throughput 93

presence of failures, to ensure safety and liveness. Thus, a single dedicated adversary
might render the system much slower. Shuttle [34] can tolerate f faulty replicas using
only 2f + 1 replicas. However, it relies on a trusted auxiliary server. BChain does not
require an auxiliary service, yet its critical path of 2f + 2 is identical to that of Shuttle.

Our contributions can be summarized as follows:

1. We present BChain-3 and its sub-protocols for re-chaining, reconfiguration, and
view change (§3). Re-chaining is a novel technique to ensure liveness in BChain.
Together with re-chaining, the reconfiguration protocol can replace failed replicas
with new ones, outside the critical path. The view change protocol deals with a
faulty head.

2. We present BChain-5 and how it can operate without reconfiguration (§4).
3. In §5 we evaluate the performance of BChain for both gracious and uncivil exe-

cutions under different workloads, and compare it with other BFT protocols. We
also ran experiments with a BFT-NFS application and assessed its performance
compared to the other relevant BFT protocols.

2 System Model

We assume a Byzantine fault tolerant system, where replicas communicate over pair-
wise channels and may behave arbitrarily. Our system can mask up to f faulty replicas,
using n replicas. We write t, where t ≤ f , to denote the number of faulty replicas that
the system currently has. A computationally bounded adversary can coordinate faulty
replicas to compromise safety only if more than f replicas are compromised.

Safety of our system holds in any asynchronous environment, where messages may
be delayed, dropped, or delivered out of order. Liveness is ensured assuming partial
synchrony [15]: synchrony holds only after some unknown global stabilization time,
but the bounds on communication and processing delays are themselves unknown.

We use non-keyed message digests. The digest of a message m is denoted D(m).
We also use digital signatures. The signature of a messagem signed by replica pi is de-
noted 〈m〉pi . We say that a signature is valid on messagem, if it passes the verification
w.r.t. the public-key of the signer and the message. A vector of signatures of message
m signed by a set of replicas U = {pi, . . . , pj} is denoted 〈m〉U .

We classify the replica failures according to their behaviors. Weak semantics levy
fewer restrictions on the possible behaviors than strong semantics. Apart from the weak-
est failure semantics (i.e., Byzantine failure), we are also interested in various other
stronger failure semantics. Crash failures, occur when the replicas might halt perma-
nently and no longer produce any output. By timing failures, we mean any replica fail-
ures that produce correct results but deliver them outside of a specified time window.

3 BChain-3

We now describe the main protocols and principles of BChain. Our description here
uses digital signatures; later we show how they can be replaced with MACs, along
with other optimizations. BChain-3 has five sub-protocols: (1) chaining, (2) re-chaining,
(3) view change, (4) checkpoint, and (5) reconfiguration. The chaining protocol orders

94 S. Duan et al.

clients requests, while re-chaining reorganizes the chain in response to failure suspi-
cions. Faulty replicas are moved to the end of the chain. The view change protocol
selects a new head when the current head is faulty, or the system is slow. Our check-
point protocol is similar to that of PBFT [5]. It is used to bound the growth of message
logs and reduce the cost of view changes. We do not describe it in this paper. The re-
configuration protocol is responsible for reconfiguring faulty replicas.

To tolerate f failures, BChain-3 needs n replicas such that f ≤ �n−1
3 . In the fol-

lowing, we assume n = 3f + 1 for simplicity.

3.1 Conventions and Notations

In BChain, the replicas are organized in a metaphorical chain, as shown in Figure 1.
Each replica is uniquely identified from a set Π = {p1, p2, · · · , pn}. Initially, we as-
sume that replica IDs are numbered in ascending order. The first replica is called the
head, denoted ph, the last replica is called the tail, and the (2f + 1)th replica is called
the proxy tail, denoted pp. We divide the replicas into two subsets. Given a specific
chain order, A contains the first 2f + 1 replicas, initially p1 to p2f+1. B contains the
last f replicas in the chain, initially p2f+2 to p3f+1. For convenience, we also define
A�p = {A \ pp}, excluding the proxy tail, and A�h = {A \ ph}, excluding the head.

1 2 2f+1 2f+2

head proxy tail tail

2f 3f+1

: 2f+1 replicas : f replicas

Fig. 1. BChain-3. Replicas are organized in a chain

The chain order is main-
tained by every replica
and can be changed by
the head and is com-
municated to replicas
through message trans-
missions. (This is in
contrast to Aliph-Chain, where the chain order is fixed and known to all replicas and
clients beforehand.) For any replica except the head, pi ∈ A�h, we define its predecessor
↼

p i, initially pi−1, as its preceding replica in the current chain order. For any replica ex-
cept the proxy tail, pi ∈ A�p, we define its successor

⇀

p i, initially pi+1, as its subsequent
replica in the current chain order.

For each pi ∈ A, we define its predecessor set P(pi) and successor set S(pi), whose
elements depend on their individual positions in the chain. If a replica pi �= ph is one of
the first f + 1 replicas, its predecessor set P(pi) consists of all the preceding replicas
in the chain. For every other replica in A, the predecessor set P(pi) consists of the
preceding f + 1 replicas in the chain. If pi is one of the last f + 1 replicas in A, the
successor set S(pi) consists of all the subsequent replicas in A. For every other replica
in A, the successor set S(pi) consists of the subsequent f + 1 replicas. Note that the
cardinality of any replica’s predecessor set or successor set is at most f + 1.

3.2 Protocol Overview

In a gracious execution, as shown in Figure 2, the first 2f + 1 replicas (set A) reach an
agreement while the last f replicas (set B) correspondingly update their states based on
the agreed-upon requests from set A. BChain transmits two types of messages along

BChain: Byzantine Replication with High Throughput 95

the chain: 〈CHAIN〉 messages transmitted from the head to the proxy tail, and 〈ACK〉
messages transmitted in reverse from the proxy tail to the head. A request is executed
after a replica accepts the 〈CHAIN〉 message; a request commits at a replica if it accepts
the 〈ACK〉 message.

Upon receiving a client request, the head sends a 〈CHAIN〉 message representing the
request to its successor. As soon as the proxy tail accepts the 〈CHAIN〉 message, it sends
a reply to the client and generates an 〈ACK〉 message, which is sent backwards along
the chain until it reaches the head. Once a replica in A accepts the 〈ACK〉 message, it
completes the request and forwards its 〈CHAIN〉 message to replicas in B to ensure that
the message is committed at all the replicas.

To handle failures and ensure liveness, BChain incorporates failure detection and re-
chaining protocol that works as follows: Every replica in A�p starts a timer after sending
a 〈CHAIN〉 message. Unless an 〈ACK〉 is received before the timer expires, it sends a
〈SUSPECT〉 message to the head and also along the chain towards the head. Upon seeing
〈SUSPECT〉 messages, the head starts the re-chaining, by moving faulty replicas to set B
where, if needed, replicas may be replaced in the reconfiguration protocol. In this way,
BChain remains robust until new failures occur.

client
(head) p

p
(proxy tail) p

(tail) p

0

1

2

3

〈REPLY〉

〈ACK〉

〈CHAIN〉

〈CHAIN〉

〈CHAIN〉

〈REQUEST〉

〈ACK〉

〈CHAIN〉
〈CHAIN〉

Fig. 2. BChain-3 common case communication pattern. All the signatures can be replaced with
MACs. All the 〈CHAIN〉 and 〈ACK〉 messages can be batched. The 〈CHAIN〉 messages with
dotted, blue lines are the forwarded messages that are stored in logs. No conventional broadcast
is used at any point in our protocol. For a given batch size b.

3.3 Chaining

We now describe the sequence of steps of the chaining protocol, used to order requests,
when there are no failures.

Step 0: Client sends a request to the head. A client c requests the execution of state
machine operation o by sending a requestm =〈REQUEST, o, T, c〉c to the replica that it
believes to be the head, where T is the timestamp.

Step 1: Assign sequence number and send chain message. When the head ph receives
a valid 〈REQUEST, o, T, c〉c message, it assigns a sequence number and sends message
〈CHAIN, v, ch,N,m, c,H, R, Λ〉ph

to its successor, where v is the view number, ch is
the number of re-chainings that took place during view v, H is the hash of its execution
history, R is the hash of the reply r to the client containing the execution result, and Λ
is the current chain order. Both of H and R are empty in this step.

Step 2: Execute request and send chain message. A replica pj receives from its pre-
decessor a valid 〈CHAIN, v, ch,N,m, c,H, R, Λ〉P(pj) message, which contains valid
signatures by replicas in P(pj). The replica pj updates H and R fields if necessary,
appends its signature to the 〈CHAIN〉 message, and sends to its successor. Note that the
H and R fields are empty if pj is among the first f replicas, and both H and R must be
verified before proceeding.

96 S. Duan et al.

Each time a replica pj ∈ A�p sends a 〈CHAIN〉 message, it sets a timer, expecting an
〈ACK〉 message, or a 〈SUSPECT〉 message signaling some replica failures.

Step 3: Proxy tail sends reply to the client and commits the request. If the proxy tail
pj accepts a 〈CHAIN〉 message, it computes its own signature and sends the client the
reply r, along with the 〈CHAIN〉 message it accepts. It also sends to its predecessor
an 〈ACK, v, ch,N,D(m), c〉pj message. In addition, it forwards to all replicas in B the
corresponding 〈CHAIN, v, ch,N,m, c,H, R, Λ〉pj message . The request commits at the
proxy tail.

Step 4: Client completes the request or retransmits. The client completes the request
if it receives a 〈REPLY〉 message from the proxy tail with signatures by the last f + 1
replicas in the chain. Otherwise, it retransmits the request to all replicas.

Step 5: Other replicas in A commit the request. A valid 〈ACK, v, ch,N,D(m), c〉S(pj)

message is sent to replica pj by its successor, which contains valid signatures by replicas
in S(pj). The replica appends its own signature and sends to its predecessor.

Step 6: Replicas in B execute and commit request. The replicas in B collects f + 1
matching 〈CHAIN〉 messages, and executes the operation, completing the request. Thus,
the request commits at each correct replica in B.

3.4 Re-chaining

Algorithm 1. Failure detector at replica pi
1: upon 〈CHAIN〉 sent by pi
2: starttimer(Δ1,pi)

3: upon 〈Timeout, Δ1,pi〉 {Accuser pi}
4: send 〈SUSPECT,

⇀

p i,m, ch, v〉pi to
↼

p i and ph

5: upon 〈ACK〉 from
⇀

p i
6: canceltimer(Δ1,pi)

7: upon 〈SUSPECT, py,m, ch, v〉 from
⇀

p i

8: forward 〈SUSPECT, py,m, ch, v〉 to
↼

p i
9: canceltimer(Δ1,pi)

To facilitate failure detection and
ensure that BChain remains live,
we introduce a protocol we call
re-chaining. With re-chaining, we
can make progress with a bounded
number of failures, despite incor-
rect suspicions. The algorithm en-
sures that, eventually all faulty
replicas are identified and appro-
priately dealt with. The strategy
of the re-chaining algorithm is to
move replicas that are suspected
to set B, where if deemed neces-
sary, they are rejuvenated.

BChain Failure Detector. The objective of the BChain failure detector is to identify
faulty replicas, and issue a new chain configuration and to ensure that progress can be
made. It is implemented as a timer on 〈CHAIN〉 messages, as shown in Algorithm 1. On
sending a 〈CHAIN〉 messagem, replica pi starts a timer,Δ1,pi . If the replica receives an
〈ACK〉 for the message before the timer expires, it cancels the timer and starts a new one

for the next request in the queue, if any. Otherwise, it sends a 〈SUSPECT,
⇀

p i,m, ch, v〉
to both the head and its predecessor to signal the failure of its successor. Moreover, if
pi receives a 〈SUSPECT〉 message from its successor, the message is forwarded to pi’s
predecessor, along the chain until it reaches the head. To prevent that a faulty replica

BChain: Byzantine Replication with High Throughput 97

fails to forward the 〈SUSPECT〉 message, it is also sent directly to the head. Passing it
along the chain allows us to cancel timers and reduce the number of suspect messages.

Let pi be the accuser; then the accused can only be its successor,
⇀

p i. This is ensured
by having the accuser sign the 〈SUSPECT〉 message, just as an 〈ACK〉 message.

Algorithm 2. BChain-3 Re-chaining-I (At head, ph)
1: upon 〈SUSPECT, py,m, ch, v〉 from px
2: if px �= ph then {px is not the head}
3: pz is put to the 2nd position {pz = B[1]}
4: px is put to the (2f + 1)th position
5: py is put to the end

On receiving a 〈SUSPECT〉, the
head starts re-chaining via a new
〈CHAIN〉 message. If the head re-
ceives multiple 〈SUSPECT〉 mes-
sages, only the one closest to the
proxy tail is handled. Handling
a 〈SUSPECT〉 message is done by
increasing ch, selecting a new
chain order Λ, and sending a 〈CHAIN〉 message to order the same request again.

Re-Chaining Algorithms. We provide two re-chaining algorithms for BChain-3 as
shown in Algorithm 2 and 3. To explain these algorithms, assume that the head, ph,
has received a 〈SUSPECT〉 message from a replica px suspecting is successor py . Let pz
be the first replica in set B. Both algorithms show how the head selects a new chain
order. Both are efficient in the sense that the number of re-chainings needed is propor-
tional to the number of existing failures t instead of the maximum number f . We levy
no assumptions on how failures are distributed in the chain.

〈SUSPECT〉

1 2 4 2f+1 3f+1

head proxy tail tail

timeout!

2f+23

(a) p3 generates a 〈SUSPECT〉 message to accuse p4

1 2f+2 3 3f+1

head proxy tail reconfiguration

42

(b) p4 is moved to the tail

Fig. 3. Example (1). A faulty replica is denoted by a double
circle. After the timer expires, replica p3 issues a 〈SUSPECT〉
message to accuse p4 (which is faulty). The head moves p3
to the proxy tail position and the faulty replica p4 to the tail.

Re-chaining-I—crash failures
handled first. Algorithm 2 is
reasonably efficient; in the
worst case, t faulty replicas
can be removed with at most
3t re-chainings. More specif-
ically, if the head is correct
and 3t≤f , the faulty replicas
are moved to the end of chain
after at most 3t re-chainings;
if 3t > f , at most 3t re-
chainings are necessary and
at most 3t − f replicas are
replaced in the reconfigura-
tion protocol (§3.6), assum-
ing that any individual replica
can be reconfigured within f re-chainings. Algorithm 2 is even more efficient when
handling timing and omission failures, with one such replica being removed using only
one re-chaining. Despite the succinct algorithm, the proof of correctness for the gen-
eral case is complicated. We omit the details due to lack of space. To help grasp the
underlying idea, consider the following simple examples.

� Example (1): In Figure 3, replica p4 has a timing failure. This causes p3 to send a
〈SUSPECT〉 message up the chain to accuse p4. According to our re-chaining algorithm,
p3 is moved to the (2f + 1)th position and becomes the proxy tail, and p4 is moved

98 S. Duan et al.

to the end of the chain and becomes the tail. Our fundamental design principle is that
timing failures should be given top priority.

〈SUSPECT〉

1 2 3 2f+1 3f+1

head proxy tail tail

timeout!

2f+24

(a) p3 generates a 〈SUSPECT〉 message to maliciously accuse p4

〈SUSPECT〉

1 32f+1 3f+1

head proxy tail reconfiguration

timeout!

2f+2 4

(b) p2f+1 generates a 〈SUSPECT〉 message to accuse p3

1 2f+3 42f+1

head proxy tail reconfiguration

32f

(c) p3 is moved to the tail and reconfigured

Fig. 4. Example (2). Replica p3 maliciously accuse p4 by send-
ing a 〈SUSPECT〉message. The head moves p3 to the proxy tail
and p4 to the tail. If p3 does not behave, it will be accused by
its predecessor p2f+1 such that in another round of re-chaining
p3 is moved to the tail.

� Example (2): In Figure 4,
p3 is the only faulty replica.
We consider the circum-
stance where p3 sends the
head a 〈SUSPECT〉 message
to frame its successor p4
even if p4 follows the pro-
tocol. According to our re-
chaining algorithm, replica
p4 will be moved to the
tail, while p3 becomes the
new proxy tail. However,
from then on, p3 can no
longer accuse any replicas.
It either follows the speci-
fication of the protocol, or
chooses not to participate
in the agreement, in which
case p3 will be moved to
the tail. The example illus-
trates another important de-
signing rationale that an ad-
versarial replica cannot constantly accuse correct replicas.

Algorithm 3. BChain-3 Re-chaining-II
1: upon 〈SUSPECT, py,m, ch, v〉 from px
2: if px �= ph then {px is not the head}
3: px is put to the (3f)th position
4: py is put to the end

Re-chaining-II—improved efficiency.
Algorithm 3 can improve efficiency
for the worst case. The underlying
idea is simple: every time the head re-
ceives a 〈SUSPECT〉 message, both the
accuser and the accused are moved to
the end of the chain. Algorithm 3 does not prioritize crash failures, and relies on a
stronger reconfiguration assumption. If the head is correct and 2t ≤ f , the faulty repli-
cas are moved to the end of chain after at most 2t re-chainings; if 2t > f , at most 2t re-
chainings are necessary and at most 2t− f replica reconfigurations (§3.6) are needed,
assuming that any individual replica can be reconfigured within �f/2 re-chainings.
When an accused replica is moved to the end of chain, the reconfiguration process is
initialized, either offline or online. The replicas moved to the end of the chain are all
“tainted” and reconfigured, as we discuss in §3.6.

Timer Setup and Preventing Timer-Based Performance Attacks. Existing BFT pro-
tocols typically only keep timers for view changes, while BChain also requires timers
for 〈ACK〉 and 〈CHAIN〉 messages. To achieve accurate failure detection, we need dif-
ferent values for each timer in each replica in the chain.

The timeout for each replica pi ∈ A is defined as Δ1,i = F(Δ1, li), where F is a
fixed and efficiently computable function,Δ1 is the base timeout, and li is pi’s position

BChain: Byzantine Replication with High Throughput 99

in the chain order. Note that for ph, we have that lh =1 and thus F(Δ1, 1)=Δ1. Cor-
respondingly, for pp we have that lp =2f + 1 and F(Δ1, 2f + 1)=0. It is reasonable
to adopt a linear function with respect to the position of each replica as the timer func-
tion, e.g., F(Δ1, li) = 2f+1−li

2f Δ1. As an example with n= 4 and f = 1, we may set
Δ1,p1 =F(Δ1, 1)=Δ1, Δ1,p2 =F(Δ1, 2)=Δ1/2, andΔ1,p3 =F(Δ1, 3)=0.

To detect and deter misbehaving replicas that always delay requests to the upper
bound timeout value to increase system latency, we also verify the processing delays
for the average case and allow replicas to suspect other replicas who frequently do so.
Concretely, each replica pi maintains an additional performance threshold timer Δ′

1,pi

such that Δ′
1,pi

<Δ1,pi , which is used to detect slow or faulty replicas as mentioned
above. That is, we ask the replica to further suspect its successor if their average delay
exceedsΔ′

1,pi
. This will allow us to thwart dedicated performance attacks on messages

delays while preventing temporarily slow replicas from being accused prematurely. We
will show in §5.1 how to efficiently set up and maintain the timers in actual experiments.

3.5 View Change

The view change protocol has two functions: (1) to select a new head when the current
head is deemed faulty, and (2) to adjust the timers to ensure eventual progress, despite
deficient initial timer configuration.

A correct replica pi votes for view change if either (1) it suspects the head to be
faulty, or (2) it receives f + 1 〈VIEWCHANGE〉 messages. The replica votes for view
change and moves to a new view by sending all replicas a 〈VIEWCHANGE〉 message
that includes the new view number, the current chain order, a set of valid checkpoint
messages, and a set of requests that commit locally with proof of execution. For each
request that commits locally, if pi ∈ A, then a proof of execution for a request contains
a 〈CHAIN〉 message with signatures from P(pi) and an 〈ACK〉 message with signatures
from S(pi). Otherwise, a proof of execution contains f + 1 〈CHAIN〉 messages. Upon
sending a 〈VIEWCHANGE〉 message, pi stops receiving messages except 〈CHECKPOINT〉,
〈NEWVIEW〉, or other 〈VIEWCHANGE〉 messages. When the new head collects 2f + 1
〈VIEWCHANGE〉 messages, it sends all replicas a 〈NEWVIEW〉 message which includes
the new chain order, in which the head of the old view has been moved to the end of the
chain, a set of valid 〈VIEWCHANGE〉 messages, and a set of 〈CHAIN〉 messages.

The other function of view change is to adjust the timers. In addition to the timerΔ1

maintained for re-chaining, BChain has two timers for view changes, Δ2 and Δ3. Δ2

is a timer maintained for the current view v when a replica is waiting for a request to be
committed, whileΔ3 is a timer for 〈NEWVIEW〉, when a replica votes for a view change
and waits for the 〈NEWVIEW〉. Algorithm 4 describes how to initialize, maintain, and
adjust these timers.

The view change timer Δ2 at a replica is set up for the first request in the queue.
A replica sends a 〈VIEWCHANGE〉 message to all replicas and votes for view change
if Δ2 expires or it receives f + 1 〈VIEWCHANGE〉 messages. In either case, when a
replica votes for view change, it cancels its timer Δ2. After a replica collects 2f + 1
〈VIEWCHANGE〉 messages (including its own), it starts a timer Δ3 and waits for the
〈NEWVIEW〉 message. If the replica does not receive 〈NEWVIEW〉 message before Δ3

expires, it starts a new 〈VIEWCHANGE〉 and updates Δ3 with a new value g3(Δ3).

100 S. Duan et al.

Algorithm 4. View Change Handling and Timers at pi

1: Δ2 ← initΔ2 ; Δ3 ← initΔ3

2: voted ← false
3: upon 〈Timeout,Δ2〉
4: send 〈VIEWCHANGE〉
5: voted ← true
6: upon f + 1 〈VIEWCHANGE〉 ∧ ¬voted
7: send 〈VIEWCHANGE〉
8: voted ← true
9: canceltimer(Δ2)

10: upon 2f + 1 〈VIEWCHANGE〉
11: starttimer(Δ3)
12: upon 〈Timeout,Δ3〉
13: Δ3 ← g3(Δ3)
14: send new 〈VIEWCHANGE〉
15: upon 〈NEWVIEW〉
16: canceltimer(Δ3)
17: Δ1 ← g1(Δ1)
18: Δ2 ← g2(Δ2)

When a replica receives the 〈NEWVIEW〉 message, it sets Δ1 and Δ2 using g1(Δ1)
and g2(Δ2), respectively. In practice, the functions g1(·), g2(·), and g3(·) could simply
double the current timeouts. However, to avoid the circumstance that the timeouts for
Δ1 andΔ2 increase without bound, we introduce upper bounds for both of them. Once
either timer exceeds the prescribed bound, the system starts reconfiguration.

3.6 Reconfiguration

Reconfiguration [26] is a general technique, often abstracted as stopping the current
state machine and restarting it with a new set of replicas, usually reusing non-faulty
replicas in the new configuration. In BChain we use reconfiguration in concert with
re-chaining to replace faulty replicas with new ones. The reconfiguration operates out-
of-band in the B replica set, and imposes only negligible overhead on client request
processing being done by replicas in A. We omit the details due to lack of space.

3.7 Optimizations

In general, signatures for 〈CHAIN〉 and 〈ACK〉 cannot be replaced with MACs. However,
we can replace other signatures with MACs. Moreover, we can combine all-MAC-based
and signature-based BChain approaches such that the failure-free case uses MACs only
and re-chaining uses signatures. We also developed a highly efficient purely MAC-
based variant of BChain for n=4 and f=1, which does not rely on reconfiguration.

4 BChain without Reconfiguration

We now discuss BChain-5, which uses n = 5f +1 replicas to tolerate f Byzantine fail-
ures, just as Q/U [1] and Zyzzyva5 [24]. With 5f+1 replicas at our disposal, we design
an efficient re-chaining algorithm, which allows the faulty replicas to be identified eas-
ily without relying on reconfiguration. Meanwhile, a Byzantine quorum of replicas can
reach agreement. BChain-5 relies on the concept of Byzantine quorum protocols [28].
Set A is a Byzantine quorum which consists of �n+f+1

2 � = 3f + 1 replicas, while set
B consists of the remaining of 2f replicas.

BChain-5 has four sub-protocols: chaining, re-chaining, view change, and check-
point. In contrast, BChain-3 additionally requires a reconfiguration protocol. The pro-
tocols for BChain-3 and BChain-5 are identical with respect to message flow. The main

BChain: Byzantine Replication with High Throughput 101

difference lies in the size of the A set, which now consists of 3f +1 replicas. BChain-5
also uses Algorithm 3, modifying only Line 3 to put px to the (5f)th position.

Assuming the timers are accurately configured and that the head is non-faulty, it takes
at most f re-chainings to move f failures to the tail set B. The proofs for safety and
liveness of BChain-5 are easier than those of BChain-3 due to a different re-chaining
algorithm and the absence of the reconfiguration procedure.

To Reconfigure or Not to Reconfigure? The primary benefit of BChain-5 over BChain-
3 is that it eliminates the need for reconfiguration to achieve liveness. This is beneficial,
since reconfiguration needs additional resources, such as machines to host reconfigured
replicas. However, since BChain-5 can identify and move faulty replicas to the tail set
B, we can still leverage the reconfiguration procedure on the replicas in B, to provide
long-term system safety and liveness. This does not contradict the claim that BChain-5
does not need reconfiguration; rather, it just makes the system more robust. Further-
more, BChain-5 provides flexibility with respect to when the system should be recon-
figured. Specifically, reconfiguration can happen any time after the system achieves a
stable state or simply has run for a “long enough” period of time.

5 Evaluation

This section studies the performance of BChain-3 and BChain-5 and compares them
with three well-known BFT protocols—PBFT [5], Zyzzyva [24], and Aliph [18]. Aliph
uses Chain for gracious execution under high concurrency. Aliph-Chain enjoys the
highest throughput when there are no failures, however, as we will see, it cannot sustain
its performance during failure scenarios by itself, where BChain is superior.

We study the performance using two types of benchmarks: the micro-benchmarks by
Castro and Liskov [5] and the Bonnie++ benchmark [10]. We use micro-benchmarks
to assess throughput, latency, scalability, and performance during failures of all the
five protocols. In the x/y micro-benchmarks, clients send x kB requests and receive
y kB replies. Clients invoke requests in a closed-loop, where a client does not start a
new request before receiving a reply for a previous one. All the protocols implement
batching of concurrent requests to reduce cryptographic and communication overheads.

All experiments were carried out on DeterLab [4], utilizing a cluster of up to 65
identical machines equipped with a 2.13 GHz Xeon processor and 4GB of RAM. They
are connected through a 100Mbps switched LAN.

We have assessed the performance of all protocols under gracious execution, and find
that both BChain-3 and BChain-5 achieve higher throughput and lower latency than
PBFT and Zyzzyva especially when the number of concurrent client requests is large,
while BChain-3 has performance similar to the Aliph-Chain protocol. Our experiment
bolsters the point of view of Guerraoui et al. [18] that (authenticated) chaining replica-
tion can increase throughput and reduce latency under high concurrency. We omit the
detailed evaluation for gracious execution.

In addition to micro-benchmarks, we have also evaluated a BFT-NFS service im-
plemented using PBFT [5], Zyzzyva [24], and BChain-3. We show that performance
overhead of BChain-3, with and without failure, is low, both compared to unreplicated
NFS and other BFT implementations.

102 S. Duan et al.

In case of failures, both BChain-3 and BChain-5 outperform all the other protocols
by a wide margin, due to BChain’s unique re-chaining protocol. Through the timeout
adjustment scheme, we show that a faulty replica cannot reduce the performance of the
system by manipulating the timeouts.

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6 6.2
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

Time

T
hr

ou
gh

pu
t

(k
op

s/
se

c)

BChain-3
BChain-5

PBFT
Aliph

Zyzzyva

(a) Throughput during crash failure.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Requests

R
es

po
ns

e
Ti

m
e

(m
s)

bars: latency for requests
δ1,pi : average latency

Δ′
1,pi : performance timer

Δ1,pi : normal timer

(b) Configuring timers for replica pi.

Fig. 5. Performance under failure

5.1 Performance under Failures

We compare the performance of BChain with the other BFT protocols under two sce-
narios: a simple crash failure scenario and a performance attack scenario. As the results
in Figure 5(a) show, BChain has superior reaction to failures. When BChain detects a
failure, it will start re-chaining. At the moment when re-chaining starts, the through-
put of BChain temporarily drops to zero. After the chain has been re-ordered, BChain
quickly recovers its steady state throughput. The dominant factor deciding the duration
of this throughput drop (i.e. increased latency) is the failure detection timeout, not the
re-chaining. We also show that BChain can resist a timer-based performance attack, i.e.,
a faulty replica cannot intentionally manipulate timeouts to slow down the system.

Crash Failure. We compare the throughput during crash failure for BChain-3, BChain-
5, PBFT, Zyzzyva, and Aliph. The results are shown in Figure 5(a). We use f = 1,
message batching, and 40 clients. To avoid clutter in the plot, we used different failure
inject times for the protocols: BChain-3, BChain-5, and PBFT all experience a failure
at 1s, while Zyzzyva and Aliph experience a failure at 1.5s and 2s, respectively.

We note that Aliph [18,36] generally switches between three protocols: Quorum,
Chain, and a backup, e.g., PBFT. For our experiments, we adopt the same setting as in
the Aliph paper [18], i.e., it uses a combination of Chain and PBFT as backup and a con-
figuration parameter k, denoting the number of requests to be executed when running
with the backup protocol. We use both k = 1 and k = 2i.

Even though Aliph exhibits slightly higher throughput than BChain-3 prior to the
failure, its throughput takes a significant beating upon failure, dropping well below that
of the PBFT baseline. The overall performance depends on how often failures occur
and how often Aliph switches between main and backup protocols, i.e., parameter k.
On the other hand, the throughput of PBFT does not change in any obvious way after

BChain: Byzantine Replication with High Throughput 103

failure injection, showing its stability during failure scenarios. Zyzzyva, in comparison,
in the presence of failures, uses its slower backup mode (i.e., clients collects and sends
certificate) which exhibits even lower throughput than PBFT.

We configured BChain with a fairly high timeout value (100ms). In fact, BChain can
use much smaller timeouts, since one re-chaining only takes about the same time as it
takes for BChain to process a single request. On the other hand, Aliph’s signature-based,
view-change like switching approach introduces a significant delay.

We claim that even in presence of a Byzantine failure, the throughput of BChain-3
and BChain-5 would not change significantly, except that there might be two (instead of
one) short periods where the throughput drops to zero. That is, BChain-3 uses at most
two re-chainings to handle a Byzantine faulty replica, while BChain-5 uses only one.

Timer Setup and Performance Attack Evaluation. We now show how to set up the
timers for replicas in the chain as discussed in §3.4. Initially, there are no faulty replicas
and we set the timers based on the average latency of the first 1000 requests. Figure 5(b)
illustrates the timer setup procedure for a correct replica pi, where each bar represents
the actual latency of a request, the lowest line is the average latency δ1,pi , the middle
line is the performance threshold timer Δ′

1,pi
used to deter performance attacks, and

the upper line is the normal timerΔ1,pi . In our experiment, we set Δ′
1,pi

=1.1δ1,pi and
Δ1,pi = 1.3δ1,pi . That is, we expect the performance reduction to be bounded to 10%
of the actual latency during a performance attack by a dedicated adversary.

To evaluate the robustness against a timer-based performance attack, we ran 10 ex-
periments using the 0/0 benchmark, each with a sequence of 10000 requests. We as-
sume there are no faulty replicas initially and we use the first 1000 request to train the
timers. For each experiment, starting from the 1001th request, we let a replica mount a
performance attack by intentionally delaying messages sent to its predecessor. To sim-
ulate different attacks, we simply let the faulty replica sleep for an “appropriate” period
of time following different strategies. As expected, our findings show that the possible
actions of a faulty replica is very limited: it either needs to be very careful not to be
accused, thus imposing only a marginal performance reduction, or it will be suspected
which will lead to a re-chaining and then a reconfiguration.

5.2 A BFT Network File System

We now evaluate a BFT-NFS service implemented using PBFT [5], Zyzzyva [24], and
BChain-3. The BFT-NFS service exports a file system, which can then be mounted on
a client machine. Upon receiving client requests, the replication library and the NFS
daemon is called to reach agreement on the order in which to process client requests.
Once processing is done, replies are sent to clients. The NFS daemon is implemented
using a fixed-size memory-mapped file.

We use the Bonnie++ benchmark [10] to compare our three implementations with
NFS-std, an unreplicated NFS V3 implementation, using an I/O intensive workload. We
evaluate the Bonnie++ benchmark with the following directory operations (DirOps):
(1) create files in numeric order; (2) stat() files in the same order; (3) delete them in
the same order; (4) create files in an order that will appear random to the file system;
(5) stat() random files; (6) delete the files in random order. We measure the average
latency achieved by the clients while up to 20 clients run the benchmark concurrently.

104 S. Duan et al.

Table 2. NFS DirOps evaluation in fault-free cases

BChain-3 Zyzzyva BFS NFS-std
41.66s(1.10%) 42.47s(2.99%) 43.04s(4.27%) 41.20s

As shown in Table 2, the latency achieved by BChain-3 is 1.10% lower than NFS-std,
in contrast to BFS and Zyzzyva.

0 20 40 60 80 100 120 140 time(s)

NFS-std

BChain-3

BChain-3 †
Zyzzyva

Zyzzyva †
PBFT

PBFT †

137.57

144.27

144.87

148.05

162

153.33

154.7

Write(char) Write(block) Read(char) Read(block) DirOps

Fig. 6. NFS evaluation with the Bonnie++ benchmark. The † symbol marks experiments with one
failure.

We also evaluate the performance using the Bonnie++ benchmark when a failure occurs
at time zero, as detailed in Figure 6. The bar chart also includes data points for the non-
faulty case. The results shows that BChain can perform well even with failures, and is
better than the other protocols for this benchmark.

6 Related Work

Chandra and Toueg [7] introduced the notion of unreliable failure detectors, which
could be used to solve consensus in the presence of crash failures. In their design, the
failure detector outputs the identity of processes suspected to have crashed. In contrast
to crash failures, Byzantine failures are not context-free, and thus it is impossible to
define a general failure detector in a Byzantine environment, independently of the al-
gorithm using the failure detector [13]. Some previous work [27,13,23,3] has extended
the failure detector notion to cover a wider range of failures. For example, the muteness
failure detector [13] interacts with the algorithm of a remote process to detect if the
remote process has turned mute. BChain can prevent performance attacks, including
those invoked by a mute process, without algorithmic help due to its chain structure.

Fault diagnosis [29,2,30,32,37,33,22] aims to identify faulty replicas. The basic idea
is that a proof of misbehavior for a replica is collected by executing a modified BFT
protocol. However, it usually requires several protocol rounds to collect the necessary
information to provide such a proof. An adversary can render the system even less
practical by intermittently following and violating the protocol specification. Similarly,
PeerReview [19] can detect and deter failures by exploiting accountability. It also uses
a “sufficient” number of witnesses to discover faulty replicas. BChain fault diagnosis,

BChain: Byzantine Replication with High Throughput 105

though not perfectly accurate, does not have the above-mentioned properties. There is
no need to regularly collect evidence, and no additional latency is induced by intermit-
tent adversaries. We note that Hirt, Maurer, and Przydatek [21] used the idea of the
“imperfect fault detection” to achieve general multi-party computation in synchronous
environments, but their techniques are very different from ours.

7 Conclusion

We have presented BChain, a new chain-based BFT protocol that outperforms prior pro-
tocols during failure scenarios, while offering comparable performance for the failure-
free case. In the presence of failures, instead of switching to a slower, backup protocol,
BChain leverages a novel technique—re-chaining—to efficiently detect and deal with
the failures such that it can quickly recover its steady-state performance. BChain does
not rely on any trusted components or unproven assumptions.

Acknowledgement. This research was supported in part by the National Science Foun-
dation under grants CCF-1018871 and CNS-1228828. Hein Meling was supported by
the Tidal News project under grant number 201406 from the Research Council of Nor-
way. The authors thank Tiancheng Chang, Matt Franklin, Leander Jehl, Karl Levitt,
Keith Marzullo, Phil Rogaway, Marko Vukolic, and anonymous reviewers for their
helpful comments.

References

1. Abd-El-Malek, M., Ganger, G., Goodson, G., Reiter, M., Wylie, J.: Fault-scalable Byzantine
fault-tolerant services. In: SOSP, pp. 59–74. ACM Press (2005)

2. Adams, J., Ramarao, K.: Distributed diagnosis of Byzantine processors and links. In: ICDCS,
pp. 562–569. IEEE Computer Society (1989)

3. Baldoni, R., Helary, J., Raynal, M.: From crash fault-tolerance to arbitrary-fault tolerance:
Towards a modular approach. In: DSN, pp. 273–282 (2000)

4. Benzel, T.: The science of cyber security experimentation: The DETER project. In: ACSAC
(2011)

5. Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: OSDI, pp. 173–186. USENIX
Association (1999)

6. Chandra, T., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving consensus.
J. ACM 43(4), 685–722 (1996)

7. Chandra, T., Toueg, S.: Unreliable failure detectors for reliable distributed systems. Journal
of the ACM 43(2), 225–267 (1996)

8. Chiang, M., Wang, S., Tseng, L.: An early fault diagnosis agreement under hybrid fault
model. Expert Syst. Appl. 36(3), 5039–5050 (2009)

9. Clement, A., Wong, E., Alvisi, L., Dahlin, M., Marchetti, M.: Making Byzantine fault toler-
ant systems tolerate Byzantine faults. In: NSDI, pp. 153–168. USENIX Association (2009)

10. Coker, R.: http://www.coker.com.au/bonnie++
11. Clement, A., Kapritsos, M., Lee, S., Wang, Y., Alvisi, L., Dahlin, M., Riche, T.: UpRight

cluster services. In: SOSP, pp. 277–290. ACM Press (2009)
12. Cowling, J., Myers, D., Liskov, B., Rodrigues, R., Shrira, L.: HQ replication: A hybrid quo-

rum protocol for Byzantine fault tolerance. In: OSDI, pp. 177–190. USENIX Association
(2006)

http://www.coker.com.au/bonnie++

106 S. Duan et al.

13. Doudou, A., Garbinato, B., Guerraoui, R., Schiper, A.: Muteness failure detectors: Specifi-
cation and implementation. In: Hlavicka, J., Maehle, E., Pataricza, A. (eds.) EDDC 1999.
LNCS, vol. 1667, pp. 71–87. Springer, Heidelberg (1999)

14. Doudou, A., Garbinato, B., Guerraoui, R.: Encapsulating Failure Detection: From Crash
to Byzantine Failures. In: Blieberger, J., Strohmeier, A. (eds.) Ada-Europe 2002. LNCS,
vol. 2361, pp. 24–50. Springer, Heidelberg (2002)

15. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial synchrony. J.
ACM 35(2), 288–323 (1988)

16. Fischer, M., Lynch, N., Paterson, M.: Impossibility of distributed consensus with one faulty
process. J. ACM 32(2), 374–382 (1985)

17. Ghemawat, S., Gobioff, H., Leung, S.: The Google file system. In: SOSP, pp. 29–43 (2003)
18. Guerraoui, R., Knezevic, N., Quema, V., Vukolic, M.: The next 700 BFT protocols. In: Eu-

roSys, pp. 363–376. ACM (2010)
19. Haeberlen, A., Kouznetsov, P., Druschel, P.: PeerReview: practical accountability for dis-

tributed systems. In: SOSP, pp. 175–188. ACM (2007)
20. Hendricks, J., Sinnamohideen, S., Ganger, G., Reiter, M.: Zzyzx: Scalable fault tolerance

through Byzantine locking. In: DSN, pp. 363–372. IEEE Computer Society (2010)
21. Hirt, M., Maurer, U.M., Przydatek, B.: Efficient secure multi-party computation (Extended

Abstract). In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 143–161.
Springer, Heidelberg (2000)

22. Hsiao, H., Chin, Y., Yang, W.: Reaching fault diagnosis agreement under a hybrid fault
model. IEEE Transactions on Computers 49(9) (September 2000)

23. Kihlstrom, K.P., Moser, L.E., Melliar-Smith, P.M.: Byzantine Fault Detectors for Solving
Consensus. Comput. J. 46(1), 16–35 (2003)

24. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: Speculative Byzantine
fault tolerance. In: SOSP, pp. 45–58. ACM (2007)

25. Lamport, L.: Using time instead of timeout for fault-tolerant distributed systems. Trans. on
Programming Languages and Systems 6(2), 254–280 (1984)

26. Lamport, L., Malkhi, D., Zhou, L.: Reconfiguring a state machine. SIGACT News 41(1),
63–73 (2010)

27. Malkhi, D., Reiter, M.: Unreliable intrusion detection in distributed computations. In: CSFW,
pp. 116–125 (1997)

28. Malkhi, D., Reiter, M.: Byzantine quorum systems. Distributed Computing 11(4) (1998)
29. Preperata, F., Metze, G., Chien, R.: On the connection asssignment problem of diagnosable

systems. IEEE Transactions on Electronic Computers EC-16(6), 848–854 (1967)
30. Ramarao, K., Adams, J.: On the diagnosis of Byzantine faults. In: Proc. Symp. Reliable

Distributed Systems, pp. 144–153 (1988)
31. Schneider, F.: Implementing fault-tolerant services using the state machine approach: A tu-

torial. ACM Computing Surveys 22(4), 299–319 (1990)
32. Serafini, M., Bondavalli, A., Suri, N.: Online diagnosis and recovery: On the choice and

impact of tuning parameters. IEEE Trans. Dependable Sec. Comput. 4(4), 295–312 (2007)
33. Shin, K., Ramanathan, P.: Diagnosis of processors with Byzantine faults in a distributed

computing system. In: Proc. Symp. Fault-Tolerant Computing, pp. 55–60 (July 1987)
34. van Renesse, R., Ho, C., Schiper, N.: Byzantine chain replication. In: Baldoni, R., Flocchini,

P., Binoy, R. (eds.) OPODIS 2012. LNCS, vol. 7702, pp. 345–359. Springer, Heidelberg
(2012)

35. van Renesse, R., Schneider, F.B.: Chain replication for supporting high throughput and avail-
ability. In: OSDI, pp. 91–104. USENIX Association (2004)

36. Vukolic, M.: Abstractions for asynchronous distributed computing with malicious players.
PhD thesis. EPFL, Lausanne, Switzerland (2008)

37. Walter, C., Lincoln, P., Suri, N.: Formally verified on-line diagnosis. IEEE Trans. Software
Eng. 23(11), 684–721 (1997)

RoBuSt: A Crash-Failure-Resistant Distributed

Storage System�

Martina Eikel, Christian Scheideler, and Alexander Setzer

University of Paderborn, Germany
{martinah,scheideler,asetzer}@mail.upb.de

Abstract. In this work we present the first distributed storage system
that is provably robust against crash failures issued by an adaptive ad-
versary, i.e., for each batch of requests the adversary can decide based on
the entire system state which servers will be unavailable for that batch of
requests. Despite up to γn1/ log log n crashed servers, with γ > 0 constant
and n denoting the number of servers, our system can correctly process
any batch of lookup and write requests (with at most a polylogarith-
mic number of requests issued at each non-crashed server) in at most a
polylogarithmic number of communication rounds, with at most poly-
logarithmic time and work at each server and only a logarithmic storage
overhead.

Our system is based on previous work by Eikel and Scheideler (SPAA
2013), who presented IRIS, a distributed information system that is prov-
ably robust against the same kind of crash failures. However, IRIS is only
able to serve lookup requests. Handling both lookup and write requests
has turned out to require major changes in the design of IRIS.

Keywords: Theory of Distributed Systems, DHT, Crash Failures,
Denial-of-Service Attacks.

1 Introduction

One of the main challenges of a distributed system is that it is able to work
correctly even if parts of the system fail to work. If a server experiences a crash
failure it becomes unavailable to the other servers, i.e., it does not issue or
respond to requests any more. Crash failures can be temporary or permanent,
and if it is temporary, a server may either be back to its state when it crashed, or
it may have lost all of its state. We will focus on crash failures where, whenever
a server becomes available again, it is back to its state when it crashed. This is
a reasonable assumption since for commercial servers it is extremely rare that
their state cannot be recovered. However, a temporary unavailability is not that
uncommon and can have many causes such as maintenance work, hardware or
software glitches, or denial-of-service attacks. Especially denial-of-service attacks

� This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Center “On-The-Fly Computing” (SFB 901) and
by the EU within FET project MULTIPLEX under contract no. 317532

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 107–122, 2014.
c© Springer International Publishing Switzerland 2014

108 M. Eikel, C. Scheideler, and A. Setzer

can be a serious threat because they are normally unpredictable, hard to prevent
and they can cause the unavailability of a server for an extended period of time.

Predominant approaches in information and storage systems to deal with the
threat of crash failures are to use redundancy: information that is replicated
among multiple machines is likely to remain accessible even if some servers are
unavailable. Unfortunately, in systems that consist of thousands of servers a com-
plete replication of the data over all servers is not feasible. Hence, one needs to
find an appropriate tradeoff between the amount of redundancy and the number
of crashed servers the system can handle. One can easily show that if Θ(log n)
copies of a data item are placed randomly among n servers, and these random
positions are not known to the adversary, then any strategy of the adversary that
blocks half of the servers will not block all of the copies, with high probability1.
The situation is completely different, however, when considering an adaptive
adversary, i.e., someone who has complete knowledge about the system.

In a previous work, Eikel and Scheideler [7] presented a distributed informa-
tion system, called IRIS, that just needs a constant storage redundancy in order
to be robust against an adaptive adversary that can crash up to Θ(n1/ log logn)
servers. Unfortunately, the system lacks the important ability to handle write
requests, i.e., to add, remove and update data items. This work solves this prob-
lem.

1.1 Model and Preliminaries

We assume that the storage system consists of a static set S = {s1, . . . , sn} of
n reliable servers of identical type. The servers are responsible for storing the
data as well as handling the user requests. We assume that all data items are of
the same size, and that any data item d is uniquely identified by a key key(d).
The universe of all possible keys is denoted by U , and m := |U | is assumed to
be polynomial in n. Furthermore, we assume that the size of the data items is at
least Ω(logn logm). There are two types of user requests: lookup(k) for k ∈ U ,
and write(k, d) for k ∈ U and a data item d. The user can issue a request by
sending it to one of the servers in S. Given a lookup(k) request, the system is
supposed to either return the data item d with key(d) = k, or to return NULL
if no such data item exists. Given a write(k, d) request, the system is supposed
to store data item d with key k such that subsequent lookup(k) requests can be
answered correctly. Note that with a write(·) request the user can also update or
remove data.

Every server knows about all other servers and can therefore directly commu-
nicate with any one of them. This does not endanger scalability since millions
of IP addresses can easily be stored in main memory in any reasonable com-
puter today and we assume the set of servers to be static. We use the standard
synchronous message passing model for the communication between the servers.
That is, time proceeds in synchronized communication rounds, or simply rounds,

1 “With high probability”, or short, “w.h.p.”, means a probability of at least 1− 1/nc

where the constant c can be made arbitrarily large.

RoBuSt: A Crash-Failure-Resistant Distributed Storage System 109

and in each round each server first receives all messages sent to it in the previous
round, processes all of them, and then sends out all messages that it wants to
send out in this round. Note that assuming the synchronous model is just a sim-
plification and that our protocols only require the message delays to be bounded.
In addition, we use the synchronous model because describing all protocols in
an asynchronous setting would significantly blow up the construction and would
hide the main innovations behind our system. We assume that the time needed
for internal computations is negligible, which is reasonable as the operations in
the protocols we describe are simple enough to satisfy this property.

For the crash failures, we assume a batch-based adaptive adversary. This means
the following: We assume that time is divided into periods consisting of a poly-
logarithmic number of rounds. The adversary has complete knowledge of the
current system, but cannot predict the (future) random choices of the system.
Based on his knowledge, he can select an arbitrary set of O(n1/ log log n) servers
to be crashed. A server that is crashed will not send any message nor react
to messages sent from other servers. We assume that the servers have a failure
detector that allows them to determine whether a server is crashed so that state-
ments like “if server i is crashed then . . . ” are allowed in the protocol. Note that
assuming bounded message delays, failure detection can simply be implemented
using timeouts. After that, the adversary may issue an arbitrary collection of
requests to the system by sending up to ω ∈ N lookup(·) requests and up to
ω write(·) requests to each server. In order to keep the presentation of RoBuSt
as clear as possible, throughout this work we assume ω = 1. RoBuSt can in
principle handle arbitrary values of ω, but in that case the bound on the work
required by each server for serving all requests must be multiplied with ω.2 There
are no further limitations, i.e., the keys selected by the adversary may or may
not be associated with data items stored in the system, and the adversary is
also allowed to issue multiple lookup requests for the same key. The task of the
system is to correctly handle all of these requests. We assume that any period
is long enough such that the system has enough time to perform all necessary
computations and to answer all requests. After any period, the adversary may
select a different set of Θ(n1/ log logn) servers to be crashed. We assume that the
set of crashed servers does not change during a fixed period, which is why we
use the notion of a batch-based adaptive adversary. Of course, allowing crash
failures at arbitrary times would make the model much stronger, yet it would
significantly complicate the system design, which is why we leave this to future
research. Note that we assume links between intact (i.e., non-crashed) servers to
be reliable. Unreliable links can be dealt with using, for example, at-least-once
delivery or error correction strategies, which are out of scope for our design since
it is already complex enough.

In order to measure the quality of the storage system, we introduce the fol-
lowing notation. A storage strategy is said to have a redundancy of r if r times

2 Note that our system would not be able to answer all requests with at most poly-
logarithmic work if ω > polylog(n), but this would trivially hold for any storage
system.

110 M. Eikel, C. Scheideler, and A. Setzer

more storage (including any control storage) is used for the data than storing
the plain data. We call a storage system scalable if its redundancy is at most
polylog(n), efficient if any collection of lookup and write requests specified by
the adversary can be processed correctly in at most polylog(n) many communi-
cation rounds in which every server sends and receives at most polylog(n) many
messages of at most polylog(n) size, and robust if any collection of lookup and
write requests specified by the adversary can be processed correctly even if a set
of up to Θ(n1/ log logn) servers specified by the adversary crash.

1.2 Related Work

Over the past years, distributed storage systems have gained a lot of impor-
tance. Popular examples include the storage solutions offered by Google, Apple,
or Amazon. Since availability and retrievability of the stored data is a key aspect
of distributed storage systems, these systems should be able to work correctly de-
spite common failures. Often failures in distributed systems are divided into the
following types [4]: crash failures, omission failures, timing failures, and Byzan-
tine failures. In crash failures the affected component (for instance a server) com-
pletely stops working. In receive (send) omission failures the affected component
cannot receive (send) any further messages. A timing failure leads a component
to not respond within a specified time interval. In case of a Byzantine failure,
the affected component may react in an arbitrary, even malicious manner.

This work focuses on crash failures. Many works dealing with crash failures
in distributed systems focus on crash failure recovery and crash failure detection
[15,12,8]. But to the best of our knowledge, no previous work has considered
how to secure a distributed storage system against many (e.g., more than a
polylogarithmic number) simultaneous crash failures controlled by an adaptive
adversary while using only polylogarithmic work, time and redundancy. That is,
we do not seek to prevent failures or attacks, but rather focus on how to maintain
a good availability and performance even in spite of them. Our system is based
on the distributed hash table (DHT) paradigm (e.g., [3,5,9,14,16]), with the ad-
ditional twist of using coding and arranging the used DHTs in an appropriate
structure. Various systems based on DHTs that are resistant against Denial-
of-Service (DoS) attacks (which represent a special type of crash failures) have
already been proposed [10,11,13]. But these do not work for adaptive adversaries.
The first DHTs that are robust against past insider crash failures were proposed
in [1,2], where a past insider only has complete knowledge of the information
system up to some past time point t0. For this kind of insider, it is possible to
design an information system so that any information that was inserted or last
updated after t0 is safe against crash failures [1,2]. But the constructions pro-
posed in these papers would not work at all for a current insider because they are
heavily based on randomization to ensure unpredictability. Eikel and Scheideler
were the first to present a distributed information system, called IRIS, that is
provably robust even against a current insider that crashes up to Θ(n1/ log logn)
servers. The authors showed that IRIS can correctly answer any set of lookup
requests (with one request per server that is not crashed) with polylogarithmic

RoBuSt: A Crash-Failure-Resistant Distributed Storage System 111

time and work at each server and only a constant redundancy. Still it remained
open whether it is possible to design a distributed storage system that can ef-
ficiently handle lookup and write requests under the presence of crash failures.
We answer this question positively by proposing such a system.

1.3 Our Contribution

We present the first scalable distributed storage system, called Robust Bucket
Storage (in short RoBuSt), that is provably robust against adaptive crash failures
and that supports both lookup and write requests. Concretely, we allow the
adversary to have complete knowledge about the storage system and to have the
power to crash any set of γn1/ log logn servers, for γ > 0 constant. The task of
the system is to serve any collection of lookup and write requests in an efficient
way despite the crash failures.

RoBuSt expands some of the ideas in IRIS, a distributed storage system that
we proposed in SPAA 2013 [7]. The system presented in this work tolerates a
number of crashed servers that is similar to the number of servers blocked by
a DoS attack that the Basic IRIS version can tolerate and achieves comparable
efficiency bounds (up to a logarithmic factor). In contrast to IRIS, which can only
handle lookup requests, RoBuSt is able to additionally handle write requests.
Although in the lookup protocol we are able to adapt some of the underlying
ideas of IRIS, adding the write functionality required significant changes in the
whole structure. To simplify the description for readers who are familiar with
IRIS, we try to re-use terminology whenever there are similarities (e.g., Probing
Stage, Decoding Stage).

One aspect is that IRIS organizes data into layers of n data items each, and
each layer is encoded separately using distributed coding that involves all n
servers. This means that whenever a data item needs an update, all n servers
have to update their information for the corresponding layer. Since we allow any
set of write requests, it may happen that every write request involves a different
layer, which would create an enormous update work. To solve this issue, in
RoBuSt we store the data items in so-called buckets that are organized in a
binary tree. For each data item, there are a logarithmic number of buckets that
are a potential storage location for the data item. For a data item there may
exist different versions of it in different buckets. But our system ensures that
the highest bucket (i.e., the bucket with minimum distance to the root in the
underlying binary tree over the buckets) that contains a version of the data item
always holds the most recent version.

Furthermore, IRIS uses a fixed set of hash functions to specify anchor locations
for the data so that afterwards lookup requests can be served efficiently despite
an adversarial DoS attack. However, using fixed hash functions in RoBust would
enable the adversary to annul the fair distribution of data in a bucket. Therefore,
RoBuSt chooses new, random hash functions whenever write requests have to
be served.

Another complication is the fact that a server may not know whether its
information is up-to-date. This is because at the time when write requests were

112 M. Eikel, C. Scheideler, and A. Setzer

executed that required an update in that server, the server might have been
crashed. Our organization of the data and our protocols ensure that any server
that answers a request always returns the most recent version of a data item.

Nevertheless, RoBuSt makes sure that all data can still be efficiently found
while the storage overhead is at most a logarithmic factor.

Theorem 1. RoBuSt is a scalable and efficient distributed storage system that
only needs a logarithmic redundancy to protect itself against batch-based adaptive
crash failures in which up to γ ·n1/ log logn servers can crash for a constant γ > 0,
w.h.p.

2 Underlying Datastructure

In the following, we assume keys are potentially from an address space of size
at most np, i.e., we need Λ := p logn bits for each address. We introduce the
following definitions: For a data item d, denote the address of d by key(d) =
dp logn−1 . . . d1d0 ∈ {0, 1}p log n and let bitd(i) := di.

Our data structure is based on a binary tree with Λ + 1 levels, so-called
zones . We denote the nodes of each zone as buckets where each bucket will hold
a set of data items. The internal storage strategy of the buckets is described in
Section 2.1. Zone 0 consists of a single bucket, bucket Bε. Each bucket B that is
not in zone Λ has two children, denoted by 0-child(B) and 1-child(B). For each
data item d there is not only a single possible bucket in which to store d but
there are Λ + 1 possible buckets for d, one in each zone. Bucket Bε may hold
any data item. Any data item d that may belong to bucket B in zone �, may
also belong to 0-child(B) if bitd(�) = 0 or to 1-child(B) if bitd(�) = 1. In the
following, let B be the set of all buckets and let bucket(z, d) : {0, . . . , Λ}×U → B
be a function that returns the unique possible bucket of a data item d at zone z.
Initially, a bucket does not contain any data. During the runtime of the system
the following invariant is satisfied: Each bucket, excluding bucket Bε, stores
either 0 or between n and 2n data items. Bucket Bε stores at most 2n data
items.

2.1 Internal Storage Strategy of the Buckets

The idea of storing a set D of data items into a bucket B is to reuse the ba-
sic concepts of the storage strategy for individual layers from IRIS [7]. Roughly
speaking this strategy works as follows: In order to achieve the desired robust-
ness, we first create c ≥ 18 logm pieces d1, . . . , dc for each data item d ∈ D
using Reed Solomon coding. Using c hash functions chosen uniformly and inde-
pendently at random, these pieces are then mapped to servers. Finally, all these
pieces are encoded with each other, such that at the end each intact server holds
for each piece some parity information resulting from the encoding process. Be-
sides encoded data pieces each bucket B additionally stores c hash functions
and a timestamp t(B). The timestamp is used to handle out-dated information

RoBuSt: A Crash-Failure-Resistant Distributed Storage System 113

a server might hold if it has crashed in a previous period in which write requests
were served.

In the following we roughly describe the coding strategy presented in [7]. The
coding strategy is a block-based distributed strategy that follows the topology
of a k-ary butterfly as described in the following. For k ∈ N we use the notation
[k] = {0, . . . , k − 1}.

Definition 1. For any d, k ∈ N, the d-dimensional k-ary butterfly BF (k, d) is
a graph G = (Vk, E) with node set Vk = [d+ 1] × [k]d and edge set E with

E = {{(i, x), (i+ 1, (x1, . . . , xi, b, xi+2, . . . , xd))}
| x = (x1, . . . , xd) ∈ [k]d, i ∈ [d], and b ∈ [k]}.

A node u of the form (�, x) is said to be on butterfly level � of G. Furthermore,
LT (u) is the unique k-ary tree of nodes reached from u when going downwards
the butterfly (i.e., to nodes on butterfly levels �′ > �) and UT (u) is the unique
k-ary tree of nodes reached from u when going upwards the butterfly. Moreover,
for a node u at level �, let BF (u) be the unique k-ary sub-butterfly of dimension
� ranging from butterfly level 0 to � in BF (k, d) that contains u.

A visualization of a k-ary butterfly is given in Figure 1.

Level 0

Level 1

Level 2

Level 3

000
001

002
010

011
012

020
021

022
100

101
102

110
111

112
120

121
122

200
201

202
210

211
212

220
221

222

Fig. 1. Visualization of a k-ary butterfly BF (k, d) for k = d = 3. For a better readabil-
ity most of the edges from level two and three are omitted. The dashed box denotes the
sub-butterfly BF ((2, 111)). The thick solid lines in the dashed box denote the edges of
UT ((2, 111)). The thick dotted lines denote the edges of LT ((2, 121)).

In the following let BF (k, d) be a k-ary butterfly with n = kd and with server
si, i ∈ {0, . . . , n − 1}, emulating the butterfly nodes (0, i), . . . , (d, i). That is,
whenever a butterfly node (j, i), j ∈ {0, . . . , d} is supposed to perform an action
or store data, this is done by server si. We say a server s is connected via the
k-ary butterfly to another server s′, if there is an edge (u, v) in the butterfly such
that u is emulated by s and v is emulated by s′.

While in IRIS each server holds O(1) data pieces per layer, in our system each
server holds O(log n) data pieces per bucket. This is due to the fact that each

114 M. Eikel, C. Scheideler, and A. Setzer

bucket contains O(n) data items and for each data item c = Θ(logm) pieces are
created and distributed evenly among the servers. Hence, we simply concatenate
the data pieces a server si holds in a bucket B and denote the resulting data
block as bi.

In order to encode the data blocks b0, . . . , bn−1 assigned to the servers s0, . . . ,
sn−1 in bucket B, initially, bi is placed in node (0, i) for every i ∈ {0, . . . , n− 1}.
Given that in butterfly level � we have already assigned data blocks d(�, x) to
the nodes (�, x) we use the coding strategy presented in [7] to assign data blocks
d(�+1, x) to the nodes at butterfly level �+1. The used coding strategy is based
on some simple parity computations and ensures the following property: If at
most one butterfly node (� + 1, xj) from the set of nodes {(� + 1, x1), . . . , (� +
1, xk)} is crashed, then the information in the remaining nodes (� + 1, xi),
i ∈ {1, . . . , k}\{j}, suffices to recover d(�, x1), . . . , d(�, xk). Furthermore, with
Lemma 2.4 in [7] the storage amount of each server si, i ∈ {0, . . . , n−1}, required
for the encoding of a single bucket is upper bounded by (1+e)z, where z denotes
the maximum size of the data blocks stored at any server sj , j ∈ {0, . . . , n− 1}.
Since there may exist outdated data items in the system, but for each level at
most one, i.e. in total at most Λ + 1 = O(log n) many for each data item, the
redundancy of our system increases to O(log n).

Corollary 1. RoBuSt has a redundancy of O(log n).

3 The Write Protocol

In the following let D with |D| ≤ (1 − δ)n and δ < 1/72 · n1/ log log n, be the set
of data items for which intact servers received write requests. For a data item
d that is stored in the system denote the c pieces that have been created from
d using Reed Solomon coding as d1, . . . , dc. Furthermore, denote the server that
is holding d1 (after the pieces have been spread over the n servers) as the server
maintaining d.

3.1 Preprocessing Stage

In this stage, for each crashed server si, a unique intact server is determined,
denoted as the representative of si, such that at the end of this stage each
crashed server is the representative of at most two other servers. The idea of the
representatives is to let them take over the roles of the according crashed servers
in actions (e.g. routing, computations) the crashed servers were supposed to
perform. For this, we additionally need to ensure that each intact server knows
the representatives of all crashed servers it is connected to in the underlying
k-ary butterfly.

The determination of the representatives and the introduction of the repre-
sentatives to the appropriate servers can be done in the same manner as in the
butterfly completion stage of [7], which can be carried out in (2 + o(1)) log n
rounds with a congestion of at most O(log n) (see Lemma 2.11 in [7]). In con-
trast to [7], we do not need to compute a so-called decoding depth here that gives

RoBuSt: A Crash-Failure-Resistant Distributed Storage System 115

information about the minimum level of the butterfly that the decoding must
be initiated from, which would take O(log n) rounds. In the following, we denote
by s(i) the representative of si if si is crashed or si itself otherwise.

3.2 Writing Stage Overview

In order to keep the specification of our system simple, we first give a high-level
overview of how a set of write requests is handled. Further details are given in
the following subsection.

The Writing Stage consists of up to Λ+ 1 phases. Each phase z ∈ {0, . . . , Λ}
deals with a single bucket Bz from zone z only and receives a set of data items
Dz to be inserted into Bz. At the beginning, D0 := D is the set of all data items
for which there are write requests. In the following, D(Bz) denotes the set of
data items that are stored in bucket Bz (at the beginning of phase z). Phase
z ∈ {0, . . . , Λ} consists of the following steps.

1. Completely decode Bz and send all decoded pieces of a data item d ∈ D(Bz)
to the server maintaining d (for details, see the full version [6]).

2. If |D(Bz) ∪Dz| ≤ 2n: Add the data items from Dz to D(Bz), choose c new
hash functions h1, . . . , hc : U → V uniformly at random for Bz, and reencode
Bz (see [6] and below).

3. Else (|D(Bz) ∪Dz| > 2n):
(a) The intact servers agree on a subset Dz+1 ⊆ D(Bz) ∪D of size n with

the property that for all d, d′ ∈ Dz+1, bitd(z) = bitd′(z) = b ∈ {0, 1} (for
details, see the full version [6]).

(b) Reencode the data items in (Dz ∪ D(B)) \Dz+1 in bucket Bz and
choose c new hash functions h1, . . . , hc : U → V uniformly at random
for Bz. (see below)

(c) Set Bz+1 :=0-child(Bz+1) if b = 0 and Bz+1 :=1-child(Bz+1) if b = 1
and propagate the data items in Dz+1 to the next phase (for details, see
the full version [6]).

Each phase of the Writing Stage can be performed in O(log n) rounds with
a congestion of O(log n) at each server in each round (see [6]). Since there are
at most O(log n) phases in the Writing Stage, the overall runtime is O(log2 n)
rounds.

Encoding of a Bucket. In the following we describe how a set of data items is
reencoded into a bucket, as required in step 2 and step 3b. Note that the reen-
coding of a bucket does not only consist of the simple encoding of the data items
belonging to that bucket but it consists of some additional steps, as described
in the following.

First, in contrast to IRIS, s(1) chooses c hash functions h1, . . . , hc : U → V
uniformly at random that will be used to map data pieces of this bucket to
servers. While in IRIS the hash functions that map data pieces to servers are
never changed, we need to choose new hash functions for a bucket B whenever

116 M. Eikel, C. Scheideler, and A. Setzer

B is (re)encoded. The reason for this is that otherwise the adversary would be
able to generate write requests that overload certain servers.

Note that the hash functions need to satisfy certain expansion properties, but
if c is chosen sufficiently large (c ≥ 18 logm) they do so, w.h.p. (more information
is provided in [6]). After that, s(1) distributes the c hash functions to all other
intact servers s(i). This distribution can be realized by simply broadcasting the
hash functions in the k-ary butterfly from level logk n to level 0. In addition,
s1 distributes a current timestamp t(Bz) to all other intact servers and each
intact server s(i) sets its current timestamp for bucket Bz to that value. Each
server s(i) now creates for each data item which it maintains or which it has
received write requests for and which are not propagated to the next phase
the c pieces d1, . . . , dc of d using Reed Solomon coding (Section 2). Here, dj ,
j ∈ {1, . . . , c}, is supposed to be sent to the server s′ responsible for hj(d) or to
its representative if s′ is crashed. Unfortunately, a server s(i) does not necessarily
know the representative of the server s′ if that server is crashed. Thus, instead of
sending the data pieces directly, the servers initiate a bottom-up routing in the
underlying k-ary butterfly in order to determine the representative of hj(d) for
each 1 ≤ j ≤ c. Obviously, this takes only logk n rounds and can be performed
with a congestion of O(k) per node. Once s(i) knows the representative of hj(d),
it directly sends dj to hj(d) for all 1 ≤ j ≤ c.

After the pieces of data items have been distributed, the servers encode the
data items in (D(Bz)∪Dz) \Dz+1 in a distributed fashion. Note that the set of
data blocks for server i in zone z is completely overwritten for each server s(i) in
this process. This can be done by a simple top-down approach using the coding
strategy for IRIS (see Section 2.1 in [7]). In addition, we also store the timestamp
of the bucket along with the data block by appending it to the composed data
block.

The following lemma holds during the encoding step, regardless of the current
phase.

Lemma 1. Assume the adversary blocks less than (γ/2) · 2logk n servers, with
γ = 1/36. Then, for any data item d that is (re-)written during the current
period, and any level 0 ≤ � ≤ logk n, there are at most c/6 pieces of d that
are mapped to sub-butterflies BF (v) (for some v at level �) with at least �2�−1�
crashed servers in BF (v), w.h.p.

The lemma plays an important role in the proof of the correctness of the
Lookup Protocol. A proof of this lemma can be found in the full version [6].

4 The Lookup Protocol

In order to keep the specification of our system simple, we provide the description
of the lookup protocol as a separate protocol that is executed after the execution
of the Write Protocol. The lookup protocol is divided into two stages: the Prepro-
cessing Stage (Section 4.1) and the Zone Examination Stage (Section 4.2). The
former is similar to the Preprocessing Stage of the Write Protocol (Section 3.1).

RoBuSt: A Crash-Failure-Resistant Distributed Storage System 117

The latter is performed for each zone individually and split into two further stages:
the Probing Stage and the Decoding Stage. The basic idea of the Probing Stage is
to answer a request by directly collecting a sufficient number of data pieces. If this
is not possible, either because too many of the servers holding a piece are crashed
or because of congestion, the Decoding Stage tries to recover a data item by uti-
lizing the distributed coding described in Section 2.1. Note that both a Probing
Stage as well as a Decoding Stage can be found in IRIS ([7]), too. While they match
in their general structure, there are important differences that are caused by the
differences in the underlying structure and the implications of the write function-
ality. For example, servers may now store obsolete data items without being aware
of that.

4.1 The Preprocessing Stage

The Preprocessing Stage is exactly the same as in Section 3.1. If at least one
write request has been handled in the current period, we can thus skip this part
and re-use the established k-ary butterfly and the unique representatives.

4.2 The Zone Examination Stage

In the following let D be the set of data items for which a lookup request arrived
at an intact server. The idea of this stage is to successively perform a lookup for
each d ∈ D in each zone until a copy of d has been found and returned to the
appropriate server. The zone examination stage is performed for at most Λ + 1
zones starting with zone 0.

In each phase z ∈ {0, . . . , Λ}, beginning with z = 0, each server with an
unserved lookup request for some data item d initiates a lookup request for d in
bucket bucket(z, d). Any server that receives a copy of the data item it requested
during the lookup in zone z, as described in the following, returns that copy and
is finished. All remaining lookup requests are handled in the next phase, phase
z := z + 1. This procedure is repeated until each lookup request is served.

Handling a set of lookup requests in one phase z is done by performing the
Probing Stage and the Decoding Stage as described in the following.

Probing Stage. In the following let s be an intact server that has an unserved
lookup request for a data item d at the beginning of phase z. The idea of the
Probing Stage is to either achieve c/3 up-to-date pieces such that d can be
recovered. Or to assign the request for d to a level {1, . . . , logk n} (as defined
later) in order to further handle the request in the next stage, the Decoding
Stage. In the following, for a server s′, an index i ∈ {1, . . . , c}, and a data piece
d′ we denote by Pi(s

′, d′) the unique path of length logk n in the k-ary butterfly
from the butterfly node on level logk n emulated by s′ to the butterfly node on
level 0 emulated by the server that is responsible for hi(d

′).
On a high level view, in phase z, server s performs the following steps.

1. Acquire current hash functions and timestamp td for bucket bucket(z, d).

118 M. Eikel, C. Scheideler, and A. Setzer

2. Choose c intact servers s(d1), . . . , s(dc) uniformly and independently at ran-
dom.

3. Send a probe(d, i, td) message to s(di), i ∈ {1, . . . , c}, in order to initiate the
forwarding of the probe(·) message along the c paths Pi(s(di), di).

Note that acquiring the hash functions in step 1 is necessary since s may have
been crashed in the last period in which a write occured in bucket bucket(Z, d)
(at which the hash functions were replaced). Acquiring the current hash func-
tions and the timestamp works as follows: First of all, s randomly chooses κ :=
Θ(log n) intact servers and asks them for their timestamp in bucket bucket(Z, d).
The intact servers can be found in O(1) communication rounds, w.h.p., by se-
lecting κ random servers in each round until κ intact servers have been found.
Let td be the maximum timestamp s received. If td is greater than the times-
tamp s stores for bucket(Z, d), s knows that it does not have the current hash
functions and asks one server from which it received td for the c hash functions
for bucket bucket(Z, d). Note that during this process each server only receives
O(log n) requests throughout this process, w.h.p.

Once s knows the correct hash functions, its goal is to retrieve at least c/3
pieces of d. Since contacting the servers holding the c pieces of d directly may
cause a too high congestion at these servers, we use the method of forwarding
c probes from uniformly chosen intact servers s(d1), . . . , s(dc) to the servers
responsible for the c pieces of d along the c paths P1(s(d1), d1), . . . , Pc(s(dc), dc)
(step 2, step 3). Analogously to step 1 choosing the c intact servers in step 2
takes O(1) communication rounds, w.h.p.

In the following we describe how the nodes from the paths P1(s1, d1), . . . ,
Pc(sc, dc) react on incoming messages during this phase. Let u be a butterfly
node on level � ∈ {0, . . . , logk n} that has received a probe(d, i, td) message. In
order to reduce redundancy u combines probes for the same piece of d (and thus
the same target) and u marks itself as the new origin of the probe (technique
of splitting and combining [7]). In the following we denote a butterfly node u as
congested if it has received more than α ·c probe(·) messages for different probes,
for a sufficiently large constant α > 0. Whenever u receives a probe(d, i, td)
message, u performs the following steps.

1. If u is congested:
2. Stop forwarding the probe and send a fail(d, i, �) message to the origin of

the probe message.
3. Else:
4. If � �= 0: Forward probe(d, i, td) message to the butterfly node on level �−1

on the path Pi(s(di), di).
5. If � = 0: (probe has reached its destination)
6. If u’s current version of bucket bucket(Z, d) has timestamp td:
7. If u holds piece di of d: Send requested piece di to the origin of the

probe message.
8. Else: Send notexists(d) message to the origin of the probe message.
9. Else: Send fail(d, i, 0) to the origin of the probe message.

RoBuSt: A Crash-Failure-Resistant Distributed Storage System 119

If a butterfly node on level � ∈ {0, . . . , logk n−1} receives a data item, a fail(·),
or a notexists(·) message, it forwards this answer to the origin of the request to
which this message was an answer to (along the same path that the request was
routed). A butterfly node on level logk n emulated by s(di), i ∈ {1, . . . , c}, that
received an answer for a probe for data piece di simply forwards this answer
to the server that initiated the forwarding of that probe. These answers ensure
that after O(logk n) rounds the server s that received a lookup request for a
data item d has received for all initially sent probe(·) messages a piece of d, or
a notexists(d) message, or the level at which the probing failed. Depending on
which kinds of answers s has received, it reacts as follows:

– If s received at least c/3 up-to-date pieces of d, s recovers d using Reed
Solomon coding and answers the request.

– Else if s receives a notexists(d) message, s answers that the requested data
item does not exist in the system.

– Else if s receives more than c/3 fail(d, i, 0) messages, s declares the request
for d to belong to level �, where � ∈ {0, . . . , logk n} is the smallest level that
contains at least 5c/6 active probes for di, i.e., probes for di that were not
aborted at level �− 1 or earlier.

It is easy to see that the Probing Stage takes at most O(log n) communication
rounds per phase with at mostO(log2 n) congestion at every server in each round.
Since the only reason for a piece of a data item to be deactivated at level 0 is
that it is outdated, the following is a direct corollary from Lemma 1.

Corollary 2. No data item can ever belong to level 0.

For the analysis of the runtime of the lookup protocol, the following lemma plays
an important role.

Lemma 2. If the adversary can only block less than (γ/2) · 2logk n servers, then
for every � ∈ {1, . . . , logk n}, the number of data items belonging to level � is at
most 2γn/k� with γ = 1/36.

The general idea and structure of the proof of Lemma 2 is based on the proof
of Lemma 2.16 in [7]. In contrast to [7], no requests are aborted due to crashed
nodes here. Furthermore, we have a different definition of when a node belongs to
level � here (we require at least 5c/6 active probes instead of c/2) and a different
value of γ. A proof of Lemma 2 can be found in the full version [6].

Decoding Stage. The Decoding stage proceeds in logk n sub-phases. In the
following, for a server s that holds a lookup request for some data item d that

has not been answered before this sub-phase, we define s
(�)
i (d) as the node at

level � on the unique path of length logk n from the butterfly node on level logk n
emulated by si(d) to the butterfly node on level 0 responsible for hi(d).

On a high level view, the Decoding Stage works as follows: During each sub-
phase 1 ≤ � ≤ logk n, starting with level 1, we try to recover the data items

120 M. Eikel, C. Scheideler, and A. Setzer

belonging to level �. In order to recover a data item d, we need to collect at
least c/3 pieces of d. To do so, we randomly choose 5c/6 requests for pieces of
d that were active at level � in the Probing Stage and for each of these pieces

di we determine whether BF (s
(�)
i (d)) can be decoded without congestion (as

described later). If BF (s
(�)
i (d)) can be decoded without congestion, the decoding

is initiated and the result of this is sent back to the origin. (Throughout the
whole process, we use the same combining/splitting approach of messages as in
the Probing Stage.) Otherwise, the origin is informed that the according piece of
d could not be decoded. If for a data item d not sufficiently many (i.e., less than
c/3) pieces could be recovered, the request for d is declared to belong to level
�+ 1 and will be considered again in the next sub-phase. Note that requests for
non-existing data items may be handled in the Decoding Stage. However, these
can be treated as existing items (with the only difference being that one intact
server taking part in the decoding is sufficient to tell that the data item does
not exist).

In the following, we describe the operation of any sub-phase � in more detail.
First of all, each server s that is responsible for a lookup request of a data item
d that belongs to level � chooses 5c/6 among the at least 5c/6 indices of pieces
of d that were active at level � in the Probing Stage. For such a piece di of

d with current timestamp t, s sends a decode(d, i, t) message from s
(logk n)
i (d)

to v := s
(�)
i (d) (which is done by simply routing through the k-ary butterfly

into the direction of hi(d) for � rounds). In order to determine whether BF (v)
can be decoded without congestion, v first checks whether it is congested, i.e., it
received more than βck decode(·) messages for a sufficiently large constant β and,
if not, then issues a decodeCHECK(d, i) message, which is spread to all nodes
in UT (v). During this spreading, whenever a further forwarding of all messages
received by a node u at a level �− κ, 1 ≤ κ < �, could lead to congestion (i.e., u
received more than βck decodeCHECK(d′, i′) messages for distinct (d′, i′) pairs),
u stops the forwarding of all messages and instead spreads a cong(·) message in
BF (u). In addition, it sends a fail(·) message to all neighbors at level �− κ+ 1.
Each node on a level �′, � − κ+ 1 ≤ �′ < �, that receives such a fail(·) message
forwards this message to all neighbors at level �′ + 1 from which it received a
decodeCHECK(·) mesage. By this it is ensured that whenever a node in BF (u)
is congested each node v′ at level � with v′ ∈ BF (u) receives a fail(·) message
after at most 2� rounds. Each node u′ at level � − κ, 1 ≤ κ < �, that received a
cong() message initiates the same spreading of cong() messages in UT (u′). If v
had not been congested before the spreading and v has not received any fail(·)
message after 2� rounds, it knows that any piece of a data item for which v
received a decode(·) message can be decoded if not outdated nodes in BF (v)
forbid this. Thus, it initiates the decoding for each of the pieces, which may fail
due to outdated nodes. If the decoding is possible, it recovers all of these pieces
within O(�) communication rounds with a congestion of at most βck2 per node
(using the distributed decoding described in [7]). These are then forwarded to
the origins of the requests. If, however the decoding fails, or if v was congested or
received a fail(·) message, it sends a fail(·) message to the origins of the decode(·)

RoBuSt: A Crash-Failure-Resistant Distributed Storage System 121

messages it received (which, again, are forwarded up to the initiator of that
decode(·) message). Finally, if a server s that is responsible for a lookup request
of a data item d receives at least c/3 successfully decoded pieces, it determines
d and answers the request. Otherwise, it changes the request to belong to level
�+ 1 such that it will be processed again in the next sub-phase.

It is easy to see that the Decoding Stage satisfies the following property:

Lemma 3. The Decoding Stage takes at most O(log n) communication rounds
per sub-phase with at most O(log3 n) congestion in every node at each round,
w.h.p.

Similarly to Lemma 2 of the Probing Stage, for the Decoding Stage the fol-
lowing lemma holds:

Lemma 4. At the beginning of each sub-phase � ∈ {1, . . . , logk n}, the number
of data items with requests belonging to level � is at most ϕn/k� with ϕ = Θ(k).

A proof of Lemma 4 can be found in the full version [6]. The previous lemmas
and results imply Corollary 3, which proves Theorem 1.

Corollary 3. RoBuSt correctly serves any set of lookup and write requests (with
one request per intact server) in at most O(log4 n) communications rounds, with
a congestion of at most O(log3 n) at every server in each round and a redundancy
of O(log n) even if up to 1/72 · n1/ log logn servers are crashed.

5 Conclusion and Future Work

We presented the first scalable distributed storage system that is provably robust
against batch-based crash failures with up to γn1/ log logn crashes allowed (γ > 0
constant). An interesting question that has not been investigated in this work is
whether the techniques that enabled the Enhanced IRIS system [7] to tolerate a
larger number of failed servers could be adapted for RoBuSt in order to increase
the number of crashed servers allowed up to �n (for some constant � > 0) while
(as a minor drawback) also increasing the redundancy to O(log n), such as it is
the case in Enhanced IRIS.

Moreover, while we assume batch-based failures, it would be interesting to see
whether a scalable distributed storage system can be designed that can tolerate
failures occuring at arbitrary points in time. Dealing with a similar issue, it
would also be interesting to enhance our system to allow dynamics (i.e. joins
and leaves of servers) in our system in order to model P2P networks.

A further interesting challenge is to enhance our distributed storage system
such that additional types of attacks can be handled, for example Byzantine
attacks.

References

1. Awerbuch, B., Scheideler, C.: A Denial-of-Service Resistant DHT. In: Pelc, A. (ed.)
DISC 2007. LNCS, vol. 4731, pp. 33–47. Springer, Heidelberg (2007)

122 M. Eikel, C. Scheideler, and A. Setzer

2. Baumgart, M., Scheideler, C., Schmid, S.: A dos-resilient information system for
dynamic data management. In: Proc. SPAA, pp. 300–309 (2009)

3. Bhargava, A., Kothapalli, K., Riley, C., Scheideler, C., Thober, M.: Pagoda: A
Dynamic Overlay Network for Routing, Data Management, and Multicasting. In:
Proc. of SPAA, pp. 170–179 (2004)

4. Cristian, F.: Understanding fault-tolerant distributed systems. Commun.
ACM 34(2), 56–78 (1991)

5. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

6. Eikel, M., Scheideler, C., Setzer, A.: RoBuSt: A Crash-Failure-Resistant Dis-
tributed Storage System (full version). ArXiv e-prints (September 2014)

7. Eikel, M., Scheideler, C.: IRIS: A Robust Information System Against Insider DoS-
Attacks. In: Proceedings of the 25th ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA 2013, pp. 119–129. ACM (2013)

8. Gupta, I., Chandra, T.D., Goldszmidt, G.S.: On scalable and efficient distributed
failure detectors. In: Proceedings of the Twentieth Annual ACM Symposium on
Principles of Distributed Computing, PODC 2001, pp. 170–179. ACM, New York
(2001)

9. Harvey, N.J.A., Jones, M.B., Saroiu, S., Theimer, M., Wolman, A.: SkipNet: A
Scalable Overlay Network with Practical Locality Properties. In: Proc. of USITS,
p. 9 (2003)

10. Kargl, F., Maier, J., Weber, M.: Protecting Web Servers from Distributed Denial
of Service Attacks. In: Proc. of WWW, pp. 514–524 (2001)

11. Keromytis, A.D., Misra, V., Rubenstein, D.: SOS: Secure Overlay Services. In:
Proc. of SIGCOMM, pp. 61–72 (2002)

12. Leners, J.B., Wu, H., Hung, W.-L., Aguilera, M.K., Walfish, M.: Detecting failures
in distributed systems with the falcon spy network. In: Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles, SOSP 2011, pp. 279–
294. ACM, New York (2011)

13. Morein, W.G., Stavrou, A., Cook, D.L., Keromytis, A.D., Misra, V., Rubenstein,
D.: Using Graphic Turing Tests to Counter Automated DDoS Attacks Against
Web Servers. In: Proc. of CCS, pp. 8–19 (2003)

14. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A Scalable Content-
Addressable Network. In: Proc. of SIGCOMM, pp. 161–172 (2001)

15. Sistla, A.P., Welch, J.L.: Efficient distributed recovery using message logging. In:
Proceedings of the Eighth Annual ACM Symposium on Principles of Distributed
Computing, PODC 1989, pp. 223–238. ACM, New York (1989)

16. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D., Kaashoek, M.F., Dabek, F.,
Kalakrishnan, H.: Chord: A Scalable Peer-to-Peer Lookup Service for Internet Ap-
plications, Technical Report MIT (2002)

Checkpointing in Parallel

State-Machine Replication

Odorico M. Mendizabal1,2, Parisa Jalili Marandi3,
Fernando Lúıs Dotti1, and Fernando Pedone3

1 Pontif́ıcia Universidade Católica do Rio Grande do Sul – PUCRS
Porto Alegre, Brazil

odoricomendizabal@furg.br, fernando.dotti@pucrs.br
2 Universidade Federal do Rio Grande – FURG

Rio Grande, Brazil
3 University of Lugano – USI

Lugano, Switzerland
{fernando.pedone,parisa.jalili.marandi}@usi.ch

Abstract. State-machine replication is a popular approach to building
fault-tolerant systems, which relies on the sequential execution of com-
mands to guarantee strong consistency. Sequential execution, however,
threatens performance. Recently, several proposals have suggested par-
allelizing the execution model of the replicas to enhance state-machine
replication’s performance. Despite their success in accomplishing high
performance, the implications of these models on checkpointing and re-
covery is mostly left unaddressed. In this paper, we focus on the check-
pointing problem in the context of Parallel State-Machine Replication.
We propose two novel algorithms and assess them through simulation
and a real implementation.

Keywords: State-machine replication, checkpointing, fault tolerance.

1 Introduction

State-machine replication (SMR) is a well-established approach to implement-
ing fault-tolerant services. Replicas in state-machine replication start in the same
initial state and execute an identical and ordered set of client commands sequen-
tially and deterministically [10,16]. Therefore, all the replicas traverse the same
sequence of internal states and produce the same outputs. Consensus is often
used to ensure that commands are totally ordered across replicas [11].

Sequential execution of commands can be a performance bottleneck and a
waste of resources, in particular when replicas have access to multicore proces-
sors. To overcome this limitation, techniques that allow concurrent execution of
commands in state-machine replication have been proposed [8,9,12,13]. These
techniques are based on the observation that some commands are independent,
that is, they access disjoint portions of the replica’s state or do not modify
shared parts of the state. Therefore, independent commands can be executed

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 123–138, 2014.
c© Springer International Publishing Switzerland 2014

124 O.M. Mendizabal et al.

concurrently without compromising the service’s consistency. Dependent com-
mands, however, those that modify shared parts of the state, must be executed
sequentially, in the same order across replicas.

This paper focuses on checkpointing in Parallel State-Machine Replication
(P-SMR) [12], a scalable multithreaded replication model, whose scalability
stems from the absence of a centralized component in the execution path of in-
dependent commands (e.g., no local scheduler [9]). In P-SMR, replicas alternate
between the execution of concurrent commands (i.e., those mutually indepen-
dent) and the execution of sequential commands. Recovering a failed replica in
classic SMR requires retrieving the commands the replica executed but “forgot”
due to the failure and the commands the replica missed while it was down. To
speed up recovery, replicas can periodically checkpoint their state against stable
storage so that upon recovering, a replica can start with a state not too far
behind the other replicas, after reading its local checkpoint from stable storage
or retrieving a checkpoint from a remote operational replica. Performing check-
points efficiently in P-SMR is more challenging than in classic SMR because the
checkpoint operation must account for the execution of concurrent commands.

We propose two checkpoint techniques for P-SMR: coordinated and uncoor-
dinated. The coordinated algorithm executes checkpoints when replicas are in
sequential mode. The uncoordinated algorithm is more complex but can check-
point a replica’s state during both sequential and concurrent execution modes.
The fundamental differences between the two approaches are three-fold: (a) With
the coordinated mechanism, any two replicas save the same sequence of check-
points throughout the execution; with uncoordinated checkpoints, replicas may
save different states. Saving the same sequence of checkpoints has performance
implications during recovery, as we explain in the paper. (b) Since an uncoor-
dinated checkpoint can be started while a replica is executing commands con-
currently, faster threads will be idle for shorter periods when waiting for slow
threads in the uncoordinated technique than in the coordinated approach. (c) Co-
ordinated checkpoints incur system-wide synchronization, while uncoordinated
checkpoints are local to a replica. We discuss in the paper the implications of
each technique using simulation models and an in-memory database service.

This paper makes the following contributions: (a) it discusses recovery of
failed replicas in the context of parallel state-machine replication, a topic that
has received little attention until now; (b) it proposes two checkpoint techniques
for P-SMR, coordinated and uncoordinated, and compares their pros and cons;
and (c) it assesses the performance of the two techniques using simulation models
and an in-memory database service.

The remainder of this paper is organized as follows. In Section 2, we present
the system model and assumptions. In Section 3, we recall parallel state-machine
replication and provide a consensus-based algorithm that implements P-SMR. In
Section 4, we discuss recovery in classic state-machine replication and introduce
two checkpoint algorithms for P-SMR. We assess the performance of our pro-
posed algorithms in Section 5 and relate them to the state of the art in Section 6.
We conclude the paper in Section 7.

Checkpointing in Parallel State-Machine Replication 125

2 System Model and Assumptions

We assume a distributed system composed of interconnected processes. There
is an unbounded set C = {c1, c2, . . .} of client processes and a bounded set
R = {r1, r2, . . .} of replica processes. We do not make any assumptions about
the relative speed of processes or message delays, i.e., the system is asynchronous.

We assume the crash-recovery model and exclude malicious or arbitrary be-
havior. A process can be either up or down, and it switches between these two
modes when it fails (i.e., from up to down) and when it recovers (i.e., from down
to up). Replicas are equipped with volatile memory and stable storage. Upon a
crash, a replica loses the content of its volatile memory, but the content of its
stable storage survives crashes.

Processes communicate by message passing, using either one-to-one or one-to-
many communication. One-to-one communication is performed through primi-
tives send(m) and receive(m), where m is a message. If m’s sender transmits m
“enough times” and m’s destination does not fail, then m is eventually received.
One-to-many communication relies on the consensus abstraction, defined next.

The consensus problem can be described in terms of processes that propose
values and processes that must agree upon a decided value. Consensus is de-
fined by the primitives propose(v) and decide(v), where v is an arbitrary value.
A consensus protocol ensures the following safety requirements: (i) any value
decided must have been proposed; (ii) a process can decide at most one value;
and (iii) two different processes cannot decide different values. Solving consensus
requires additional assumptions about the system model [6]. In this paper, we
simply assume consensus can be solved without explicitly extending the model
with these assumptions (e.g., [3,4]).

State-machine replication can be implemented with a sequence of consensus
rounds, where the i-th consensus round decides on the i-th command to be
executed by the replicas. We identify the decision of the i-th consensus round as
decide(i,v). In order to simplify our algorithms, we modify the propose primitive
above such that a value proposed by a non-faulty process is eventually decided
in some consensus round.

Our consistency criterion is linearizability : a system is linearizable if there is a
way to reorder the client commands in a sequence that (i) respects the semantics
of the commands, as defined in their sequential specifications, and (ii) respects
the real-time ordering of commands across all clients [1].

3 Parallel State-Machine Replication

In contrast to classic state-machine replication (SMR), where the execution of
commands is sequential, in parallel state-machine replication (P-SMR) indepen-
dent commands can be executed concurrently. To understand the interdepen-
dencies between commands, assume commands Ci and Cj , where Wi and Wj

indicate the commands’ writeset and Ri and Rj indicate their readset. Accord-
ing to [9], Ci and Cj are dependent if any of the following conditions hold:

126 O.M. Mendizabal et al.

(i) Wi ∩Wj �= ∅, (ii) Wi ∩ Rj �= ∅, or (iii) Ri ∩Wj �= ∅. In other words, if the
writeset of a command intersects with the readset or the writeset of another
command, the two commands are dependent. Two commands are independent
if they are not dependent.

P-SMR parallelizes the agreement and the execution of commands. Instead
of using a single sequence of consensus rounds to order commands as in SMR,
P-SMR uses multiple sequences of consensus. More precisely, if there are n+ 1
threads at each replica, t0, ..., tn, P-SMR requires n + 1 consensus sequences,
γ0, ..., γn, where thread t0 (at each replica) participates in consensus sequence
γ0 only, and thread ti, 0 < i ≤ n, participates in consensus sequences γ0 and γi.
To ensure that ti handles commands in the same order across replicas, despite
participating in two consensus sequences, ti orders messages from its two con-
sensus sequences using a deterministic merge procedure (e.g., handling decisions
for the sequences in round-robin fashion). To ensure progress, every consensus
sequence must have a never-ending stream of consensus rounds, which can be
achieved by having one or more processes proposing nil values if no value is pro-
posed in a consensus sequence after some time [14]. Obviously, replicas discard
nil values decided in a consensus round.

P-SMR ensures two important invariants. First, commands decided in con-
sensus sequence γ0 are serialized with any other commands at a replica and
executed by thread t0 in the same order across replicas (sequential execution
mode). Second, commands decided in the same round in consensus sequences
γ1, ..., γn are executed by threads t1, ..., tn concurrently at a replica (concurrent
execution mode).

Clients propose a command by choosing the consensus sequence that guaran-
tees ordered execution of dependent commands while maximizing parallelism of
independent commands. The mapping of commands onto consensus sequences
is application dependent. In the following, we illustrate two such mappings.

– (Concurrent reads and sequential writes.) Commands that read the replica’s
state are proposed in any arbitrary consensus sequence γi, 0 < i ≤ n; com-
mands that modify the replica’s state are proposed in sequence γ0.

– (Concurrent reads and writes.) Divide the service’s state into disjoint parti-
tions P1, ..., Pn so that commands that access partition Pi only are proposed
in γi and commands that access multiple partitions are proposed in γ0.

Clients must be aware of the mapping of commands onto consensus sequences
and must be able to identify commands that read the service’s state only or
modify the state, in the first case above, or to identify commands that access a
single partition (and which partition) or multiple partitions, in the second case.

Algorithm 1 presents P-SMR in detail. For each thread ti, round[i] (line 3) in-
dicates the number of the next consensus round to be handled (or being handled)
by ti, for all consensus sequences involving ti. Threads use semaphores S[0..n]
(line 4) to alternate between sequential and concurrent modes and, as shown
in the next section, to create a checkpoint. Variable next[i] (line 5) determines
whether ti is in sequential or concurrent mode.

Checkpointing in Parallel State-Machine Replication 127

Thread t0 tracks decisions in consensus sequence γ0 only (line 8). The “de-
cided [γ0](r, 〈−〉) and r = round[0]” condition holds when there is a decision in
consensus sequence γ0 that matches round[0]. If the value decided in round[0] is
a command (line 9), t0 waits for every other thread ti (line 10) and then handles
the request (line 11). After the command is executed, t0 signals the other threads
to continue their execution (line 12). Whatever value is decided in the round,
round[0] is incremented (line 13). Note that a nil decision in consensus sequence
γ0 does not cause threads to synchronize.

Algorithm 1: P-SMR

1: Initialization:
2: for i : 0..n do {for each thread ti:}
3: round[i] ← 1 {all threads start in the same round}
4: S[i] ← 0 {semaphore used to implement barriers}
5: next[i] ← sq {start in sequential mode}
6: start threads t0, ..., tn

7: Thread t0 at a replica executes as follows:
8: upon decided [γ0](r, 〈cid, cmd〉) and r = round[0]
9: if cmd �= nil then {if cmd is a real command...}
10: for i : 1..n do wait(S[0]) {barrier: wait for threads t1, .., tn}
11: execute cmd and reply to cid {execute command and reply to client}
12: for i : 1..n do signal(S[i]) {let threads t1, .., tn continue}
13: round[0] ← round[0] + 1 {pass to the next round}

14: Thread ti in t1, ..., tn at a replica executes as follows:
15: upon decided [γ0](r, 〈cid, cmd〉) and r = round[i] and next[i] = sq

16: if cmd �= nil then {if decided on a real command...}
17: signal(S[0]) {barrier: signal semaphore S[0] (see line 10)}
18: wait(S[i]) {...and wait to continue (see line 12)}
19: next[i] ← cc {set execution mode as concurrent}

20: upon decided [γi](r, 〈cid, cmd〉) and r = round[i] and next[i] = cc

21: if cmd �= nil then {if decided on a command...}
22: execute cmd and reply to cid {execute command and reply to client}
23: next[i] ← sq {set execution mode as sequential}
24: round[i] ← round[i] + 1 {pass to the next round}

Each thread ti, 0 < i ≤ n, alternates between executing in sequential and
concurrent modes (lines 15 and 20). If ti decides a value in consensus sequence
γ0 for its current round and the current execution mode is sequential (line 15),
ti checks whether the command is not nil (line 16) and in such a case ti signals
thread t0 (line 17) and waits for t0 to continue (line 18). Thread ti then sets
next[i] to cc (line 19), meaning that it is in concurrent mode now. When ti
decides a value in consensus sequence γi for round round[i] and next[i] = cc

(line 20), ti executes the command if it is not nil (lines 21–22), sets the execution
mode as sequential (line 23), and passes to the next round (line 24).

128 O.M. Mendizabal et al.

4 Checkpointing in P-SMR

Recovery in classic SMR is conceptually simple: Replicas log commands before
executing them (e.g., as part of consensus) and periodically (e.g., after k com-
mands) save the application state or the changes made since the last recorded
checkpoint in stable storage. When a replica recovers from a failure, it retrieves a
checkpoint from its local storage or from a remote replica and resumes operation
after installing this checkpoint. The recovering replica also needs to recover the
value decided in consensus rounds not included in the installed checkpoint.

Checkpoints speed up recovery and save storage space. Checkpoints shorten
recovery time since a recovering replica does not need to start with an empty
state and (re-)execute every decided command to catch up with the other repli-
cas. Checkpoints save storage space since commands decided in “old” consensus
rounds can be garbage collected. A sufficient condition to remove data related
to the i-th consensus round is that all replicas have recorded a checkpoint con-
taining the effects of the command decided in the i-th round.

We propose next two novel checkpointing algorithms for P-SMR. In the first
algorithm, coordinated checkpointing, replicas must converge to a common state
before taking a checkpoint; in the second algorithm, uncoordinated checkpoint-
ing, replicas take checkpoints independently and may not be in an identical state
when the checkpoint takes place. We conclude the section with a comparison be-
tween the two algorithms.

4.1 Coordinated Checkpointing

The idea behind our coordinated checkpointing algorithm is to force replicas to
undergo the same sequence of checkpointed states. To this end, we define a check-
point command CHK that depends on all other commands. Therefore, CHK is
executed in sequential mode in P-SMR and ordered by consensus sequence γ0.
Since replicas implement a deterministic strategy to merge consensus sequences,
command CHK is guaranteed to be executed after each replica reaches a certain
common state.

Algorithm 2 presents the coordinated checkpoint algorithm in detail. When a
replica recovers from a failure (line 1), it first retrieves the latest checkpoint
stored at the replica or requests one from a remote replica (line 2). Tuple
〈last rnd[0]〉 identifies the retrieved checkpoint. (Every replica stores an ini-
tialization checkpoint, empty and identified by 〈1〉.) The replica then initializes
variables S, round and next (lines 3–10) and starts all threads (line 11).

Thread t0’s only difference with respect to Algorithm 1 is that it must check
whether a decided command is a checkpoint request (line 16), in which case
t0 stores the replica’s state on stable storage and identifies the checkpoint as
〈round[0]〉 (line 17). Threads t1, ..., tn execute the same pseudocode in Algo-
rithms 1 and 2.

Checkpointing in Parallel State-Machine Replication 129

Algorithm 2: Coordinated checkpoint

1: upon starting or recovering from a failure
2: retrieve latest/remote checkpoint, which has id 〈last rnd[0]〉
3: for i : 0..n do {for each thread ti...}
4: S[i] ← 0 {semaphore used to implement barriers}
5: if i = 0 then {thread t0...}
6: round[i] ← last rnd[0] + 1 {goes to the next round in...}
7: next[i] ← sq {...sequential mode}
8: else {threads t1, ..., tn...}
9: round[i] ← last rnd[0] {stay in this round in...}
10: next[i] ← cc {...concurrent mode}
11: start threads t0, ..., tn

12: Thread t0 at a replica executes as follows:
13: upon decided [γ0](r, 〈cid, cmd〉) and r = round[0]
14: if cmd �= nil then {if cmd is a command/checkpoint request...}
15: for i : 1..n do wait(S[0]) {barrier: wait n times on semaphore}
16: if cmd = CHK then {if cmd is a checkpoint request...}
17: store checkpoint with id 〈round[0]〉 {take checkpoint}
18: else {else...}
19: execute cmd and reply to cid {execute command and reply to client}
20: for i : 1..n do signal(S[i]) {let each thread ti continue}
21: round[0] ← round[0] + 1 {one more handled decision}

22: each Δ time units do {ideally done by a single replica only:}
23: propose[γ0](〈t0, CHK 〉) {request a system-wide checkpoint}

24: Thread ti in t1, ..., tn at a replica executes as follows:
25: upon decided [γ0](r, 〈cid, cmd〉) and r = round[i] and next[i] = sq

26: if cmd �= nil then {if cmd is a command/checkpoint request...}
27: signal(S[0]) {implement barrier (see line 15)}
28: wait(S[i]) {...and wait to continue (see line 20)}
29: next[i] ← cc {set execution mode as concurrent}

30: upon decided [γi](r, 〈cid, cmd〉) and r = round[i] and next[i] = cc

31: if cmd �= nil then {if cmd is an actual command...}
32: execute cmd and reply to cid {execute command and reply to client}
33: next[i] ← sq {set execution mode as sequential}
34: round[i] ← round[i] + 1 {one more handled decision}

4.2 Uncoordinated Checkpointing

We now present an alternative algorithm that does not coordinate checkpoints
across replicas: each replica decides locally when checkpoints will happen. Un-
like the coordinated checkpointing algorithm, where all replicas record identical
checkpoints, with the uncoordinated algorithm the checkpoints vary across the
replicas.

The main difficulty with uncoordinated checkpoints is that a checkpoint re-
quest may be received any time during a thread’s execution. Thus, one thread

130 O.M. Mendizabal et al.

may receive a checkpoint request when in sequential execution mode while an-
other thread receives the same request when in concurrent execution mode. Es-
sentially, this happens because we do not order checkpoint requests with con-
sensus decisions, as in the coordinated version of the algorithm.

In brief, our algorithm works as follows. First, thread t0 requests a check-
point by sending a local message to the other threads. Second, the handling of
a checkpoint request at a replica does not change the sequence of commands
executed by threads ti, 0 < i ≤ n, which still alternate between sequential and
concurrent execution modes in each round. To guarantee this property, when t0
requests a checkpoint it tracks the signal it receives from ti: If ti signals t0 upon
receiving the checkpoint request, then after the checkpoint, t0 releases ti so that
ti can proceed with the next command. If ti signals t0 because it started the
sequential execution mode, after the checkpoint t0 keeps ti waiting until t0 also
goes through the sequential execution of commands. In this case, when ti later
receives the checkpoint request, it simply discards it.

Algorithm 3 presents the uncoordinated checkpointing algorithm in detail.
When a replica recovers from a failure, it retrieves the last saved checkpoint
from its local storage or from a remote replica (line 2). This checkpoint identi-
fies the round and the execution mode the thread must be in, after the checkpoint
is installed (lines 4–5). (A replica is initialized with an empty checkpoint, iden-
tified as 〈2, sq[, 1,cc]×n〉.) Variable last sync[i] contains the last round when ti
started in sequential mode and signaled t0 (line 8); waiting[i] tells whether upon
executing a command t0 must wait for ti (line 9).

The execution of a sequential command by t0 is similar in both the coordi-
nated and uncoordinated algorithms, with the exception that t0 only waits for
ti if it is not already in waiting mode (line 14); this happens if ti signals t0
because it started sequential execution mode but t0 started a checkpoint. After
the execution of the sequential command, all threads are released (lines 17–18).
To execute a checkpoint, t0 sends a message to all threads and waits for them
(lines 21–23). If ti signaled t0 because it entered sequential mode in t0’s current
round or some round ahead (line 26), which happens if the value decided in
t0’s current round is nil, t0 keeps track that ti is waiting (line 27); otherwise t0
signals ti to continue (line 29).

The execution of commands for threads t1, ..., tn is similar in both checkpoint
algorithms, with the exception that before signaling the start of sequential execu-
tion mode, ti sets last sync[i] with its round number (line 33). Upon receiving a
checkpoint request 〈r,CHK 〉 that satisfies condition last sync[i] < r ≤ round[i]
(line 42), ti signals t0 and waits for t0’s signal (lines 43–44). If last sync[i] ≥ r,
then it means that ti has already signaled t0 when entering sequential execution
mode; thus, it does not do it again. If r > round[i], then the checkpoint request
is for a round ahead of ti’s current round. This request will be considered when
ti reaches round r.

Checkpointing in Parallel State-Machine Replication 131

Algorithm 3: Uncoordinated checkpoint

1: upon recovering from a failure
2: retrieve checkpoint, which has id 〈rnd[0], nxt[0], ..., rnd[n], nxt[n]〉
3: for i : 0..n do {for each thread ti, 0 ≤ i ≤ n:}
4: round[i] ← rnd[i] {ti’s round and...}
5: next[i] ← nxt[i] {... execution mode when checkpoint taken}
6: S[i] ← 0 {semaphore used to implement barriers}
7: for i : 1..n do {for each thread ti, 1 ≤ i ≤ n:}
8: last sync[i] ← 0 {last round ti entered sequential mode}
9: waiting[i] ← false {initially ti isn’t waiting}
10: start threads t0, ..., tn

11: Thread t0 at a replica executes as follows:
12: upon decided [γ0](r, 〈cid, cmd〉) and r = round[0]
13: if cmd �= nil then {if decided on a command...}
14: for i : 1..n do if ¬waiting[i] then wait(S[0]) {wait for each active ti}
15: execute cmd and reply cid {execute command and reply to client}
16: for i : 1..n do
17: waiting[i] ← false {after sequential mode no thread waits}
18: signal(S[i]) {ditto!}
19: round[0] ← round[0] + 1 {t0 passes to the next round}

20: each Δ time units do {t0 periodically triggers a local checkpoint}
21: for i : 1..n do
22: send 〈round[0],CHK 〉 to ti {send checkpoint request to ti}
23: if ¬waiting[i] then wait(S[0]) {wait for each active thread ti}
24: store checkpoint with id 〈round[0], next[0], round[1], ...〉 {take checkpoint}
25: for i : 1..n do {for each ti}
26: if last sync[i] ≥ round[0] then {if ti entered sequential mode...}
27: waiting[i] ← true {keep ti waiting until t0 catches up}
28: else {else...}
29: signal(S[i]) {let ti proceed}

30: Thread ti in t1, ..., tn at a server executes as follows:
31: upon decided [γ0](r, 〈cid, cmd〉) and r = round[i] and next[i] = sq

32: if cmd �= nil then {if decided on a real command...}
33: last sync[i] ← round[i] {take note that entered sequential mode}
34: signal(S[0]) {implement barrier}
35: wait(S[i]) {...and wait to continue}
36: next[i] ← cc {set execution mode as concurrent}

37: upon decided [γi](r, 〈cid, cmd〉) and r = round[i] and next[i] = cc

38: if cmd �= nil then {if cmd is an actual command...}
39: execute cmd and reply to cid {execute command and reply to client}
40: next[i] ← sq {set execution mode as sequential}
41: round[i] ← round[i] + 1 {pass to the next round}

42: upon receive 〈r,CHK 〉 from t0 and last sync[i] < r ≤ round[i]
43: signal(S[0]) {checkpoints are done in mutual exclusion}
44: wait(S[i]) {ditto!}

132 O.M. Mendizabal et al.

4.3 Coordinated versus Uncoordinated Checkpointing

With coordinated checkpoints, a checkpoint only happens after each thread re-
ceives a CHK request and finishes executing all the commands decided before
the request. With uncoordinated checkpoints, a checkpoint is triggered within a
replica and is not ordered with commands. These mechanisms have important
differences, as we discuss next.

First, with coordinated checkpoints every replica saves the same state upon
taking the k-th checkpoint. Saving the same state across replicas is important
for collaborative state transfer [2], a technique that improves performance by
involving multiple operational replicas in the transferring of a saved checkpoint
to the recovering replica, each replica sending part of the checkpointed state.
Collaborative state transfer is not possible with uncoordinated checkpoints.

Second, coordinated checkpoints take place when replicas are in sequential
execution mode; hence, no checkpoint contains a subset of commands executed
concurrently. Uncoordinated checkpoints, however, can save states of a replica
during concurrent execution mode. The implication on performance is that
threads that execute commands more quickly when in concurrent mode do not
have to wait for slower threads to catch up so that a checkpoint can be taken.

Third, the interval between the time when a checkpoint is triggered at a
replica and the time when it takes place in the replica in the uncoordinated
technique is lower than in the coordinated technique. In addition to requiring a
consensus execution, which introduces some latency, a checkpoint request in the
coordinated technique can only be handled after previously decided commands
are executed at the replicas.

5 Performance Analysis

In this section, we assess the impact of the proposed approaches on the system
performance by means of a simulation model and a prototype. Our simulations
focus mostly on the cost of synchronization due to checkpointing. Aspects inher-
ent to recovery (e.g., state transferring) are highly dependent on the application
and sensitive to the data structures used by the service, the workload, and the
size of checkpoints. We consider such aspects with our prototype, which im-
plements an in-memory database with operations to read and write database
entries. In our experiments, we generate sustained workloads with independent
commands only. With this strategy we maximize the use of threads to execute
commands, removing the possibility of thread idleness due to the synchronization
needed by dependent commands.

5.1 Simulations

We implemented a discrete-event simulation model in C++ and configured each
experiment to run until the 98% confidence interval of the command response
time was a small fraction of the average value. We evaluated replicas without

Checkpointing in Parallel State-Machine Replication 133

checkpointing enabled and with the two proposed checkpoint algorithms, and
considered different classes of workload in terms of requests execution time:
(i) fixed-duration commands (i.e., all commands take the same time to execute),
(ii) uniformly distributed command duration, and (iii) exponentially distributed
command duration. In the last case, a majority of commands have low execution
times, while a small number of commands take long to execute.

We start by evaluating the scalability of both techniques. Figure 1 shows the
maximum throughput achieved by a replica according to the number of threads,
where each thread is associated with a processing unit (i.e., core). In these exper-
iments, we used workloads (i), (ii), and (iii), described above, with average com-
mand execution time of 0.5 units. Checkpoints are taken every 200 time units,
and the checkpoint duration is 0. By not considering the time taken to create
a checkpoint, the results reveal the overhead caused exclusively by checkpoint
synchronization. The throughput of P-SMR without checkpoints scales propor-
tionally to the number of threads. The overhead of uncoordinated checkpointing
is lower than the overhead of the coordinated technique and the difference be-
tween the two increases with the number of threads.

Fig. 1. Throughput of a replica with the number of threads for different commands
execution duration workloads and the ratio of the two techniques with the number of
threads

134 O.M. Mendizabal et al.

The bottom right graph of Figure 1 depicts the throughput ratio between
the uncoordinated and the coordinated techniques under different workloads,
as we increase the number of threads. Two facts stand out: First, uncoordi-
nated checkpointing outperforms coordinated checkpointing in all scenarios and
the difference increases with the number of threads. Second, the difference be-
tween the two techniques is more important when there is more variation in the
command execution time. This happens because “faster threads” (i.e., those ex-
ecuting shorter commands) wait longer for “slow threads” during a checkpoint
in the coordinated technique than in the uncoordinated approach.

Next, we evaluate the impact caused by the checkpoint frequency. Figure 2
shows the throughput and latency of replicas with 16 threads. In this experiment,
the command duration follows the exponential distribution. The checkpointing
interval varies from 12 to 1600 time units and the checkpointing duration is 0.
The workload generated for this experiment reaches a throughput equivalent to
75% of the maximum. Although the uncoordinated checkpointing algorithm out-
performs the coordinated algorithm in all configurations, the difference between
the two decreases as checkpoints become more infrequent.

Fig. 2. Throughput and latency of a replica executing commands with an exponentially
distributed execution time (average of 0.5 time units)

Figure 3 depicts the throughput and latency results for scenarios in which
checkpoints take 5 time units to execute. The overhead introduced by a check-
point has the effect of decreasing the throughput and increasing the average
response time of commands. However, the checkpoint overhead did not change
the trend seen in the previous experiments: uncoordinated checkpointing con-
sistently performs better than coordinated checkpointing, and the difference be-
tween the two reduces as checkpoints are taken less often.

5.2 Implementation

We implemented consensus using Multi-Ring Paxos [14], where each consensus
sequence is mapped to one Paxos instance. To achieve high performance, each

Checkpointing in Parallel State-Machine Replication 135

Fig. 3. Throughput and latency of a replica executing commands with an exponentially
distributed execution time (average of 0.5 time units) and checkpoint duration of 5 time
units

thread ti decides several times on consensus sequence γi before deciding on
sequence γ0. Moreover, multiple commands proposed to a consensus sequence are
batched by the group’s coordinator (i.e., the coordinator in the corresponding
Paxos instance) and order is established on batches of commands. Each batch
has a maximum size of 8 Kbytes. The system was configured so that each Paxos
instance uses 3 acceptors and can tolerate the failure of one acceptor.

The service is a simple in-memory database, implemented as a hash table, with
operations to create, read, write, and remove entries. Each entry has an 8-byte
key and an 8-byte value. A checkpoint duplicates the hash table in memory (using
copy-on-write) and writes the duplicated structure to disk, either synchronously
or asynchronously. We ran our experiment on a cluster with Dell PowerEdge
R815 nodes equipped with four octa-core AMD Opteron processors and 128 GB
of main memory (replicas), and Dell SC1435 nodes equipped with two dual-core
AMD Opteron processors and 4 GB of main memory (Paxos’s acceptors and
clients). Each node is equipped with one 1Gb network interface. The nodes ran
CentOS Linux 6.2 64-bit with kernel 2.6.32.

Figure 4 shows the throughput and the corresponding 90% percentile of the
response time of both techniques. Checkpoints are taken once every 5 seconds
and each one takes approximately 3.2 seconds to complete. When a checkpoint
happens the database has approximately 10 million entries. The results show that
uncoordinated checkpointing has a slight advantage over coordinated checkpoint
in some of the configurations. Given the high rate of commands executed per sec-
ond and the frequency of checkpoints, these results corroborate those presented
in the previous section.

6 Related Work

In this section, we briefly review other models for parallel state-machine replica-
tion and compare their checkpointing mechanisms. A comprehensive survey of

136 O.M. Mendizabal et al.

Fig. 4. Throughput and response time of coordinated and uncoordinated checkpointing
with asynchronous and synchronous disk writes

checkpointing and recovery techniques for message-passing environments can be
found in [5].

In [9], a parallelizer on each replica delivers commands in total order across
replicas and distributes them among a set of threads for parallel execution. The
parallelizer serializes the execution of dependent requests and ensures that their
execution order follows the order decided by the agreement layer. This work also
proposes a synchronization primitive executed on the replicas, but invoked by
the agreement layer, to select a sequence number for checkpoints. Each replica
blocks the execution of all the requests delivered after this sequence number
until the checkpoint is completed. Since the selected sequence numbers may
vary across the replicas, the recorded checkpoints are not identical across the
replicas, similarly to our uncoordinated algorithm.

Eve [8] is a parallel replication model in which replicas first execute commands
and then verify the equality of their states through a verification stage. Eve dis-
tinguishes one of the replicas as the primary to which clients send their requests.
The primary groups commands into batches, assigns to each batch a unique
sequence number, and transmits the batched commands to the other replicas.
All the replicas, including the primary, are equipped with a deterministic mixer
that converts a batch of requests into a set of parallel batches such that all the
requests in a parallel batch can be executed in parallel. Once the execution of
a batch terminates, replicas calculate a token based on their current state and
send it to the verification stage. The verification stage checks the equality of
the tokens. If the tokens are equal, replicas commit the executed batch, update
their most recent stable sequence number, and respond to the clients. Otherwise,
replicas must roll back the execution and re-execute the commands in the order
determined by the primary. In Eve, checkpointing happens after the execution
of each batch of commands and thus is more frequent than in traditional state-
machine replication approach. Similar to a diverging replica, a recovering replica
can request state changes from other replicas to build a consistent state.

Checkpointing in Parallel State-Machine Replication 137

In [7], the authors present Rex, a replication approach that benefits from
multicore architectures. In Rex, one of the replicas, the primary, serves incoming
client requests concurrently. There is no ordering requirements on delivering and
executing client requests. The relative order among conflicting requests is given
by synchronization primitives that coordinate access to shared data. The primary
records causal dependencies among synchronization events during the execution
and periodically proposes up-to-date traces to the secondary replicas, which
reach a consensus on a sequence of traces to be executed. Secondary replicas
faithfully follow the traces to replay the primary’s execution. Checkpoints are
used by Rex to allow a replica to recover from failures, to implement rollback
on a downgrading replica (i.e., a leader replica that switches to a secondary
role), and to facilitate garbage collection [7]. When a checkpoint is created, the
primary pauses all threads before taking on any new requests and marks this
particular point in the trace. A secondary receiving such a trace waits until the
replay of the marked checkpoint and creates a snapshot. Once the checkpoint is
created, the secondary replica resumes its execution and copies the checkpoint
to other replicas in background. Since the checkpoint mark proposed by the
primary establishes a consistent cut among replicas, the checkpoint generated is
identical to each replica, similarly to our coordinated algorithm.

Another parallel replication technique is proposed in [15], where consensus
is implemented to benefit from the multicore processors. Since the execution of
commands is not parallelized on the replicas and follows the order decided by
consensus, recovery can be implemented as in classic state-machine replication.

7 Conclusion

In this paper, we proposed two novel algorithms to address checkpointing in par-
allel state-machine replication [12]. The difference between our algorithms lies in
the way checkpoint requests are synchronized with service commands. In coor-
dinated checkpointing, checkpoints happen either before or after the execution
of a batch of concurrent commands decided in a round. In uncoordinated check-
pointing, a checkpoint can contain states of a replica in between two serialized
commands. These two techniques have implications on performance, which in-
crease in importance as the number of threads augments and checkpoints become
more frequent.

Acknowledgments. We would like to thank the anonymous reviewers for their
suggestions to improve the paper. This work was supported in part by CAPES
PVE - Special Visiting Researcher - Grant No. 88881.062190/2014-01.

References

1. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and
Advanced Topics. Wiley-Interscience (2004)

138 O.M. Mendizabal et al.

2. Bessani, A., Santos, M., Felix, J., Neves, N., Correia, M.: On the efficiency of
durable state machine replication. In: ATC (2001)

3. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43(2), 225–267 (1996)

4. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. Journal of the ACM (JACM) 35(2), 288–323 (1988)

5. Elnozahy, E.N.M., Alvisi, L., Wang, Y.M., Johnson, D.B.: A survey of rollback-
recovery protocols in message-passing systems. ACM Comput. Surv. 34(3), 375–408
(2002), http://doi.acm.org/10.1145/568522.568525

6. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM (JACM) 32(2), 374–382 (1985)

7. Guo, Z., Hong, C., Yang, M., Zhou, D., Zhou, L., Zhuang, L.: Rex: Replication
at the speed of multi-core. In: Proceedings of the Ninth European Conference on
Computer Systems, p. 11. ACM (2014)

8. Kapritsos, M., Wang, Y., Quema, V., Clement, A., Alvisi, L., Dahlin, M.: All
about eve: execute-verify replication for multi-core servers. In: OSDI, pp. 237–250.
USENIX Association (2012)

9. Kotla, R., Dahlin, M.: High throughput byzantine fault tolerance. In: DSN (2004)
10. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM 21(7), 558–565 (1978)
11. Lamport, L.: The part-time parliament. ACM Transactions on Computer Systems

(TOCS) 16(2), 133–169 (1998)
12. Marandi, P.J., Bezerra, C.E.B., Pedone, F.: Rethinking state-machine replication

for parallelism. In: ICDCS (2013)
13. Marandi, P.J., Primi, M., Pedone, F.: High performance state-machine replication.

In: DSN (2011)
14. Marandi, P.J., Primi, M., Pedone, F.: Multi-Ring Paxos. In: DSN (2012)
15. Santos, N., Schiper, A.: Achieving high-throughput state machine replication in

multi-core systems. In: ICDCS (2013)
16. Schneider, F.B.: Implementing fault-tolerant services using the state machine ap-

proach: A tutorial. ACM Computing Surveys (CSUR) 22(4), 299–319 (1990)

http://doi.acm.org/10.1145/568522.568525

Strong Equivalence Relations

for Iterated Models

Zohir Bouzid1,�, Eli Gafni2, and Petr Kuznetsov1

1 Télécom ParisTech
2 UCLA

Abstract. The Iterated Immediate Snapshot model (IIS), due to its
elegant geometrical representation, has become standard for applying
topological reasoning to distributed computing. Its modular structure
makes it easier to analyze than the more realistic (non-iterated) read-
write Atomic-Snapshot memory model (AS). It is known that AS and IIS
are equivalent with respect to wait-free task computability: a distributed
task is solvable in AS if and only if it is solvable in IIS. We observe,
however, that this equivalence is not sufficient in order to explore solv-
ability of tasks in sub-AS models (i.e. proper subsets of AS runs) or
computability of long-lived objects, and a stronger equivalence relation
is needed.

In this paper, we consider adversarial sub-AS and sub-IIS models
specified by the sets of processes that can be correct in a model run.
We show that AS and IIS are equivalent in a strong way: a (possibly
long-lived) object is implementable in AS under a given adversary if and
only if it is implementable in IIS under the same adversary. Therefore,
the computability of any object in shared memory under an adversarial
AS scheduler can be equivalently investigated in IIS.

1 Introduction

Iterated memory models (see a survey in [25]) proved to be a convenient tool to
investigate and understand distributed computing. In an iterated model, every
process passes, one by one, through a series of disjoint communication-closed
memories M1, M2, Each memory Mi is a distinct set of shared memory
locations that can only be accessed a bounded number of times. The most pop-
ular iterated model is the Iterated Immediate Snapshot model (IIS) [4]. Here
a process accesses each memory with the immediate snapshot operation [3]
that writes to the memory and returns a snapshot of the memory contents.
Once memory Mk is accessed, a process never comes back to it. IIS has many
advantages over the more realistic (non-iterated) read-write Atomic-Snapshot
memory model (AS) [1]. Moreover, nice geometrical representation of IIS [21,24]
makes it suitable for topological reasoning in analyzing algorithms and proving

� The work of this author was partially supported by the French ANR project
Displexity.

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 139–154, 2014.
c© Springer International Publishing Switzerland 2014

140 Z. Bouzid, E. Gafni, and P. Kuznetsov

their correctness. It is therefore natural to look for a generic trasformation that
would map any problem in AS to an equivalent problem in IIS.

It has been shown by Borowski and Gafni [4] that the complete sets of runs
of IIS and AS are, in a strict sense, equivalent : a distributed task is (wait-free)
solvable in AS if and only if it is (wait-free) solvable in IIS. They established
the result by presenting a forward simulation that, in every AS run, simulates
an IIS run [3], and a backward simulation that, in every IIS run, simulates an
AS run [4]. The equivalence turned out to be instrumental, e.g., in deriving the
impossibility of wait-free set agreement [2,19]. More generally, the equivalence
enables the topological characterization of task solvability in AS [19,15].

However, tasks can be seen as one-shot abstraction: a process is invoking a
task at most once. As a result, any nonblocking [20] task solution is also wait-free,
so the equivalence established in [3,4] allows for equating AS and IIS in terms
of (wait-free) task solvability. However, for long-lived objects, this equivalence
turns out to be insufficient. The goal of this paper is to establish a stronger one
using elaborate model simulations.

Another motivation for a stronger equivalence between AS and IIS is the
question of task solvability in sub-AS models (i.e., proper subsets of AS runs).
We focus on adversarial sub-AS models [5,22], specified by sets of processes that
can be correct in a model run. Note that the original AS model is described by the
adversary consisting of all non-empty sets of processes. Since the introduction
of adversaries in [5], the models have become popular for investigating task
computability [10,11,17]. But how to define an IIS “equivalent” for an adversarial
sub-AS model?

In IIS, a correct yet “slow” process may be never noticed by other processes: a
process may go through infinitely many memoriesM1,M2, . . . without appearing
in the snapshots of any other process. Instead, we specify adversarial sub-IIS
models using the sets of strongly correct processes [27] (originally referred to as
fast processes [7]). Informally, a process is strongly correct in an IIS run if it
belongs to the largest set of processes that “see” each other infinitely often in
the run. More precisely, we match the run with a directed graph whose vertices
are processes, and there is an edge from i to j if and only if j sees i infinitely
often in the run. Now the processes that constitute the largest strongly connected
component in the graph are called strongly correct (we show that there is exactly
one such component in the graph).

A topological characterization of task computability in sub-IIS models has
been recently derived [12]: given a task T and an sub-IIS model M , solvability
of T in M is equated with the existence of a specific continuous map between
geometrical structures modelling inputs and outputs of the task. The character-
ization of [12] extends the celebrated asynchronous computability theorem [19]
to sub-IIS models, and may provide deeper insights about task (in)solvability in
sub-IIS than conventional operational reasoning can give. But is sub-IIS charac-
terization of [12] relevant for (more realistic) adversarial sub-AS models?

In this paper, we show that the answer is “yes”. We prove that sub-models of
IIS and AS that are governed by the same adversary are equivalent in a strong

Strong Equivalence Relations for Iterated Models 141

sense: An object is implementable in AS under a given adversary if and only
if it is implementable in IIS under the same adversary. This holds regardless of
whether the object is one-shot, like a distributed task, or long-lived, like a queue
or a counter. To achieve this result, we present a two-way simulation protocol
that provides an equivalent sub-IIS model for any sub-AS model and which
guarantees that the set of correct processes in an AS run coincides with the set
of strongly correct processes in the simulated IIS run, and vice versa:

– We propose an “AS to IIS” simulation which ensures that a process appears
strongly correct in the simulated IIS run if and only if it is correct in the
orignal AS run. Every correct (in AS) process is “noticed” infinitely often
by other correct (in AS) processes in the simulated IIS run, even if the pro-
cess is much slower than the others. To this goal, we simulate IIS steps with
the RAP (Resolver Agreement Protocol) [11] and employ a “fair” simula-
tion strategy—at each point, we first try to promote the most “left behind”
process in the currently simulated run. Even if the RAP-based simulation
“blocks” because of a disagreement between the simulators (unavoidable in
asynchronous fault-prone systems [6]), we guarantee that the blocked process
is eventually noticed by more advanced simulated processes.

– To obtain our “IIS to AS’ simulation, we extend the multiple-shot IS sim-
ulations [3] with a “helping” mechanism, reminiscent to the one employed
in the atomic-snapshot simulation [1]. Here even if a process i is not able
to complete its simulated read, it may adopt the snapshot published by a
concurrent process j, under the condition that j has seen the most recent
write of i. Since every move by a strongly correct process is eventually seen
by every other strongly correct process, we derive the desired property that
every strongly correct process makes progress in the simulated run.

Equating the set of correct processes with the set of strongly correct processes
in the iterated simulated run is illuminating, because it equips any adversarial
model [5,22] with an iterated equivalent. Our simulations also preserve the set
of processes considered to be participating in the original run, which implies
that the recent topological characterization of task computability in sub-IIS
models [12] can be applied to sub-AS models too.

An important property of our simulation algorithms is that they are model-
independent, i.e., they deliver the promised guarantees without making any as-
sumptions on the model runs. The algorithms are therefore wait-free in the sense
that they do not involve any form of waiting based using the assumptions about
the sub-AS (or sub-IIS) model they are used in.

Roadmap. Section 2 relates our results to earlier work. Our model definitions,
including the discussion of the AS and IIS models, the definition of strongly con-
nected processes in IIS, and the definition of a simulation, are given in Section 3.
Sections 4 and 5 present our two-way simulation.

142 Z. Bouzid, E. Gafni, and P. Kuznetsov

2 Related Work

The IIS model introduced by Borowsky and Gafni [4] has become standard in
topological reasoning about distributed computing [18,2,4,19,15]. The IIS model
is precisely captured by the standard chromatic subdivision of the input com-
plex [24,21], and thus enables intuitive and elegant reasoning about its com-
putability power, in particular, distinguishing solvable and unsolvable. The IIS
model is equivalent to the classical read-write model with respect to (wait-free)
task solvability [3,4,13,27].

On the one hand, Borowsky and Gafni [3] have shown that one round of IIS
can be implemented wait-free in AS, thus establishing a wait-free simulation
of multi-round IIS. But the simulation only ensures that one correct process
appears as strongly correct in the IIS run. Our algorithm ensures that every
correct processes appear as strongly correct in the simulation.

On the other hand, IIS can simulate AS in the non-blocking manner, i.e.,
making sure that at least one process that participates in infinitely many rounds
of IIS manages to simulate infinitely many steps of AS [4]. Later, Gafni and
Rajsbaum [13] generalized the simulation of [4] to superset-closed adversaries
(aslo called L-resilient adversaries [11]). The simulation in [13] guarantees that
at least one set in L will appear correct in the simulated execution. Raynal and
Stainer [27] presented an extension of the simulation in [4] and sketched a proof
that the set of correct processes in the simulated AS run is equal to the set of
strongly correct processes in the “simulating” IIS run. In this paper, we propose
an algorithm that achieves this property using the idea of the original atomic-
snapshot implementation by Afek et al. [1], which we believe to be more intuitive
and simpler to understand.

The relations between different simulation protocols are summarized in the
following table (here SC denotes the set of strongly correct processes in an IIS
run):

correct(AS) ⊆ SC(IIS)? SC(IIS) ⊆ correct(AS)?

From AS to IIS
Borowsky and Gafni [3] ∃p ∈ correct(AS): �

p ∈ SC(IIS)

This paper � �
From IIS to AS
Borowsky and Gafni [4] � ∃p ∈ SC(IIS):

p ∈ correct(AS)

Gafni and Rajsbaum [13] � ∃X ⊆ SC(IIS):

X ⊆ correct(AS), X �= ∅
Raynal and Stainer [27] � �
This paper � �

Strong Equivalence Relations for Iterated Models 143

The notion of a strongly correct process in IIS was introduced by Gafni in [7]
(under the name of a fast process) and formally treated by Raynal and Stainer
in [27,28]. The equivalence between adversarial restrictions of AS and IIS we
establish in this paper motivated formulating a generalized topological charac-
terization of task computability in sub-IIS [12].

Our AS-to-IIS simulation presented in Section 4 offers a novel use of the Re-
solver Agreement Protocol (RAP) proposed in [11], where a set of simulators
try to maintain the balance between the simulated processes by promoting the
“most behind” process that is not “blocked.” Our IIS-to-AS simulation presented
in Section 5 is based on the non-blocking simulation of [4], with the helping mech-
anism similar to the one used in the original atomic snapshot construction [1].

Herlihy and Rajsbaum [16] considered the problem of simulating task solu-
tions in a variety of models, but their results only concern colorless tasks, which
boils down to a very restricted notion of simulation. Rajsbaum et al. [26] intro-
duced the Iterated Restricted Immediate Snapshot (IRIS) framework, where the
restriction is defined via a specific failure detector on the per-round basis.

3 Definitions

In this section, we recall how the standard read-write and IIS models are defined,
discuss the notion of a strongly correct process in the IIS model, and explain
what we mean by simulating one model in another.

Standard Shared-Memory Model. We consider a standard atomic-snapshot
model (AS) in which a collection Π = {1, . . . , n} of processes communicate via
atomically updating their distinct registers in the memory and taking atomic
snapshots of the memory contents. AS is equivalent to the standard read-write
shared-memory model [1]. Without loss of generality, we assume that every pro-
cess writes its input value in the first step and then alternates taking snapshots
with updating its register with the result of it latest snapshot. This is known as
a full-information protocol. We say that a process participates in a run E if it
performs at least one update operation. Let part(E) denote the set of partici-
pating processes in E. A process i is correct in E if i takes infinitely many steps
in E. Let correct(E) denote the set of correct processes in E.

IIS Model. In the IIS memory model, each process is supposed to go through
a series of independent memories M1, M2, Each memory is accessed by a
process with a single immediate snapshot (IS) operation [3]. Informally, in IS,
processes write their values and then take atomic snapshots, so that the execution
can be represented as a sequence of blocks where, in each block, a distinct set
of processes first write and then take identical snapshots.

A run E in IIS is a sequence of non-empty sets of processes S1 ⊇ S2 ⊇ . . . ,
with each Sr ⊆ {1, . . . , n} consisting of the processes that participate in the rth
iteration of immediate snapshot (IS). Furthermore, each Sr is equipped with an
ordered partition: Sr = S1

r ∪ · · · ∪ Snr
r (for some nr ≤ n), corresponding to the

order in which processes are invoked in the respective IS.

144 Z. Bouzid, E. Gafni, and P. Kuznetsov

Fix a run E = S1, S2, The processes i ∈ S1 are called participating. If j
appears in all the sets Sk, we say that j is infinitely participating in E. The sets
of participating and infinitely participating processes in a run E are denoted
part(E) and ∞-part(E), respectively.

If i ∈ Sr (i participates in round r), let Vir denote the set of processes ap-
pearing in i’s r-th snapshot in E, defined as the union of all sets in the partition
of Sr preceding and including Sm

r ⊆ Sr such that i ∈ Sm
r : Vir = S1

r ∪ · · · ∪ Sm
r .

It is immediate that for all processes i, j and rounds r, such that i and j par-
ticipate in r, the following properties are satisfied [3]: (self-inclusion) i ∈ Vir ;
(containment) Vir ⊆ Vjr ∨ Vjr ⊆ Vir ; and (immediacy) i ∈ Vjr ⇒ Vir ⊆ Vjr .

Our definitions can be interpreted operationally as follows. Sr is the set of
processes accessing memory Mr, and each Sj

r is the set of processes obtaining
the same snapshot after accessing Mr. Recall that in IS, the view of a process
i ∈ Sj

r is defined by the values written by the processes in S1
r ∪ · · · ∪ Sj

r .

Strongly Correct Processes. It is convenient then to define, for each round
r of E, a directed graph Gr

E with processes that participate in r as nodes and

a directed edge from i to j if j ∈ Vir. G
(r)
E is then the union of the graphs

Gr
E ,Gr+1

E , . . .
We say that process i is aware of round r of process j in an IIS execution E

if there exists a path from i to j in G
(r)
E . The participating set of a process i in

a run E, denoted by part(E, i), is the set of processes j, such that i is aware of
the first round of j in E.

A process is strongly correct in E if every process in ∞-part(E) is aware of
each of i’s round in E. Let SC(E) denote the set of strongly correct processes in
E. Intuitively, SC(E) is the largest set of processes that “see” each other (appear
in each other’s views) infinitely often in E.

Formally, denote by G∗
E the graph limit lim

r→∞
G

(r)
E . That is, i is a vertex of

G∗
E if it is in ∞-part(E) and (i, j) is an edge of G∗

E if E contains infinitely many
rounds r such that j ∈ Vir , i.e., i is aware of infinitely many rounds of j. By
the containment property of IIS snapshots, in every round r, either i ∈ Vjr or
j ∈ Vir. Hence, for all i, j ∈ ∞-part(E), we are guaranteed that G∗

E contains
at least one of the edges (i, j) and (j, i). Therefore, G∗

E has a single strongly
connected component. It is then immediate that SC(E) is exactly the set of
processes in the strongly connected component of G∗

E .
In the following, we prove a property about strongly correct processes:

Proposition 1. For all E in IIS, i ∈ SC(E) iff there exists r0, such that for all

r ≥ r0, G
(r)
E contains a path between every process in Vir and i.

Proof. ⇒ Let i ∈ SC(E). Since SC(E) ⊆ ∞-part(E), i belongs also to
∞-part(E). Take r0 as the first round such that for all r ≥ r0 : Vir ⊆
∞-part(E). r0 is well defined since the processes not belonging to ∞-part(E)
can appear only finitely often in the snapshots of i.

Strong Equivalence Relations for Iterated Models 145

Since i is strongly correct, for all r ≥ r0, G
(r)
E contains a path between every

process j ∈ ∞-part(E) and i. But as r ≥ r0, Vir ⊆ ∞-part(E). Hence, G
(r)
E

contains a path between every process of Vir and i.

⇐ Let i be a process and r0 a round such that for all r ≥ r0, G
(r)
E contains a

path between every process in Vir and i. We need to prove i ∈ SC(E).

Note that the containment property of IS snapshots guarantees that every
process j ∈ ∞-part(E) \ Vir obtains a snapshot that contains Vir . That is,

(j, i) ∈ Gr
E and hence (j, i) ∈ G(r)

E .

Thus, we conclude that G
(r)
E contains a path between every process in

∞-part(E) and i.

Since there are infinitely many such rounds r and the number of possible
paths is bounded, it follows that G∗

E contains a path between every process
in ∞-part(E) and i. Consequently, i ∈ SC(E).

Model Simulations. WLOG, we consider runs of AS or IIS in which every pro-
cess alternates writes with taking snapshots of (iterated or non-iterated) memory,
using the result of its latest snapshot (or its input value initially) as the value
to write. A set of such runs is called a model. Notice that the writes do not re-
turn any meaningful response, just an indication that the operation is complete.
Thus, the state evolution of a process i in such a run E is characterized by the
sequence V E

i,1, V
E
i,2, of the snapshots i takes in E.

By simulation of a run of a model B in another model A, we mean a distributed
algorithm that in every run of A outputs at every process a sequence of snapshots
so that all these sequences are consistent with some run of B and, moreover,
reflect the inputs and the participating set of A. The latter intuitively filters out
any “fake” simulation that produces a run of B that has nothing to do with the
original run of A.

Formally, in every run E of A, a simulation SimA,B outputs, at every simulator
i ∈ {1, . . . , n} a (finite or infinite) sequence of snapshot values Ui,1, Ui,2,
There exists a run E′ of B such that:

– For all i, V E′
i,1 , V

E′
i,2 , . . . is exactly Ui,1, Ui,2,;

– for every i ∈ correct(E) (resp., SC(E) if A is an IIS model), part(E, i) =
part(E′, i).

For the sake of brevity, we assume that in the simulated algorithm, as its local
state, each process i simply maintains a vector storing the numbers of snapshots
taken by other processes i is aware of so far. The process writes the vector as its
current state in write operation. Each time a new snapshot is taken, the process
updates its vector and simply increments its number of steps in it. Initially, the
vector of process i stores 1 in position i and 0 at every other position. The
reader can easily convince herself that this simplification does not bring a loss
of generality, i.e., provided a simulation for such an algorithm, we can derive a
simulation for the full-information algorithm.

146 Z. Bouzid, E. Gafni, and P. Kuznetsov

4 From AS to IIS: Resolving and Bringing to the Front

The goal of this section is to provide an algorithm AS → IIS that simulates an
execution of an IIS model where the set of processes that appear strongly correct
coincides with the set of correct processes in the original AS (Algorithm 1).

Overview. To simulate a round of IIS, we use the original implementation of
(one-shot) IS [3] using AS. To ensure fairness of the simulation, each process
tries to advance the process that is currently the most behind.

Recall that the original IS construction [3] involves n “levels” of recursion.
Processes start from level n and proceed down to level 1. In level �, a process
registers its participation and then takes an atomic snapshot. If the size of the
snapshot is less than �, then the process recursively proceeds to level � − 1,
otherwise it returns the snapshot as its output in the IS simulation. Since at
most n processes start at level n and at least one process (the one that writes
the last) drops the simulation at each level, at most � processes can reach any
level �. Thus, in the worst case, a process returns after reaching level 1.

In our AS → IIS algorithm, in order to promote the next step of a given
process, the simulators use an agreement protocol [2,23] for each level of the IS
simulation [3]. More precisely, to simulate the atomic snapshot obtained by the
process in level �, the simulator takes an atomic snapshot itself and computes
the set of other simulated processes that also reached level �. If the cardinality
of the set is exactly �, then the simulator proposes 1 to the agreement algorithm.
Otherwise, it proposes 0. If the agreement protocol returns 1, then the simulated
process completes the IS iteration by outputting the set of � processes in level �.
If the agreement protocol returns 0, the process gets down to level � − 1 in the
current IS iteration.

To make sure that the simulation is safe, we need to guarantee that the simu-
lators agree on the outcome of each simulated step. For this we use the recently
proposed Resolver Agreement Protocol (RAP) [11]. This protocol guarantees
agreement (no two processes output different values) and validity (every out-
put value was previously proposed). Moreover, if all proposed values are the
same, then the algorithm terminates (this feature can be implemented using the
commit-adopt (CA) algorithm [8]). Otherwise, if two different values are pro-
posed, RAP may enter in the blocked state. The blocked state can be resolved
by the process whose step is being simulated (i.e., the simulator with the same
process id): the simulated process writes the value it adopted from CA in a ded-
icated register so that every correct process would eventually read the value and
terminate.

Formally, RAP exports one operation propose(v), v ∈ {0, 1} that returns a
value in {0, 1,⊥} and is associated with a unique resolver process. Then the
following guarantees are provided: (i) Every returned non-⊥ value is a proposed
value; (ii) If all processes propose the same input value, then no process returns
⊥; (iii) The resolver never returns ⊥; (iv) No two different non-⊥ values are
returned. Additionally, RAP guarantees that every process returns in a finite
number of its steps.

Strong Equivalence Relations for Iterated Models 147

1 Shared: R[1], . . . , R[n] := [⊥, . . . ,⊥], . . . , [⊥, . . . ,⊥];
2 Shared: Counter1, . . . ,Countern := 0, . . . , 0;
3 Local: countf [1, . . . , n] := [0, . . . , 0] ; // counters for ‘‘frozen’’ processes
4 Local: lastf [1, . . . , n] := [0, . . . , 0] ; // last rounds in which processes were ‘‘frozen’’

5 R[i][i] := (run, 0, n) ; // start with highest level of the first iteration
6 while true do
7 Counteri + +;
8 S := snapshot of R[1], . . . , R[n] ;
9 if i is blocked in S then

10 p := i ;
11 else
12 for each j ∈ Π do
13 x := the largest round such that Vjx are aware of round x of j (in S) ;
14 if x > lastf [j] then
15 lastf [j] := x ;
16 countf [j] := Counterj ; // freeze j

17 end

18 end
19 repeat
20 cands := {j | j is not blocked and Counterj > countf [j]} ; // ignoring

non-participants
21 Counteri + +;

22 until cands �= ∅;
23 p := argminj∈cands(round-level(j, S), (j + round(j, S)) mod n) ; // choose the

‘‘most-behind’’ process

24 end
25 (r, �) := round-level(p, S) ; // compute current round and level of p
26 U := {j | (∗, r, �) ∈ S[∗][j]} ; // all processes that reached (r, �)
27 v := RAPp,r,�(|U| = �) ; // the result of next step of p
28 if v = 1 then
29 R[i][p] := S[i][p] · (run, r + 1, n) ; // p completes round r
30 Vpr := U ; // output the snapshot of p in round r

31 else
32 if v = 0 then
33 R[i][p] := S[i][p] · (run, r, �− 1) ; // p proceeds to (r, �− 1)
34 else
35 R[i][p] := S[i][p] · (blocked, r, �) ; // p blocks in (r, �)
36 end

37 end

38 end

Algorithm 1. The AS → IIS simulation algorithm: code for process i.

Operation. Algorithm 1 operates as follows. For every process i, the algorithm
maintains a shared array R[i][], written by i and read by all, that stores i’s
perspective on the current simulation. In particular, the sequence of iterations r
and levels � that a process j has passed through, as witnessed by i, is stored in
R[i][j].

The r-th view of process p in the simulated run is stored at a local variable Vpr .
As we show below, in every execution of Algorithm 1, these views are evaluated
identically by different simulators.

After taking a snapshot S in line 8 of the current simulated state, the sim-
ulator i first checks if the simulated process i is blocked (line 10). A process
p is considered blocked if for every S[j][p] that contains (d, r, �) with (r, �) =
round-level(p, S), we have d = blocked. (Here round-level(p, S) denotes the max-
imal round-level reached by p in S, i.e., the maximal value of the last element
in S[∗][p], computed lexicographically.)

148 Z. Bouzid, E. Gafni, and P. Kuznetsov

If simulated process i is blocked, simulator i retrieves the round-level (r, �) at
which it is blocked (line 25) and participates in RAPi,r,�. We assign i to be the
resolver of each RAP instance RAPi,r,�, and thus the instance returns a non-⊥
which “unblocks” simulated process i.

If simulated process i is not blocked, simulator i checks if some process j
has completed a new (not considered by i in previous rounds of the simulation)
round rj , such that all processes in Vjrj are aware of round rj of j (line 13).
Every such process j is then frozen by i, i.e., j is put on hold and not simulated
until simulator j performs a “physical” step (in lines 7 or 21).

In the set of remaining processes, the simulator chooses the “slowest” non-
blocked and non-frozen process (line 23). To make sure that the notion of the
slowest process is well-defined, we introduce a total order on the tuples (i, r, �),
i ∈ Π , r ∈ N, � ∈ Nn as follows. We say that (i, ri, �i) < (j, rj , �j) if (ri <
rj) ∨ ((ri = rj) ∧ (�i > �j)) ∨ ((ri = rj) ∧ (�i = �j) ∧ ((i + ri) mod n < (j + ri)
mod n)). This way argmin in line 23 returns a single process, ties are broken
by choosing the process associated with the current iteration (the association is
done in round-robin).

The slowest process p currently observed (by i) in round-level (r, �) is then
simulated using p’s next instance of RAP, RAPp,r,�, which accepts either 1 (ex-
actly � processes have appeared on round-level (r, �) in S) or 0 (otherwise). If
RAPp,r,� returns 1, p outputs the set of � processes in (r, �) as its snapshot in
round r, denoted Vpr , and then p is promoted to round r + 1 (lines 29 and 30).
If RAPp,r,� returns 0, p is promoted to level �− 1 of the same round r (line 33).
Otherwise, if RAPp,r,� is blocked, we mark the status of i as blocked in (r, �)
(line 35).

Correctness Intuition. Our algorithm tries to always promote the process that
is the “most left behind” process (that is not blocked or frozen) to the front of
the simulation.

Observe that a simulated process i can only get blocked if two simulators
proposed two different values to some RAPi,r,�: one simulator finds exactly �
processes in (r, �) and, thus, believes that i should complete round r by out-
putting the � processes, and the other found strictly less processes in (r, �) and
thus believes that i should go one level down in round r and output a smaller
snapshot. Therefore, a process i is blocked because another process appeared at
its round-level (r, �) and two simulators disagreed whether the other process was
there or not: one simulator finds exactly � processes at the level and the other—
less than n. The last such “missed” process p will now be considered the slowest
process in the simulation and, thus, will be chosen to be promoted in line 23
by any other simulator. Note that p cannot be blocked in (r, �), because every
simulator that found p in (r, �) will also find exactly � processes in (r, �). This
is because p is the last process to reach (r, �). Moreover, p completes iteration
r having i in its snapshot: since p completes r in level � reached by i, p sees i
in round r in the simulated run. By repeating this reasoning inductively, even
though i is blocked, another process p carries this information to the “front”
of the simulation, thus making sure that every other simulated process will

Strong Equivalence Relations for Iterated Models 149

eventually be aware of round r of i. Process i unblocks itself by completing
its own RAPi,r,� an thus providing it with a non-⊥ output.

Now observe that a process can only get frozen if it produced a new snapshot
in a round r and all the processes appearing in this snapshot became aware of
it. By Proposition 1, strongly correct processes in the simulated run are frozen
infinitely often. Therefore, only a correct simulator i may appear as strongly
correct in the simulated run: otherwise the corresponding simulated process i
would get frozen after simulator i crashes and stay frozen forever (only simulator
i can “unfreeze” simulated process i in the simulation).

Thus, intuitively, a correct process i either gets blocked infinitely often or gets
frozen infinitely often. In both cases, i is “seen” infinitely often by other correct
processes. Moreover, a faulty process eventually either (i) gets faulty or frozen
forever, or (ii) becomes invisible to the remaining processes in the simulated
run. In both cases, the faulty process does not appear strongly correct in the
simulation. Since process i starts the algorithm by registering its participation
in round-level (0, n) (line 5), the set of participants as witnessed by a strongly
correct process i in the simulated IIS run is the set of participants in the original
AS run. Thus:

Theorem 1. Algorithm 1 provides a simulation of the IIS model in the AS
model such that, for each AS run E, the simulated IIS run E′ satisfies (1)
correct(E) = SC(E′), and (2) ∀i ∈ correct(E): part(E) = part(E′, i).

Proof. Take any run E of Algorithm 1. The simulated run E′ is defined as a
collection of all sets Vir, i ∈ {1, . . . , n}, r ∈ N produced in E. By the correctness
of the IS simulation [3] and the use of the RAP agreement protocol [11] for each
atomic snapshot taken in the simulation of [3], we conclude that for all r, all
sets Vir satisfy containment, self-inclusion and immediacy (defined in Section 3).
Notice that by the algorithm, every correct process i produces a snapshot Vir in
every iteration r.

Every Strongly Correct Process Is Correct. Assume, by contradiction,
that i ∈ SC(E′) but i �∈ correct(E). Define r0 to be the first simulated round of
E′ such that in all r ≥ r0, (i) only processes of ∞-part(E′) are simulated and (ii)
Vir contain only strongly correct processes. r0 is well defined since the processes
that appear infinitely often in the snapshots of strongly correct processes are
necessarily also strongly correct.

Take a round r ≥ r0 where Vir is simulated after the crash of i in E (recall
that i �∈ correct(E)). Since we assumed that i is strongly correct in E′, all the
processes in ∞-part(E′) (including Vir) will eventually be aware of round r of
i. But the fact that the processes in Vir are strongly correct means that the
processes of ∞-part(E′) are aware of infinitely many of their rounds. Therefore,
every process in ∞-part(E′) eventually knows that the processes in Vir were
aware of a round of i. Hence, i will be frozen by all of them. Since i has crashed
in E before its round r was simulated, it will never be unfrozen and, thus, takes
no simulated steps after round r—a contradiction. Consequently, i ∈ correct(E)
and SC(E′) ⊆ correct(E).

150 Z. Bouzid, E. Gafni, and P. Kuznetsov

Every Correct Process Is Strongly Correct. By Proposition 1, i is strongly
correct in E′ if and only if there exists a round such that for all later rounds r,
the processes of Vir are aware of round r of i. Hence, if i is not strongly correct
in E′, the condition in line 13 can apply to i only in a finite number of rounds.
Thus, after a certain round r0, a process can be frozen (line 15) only if it is
strongly correct.

Now we show that correct(E) ⊆ SC(E′). Suppose not, i.e., there are processes
i, j ∈ correct(E) and a round r ≥ r0 such that i is never aware of round r of j
in E′. Since r ≥ r0, j cannot be frozen by i. Let ri be the round of process i at
the moment when j completes round r, i.e., outputs Vrj (line 30). Let |Vrj | = �,
i.e., j sees exactly � process in round r.

Take r′ to be the first round greater than ri, such that (i+r′) mod n+1 = n,
i.e., i has the lowest priority in round r′. Thus, before i is simulated at some level
�′ of r′, any other process that is not frozen or blocked must have completed its
simulation of round r′ or reached a level that is lower than �′. We choose �′ to
be the level at which i obtains its snapshot in r′, and let m be some simulator
that simulated Vir′ .

We observe first that (r, �) < (r′, �′): otherwise, i will eventually reach level
�′′ ≥ �′ of round r, find exactly �′′ processes (including j) at that level, and
output its snapshot Vir such that j ∈ Vir—a contradiction with the assumption
that i is never aware of round r of j.

Consider the time after i reaches (r′, �′) and before it obtains the snapshot
Vir′ . By the algorithm, the simulator m must choose the slowest non-blocked
and non-frozen process to simulate. Suppose that j is never observed blocked by
m after i reaches (r′, �′). Since j cannot be frozen by m after r0, the algorithm
guarantees that eventually, m would bring j to level (r′, �′) and, thus, simulates
a snapshot Vir′ such that j ∈ Vir′—a contradiction.

Now suppose that m observes j as blocked in round r or later. Without loss
of generality, suppose that j is observed as blocked by m in round r. Indeed, if
i is never aware of round r of j in, it is never aware of any later round of j.

We claim that at the moment when the first simulator took its snapshot
on behalf of j for round r (in line 8), there was another blocked process k
that reached (r, �) and later was observed as resolved by another simulator.
Indeed, the only reason for j to block in RAPj,r,� is that two simulators proposed
conflicting sets of processes that have been observed to reach (r, �). Moreover,
by the algorithm, one of these sets contains exactly � processes and the other
contains strictly less. Consider any process in the difference between these two
atomic snapshots. Every such process was considered blocked by one of the
simulators at the moment it took its snapshot in line 8, otherwise it would
appear in all obtained snapshots or would be chosen to be simulated as the
slowest process. For the last such process s to reach level (r, �), RAPs,r,� cannot
get blocked, because all simulators will propose exactly � processes that reached
(r, �). Thus, s obtains Vsr with j ∈ Vsr and enters level n of round r+ 1. Hence,
by our assumption, i is never aware of round r + 1 of s (otherwise it would
transitively get aware of round r of j). Moreover, by the arguments above, we

Strong Equivalence Relations for Iterated Models 151

have (r+1, n) < (r′, �′). Therefore, s is not strongly correct and cannot be frozen
as r + 1 ≥ r0. Moreover, s does not block in round r, thus m should eventually
try simulating s in round r + 1.

By repeating the argument inductively, we locate a process k that reaches
round r′ and is aware of round r of i. Moreover, since i has the lowest priority
in round r′, every not yet blocked process should be simulated by m ahead of it.
Thus, eventually some process that is aware of j in round r reaches (r′, �′) and,
hence, gets in Vir′ . Therefore, i must be aware of round r of j—a contradiction.

Finally, since every process starts the algorithm by registering its participation
at level (0, n) (line 5), the set of participating processes in E is automatically
the participating set for every correct process in E′.

5 From IIS to AS: Identical Snapshots and Helping

We now describe our IIS → AS algorithm that, in any run of the IIS model,
simulates a run of the AS model in which every process alternates updates with
atomic snapshots [1].

As a basis, we take the non-blocking simulation proposed by Borowsky and
Gafni [4]. In this algorithm, each process i maintains a local counter vector
Ci[1, . . . , n] where each Ci[j] stores the number of simulated snapshots of j as
currently witnessed by i. To simulate a snapshot operation, process i accesses the
iterated memories, writing its counter vector Ci, taking a snapshot of counter
vectors of other processes, and updating each position Ci[k] with the maximal
value of Cj [k] across all counter vectors read in the iteration. In each iteration
r of the IIS memory, this is expressed as a single WriteReadr(Ci) operation
the outcome of which satisfies the self-inclusion, containment, and immediacy
properties specified in Section 3. If all these vectors are identical, i outputs
the vector as the result of its next snapshot operation. Initially and each time a
process i completes its next snapshot operation, it simulates an update operation
by incrementing Ci[i].

We first observe that the original simulation of the AS model proposed in [4]
is, in the worst case, only non-blocking. Indeed, it admits runs in which some
strongly correct process is never able to complete its snapshot operation, even
though it is “noticed” infinitely often. Consider, for example, the following IIS
run: [{1}{2, 3}], [{3}, {1, 2}], [{1}{2, 3}], . . ., i.e., all the three processes are
strongly correct and in every iteration, one of the processes in {1, 3} only sees
itself and, thus, completes its new snapshot. Thus, in every round one of the
processes in {1, 3} outputs a new snapshot, while the remaining process 2 sees
two different vectors and thus does not complete its simulated snapshot. As a
result, process 2 never manages to completes its first snapshot in the simulated
AS run, even though it is strongly correct!

To fix this issue, we equip the algorithm of [4] with a helping mechanism,
similar to the helping mechanism proposed in the atomic snapshot simulation
in [1]. In addition to its counter vector, in each iteration of our Algorithm 2,
a process also writes the result of its last snapshot: WriteReadr(Ci) (line 4).

152 Z. Bouzid, E. Gafni, and P. Kuznetsov

1 Ci[1, . . . , n] := [0, . . . , 0]; Ci[i] := 1; r := 0; SIi := [0, . . . , 0];
2 while true do
3 r + +;
4 S := WriteReadr(Ci, SIi);
5 if ∃SI such that (∀(Cj, SIj) ∈ S : Cj = SI) or (∃(Cj, SI) ∈ S : SI[i] = Ci[i]) then
6 SIi := SI;
7 output SI; // Output the next atomic snapshot
8 Ci[i] + +;

9 end
10 Ci := max(C1, . . . , Cn) ; // Adopt the maximal counter value for each process j

11 end

Algorithm 2. The IIS → AS simulation algorithm: code for process i.

Now a process i outputs a new snapshot not only if it sees that everybody agrees
on the clock vector, but also if another process produces a snapshot containing
i’s latest counter value.

Theorem 2. Algorithm 2 provides a simulation of the AS model in the IIS
model such that, for each run E in IIS, the simulated run E′ satisfies (1)
SC(E) = correct(E′) and (2)∀i ∈ SC(E): part(E, i) = part(E′).

Proof. Consider any run E of Algorithm 2. First we observe that all atomic
snapshots of the simulated processes output in E are all related by containment,
i.e., for every two snapshot U and U ′ output in the algorithm in line 7, we have
U ≤ U ′ or U ′ ≤ U , when the two vectors are compared position-wise. Indeed,
for every output snapshot U , there is a round r and a process i, such that all
processes that appear in i’s immediate snapshot in round r have put U as their
clock vectors. Since in the algorithm the clock vector Ci is maintained to have the
maximal value seen so far for every process j and by the containment property of
immediate snapshot, every process that took the immediate snapshot in round
r or later will compute a clock vector U ′ ≥ U .

Therefore, we order all atomic snapshots output in E based on the contain-
ment order, let U1, U2, . . . be the resulting sequence (here U� ≤ U�+1 for each
� = 1, 2, . . .). Then for each � = 1, 2, . . . and for each process i, U�+1[i] �= U�[i],
we add an update operation in which i increments its counter (initially 1) and
writes the result to position i in the memory just before U�+1. Notice that since a
process only increments its counter after it has output a snapshot, U�+1[i] �= U�[i]
implies that U�+1[i] = U�[i] + 1.

We call the resulting sequence E′ and observe that it is a run of the AS
model. Indeed, the snapshots taken in E′ are related by containment and, by
construction, each snapshot returns the latest written value for each process.
By construction, E and E′ agree on the sequence of snapshots taken by every
given process. Moreover, since the clock vector of process i contains the most
up-to-date value for every other process and in the first step each process simply
writes its initial clock vector in the memory, the set of participating processes
as observed by i in E is the same as the set of participating processes observed
by i in E′. Thus, E is an AS run, and Algorithm 2 simulates AS in IIS.

Strong Equivalence Relations for Iterated Models 153

Every update of the counter of a strongly correct process i eventually appears
in the snapshot of every other strongly correct process. Thus, every simulated
snapshot of a strongly correct process eventually completes and part(E, i) =
part(E′). If a process is not strongly correct, it eventually blocks in trying to
complete its snapshot. Thus, SC(E) = correct(E′).

6 Conclusion

This paper presents two simulation algorithms that, taken together, maintain the
equality between the set of correct processes in AS and the set of strongly correct
processes in IIS. This equality enables a strong equivalence relation between AS
and IIS sub-models : an object is implementable in an adversarial sub-AS model
if and only if it is implementable in the corresponding adversarial sub-IIS model.
The result holds regardless of whether the object is one-shot, like a distributed
task, or long-lived, like a queue or a counter. (Naturally, in IIS, we guarantee
liveness of object operations to the strongly correct processes only.) The equiv-
alence presented in this paper motivates the recent topological characterization
of task computability in sub-IIS models [12] and suggests further exploration of
iterated models that capture, besides adversaries [5], the use of generic tasks like
the Möbius task [14] or of a task from the family of 0-1 exclusion [9].

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots
of shared memory. J. ACM 40(4), 873–890 (1993)

2. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient asyn-
chronous computations. In: STOC, pp. 91–100. ACM Press (May 1993)

3. Borowsky, E., Gafni, E.: Immediate atomic snapshots and fast renaming. In:
PODC, pp. 41–51. ACM Press, New York (1993)

4. Borowsky, E., Gafni, E.: A simple algorithmically reasoned characterization of wait-
free computation (extended abstract). In: PODC, pp. 189–198 (1997)

5. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Tielmann, A.: The disagree-
ment power of an adversary. Distributed Computing 24(3-4), 137–147 (2011)

6. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

7. Gafni, E.: On the wait-free power of iterated-immediate-snapshots (1998),
http://www.cs.ucla.edu/~eli/eli/wfiis.ps (unpublished manuscript)

8. Gafni, E.: Round-by-round fault detectors (extended abstract): Unifying synchrony
and asynchrony. In: PODC, pp. 143–152 (1998)

9. Gafni, E.: The 0–1-exclusion families of tasks. In: Baker, T.P., Bui, A., Tixeuil, S.
(eds.) OPODIS 2008. LNCS, vol. 5401, pp. 246–258. Springer, Heidelberg (2008)

10. Gafni, E., Kuznetsov, P.: Turning adversaries into friends: Simplified, made con-
structive, and extended. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS
2010. LNCS, vol. 6490, pp. 380–394. Springer, Heidelberg (2010)

11. Gafni, E., Kuznetsov, P.: Relating L-resilience and wait-freedom via hitting sets.
In: Aguilera, M.K., Yu, H., Vaidya, N.H., Srinivasan, V., Choudhury, R.R. (eds.)
ICDCN 2011. LNCS, vol. 6522, pp. 191–202. Springer, Heidelberg (2011)

http://www.cs.ucla.edu/~eli/eli/wfiis.ps

154 Z. Bouzid, E. Gafni, and P. Kuznetsov

12. Gafni, E., Kuznetsov, P., Manolescu, C.: A generalized asynchronous computability
theorem. In: PODC (2014)

13. Gafni, E., Rajsbaum, S.: Distributed programming with tasks. In: Lu, C., Ma-
suzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 205–218.
Springer, Heidelberg (2010)

14. Gafni, E., Rajsbaum, S., Herlihy, M.P.: Subconsensus tasks: Renaming is weaker
than set agreement. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 329–338.
Springer, Heidelberg (2006)

15. Herlihy, M., Kozlov, D.N., Rajsbaum, S.: Distributed Computing Through Com-
binatorial Topology. Morgan Kaufmann (2014)

16. Herlihy, M., Rajsbaum, S.: Simulations and reductions for colorless tasks. In:
PODC, pp. 253–260 (2012)

17. Herlihy, M., Rajsbaum, S.: The topology of distributed adversaries. Distributed
Computing 26(3), 173–192 (2013)

18. Herlihy, M., Shavit, N.: The asynchronous computability theorem for t-resilient
tasks. In: STOC, pp. 111–120 (May 1993)

19. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability.
J. ACM 46(2), 858–923 (1999)

20. Herlihy, M., Shavit, N.: On the nature of progress. In: Fernàndez Anta, A., Li-
pari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 313–328. Springer,
Heidelberg (2011)

21. Kozlov, D.N.: Chromatic subdivision of a simplicial complex. Homology, Homotopy
and Applications 14(1), 1–13 (2012)

22. Kuznetsov, P.: Understanding non-uniform failure models. Bulletin of the
EATCS 106, 53–77 (2012)

23. Kuznetsov, P.: Universal model simulation: BG and extended BG as examples. In:
Higashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M.
(eds.) SSS 2013. LNCS, vol. 8255, pp. 17–31. Springer, Heidelberg (2013)

24. Linial, N.: Doing the IIS (2010) (unpublished manuscript)
25. Rajsbaum, S.: Iterated shared memory models. In: López-Ortiz, A. (ed.) LATIN

2010. LNCS, vol. 6034, pp. 407–416. Springer, Heidelberg (2010)
26. Rajsbaum, S., Raynal, M., Travers, C.: The iterated restricted immediate snapshot

model. In: Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092, pp. 487–497.
Springer, Heidelberg (2008)

27. Raynal, M., Stainer, J.: Increasing the power of the iterated immediate snapshot
model with failure detectors. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO
2012. LNCS, vol. 7355, pp. 231–242. Springer, Heidelberg (2012)

28. Raynal, M., Stainer, J.: Synchrony weakened by message adversaries vs asynchrony
restricted by failure detectors. In: PODC (2013)

The Opinion Number of Set-Agreement�

Pierre Fraigniaud1,��, Sergio Rajsbaum2,���,
Matthieu Roy3,†, and Corentin Travers4,‡

1 CNRS and University Paris Diderot, France
2 Instituto de Matemáticas, UNAM, Mexico

3 CNRS, LAAS, Univ. Toulouse, France
4 CNRS and U. of Bordeaux, France

Abstract. This paper carries on the effort to bridging runtime verifi-
cation with distributed computability, studying necessary conditions for
monitoring failure prone asynchronous distributed systems. It has been
recently proved that there are correctness properties that require a large
number of opinions to be monitored, an opinion being of the form true,
false, perhaps, probably true, probably no, etc. The main outcome of this
paper is to show that this large number of opinions is not an artifact in-
duced by the existence of artificial constructions. Instead, monitoring an
important class of properties, requiring processes to produce at most k
different values does require such a large number of opinions. Specifically,
our main result is a proof that it is impossible to monitor k-set-agreement
in an n-process system with fewer than min{2k, n}+1 opinions. We also
provide an algorithm to monitor k-set-agreement with min{2k, n} + 1
opinions, showing that the lower bound is tight.

1 Introduction

Monitoring correctness properties at runtime, is a well established research do-
main. The essential objective of runtime verification is to determine, at any point
in time, whether a system is in a legal or illegal state, with respect to a given
specification.

In runtime verification, monitors are hardware or software components in
charge of supervising the state of the system. In particular, the case of a dis-
tributed system whose execution is observed by several monitors has been con-
sidered in [4,6,18]. As soon as a violation of the legality of the execution is
revealed by any of these monitors at runtime, recovery code can be executed
for bringing the system back to a legal state. The monitors may communicate
with each other, and every monitor produces a local opinion. The simplest case
considers that opinions are in {true, false}, and a recovery code is fired as soon
as one of these opinions is false.

� This work was supported in part by ECOS-NORD project #M12M01.
�� Additional supports from ANR project DISPLEXITY, and INRIA project GANG.

��� Additional support from UNAM-PAPIIT project and CONACYT LAISLA.
† Additional support from CNRS PICS.
‡ Additional support from ANR project DISPLEXITY.

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 155–170, 2014.
c© Springer International Publishing Switzerland 2014

156 P. Fraigniaud et al.

When processes may fail and the distributed system is asynchronous, it is
however no longer sufficient for the monitors to produce only binary opinions. It
has indeed been shown in [12] that there are correctness properties that cannot
be monitored by interpreting the opinions produced by the monitors using the
logical conjunction of all the opinions, where the system is in legal state if and
only if all opinions are true. Furthermore, it has been later shown in [13] that
there are correctness properties for which no decentralized monitoring exists if
the number of possible opinions is constant, whatever the interpretation of the
opinions. These results hold in distributed systems composed of n asynchronous
processes communicating by reading and writing to a shared memory, and in
which any number of processes may fail by crashing.

In this work, we consider a wait-free shared memory model, and assume as
in [12,13] that each process has a variable that contains the output of a compu-
tation that we want to monitor. More precisely, the correctness property to be
monitored describes the set of values that are allowed to appear in these vari-
ables simultaneously. Such a set of values is called a instance. The set of correct
instances associated to the correctness property defines a distributed language.
The following illustrative example was detailed in [13], as it is arising often in
practice [5]. Let us consider a system where requests are sent by clients, and ac-
knowledged by servers. The execution is correct when (1) all requests have been
acknowledged, and (2) every received acknowledgement corresponds to a previ-
ously sent request. Each monitor i observes a variable reporting a pair (Ri, Ai),
namely, the subset Ri of requests that have been received by the servers, and
the subset Ai of acknowledgements that have been sent by the servers. The cor-
responding distributed language is the set of instances whose variables satisfy
conditions (1) and (2).

To monitor the system, processes observe the values in their variables, and
communicate with each other as long as needed. Eventually each process must
produce its opinion about the legality of the instance with respect to the given
language. It is required that the multisets of opinions produced in case the in-
stance is legal differs from those produced for illegal instances. This partition
of multisets of opinion is captured by an interpretation. In the most common
setting, each opinion is in the set {true, false}, and the (global) interpretation
of opinions is the logical conjunction of these opinions. However, as mentioned
above, there are languages that require more opinions and more complex inter-
pretations than logical conjunction [12,13].

In [13], it was shown that, for any k, 1 ≤ k ≤ n, there exists a distributed
language requiring monitors to produce at least k distinct opinions in a system
with n monitors. To establish this result, an ad hoc language was constructed.
The existence of a real distributed task that would be arbitrarily difficult in
terms of the number of opinions needed to monitor it was left open.

In this paper, we study the number of opinions needed to monitor the family
of set agreement tasks, widely studied in the distributed computing literature
since its introduction in [8]. Recall that, for n ≥ 1 processes, and 1 ≤ k ≤ n,
the (n, k)-set-agreement task is specified as follows. Each processes proposes a

The Opinion Number of Set-Agreement 157

value, from some ground set. After communicating with the other processes,
each process has to decide on one of the proposed values, such that at most k
different proposed values are decided. Hence, if k = 1 then we get the classic
consensus task [9], and, as we increment the value of k, we get easier agreement
tasks, until we get the trivial task for k = n.

More precisely, we consider the language Ln,k corresponding to (n, k)-set-
agreement. The value to be monitored at each process i, 1 ≤ i ≤ n, consists
of a pair (si, ti). Consider the set of pairs u = {(si1 , ti1), (si2 , ti2), . . . , (si� , ti�)}
present at some time in the system, where the pair (sij , tij) is the variable of
process ij , j = 1, . . . , �. Note that we may have � < n since some processes may
crash or be arbitrarily slow. Then u is in the language Ln,k (i.e., represents a
correct execution of an algorithm A pretending to solve (n, k)-set-agreement)
if and only if (1) there are at most k different tij , j = 1, . . . , � (i.e., at most k
different values have been decided by A), and (2) for each tij , there must exist a
pair (sij′ , tij′) in u such that sij′ = tij (i.e., ti has been proposed by at least one
participating process). Again, a monitor for the set agreement language Ln,k

must produce opinions that enable to distinguish legal instances from illegal
ones, for some interpretation of those opinions. To establish an impossibility
result regarding monitoring, we must prove that there is no monitor enabling to
decide Ln,k whatever the interpretation of the opinions is.

Our Results. We first prove that the language Ln,k can be monitored using
min{2k, n}+1 opinions. Then, our main result is a proof that it is impossible to
monitor Ln,k with fewer opinions. Thus, in particular, consensus can be moni-
tored with 3 opinions, and cannot be monitored with less than 3 opinions, even
using interpretations different from the logical conjunction of boolean opinions.

The upper bound is a simple adaptation of the universal algorithm presented
in [13]. Our proof technique for the lower bound is also inspired from the lower
bound in [13], and, as such, is also based on combinatorial topology arguments
using Sperner’s lemma. However, a careful analysis of the alternation number of
the set agreement language had to be achieved in this paper. This parameter
captures the number of times a sequence of instances can alternate between legal
and illegal over an execution of the system.

Hence, the main outcome of this paper is the perhaps surprising result, that
the difficulty of monitoring set agreement (in terms of number of opinions) is
captured by the formula min{2k, n} + 1. The difficulty grows linearly as k is
increased, at double the rate, and only until 2k = n. For larger values of k, the
number of opinions stays at its maximum, equal to n+ 1 (no task requires more
opinions). Indeed, monitoring the most important case in distributed comput-
ing, which is k = n − 1, does not require more opinions than when 2k = n.
We conjecture that the number of opinions has a direct relation with the num-
ber of logic values needed to design a temporal logic framework, and it is well
known that more logic values dramatically increase the difficulty of reasoning
in the logic. Hence this paper continues motivating further research at the bor-
der between runtime verification and distributed computability, in the context of

158 P. Fraigniaud et al.

studying necessary conditions for monitoring asynchronous distributed systems
susceptible to failures.

Related Work. Most work on decentralized monitoring, is based on logical
frameworks, using LTL or variants of it, see e.g. [4], where a formula φ is de-
composed into local formulas, so monitor i evaluates locally φi, and emits a
boolean-valued opinion. In our terminology, a logical conjunction interpretation
is used. That is, it is assumed a global violation can always be detected locally
by a process. See [13] for a more detailed discussion logic-based runtime verifi-
cation. To the best of our knowledge, the effects of asynchrony and failures in a
decentralized monitoring setting were considered for the first time in [12], and
subsequently in [13]. In distributed computing, monitoring has been investigated
for stable property detection in a failure-free message-passing environment [7],
and distributed program checking in the context of self-stabilization [3].

2 Preliminaries

We consider the standard wait-free shared memory model [17]. The system con-
sists of n processes denoted {p1, . . . , pn} that communicate via a shared memory.
Processes are asynchronous and any number of them may fail by crashing (i.e.,
halt and never recover.). The shared memory is made of n shared registers, one
per process, that support atomic read and write operations. To simplify the de-
sign of protocol, we assume that atomic snapshots [1] are available. An atomic
snapshot consists in an n-components array R and supports two operations up-
date(v) and snapshot(). update(v) by process pi sets the value of R[i] to v and
snapshot() reads atomically all the components of R [1].

A task specifies for each process possible inputs and for each possible assign-
ment of inputs to the processes, which are the valid outputs. More precisely,
an input or output set is a non-empty set s = {(id1, v1), . . . , (id�, v�)} where
id1, . . . , idk are distinct processes identities1 and v1, . . . , vk are values from some
set V . s specifies an assignment of input or output values to each processes in
ID(s) = {id1, . . . , idk}. The set of values in s is denoted by val(s), or mval(s)
when considering the multiset of values. Two input or output sets s, t match
if ID(s) = ID(t). A task is specified by a triplet (I,O, Δ) where I and O are
inclusion-closed sets of input and output sets respectively, and Δ maps each
input set s ∈ I to a non-empty set of matching output sets.

In the (n, k)-set agreement task [8], each process input is a value taken from
some set V of cardinality larger than k. Each process is required to output a
value which is the input value of a participating process such that no more than
k distinct values are output. More precisely, I is the set of the input sets s with
val(s) ⊆ V and t = {(id1, v1), . . . , (id�, v�)} ∈ O if and only if |val(t)| ≤ k. For
any input set s ∈ I, Δ(s) = {t ∈ O : ID(s) = ID(t) and val(t) ⊆ val(s)}.

1 Identities are equal to processes indexes. That is, the identity of process pi is i.

The Opinion Number of Set-Agreement 159

Distributed Languages. Distributed languages have been introduced in [13] as
a simple way to represent correctness properties of distributed systems. Given an
alphabet of symbols A, a distributed language over A is a set of non-empty input
sets with, for each s ∈ L, val(s) ⊆ A. In the context of distributed languages,
input sets s with val(s) ⊆ A are called instances. An instance s is legal if s ∈ L
and illegal otherwise. A distributed language might specify a global property
that a distributed system should satisfy. In this case, each element of A encodes
a local state and the sets in L represent the global states of the system that
satisfy the property.

We focus on checking that the result of a distributed computation satisfies the
specification of a given task. More precisely, given a task T = (I,O, Δ), we define
the language LT induced by T as follows. Let VI and VO be respectively the sets of
possible input and output values of T . Language LT is defined over the alphabet
VI×VO. That is, each process input is a pair (si, ti) ∈ VI×VO. Given an input set
u = {(id1, (s1, t1)), . . . , (id�, (s�, t�))}, let su = {(id1, s1), . . . , (id�, s�)} and tu =
{(id1, t1), . . . , (id�, t�)}. Then, u ∈ L ⇐⇒ tu ∈ Δ(su). In other words, an input
set u belongs to LT if and only if each process i starting with input value si is
allowed to decide ti, according to the specification of T .

The language Ln,k induced by (n, k)-set agreement is defined as follows. The
alphabet over which Ln,k is defined is V × V where V is the set from which
values are proposed in the (n, k)-set agreement task. Then, for any instance
s = {(id1, (s1, t1)), . . . , (id�, (s�))}, s ∈ Ln,k if and only if |{t1, . . . , t�}| ≤ k and
{t1, . . . , t�} ⊆ {s1, . . . , s�}.

3 Wait-Free Languages Monitoring

As defined in [13], monitoring the correctness specified by a distributed language
L over an alphabet A involves two components: an opinion-maker M , and an
interpretation μ. The opinion-maker is a distributed protocol. For each process
pi, its input is a pair (idi, ai) where ai ∈ A and its output is an opinion about
the legality of the input set. The processes running this algorithm are called
monitors, and the (finite) set of possible individual opinions U , the opinion set.

The interpretation μ specifies how the collection of individual opinions pro-
duced by the monitors should be interpreted. It is required that the opinions
of the monitors should be able to distinguish legal input sets from illegal ones
according to L. Thus, μ = (Y,N) is a partition of all multi-sets of at most n
elements over U . Y is called the “yes” set, and N is called the “no” set.

A pair (M,μ) is a monitor for language L over alphabet A if the following
holds:

– For the opinion-maker protocol M , input of of each process i is any element
ai of A and the output an opinion ui. M is required to be wait-free: each
participating process is required to decide an opinion in a finite number of
its own steps, regardless of the behavior of the other processes.

160 P. Fraigniaud et al.

– For any input set s, in any execution of M with input s where all participat-
ing processes decide, the multiset S of opinions that are decided satisfies:

s ∈ L ⇐⇒ S ∈ Y.

Thus, if the input set s is illegal, i.e., s �∈ L, then the processes must produce
a multiset of opinions in N.

By extension, a pair (M,μ) is a monitor for a task T if (M,μ) is a monitor for
the induced language LT .

Example: AND-Interpretation. When the set of opinions consists only in
two values, i.e., U = {0, 1}, a natural interpretation μ is induced by the and-
operator [10,12] as follows. For every multi-set of opinions S, S ∈ Y if every
opinion in S is 1, otherwise, S ∈ N. Intuitively, a process outputs 1 if according
to its view the instance is legal and 0 otherwise. Note that the interpretation is
id-oblivious: for each opinion, the identities of the processes that produce that
opinion is not taken into account by the interpretation.

Not every language has a wait-free monitor with an and-interpretation. In-
deed, the languages that can be monitored with the and-interpretation are ex-
actly those that are projection-closed2 [12]. In particular, the language induced
by the consensus task is not projection-closed and therefore does not have a
wait-free monitor with the and-interpretation. In fact, our main result implies
that three opinions are necessary and sufficient to wait-free monitor consensus.

Opinion Number and Alternation Number. The opinion number
#opinion(L) of a language L, is the smallest size of the opinion set U for which
there exists a monitor with opinion U for L. The alternation number #altern(L)
of a language L is the longest sequence of increasing instances that alternates
between legal and illegal instances. More precisely, #altern(L) is the largest in-
teger � for which there exists instances s1 ⊂ s2 ⊂ . . . ⊂ s� such that for every i,
1 ≤ i < �, si ⊂ si+1, and either si ∈ L ∧ si+1 /∈ L or si /∈ L ∧ si+1 ∈ L.

A strong relationship between opinion and alternation numbers of languages
is exposed in [13]. First, it is established that the alternation number gives an
upper bound on the opinion number: For every language L, #opinion(L) ≤
#altern(L) + 1. Second, it is shown that for any k, 1 ≤ k ≤ n, there exists a
n-processes language L with #altern(L) = k that requires at least k opinions to
be monitored, i.e., #opinion(L) ≥ k. For (n, k)-set agreement, the alternation
number of the induced language Ln,k is:

Lemma 1. #altern(Ln,k) = min{2k + 1, n}.

Proof. Consider the following sequence of instances: s1 = {(1, (0, 1))}, s2 =
{(1, (0, 1)), (2, (1, 1))}, . . ., s2i = {(1, (0, 1)), (2, (1, 1)), . . . , (2i, (i, i))}, s2i+1 =
{(1, (0, 1)), . . . , (2i, (i, i)), (2i + 1, (i, i + 1))},. . . for i : 2i, 2i + 1 ≤ n. Note that

2 Language L is projection-closed if and only if for each s ∈ L and each s′ ⊂ s, s′ ∈ L.

The Opinion Number of Set-Agreement 161

s2i+1 /∈ Ln,k as this instance corresponds to the case in which a value, namely
i + 1 is decided whereas it has not been proposed. In s2i, however, i values are
decided and each of them is also a proposed value. Thus, if the number of decided
values is less than or equal to k, that is, i ≤ k, s2i ∈ Ln,k. Hence, the increasing
sequence s1, s2, . . . , smin{2k+1,n} alternates between legal and illegal instances.
Thus, #altern(Ln,k) ≥ min{2k + 1, n}.

Let s1 ⊂ . . . ⊂ sx be a sequence of increasing instances such that for ev-
ery i, 1 ≤ i < x, si ∈ Ln,k ∧ si+1 /∈ Ln,k or si /∈ Ln,k ∧ si+1 ∈ Ln,k.
Let D(i) denote the size of the set of values decided in si. That is, if si =
{(id1, (a1, b1)), . . . , (id�, (a�, b�))}, D(i) = |{b1, . . . , b�}|. Note that D(1) ≥ 1.
Consider instances si, si+1 with i such that with si ∈ Ln,k. As si ⊂ si+1, and
since in si no more that k values are decided and every decided value is valid, it
follows that a value not decided in si is decided in si+1, i.e., D(i) < D(i+ 1).

Let sx′ be the largest legal instance in the sequence. Note that x′ = x or
x′ = x− 1. On one hand, we have D(x′) ≤ k. On the other hand, 1 + �x′−1

2 ≤
D(x′), since the number of alternations from a legal instance to an illegal one

in the sequence s1, . . . , sx′ is at least �x′−1
2 and D(1) ≥ 1. Hence, x′ ≤ 2k,

and as x ≤ x′ + 1, we obtain x ≤ 2k + 1. Therefore, any sequence of increasing
and alternating instances is of length at most 2k + 1. Hence, #altern(Ln,k) ≤
min{2k + 1, n}.

The two next sections focus on determining how many opinions are needed to
monitor (n, k)-set agreement. We show that #opinion(Ln,k) = #altern(Ln,k) if
#altern(Ln,k) < n and #opinion(Ln,k) = n+1 otherwise, that is, #opinion(Ln,k)
= min{2k, n} + 1.

4 Monitoring k-Set Agreement

We prove in this section that (n, k)-set-agreement can be wait-free monitored
using min{2k, n} + 1 opinions.

In [13], an universal monitor is presented that uses at most n + 1 opinions
for any n-processes language. The opinion-maker of this monitor depends on the
language being checked whereas the interpretation depends solely on the opinions
output by the processes. Independently of the language, the opinions produced
by each process belongs to a set of size n+1. If k >

⌊
n
2

⌋
, min{2k, n}+1 = n+1

and thus in this case the language Ln,k induced by (n, k)-set-agreement can be
checked by the universal monitor described in [13].

For the case k ≤
⌊
n
2

⌋
, we present a monitor (M,μ) for (n, k)-set agreement

that uses 2k + 1 opinions. The set of opinions is:

U = {red} ∪ {(green, �) : 1 ≤ � ≤ k)} ∪ {(orange, �) : 1 ≤ � ≤ k)}.

Note that |U | = 2k+ 1. The partition (Y,N) is defined as follows. For any mul-
tiset S with values in U , let maxlevel(S) = max{� : (green, �) ∈ S∨ (orange, �) ∈
S}. Then,

S ∈ Y ⇐⇒ (green,maxlevel(S)) ∈ S ∧ red /∈ S (1)

162 P. Fraigniaud et al.

Equivalently, any multiset S that contains the value red or a pair (orange, �)
and no pair (green, �′) with � ≤ �′ is in the “no” set N.

Recall that each process pi starts with an input-output pair (si, ti), runs the
opinion-maker protocol and produces an opinion based on what it sees during
the execution of the protocol. Since we consider wait-free protocol and processes
run asynchronously, it may be the case that a process pi does not see the input-
output pair of some participating processes.

Intuitively, a process outputs red if in the collection (s′, t′) of input-output
pairs it sees does not fit the specification of (n, k)-set-agreement, and this can-
not be fixed by completing (s′, t′) with other input-output pairs. This occurs if
agreement is broken, i.e., more than k values are decided in t′. In the case where
agreement is satisfied (t′ contains at most k distinct values) as well as validity
(every decided values is proposed, that is, appears in s′), the process outputs
(green, d) where d ≤ k is the number of decided values. In the last case, namely
agreement is satisfied but validity is not (a decided value in t′ does not appear in
s′), (orange, d) is output. Note that in this case, the global input (s, t) consisting
in the collection of input-output pairs of each participating process may still fit
the specification of (n, k)-set agreement. The pseudo-code of the opinion-maker
appears in Fig. 1.

Opinion-maker M at process i with input (i, (si, ti)):

R.update
(
i, (si, ti)

)
;

r ← R.snapshot();
(s′, t′) ← ({(j, sj) : r[j] �= ⊥}, {(j, tj) : r[j] �= ⊥});
let val(s′) and val(t′) denote the set of values in s′ and t′ respectively;
if |val(t′)| > k then decide red
else if val(t′) ⊆ val(s′) then decide (green, |val(t′)|)

else decide (orange, |val(t′)|)

Fig. 1. Opinion-maker for (n, k)-set-agreement, k ≤
⌊
n
2

⌋

Correctness of the (n, k)-Set Agreement Monitor. We prove that, for
k ≤

⌊
n
2

⌋
, the opinion-makerM of Fig. 1 used with the interpretation μ described

in Equation 1 produce a wait-free monitor for (n, k)-set agreement task (I,O, Δ).
Note that the opinion set of M is of size 2k + 1, as desired.

Let V denote the set of possible input values for the (n, k)-set agreement task.
Let us consider an execution e of the opinion-maker with input set {(id1, (s1, t1)),
. . . , (id�, (s�, t�))} where (si, ti) ∈ V ×V for each i, 1 ≤ i ≤ �. Assume that every
participating process decides, and let S denote the multiset of opinions that
are decided in this execution. In addition, let s = {(id1, s1), . . . , (id�, s�)} and
t = {(id1, t1), . . . , (id�, t�)}.

A process pi decides red if more than k values are decided in the output set
t′ it sees. Even if i has only a partial view of the input, i.e., (s′, t′) � (s, t), the
lack of agreement cannot be fixed in (s, t) since every value decided in t′ is also
decided in t. Therefore, t /∈ Δ(s), and consequently, it is correct that S ∈ N.

The Opinion Number of Set-Agreement 163

Suppose that no processes decides red. Let pi be the last process that writes
its input (si, ti) into shared memory. The invocation of R.snapshot() by pi thus
starts after every participating process pj has updated the shared object with
its input (sj , tj). It thus follows that pi observes the full input (s, t). Denote by
d the number of decided values in t. Since no process decides red, d ≤ k. We
consider two cases, depending on whether t ∈ Δ(s) or not.

– Assume first that t ∈ Δ(s). Since pi sees the full output, it decides (green, d).
As in every partial input (s′, t′) ⊆ (s, t), the number of decided values is at
most d, each process that sees a partial input decides either (green, d′) or
(orange, d′) with d′ ≤ d. Therefore, maxlevel(S) = d, and thus S ∈ Y.

– Assume now that t /∈ Δ(s). Since no process decides red, the number of
decided values in t is at most k. As t /∈ Δ(s), then at least one decided value
is not valid, i.e., there exists a value u ∈ val(t) that is not contained in val(s).
Therefore pi decides (orange, d). Assume for contradiction that a process pj
decides (green, �) with � ≥ d. Observe that, at process j, the collection of
input-output pairs (s′, t′) seen by j is such that (s′, t′) ⊆ (s, t). Hence, every
value decided in t′ is also decided in t. Thus � = |val(t′)|, the number of
decided values seen by pj, is smaller than of equal to d.
Therefore � = d and processes pi and pj see the same output set W =
val(t) = val(t′) of decided values. Moreover, as pj decides (green, �), validity
holds for the pair (s′, t′), that isW = val(t′) ⊆ val(s′). Consequently, as s′ ⊆
s, each value v ∈ W is also proposed in s. Therefore, agreement and validity
are verified in (s, t) and pi should decide (green, d): a contradiction. Hence,
for every (green, �) ∈ S, � < d from which we conclude that S ∈ N.

The following Lemma summarizes the result of this section:

Lemma 2. (n, k)-set-agreement has a monitor that uses min{2k, n} + 1 opin-
ions, i.e., #opinion(Ln,k) ≤ min{2k, n} + 1.

5 Opinion Number of (n, k)-Set Agreement

We now establish a lower bound on the number of opinions required to monitor
Ln,k. The proof is by contradiction.

Assume for contradiction that Ln,k has a wait-free monitor (M,μ) with opin-
ion set U , |U | < min{2k, n} + 1. The existence of this monitor implies that a
specific task TU,μ has a wait-free protocol. When solving a task, each partici-
pating process starts with a private input value and has to eventually decide
irrevocably on an output value. Let V ,V ⊇ {0, . . . , k}, the alphabet of the lan-
guage Ln,k. In task TU,μ, process pi’s input is any pair (si, ti) ∈ V × V and it
is required to output a value ui ∈ U . When the input set s is a legal instance,
i.e., s ∈ Ln,k, the multiset of output value must belong to the “yes” set Y and
in the “no” set N otherwise. We show that as long as the set of opinions U is
of cardinality less than min{2k, n}+ 1, whatever the interpretation μ, task TU,μ

is not wait-free solvable. To that end, we rely on the representation of wait-free
computations by topological objects, as in, e.g., [2,15,16]. Our main tool is a
variant of Sperner’s Lemma.

164 P. Fraigniaud et al.

5.1 Preliminaries

Basic Notions of Topology. We first review some basic definitions. A complex
K is a set of vertices V (K), and a family of finite, nonempty subsets of V (K),
called simplexes, satisfying: (1) if v ∈ V (K) then {v} is a simplex, and (2) if s
is a simplex, so is every nonempty subset of s. The dimension of a simplex s
is |s| − 1, the dimension of K is the largest dimension of its simplexes, and K
is pure of dimension k if every simplex belongs to a k-dimensional simplex. A
simplex τ is a face of a simplex σ if τ is a subset of σ. If τ is not equal to σ then
τ is a proper face of σ. The complex induced by a simplex σ consists in σ and all
its faces.

In distributed computing, a vertex represents a local state, a simplex a global
state and a complex a collection of global states. Hence, one of the labels of each
vertex is an identity in [n]. We denote by ID(σ) the identities of the vertexes of
σ. A simplex is chromatic if it is properly colored with ids in [n]. A complex is
chromatic if each of its simplex is chromatic.

A simplicial map f from complex K to complex L is a function from V (K)
to V (K) that preserves simplexes. That is, if τ = {v1, . . . , v�} is a simplex of K,
then {f(v1), . . . , f(v�)} is a simplex of L. In addition, if K and L are chromatic
complexes, f is said to be id-preserving if for any simplex τ = {v1, . . . , v�} ∈ K,
ID(τ) = ID({f(v1), . . . , f(v�)}).

Pseudomanifold and Divided Images. A complex K of dimension n is a
pseudomanifold with boundary if it is strongly connected, and each (n − 1)-
simplex in K is a face of precisely one or two n-simplexes. For simplicity, a pseu-
domanifold with boundary will simply be called a pseudomanifold. We sometimes
write n-pseudomanifold as a shorthand for a n-dimensional pseudomanifold. Let
K be a n-pseudomanifold. A (n − 1)-simplex σ is said to be internal if it is a
face of exactly two n-simplexes of K and external otherwise. The boundary of
K, denoted ∂K, is the sub-complex of K induced by its external simplexes. More
precisely, ∂K consists in each (n− 1)-simplex of K that is a face of exactly one
n-simplex together with all its faces.

Divided images of complexes have been introduced in [2] as a combinatorial
tool to represent certain classes of executions of read/write wait-free protocols.
A subdivision of a complex is a divided image, but subdivided images are not
always subdivisions. Divided images capture the essential properties to study
wait-free computability.

Definition 1 ([2], Definition 4.1). Let K and L be finite n-dimensional com-
plexes and ψ a function that maps every simplex of K to a subcomplex of L. The
complex K is a divided image of L under ψ if and only if

1. ψ(∅) = ∅,
2. for every 0-simplex σ ∈ L, ψ(σ) is a single vertex,
3. for every σ, σ′ ∈ L, ψ(σ ∩ σ′) = ψ(σ) ∩ ψ(σ′), and
4. for every σ ∈ L, ψ(σ) is a dim(σ)-pseudomanifold with ∂ψ(σ) = ψ(∂σ).

The Opinion Number of Set-Agreement 165

When ψ is clear from the context or not relevant, we simply say that K is a
subdivided image of L . Next Lemma state some properties of divided:

Lemma 3 ([2], Lemma 4.2). Let K,L be n-dimensional complexes such that
K is a divided image of L under ψ.

1. For every σ, σ′ ∈ L, if σ ⊆ σ′, then ψ(σ) ⊆ ψ(σ).
2. For every pair of j simplexes σ, σ′ ∈ K, if σ �= σ′ and σ ∩ σ′ �= ∅, then
ψ(σ ∩ σ′) is a pseudomanifold of dimension strictly smaller than j.

3. A (n − 1)-dimensional simplex τ ∈ K is external if and only if for some
external (n− 1)-dimensionnal simplex σ ∈ L, τ ∈ ψ(σ).

The carrier of simplex τ ∈ K, denoted carrier(τ) is the simplex σ ∈ L of
smallest dimension such that τ ∈ ψ(σ). Note that, by Definition 1(3), carrier(τ)
is well defined and by Lemma 3(2), it is unique. If L is a chromatic complex, K is
a chromatic divided image [2] of L if K is a divided image of L, K is a chromatic
complex, and for any τ ∈ K, ID(τ) ⊆ ID(carrier(τ)). Note in particular that if
dim(τ) = dim(carrier(τ)), τ is properly colored with the ids in ID(τ).

Combinatorial Implication of Wait-Free Computability. Simplexes and
complexes are a convenient way to represent tasks and distributed protocol. A
tasks T = (I,O, Δ) can be equivalently described by an input complex Ĩ, an

output complex Õ and a function Δ̃ that maps each simplex of Ĩ to a sub-
complex of Õ. Vertexes of Ĩ and Õ are labeled with an identity and a value and
there is a simplex s = {(id1, v1), . . . , (v�, id�)} in Ĩ (respectively, Õ) if and only

if s is an input set in I (respectively, an output set in O). Similarly, t ∈ Δ̃(s)
if and only if the corresponding output set t is in Δ(s). In the following, we
consider the topological representation for tasks and drop the ˜ notation.

Without loss of generality, a read/write wait-free protocol consists in a certain
number B of (asynchronous) rounds. In each round, process pi writes its state in
its cell R[i], takes a snapshot of the memory and updates its state. The process
initial state is its input. At the end of the B rounds, a final state is reached on
which depends the process decision. A protocol complex P represents all possible
final states for some execution. Each vertex is labeled with an id and a possible
final state. σ = {(id1, v1), . . . , (id�, v�)} is a simplex in P if there is an execution
at the end of which process pi with identity idi is in state vi, for 1 ≤ i ≤ �.

An immediate snapshot execution can be divided into blocks. In each block, a
subset of the participating processes are active. They first simultaneously write
before taking a snapshot. One important result of the topological approach is a
characterization of the structural properties of the protocol complex of imme-
diate snapshot executions, namely the immediate snapshot protocol complex is
a chromatic divided image of the input complex [2]. If a protocol solves a task
T = (I,O, Δ), in any execution, the final states can be mapped to decision values
in such a way that the output set is allowed for the input set of the execution
according to Δ. As considering only a subset of all possible executions might
be sufficient to derive an impossibility result, we obtain the following necessary
condition for read/write wait-free solvability of tasks:

166 P. Fraigniaud et al.

Theorem 1 ([2], Theorem 5.10). Let T = (I,O, Δ) a task. If there is a
read/write wait-free protocol which solves T , then there is a chromatic divided
image I∗ of I and a id-preserving simplicial map δ from I∗ to O that agrees
with Δ.

A Variant of Sperner’s Lemma Given a function f : V (K) −→ U , for each
σ = {v0, . . . , v�} simplex of K, f(σ) denote the set of labels of the vertexes of σ
by f , i.e., f(σ) = {f(v0), . . . , f(v�)}.

Lemma 4. Let K be a n-pseudomanifold, let U be a set of at least n+1 elements
and let f : V (K) → U . If for some subset B ⊂ U of size n, there is an odd number
of B-labeled (n−1)-simplexes in the boundary of K, then there is an odd number
of C-labeled n-simplexes in K, for some set C of n+ 1 elements, B ⊂ C ⊆ U :

∣∣{σ ∈ ∂K : dim(σ) = n− 1 and f(σ) = B}
∣∣∣ is odd =⇒

∃ C, |C| = n+ 1,
∣∣{σ ∈ K : dim(σ) = n and f(σ) = C}

∣∣ is odd .

The proof is omitted and can be found in [11].

5.2 The Lower Bound

Lemma 5. Let M be a wait-free opinion-maker with opinion set U and μ be
an interpretation over U . If (M,μ) is a monitor for (n, k)-set-agreement, |U | ≥
min{2k, n} + 1.

Proof. Recall that in the (n, k)-set agreement task, each process starts with a
value from some set V and is required to decide an initial value of some process
such that no more than k distinct values are decided. For the proof, we assume
without loss of generality that V = {0, . . . , k}.

The proof is by contradiction. We assume that there exists a monitor (M,μ)
with opinion set U, |U | < min{n, 2k} + 1. The opinion-maker M is a wait-free
protocol. In any of its executions, each participating process i starts with a pair
(si, ti) ∈ V × V and is directed to decided a value ui ∈ U . The interpretation μ
defines a partition (Y,N) of all the multisets with values in U ; the multiset of
decided values belongs to Y if and only if the set of initial pairs (si, ti) verify
the specification of (n, k)-set agreement.
M is therefore a wait-free protocol for the task T = (I,U , Δμ) where I =

complex(V × V , n), U = complex(U, n). Given any finite set X , complex(X,n)
is the (n − 1)-dimensional pseudosphere [15] complex induced by X : for each
i ∈ [n] and each x ∈ X , there is a vertex labeled (i, x) in the vertex set of
complex(X,n) and s = {(id1, x1), . . . , (id�, x�)} is a simplex of complex(X,n)
if and only if {x1, . . . , x�} ⊆ X and s is properly colored with identities. The
relation Δμ is defined next.

Each simplex s = {v1, . . . , v�} of I represents the initial and decided values of
the participating processes in some execution of a (n, k)-set agreement protocol.

The Opinion Number of Set-Agreement 167

In more details, each vertex vj has two labels: an id id j , a pair (si, ti) ∈ V × V
representing the process input and output value for the (n, k)-set agreement
tasks. Let us define two predicates, agreek(s) and valid(s), that are verified if
the set of input-output pairs (si, ti) in s satisfy the agreement property and
validity property, respectively, of (n, k)-set agreement. That is,

agreek(s) ⇐⇒ |{tj : (id j , (sj , tj)) ∈ s}| ≤ k

valid(s) ⇐⇒ {tj : (id j , (sj , tj)) ∈ s} ⊆ {sj : (id j , (sj , tj)) ∈ s}

A vertex of a simplex t ∈ U has two labels: and identity id and an opinion
u ∈ U . Recall that ID(t) and mval(t) then denote the set of ids and the multiset
of opinions, respectively, of the vertexes of t. Δμ is then defined as follows. For
any s ∈ I, t ∈ U ,

t ∈ Δμ(s) ⇐⇒ ID(t) = ID(s) and

{
mval(t) ∈ Y if agreek(s) and valid(s)
mval(t) ∈ N otherwise.

We associate with each simplex s ∈ I a value in {+1,−1} depending on
whether agreement and validity hold in s:

∀s ∈ I : sign(s) =

{
+1 if agreek(s) and valid(s)
−1 otherwise.

We focus on the following simplexes of I (See also Figure 2):

σ2i = {(1, (0, 1)), (2, (1, 1)), (3, (1, 2)), (4, (2, 2)), . . . , (2i − 1, (i − 1, i)), (2i, (i, i))}, (i ≥ 1),

σ2i+1 = {(1, (0, 1)), (2, (1, 1)), (3, (1, 2)), (4, (2, 2)), . . . , (2i, (i, i)), (2i+ 1, (i, i + 1))}, (i ≥ 0).

Note that σ1 ⊂ σ2 ⊂ . . . ⊂ σn and that for each simplex σi, the complex induced
is a (i− 1)-pseudomanifold. Furthermore, we have⎧⎨⎩

valid(σi) and agreek(σi) if 1 ≤ i ≤ 2k and i is even
¬valid(σi) and agreek(σi) if 1 ≤ i ≤ 2k and i is odd
¬agreek(σi) if 2k < i

Hence, sign(σi) = (−1)i if 1 ≤ i ≤ 2k + 1 and sign(σi) = −1 for 2k + 1 ≤ i.
Another noteworthy property is the fact that every (dim(σi) − 1)-dimensional
face of σi except σi−1 has the same sign as σi:

∀i ∈ [2, 2k + 1],∀σ ⊂ σi,dim(σ) = dim(σi)− 1 ∧ σ �= σi−1 =⇒ sign(σ) = sign(σi)
(2)

Since there is a wait-free protocol for the task T = (I,U , Δμ), namely the
opinion-maker M , it follows from Theorem 1 that there is a chromatic divided
image I∗ of I under a function ψ and a id-preserving simplicial map δ : I∗ → U
that agrees with Δμ. Since δ is a simplicial map, it maps each vertex v ∈ V (I∗)
to a vertex δ(v) in U . Recall that each vertex of U has two labels: a process id
∈ [n] and an opinion u ∈ U . δ thus implies a (not necessarily proper) coloring
c : V (I∗) → U on the vertexes of I∗: For each vertex v of I∗, c(v) = val(δ(v)).
Given a simplex s = {v1, . . . , v�} ∈ I∗ we denote by slight abuse of notation
c(s) = {c(v1), . . . , c(v�)} ⊆ U the multiset of colors induced by δ of the vertex
of s. Figure 3 represents a chromatic divided image of the input simplex σ3.

168 P. Fraigniaud et al.

p1

p2

p3

p4

�0, 1�

σ1
�

�1, 1�

σ̃1

�

�1, 2��

�2, 2�

� σ2

�

σ̃2

�

σ3
�

σ̃3
�

Fig. 2. The simplexes σ1 ⊂
σ2 ⊂ σ3, and σ̃1 ⊂ σ̃2 ⊂ σ̃3

and their sign

p1

p2

p3

�0, 1�

�1, 1�

�1, 2��

�

�

odd number
of C-colored
simplex, (in-
duction hy-
pothesis)
�C� � 2, C �
U

no C-colored simplex

no C-colored simplex

Sperner Lemma ��
odd number of 3-colored
simplex

Fig. 3. Proof strategy

Claim. Let σ, σ′ be j-simplexes in I with sign(σ) = −sign(σ′) and let s, s′ be
j-simplexes in I∗. If s ∈ ψ(σ) and s′ ∈ ψ(σ′), c(s) �= c(s′).

Proof of Claim 5.2. c(s) is the multiset of opinions output by the participat-
ing processes (those processes with ids ID(s) = ID(σ)) in some execution e of
the opinion-maker M in which the initial configuration is σ. Similarly, in some
execution e′ of M with initial configuration σ′, the opinions collectively output
by the participating processes is c(s′). As sign(σ) = −sign(σ′), the validity and
agreement properties of (n, k)-set agreement in one initial configuration are sat-
isfied but this is not the case in the other execution. Therefore the same multiset
of opinion cannot be output in both executions. For example, in Figure 3, for any
1-dimensional simplex s in the subdivided left edge {(p1, (0, 1)), (p2, (1, 1))} and
any s′ in the subdivided top right edge {(p1, (0, 1)), (p3, (1, 2))}, c(s) �= c(s′).

Next, we show that for each j, 1 ≤ j ≤ min{2k+1, n}, there exists at least one
execution of the opinion-maker where the input configuration is σj in which the
j participating processes output j distinct opinions. More precisely, we establish
by induction on j the following claim (See Figure 3 for an illustration of the
proof strategy).

Claim. For each j, 1 ≤ j ≤ min{2k + 1, n}, there exists a set Cj ⊆ U of size j
such that

∣∣{s ∈ ψ(σj) : c(s) = Cj}
∣∣ is odd

Proof of Claim 5.2.

– Base case j = 1. By definition, σ1 is a vertex. By Definition 1(2), ψ(σ1) is
also a vertex v of I∗. Since δ is a simplicial map, δ(ψ(σ1)) is a vertex in U .

The Opinion Number of Set-Agreement 169

Let C0 = val(δ(ψ(σ1))), i.e., C0 = {c(v)}. That is, C0 is the singleton consist-
ing in the opinion output by process 1 when it runs alone with input/output
pair (0, 1).

– Induction step. Let j ≥ 2 and assume that the claim is true for j − 1.
By Definition 1(4), ψ(σj) is a (j − 1)-pseudomanifold. In order to apply

our variant of Sperner’s Lemma, we establish that the number of (j − 2)-
simplexes in the boundary of ψ(σj) that are colored with Cj−1 is odd. To
that end, let s ∈ ∂ψ(σj) be an (dim(σj)−1) dimensional simplex and assume
that c(s) = Cj−1. We prove that s ∈ ψ(σj−1).

Note that dim(s) = j−2. By Lemma 3(3), there exist a (j−2) dimensional
face σ of σj such that s ∈ ψ(σ). Suppose for contradiction that σ �= σj . It
then follows that sign(σ) = sign(σj) (Equation (2) from which we have
sign(σ) = −sign(σj−1). By the induction hypothesis, there is a least one
(j−2)-simplex s′ ∈ ψ(σj−1) with c(s′) = Cj−1. Since sign(σ) = −sign(σj−1),
it follows from Claim 5.2 that no (j− 2)-simplex in ψ(σ) is Cj−1-colored. In
particular, c(s) �= Cj−1: a contradiction.

Therefore, the only simplexes s ∈ ∂ψ(σj) that are Cj−1-colored are the
simplexes s in ψ(σj−1) such that c(s) = Cj−1. By the induction hypothesis,
the number of such simplex is odd. It thus follows from Lemma 4 that there
exists a set C = Cj ⊃ Cj−1 ⊇ U of j elements such that the number of
(j − 1)-simplexes s ∈ ψ(σj) colored with Cj is odd.

If min{2k + 1, n} = 2k + 1, we can stop here: we have just proved that
ψ(σj) ⊆ I∗ contains at least one 2k-dimensional simplex colored with 2k + 1
distinct colors. Hence |U | ≥ 2k + 1 = min{2k, n} + 1, as desired.

Suppose that n < 2k+1. A similar reasoning can be carried over the collection
of simplexes σ̃1 ⊂ . . . ⊂ σ̃n defined as follows (See also Figure 2):

σ̃2i−1 = {(2, (1, 1)), (3, (1, 2)), . . . , (2i−1, ((i−1), i)), (2i, (i, i))}, for 1 ≤ i ≤
⌊n

2

⌋
,

σ̃2i = {(2, (1, 1)), (3, (1, 2)), . . . , (2i, (i, i)), (2i+1, (i, i+1))}, for 1 ≤ i ≤
⌊
n− 1

2

⌋
,

σ̃n =

{
{(2, 1, 1), (3, 1, 2), (n, n2 ,

n
2), . . . , (1, n2 ,

n
2 + 1)} (n even)

{(2, 1, 1), (3, 1, 2), (n, n−1
2 , n−1

2 + 1), . . . , (1, n−1
2 + 1, n−1

2 + 1)} (n odd)

Note that sign(σ̃i) = (−1)i+1 and if σ̃ is a (dim(σ̃i)− 1) face of σ̃i different from
σ̃i−1, then sign(σ̃) = sign(σ̃i). We have established above (Claim 5.2) that ψ(σn)
contains at least one (n − 1)-dimensional simplex s with c(s) = Cn, where Cn

is a set of n opinions. By applying the same reasoning, considering simplexes
σ̃1, . . . , σ̃n instead, one can show that ψ(σ̃n) contains a (n − 1)-dimensional

simplex s̃ colored with a set C̃n ⊆ U of size n. Since sign(σ̃n) = (−1)n+1 =

−sign(σn), C̃n �= Cn (Claim 5.2), from which we conclude that |U | ≥ n+ 1.

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic Snap-
shots of Shared Memory. J. ACM 40(4), 873–890 (1993)

170 P. Fraigniaud et al.

2. Attiya, H., Rajsbaum, S.: The Combinatorial Structure of Wait-free Solvable Tasks.
SIAM Journal of Computing 31(4), 1286–1313 (2002)

3. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by Local Checking
and Correction. In: 32nd Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 268–277 (1991)

4. Bauer, A., Falcone, Y.: Decentralised LTL monitoring. In: Giannakopoulou, D.,
Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 85–100. Springer, Heidelberg (2012)

5. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL Semantics for Runtime
Verification. J. Log. and Comput. 20(3), 651–674 (2010)

6. Berkovich, S., Bonakdarpour, B., Fischmeister, S.: Gpu-based Runtime Verifica-
tion. In: 27th IEEE International Parallel & Distributed Processing Symposium
(IPDPS), pp. 1025–1036 (2013)

7. Chandy, M., Lamport, L.: Distributed Snapshots: Determining Global States of
Distributed Systems. ACM Trans. Comput. Syst. 3(1), 63–75 (1985)

8. Chaudhuri, S.: More Choices Allow more Faults: Set Consensus Problems in Totally
Asynchronous Systems. Information and Computation 105(1), 132–158 (1993)

9. Fischer, M., Lynch, N., Paterson, M.: Impossibility of Distributed Consensus with
One Faulty Process. J. ACM 32(2), 374–382 (1985)

10. Fraigniaud, P., Korman, A., Peleg, D.: Local Distributed Decision. In: 52nd An-
nual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 708–717
(2011)

11. Fraigniaud, P., Rajsbaum, S., Roy, M., Travers, C.: The Opinion Number of Set-
Agreement. Technical report hal-01073578 (2014),
http://hal.inria.fr/hal-01073578/PDF/

12. Fraigniaud, P., Rajsbaum, S., Travers, C.: Locality and Checkability in Wait-free
Computing. Distributed Computing 26(4), 223–242 (2013)

13. Fraigniaud, P., Rajsbaum, S., Travers, C.: On the Number of Opinions Needed for
Fault-Tolerant Run-Time Monitoring in Distributed Systems. In: Bonakdarpour,
B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 92–107. Springer, Heidelberg
(2014)

14. Henle, M.: A Combinatorial Introduction to Topology. Dover (1994)
15. Herlihy, M., Kozlov, D., Rajsbaum, S.: Distributed Computing Through Combi-

natorial Topology. Morgan Kaufmann-Elsevier (2013)
16. Herlihy, M., Shavit, N.: The Topological Structure of Asynchronous Computability.

J. ACM 46(6), 858–923 (1999)
17. Raynal, M.: Concurrent Programming - Algorithms, Principles, and Foundations.

Springer (2013)
18. Sen, K., Vardhan, A., Agha, G., Rosu, G.: Decentralized Runtime Analysis of

Multithreaded Applications. In: 20th International IEEE Parallel & Distributed
Processing Symposium (IPDPS) (2006)

http://hal.inria.fr/hal-01073578/PDF/

On the Importance of Registers

for Computability

Rati Gelashvili, Mohsen Ghaffari, Jerry Li, and Nir Shavit

Massachusetts Institute of Technology, Cambridge USA
{gelash,ghaffari,jerryzli}@mit.edu, shanir@csail.mit.edu

Abstract. All consensus hierarchies in the literature assume that we
have, in addition to copies of a given object, an unbounded number of
registers. But why do we really need these registers?

This paper considers what would happen if one attempts to solve
consensus using various objects but without any registers. We show that
under a reasonable assumption, objects like queues and stacks cannot
emulate the missing registers. We also show that, perhaps surprisingly,
initialization, shown to have no computational consequences when reg-
isters are readily available, is crucial in determining the synchronization
power of objects when no registers are allowed. Finally, we show that
without registers, the number of available objects affects the level of
consensus that can be solved.

Our work thus raises the question of whether consensus hierarchies
which assume an unbounded number of registers truly capture synchro-
nization power, and begins a line of research aimed at better under-
standing the interaction between read-write memory and the powerful
synchronization operations available on modern architectures.

1 Introduction

In a seminal paper [7], Herlihy introduced the consensus hierarchy, where the
synchronization power of an object is measured by its consensus number, defined
as the maximum number of processes for which wait-free consensus is solvable
using instances of the object and as many read-write registers as needed. But
do we really need these read-write registers? In this paper we consider what
would happen if one attempts to solve consensus (henceforth we will use the
term ”solve” to mean a wait-free solution) using various objects without any
registers.

Consider the following interesting example. It is well known [7] that a single
queue initialized with two items and with two registers, can solve two process
consensus. We show that this is possible even if the queue is in an arbitrary
initial state, and that a queue can solve two process consensus even without
registers if it is initialized properly. Moreover, two queues in arbitrary initial
states are sufficient for solving two process consensus. On the other hand, we
prove that it is impossible to solve two process consensus using a single empty
queue. In other words, unless you have multiple queues or multiple registers, a

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 171–185, 2014.
c© Springer International Publishing Switzerland 2014

172 R. Gelashvili et al.

queue’s ability to solve consensus is completely dependent on its initialization.
This example motivates us to better understand the computational effects of the
number of objects and their initialization when no registers are available.

We begin our investigation by considering a general class of objects we refer
to as consistent sets, that includes natural objects such as queues, stacks and
priority queues. Most of the above examples for queues are specific instances
of our results for consistent set objects. We show that it is possible to solve
two process consensus with a single consistent set object and two registers or
with two consistent set objects, even when the objects are initialized in arbitrary
states. We also show the corresponding generalization for the impossibility result
mentioned above:

Theorem 1. It is impossible to solve consensus for two processes using a single
consistent set object initialized in an empty state.

As far as we know this is the first result showing that initialization to a different
natural state matters for reaching agreement. At its core, the proof involves
inductively constructing an interleaving of two solitary executions, such that
the processes cannot distinguish between running alone and running in this
interleaved execution. However, obtaining the indistinguishability guarantees is
rather involved. It requires a new technique to adapt the interleaving to the
state of the consistent set object, and involves constructing successive pieces
of the interleaved execution separately and then merging them. The challenge
is to maintain indistinguishability, which we prove is possible because of the
properties of a consistent set object.

We have so far focused on whether two processes can solve consensus using a
limited number of objects. This question has practical value as typically small
numbers of objects are used in most data structure implementations. However,
on the more theoretical side, the work of Jayanti [9] shows that robust consensus
hierarchies must allow an arbitrary number of objects. Here we will assume that
processes communicate using an unlimited supply of linearizable objects [8], and
as in [3,6,10], we will also assume that there are an unlimited number of processes
in the system. Although, in this setting, our impossibility results will still hold
in a weaker model where only a bounded number of processes are allowed to run
concurrently. (In fact, even if the algorithms can assume that only two processes
will ever run at the same time).

Let us say that an implementation is isolation-bounded if the following holds:
there exists an absolute constant M , such that when the very first method call
is executed in complete isolation, it takes at most M steps. Practically all natu-
ral algorithms are isolation-bounded, even when an unbounded number of pro-
cesses are allowed to be concurrent. For example, all algorithms where the step-
complexity of a method can be upper-bounded by a function of the maximum
contention (number of concurrent processes) encountered are isolation-bounded.
We will henceforth consider isolation-bounded implementations.

Consider the test-and-set task [1], a simplification of consensus in which ex-
actly one process knows it is the winner (returns 1) and all other processes

On the Importance of Registers for Computability 173

know that they are losers (return 0), and assume a corresponding linearizable
test-and-set object.

We begin by showing the following results that capture the effects of having
registers:

Theorem 2. It is impossible to implement an isolation-bounded test-and-set
object for an unbounded number of processes using any number of (possibly in-
finitely many) empty queues (or empty stacks).

The proof of this theorem is interesting as it follows along lines that have, as far
as we know, never been used before in deriving shared-memory lower bounds.
Essentially, we wish to reduce the general case in which infinitely many processes
access infinitely many queues, to the case where infinitely many processes access
only finitely many queues in their solo executions. Once reduced, we can use a
counting argument to find two processes whose solo executions can be interleaved
so that for both processes running in the interleaved execution, their execution
is indistinguishable from running alone. To achieve this reduction, we use an
argument, akin to diagonalization, to produce an infinite set of processes for
which the desired property essentially holds.1

On the other hand, if read-write registers are available, one can use the tour-
nament tree construction from [2] to get the following result

Theorem 3. It is possible to implement an isolation-bounded test-and-set object
for an unbounded number of processes using infinitely many consistent set objects
(in any initial configuration) and read-write registers.

These theorems have a few important corollaries. The first of these corollaries
demonstrates a fundamental difference between registers and objects like stacks
and queues.

Corollary 1. It is impossible to implement a read-write register in an isolation-
bounded way using any number of (possibly infinitely many) empty queues
(stacks).
Interestingly, if the number of processors in the system is bounded, simulations
of a read-write register exist [4].

The second corollary is about initialization. Algorithms for consensus usually
assume that the objects and registers are initialized in a certain way. In fact,
the consensus number of an object can change depending on the initial state.
Consider an object with a consensus number at least two that has an additional
“invalid” state, unreachable from all other states, such that in the invalid state,
all method calls return null . Clearly, the object initialized in the invalid state
has consensus number one.

But generally, in most initial states the object will have the same consensus
number. For instance, as shown in [5], this is always true for states reachable

1 We remark that our proof requires the axiom of countable choice, which we will
assume without comment when necessary.

174 R. Gelashvili et al.

from each other.2 Our second corollary shows that perhaps surprisingly, for some
objects the difference in the synchronization power in these initial states can still
be quite significant:

Corollary 2. It is impossible to implement a queue (a stack) containing one
element in its initial state using any number of (possibly infinitely many) empty
queues (stacks) in an isolation-bounded way.

2 Consistent Sets and Two Consensus

Let us define a class of objects, that we will call consistent sets. Each consistent
set object represents a data-structure of items and implements two linearizable
methods: insert(item) and remove(). We say that a consistent set object con-
tains an item, if the item has not been removed since its last insertion in the
set. Assume that s1, s2, . . . , sm are the items contained in some consistent set
object, whereby s1 was inserted before s2, etc, before sm. The remove() op-
eration returns one of the items si, selected based on a fixed function F , i.e.
si = F (s1, s2, . . . , sm). If m = 0, then a special value null (which can never be
an item contained in the set) is returned instead. A consistent set object can be
initiliazed to an empty state (containing 0 items), or with any finite number of
items pre-inserted in an arbitrary fixed order.

Each consistent set object has its function F , defined for all possible item
sequences that satisfies the following two consistency properties:

– If there exist (possibly empty) sequences of items L,M,R, such that
F (L, si,M, sj , R) = si, then there do not exist item sequences (represented
by dots), so that F (. . . , si, . . . , sj , . . .) = sj .

– If there exist (possibly empty) sequences of items L,M,R, such that
F (L, si,M, sj , R) = sj , then there do not exist possible item sequences (rep-
resented by dots), so that F (. . . , si, . . . , sj, . . .) = si.

The exact choice of function F determines precise semantics of the data-structure.
For instance, a first-in-first-out queue, a stack and a priority queue are all
consistent set objects and correspond to particular choices of F : for a queue
F (s1, . . . , sm) = s1, for stack F picks sm and for a priority queue it picks the
item with the maximum (minimum) priority.

Lemma 1. It is possible to solve wait-free two process consensus using any con-
sistent set object O, initialized with a finite number of arbitrary items in an
arbitrary order.

Proof. Let W be an item that is different from all initial items in O . We claim
that the algorithm described in pseudo-code on Figure 1 solves wait-free consen-
sus for two processes. It is straightforward to show wait-freedom, so it suffices
to demonstrate that the algorithm solves consensus. It is also straightforward to
show that each process returns either its own value or the other process’s value.

2 In the above example where the consensus number changed, no state was reachable
from the invalid state.

On the Importance of Registers for Computability 175

Variables:
Proposed [2] = {⊥};
O ;

1 procedure decide(v, id = 0)
2 Proposed [0] ← v
3 if Proposed [1] = ⊥ then
4 return v
5 while(true)
6 item ← O.remove()
7 if item = W then
8 return v
9 if item = null then

10 return Proposed [1]

Algorithm 1: Pseudo-code for
process 0

1 procedure decide(v, id = 1)
2 O .insert(W)
3 Proposed [1] ← v
4 if Proposed [0] �= ⊥ then
5 return Proposed[0]
6 while(true)
7 item ← O.remove()
8 if item = W then
9 return v

10 if item = null then
11 return Proposed [0]
Algorithm 2: Pseudo-code for
process 1

Fig. 1. Two process consensus using a consistent set object O and registers

For i ∈ {0, 1}, let vi denote the value that process i gets as input. Suppose for
the sake of contradiction that the processes return different values. There are
two cases.

Process i returns vi, for i ∈ {0, 1}: By inspection, the only way that process
1 can return v1 is if it returns at line 9, that is, it enters the while loop then
removes W . There are two sub-cases. Suppose process 0 returns on line 4, so
that it returned since it saw Proposed [1] = ⊥, and returns v0. By inspection,
this is only possible if this occurs before process 1 executes line 3, which implies
that process 0 executes line 2 before process 1 executes line 4, which implies that
when process 1 reads Proposed [0] on line 4, it will see v0, and thus will return it,
which is a contradiction. Alternatively, process 0 could return on line 8, but this
would imply that on line 7, in some iteration of the loop, removes W . Since W
is only inserted once into the consistent set, this is a contradiction, since process
1 must remove it as well.

Process i returns v1−i, for i ∈ {0, 1}: By inspection, the only way that process
0 can return v1 is if it returns on line 10, that is, it sees an empty consistent
set. There are again two sub-cases, since process 1 can return v0 in one of two
ways. Suppose process 1 returns on line 5. Then by that point in the execution,
process 1 has already executed O .insert(W). Then, when process 0 enters the
while loop, it is guaranteed to eventually remove W since it is the only process
removing elements from the consistent set, so it will return v0 as well, which is a
contradiction. Thus, suppose process 1 returns on line 11. But this happens after
process 1 performs O .insert(W), and neither process can see W while removing
elements from the consistent set until the set is empty, which is a contradiction.

Let us next consider the synchronization power of consistent sets without regis-
ters.

176 R. Gelashvili et al.

Lemma 2. It is possible to solve wait-free two process consensus using any two
consistent set objects O0 and O1 , initialized with a finite number of arbitrary
items in an arbitrary order.

Proof. The algorithm is described on Figure 2. Recall F is the function which
uniquely defines the consistent set. We have two consistent set objects: O0 , where
process O inserts to, and O1 , where process 1 inserts to. Inserted elements are
pairs of form {Pi , vi} and {Qi , vi}, where vi is the input of process i, and Pi or
Qi are two different prefixes, such that the corresponding pairs are not the same
as any of the initial items in sets Oi .

We claim that the algorithm solves consensus. As with the proof of Lemma 1,
let vi be the input of the process i, for i ∈ {0, 1}. It is again straightforward to see
that the algorithm is wait-free. Thus it suffices to prove that the processes will
return the same value. Suppose for the sake of contradiction that the processes
return different values. Notice by the definition of a consistent set, if a process’s
call to remLW(O) returns {L, v}, then there must have been a previous remove
operation performed on O which returned the unique other element e inserted
into O with e.second = v and e.first ∈ {P0, P1, Q0, Q1}. Moreover, if e was
removed due to a remLW operation, that operation would return {W, v}.

There are two cases.

Process i returns vi, for i ∈ {0, 1}: By inspection, there is one way for process
0 to return v0, which is to return on line 7, which implies that a0.first = W and
a1 = null . That a1 = null implies that process 0 executes line 4 before process
1 executes line 13, which implies that b0 �= null . Since a0.first = W , this implies
that b0.first = L. Moreover, since a1 = null , this implies that b1.first = W , which
is a contradiction, as then process 1 cannot return v1.

Process i returns v1−i, for i ∈ {0, 1}: By inspection, there is one way for
process 1 to return v0, which is for it to fail the if statement on line 17. To fail
this if statement means that b0.first = L and b1.first = W (since b1 �= null). Since
b0.first = L, this implies that process 1 finishes line 15 after process 1 finishes
line 5, and it also implies that a0.first = W . This implies that process 0 finishes
executing line 4 before process 1 starts executing line 16, so the only way that
b1.first = W is if a1 = null , thus process 0 will return v0 as well.

Any algorithm for two-consensus (including the algorithms above) can be used
to solve test-and-set for two processes, simply by having each process return 1
instead of its own value and 0 otherwise.

Let us call a state of an instance of any consistent set object O lucky, if it
contains only a single copy of some item W .

Lemma 3. It is possible to implement a test-and-set object for an unbounded
number of processes using a single consistent set object O initialized in a lucky
state.

Proof. The algorithm for each process is to simply remove items from O until
observing W or null . In the first case, the process returns 1 and in the second

On the Importance of Registers for Computability 177

Variables:
O0 ,O1 ;

1 procedure decide(v, id = 0)
2 O0 .insert({P0 , v})
3 O0 .insert({Q0 , v})
4 a1 ← remLW(O1)
5 a0 ← remLW(O0)
6 if a0 .first = W and

a1 = null then
7 return v
8 else
9 return a1.second
Algorithm 3: Pseudo-code
for process 0

1 procedure remLW(O)
2 while(true)
3 t ← O .remove()
4 if t = null then
5 return null
6 if t .first ∈ {Pi ,Qi} then
7 v = t .second
8 if F ({Pi, v}, {Qi, v}) = t

then
9 return {W, v}

10 else
11 return {L, v}
12 procedure decide(v, id = 1)
13 O1 .insert({P1 , v})
14 O1 .insert({Q1 , v})
15 b0 ← remLW(O0)
16 b1 ← remLW(O1)
17 if b0 .first �= L or b1 .first = L

then
18 return v
19 else
20 return b0 .second
Algorithm 4: Pseudo-code for pro-
cess 1

Fig. 2. Two process consensus using two consistent sets objects O0 and O1

case, it returns 0. By the semantics of the data-structure, one and only one pro-
cess will remove W and return 1. Moreover, that process can in fact be linearized
as the winner of the test-and-set, i.e. as the first to call the test-and-set() method
(since otherwise, another method call must have completed strictly earlier and
that it would have removed the unique element W).

Lemma 4. There exists a consistent set object O, such that it is possible to
solve wait-free two process consensus with O initialized in a lucky state.

Proof. A first-in-first-out queue is such an object. The algorithm for each process
is to first enqueue its own item and then keep dequeuing until either observing
W or null . In the first case, the process returns own value. Otherwise, it returns
the value of the other process (we show below how), and the exact argument
from Lemma 3 finishes the correctness proof.

To show how the process knows the value to return, consider the process p
that observes null at time t. Since the other process has dequeued W by time
t, it must have already enqueued its value, which comes later than all original
items of O (including W) in the first-in-first-out order. The other item with this
property is the input value of p itself. Therefore, the last two items dequeued
by p must be the input values of the processes, p knows its own value and can
simply tell the value of the other process.

178 R. Gelashvili et al.

Given these insights, the following result may be surprising:

Theorem 1. It is impossible to solve wait-free two process consensus using a
single consistent set object O initialized in an empty state.

Proof. Assume the contrary. Then the existence of the consensus protocol implies
that there also exists a wait-free test-and-set implementation for two processes
using just a single consistent set object O initialized in an empty state. For each
process i ∈ {0, 1} there exists a solo execution where process i runs in isolation
and returns 1 after some finite number ti of steps. Let E0 and E1 be these solo
executions. Each step in these executions is either an insert(item) or remove()
call on O .

We obtain a contradiction by constructing a schedule where both processes
are executed, but never observe any difference from their solo executions, i.e. the
execution of process i is indistinguishable from Ei from its prospective. Formally,
given a serial execution Ei which only makes method calls to O, and a linearized
execution E containing Ei and other method calls from other processes to O,
we say that Ei is indistinguishable from E if for every remove operation in Ei,
it gets the same response as it does in E. Clearly, if process i has solo execution
Ei and E is an execution which is indistinguishable from Ei, it must return 1 in
E, so if an execution E is indistinguishable from two solo executions, we derive
a contradiction.

To construct this interleaving, we use induction on total number of steps in
E0 and E1 to prove the existence of the interleaved execution. We say the first
� steps of an execution form an �-prefix.

The following proposition provides the base case for induction.

Proposition 1. If for one of the processes, say for process j, tj = 0 holds, then
it is possible to interleave the executions E0 and E1 such that the interleaved
execution is indistinguishable from the solo execution for each process.

Proof. The number of steps in solo execution Ej is 0, so we start by running
process j which immediately returns as in Ej and does not change the state
of the object O . Thus we then complete the interleaved execution by running
process 1− j until it returns, and because the starting state of O is empty as in
E1−j , this execution also precisely matches E1−j .

For inductive step, assume we know that if the total number of steps in two solo
executions E0 and E1 is less than k, then it is possible to interleave them such
that the interleaved execution is indistinguishable from the solo execution for
each process.

We now consider several cases, each requiring a different treatment. By adjust-
ing formulations it is possible to merge some cases, but the particular structure
is chosen for clarity. Let the total number of steps in E0 and E1 be k.

Case 1: A mute prefix: An �-prefix for a solo execution for process i is called
mute if O remains empty after the prefix is executed by process i in isolation.

Proposition 2. If one of the executions, say execution Ej contains a non-empty
mute prefix, then it is possible to interleave the executions E0 and E1 such that

On the Importance of Registers for Computability 179

the interleaved execution is indistinguishable from the solo execution for each
process.

Proof. We start the interleaved execution by letting process j execute the mute
prefix of Ej . This is possible because we actually run process j in isolation, so
it simply executes the mute prefix exactly as in Ej . Afterwards, by definition
of the mute prefix, O is empty. Moreover, the total number of steps in the solo
executions that the rest of the interleaved execution should match has strictly
decreased. Therefore, we can use the inductive hypothesis for the same E1−j

and Ej without the non-empty prefix to construct the rest of the interleaved
execution.

Thus we may assume that the solo execution Ei for process i ∈ {0, 1} does not
contain a mute prefix and it consists of non-zero number of steps. Define fi(�)
to be the item that would be removed by a remove() call right after executing
an �-prefix of Ei in isolation.

Case 2: A barrier: For i ∈ {0, 1}, let s1, s2, . . . , sm be the items that are
inserted and removed from O during the solo execution Ei by process i, in order
of their insertion. Let gi be the item that would be removed the last if we first
inserted all of these items in O in order, and then removed them one-by-one. Note
that this does not have to be sm. We call fi(�) a barrier if F (fi(�), g1−i) = g1−i.

Example 1. The motivating example of a barrier is when O is a priority queue
which returns elements with high priority first. Consider the situation where
process 0 (say) inserts a number of elements into the priority queue with priority
≤ 1 then some elements with priority 2 in its solo execution, and process 1 inserts
many elements into O with priorities either 2 or 3 in its solo execution. Then,
the prefix of process 0 which consists of it inserting elements with priority ≤ 1
forms a barrier, and such a prefix is natural to consider because this essentially
acts like a mute prefix to process 1 in that process 1 will never see anything from
this prefix, and mute prefixes are easy to induct on.

To reason about this case, we need a technical property about the behavior
of consistent sets which is obvious for simple objects such as queues, stacks, and
priority queues.

Proposition 3. Consider a serial execution E consisting of calls to a consistent
set object O. Let s be some element inserted and subsequently removed during E,
and let E′ be the execution constructed by removing insert(s) and the remove()
which returned s. Then the output of all other remove() operations in E′ is
unchanged.

Proof. We will actually prove a slightly stronger statement: that at any point in
the execution E, if O contains s, at that same point in time in E′, the state of
O is identical except with s removed, and if O does not contain s. then at the
same point in time in E′, the state of O is exactly the same. This clearly implies
our claim.

180 R. Gelashvili et al.

To prove this stronger statement, we proceed by contradiction. Let R1 be
the first operation after which the states of O in E and E′ do not follow this
invariant. By inspection this must be a remove operation. Denote the remove()
which returned s by R. Clearly the behavior of O at any state before insert(s)
occurs is the same in E and E′, so R1 must happen after the insertion of s.
Similarly, if R1 was after R in E, then by the invariant, before R the state of
O in E and E′ is identical. Thus the last remaining case is if R1 was scheduled
before R in E but after insert(s). Suppose in E it returns some element s′ and
in E′ it returns some element s′′ �= s′. Let A = s1, . . . , s� be the list of objects
in present in O ordered by insertion time if we execute E but pause right before
executing R1. Clearly this is of the form L, s′,M, s′′, R or L, s′′,M, s′, R for some
L,M,R, where s is in either L,M, or R. W.l.o.g. assume that it is of the former
type, and assume s ∈ L (the other cases are identical). We know that F (A) = s′.
Form L′ by removing s from L, and let A′ = L′, s′,M, s′′, R. Then by consistency,
F (A′) �= s′′. But by the invariant, before R1, the state of O in E′ was exactly
A′, which is impossible. This proves the proposition.

Now we have the tools to do the induction in the presence of a barrier:

Proposition 4. If one of the executions, say execution Ej , contains a barrier
fj(�), then it is possible to interleave the executions E0 and E1 such that the
interleaved execution is indistinguishable from the solo execution for each process.

Proof. Consider the largest � so that the �-prefix of Ej is a barrier. We start
building the desired interleaved execution by executing the �-prefix pj of Ej .
This leaves a number of items in O , so in particular fj(�) is well-defined. Now,
let us trim the remaining piece of Ej : we get rid of all remove() operations that
in the solo execution remove items inserted in pj . Thus, the trimmed schedule

Ẽj does not contain the l-prefix of Ej and any later remove() operations that
in the solo execution return items inserted during the l-prefix. By the above
proposition, every remove() operation in Ẽj returns the same thing it did in
Ej . In particular, none of them return null because none of them could have
returned null in Ej as otherwise Ej would have had a mute prefix.

Because the number of operations in Ẽj is strictly smaller than in Ej , using our
inductive hypothesis let us construct an indistinguishable interleaved execution
X for executions Ẽj and E1−j assuming that O started in an empty state. Note
that execution X is only indistinguishable if O is initially empty. Moreover, we
do not immediately get any guarantees for the original execution Ej .

However, we will show that it is possible to interleave the trimmed operations
from Ej back intoX to createX ′ so that pjX

′ is a valid interleaving of E0 and E1

and is indistinguishable to both processes from their solo executions. Assume the
opposite, and consider first time t at which we are unable to indistinguishably
schedule the next operation without violating the above invariant. Since the
only operations which provide feedback are remove() operations, we can assume
without the loss of generality that the next operations to be scheduled for both
processes are both remove() operations.

On the Importance of Registers for Computability 181

Suppose at time t, the next operation scheduled in X is by process 1 − j.
The operation has to be a remove() that returns some item s instead of another
item r �= s that would be returned at this point in E1−j . By our assumption, all
previous operations have been indistinguishable, so O has to contain item r at
time t. Also, r is clearly inserted by process 1− j, since it is removed by process
1−j in the solo execution E1−j . If s was inserted during X (and not in pj), since
we still insert the items according to X in the new interleaved execution, during
the corresponding remove() operation in X items s and r would certainly be
contained in O in the exact same order as during the above remove() operation
in the interleaved execution. But since X is indistinguishable from E1−j , the
removal in X returns r and not s, contradicting the consistency of O .

If s was inserted during pj , let us w.l.o.g. assume that fj(�) was inserted after s
and g1−j after r. We will show that F (s, r) = r, a contradiction since that means
that the remove operation at time t would return r instead of s, as s is inserted
before r in the execution of interest since it was inserted during pj . Consider
u = F (s, fj(�), r, g1−j).

3 We know F (r, g1−j) = r by the definition of g1−j , so
u �= g1−j by the definition of consistent sets. Similarly, since F (fj(�), g1−j) =
g1−j since fj(�) is a barrier, we know u �= fj(�). Finally, F (s, fj(�)) = fj(�) by
definition of fj(�), so we know that u �= s. Thus, u = r, and so by the properties
of consistent sets we conclude that F (s, r) = r.

Now assume that the next operation according to X is by process j. The
next operation to be scheduled for Ej must be a remove (which may have been
trimmed). Call this operation R. By assumption, it removes some item s instead
of an item r �= s which would be removed in Ej at this step. If s was inserted by
process j, then in solo execution Ej process j should have observed items s and
r in O in the same order as here, but removed r, contradicting the consistency
property.

Thus suppose s was inserted by process 1 − j. We claim that R must have
been trimmed, since otherwise R is the next remove operation in execution X .
But then, since all the items present in O at this point in X must also be present
in O in this point in the execution we are building, since we have included all
the actions of X up to this point in our execution, this implies by the definition
of consistent set objects, that in X , R must also remove s, contradicting the
indistinguishability of X from solo executions.

But if R was trimmed and would at this point return some s inserted by
process 1− j, we claim that there exists a �′ > � so that the �′-prefix of Ej would
also be a barrier, which contradicts our choice of �. Indeed, let r be the item that
R, the last remove() up to this point in the solo execution Ej , removes and let v
be the item that would be removed if we executed another remove() right after
Ej (v has to exist, otherwise the whole execution Ej is a mute prefix). Since
the removal of r is trimmed, insert(r) must be in the pj . Assume without the
loss of generality that fj(l) is inserted after r and before v in Ej and consider

3 The other cases are symmetric: we would consider F (fj(l), s, r, g1−j), F (s, fj(
)
, g1−j , r) or F (fj(
), s, g1−j , r).

182 R. Gelashvili et al.

F (r, fj(l), v).
4 F (r, fj(l)) = fj(l) must hold by the definition of fj(l), and since

the last trimmed removal also observed v but removed r, F (r, v) = r holds. By
the definition of a barrier, F (fj(l), g1−j) = g1−j, and so combining these three
facts and using consistency like before we get F (r, fj(l), v, g1−j) = g1−j which
again by consistency of F implies that F (v, g1−j) = g1−j . Thus if we take the
prefix of Ej up to and including R, we get another barrier which has length
strictly larger than �, which is a contradiction. This completes the proof of the
proposition.

Case 3: No Mute Prefixes or Barriers.: The rest of the proof of the main
theorem is relegated to the full version5 so as not to lose the reader in details and
considers the case when none of the executions Ei (i ∈ {0, 1}) contains a mute
prefix or a barrier. The application of the inductive hypothesis (albeit twice)
and the trimming technique is still required, but the partitioning of executions
and the proof details differ.

3 Unbounded Number of Objects

Theorem 2. It is impossible to implement an isolation-bounded test-and-set ob-
ject for an unbounded number of processes using any number of (possibly in-
finitely many) empty queues (or empty stacks).

Proof. Let us assume contrary and consider an isolation-bounded algorithm that
implements test-and-set for an unbounded number of processes with initially
empty queues. Because of isolation-boundedness, any process that runs in iso-
lation from the initial state can take at most a fixed number of steps, say M ,
each being an insert(item) or remove() operation on one of the queues, before
returning 1.

Associate to each process p the ordered list sq of the M steps it would take
if it ran in isolation. We call this quantity the signature of p. Suppose each
queue is touched by finitely many signatures. Let Q1 be any queue which is
touched, say by process p. Then p’s signature touches at most M queues, call
them Q1, . . . , QM . At most finitely many other processes can touch these same
queues, so there must be a process q whose signature does not touch any of the
Qi. Running p then q gives us an immediate contradiction, since their actions on
the queues they touch do not interact at all, and thus they cannot distinguish
between running together and running in isolation, and must both return 1.

Thus we can assume that there exists a queue Q1 such that an operation on
this queue occurs in infinitely many signatures. Let P1 denote the set of processes
whose signatures contain an operation on Q1. Next, if there is a queue Q2 such
that an operation on it occurs in infinitely many signatures from P1, we consider
this infinite subset P2 ⊆ P1. Inductively, we build sets Pi ⊆ Pi−1 ⊆ . . . ⊆ P1 and
choose queues Qi, until the process terminates. This can only happen at most

4 Otherwise, considering the respective order works analogously.
5 Available under publications at http://groups.csail.mit.edu/mag/

http://groups.csail.mit.edu/mag/

On the Importance of Registers for Computability 183

M times, since the members of PM (if they exist) must in isolation perform
the maximum number of allowed operations (i.e. M operations), namely on
the queues Q1, . . . , QM . Thus, we end up with an infinite set of signatures Pm

(m ≤ M), such that each of the signatures contains an operation on each Qj

(1 ≤ j ≤ m), and for every other queue, an operation on it is contained only in
a finite number of signatures from processes in Pm. We let Q = {Q1, . . . , Qm}.

We can now find an infinite subset P ⊆ Pm, such that if two processes from P
have signatures which involve operations on a shared queue, this queue has to be
one of our selected queues Q. We do so inductively: choose p1 ∈ Pm arbitrarily.
This process’s signature touches at most M − 1 queues not in Q. Moreover,
finitely many other processes in Pm have signatures which touch these queues
by the construction of Pm. Thus we can choose a p2 ∈ Pm which does not
touch any of these queues, and then we recurse to find pi for all i, and we let
P = {pi}∞i=1. It is straightforward to verify that this set has the desired property.

Let us now focus on the processes in P and consider only the operations they
perform on queues Q. Clearly, each process performs at most M such operations
when run in isolation. Each operation is either insert(item) or remove() on some
Qj, thus there are 2m different types of operations. There are only finitely many
different possibilities to order at most M operations of 2m different types, and
infinitely many processes in P , thus by the pigeon-hole principle, we can find two
processes p, q ∈ P , such that their signatures both involve the same operations
on the same queues in Q in exactly the same order. Moreover, they may perform
actions on queues not in Q, but by the construction of P , the sets of queues they
touch outside of Q are disjoint.

Let us execute p and q in the following “lock-step” fashion: we let p take steps
until the first operation on some Qj, then we let q take its steps until it performs
the same type of operation on the same Qj , etc, until they both finish. At any
point in the execution when q has just taken a step, we claim that the following
invariant holds: none of the processes have observed a difference from their solo
executions, and each queue Qj contains items that p inserted and items that q
inserted, interleaved one-by-one. Moreover, if we only consider the items inserted
by one of the processes, say p, they are the same items and in the same order as
in the solo execution of p.
p and q could only observe a difference after a remove() call on one of the

queues Qj , because other queues are accessed by only one process. Now, the
invariant holds initially, and if the next operation on some Qj is insertion (nec-
essarily the same queue for both processes, but they may insert different items),
we let p insert, then q insert, so the invariant holds afterwards. If it is a removal
from some Qj for both processes, then since the items of p and q are interleaved
but consistent with respective solo executions, first removal by p will return the
item p previously inserted (or null) and does not observe a difference, then q
does the same with its item.

Thus, we are able to execute p and q, both of which cannot distinguish the
execution from a solo execution and return 1 contradicting the correctness of
the test-and-set implementation.

184 R. Gelashvili et al.

A very similar argument works for the stack, except when running processes
in lock-step, if the operation is a remove(), we should reverse the order and let
q execute first.

On the other hand, if we have registers available implementing test-and-set be-
comes possible.

Theorem 3. It is possible to implement an isolation-bounded test-and-set object
for an unbounded number of processes using infinitely many consistent set objects
(in any initial configuration) and read-write registers.

Proof. The adaptive tournament tree from [2] is an algorithm that implements
isolation-bounded test-and-set for an arbitrary number of concurrent processes.6

It requires registers and a black-box test-and-set primitive for two processes.
Using Lemma 2, we can do test-and-set for two processes with just two consistent
set objects initialized with a finite number of arbitrary items in an arbitrary order
(or with one object and registers, per Lemma 1). This two process test-and-set
object can be directly plugged into the [2] construction as the building block. The
other crucial building block is a splitter object [11], which is easily consructed
using registers. The algorithm is isolation-bounded, since any process running
in isolation from the initial state stops in the first splitter and participates only
in a few two-process test-and-sets.

Corollary 1. It is impossible to implement a read-write register in an isolation-
bounded way using any number of (possibly infinitely many) empty queues
(stacks).

Proof. Assume contrary. Then we can use the same algorithm as in Theorem 3 to
implement a test-and-set object for an unbounded number of processes, except
we replace each register in the construction with an isolation-bounded register
implementation out of empty queues. The resulting test-and-set construction
would then only use empty queues and would be isolation-bounded, because both
the original implementation and the new register implementation are isolation-
bounded. In fact, if the constant bounds on the number of steps are c1 and c2,
the bound for the new construction would be c1c2. Such a construction, however,
contradicts Theorem 2.

Corollary 2. It is impossible to implement a queue (a stack) containing one
element in its initial state using any number of (possibly infinitely many) empty
queues (stacks) in an isolation-bounded way.

Proof. By Lemma 3, a single consistent set object initialized in a lucky state can
implement a wait-free test-and-set object for unbounded number of processes.
A queue is a consistent set object and a state with a single item is a lucky
state. By inspection, the test-and-set algorithm from Lemma 3 using a queue
with a single element is isolation-bounded (an initial isolated run involves just

6 We consider non-randomized version of the construction.

On the Importance of Registers for Computability 185

one removal). Therefore, being able to implement a queue with a single item
would immediately allow implementing an isolation-bounded test-and-set object
for an unbounded number of processes, which by Theorem 2 is impossible using
any number of empty queues.

Acknowledgements. Support is gratefully acknowledged from the National
Science Foundation under grants CCF-1217921, CCF-1301926, and IIS-1447786,
the Department of Energy under grant ER26116/DE-SC0008923, and the Oracle
and Intel corporations.

The authors would like to thank Eli Gafni and Yehuda Afek for helpful con-
versations and feedback.

References

1. Afek, Y., Gafni, E., Tromp, J., Vitányi, P.M.B.: Wait-free test-and-set. In: Segall,
A., Zaks, S. (eds.) WDAG 1992. LNCS, vol. 647, pp. 85–94. Springer, Heidelberg
(1992)

2. Alistarh, D., Attiya, H., Gilbert, S., Giurgiu, A., Guerraoui, R.: Fast Randomized
Test-and-Set and Renaming. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010.
LNCS, vol. 6343, pp. 94–108. Springer, Heidelberg (2010)

3. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an asyn-
chronous environment. Journal of the ACM (JACM) 37(3), 524–548 (1990)

4. Bazzi, R.A., Neiger, G., Peterson, G.L.: On the use of registers in achieving wait-
free consensus. Distributed Computing 10(3), 117–127 (1997)

5. Borowsky, E., Gafni, E., Afek, Y.: Consensus power makes (some) sense! In: Pro-
ceedings of the Thirteenth Annual ACM Symposium on Principles of Distributed
Computing, pp. 363–372. ACM (1994)

6. Gafni, E., Merritt, M., Taubenfeld, G.: The concurrency hierarchy, and algorithms
for unbounded concurrency. In: Proceedings of the Twentieth Annual ACM Sym-
posium on Principles of Distributed Computing, pp. 161–169. ACM (2001)

7. Herlihy, M.: Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 13(1), 124–149 (1991)

8. Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for con-
current objects. ACM Transactions on Programming Languages and Systems
(TOPLAS) 12(3), 463–492 (1990)

9. Jayanti, P.: Robust wait-free hierarchies. Journal of the ACM (JACM) 44(4), 592–
614 (1997)

10. Merritt, M., Taubenfeld, G.: Computing with infinitely many processes. In: Herlihy,
M.P. (ed.) DISC 2000. LNCS, vol. 1914, pp. 164–178. Springer, Heidelberg (2000)

11. Moir, M., Anderson, J.H.: Fast, long-lived renaming (Extended abstract). In: Tel,
G., Vitányi, P. (eds.) WDAG 1994. LNCS, vol. 857, pp. 141–155. Springer, Heidel-
berg (1994)

Scalable Wake-up of Multi-channel

Single-Hop Radio Networks

Bogdan S. Chlebus1,�, Gianluca De Marco 2, and Dariusz R. Kowalski 3

1 University of Colorado Denver, Denver, Colorado, USA
2 Università di Salerno, Fisciano, Italy

3 University of Liverpool, Liverpool, United Kingdom

Abstract. We consider waking up a single-hop radio network with mul-
tiple channels. There are n stations connected to b channels without
collision detection. Some k stations may become active spontaneously at
arbitrary times, where k is unknown, and the goal is for all the sta-
tions to hear a successful transmission as soon as possible after the
first spontaneous activation. We present a deterministic algorithm for
the general problem that wakes up the network in O(k log1/b k log n)
time. We prove a lower bound that any deterministic algorithm requires
Ω(k

b
log n

k
) time. We give a deterministic algorithm for the special case

when b > d log log n, for some constant d > 1, which wakes up the net-
work in O(k

b
log n log(b log n)) time. This algorithm misses time optimal-

ity by at most a factor of logn log b. We give a randomized algorithm
that wakes up the network within O(k1/b ln 1

ε
) rounds with the proba-

bility of at least 1 − ε, for any unknown 0 < ε < 1. We also consider a
model of jamming, in which each channel in any round may be jammed
to prevent a successful transmission, which happens with some known
parameter probability p, independently across all channels and rounds.
For this model, we give a deterministic algorithm that wakes up the net-
work in O(log−1(1/p)k log n log1/b k) time with the probability of at least
1− 1/poly(n).

Keywords:multiple access channel, radio network, multi-channel, wake-
up, randomized algorithms, distributed algorithms.

1 Introduction

We consider wireless networks organized as a group of stations connected to a
number of channels. Each channel provides the functionality of a single-hop radio
network. A station can use any of these channels to communicate directly with
any other station.

This topology is called multi-channel in the literature. The assumption usu-
ally made is that a station can connect to at most one channel at a time for
either transmitting or listening. We depart from this restriction and consider the

� This work was supported by the NSF Grant 1016847.

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 186–201, 2014.
c© Springer International Publishing Switzerland 2014

Scalable Wake-up of Multi-channel Single-Hop Radio Networks 187

apparently stronger model in which a station can use all the available channels
simultaneously and independently from each other, some for transmitting and
others for listening. On the other hand, channels do not provide collision detec-
tion, which makes the model weaker than a multi-channel with carrier sensing
capabilities.

The algorithmic problem that we consider is to wake up the network. Initially,
all the stations are dormant but connected and listening to all the channels.
Some stations become active spontaneously and want the whole network to be
activated and synchronized. The first successful transmission on any channel
suffices to accomplish this goal.

We use the following parameters to characterize a multi-channel network. We
denote by n the number of stations and b is the number of shared channels.
At most k stations become active spontaneously at arbitrary times and join an
execution with the goal to wake up the network. When the first message is heard
on some channel then the network is considered woken up and synchronized.
Stations know n and b, but the number k is an unknown parameter used only
to characterize the scalability of a given wake up algorithm.
Our results. We present a deterministic algorithm which wakes up the network in
O(k log1/b k log n) rounds. We give a deterministic wake-up algorithm for the spe-
cial case of sufficiently many channels, which operates in O(kb logn log(b logn))

time when b > lg(128b lgn). We prove a lower bound of Ω(kb log n
k) rounds,

which are required by any deterministic algorithm. In view of this lower bound,
the algorithm of time performance O(kb logn log(b logn)) misses time optimality
by at most a factor of logn log b. We give a randomized algorithm that wakes
up the network within O(k1/b ln 1

ε) rounds with the probability of at least 1− ε,
for any unknown 0 < ε < 1. We also consider a model of jamming, in which
each channel in any round may be jammed to prevent a successful transmission,
which happens with some known parameter probability p, independently across
all channels and rounds. For this model, we give a deterministic algorithm that
wakes up the network in O(log−1(1/p)k logn log1/b k) time with the probability
of at least 1 − 1/poly(n).

For a multiple access channel, Jurdziński and Stachowiak [36] gave two ran-
domized algorithms, one working in O(log2 n) time steps with high probability
with respect to n, and another working in O(k) time steps with high probability
with respect to k. Our randomized algorithm for multi-channel networks has
performance sublinear in k for even just two channels.

Our deterministic general algorithm to wake up the network runs in time
that is O(k log1/b k logn). When b = Ω(log logn) then wake-up is performed in
O(k logn) time. This is similar to the time bound O(k + k log(n/k)) given by
Komlós and Greenberg [37] to resolve conflict for access to the channel among
any k stations that start an execution in the same round.
Previous and related work. Shi et al. [41] considered the model of a multi-
channel in which a node can simultaneously obtain different messages on dif-
ferent channels, while each channel is a single-hop radio network. They studied
the information-exchange problem, in which some � nodes start with a rumor

188 B.S. Chlebus, G. De Marco, and D.R. Kowalski

each and the goal is to disseminate all rumors across all stations. They gave and
algorithm of time performance O(log � log log �) with n channels available. Most
of the previous work on algorithms for multi-channel single-hop radio networks
used the model defined as a collection of multiple-access channels such that a
node has to choose a channel per round to participate in communication in this
particular channel either as a listener or transmitter. Variants to this model
with adversarial disruptions of channels were also considered. To the best out
our knowledge, [41] was the only previous paper that used the strong model in
which nodes can use all the available channels simultaneously and independently.

Next we review work done for the multi-channel model in which a station can
use at most one channel for communication at a time. Dolev et al. [27] studied
a parametrized variant of gossip for multi-channel radio networks. They gave
oblivious deterministic algorithms for an adversarial setting in which a malicious
adversary can disrupt one channel per round. Daum et al. [19] considered leader
election and Dolev et al. [26] gave algorithms to synchronize a network, both
papers about an adversarial setting in which the adversary can disrupt a number
of channels in each round, this number treated as a parameter for performance
bounds.

Information exchange has been investigated extensively for multi-channel wire-
less networks. The problem is about some � nodes initialized with a rumor each
and the goal is either to disseminate the rumors across the whole network or,
when the communication environment is prone to failures, to have each node
learn as many rumors as possible. Gilbert et al. [32] gave a randomized algo-
rithm for the scenario when an adversary can disrupt a number of channels per
round, this number being an additional parameter in performance bounds. Holzer
et al. [35] and [34] gave deterministic and randomized algorithms to accomplish
the information-exchange task in time O(�), for � rumors and for suitable num-
bers of channels that make this achievable. This time bound O(�) is optimal
when multiple rumors cannot be combined into compound messages. Wang et
al. [43] considered information-exchange in a model when collision detection is
available and rumors can be combined into compound messages. They gave an
algorithm of time performance O(�/b+ n log2 n), for � rumors and b channels.

A multi-channel single-hop network is a generalization of a multiple-access
channel, which consists of just one channel. For recent work on algorithms for
multiple-access channels, see [3,4,5,6,7,11,12,17,38].

The problem of waking up a radio network was first investigated by G ↪asieniec
et al. [31] in the case of multiple access channels, see [23,24,25,36] for more on
a related work. A broadcast from a synchronized start in a radio network was
considered in [8,14,15,16,21,22,39]. The general problem of waking up a multi-
hop radio network was studied in [9,10,13].

A lower bound for a multiple access channel was given by Greenberg and
Winograd [33]. Lower bounds for multi-hop radio networks we proved by Alon
et al. [1], Clementi et al. [15], Farach-Colton et al. [29] and Kushilevitz and
Mansour [40].

Scalable Wake-up of Multi-channel Single-Hop Radio Networks 189

Ad-hoc multi-hop multi-channel networks were studied by Alonso et al. [2],
Daum et al. [18] and [20], Dolev et al. [28], and So and Vaidya [42].

2 Technical Preliminaries

The model of a multi-channel single-hop radio network is defined as follows.
There are n nodes attached to a spectrum of b frequencies. We use the term
“station” and “node” interchangeably. The set of all stations is denoted by V .
Each frequency determines a multiple access channel. All these b channels op-
erate concurrently and independently from each other. All stations listen to all
channels all the time and obtain the same feedback from each channel. A station
can transmit on any set of channels at any time. A station obtains the respective
feedback from each channel separately and concurrently.

When a station successfully receives a message transmitted on some channel
then we say that the station hears the message. When no station transmits on
a channel then the channel is silent. When more than one stations transmit on
one channel such that their transmissions overlap then we say that a collision
occurs on this channel during the time of overlap.
The semantics of channels. When a station transmits on a channel and no
collision occurs during the transmission on this channel then each station hears
the transmitted message. When a station transmits a message and a collision
occurs during the transmission on the channel of transmission then no station
hears this transmitted message. Channels operate independently, in particular,
there could be a collision on one channel and at the same time a message may
be heard on some other channel. There is no collision detection, which means
that when a station listens to a channel then it receives the same feedback when
the channel is silent and when a collision occurs on this channel.

Transmissions on all channels are synchronized. This means that an execution
of an algorithm is partitioned into rounds of equal length so that each transmis-
sion occurs in some round. Each station has its private clock which is ticking at
the rate of rounds. Rounds begin and end at the same time on all channels. When
we refer to a round number then this refers to the indiction of some station’s
private clock and this station is understood. Messages are scaled to duration of
rounds so that transmitting a message takes a whole round. Two transmissions
overlap in time precisely when they are performed in the same round.
Spontaneous activations and waking up the network. Initially, all stations are
passive, in that they do not execute any communication algorithm, and in par-
ticular do not transmit any messages on any channel. Passive stations listen to
all channels all the time, in that when a message is heard on a channel then
all passive stations hear it. At a point in time, some stations become activated
spontaneously and afterwards they are active. Passive stations may keep get-
ting activated spontaneously after the round of the first activations. A specific
scenario of timings of certain stations being activated is called an activation
pattern.

An activated station resets its private clock to zero at the round of activation.
When a station becomes active, it starts from the first round of its private clock

190 B.S. Chlebus, G. De Marco, and D.R. Kowalski

to execute an algorithm with the goal to wake up the whole network. This goal
of waking up the network is accomplished in the first round when some active
station transmits on some channel as the only station transmitting in this round
on this particular channel. This moment is understood as all passive stations
receiving a signal to wake up and proceed with executing a predetermined com-
munication algorithm. The moment of wake-up can be used to synchronize local
clocks so that they begin to reflect the coordinated time.

Performance of a wake-up algorithm is measured as the number of rounds
measured from the first spontaneous activation to the round of the first message
heard on the network. We use an additional parameter k, which is a natural
number such that 1 ≤ k ≤ n and denotes an upper bound on the number
of stations that may get activated spontaneously in an execution. Performance
bounds of wake-up algorithms employ the following three variables: n, b, and k.
A parameter of a system or executions is known when it can be used in codes of
algorithms. The numbers n and b are assumed to be known while the parameter k
is unknown.
Definitions. Next we summarize definitions used throughout the paper.

Definition 1 (Global time). The term time step refers to the time as mea-
sured by an external observer. We call this time global. The first round of spon-
taneous activation of some station becomes the first time step of this global time.
The time step in which a station u becomes activated spontaneously is denoted
by σu. The set of stations that are active by time step t is denoted by W (t).

We consider oblivious algorithms that have schedules of transmission precom-
puted for each station. Each such a schedule is represented as a sequence of 0s
and 1s. The schedules are organized as rows of a binary matrix for the sake of
visualization and discussion.

Definition 2 (Transmission arrays). Let � be positive integer treated as a
parameter. An array T of entries of the form T (u, β, j), where u ∈ V is a
station, β such that 1 ≤ β ≤ b is a channel, and integer j is such that 0 ≤ j ≤ �,
is a transmission array when each entry is either a 0 or a 1. The parameter
� = �(T) is called the length of array T . Entries of a transmission array T are
called transmission bits of T . The number j is the position of a transmission
bit T (u, β, j).

Every station u ∈ V is provided with a copy of all entries T (u, ∗, ∗) of some
transmission array T as a way to instantiate the code of a wake-up algorithm.

Definition 3 (Schedules). For a transmission array T , a station u and chan-
nel β, the sequence of entries T (u, β, j), for j = 1, . . . , �, is called a (u, β)-
schedule and is denoted T (u, β, ∗). A (u, β)-schedule T (u, β, ∗) defines the fol-
lowing schedule of transmissions for station u: it transmits on channel β in the
jth round exactly when T (u, β, j) = 1.

When a station u became active then it executes the following algorithm:

Scalable Wake-up of Multi-channel Single-Hop Radio Networks 191

Algorithm Wake-Up(u, T):
Execute the schedule of transmissions determined by T (u, β, ∗) on each
channel β.

If u is active in time step t then u perceives this time step t as round t− σu.
The concept of a transmission that wakes up the network is defined as follows.

Definition 4 (Isolation). A station v is β-isolated at time step t when v ∈
W (t) and when both T (v, β, t − σv) = 1 and T (u, β, t − σu) = 0, for every
u ∈ W (t) \ {v}. A station v is isolated at time step t when v is β-isolated at
time step t for some channel β where 1 ≤ β ≤ b.

For a given transmission array, an isolated position is a pair (t, β) of time step
t and channel β such that there is a β-isolated station at time step t. Note that
an isolated position (t, β) means that successful wake-up has occurred by time
t.

We impose structure on a transmission array by partitioning it into sections
of increasing length.

Definition 5 (Stages). Let c be a positive integer and let ϕ(0) = 0 and ϕ(i) =
c2i ·i1/b lg n, for positive integers i. The ith section of a (u, β)-schedule T (u, β, ∗),
for 1 ≤ i ≤ lgn, consists of all subsequences

T (u, β, ϕ(i)), T (u, β, ϕ(i) + 1), . . . , T (u, β, ϕ(i+ 1) − 1)

of consecutive transmission bits. A station executing the ith section of its sched-
ules is said to be in stage i. The stations that are in stage i at a time step j are
denoted by Wi(j).

The constant c in Definition 3 is be determined later as needed. The identity⋃lgn
i=1Wi(j) = W (j) holds for every time step j, because an active station is in

some stage. The length of the ith section for any (u, β)-schedule is ϕ(i+1)−ϕ(i),
which is at least as large as ϕ(i).

Definition 6 (Balanced time steps). For a stage ω, where 1 ≤ ω ≤ lg k, a
time step j is ω-balanced when the following hold: (a) 2ω ≤ |Wω(j)| ≤ 2ω+2 and
(b) |Wi(j)| = 0, for all stages i such that i > ω.

Definition 7 (Balanced time intervals). Let ω be a stage, where 1 ≤ ω ≤
lg k. A time interval [t1, t2] of size ϕ(ω − 1), is said to be ω-balanced, if every
time step j ∈ [t1, t2] is ω-balanced. An interval is called balanced when there
exists a stage ω, for 1 ≤ ω ≤ lg k, such that it is ω-balanced.

For a time step j, we define Ψ(j) as follows:

Ψ(j) =

lg k∑
ω=1

|Wω(j)|
2i

.

192 B.S. Chlebus, G. De Marco, and D.R. Kowalski

Definition 8 (Light time intervals). Let ω be a stage, where 1 ≤ ω ≤ lg k.
An ω-balanced time interval [t1, t2] is called ω-light when (1) the inequality∣∣∣⋃ω

i=1Wi(j)
∣∣∣ ≤ 2ω+4 holds for every time step j ∈ [t1, t2], and (2) interval

[t1, t2] contains at least ϕ(ω − 2) time steps j such that

1 ≤ Ψ(j) ≤ 128 · ω . (1)

An interval is called light when there exists a stage ω, for 1 ≤ ω ≤ lgn, such
that it is ω-light.

We will use transmission arrays in which entries are independent random
variables.

Definition 9 (Regular randomized transmission arrays). A randomized
transmission array T has the structure of a transmission array. Transmission bits
T (u, β, j) are not fixed but instead are independent Bernoulli random variables.
Let u be a station and β denote a channel. For 1 ≤ i ≤ lg n, the entries of the
ith section of the (u, β)-schedule are stipulated to have the following probability
distribution, for j = ϕ(i), . . . , ϕ(i + 1) − 1:

Pr(T (u, β, j) = 1) = 2−i · i−β/b .

We say that the number of channels b is n-large, or simply large, or they there
are n-many channels, when the inequality b > lg(128b lgn) holds. We set ϕ(i) =
c · (2i/b) lgn lg(128b lgn) for such b, where c is a sufficiently large constant to be

specified later. Recall the notation Ψ(j) =
∑lg k

i=1
|Wi(j)|

2i that, for a time step j.
For n-many channels, we use a modified version of a light time interval (see
Definition 8), where condition (2) is replaced by the following one:

1 ≤ Ψ(j) ≤ 128 · lg n. (2)

For a channel β, we use the notation β∗ = β mod lg(128b lgn).

Definition 10 (Modified randomized transmission arrays). A modified
randomized transmission array T has the structure of a transmission array.
Transmission bits T (u, β, j) are not fixed but instead are independent Bernoulli
random variables. Let u be a station and β denote a channel. For 1 ≤ i ≤ lg n,
the entries of the ith section of the (u, β)-schedule are stipulated to have the
following probability distribution, for j = ϕ(i), . . . , ϕ(i + 1) − 1:

Pr(T (u, β, j) = 1) = b · 2−i−β∗
.

A randomized transmission array, whether regular or modified, is used to rep-
resent a randomized wake-up algorithm. To decide if a station u transmits on
channel β in the jth round, this station first carries out a Bernoulli trial with the
probability of success as stipulated in the definition of the respective randomized
array, and transmits when the experiment results in success. Regular arrays are
used in the general case and modified arrays when there are n-many channels.

Scalable Wake-up of Multi-channel Single-Hop Radio Networks 193

Definition 11 (Waking arrays). A transmission array T is said to be waking
when for every k such that 1 ≤ k ≤ n and a light interval [t1, t2] such that
|W (t)| ≤ k, whenever t1 ≤ t ≤ t2, there exist both a time step j ∈ [t1, t2] and a
station w ∈ W (j) such that w is isolated at time step j.

The length of a waking array is the worst-case time bound on performance of
the wake-up algorithm determined by this transmission array.

We denote by Fn
k the family of sets with exactly k elements out of n possible

elements, interpreted as k-sets of stations taken from all n stations. For λ ≤
κ ≤ n, a family F ⊆ Fn

κ is said to be (n, κ, λ)-intersection free if |F1 ∩ F2| �= λ
for every F1 and F2 in Fn

κ . The following fact is an upper bound on the size of
intersection-free families.

Fact 1 ([30]) For any (n, κ, λ)-intersection free family F the following inequal-
ity holds true:

|F| ≤
(
n

λ

)
·
(
2κ−λ−1

κ

)(
2κ−λ−1

λ

) ,
assuming that 2λ+ 1 ≥ κ and κ− λ is a prime power. �

3 A Lower Bound for Deterministic Algorithms

We prove a lower bound on time performance of any deterministic wake-up
algorithm. We assume that all stations start simultaneously and have access to
a global clock. This means that the lower bound is valid in a much stronger
setting than the one for which we design efficient algorithms.

We define a query to be a set of ordered pairs (x, β) for x ∈ V and 1 ≤ β ≤ b.
An interpretation of a pair (x, β) ∈ Q, for a query Q, is that station x is to
transmit on channel β at the time step assigned for the query. In this section, an
algorithm A is represented as a sequence of queries A = {Q1, . . . , Qt}. The index
i of a query Qi in such a sequence A is interpreted as the time step assigned for
the query. We use the notationQi,β = {x ∈ V : (x, β) ∈ Qi}, for a queryQi. This
represents the subset of all stations that at time step i transmit on channel β.

We use the Iverson’s bracket [P], where P is a statement that is either true
or false, defined as follows: [P] = 1 if P is true and [P] = 0 if P is false. We use
the notation lg x for log2 x.

Lemma 1. Let A = {Q1, Q2, . . . , Qt} be a sequence of queries representing an
algorithm. There exists a sub-family S ⊆ Fn

k with at least |Fn
k |/2bt elements such

that any two sets A,B ∈ S satisfy [A ∩Qi,β �= ∅] = [B ∩ Qi,β �= ∅] for all i and
β such that 1 ≤ β ≤ b and 1 ≤ i ≤ t.

Proof. The proof is by induction on t. The base of induction relies on the identity
S(0) = Fn

k . For the inductive step, assume that the claim holds for i such that
0 ≤ i < t. Let S(i+ 1) be a largest sub-family of S(i) with the property that for
all sets A and B in S(i + 1), the following equality holds for every 1 ≤ β ≤ b:

[A ∩Qi+1,β �= ∅] = [B ∩Qi+1,β �= ∅] .

194 B.S. Chlebus, G. De Marco, and D.R. Kowalski

The inequity |S(i+ 1)| ≥ |S(i)|/2b holds by the pigeonhole principle. ��

Lemma 2. Let A = {Q1, Q2, . . . , Qt} be an algorithm, where t ≤ k
2b lg n

k − k+1
b .

There exist two sets A,B ⊆ Fn
k such that the following are satisfied:

(a) |A ∩B| = k/2,
(b) [A ∩Qi,β �= ∅] = [B ∩Qi,β �= ∅], for every 1 ≤ β ≤ b and 1 ≤ i ≤ t.

Proof. By Lemma 1, there exists a sub-family S ⊆ Fn
k of at least

|S| ≥ |Fn
k |/2bt =

(
n

k

)
/2bt (3)

elements in Fn
k such that [A ∩ Qi,β �= ∅] = [B ∩ Qi,β �= ∅], for every A,B ∈ S,

1 ≤ β ≤ b and 1 ≤ i ≤ t. Therefore, any two sets A and B in S ⊆ Fn
k , satisfy

condition (b).
It remains to show that there are at least two sets in S satisfying also condition

(a), that is, intersecting in a set of k/2 elements. We use Fact 1 for κ = k and
λ = k/2 to obtain that any sub-family of Fn

k containing sets that have pairwise
intersections of size different from k/2 has at most these many elements:(

n

k/2

)
·
(

(3/2)k − 1

k

)/((3/2)k − 1

k/2

)
=

(
n

k/2

)
· 1

2
.

It follows that it is sufficient to show that the following inequality holds:

|S| >
(
n

k/2

)
· 1

2
.

We show it, starting from (3), in the following manner:

|S| ≥
(
n

k

)
/2bt ≥ 2k lg(n/k)−bt ≥ 2(k/2) lg(2ne/k)−1 =

(
2ne

k

)k/2

· 1
2
>

(
n

k/2

)
· 1
2
,

where in the last step in the derivation we used the inequality
(
n
k

)
<
(
ne
k

)k
.

Therefore, there exist two sets in S with an intersection with k/2 elements,
which completes the proof of (a). ��

Theorem 1. Any deterministic algorithm that solves the wake-up problem on a
multi-channel network with b channels requires Ω(kb log n

k) time steps.

Proof. We show that for any family A = {Q1, Q2, . . . , Qt} of queries, where t
satisfies the following inequality:

t ≤ k

2b
lg
n

k
− k + 1

b
, (4)

there exists a k-set X such that X∩Qi = ∅, for all i = 1, 2, . . . , t. To this end, let
A = {Q1, Q2, . . . , Qt} be an algorithm such that (4) holds. Let A and B be two
sets A,B ⊆ Fn

k , with the properties as stated in Lemma 2. Set A′ = A \ B and
B′ = B \ A. Observe that if A and B have properties (a) and (b) of Lemma 2
then the following holds for A′ and B′:

Scalable Wake-up of Multi-channel Single-Hop Radio Networks 195

(a*) |A′| = |B′| = k/2,
(b*) A′ ∩B′ = ∅,
(c*) [A′ ∩Qi,β �= ∅] = [B′ ∩Qi,β �= ∅], for every 1 ≤ β ≤ b and 1 ≤ i ≤ t.

We set X = A′ ∪ B′ to obtain that (a*) and (b*) imply |X | = k. Moreover,
from (c*) it follows that X ∩ Qi,β = ∅, for all 1 ≤ β ≤ b and 1 ≤ i ≤ t. This
implies that X∩Qi = ∅, for all i = 1, 2, . . . , t. Consider an execution in which the
stations in X are simultaneously activated spontaneously as the only stations
activated spontaneously. Then during the first t time steps after activations, no
station in X transmits on any channel. We conclude that if an algorithm A
always wakes up the network then (4) cannot be the case. ��

4 A General Deterministic Algorithm

The purpose of this section is to show the following fact:

Theorem 2. There exists a deterministic waking array of O(n logn log1/b k)

length guaranteeing wake-up in O(k logn log1/b k) time for any number k ≤ n of
activated stations.

This fact is proved by the probabilistic method. We want to show that there is
a transmission array of length O(k log1/b k logn) such that if all awoken stations

execute Protocol Wake-up, then there exists a time slot t = O(k log1/b k logn)
such that exactly one station transmits at time t. The transmission array with
such desired property is defined by way of Definition 11. For a given wake-up
pattern, by an isolated position we understand a pair (t, β) of time step t and
channel β such that there is a β-isolated station at time slot t. Note that an
isolated position (t, β) means that successful wake-up has occurred by time t.

Lemma 3. Let c in the definition of ϕ be bigger than some sufficiently large
constant. There exists an waking array of length 2cn lgn lg1/b k such that, for
any transmission array, there is an integer 0 ≤ ω ≤ lg k with the following
properties:

(1) There are at least c ·2ω−259 lg n isolated positions by time c ·2ω+1 lg n lg1/b k.
(2) At least c · 2ω−259 lgn isolated positions occur at time steps with at least 2ω

but no more than 2ω+4 activated stations.

Proof of Theorem 2: There is an isolated position for every activation pattern
by time O(k logn log1/b k). This follows from point (1) of Lemma 3. To see this,
notice that otherwise the ω-light interval, which is also ω-balanced, would have
at least 2ω > k stations activated, by Definitions 6 and 7, contradicting the
assumption of the theorem.

Channels with random jamming. Assume that at each time step and on every
channel there is a jamming error with probability 0 ≤ p < 1, independently over
time steps and channels. The case p = 0 is covered by Theorem 2.

196 B.S. Chlebus, G. De Marco, and D.R. Kowalski

Theorem 3. For a given error probability 0 < p < 1, there exists a waking
array of O(log−1(1/p)n logn log1/b k) length guaranteeing wake-up in time that

is O(log−1(1/p)k logn log1/b k), for any number k ≤ n of spontaneously activated
stations.

Proof. Let us set c = c′ · lg−1(1/p) for sufficiently large constant c′, and consider
any activation pattern. By Lemma 3, at least c · 2ω−259 lgn isolated positions
occur by time c · 2ω+1 lg1+1/b n and by that time no more than 2ω+4 stations
are activated Each such isolated position can be jammed independently with
probability p. Therefore, the probability that all these positions are jammed,
and thus no successful transmission occurs by time

c · 2ω+1 lg n lg1/b k = O(log−1(1/p)k logn log1/b k) ,

is at least

pc·2
ω−259 lgn = exp

(
c′ · lg−1(1/p) · 2ω−259 lgn · ln p

)
,

This is smaller than 1/poly(n) for sufficiently large constant c′. Here we use the
fact that ln p

lg(1/p) is a negative constant for p ∈ (0, 1). When estimating the time

of a successful wake-up we relied on the fact that 2ω, which is the lower bound
on the number of activated stations by Lemma 3(2), must be smaller than k, by
the assumption. ��

5 A Deterministic Algorithm for Sufficiently Many
Channels

The main result of this section is as follows:

Theorem 4. There exists a waking array of O((n/b) logn log(b logn)) length,
for b > lg(128b lgn), which completes wake-up in O((k/b) logn log(b logn)) time
for any number k ≤ n of spontaneously activated stations.

The proof of this fact is by way of showing the existence of a waking ar-
ray, as defined in Definition 11, for a section length defined as ϕ(i) = c ·
(2i/b) lgn lg(128b lgn).

Lemma 4. Let c in the definition of ϕ be bigger than some sufficiently large
constant. There exists a waking array of length 2c(n/b) lgn lg(128b lgn) such that
for any activation pattern, there is an integer 0 ≤ ω ≤ lg n with the following
properties:

(1) There are at least c · 2ω−6 lg n isolated positions by the time step of number
c · (2ω+1/b) lgn lg(128b lgn).

(2) These positions occur at time step with at least 2ω but no more than 2ω+4

activated stations.

Scalable Wake-up of Multi-channel Single-Hop Radio Networks 197

Proof of Theorem 4: There is an isolated position by O((k/b) logn lg(128b lgn))
time for every activation pattern. This follows from point (1) of Lemma 4. Indeed,
otherwise the ω-light interval, which is also ω-balanced, would have at least
2ω > k stations activated, by Definitions 6 and 7, contrary to the assumptions.

Channels with random jamming. Assume that at each time step and on every
channel there is a jamming error with probability 0 ≤ p < 1, independently over
time steps and channels. The case p = 0 is subsumed by Theorem 2.

Theorem 5. There exists a waking array of O(log−1(1/p)(n/b) logn log(b logn))
length, for a probability p such that 0 < p < 1, which guarantees wake-up
in O(log−1(1/p)(k/b) logn log(b logn)) time with the probability of at least 1 −
1/poly(n).

Proof. Let us set c = c′ · lg−1(1/p), for sufficiently large constant c′, and consider
any activation pattern. By Lemma 4, c · 2ω−6 lgn isolated positions occur by
time c · (2ω+1/b) lgn lg(128b lgn) and by that time no more than 2ω+4 stations
are activated. Each such isolated position can be jammed independently with
probability p. Therefore, the probability that all these positions are jammed,
and thus no successful transmission occurs by time c·(2ω+1/b) lgn lg(128b lgn) =
O(log−1(1/p)(k/b) logn log(b logn)), is at least

pc·2
ω−6 lgn = exp

(
c′ · lg−1(1/p) · (2ω−6/b) lgn · ln p

)
,

which is smaller than 1/poly(n) for sufficiently large constant c′. Here we use
the fact that ln p

lg(1/p) is a negative constant for p ∈ (0, 1). When bounding time

of a successful wake-up to occur, we rely on the fact that 2ω, which is the lower
bound on the number of activated stations by Lemma 4(2), must be smaller
than k by the assumption. ��

6 A Randomized Algorithm

In this Section, we present a randomized wake-up algorithm, which is comple-
mentary to deterministic algorithms considered so far. The code for a station u
is as follows:

Algorithm Channel-Screening(u):
For β = 1, 2, . . . , b transmit a message on channel β with probabil-
ity k−β/b.

Lemma 5. Let t be a time step and let 1 ≤ β ≤ b be such that bounds

k(β−1)/b ≤ |W (t)| ≤ kβ/b

hold. Algorithm Channel-Screening guarantees that the probability of hearing
a message at time step t on channel β is at least 1/2ek1/b.

198 B.S. Chlebus, G. De Marco, and D.R. Kowalski

Proof. Let E(β, t) be the event of a successful transmission on channel β at
time t. The probability that a station w ∈W (t) transmits at time t on channel β
while all the others remain silent is

Pr(E(β, t)) ≥ |W (t)|
kβ/b

(
1 − 1

kβ/b

)|W (t)|−1

≥ k(β−1)/b

kβ/b

(
1 − 1

kβ/b

)kβ/b

,

where the last inequality follows from the assumption that

k(β−1)/b ≤ |W (t)| ≤ kβ/b .

Hence

Pr(E(β, t)) ≥ 1

2ek1/b
,

which completes the proof. ��

An estimate the number of rounds needed to make the probability of failure
smaller than a threshold ε is as follows:

Theorem 6. Algorithm Channel-Screening on b channels succeeds in wak-
ing up the network, with at most k active stations out of n in O(k1/b ln(1/ε))
time with the probability of at least 1 − ε.

Proof. Let us consider a set of contiguous time steps T . For 1 ≤ β ≤ b, let

Tβ = {t ∈ T | k(β−1)/b ≤ |W (t)| ≤ kβ/b} .

Let Ē(t) be the event of an unsuccessful time step t, in which no station transmits
as the only transmitted on any channel, and let Ē(β, t) be the event of an
unsuccessful time step t on channel β, with 1 ≤ β ≤ b. By Lemma 5, the
probability of having a sequence of λ = |T | unsuccessful time steps can be
estimated as follows:

Pr
(⋂
t∈T

Ē(t)
)
≤ Pr

(⋂
t∈T1

Ē(1, t)
)
· Pr
(⋂
t∈T2

Ē(2, t)
)
· · ·Pr

(⋂
t∈Tb

Ē(b, t)
)

≤
(
1 − 1

2ek1/b

)|T1|
·
(
1 − 1

2ek1/b

)|T2|
· · ·
(
1 − 1

2ek1/b

)|Tb|

≤
(
1 − 1

2ek1/b

)λ
≤ ε,

for λ ≥ 2ek1/b ln(1/ε). ��

Scalable Wake-up of Multi-channel Single-Hop Radio Networks 199

References

1. Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower bound for radio broadcast.
Journal of Computer and System Sciences 43(2), 290–298 (1991)

2. Alonso, G., Kranakis, E., Sawchuk, C., Wattenhofer, R., Widmayer, P.: Probabilis-
tic protocols for node discovery in ad hoc multi-channel broadcast networks. In:
Pierre, S., Barbeau, M., An, H.-C. (eds.) ADHOC-NOW 2003. LNCS, vol. 2865,
pp. 104–115. Springer, Heidelberg (2003)

3. Anantharamu, L., Chlebus, B.S.: Broadcasting in ad hoc multiple access channels.
In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179, pp.
237–248. Springer, Heidelberg (2013)

4. Anantharamu, L., Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Deterministic
broadcast on multiple access channels. In: Proceedings of the 29th IEEE Interna-
tional Conference on Computer Communications (INFOCOM), pp. 1–5 (2010)

5. Anantharamu, L., Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Medium access
control for adversarial channels with jamming. In: Kosowski, A., Yamashita, M.
(eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 89–100. Springer, Heidelberg (2011)

6. Anantharamu, L., Chlebus, B.S., Rokicki, M.A.: Adversarial multiple access chan-
nel with individual injection rates. In: Abdelzaher, T., Raynal, M., Santoro, N.
(eds.) OPODIS 2009. LNCS, vol. 5923, pp. 174–188. Springer, Heidelberg (2009)

7. Bieńkowski, M., Klonowski, M., Korzeniowski, M., Kowalski, D.R.: Dynamic shar-
ing of a multiple access channel. In: Proceedings of the 27th International Sympo-
sium on Theoretical Aspects of Computer Science (STACS). Leibniz International
Proceedings in Informatics, vol. 5, pp. 83–94. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik (2010)

8. Chlebus, B.S., G ↪asieniec, L., Gibbons, A.
”
Pelc, A., Rytter, W.: Deterministic

broadcasting in ad hoc radio networks. Distributed Computing 15(1), 27–38 (2002)
9. Chlebus, B.S., G ↪asieniec, L., Kowalski, D.R., Radzik, T.: On the wake-up problem

in radio networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 347–359. Springer, Heidelberg
(2005)

10. Chlebus, B.S., Kowalski, D.R.: A better wake-up in radio networks. In: Proceedings
of the 23rd ACM Symposium on Principles of Distributed Computing (PODC), pp.
266–274 (2004)

11. Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Maximum throughput of multiple
access channels in adversarial environments. Distributed Computing 22(2), 93–116
(2009)

12. Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Adversarial queuing on the multiple
access channel. ACM Transactions on Algorithms 8(1), 5:1–5:31 (2012)

13. Chrobak, M., G ↪asieniec, L., Kowalski, D.R.: The wake-up problem in multihop
radio networks. SIAM Journal on Computing 36(5), 1453–1471 (2007)

14. Chrobak, M., G ↪asieniec, L., Rytter, W.: Fast broadcasting and gossiping in radio
networks. Journal of Algorithms 43(2), 177–189 (2002)

15. Clementi, A.E.F., Monti, A., Silvestri, R.: Distributed broadcast in radio networks
of unknown topology. Theoretical Computer Science 302(1-3), 337–364 (2003)

16. Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown
topology. Journal of Algorithms 60(2), 115–143 (2006)

17. Czyżowicz, J., G ↪asieniec, L., Kowalski, D.R., Pelc, A.: Consensus and mutual ex-
clusion in a multiple access channel. IEEE Transaction on Parallel and Distributed
Systems 22(7), 1092–1104 (2011)

200 B.S. Chlebus, G. De Marco, and D.R. Kowalski

18. Daum, S., Ghaffari, M., Gilbert, S., Kuhn, F., Newport, C.C.: Maximal indepen-
dent sets in multichannel radio networks. In: Proceedings of the 32nd ACM Sym-
posium on Principles of Distributed Computing (PODC), pp. 335–344 (2013)

19. Daum, S., Gilbert, S., Kuhn, F., Newport, C.C.: Leader election in shared spectrum
radio networks. In: Proceedings of the 31st ACM Symposium on Principles of
Distributed Computing (PODC), pp. 215–224 (2012)

20. Daum, S., Kuhn, F., Newport, C.: Efficient symmetry breaking in multi-channel
radio networks. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 238–252.
Springer, Heidelberg (2012)

21. De Marco, G.: Distributed broadcast in unknown radio networks. In: Proceedings
of the 9th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 208–217
(2008)

22. De Marco, G.: Distributed broadcast in unknown radio networks. SIAM Journal
on Computing 39(6), 2162–2175 (2010)

23. De Marco, G., Kowalski, D.R.: Contention resolution in a non-synchronized mul-
tiple access channel. In: Proceedings of the 27th IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pp. 525–533 (2013)

24. De Marco, G., Kowalski, D.R.: Searching for a subset of counterfeit coins: Random-
ization vs determinism and adaptiveness vs non-adaptiveness. Random Structures
and Algorithms 42(1), 97–109 (2013)

25. De Marco, G., Pellegrini, M., Sburlati, G.: Faster deterministic wakeup in multiple
access channels. Discrete Applied Mathematics 155(8), 898–903 (2007)

26. Dolev, S., Gilbert, S., Guerraoui, R., Kuhn, F., Newport, C.C.: The wireless syn-
chronization problem. In: Proceedings of the 28th ACM Symposium on Principles
of Distributed Computing (PODC), pp. 190–199 (2009)

27. Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.: Gossiping in a multi-channel ra-
dio network. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 208–222. Springer,
Heidelberg (2007)

28. Dolev, S., Gilbert, S., Khabbazian, M., Newport, C.: Leveraging channel diversity
to gain efficiency and robustness for wireless broadcast. In: Peleg, D. (ed.) DISC
2011. LNCS, vol. 6950, pp. 252–267. Springer, Heidelberg (2011)

29. Farach-Colton, M., Fernandes, R.J., Mosteiro, M.A.: Lower bounds for clear trans-
missions in radio networks. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN
2006. LNCS, vol. 3887, pp. 447–454. Springer, Heidelberg (2006)

30. Frankl, P., Füredi, Z.: Forbidding just one intersection. Journal of Combinatorial
Theory, Series A 39(2), 160–176 (1985)

31. G ↪asieniec, L., Pelc, A., Peleg, D.: The wakeup problem in synchronous broadcast
systems. SIAM Journal on Discrete Mathematics 14(2), 207–222 (2001)

32. Gilbert, S., Guerraoui, R., Kowalski, D.R., Newport, C.: Interference-resilient in-
formation exchange. In: Proceedings of the 28th IEEE International Conference on
Computer Communications (INFOCOM), pp. 2249–2257 (2009)

33. Greenberg, A.G., Winograd, S.: A lower bound on the time needed in the worst
case to resolve conflicts deterministically in multiple access channels. Journal of
the ACM 32(3), 589–596 (1985)

34. Holzer, S., Locher, T., Pignolet, Y.A., Wattenhofer, R.: Deterministic multi-channel
information exchange. In: Proceedings of the 24th ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), pp. 109–120 (2012)

35. Holzer, S., Pignolet, Y.A., Smula, J., Wattenhofer, R.: Time-optimal information
exchange on multiple channels. In: Proceedings of the 7th ACM International Work-
shop on Foundations of Mobile Computing (FOMC), pp. 69–76 (2011)

Scalable Wake-up of Multi-channel Single-Hop Radio Networks 201

36. Jurdziński, T., Stachowiak, G.: Probabilistic algorithms for the wake-up problem
in single-hop radio networks. Theory of Computing Systems 38(3), 347–367 (2005)

37. Komlós, J., Greenberg, A.G.: An asymptotically fast nonadaptive algorithm for
conflict resolution in multiple-access channels. IEEE Transactions on Information
Theory 31(2), 302–306 (1985)

38. Kowalski, D.R.: On selection problem in radio networks. In: Proceedings of the 24th
ACM Symposium on Principles of Distributed Computing (PODC), pp. 158–166
(2005)

39. Kowalski, D.R., Pelc, A.: Broadcasting in undirected ad hoc radio networks. Dis-
tributed Computing 18(1), 43–57 (2005)

40. Kushilevitz, E., Mansour, Y.: An Ω(D log(N/D)) lower bound for broadcast in
radio networks. SIAM Journal on Computing 27(3), 702–712 (1998)

41. Shi, W., Hua, Q.-S., Yu, D., Wang, Y., Lau, F.C.M.: Efficient information exchange
in single-hop multi-channel radio networks. In: Wang, X., Zheng, R., Jing, T., Xing,
K. (eds.) WASA 2012. LNCS, vol. 7405, pp. 438–449. Springer, Heidelberg (2012)

42. So, J., Vaidya, N.H.: Multi-channel MAC for ad hoc networks: handling multi-
channel hidden terminals using a single transceiver. In: Proceedings of the 5th ACM
Interational Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc),
pp. 222–233 (2004)

43. Wang, Y., Wang, Y., Yu, D., Yu, J., Lau, F.: Information exchange with collision
detection on multiple channels. Journal of Combinatorial Optimization (2014)

A Disruption-Resistant MAC Layer
for Multichannel Wireless Networks�

Henry Tan, Chris Wacek, Calvin Newport, and Micah Sherr

Georgetown University
Washington, DC, USA

{ztan,cwacek,cnewport,msherr}@cs.georgetown.edu

Abstract. Wireless networking occurs on a shared medium which renders com-
munication vulnerable to disruption from other networks, environmental inter-
ference, and even malicious jammers. The standard solution to this problem is
to deploy coordinated spread spectrum technologies that require pre-shared se-
crets between communicating devices. These secrets can be used to coordinate
hopping patterns or spreading sequences. In this paper, by contrast, we study the
local broadcast and unicast problems in a disrupted multichannel network with
no pre-shared secrets between devices. Previous work in this setting focused on
the special case of a single pre-designated sender in a single hop network topol-
ogy. We consider in this paper, for the first time, upper and lower bounds to these
problems in multihop topologies with multiple senders. To validate the poten-
tial real world application of our strategies, we conclude by describing a general
purpose MAC protocol that uses the algorithms as key primitives, and validates
its usefulness with a proof-of-concept implementation that runs the protocol on
commodity hardware.

Keywords: wireless, broadcast, jamming.

1 Introduction

Wireless networks operate over a shared medium. This leaves them vulnerable to mes-
sage loss due to (often unpredictable) disruption, such as contention from other net-
works, unrelated electromagnetic noise, and in some cases even malicious jamming.
The standard solution to these issues in real deployments is to use coordinated spread
spectrum strategies, such as frequency hopping spread spectrum (FHSS) [18, 27, 28],
in which devices evade disruption by hopping between channels, and direct-sequence
spread spectrum (DSSS) [5, 10], in which devices modulate their signal over additional
frequencies to gain robustness.

A key property of these existing spread spectrum strategies is that they require the
communicating devices to use pre-shared secrets (i.e., to synchronize hopping or sig-
nal spreading). In recent years, however, researchers from both the theory and systems
communities have noted the need for reliable spread spectrum strategies that work in

� This work is supported in part by NSF grants CNS-1149832, CNS-1064986, CNS-1223825,
CNS-1445967 and CCF 1320279, and the Ford Motor Company University Research Pro-
gram. The findings and opinions described in this paper are those of the authors, and do not
necessarily reflect the views of the funding parties.

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 202–216, 2014.
c© Springer International Publishing Switzerland 2014

A Disruption-Resistant MAC Layer for Multichannel Wireless Networks 203

the absence of pre-shared secrets (the so-called, uncoordinated shared spectrum set-
ting) [6, 9, 14–16, 19, 24–26]. Such uncoordinated algorithms are useful to the increas-
ingly common case where an ad hoc collection of devices need to reliably coordinate in
a crowded environment. The existing work cited above studies how to generalize both
FHSS and DSSS strategies to work without pre-shared secrets. In most cases, however,
it focuses on the scenario of a single sender in a single hop network. Generalizing these
strategies to work in general network topologies with arbitrary message arrivals—e.g.,
what would be required to implement a general-purpose MAC layer—was identified as
an open question. This paper answer it.

Results. We prove new upper and lower bounds for two key communication primitives:
broadcast (a device must deliver a message to all its neighbors in the network topology)
and unicast (a device must deliver a message to a single known neighbor). As in existing
work [6, 19, 25, 26], we model a crowded band of the wireless spectrum with n nodes
having access to C ≥ 1 channels. In each round, each node can participate on a single
channel. An adversary can choose up t channels (for some fixed t < C) to disrupt locally
at each receiver, preventing communication. This adversary incarnates the diversity of
different sources of unpredictable interference that plague real deployments. We model
the network topology with a graph, where the nodes correspond to the devices and edges
to links. We assume that for both broadcast and unicast, messages arrive at arbitrary
nodes at arbitrary times, and we require that randomized algorithms solve the relevant
problem with high probability, abbreviated to w.h.p., in n.

We begin by describing a randomized broadcast algorithm that delivers a message,
with high probability, from a sender to its (unknown) neighbors in the network in
O
(C
C−tΔ(log (Δ/C) + 1) logn

)
rounds, whereΔ is the maximum degree in the topol-

ogy graph (and therefore a measure of the worst case amount of nearby contention).
The core strategy in this algorithm and its analysis is to use uncoordinated frequency
hopping for a sufficient amount of time to ensure that nearby nodes have an opportunity
to receive the message—regardless of the behavior of the disruption adversary. Note
that we add 1 to the log(Δ/C) factor in the asymptotic complexity to avoid a factor of
0 whenΔ = C (in our algorithm, the relevant term replaced with 1 whenΔ = C).

Notice, in many cases, the actual amount of nearby contention might be much smaller
than the worst-case. Motivated by this reality, we proceed with our primary technical
result: a randomized adaptive broadcast algorithm that assumes a natural geographic
constraint on the topology (see Section 2), and in exchange guarantees to solve broad-
cast for each node u in O

(Ct
C−tδu log3 n(log (Δ/C) + 1)

)
rounds, where δu describes

the actual amount of contention local to u (as noted: in practice δu might be much
smaller thanΔ). The core strategy in this algorithm is to have broadcasting devices par-
ticipate in repeated iterations of local leader election competitions. If a device succeeds
in becoming a leader, its local contention is small, and it can terminate confident that
it successfully delivered its message. To obtain the δu factor in the time complexity,
we prove that the leader election competition is fair—a given sender’s probability of
winning is inversely proportional to the number of nearby competing senders.

We then describe a randomized unicast algorithm that guarantees delivery of a mes-
sage from u to a known neighbor v in O

(Ct′
C−t′ logΔ log C log n

)
rounds, where t′

bounds the actual amount of disruption at v. This algorithm uses a similar

204 H. Tan et al.

uncoordinated frequency hopping strategy as our non-adaptive broadcast solution. The
algorithm adapts to the actual amount of disruption (and not the worst-case) by testing
different estimates. This strategy works because the algorithm is sending to a known
receiver, and it can therefore use acknowledgments to know when it succeeded. In the
interest of space, we defer many of our proofs and pseudocode to the full version [8].

We conclude our theoretical analysis by proving that our broadcast bounds are opti-
mal within polylogarithmic factors for large and small δ (contention) values. We then
turn our attention to our claimed practical motivation: that these primitives can aid the
design of uncoordinated but reliable MAC layers. To validate this claim, we describe
a general purpose MAC protocol that uses our algorithms as key primitives. The MAC
protocol implements a name service that reliably discovers nearby devices, and then
provides broadcast and unicast communication. It also guarantees a form of link layer
authentication that does not rely on a public key infrastructure: once a pair of neigh-
boring honest devices begin to communicate, a malicious node cannot spoof messages
on this link. We then describe a proof-of-concept implementation of this link layer
protocol using commodity 802.11 hardware, and the Click Modular Router [11] and
FreeMAC [23] (a modified Atheros 802.11 driver) software. Our testbed evaluation
validates that our algorithmic strategies can be implemented in practice and yield relia-
bility (at the cost of performance).

Related Work. The most relevant related work on uncoordinated shared spectrum
protocols focuses on delivering messages from a designated source to receivers in a
single-hop version of our disrupted multi-channel network model. This research di-
rection began with Strasser et al.’s UFH algorithm [25], which delivers k small mes-
sage fragments from a single sender to one or more local receivers in O

(C2

C−tk log (n)
)

rounds with high probability. Erasure coding and clever use of the channels when t
is small improved this cost to O

(Ct
C−t (k + log (n))

)
[24, 26], while our recent work

improved this result further to O
(C
C−t (k + log (n))) (under certain assumptions) by

recruiting successful receivers to help propagate the message faster [6].
A related problem in the theory literature studies reliable local communication in a

network with a single channel and a resource-bounded adversary causing disruption.
Constant-competitive throughput for local communication is possible in this setting for
both single hop [1, 7, 20] and multihop [21] networks. These results leverage different
techniques than those used in this paper (which focuses on uncoordinated frequency
hopping), but are motivated by the same real world issues surrounding shared spectrum.

2 Model and Problems

We model contended shared spectrum using the t-disrupted model, which is parameter-
ized by 0 ≤ t < C, and describes a wireless network with C communication channels,
up to t of which might be disrupted locally at each receiver in each round, preventing
communication at that receiver on those channels. As detailed below, the disruption de-
cisions are made by a bounded adversary the incarnates the diversity of unpredictable
interference possible in shared spectrum settings.

Network Topology. To describe the network topology, we fix an undirected graphG =
(V,E) with diameterD and a maximum degree upper-bounded by a known parameter

A Disruption-Resistant MAC Layer for Multichannel Wireless Networks 205

Δ, where the vertices in V correspond to the n = |V | wireless devices, which we call
nodes. Let N(u), for u ∈ V , be the neighbors of u in G. We assume nodes know
only a polynomial upper bound on n and do not know G. The t-disrupted model is
parameterized by C (the number of available channels) and t (the number of channels
that can be concurrently disrupted), where 0 ≤ t < C, and both parameters are known
to the nodes. To simplify our asymptotic notation in some of the results that follow, we
assume without loss of generality thatΔ ≥ C.1

Executions. We assume executions in our model proceed in synchronous rounds la-
beled 1, 2, 3.... To capture unpredictable disruption we assume an adversary can disrupt
up to t channels per node, per round. Formally, for each round r and nodeu, let adv(u, r)
be an array of size C describing how the adversary behaves on each channel with re-
spect to u in r. Let [C] = 1, 2, ..., C be the set of available channels. For each c ∈ [C]:
adv(u, r)[c] = ⊥ indicates the adversary does not affect cwith respect to u in this round;
adv(u, r)[c] = ±, on the other hand, indicates that the adversary disrupts c. We simi-
larly define disp(u, r) = {c : adv(i, r)[c] �= ⊥}. We require that |disp(u, r)| ≤ t. If
c ∈ disp(u, r), we say c is disrupted w.r.t. u and r.

To define communication behavior, fix a node u and round r. At the beginning of
r, u chooses a channel from [C] to participate on, deciding either to transmit or listen.
If u decides to transmit a message, then it cannot also receive a message in r (i.e., the
channels are half-duplex). If u listens, the outcome depends on the adversary and its
neighbors. In more detail, if adv(u, r) = ±, u receives nothing. If adv(u, r) = ⊥ and
exactly one neighbor of u transmits on c during r, u receives this message. Otherwise,
if multiple neighbors transmit, u receives one of the messages, chosen arbitrarily, or
nothing (concurrent broadcasts may be lost to undetectable collision). It follows, there-
fore, that nodes in this model must handle both contention from their own network and
disruption from outside. When modeling unicast communication from a node u to a
single known neighbor v in the graph, we assume the presence of link layer acknowl-
edgements that allow u to discover when v has successfully received its message.2

We define t′ ≤ t, with respect to an execution, to be the maximum value of |disp(u, r)|
over all u and r. That is, t′ is the actual amount of concurrent disruption experienced
in an execution, whereas t is the worst-case possibility. We typically assume nodes do
not know t′ in advance. Similarly, when studying executions of communication algo-
rithms (i.e., algorithms in which nodes are passed messages to communicate to nearby
nodes), we define δu for each u, to be the total number of nodes inN(u) that are passed
a message to communicate in the execution. Clearly, δu ≤ |N(u)| ≤ Δ.

Finally, we bound our adversary’s power by assuming it is an arbitrary randomized
algorithm that generates adv(u, r) for all u at the beginning of each r. When defining
this array, the adversary can leverage knowledge of G, the algorithm being run by the

1 We say this holds w.l.o.g. because Δ is an upper bound. To explicitly handle the case of
smaller Δ in our time complexity results, it is necessary only to replace the linear Δ factor in
the broadcast bound with the slightly more messy notation: max{Δ, C}.

2 We omit in this model the case where v receives a message but u does not receive the corre-
sponding acknowledgment due to disruption—we assume a full channel is disrupted or it is
not disrupted at all. That is, we always assume the worst-case, that if there is any disruption
for a given transmission, everything is lost. This simplifies the analysis of our algorithms.

206 H. Tan et al.

nodes, and the history of the execution through r − 1. It does not, however, know in
advance u’s random choices for r.

Graph Restrictions. When studying multihop radio networks, it is common to assume
some geographic constraint on the communication topology. For the adaptive broadcast
algorithm in this paper, we assume the constraint introduced by Daum et al. [3], that
generalizes many of the constraints typically assumed in the wireless algorithms liter-
ature. In more detail, let R = {R1, R2, ..., Rk} be a partition of the nodes in G into
regions such that the sub-graph of G induced by each region Ri is a clique. The cor-
responding clique graph (or region graph) is a graph GR with one node ui for each
Ri ∈ R, and an edge between ui and uj iff ∃v ∈ Ri, w ∈ Rj such that v and w are
connected inG; we writeR(v) for the region that contains v. In this paper, when we say
a graph G satisfies the regional clique decomposition property, we mean that it can be
partitioned into cliques R such that the maximum degree of GR is upper bounded by
some constant parameter. Notice, this model generalizes many common geometric net-
work models, including unit ball graphs with constant doubling dimension [12], which
was shown [22] to generalize (quasi) UDGs [2, 13].

The Broadcast and Unicast Problems. In this paper, we study upper and lower
bounds for the broadcast and unicast problems in the t-disrupted model. Both prob-
lems assume the presence of a message process that passes broadcast/unicast messages
to the network nodes. We place no restrictions on this message process besides the re-
quirement that it waits for a node to indicate it is done processing its current message
before passing the next message (i.e., we do not address queuing issues in this paper).

The broadcast problem requires a node u, when passed a message m from the mes-
sage process, to attempt to deliverm to the nodes inN(u). When it is done, it indicates
this to the message process. We say a given algorithm implements a broadcast service
with latency T rounds if the following two properties hold with high probability (i.e.,
with probability at least 1 − n−c, for a provided constant c ≥ 1) for each time a node u
is passed a message m: (1) u finishes transmitting m within T rounds of being passed
m; (2) every node in N(u) receivesm during this interval.

The unicast problem requires a node u, when passed a message m and node v ∈
N(u), to deliverm to v. The definition of u implementing a unicast service with latency
T rounds is the same as for broadcast except it only need deliver the message to v.

3 Upper and Lower Bounds

In this section we present our upper and lower bounds for the broadcast (both non-
adaptive and adaptive variants) and unicast problems. Due to space constraints, we defer
some of the proofs and pseudocode to the full version.

3.1 Non-adaptive Broadcast Algorithm

We call our first broadcast algorithm non-adaptive as its time complexity is defined
with respect to the worst-case contention. It works as follows: Each node u groups
rounds into phases, each of which contains max(�log (Δ/C)�, 1) rounds. When u is

A Disruption-Resistant MAC Layer for Multichannel Wireless Networks 207

passed a messagem to send, it waits until the beginning of the next phase, then consid-
ers itself active for the next Tp = Θ(C

C−tΔ logn) phases (we define the constants
for Tp later). After these phases are done, u considers its broadcast complete and
returns to inactive status. During each round r, node u, regardless of whether it is
active or inactive, chooses a channel on which to participate with uniform indepen-
dent randomness. If u is active, it decides to transmit m with probability 1

2k , where
k = (r mod max(�log (Δ/C)�, 1)) + 1; otherwise it listens. If u is inactive, it al-
ways listens. When u receives a broadcast message m′ from another node for the first
time, it passes it up to the higher layer message process.

Analysis. In the following analysis, and those that follow, we make use of these basic
probability facts: (1) for p ≤ 1

2 : (1−p) ≥ (14)p; and (2) for p > 0 : (1−p) < e−p. Fix
some node u and some phase q. Let Au be the set of active nodes that neighbor u in q
(notice,Au is fixed over q). Let pu be the probability that u receives a message during q.
We start by bounding pu, treating separately the case where Au is large (and therefore,
many channels are likely to be occupied by active neighbors), and Au is small (and
therefore, few channels are occupied—requiring more time to find active neighbors).

Lemma 1. Assume |Au| > C. It follows: pu ≥ C−t
8C .

Lemma 2. Assume |Au| = C1−ε, for 0 ≤ ε ≤ 1. It follows: pu ≥ C−t
8C1+ε .

We now combine our lemmas to prove our main theorem.

Theorem 1. Our algorithm implements a broadcast service with a latency of
O
(C
C−tΔ(log (Δ/C) + 1) logn

)
rounds.

Proof. The latency follows from the definition of our algorithm, which attempts to de-
liver a message for Tp = O(C

C−tΔ logn) phases, each containing max(�log (Δ/C)�, 1)
rounds. We are left to show that during this active period the message is delivered to all
neighbors with probability at least 1 − 1/n.

Fix some node v that is passed message m to broadcast. We will show that during
the Tp phases in which v is active with m, every neighbor of v receives m, with high
probability. To do so, we start by analyzing a particular neighbor u. For each of the Tp
phases during which v is active withm, we call the phase crowded if u has more than C
active neighbors. Similarly, we call the phase sparse if u has C1−ε active neighbors, for
some 0 ≤ ε ≤ 1. Notice, it must be the case that either: (1) at least half of v’s Tp active
phases are crowded; or (2) at least half of v’s Tp active phases are sparse.

Case 1: At least half the active phases are crowded. It follows that there are T ′
p ≥

Tp/2 = Θ(C
C−tΔ logn) phases where |Au| > C. In each such phase, Lemma 1 tells us

that u receives some message with probability at least C−t
8C . Because active nodes behave

uniformly, u receives v’s message in particular with probability at least C−t
8C|Au| ≥

C−t
8CΔ .

We conclude that node u fails to receive v’s message in all T ′
p crowded phases with

probability pf , bounded as: pf ≤
(
1 − C−t

8CΔ
)T ′

p < (1/e)(c1/8) logn.
For any constant c ≥ 1, we can choose a sufficiently large constant c1 for the defini-

tion of Tp (and thus T ′
p) such that this failure probability is no more than n−c. (We will

fix the particular c we need later in the proof.)

208 H. Tan et al.

Case 2: At least half the active phases are sparse. In each of these T ′
p phases, |Au| =

C1−ε for some 0 ≤ ε ≤ 1. The problem here is that this ε value can change from
phase to phase as neighbors of u become active and inactive. To simplify notation, for
the rth sparse phase, let εr be the definition of ε and let Ar

u be the set of u’s active
neighbors. Following the same general approach as for case 1, we now apply Lemma 2
to determine that in phase r, u will receive some message with probability at least
C−t

8C1+εr . In particular, due to uniformity, u will receive v’s message with probability at
least: C−t

8C1+εr |Ar
u|

= C−t
8C1+εrC1−εr = C−t

8C2 . Therefore, u fails to receive v’s message in all

T ′
p phases with probability pf , bounded as: pf ≤

(
1 − C−t

8C2

)T ′
p < (1/e)

c1Δ
8C logn.

Since we assumed in Section 2 that Δ ≥ C, we can replace Δ/C with some c′ ≥ 1,
and conclude by choosing c1 to be sufficiently large such that this failure probability is
no more than n−c, for any constant c. We can now tweak our constants in Tp to ensure
that in both cases above, our failure probability is no more than n−2. It follows that u
receivesm with probability at least 1− n−2. A union bound over v’s neighbors tells us
that every neighbor of v receivesm with probability at least 1 − n−1, as needed.

3.2 Adaptive Broadcast Algorithm

The broadcast algorithm presented in the previous section has a time complexity that
depends on the worst-case amount of local contention (as captured by Δ). In practice,
Δ might be large compared to the actual amount of contention at a node u (i.e., δu).
Here we present a broadcast algorithm that requires the network topology satisfy the
regional clique decomposition property defined in our model section, and in return is
able to replace aΔ with a δu factor in its complexity. It does so, however, at the cost of
an additional factor of t log2 n. The adaptive solution, therefore, is applicable when the
actual amount of contention is at least a factor of t log2 n improved over the worst-case.

Algorithm Description. Our adaptive broadcast algorithm has each node u divide
time into iterations. An iteration I is composed of 2 phases, a knockout phase followed
by a cleanup phase. Nodes begin inactive. When a node obtains a messagem for broad-
cast, it waits until the beginning of the next iteration before becoming active.

In the knockout phase of I , active nodes compete to become local leaders. To sim-
plify our analysis, we present the subroutine run in this phase as a combination of a
subroutine designed for a disruption-free single channel (DFSC) model (i.e., our model
with C = 1 and t = 0), and a simulator capable of simulating any DFSC subrou-
tine in our more general t-disrupted setting. The DFSC knockout subroutine works
as follow. Every node u divides time into max(�log (Δ/C)�, 1) epochs, each con-
sisting of α logn rounds, where α is a constant fixed in the proof below. For each
epoch e ∈ {1, ...,max(�log (Δ/C)�, 1)}, if u is active, it transmits with probability
pe = 2−(logΔ−e+1) for each round in e. (i.e., there is one epoch for each probability in
the sequence 1/Δ, 2/Δ, ..., 1/C.) In every round, if u chooses not to transmit, includ-
ing the case where it is inactive, it listens. If u receives a message from another node, it
becomes inactive for the rest of the iteration and restarts active in the next iteration.

The simulator strategy we use to simulate the DFSC knockout subroutine in our t-
disrupted model works as follows. The simulator uses only the first Ĉ = min{2t, C}
channels. For each node u and simulated round, the simulator uses Ts = Ct

C−tβ logn

A Disruption-Resistant MAC Layer for Multichannel Wireless Networks 209

real rounds, for a constant β we fix in the proof below. It begins by determining u’s be-
havior for the simulated round according to the routine being simulated; i.e., it decides
whether u transmits, and if so, what message m to transmit. It then spends Ts rounds
executing u’s decision. In each of these real rounds, u chooses a channel with uniform
randomness. If it decided to transmit, it transmits m with probability 1, otherwise, it
listens. At the end of Ts, the simulator simulates u’s reception behavior. There are three
cases: if u transmitted in this simulated round, then u simulates receiving nothing. If
u decided to listen in this simulated round, and does not receive any messages during
the Ts real rounds, it simulates receiving nothing. If u decided to listen in this simu-
lated round, and received at least 1 message during the Ts real rounds, then it simulates
receiving one of these messages (chosen arbitrarily if there are multiple).

During the subsequent cleanup phase in a given iteration, each node u runs the non-
adaptive broadcast algorithm described in Section 3.1 with Δ = C, participating as an
active node only if it began this phase active. If u begins the clean-up phase active, then
after this phase concludes, it completes its broadcast and becomes inactive.

Analysis of the Adaptive Broadcast Algorithm. Our analysis below requires that we
show certain properties hold throughout a full execution. For technical reasons, there-
fore, we must assume that executions are bounded by a number of rounds polynomial
in n: say, O(nk) for some constant k ≥ 1. In the following, let R = {R1, R2, ..., R�}
be the set of � ≤ n non-empty regions provided by our assumed regional clique decom-
position property on G. When analyzing the knockout subroutine in the DFSC model,
we make use of the following helpful notation. For round r, let er be the epoch number
from {1, ...,max(�log (Δ/C)�, 1)} associated with that round, and letA(r) be the nodes
active in the network at the beginning of round r (i.e., nodes broadcasting a message).
For region Ri ∈ R, let Wi(r) =

∑
v∈A(r)∩Ri

per ; i.e., the sum of transmission proba-

bilities of active nodes in Ri in round r (recall pj = 2−(logΔ−j+1) is the transmission
probability used in the jth epoch. Finally, let N+(u) = N(u) ∪ {u}.

We begin by studying the behavior of our DFSC knockout subroutine when executed
in the DFSC model. Lemmas 3, 4 and 5 all apply to this scenario. Recall in the following
statements that α is a constant used in defining the epoch length for this subroutine. We
begin below by adapting a strategy introduced in [17] to prove that for each region Ri,
Wi self-regulates to never grow too large.

Lemma 3. For sufficiently large α, in an execution of the DFSC knockout subroutine,
the following holds w.h.p.: for every round r and region Ri ∈ R: Wi(r) < 2.

We now leverage this result to show that every active node survives an execution of
the knockout subroutine with probability proportional to its local contention.

Lemma 4. For all α ≥ 1, the following holds for each node u starting a given ex-
ecution of the DFSC knockout subroutine active: the probability p̂u that u transmits
alone before any node in N(u), or that no node in N(u) transmits, is bounded as
p̂u ∈ Ω(1/δu).

Proof. Let u be some node that starts an execution of this subroutine active, C be
the subset of u’s neighbors that are also active, C+ = C ∪ {u}, and x = |C+|. We
cannot argue directly about the behavior of nodes in C during this execution because

210 H. Tan et al.

their transmission behavior might also depend on their own neighbors (e.g., if a node
in C is knocked out by one of u’s two-hop neighbors, then this obviously affects its
transmission probability). We will instead argue about their behavior in the absence of
other nodes. In particular, for each v ∈ C+ let bv be the binary string where bit �,
indicated bv[�], equals 1 if and only if v would broadcast in round � of iteration I , given
its random bits,3 under the assumption that v has not received any messages through
the preceding �− 1 rounds of the iteration. Let B+ = {bv | v ∈ C+}.

We now bound the probability that certain properties of this set of strings, each gen-
erated with independent randomness, hold. In particular, let rp = min{r′ | ∃v ∈ C+ :
bv[r

′] = 1}; the first round with a transmission. If all strings in B+ contain only 0’s,
we say that rp is undefined. If rp is defined, we say that its value is good if it occurs
in a round corresponding to a broadcast probability less than 1/x (recall x = |C+|),
and is bad if it occurs in a higher probability round. We can now partition the space of
possible outcomes for the generation of B+ into three mutually exclusive portions: (1)
rp is undefined; (2) rp is defined and good; (3) rp is defined and bad.

We first prove that the size of the outcome space that satisfies condition 3 is small.
In particular, for rp to be defined for a bad epoch means that there was some previous
epoch, ê, for which pê = 1/(kx), for some 1 < k ≤ 2, and yet no node generated
a 1 for the corresponding rounds in its bit string. Given that there are x nodes, the
probability that no node generates a 1 for all α logn rounds corresponding to this epoch
ê is (1 − 1

kx)xα log n ≤ 1
nα/2 . In other words: it is a small probability.

Now consider the case where rp is defined and good. We want to calculate the size
of the portion in the outcome space where bu[rp] = 1, and bv[rp] = 0 for all v ∈ C.
To do so, we note that by the definition of good, the probability associated with rp can
be expressed as 1/(kx) for some k > 1. Let p1 be the probability that exactly one node
in C+ selects 1 in a round associated with this probability p1 =

(
x
1

)
1
kx (1 − 1

kx)x−1 >
x
kx (14)

x
kx = 1

k (14)
1
k . Similarly, let pi be the probability that exactly i nodes in C+

transmit in a round associated with this good probability. We upper bound this value as
follows: pi =

(
x
i

) (
1
kx

)i (
1 − 1

kx

)x−i
< xi

(
1
kx

)i
= 1

ki Let p2+ be the probability of

more than 1 node in C+ transmits in this round: p2+ ≤
x∑

i=2

1
ki ≤ 1

k(k−1) .

Finally, we consider both the case where k is small and large.
For 1 ≤ k ≤ 2 : Define p0 as the probability that no nodes in C+ transmit in rp. We
note that p0 = (1 − 1

kx)x ≥ (14)
1
k ≥ 1

4 , p1 ≥ 1
4 and p2+ = 1 − p1 − p0 ≤ 1

2 .
For k > 2 : p1 ≥ 1

2k and p2+ ≤ 1
k (by our above equation).

It follows that for both possibilities for the value of k, the probability of two or more
transmitters in rp is no more than twice as likely as a single transmitter. Given that
there is at least a single transmitter, p1 ≥ 2p2+ implies that p1 ≥ 1

3 . Finally, if there
is a single transmitter, by the uniform probabilities used in each round, the probability
that this transmitter is u is 1/x. We have shown, therefore, that in the portion where rp
is defined and good, 1

3x of this portion has u transmitting alone before any node in C.
We can now pull together the pieces. The event whose probability we are bounding

with p̂u contains the fraction of the outcome space in which condition (1) from above

3 To define bv we treat randomness here such that v has a pre-determined collection of random
bits from which it extracts the needed randomness for its probabilistic choices.

A Disruption-Resistant MAC Layer for Multichannel Wireless Networks 211

holds, as well as the fraction where condition (2) holds and u broadcasts alone before
any of its neighbors. We proved that the fraction where condition (3) holds is small, i.e.,
≤ n−α/2 , and therefore most of the outcome space (e.g., at least a constant fraction,
≥ 1 − n−1 for α > 2) is dominated by conditions (1) and (2). Furthermore, we proved
that at least a 1

3x fraction of the condition (2) portion has u broadcast alone before its
neighbors. Combined, p(1) + p(2) ∗ 1

3x ≥ (p(1) + p(2)) ∗ 1
3x and p(1) + p(2) ≥ 1− n−1

provide our lemma statement.

We now show that if u transmits alone in its local neighborhood, it has a constant
probability of finishing the subroutine execution active (as there is a constant probability
that this message knocks out your neighbors for the remainder of the execution).

Lemma 5. For sufficiently large α, if node u transmits in an execution of the DFSC
knockout subroutine before any other node in N(u) transmits, then with constant prob-
ability u ends this execution active.

We now shift our focus from the behavior of the knockout subroutine in the DFSC
model to our broadcast algorithm as a whole. If a node ends the knockout phase of a
given iteration active, it has a constant probability of successfully completing broadcast
in the subsequent clean-up phase. The key insight is that it is unlikely that more than
≈ C nearby nodes finish this phase active, allowing the non-adaptive algorithm, run
with maximum contention C, to succeed.

Lemma 6. If u is active at the end of the knockout phase of some iteration I of the non-
adaptive broadcast algorithm, then with high probability every node that neighbors u
receives u’s message by the end of I .

Our final step before our final theorem, is to prove that our simulator routine can
successfully simulate a subroutine designed for the DFSC setting. The core insight in
the below proof is that we use a significantly large number of real rounds per simulated
round to ensure that if a single neighbor v of some u decides to broadcast in a simulated
round (the key case), u will hear from v with high probability during the corresponding
Ts real rounds.

Theorem 2. With high probability, the DFSC simulation subroutine correctly simulates
the DFSC model using O(Ct

C−t logn) rounds for each simulated round.

We can now pull together the pieces for our final theorem statement. The key in-
sight is that there are two good cases with respect to an active node u coming out of
the knockout phase: (1) no node in u’s neighborhood transmitted (implying that there
are only a small number of such nodes), or (2) u transmitted alone before any of its
neighbors (implying, by our above lemma, that u is the only active node in its neigh-
borhood with constant probability). In either of these cases, the clean-up phase has a
good chance of helping u succeed. Because we previously proved that one of these two
conditions occurs with probability in Ω(1/δu), we can show thatO(δu logn) iterations
is enough to ensure success for u with high probability.

Theorem 3. The adaptive broadcast algorithm implements a broadcast service in the
general model with latency of O(Ct

C−tδu log3 n(log (Δ/C) + 1)) rounds.

212 H. Tan et al.

3.3 Broadcast Lower Bounds

We now prove that our broadcast algorithms are close to optimal (which we define to
mean within polylogarithmic factors in the network size) for most parameter values.
We begin with a bound that shows our non-adaptive broadcast algorithm is close to
optimal for a node u when δu is large (i.e., close to Δ). We then adapt a result from [3]
(see Theorem 4.1) to prove that our adaptive algorithm is close to optimal when δu is
small (i.e., constant). A requirement of the algorithm is that it is regular, a definition
which we take from [3]. An algorithm is regular is there exists a sequence of pairs
(Fi, bi) for i ∈ {1, 2, ...} where each Fi is a probability distribution over [C] and bi is a
probability s.t. for each node u and local round r, u will select a frequency from Fr to
transmit on with probability bi, until it receives a message. Once it receives message,
its behavior is no longer constrained.

Theorem 4. Fix some algorithm A that implements a broadcast service with latency
f(n, δu, C, t), for each node u. It follows that f(n, δu, C, t) = Ω(C

C−tδu).

Theorem 5 (Adapted from [3]). Fix some regular algorithm A that implements a
broadcast service with latency f(n, δu, C, t), for each node u. It follows that
f(n, δu, C, t) = Ω(Ct

C−t logn).

3.4 Unicast Algorithm

In the unicast problem, a node u attempts to deliver a message to a single known neigh-
bor v. Because the destination is now known, we assume u can leverage link layer
acknowledgments to determine when it is successful in its delivery. This added power
allows us to adapt the time complexity to the actual amount of local disruption (captured
by t′) as opposed to the worst case (captured by t).

Algorithm Description. As in non-adaptive broadcast, we assume that each node u
groups rounds into phases of size �logΔ� rounds. It then divides these phases into
groups, each containing �log C� phases. When node u is passed a pair (m, v), indicating
that it should send message m to neighbor v, it becomes active at the beginning of the
next phase. It will remain active until it receives an acknowledgment from v (in practice
we might also add a timeout equal to the worst case broadcast latency from Section 3.1).
During round r of phase k of some group, u chooses a channel with uniform probability
from the first min{2k, C} channels. If u is active, it transmits (m, v) with probability
1/2r, otherwise it listens. If i is inactive, it always listens. Larger k corresponds to larger
guesses for t′ (as it requires u to choose from among more channels). If at any point, u
receives (m′, u) from some neighbor v, u replies immediately with an acknowledgment.

Theorem 6. Our algorithm implements a unicast service with a latency of
O
(Ct′
C−t′ logΔ log C logn

)
rounds.

4 Evaluation: A Disruption-Resistant Link Layer Protocol

We demonstrate the utility of our algorithms with a link layer protocol that is robust
against unpredictable disruption and operates on commodity 802.11 hardware. Our pro-
tocol consists of (1) a name service that maintains the list of local neighbors, performs

A Disruption-Resistant MAC Layer for Multichannel Wireless Networks 213

0.1 0.5 5.0 50.0 500.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ping RTTs (Unprotected Network)

Roundtrip Time (ms) [log scale]

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Fa
ile

d
pi

ng
s

No jamming
1 jammer
2 jammers

Fig. 1. Cumulative distribution
of ICMP ping RTTs in an un-
protected network

Unprotected Network Protected Network

%
 IC

M
P

 P
in

gs
 S

uc
ce

ss
fu

l

0
20

40
60

80
10

0

Successful Ping Rate

No jamming 1 jammer 2 jammers

Fig. 2. Percentage of success-
ful ICMP ping requests (with
min/max ranges)

10 20 50 100 500 2000 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ping RTTs (Protected Network)

Roundtrip Time (ms) [log scale]

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

No jamming
1 jammer
2 jammers

Fig. 3. Cumulative distribution
of ICMP ping RTTs in a pro-
tected network

key exchange and key derivation, and serves as an address resolution protocol, based on
the broadcast algorithm, and (2) an authenticated communication service that encrypts,
signs, authenticates and sends messages, based on the unicast algorithm.

The disruption-resistant link layer leverages the broadcast protocol to conduct Diffie-
Hellman (DH) [4] exchanges between nodes. Since the broadcast protocol guarantees,
w.h.p., the reception of messages in the presence of a disrupting adversary, the adversary
cannot prevent honest nodes’ announced DH public keys from being received by their
neighbors. When transmitting messages, a node includes a nonce that is encrypted with
the receiver’s public DH key. Only the intended receiver can decrypt the nonce and
reply with an acknowledgment that contains the nonce, confirming that the message
was received as no other node could have generated this response.

We developed a proof-of-concept implementation using commodity 802.11 hardware
to demonstrate our protocol’s efficacy as a robust communication primitive. Our imple-
mentation is built on top of the Click Modular Router [11] and FreeMAC [23], a modi-
fied Atheros 802.11 driver. We present the full details of our link layer protocol and its
implementation in the full version. In the next section, we evaluate its ability to provide
reliable communication even in the presence of malicious jammers.

4.1 Experimental Setup

Our testbed consists of 4 nodes n1 ... n4 and two jammers j1, j2. These reside in the
same 4-by-6 meter room, run Linux 2.6, are equipped with PCMCIA Atheros 802.11b/g
wireless controllers with AR5212 chipsets, and use the 802.11b bit rate of 2 Mbit/s.

Network Configurations. Since our protocol is a general link layer protocol, we com-
pare it against standard 802.11 ad hoc mode (with acknowledgments and incremental
backoff enabled), which we refer to as the unprotected network. We run our reliable
MAC-layer protocols in the protected network setting. In both settings, we restrict the
choice of channels to the non-overlapping frequencies: 2412Hz, 2437Hz, and 2462Hz.

Network Jamming. To maximize disruption, jammers continuously send packets.
Jammers do not obey 802.11 backoff requirements in either network. We assume the
adversary has knowledge of the communication protocols in use and adapts its jamming

214 H. Tan et al.

50
0

10
00

15
00

20
00

No jamming

Throughput (Unprotected Network)

0 50 100 150 200 250 300

0
2

4
6

8
10

1 jammer
2 jammers

T
hr

ou
gh

pu
t (

K
B

ps
)

Time (seconds)

Fig. 4. Average throughput over time when
operating in unprotected mode, with and
without jammers

Time (seconds)

T
hr

ou
gh

pu
t (

K
B

ps
)

0 50 100 150 200 250 300

0
5

10
15

Throughput (Protected Network)

No jamming
1 jammer
2 jammers

Fig. 5. Average throughput over time when
operating in protected mode, with and with-
out jammers

strategy accordingly. For the unprotected network, jammers operate on the channel used
by the ad hoc network. For the protected network, jammers hop between the channels
used by the protocol in a round robin fashion. When there are two jammers, they jam
two of the three channels at any given time.

Metrics. The nodes periodically transfer large files over HTTP (i.e., via TCP) and send
ICMP ping requests to measure roundtrip times (RTTs). Nodes n1 and n3 respectively
receive large files over HTTP from nodes n2 and n4 in the presence of jammers j1 and
j2. Ping measurements are conducted between node pairs (n1, n2) and (n3, n4).

We explore the performance of our disruption-resistant protocols by measuring the
roundtrip time of ICMP-based ping measurements, the percentage of lost ping mes-
sages, and the effective throughput of the file transfers. To increase contention, the two
pairs of nodes communicate simultaneously. All experiments are repeated five times.

4.2 Performance Results

Latency and Packet Loss. As shown in Figure 1, 802.11 ad hoc mode maintains ping
RTTs of less than 0.250ms when there are no jammers. However, the performance of the
network significantly degrades when even a single jammer is active. For instance, when
only j1 is active, the minimum RTT of successful pings rises to 21ms, and the median
increases to 153ms. The jammers are also able to cause significant packet loss in the
unprotected network. As illustrated in Figure 2, with one (resp. two) active jammers,
only 20% (resp. 5%) of pings are successful.

For comparison, the performance of ICMP pings in protected networks is shown in
Figure 3. The protected network produces larger ping times – the median RTT without
jamming is 109.5ms. However, performance degrades only slightly with jamming: in
the worst case in which both j1 and j2 attempt to disrupt communication, the median
RTT increases to 191.5ms. Importantly, as shown in Figure 2, all pings are successful.

Throughput. Figures 4 and 5 respectively show the throughput over time for the file
transfer on the unprotected and protected networks, with and without jamming. Results
are shown for 5 consecutive experiments (separated with dashed lines).

A Disruption-Resistant MAC Layer for Multichannel Wireless Networks 215

Without jamming, ad hoc mode outperforms our protocol. However, with even a
single jammer, the median throughput of the unprotected network drops to zero. In
contrast, while the protected network experiences a modest decrease when jammers
become active, it maintains the ability to transmit data effectively. Without jammers,
median throughput for the protected network is 7.4KBps; with one and two jammers,
the respective throughputs drops to 6.1 and 3.2KBps. Although our protocols do not
perform as efficiently as standard 802.11 in the absence of contention, our MAC layer
achieves significantly lower loss rates and reasonable throughput when jammers are
present. In environments where reliability is of utmost importance (e.g., in first respon-
der networks), our protocols provide strong delivery guarantees.

5 Conclusion

This paper describes and proves correct uncoordinated communication algorithms for
general noisy shared spectrum networks. It also describes a reliable link layer protocol
based on these primitives, and performs a preliminary testbed evaluation. This work
indicates that algorithmic techniques can be used to enable reliable communication
even in settings,e.g., low power, where such reliability is otherwise hard to achieve.

References

[1] Awerbuch, B., Richa, A., Scheideler, C.: A Jamming-Resistant MAC Protocol for Single-
Hop Wireless Networks. In: PODC (2008)

[2] Barriére, L., Fraigniaud, P., Narayanan, L.: Robust position-based routing in wireless ad hoc
networks with unstable transmission ranges. In: DIAL M, pp. 19–27 (2001)

[3] Daum, S., Gilbert, S., Kuhn, F., Newport, C.: Leader Election in Shared Spectrum Radio
Networks. In: PODC (2012)

[4] Diffie, W., Hellman, M.E.: New Directions in Cryptography. IEEE Transactions on Infor-
mation Theory 22(6), 644–654 (1976)

[5] Foerster, J.: The Performance of a Direct-Sequence Spread Ultra-Wideband System in the
Presence of Multipath, Narrowband Interference, and Multiuser Interference. In: IEEE Con-
ference on Ultra Wideband Systems and Technologies (2002)

[6] Ghaffari, M., Gilbert, S., Newport, C., Tan, H.: Optimal Broadcast in Shared Spectrum
Radio Networks. In: Baldoni, R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012. LNCS,
vol. 7702, pp. 181–195. Springer, Heidelberg (2012)

[7] Gilbert, S., Guerraoui, R., Newport, C.: Of Malicious Motes and Suspicious Sensors: On
the Efficiency of Malicious Interference in Wireless Networks. Theoretical Computer Sci-
ence 410(6-7), 546–569 (2009)

[8] Tan, H., Wacek, C., Newport, C., Sherr, M.: A Disruption-Resistant MAC Layer for Multi-
channel Wireless Networks,
http://people.cs.georgetown.edu/˜cnewport/publications.html

[9] Jin, T., Noubir, G., Thapa, B.: Zero Pre-Shared Secret Key Establishment in the Presence of
Jammers. In: MOBIHOC (2009)

[10] Kavehrad, M., Ramamurthi, B.: Direct-Sequence Spread Spectrum with DPSK Modulation
and Diversity for Indoor Wireless Communications. IEEE Transactions on Communica-
tions 35(2), 224–236 (1987)

http://people.cs.georgetown.edu/~cnewport/publications.html

216 H. Tan et al.

[11] Kohler, E., Morris, R., Chen, B., Jannotti, J., Kaashoek, M.: The Click Modular Router.
ACM Transactions on Computer Systems (TOCS) 18(3), 263–297 (2000)

[12] Kuhn, F., Moscibroda, T., Wattenhofer, R.: On the locality of bounded growth. In: PODC,
pp. 60–68 (2005)

[13] Kuhn, F., Wattenhofer, R., Zollinger, A.: Ad hoc networks beyond unit disk graphs. Wireless
Networks 14(5), 715–729 (2008)

[14] Liu, A., Ning, P., Dai, H., Liu, Y.: USD-FH: Jamming-Resistant Wireless Communication
using Frequency Hopping with Uncoordinated Seed Disclosure. In: MASS (2010a)

[15] Liu, A., Ning, P., Dai, H., Liu, Y., Wang, C.: Defending DSSS-Based Broadcast Communi-
cation Against Insider Jammers via Delayed Seed-Disclosure. In: ACSAC (2010b)

[16] Liu, Y., Ning, P., Dai, H., Liu, A.: Randomized Differential DSSS: Jamming-Resistant Wire-
less Broadcast Communication. In: INFOCOM (2010c)

[17] Moscibroda, T., Wattenhofer, R.: Maximal independent sets in radio networks. In: PODC,
pp. 148–157. ACM (2005)

[18] Navda, V., Bohra, A., Ganguly, S., Rubenstein, D.: Using channel hopping to increase
802.11 resilience to jamming attacks. In: INFOCOM (2007)

[19] Pöpper, C., Strasser, M., Čapkun, S.: Jamming-Resistant Broadcast Communication without
Shared Keys. In: USENIX Security Symposium (2009)

[20] Richa, A., Scheideler, C., Schmid, S., Zhang, J.: Competitive and Fair Throughput for Co-
Existing Networks Under Adversarial Interference. In: PODC (2012)

[21] Richa, A., Scheideler, C., Schmid, S., Zhang, J.: Competitive Throughput in Multi-Hop
Wireless Networks Despite Adaptive Jamming. Distributed Computing 26(3), 159–171
(2013)

[22] Schmid, S., Wattenhofer, R.: Algorithmic models for sensor networks. In: Proc. 14th Int.
Workshop on Parallel and Distributed Real-Time Systems, pp. 1–11 (2006)

[23] Sharma, A., Belding, E.M.: FreeMAC: Framework for Multi-channel MAC Development
on 802.11 Hardware. In: ACM Workshop on Programmable Routers for Extensible Services
of Tomorrow (PRESTO) (2008)

[24] Slater, D., Tague, P., Poovendran, R., Matt, B.: A Coding-Theoretic Approach for Efficient
Message Verification over Insecure Channels. In: WiSec (2009)

[25] Strasser, M., Capkun, S., Popper, C., Cagalj, M.: Jamming-Resistant Key Establishment
using Uncoordinated Frequency Hopping. In: IEEE Symposium on Security and Privacy
(2008)

[26] Strasser, M., Pöpper, C., Čapkun, S.: Efficient Uncoordinated FHSS Anti-Jamming Com-
munication. In: MOBIHOC (2009)

[27] Xu, W., Wood, T., Trappe, W., Zhang, Y.: Channel surfing and spatial retreats: Defenses
against wireless denial of service. In: ACM Workshop on Wireless Security (2004)

[28] Xu, W., Trappe, W., Zhang, Y.: Channel Surfing: Defending Wireless Sensor Networks from
Interference. In: ACM IPSN (2007)

Distributed Computing by Mobile Robots:

Solving the Uniform Circle Formation Problem

Paola Flocchini1, Giuseppe Prencipe2, Nicola Santoro3, and Giovanni Viglietta3

1 University of Ottawa
flocchin@site.uottawa.ca

2 University of Pisa
giuseppe.prencipe@unipi.it

3 Carleton University
santoro@scs.carleton.ca, viglietta@gmail.com

Abstract. Consider a set of n �= 4 simple autonomous mobile robots
(decentralized, asynchronous, no common coordinate system, no iden-
tities, no central coordination, no direct communication, no memory of
the past, deterministic) initially in distinct locations, moving freely in the
plane and able to sense the positions of the other robots. We study the
primitive task of the robots arranging themselves equally spaced along a
circle not fixed in advance (Uniform Circle Formation). In the litera-
ture, the existing algorithmic contributions are limited to restricted sets
of initial configurations of the robots and to more powerful robots. The
question of whether such simple robots could deterministically form a
uniform circle has remained open. In this paper, we constructively prove
that indeed the Uniform Circle Formation problem is solvable for
any initial configuration of the robots without any additional assump-
tion. In addition to closing a long-standing problem, the result of this
paper also implies that, for pattern formation, asynchrony is not a com-
putational handicap, and that additional powers such as chirality and
rigidity are computationally irrelevant.

1 Introduction

Consider a set of punctiform computational entities, called robots, located in R2

where they can freely move. Each entity is provided with a local coordinate sys-
tem and operates in Look-Compute-Move cycles. During a cycle, a robot obtains
a snapshot of the positions of the other robots, expressed in its own coordinate
system (Look); using the snapshot as an input, it executes an algorithm (the
same for all robots) to determine a destination (Compute); and it moves to-
wards the computed destination (Move). After a cycle, a robot may be inactive
for some time.

To understand the nature of the distributed universe of these mobile robots
and to discover its computational boundaries, the research efforts have focused
on the minimal capabilities the robots need to have to be able to solve a prob-
lem. Thus, the extensive literature on distributed computing by mobile robots

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 217–232, 2014.
c© Springer International Publishing Switzerland 2014

218 P. Flocchini et al.

has almost exclusively focused on very simple entities operating in strong adver-
sarial conditions. The robots we consider are anonymous (without ids or distin-
guishable features), autonomous (without central or external control), oblivious
(no recollection of computations and observations done in previous cycles), dis-
oriented (no agreement among the individual coordinate systems, nor on unit
distance and chirality). In particular, the choice of individual coordinate sys-
tems, the activation schedule, the duration of each operation during a cycle,
and the length traveled by a robot during its movement are determined by an
adversary; the only constraints on the adversary are fairness (i.e., for every time
t and each robot r there exists t′ > t when r is active), finiteness (i.e., the dura-
tion of each activity and inactivity is arbitrary but finite), and minimality (i.e.,
there exists δ > 0, unknown to the robots, such that if the destination is at
distance at most δ the robot will reach it, else it will move at least δ towards the
destination, and then it may be unpredictably stopped by the adversary). For
this type of robots, depending on the activation schedule and timing assump-
tions, three main models have been studied in the literature: the asynchronous
one (ASYNC), where no assumptions are made on synchronization among the
robots’ cycles nor their duration, and the semi-synchronous fully synchronous
models, denoted by SSYNC and FSYNC, respectively, where the robots, obliv-
ious and disoriented, however operate in synchronous rounds, and each round is
“atomic”: all robots active in that round terminate their cycle by the next round;
the only difference is whether all robots are activated in every round (FSYNC),
or, subject to some fairness condition, a possibly different subset is activated
in each round (SSYNC). All three models have been intensively studied (e.g.,
see [1,2,3,5,6,7,8,9,10,15,16,17,23,24]; for a detailed overview refer to the recent
monograph [13]).

The research on the computability aspects has focused almost exclusively on
the fundamental class of Geometric Pattern Formation problems. A geo-
metric pattern (or simply pattern) P is a set of points in the plane; the robots
form the pattern P at time t if the configuration of the robots (i.e., the set of
their positions) at time t is similar to P (i.e., coincident with P up to scaling,
rotation, translation, and reflection). A pattern P is formable if there exists an
algorithm that allows the robots to form P within finite time and no longer move,
regardless of the activation scheduling and delays (which, recall, are decided by
the adversary) and of the initial placement of the robots in distinct points. Given
a model, the research questions are: to determine if a given pattern P is formable
in that model; if so, to design an algorithm that will allow its formation; and,
more in general, to fully characterize the set of patterns formable in that model.
The research effort has focused on answering these questions for ASYNC and the
less restrictive models both in general (e.g., [5,15,16,22,23,24]) and for specific
classes of patterns (e.g., [1,7,8,10,11,12,19,20]).

Among specific patterns, a special research place is occupied by two classes:
Point and Uniform Circle. The class Point is the set consisting of a single
point; point formation corresponds to the important Gathering problem re-
quiring all robots to gather at a same location, not determined in advance

Distributed Computing by Mobile Robots 219

(e.g., see [2,3,4,18,21]). The other important class of patterns is Uniform Circle:
the points of the pattern form the vertices of a regular n-gon, where n is the
number of robots (e.g., [1,6,7,8,10,11,12,20]).

In addition to their relevance as individual problems, the classes Point and
Uniform Circle play another important role. A crucial observation, by Suzuki
and Yamashita [23], is that formability of a pattern P from an initial configu-
ration Γ in model M depends on the relationship between ρM(P) and ρM(Γ),
where ρM(V) is a special parameter, called symmetricity, of a multiset of points
V , interpreted as robots modeled by M. Based on this observation, it follows
that the only patterns that might be formable from any initial configuration in
FSYNC (and thus also in SSYNC and ASYNC) are single points and uniform
circles. It is rather easy to see that both points and uniform circles can be formed
in FSYNC, i.e. if the robots are fully synchronous. After a long quest by sev-
eral researchers, it has been shown that Gathering is solvable (and thus Point
is formable) in ASYNC (and thus also in SSYNC) [2], leaving open only the
question of whether Uniform Circle is formable in these models. In SSYNC,
it was known that the robots can converge towards a uniform circle without
ever forming it [7]. Some recent results indicate that the robots can actually
form a uniform circle in SSYNC. In fact, by concatenating the algorithm of [19],
for forming a biangular configuration, with the one of [11], for circle formation
from an equiangular starting configuration, it is possible to form a uniform circle
starting from any initial configuration in SSYNC; notice that the two algorithms
can be concatenated only if the robots are semi-synchronous. Hence, the only
outstanding question is whether it is possible to form a uniform circle in ASYNC.

In spite of the simplicity of its formulation and the repeated efforts by several
researchers, the existing algorithmic contributions are limited to restricted sets of
initial configurations of the robots and to more powerful robots. In particular, it
has been proven that, with the additional property of chirality (i.e., a common
notion of “clockwise”), the robots can form a uniform circle [12], and with a
very simple algorithm; the fact that Uniform Circle is formable in ASYNC
+chirality follows also from the recent general result of [16]. The difficulty of
the problem stems from the fact that the inherent difficulties of asynchrony,
obliviousness, and disorientation are amplified by their simultaneous presence.

In this paper we show that indeed the Uniform Circle Formation problem
is solvable for any initial configuration of n �= 4 robots without any additional
assumption, closing a problem open for over a decade. This result also implies
that, for Geometric Pattern Formation problems, asynchrony is not a com-
putational handicap, and that additional powers such as chirality and rigidity1

are computationally irrelevant.

2 Definitions

For a finite set S ⊂ R2 of n > 2 points, we define the Smallest Enclosing Circle,
or SEC, to be the circle of smallest radius such that every point of S lies on the

1 A move is rigid if it is not interrupted before reaching the destination point.

220 P. Flocchini et al.

circle or in its interior. For any S, SEC is easily proven to exist and to be unique.
Three other circles will play a special role: these are concentric with SEC, and
have radiuses that are 1/2, 1/3, and 1/4 the radius of SEC. They are denoted
by SEC/2, SEC/3, and SEC/4, respectively.

The angular distance, with respect to point x, between two points p and q
(distinct from x) is the measure of the smallest angle between ∠pxq and ∠qxp,
and is denoted by θx(p, q). The sector defined by two points a and b is the locus
of points c such that θx(a, c) + θx(c, b) = θx(a, b). Whenever x is not specified,
it is assumed to be the center of the SEC of a well-understood set of points.

Given a finite set S, the positions of its points around some point x /∈ S,
taken clockwise, naturally induce a cyclic order on S. If several points of S lie on
the same ray emanating from x, their relative order is induced by their distance
from x, starting from the nearest point.

Let p0 ∈ S be any point, and let pi ∈ S be the (i + 1)-th point in the

cyclic order around x /∈ S, starting from p0. Let α
(i)
x = θx(pi, pi+1), where

the indices are taken modulo n. Then, (α
(i)
x)0�i<n is called the angle sequence

induced by p0. (Of course, depending on the choice of p0 ∈ S, there may be at

most n different angle sequences with respect to x.) Letting β
(i)
x = α

(n−i)
x , for

0 � i < n, we call (β
(i)
x)0�i<n the reverse angle sequence induced by p0. We

let α̃x and β̃x be, respectively, the lexicographically smallest angle sequence and
the lexicographically smallest reverse angle sequence of S. Also, we denote by μx
the lexicographically smallest between α̃x and β̃x, and by μ

(i)
x the i-th element

of μx. If p ∈ S is any point inducing μx as a clockwise or counterclockwise angle
sequence, we say that p is a lex-first point of S (with respect to x), and we denote
by L1 the set of all lex-first points. Let p be a lex-first point of S and suppose
that μx is the clockwise (resp. counterclockwise) angle sequence induced by p.
Let p′ be the first point after p in the clockwise (resp. counterclockwise) order
around x that is not collinear with x and p. Then, p′ is said to be a lex-second
point of S (with respect to x), and we denote by L2 the set of all lex-second
points. If x is not specified, it is assumed to be the center of the SEC of S.

The following definitions apply whenever the symbols used are well defined,
i.e., if and only if no point of S lies in the center of SEC. S is co-radial if μ(0) = 0.
In a co-radial set, every two points at angular distance 0 are said to be co-radial
with each other. The number of distinct clockwise angle sequences of S (with
respect to the center of its SEC) is called the period of S. It is easy to verify
that the period is always a divisor of n.

We will be distinguishing among different types of configurations, defined
below (see also Figure 3). S is said to be Equiangular if its period is 1, Biangular
if its period is 2, and Aperiodic if its period is n. In a Biangular set, any two
points at angular distance μ(0) are called neighbors, and any two points at angular
distance μ(1) are called quasi-neighbors. If a Biangular configuration is not co-
radial, it is called Simple biangular. An Aperiodic configuration can be Uni-
aperiodic if α̃ �= β̃, and Bi-periodic if α̃ = β̃. A set S that is not Aperiodic is said
to be Uni-periodic if α̃ �= β̃, and Bi-periodic if α̃ = β̃. S is Regular if its points
are the vertices of a regular n-gon.

Distributed Computing by Mobile Robots 221

Algorithm Uniform Circle Formation

Find first match of observed configuration:

1. Regular: Do nothing;
2. Central: Execute Central;
3. Equiangular: Execute Equiangular;
4. Pre-regular: Execute Pre-regular;
5. Pre-equiangular: Execute Pre-equiangular;
6. Landmark-co-radial: Execute Landmark-co-radial;
7. Post-periodic: Execute Post-periodic;
8. Antipodal-referees: Execute Antipodal-referees;
9. Simple Biangular: Execute Simple biangular;
10. Periodic: Execute Periodic;
11. Post-aperiodic: Execute Post-aperiodic;
12. Aperiodic: Execute Aperiodic;

Fig. 1. The Uniform Circle Formation algorithm

We say that point p ∈ S is homologous to point q ∈ S if the angle sequence
induced by p is equal to the angle sequence induced by q, or to its reverse. In
particular, if it is equal to the angle sequence induced by q (and not necessarily
to its reverse), p and q are said to be analogous. Homology and analogy are
equivalence relations on S, and the equivalence classes that they induce on S
are called homology classes and analogy classes, respectively. In a Uni-periodic
set of period k, all homology classes are Equiangular sets of size n/k. In a Bi-
periodic set of period k, each homology class is either a Biangular set of size
2n/k, or an Equiangular set of size n/k or 2n/k. In a Uni-aperiodic set, the
homology classes consist of one point; in a Bi-aperiodic, they consist of either
one or two points.
S is said to be Double-biangular if it is Bi-periodic with period 4 and has

exactly two homology classes.
S is Pre-regular if there exists a regular n-gon (called the supporting polygon)

such that, for each pair of adjacent edges, one edge contains exactly two points
of S (possibly on its endpoints), and the other edge’s relative interior contains
no point of S [8]. There is a natural correspondence between points of S and
vertices of the supporting polygon: the matching vertex v of point p ∈ S is such
that v belongs to the edge containing p, and the segment vp contains no other
point of S. If two points of S lie on the same edge of the supporting polygon,
then they are said to be companions.

Finally, S is Central if one of its points lies at the center of SEC.

3 The Algorithm

3.1 High-Level Description

The general idea of the algorithm is that first some robots identify themselves as
referees (in spite of anonymity) and maintain their role until they are the only

222 P. Flocchini et al.

ones not in their final position. The referees univocally determine special points,
the landmarks, which, in turn, define a set of half-lines from the centre of SEC,
the targets, partitioning the plane in n equal sectors. Each robot is assigned a
different target. By positioning themselves on the targets, the robots reach an
Equiangular configuration, and they ultimately form a uniform circle.

Algorithm Uniform Circle Formation (see Figure 1) consists of an ordered
set of tests to determine the class of the current configuration; this determines
which action is going to be taken by a robot in order to implement the general
strategy described above. The universe of possible configurations is decomposed
by the algorithm into several classes. Some of the classes (i.e., Regular, Central,
Equiangular, Pre-regular, Simple biangular, Periodic, Aperiodic) have been de-
fined in Section 2; the others will be defined in the following, along with the
description of the corresponding actions. It is easy to see that all possible config-
urations are covered by these classes, simply because any configuration is either
Periodic or Aperiodic. Hence, if all other tests fail, one of these two necessarily
succeeds.

We stress that some configurations belong to more than one class, and so the
order in which such classes are tested by the algorithm matters. For instance,
a Pre-regular configuration may easily be also Aperiodic. The reason why Pre-
regular is tested before Aperiodic is that, when the robots execute procedure
Pre-regular and the configuration remains Pre-regular but it also acciden-
tally becomes Aperiodic, we want all robots to keep executing the same pro-
cedure, without letting some of them “erroneously” start executing procedure
Aperiodic. Of course, now the opposite problem may arise: when the robots
are executing procedure Aperiodic, they may accidentally form a Pre-regular
configuration. However, as it will be apparent in later sections, this event is
much less likely, and it is easier to predict and handle by the algorithm in such
a way that, if a Pre-regular configuration may be formed accidentally during the
execution, then all robots agree to stop in that configuration and consequently
start executing procedure Pre-regular in a synchronized fashion.

3.2 Basic Tools

The above high-level description gives an idea of the general intended behavior of
the robots. Asynchrony and special configurations can easily make the algorithm
deviate from this behavior. The rules and movements of the robots are carefully
designed so to handle any deviation, and they are quite complex. In particular,
two tools are employed: cautious moves and special circles.

Cautious Move. If a robot’s movement can potentially create some configu-
ration that would be treated by other observing robots in an inconsistent way
(i.e., a configuration of a class tested before the current one by the algorithm),
the rule will prescribe the robot to stop in the first point that might create it.
We call these points critical points. Thus in some procedures of the algorithm,
robots are specifically required to perform an operation called cautious move;
this method is invoked when there is a set of robots that need to move on disjoint

Distributed Computing by Mobile Robots 223

paths, each of which contains finitely many critical points. It is assumed that,
as the robots move along their paths, the set of critical points does not change.

In a cautious move, first the set of critical points is expanded with a set of
“auxiliary” critical points: if a robot has a critical point on its path, located at
distance d from the endpoint of the path (where the distance is measured along
the path itself), then each other robot whose path is not shorter than d acquires
a new critical point at distance d from the end of its path. The last point along
each robot’s path is also taken as a critical point.

Then, each robot r whose remaining path is longest moves forward along its
path by the greatest possible amount, with the following constraints:

– r’s destination point must not be past the next critical point (auxiliary or
not);

– if r is currently lying on a critical point (auxiliary or not), its destination
point must be at most halfway toward the next critical point (auxiliary or
not) along its path;

– if the remaining path of r has length d, and there is another robot whose
remaining path has length d′ < d, then r’s destination point must be at most
d′ away from the endpoint of r’s path (in other words, robots do not “pass
each other” in one turn).

On the other hand, the robots whose remaining path is not longest wait.

Special Circles. In the algorithm we use specific concentric circles: SEC, SEC/2,
SEC/3, and SEC/4. This is done first of all to facilitate the recognition of the
current configuration and coordinate the operations of the robots. For example,
SEC/4 is used in Periodic while SEC/3 is used in Aperiodic. More importantly,
these circles are used to avoid the accidental formation of certain configurations.
In particular, as long as some robots are on or inside SEC/3, a Pre-regular con-
figuration may never be formed: this is crucial in the proof of correctness of the
algorithm. Note that we assume the robots can perform “circular movements”
when the destination point is along one of these circles, but, at the cost of slightly
modifying the algorithm, it is possible to let the robots move only along straight
lines.

3.3 The Initial Tests

The first four tests performed by the algorithm are the simplest ones. The al-
gorithm first checks if a uniform circle has been formed; if so, no further action
is taken. Otherwise, it checks if there is a robot at the centre of SEC. In this
case, that robot moves, avoiding collisions, to become co-radial with the robots
on one of the most populated radiuses, and stopping before SEC/4. This action
(procedure Central) transforms the configuration in one of class Aperiodic. In
the third test, the algorithm checks if the configuration is Equiangular; if so, all
robots move radially towards SEC eventually evolving into a Regular configu-
ration. In the fourth test, if the configuration is Pre-regular, each robot moves
towards its matching vertex in the supporting polygon. This action, called pro-
cedure Pre-regular is precisely the technique described in [8] to move from a

224 P. Flocchini et al.

(d) Post-periodic (e) Post-periodic (f) Post-periodic

(b) Landmark-co-radial (c) Antipodal-referees(a) Pre-equiangular

SE
C/4

referee=landmark

targettarget

SE
C

SE
C/4

SE
C

referee=landmark referee landmark

referee=landmark

walker

walker
walker

referee

positions
final

positions
final

positions
final

positions
final

target

ta
rg

et

target

target

position
final

Fig. 2. Examples of the possible evolutions of a Periodic configuration

Biangular configuration into a Regular one; during the action the configuration
remains Pre-regular and it eventually evolves into Regular.

3.4 The Intermediate Tests

Having failed the initial tests, the next sequence of tests is for the classes of
configurations defined below, which can occur as the initial configuration, or
as an evolution from a Periodic configuration. Along with the definitions, the
actions to perform in each configuration are given.

Pre-equiangular. There are robots both on SEC and on SEC/4, and nowhere
else. The robots on SEC are at least three, and those on SEC/4 are forming
an “almost” Regular configuration; that is, a Regular with one missing point
for each robot on SEC. The missing points may be arranged in two different
ways. They may form a “regular pairs” arrangement, in which there are pairs
of missing points in adjacent positions, in such a way that the pairs are equally
spaced around SEC/4; otherwise, they form a “regular pairs” arrangement in
which exactly one element of each pair has been removed. There is a bijection
between robots on SEC and missing points, determined by the minimum total

Distributed Computing by Mobile Robots 225

distance the robots on SEC must travel to occupy them (Figure 2(a) shows an
arrangement on SEC/4 of the second type).

In this case, the robots on SEC rotate towards their targets, which are uniquely
determined by the positions of the robots on SEC/4. With this action, called
procedure Pre-equiangular, the robots eventually reach an Equiangular con-
figuration.

Landmark-co-radial. The robots on SEC form an Equiangular set, and these are
the referees, which also coincide with the landmarks. The landmarks define the
n target half-lines, in such a way that either all landmarks lie on some targets
(as in Figure 2(b)), or they lie on bisectors of adjacent targets. All the non-
referee robots are on or inside SEC/4: each robot on SEC/4 is on a target; the
only ones strictly inside are those co-radial with the referees, and at most one
robot (called walker) for each referee. The central targets of each sector defined
by two adjacent referees are all occupied by robots on SEC/4 in such a way
that, for each landmark, the open sector Γ defined by the nearest target in the
clockwise direction that is occupied by a robot on SEC/4 and the nearest one
in the counterclockwise direction contains as many robots as targets. Moreover,
Γ contains at most one walker, and the targets in Γ that lie to the left of
the landmark differ by at most one unit from those to the right. A co-radial
Biangular configuration falls in this class, too.

In this configuration, the intended behavior is to “resolve” all the robots that
are co-radial to the referees, and have them move to their targets, reaching an
Equiangular or a Pre-equiangular configuration (depending whether the referees
are already on their targets or not).

Note that in a Landmark-co-radial the only unoccupied targets correspond to
the groups of co-radial robots of the landmarks and to at most one robot per
landmark, the walker, which is moving towards a target. The co-radial robots
move in turns. If there is no walker in the sector Γ (as defined above) around
a landmark, the most internal non-referee that is co-radial with that landmark
rotates toward the farthest away target among those in Γ , becoming a walker.
When a walker reaches its target, it moves radially to reach SEC/4. If all the
non-referees are on their targets, they all lie on SEC/4, and the configuration
happens to be Antipodal-referees (see below), then the two non-referees closest
to the landmarks move toward SEC (thus “forcing” the configuration to tran-
sition into an Antipodal-referees configuration that is not a Landmark-co-radial
anymore, which is tested after Landmark-co-radial by the algorithm). Otherwise,
the configuration becomes either Equiangular or Pre-equiangular, as intended.

Post-periodic. The robots on SEC form an Equiangular or a Simple biangular
set, and they are the referees. All other robots lie on SEC/4 or inside of it. If
the referees are Equiangular, the landmarks coincide with the referees and they
all have the same number of co-radial robots, which lie strictly inside SEC/4.
If the referees are Biangular, the landmarks are the midpoints of neighboring
referees, and no robot is co-radial with any landmark. The robots that are not
co-radial with the landmarks are equidistributed among the sectors defined by
the landmarks.

226 P. Flocchini et al.

In this configuration, the targets are calculated with respect to the landmarks,
depending on the parity of the robots that are co-radial with each landmark (in-
cluding the referees): if they are odd, then the landmarks lie on some targets
(Figure 2(d)); if they are even (which includes zero), the landmarks lie on bi-
sectors of adjacent targets (Figures 2(e) and 2(f)). Note that, if such co-radials
are odd, the referees must be Equiangular. Each robot may be associated with
a unique target, or to two possible targets (in case of left-right symmetry of its
view).

The intended behavior in a Post-periodic configuration is to have all robots
move onto SEC/4 on their respective targets, except for the robots that are co-
radial with some landmark, thus reaching a Landmark-co-radial configuration.
To do so, the non-referees that are not co-radial with the landmarks and that can
reach SEC/4 without colliding with other robots, move radially toward it. If none
can do it and there are co-radial robots that are not co-radial with any landmark,
the most internal of these co-radials rotates in an arbitrary direction of 1/4 of the
minimum non-zero element in μ. If all the non-referees that are not co-radial with
the landmarks are already on SEC/4, they orderly rotate on SEC/4 until they
reach their targets (which are now uniquely determined). This is done in such
a way that only the robots that can reach their target without colliding with
other robots move. Each move is cautious, with critical points corresponding
to Landmark-co-radial and Pre-equiangular configurations. At this point, the
configuration becomes: Landmark-co-radial if the referees are Equiangular and
have co-radial robots; Pre-equiangular if the referees are Biangular and they are
not on their targets; or Equiangular if the referees are Equiangular and there are
not co-radial robots, or if they are Biangular and already on their targets.

Antipodal-referees. There are two antipodal robots on SEC, which are the refer-
ees. On SEC/4 there are (possibly among others) n− 4 robots that are forming
a Regular configuration with some missing points. More precisely there are two
antipodal pairs of adjacent missing points, such that each referee is equidis-
tant to two adjacent missing points. Furthermore, there are two other robots
co-radial with two non-adjacent missing points, which lie between SEC/4 and
SEC (possibly on SEC/4 or on SEC). Note that this configuration is uniquely
identifiable and has period either n or n/2 (see Figure 2(c)). In this configura-
tion, the robots closest to the referees (one for each referee) move towards SEC,
eventually reaching a Pre-equiangular configuration.

Simple biangular. In this case, the intended behavior of the robots is to reach
a Pre-regular configuration by moving toward SEC according to the cautious
move protocol, with critical points on SEC/4 (where a Landmark-co-radial or a
Pre-equiangular may be formed), and additional critical points where Pre-regular
configurations may be formed (see Theorem 2). If the robots already on SEC
belong to the same analogy class, the other robots in the same class move first.

3.5 The Periodic Test

Periodic. If the procedure Periodic is executed, it means that the configuration
is Periodic, and additionally it does not belong to any of the classes described

Distributed Computing by Mobile Robots 227

above. In this case, the intended behavior is to elect the referees, define the
landmarks, have the referees move onto SEC and the non-referees move into
SEC/4, reaching a Post-periodic configuration. In trying to do this, the robots
can find themselves in a variety of different configurations, and the algorithm
might switch to several different cases.

Let k be the period. If there exist robots with exactly n/k homologous robots,
then the lex-first among these robots are chosen to be the referees, as well as the
landmarks. If this is not the case, all homology classes must have size exactly
2n/k. If the robots in L1 are not Equiangular (and therefore they are strictly
Biangular), they are chosen to be the referees; otherwise the referees are the
robots in L2. Note that in both cases the referees form a Simple biangular set;
the landmarks are selected to be the midpoints of neighboring referees. Hence,
by construction, the landmarks are always n/k points forming an Equiangular
set (with respect to the center of the SEC of all robots), and they define n/k
sectors, each containing the same number of robots in its interior.

If the configuration is Double-biangular, no referee is on SEC, and some non-
referees are not on SEC, then all the non-referees move radially to reach SEC.
Otherwise, if there are referees not on SEC, they move radially to reach SEC.
If all the referees are on SEC, the other robots move radially inward until they
reach SEC/4 or its interior. All non-referee robots that are co-radial with some
landmark move strictly inside SEC/4. The non-referee robots move in turns, in
such a way that only homologous robots can move together. Specifically, the
non-referees that belong to homology classes of size n/k move first.

In all cases, all movements are cautious, with critical points on SEC/4 (which
may yield a transition into Landmark-co-radial, Antipodal-referees, or
Pre-equiangular), and those determined by Pre-regular configurations.

When this is done, the configuration becomes Post-periodic, with some excep-
tions: if the robots not co-radial with the referees are already on their targets on
SEC/4, except at most one per landmark, the configuration becomes Landmark-
co-radial; if the only robots not on their targets are the referees, and the referees
are more than two, the configuration becomes Pre-equiangular; if the only robots
not on their targets are the referees, and the referees are only two, the configu-
ration becomes Antipodal-referees.

3.6 The Aperiodic Tests

In this last set of tests, Post-aperiodic and Aperiodic configurations are ad-
dressed. Similarly to the previous cases, the intended behavior of the actions is
to elect the referees and to identify landmarks and targets. From the Aperiodic
configuration, the intended behavior is to reach a Post-aperiodic configuration
and, from there, an Equiangular configuration.

Post-aperiodic. There are either one or two robots on SEC/3, which are the
referees. All other robots are found between SEC/2 and SEC. If there are two
referees, they are not antipodal (i.e., their midpoint is not the center of SEC).

In this configuration, the actions taken by the robots (procedure Post-

Aperiodic) are as follows. If there are two referees, and all the non-referees

228 P. Flocchini et al.

are on SEC forming a Regular set with two adjacent missing points, the two
referees rotate on SEC/3 until they become co-radial with the missing points,
and the configuration becomes Equiangular. Otherwise, the targets are identified
by the referees on SEC/3, and a unique target is assigned to each robot. The
non-referees that can move radially to SEC without colliding, do so. If there are
non-referees that cannot radially move to SEC (because other robots are in their
way), then the most internal non-referees rotate of 1/4 of the minimum non-zero
element of μ to remove the co-radiality. If all the non-referees are on SEC and
there is only one referee, the non-referees cautiously rotate to their respective
targets, in such a way that SEC never changes and no two robots collide, and
using Simple biangular and Periodic configurations as critical points. If the tar-
gets are reached, the configuration becomes Equiangular. Finally, if there are
two referees, and all non-referees are on SEC, not forming a Regular set with
two adjacent missing points, the non-referees rotate on SEC with a cautious
move as in the previous case, with additional critical points given by the con-
figurations in which the robots on SEC form a Regular set with two adjacent
missing points. In this last case, the configuration may become Simple biangular,
Periodic, Equiangular, or remain Post-aperiodic.

Aperiodic. The procedure Aperiodic is executed if the current configuration
fails all previous tests. If the configuration is co-radial uni-aperiodic, then the
lex-first is unique, and must have co-radial robots. In this case the referee is
the most internal among the robots that are co-radial with the lex-first. If the
configuration is non-co-radial uni-aperiodic, the lex-first is still unique, but it
may be necessary to keep SEC intact. If this is not the case, the lex-first is the
referee, otherwise the referee is the lex-second (it is easy to see that, if n � 5,
one of these two robots can be removed without altering SEC).

If the configuration is co-radial bi-aperiodic, let r and r′ be, among the robots
that are co-radial with the lex-first robots, the most internal ones, respectively.
If r and r′ are not aligned with the center of SEC, then they are chosen to be the
referees. Otherwise, the referees are the first two robots in the lexicographically
minimum order (which are homologous) that can be safely removed without
altering SEC (assuming that all robots that can reach SEC radially are already
on SEC), and such that they are the most internal robots among their co-radials.
(Note that, in some configurations, these referees happen to be the same robot.
In these cases, the referee is unique.)

Finally, if the configuration is non-co-radial bi-aperiodic, the referees are the
first two (just one, in some special cases) homologous robots that are not aligned
with the center of SEC, and such that, when all robots are on SEC, they can be
removed without changing SEC.

The non-referees that are inside or on SEC/2 move out of SEC/2. Those that
can reach SEC without colliding, do so. They take turns in such a way that
only homologous robots can move together (hence at most two), and they move
radially outward, performing a cautious move with critical points on SEC/4,
SEC/3, SEC/2, SEC, and those determined by the Pre-regular configurations
(see Theorem 3). During these movements, the configuration may become

Distributed Computing by Mobile Robots 229

(a) Equiangular (b) Pre-regular (c) Aperiodic

(d) Post-aperiodic (e) Periodic (f) Periodic

SE
C

referee

referee

(g) Pre-equiangular (h) Antipodal-referees (i) Landmark-co-radial

referee

referee

lex-first

lex-first

SE
C/3

SE
C

SE
C/2

target

target

referee=landmark

lex-first

referee

lex-first lex-first

referee

referee

SE
C/4

SE
C

walker
walker

referee

SE
C/4

SE
C

Fig. 3. Some examples of configurations

either Post-periodic, Landmark-co-radial, Antipodal-referees, or Pre-equiangular
(when they pass through SEC/4 or when they reach SEC), or Post-aperiodic
(when they pass through SEC/3), or Pre-regular. Otherwise, the configuration
stays Aperiodic. If all the non-referees are outside SEC/2 and none of them
can move to SEC without colliding, the referees move and reach SEC/3. They
use a cautious move with SEC/4 as a critical point, and those determined by
the Pre-regular configurations (see Theorem 3). The configuration may become
Post-periodic, Landmark-co-radial, Antipodal-referees, or Pre-equiangular (when
the robots reach SEC/4), or Pre-regular. Otherwise it becomes Post-aperiodic,
as intended.

4 Correctness

The correctness proof is quite lengthy and can be found in [14]. We give here
only an intuition of the main ingredients.

230 P. Flocchini et al.

Central

Regular

Pre-regular

Equiangular

Pre-equiangular

Periodic

Post-periodic

Aperiodic

Post-aperiodic

Landmark-co-radial

Simple biangular

Antipodal-referees

Fig. 4. Configurations, with their intended transitions (thick arrows) and incidental
transitions (dashed arrows)

To prove correctness, we need to analyze all possible transitions between con-
figurations. Some transitions come as a result of the “intended” behavior of the
robots executing the algorithm; other transitions come as “accidental” byprod-
ucts of the execution. The proof is then a detailed examination of all the possible
executions of the algorithm in the space of robots’ configurations, paying special
attention to the transitions that may arise as critical points of cautious moves.
In the following, let R = {r1, · · · , rn} denote a swarm of n > 4 robots. let ri(t)
denote the location of robot ri at time t � 0, and R(t) = {r1(t), · · · , rn(t)}.

We first prove that robots executing the cautious move protocol indeed be-
haves as intended.

Theorem 1. Let a swarm of n robots execute a cautious move with critical point
set
⋃k

i=1 Ci, with |Ci| = n for 1 � i � k, from an initial configuration in which
no robot is moving. Then, during the cautious move, whenever the robots are
found in a configuration Ci, they all stop in that configuration.

Distributed Computing by Mobile Robots 231

We then analyze the behaviour of the algorithms with respect to the critical
points; in particular, to the Pre-regular case, which turns out to be the hardest
to treat.

Lemma 1. If S is Pre-regular, then it is not Central, Post-periodic, Landmark-
co-radial, Antipodal-referees, Pre-equiangular, nor Post-aperiodic.

Theorem 2. Let R(0) be a Simple biangular configuration, n > 4, and let the
robots execute procedure Simple Biangular with suitable critical points. Then,
the robots eventually reach a Pre-regular configuration, and they stop as soon as
they reach it.

Theorem 3. Let R(0) be an Aperiodic configuration, n > 4, and let the robots
execute procedure Aperiodic. Then, as soon as they reach a Pre-regular or a
Simple biangular or a Aperiodic configuration, they all stop in that configuration.

The previous set of Theorems guarantees the correct execution of cautious
moves. We conclude showing that the directed graph of configurations and their
transitions (depicted in Figure 4) contains no cycles, and the only sink is the
Regular configuration.

Lemma 2. If n > 4, no transition is possible other than those illustrated in
Figure 4.

Theorem 4. The Uniform Circle Formation problem is solvable by n �= 4
robots in ASYNC.

The case n = 4 is still open.

Acknowledgments. The authors would like to thank Marc-André Paris-Cloutier

for many helpful discussions and insights, and Peter Widmayer and Vincenzo Gervasi

for having shared some of the fun and frustrations emerging from investigating this

problem. Partially supported by project ARS TechnoMedia (MIUR of Italy).

References

1. Chatzigiannakis, I., Markou, M., Nikoletseas, S.: Distributed circle formation for
anonymous oblivious robots. In: 3rd Workshop on Efficient and Experimental Al-
gorithms, pp. 159–174 (2004)

2. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by
mobile robots: Gathering. SIAM Journal on Computing 41(4), 829–879 (2012)

3. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithms in
asynchronous robots systems. SIAM Journal on Computing 34, 1516–1528 (2005)

4. Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate
sensors and movements. SIAM Journal on Computing 38, 276–302 (2008)

5. S. Das, P. Flocchini, N. Santoro, and M. Yamashita Forming sequences of geometric
patterns with oblivious mobile robots. Distributed Computing (to appear, 2014)

6. Défago, X., Konagaya, A.: Circle formation for oblivious anonymous mobile robots
with no common sense of orientation. In: 2nd ACM Int. Workshop on Principles
of Mobile Computing (POMC), pp. 97–104 (2002)

232 P. Flocchini et al.

7. Défago, X., Souissi, S.: Non-uniform circle formation algorithm for oblivious mobile
robots with convergence toward uniformity. Theoretical Computer Science 396(1-
3), 97–112 (2008)

8. Dieudonné, Y., Labbani-Igbida, O., Petit, F.: Circle formation of weak mobile
robots. ACM Trans. on Autonomous and Adaptive Systems 3(4), 16:1–16:20 (2008)

9. Dieudonné, Y., Levé, F., Petit, F., Villain, V.: Deterministic geoleader election in
disoriented anonymous systems. Theoretical Computer Science 506, 43–54 (2013)

10. Dieudonné, Y., Petit, F.: Swing words to make circle formation quiescent. In:
Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 166–179.
Springer, Heidelberg (2007)

11. Dieudonné, Y., Petit, F.: Squaring the circle with weak mobile robots. In: Hong,
S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp.
354–365. Springer, Heidelberg (2008)

12. Flocchini, P., Prencipe, G., Santoro, N.: Self-deployment algorithms for mobile
sensors on a ring. Theoretical Computer Science 402(1), 67–80 (2008)

13. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mo-
bile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan & Clay-
pool (2012)

14. Flocchini, P., Prencipe, G., Santoro, N., Viglietta, G.: Distributed Computing by
Mobile Robots: Solving the Uniform Circle Formation Problem. arXiv:1407.5917
[cs.DC] (2014)

15. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation
by asynchronous oblivious robots. Theoretical Computer Science 407(1-3), 412–447
(2008)

16. Fujinaga, N., Yamauchi, Y., Kijima, S., Yamashita, M.: Asynchronous pattern
formation by anonymous oblivious mobile robots. In: Aguilera, M.K. (ed.) DISC
2012. LNCS, vol. 7611, pp. 312–325. Springer, Heidelberg (2012)

17. Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S.: Asynchronous mobile robot gath-
ering from symmetric configurations without global multiplicity detection. In:
Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 150–161.
Springer, Heidelberg (2011)

18. Izumi, T., Souissi, S., Katayama, Y., Inuzuka, N., Défago, X., Wada, K., Yamashita,
M.: The gathering problem for two oblivious robots with unreliable compasses.
SIAM Journal on Computing 41(1), 26–46 (2012)

19. Katreniak, B.: Biangular circle formation by asynchronous mobile robots. In: Pelc,
A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 185–199. Springer,
Heidelberg (2005)

20. Miyamae, T., Ichikawa, S., Hara, F.: Emergent approach to circle formation by
multiple autonomous modular robots. J. Robotics and Mechatr. 21(1), 3–11 (2009)

21. Oasa, Y., Suzuki, I., Yamashita, M.: A robust distributed convergence algorithm
for autonomous mobile robots. In: IEEE Int. Conference on Systems, Man and
Cybernetics, pp. 287–292 (1997)

22. Sugihara, K., Suzuki, I.: Distributed algorithms for formation of geometric patterns
with many mobile robots. J. Robot. Syst. 3(13), 127–139 (1996)

23. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of
geometric patterns. SIAM Journal on Computing 28(4), 1347–1363 (1999)

24. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious
anonymous mobile robots. Theoretical Computer Science 411(26-28), 2433–2453
(2010)

Approximation Algorithms for the Set Cover Formation
by Oblivious Mobile Robots�

Tomoko Izumi1, Sayaka Kamei2, and Yukiko Yamauchi3

1 College of Information Science and Engineering, Ritsumeikan University, Shiga, Japan
izumi-t@fc.ritsumei.ac.jp

2 Graduate School of Engineering, Hiroshima University, Hiroshima, Japan
s-kamei@se.hiroshima-u.ac.jp

3 Graduate School of Information Science and Electrical Engineering, Kyushu University,
Fukuoka, Japan

yamauchi@inf.kyushu-u.ac.jp

Abstract. Given n robots and n target points on the plane, the minimum set cover
formation (SCF) problem requires the robots to form a set cover by the minimum
number of robots. In previous formation problems by mobile robots, such as gath-
ering and pattern formation, the problems consist only of the mobile robots, and
there are no points fixed in the environment. In addition, the problems do not
require a control of the number of robots constructing the formation. In this pa-
per, we first introduce the formation problem in which robots move so that they
achieve a desired deployment with the minimum number of robots for a given set
of positions of fixed points.

Since the minimum set cover problem with disks in the centralized settings is
NP-hard, our goal is to propose approximation algorithms for the minimum SCF
problem. First, we show a minimal SCF algorithm from any initial configuration
in the asynchronous system. Moreover, we propose an 8-approximation SCF al-
gorithm in the semi-synchronous system for an initial configuration with a low
symmetricity. This approximation algorithm achieves 2(1 + 1/l)2 approximation
ratio for an initial configuration with the lowest symmetricity (l ≥ 1).

Keywords: Oblivious mobile robots, set cover formation, approximation algo-
rithms, distributed algorithms.

1 Introduction

Background. Studies about cooperations among autonomous mobile robots with weak
capability attract much attention in the distributed computing community. In most of
those studies, it is assumed that robots are oblivious (i.e., no memory to keep the his-
tory of the execution), anonymous (i.e., no ID to distinguish them), and uniform (i.e,
all robots execute the same algorithm). In addition, it is also assumed that each robot
has no direct means of communication. To interact with other robots, each robot ob-
serves the environment in its local coordinate system, which includes the positions of

� This work was supported in part by KAKENHI No. 26330015 and a Grant-in-Aid for Scien-
tific Research on Innovative Areas gMolecular Roboticsh (No. 24104519) of The Ministry of
Education, Culture, Sports, Science, and Technology, Japan.

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 233–247, 2014.
c© Springer International Publishing Switzerland 2014

234 T. Izumi, S. Kamei, and Y. Yamauchi

other robots. Since observation is done in its local coordinate system, the perception
of the environment is different for each of the robots. A robot determines its next des-
tination based only on the observed positions in its local coordinate system. A robot
executes the algorithm by repeating a Look-Compute-Move cycle: The robot observes
the environment (Look), computes its next destination according to the developed algo-
rithm (Compute), and moves to the destination (Move).

From the theoretical aspect, it is an interesting problem to clarify the class of cooper-
ation tasks which autonomous robots can achieve, and to reveal the weakest capabilities
of the robots to accomplish the task. Therefore, the problems, such as gathering and
pattern formation, have been actively studied because they have the fundamental diffi-
culties of coordination such as agreement and symmetry breaking. Common factors to
these problems are that they consider only mobile robots and not any point fixed in the
environment, and that they require the formation with all of the robots. That is, given
an initial set of positions of robots, the formation problem requires the robots to form
a specific pattern by using all of the robots, such as a single point (i.e., gathering) or a
shape (i.e., pattern formation), and any size and location of the pattern is acceptable.

Our contribution. In this paper, we first consider a kind of the formation problems in
which there are fixed points in addition to the robots on the plane. Specifically, the set
cover formation (SCF) problem is introduced in this paper as one of cooperation tasks
among mobile robots. In the SCF problem, robots and target points are initially located
on the two-dimensional Euclidean plane. The target points are visible and static. The
goal of the SCF problem is to allocate the robots so that for every target point s, there is
at least one robot within a circle centered at s with radius r (in this paper, we consider
the case that r = 1). The minimum SCF problem requires to cover a set of target points
by the minimum number of robots.

Since the centralized minimum set cover problem with disks is NP-hard [4], the
robots cannot get the optimal positions to cover given target points. So, in this paper, we
consider approximation algorithms for the minimum SCF problem. First, we propose
a minimal SCF algorithm in the asynchronous system, which constructs the set cover
by the minimal number of robots from any initial configuration. Next, we consider the
minimum SCF problem in a semi-synchronous system for an initial configuration with
a low symmetricity m defined by the initial positions of the target points and robots. To
guarantee the approximation ratio, we use the shifting strategy introduced in [10]. We
propose an approximation minimum SCF algorithm which achieves 2(1+1/l)2 approx-
imation ratio in the semi-synchronous system for arbitrary l ≥ 1 when m = 1 holds, that
is, the robots and target sensors are all fully distinguished. This approximation ratio
is twice the ratio in the centralized setting [10]. The challenging work is to solve the
SCF problem for an initial configuration with m ≥ 2. In this paper, we show that this
approximation minimum SCF algorithm achieves 8 approximation ratio for an initial
configuration with m = 1, 2, or 4 in the semi-synchronous system.

To deal with such formation problem in which robots move so that they construct a
desired structure with the minimum number of them for a given set of positions of fixed
points is a new challenging task in the field of the distributed computing for the mobile
robots. The existence of fixed points in the environment may help the anonymous robots
accomplish the task because they may be able to distinguish themselves from each other

Approximation Algorithms for the Set Cover Formation 235

based on the positions of fixed points. However, the SCF problem has the difficulties
caused by the existence of fixed points: While the previous pattern formation problem
allows the scaling, translation and rotation of a desired shape, the SCF problem does not
allow it, and a solution for the SCF problem depends on positions of fixed points. The
oblivious robots must agree on a common solution based on the observation results in
their local coordinate systems. In addition, the difficulties introduced by obliviousness
and asynchrony of robots also remain in the SCF problem.

Related work. The SCF problem is considered as a variant of the pattern formation
problem, which has been studied extensively. In the pattern formation problem, robots
are required to form F′ which is a result of transforming a given pattern F by the
translations, rotations, and uniform scaling. The main interest in the pattern formation
problem is to clarify the effect of the asynchrony on the solvability. There are three sys-
tems as for the asynchrony of robots, fully-synchronous (FSYNC), semi-synchronous
(SSYNC), and asynchronous (ASYNC) systems. The class of formable patterns F from
an initial configuration I is characterized in [11,12]. To define the formable class, they
introduced the symmetricity ρ(P) of set P of points: ρ(P) is 1 if there is a point at center
c(P) of the smallest enclosing circle S C(P) of P, and otherwise, ρ(P) is the number
of different angles α (∈ [0, 2π)) such that rotating P by α around c(P) results in P.
In [11,12], it is shown that a pattern F is formable from an initial configuration I if and
only if ρ(I) divides ρ(F) except F is a single point (i.e., gathering). For an instance satis-
fying the above condition, the pattern formation algorithms in the FSYNC and SSYNC
system was proposed in [12]. The pattern formation in the ASYNC system was intro-
duced in [3], and in [6], they proposed an asynchronous pattern formation algorithm
that forms F from any initial configuration I such that ρ(I) divides ρ(F).

In [6], they used an embedded pattern formation algorithm in [5]. The embedded
pattern formation problem requires for every visible point in a pattern, exactly one robot
moves to the point. They showed that there is an embedded pattern formation algorithm
which forms any given pattern from any initial configuration in the ASYNC system.

The differences of the (embedded) pattern formation and SCF problem are summa-
rized in terms of the existence and type of fixed points, and the request of consisting
the pattern of the minimum number of robots. In the pattern formation problem, there
are no fixed points and the pattern is formed by all of the robots. The embedded pattern
formation problem considers the fixed points to which the robots move, but it requires
all of the robots to the fixed points. Unlike the embedded pattern formation problem,
in the SCF problem, the robots are given a set of fixed points which should be covered,
not points to be moved. Thus, to guarantee the minimality or approximation ratio for
the minimum SCF problem, the robots must calculate and agree on a solution for the
set cover, and some of the robots move to the positions in the solution.

In the centralized settings, the minimum set cover problem with disks and many of
its variants are known to be NP-hard [4]. This problem is to find the minimum number
of disks to cover a given set of points on the plane. The first polynomial time approxi-
mation algorithm was proposed by Hochbaum and Mass in [10]. They proposed a cru-
cial strategy to guarantee the approximation ratio in the covering problem, called the
shifting strategy. By using the shifting strategy recursively, they proposed a (1 + 1/l)2-
approximation algorithm with O(n4l2) time, where n is the number of target points and

236 T. Izumi, S. Kamei, and Y. Yamauchi

l ≥ 1 is the integer parameter of the algorithm. After that, the studies about the mini-
mum set cover problem focus on the improvement of the time complexity. Feder and
Green [2] and independently Gonzalez [9] improved the time complexity to O(n4l).
Some researches tried to get better time complexity at the expense of the approxima-
tion ratio [1,7,8]. Notice that since a set of target points is given on a global coordinate
system in the centralized setting problem, these algorithms cannot be applied directly
to the SCF problem.

Road map. This paper is organized as follows. In Section 2, we present the system
model and define the SCF problem. Section 3 and Section 4 present a minimal and
approximation SCF algorithm respectively. We conclude this paper in Section 5.

2 Preliminaries

2.1 System Model

The system consists of a set of n autonomous mobile robots R = {r0, r1, · · · , rn−1} and a
set of n visible target points S = {s0, s1, · · · , sn−1}, where |R| = |S | = n 1. The robots and
target points are modeled as points located on the two-dimensional Euclidean plane.
For two points x and y, xy denotes the line segment whose endpoints are x and y, and
|xy| denotes the Euclidean distance of line segment xy. r Robots are anonymous and
oblivious: Anonymous robots have no identifier to distinguish them, and execute the
same algorithm. An oblivious robot cannot explicitly remember the history of its exe-
cution. In addition, no device for direct communication is equipped. The cooperation of
robots is done in an implicit manner: Each robot observes the environment and obtains
the positions of other robots and target points. The robots can distinguish the positions
of robots and target points. The robot has no capability of multiplicity detection. Note
that, however, the robot can detect a robot ri on a target point s j. The positions of the
target points are fixed and unchanged during an execution of the algorithm.

Each robot executes the deployed algorithm in computational cycles (or briefly cy-
cles). At the beginning of a cycle, the robot observes the current environment, i.e., the
positions of other robots and target points (Look), and determines the destination point
based on the deployed algorithm (Compute). Then, the robot moves to the computed
destination (Move). In this paper, we assume the rigid movement model, in which each

1 Our algorithms achieve the minimal and approximated SCF even if there are more than n
robots (i.e., |R| ≥ |S | = n): Since n robots are enough to cover n target points, the redundant
robots go far enough away from the center c(S) of the smallest enclosing circle S C(S) so that
they do not interfere with the other robots’ movements. The redundant robots can be detected
because the number of the redundant robots is |R|−n = c ·m for the symmetricity m (defined in
Section 4.2) and an integer c. That is, the farthest m robots go far away from c(S), and then the
next farthest m robots go far away from c(S). These movements are repeated until the number
of robots within a certain distance from c(S) becomes n. In the algorithm, the robots consider
the positions of n robots within a certain distance from c(S) to calculate their next destination.
Since any two robots do not go to the same position in our algorithms, the redundant robots
keep their positions far enough away from c(S) and do not join in the processing of the SCF
algorithm. In the paper, we assume that |R| = |S | = n holds for simplicity.

Approximation Algorithms for the Set Cover Formation 237

robot reaches a destination point at the end of each Move phase. There are three sys-
tems for the synchronization of the execution of cycles. In the asynchronous (ASYNC)
system, each robot executes each phase of Look, Compute and Move asynchronously.
On the other hand, in the fully-synchronous (FSYNC) system, all robots execute the
cycle simultaneously. The semi-synchronous (SSYNC) system is the one between the
ASYNC and FSYNC systems. More precisely, in the SSYNC system, an execution is
divided into consecutive time steps. At each time instant, the scheduler selects the set
of robots to perform a cycle. The selected robots by the scheduler perform one cycle
simultaneously. Note that in the SSYNC system, a robot never observe the environment
while another robot is moving.

Each robot has no access to the global coordinate system, and the observation of
the environment is represented as the set of points in its local coordinate system. The
local coordinate system of a robot is the Cartesian coordinate system whose origin
is the current position of the robot. There is no agreement on the direction of local
coordinate systems among robots. That is, the robots do not have common knowledge
about the direction of x − y axis of their local coordinate systems. However, they agree
on the orientation of their coordinate systems. As for the scale, we assume that all robots
agree on the unit length 2. For the convenience of explanations, we introduce the global
coordinate system. Notice that the global coordinate system is introduced only for the
convenience of explanations, and thus each robot cannot be aware of it. The positions of
robot ri and target point s j in the global coordinate system are denoted by p(ri) and p(s j)
respectively, or simply ri and s j when no confusion occurs. For a set P of positions, let
S C(P) be the smallest enclosing circle of P and c(P) be the center of S C(P). The radius
of S C(P) is denoted by radius(P). The circle RC(ri) is the circle centered at ri with
radius 1.

2.2 The Set Cover Formation (SCF) Problem

The set cover formation (SCF) problem requires some of the robots to construct a set
cover. At first, we define a set cover for set S of target points.

Definition 1 (Set cover). A set P of points is called a set cover for S if for each s ∈ S ,
there is a p ∈ P such that |sp| ≤ 1. A set cover P for S is minimum if |P| = minP′∈P |P′|
holds, where P is the set of set covers for S , and P is minimal if no proper subset of P
is a set cover for S .

To distinguish the robots in a set cover, we introduce the two states of robots, active
and asleep. However, it is assumed that the robot has no memory to keep its state of the
execution. So, we do not allow the robots to execute any action after they change their
states to asleep: Initially, the states of all robots are set to active. Then, if some robots
change their states to asleep during the execution, they never move from the current
position, and never return to the active state. Note that since the state of robot is internal
information of the robot, the other robots cannot know the state of the robot by the
observation.

2 This assumption is required to detect the coverage of the target points by the robots.

238 T. Izumi, S. Kamei, and Y. Yamauchi

A configuration is denoted by the set of p(ri) for each ri ∈ R, the set of p(s j) for each
s j ∈ S and the states of all robots. We define C(t) as the configuration at time t. Let
P(C(t)) be a set of positions of all robots in a configuration C(t), and P̃(C(t)) be a set of
positions of active robots in C(t). For short, P(C(t)) and P̃(C(t)) are denoted by P(t) and
P̃(t). For a target point s ∈ S and robot r, we say that s is covered by r if |rs| ≤ 1 holds.
In an initial configuration C(0), we assume that the positions of robots and target points
are scattered. That is, initially, the robot observes n robots and n target points, and no
robot stays on a target point in S . The SCF problem is defined as follow.

Definition 2 (Set cover formation (SCF) problem). Given an initial configuration
C(0) consisting of the sets P(0) and S , an algorithm A solves the set cover formation
(SCF) problem for S , if for all possible executions of A from C(0), there exists time t′
such that for all t > t′, P̃(t) is a set cover for S . The minimum (resp. minimal) set cover
formation problem requires that P̃(t) is a minimum (resp. minimal) set cover for S .

By the definition of system model, since the number of robots and the number of
target points are the same, the SCF problem is easily solved by moving each robot to
each position of target points. In [5], Fujinaga et al. proposed the embedded pattern
formation algorithm by the ASYNC robots, called CWM algorithm, which moves the
robots to any given visible points from any initial configuration in the non-rigid move-
ment model. In the non-rigid movement model, a Move phase may finish when a robot
is still on the way to its next destination3. In the CWM algorithm, each robot ri finds an
optimum matching Mi between the robots and the given points, and moves in a straight
line to its matched point. They showed that all robots compute the same matching (i.e.,
Mi = M j for any robot ri, r j), and that the matching Mi never change during the straight
movement of the robots. Thus, by using the CWM algorithm, for any set S of target
points, exactly one robot can reach each s ∈ S from any initial configuration, and the
robot keeps its state active. In a configuration C(t) after all robots move to their matched
points, the set P̃(t) (=P(t)) constructs a set cover for S . However, the strategy using the
CWM algorithm does not guarantee the quality of the set cover, even the minimality.

3 Minimal Set Cover Formation Algorithm

In this section, we propose a minimal SCF algorithm from any initial configuration by
the ASYNC oblivious robots.

The algorithm is simple: For each target point s j, the robot calculates the position q j

such that s j is on the segment q jc(S) and |q js j| = 1 holds (Fig. 1). Note that for any
si, s j (i � j), qi � q j holds, and that since the position q j is determined only by the
positions of the target points in S and s j, q j does not change even if the robots move.
In addition, all the robots agree on q j even if they calculate q j in its local coordinate
system. Let F be the set of the calculated positions (|F | = n). For F and the set of
robots, we apply the CWM algorithm. That is, each robot r j goes to the matched position

3 Precisely, a robot stops on y or on a point z on xy such that |xz| ≥ ε (≥ 0) holds at the end of a
move phase, where x is the previous position, y is the destination position and ε is (unknown)
minimum moving distance.

Approximation Algorithms for the Set Cover Formation 239

c(S)

1
qj

sj

×

Fig. 1. A calculated position qj for s j

c(S)

active

active

×

rh rj

ri

si'

sh’ sj'

asleep

Fig. 2. Determination of active or asleep

q j ∈ F in a straight direction. Since all robots agree on the position of every q j, the
robots detect the termination of the movements of all robots. After all robots stop on
the matched positions, they determine their states, active or asleep, in the following
manner: Each robot calculates the states of all robots in the order of increasing distance
|ric(S)|. Let si′ be the target point on the intersection with ric(S) and the circumference
of circle RC(ri), which is the circle centered at ri with radius 1. If the target point si′

is covered by an active robot rh (h � i) which satisfies |rhc(S)| < |ric(S)|, then robot
ri becomes asleep, otherwise ri keeps its state active. The states of the robots ri and
r j which |ric(S)| = |r jc(S)| holds can be determined independently because the target
point si′ of ri is not within a circle RC(r j) (See Fig. 2). Since the state of every robot
is determined uniquely based only on the distances from c(S) to the robots, all robots
agree on the same assignment of the states.

We can show that the above algorithm solves the minimal SCF problem because
every target point s j is covered by at least one robot and an active robot ri has at least
one target point si′ which is not covered by any active robots. However, we omit the
detailed proof because of the page limitation.

Theorem 1. In the ASYNC system and the rigid movement model, there is an algorithm
for the minimal SCF problem from any initial configuration 4.

4 An Approximation Algorithm for the Minimum SCF Problem

4.1 The Shifting Strategy

In [10], an algorithm, called the shifting strategy, is proposed as an approximation
scheme to solve the minimum set cover problem with disks in a centralized setting,
where the positions of the target points are given to an algorithm in the global coordi-
nate system. Most of the previous works about the minimum set cover problem with
disks use this strategy to guarantee the approximation ratio of their algorithms. In this
paper, we also use the shifting strategy, so we explain it in this subsection.

4 Notice that Theorem 1 also holds in the non-rigid movement model because the CWM algo-
rithm works in the model.

240 T. Izumi, S. Kamei, and Y. Yamauchi

The shifting strategy is based on a simple divide-and-conquer approach. Consider
the minimum set cover problem whose goal is to cover given n points on the plane with
the minimum number of disks of radius r (in this paper, we consider the case of r = 1).
Let the shifting parameter be l, which is an integer parameter to control the accuracy
of approximation. First, the plane is divided into vertical strips of width D = 2r. Then,
groups of l consecutive strips are considered, that is, the width of each group is l · D.
For any fixed division into strips of width D, there are l distinct partitions into strips of
width l · D. These partitions can be obtained by shifting one partition to the right over
distance D.

LetA be a given local algorithm that solves the minimum set cover for any group of
width l ·D. Thus, the union of the disks output byA as a solution for each of the groups
is a feasible solution for the problem with n points. We repeat the same strategy for l
distinct partitions, and choose the feasible solution of the minimum cardinality among
the l solutions. For the algorithm using the shifting strategy, the following crucial lemma
is proven in [10].

Lemma 1 (The Shifting Lemma [10]). Let ARA be the approximation ratio of a local
algorithmA. Then, given n target points, the approximation ratio for the minimum set
cover problem with disks is less than or equal to ARA

(
1 + 1

l

)
.

On the two-dimensional plane, the shifting strategy is applied twice; first, the plane
is divided into vertical strips, and then each strips of width l·D is divided into horizontal
strips. As a result, the plane is divided into the squares of side length l · D. The local
algorithm B provides the minimum set cover for each of the squares. Then, we have
ARB(1 + 1/l)2 approximation ratio for the minimum set cover problem with n points.

In [10], an optimal set cover algorithm for the square is also proposed. The algorithm
searches the optimal solution exhaustively. The square of side length l·D can be covered
by �l√2	2 disks of radius D/2. Moreover, any disk that covers at least two points can be
assumed to have two of these points on its circumference. Thus, the number of possible
positions of disks is finite. By checking all possible arrangements, we find the optimal
covering for the square, that is, we achieve ARB = 1. We call the algorithm which uses
the local optimal algorithm B and the shifting strategy SS-OPT algorithm. That is, the
approximation ratio of SS-OPT algorithm for the minimum set cover problem with
disks is (1 + 1/l)2.

4.2 An Approximation Algorithm

In this section, we consider the approximation algorithm for the minimum SCF problem
in the SSYNC system and rigid movement.

To classify given initial configurations, we define the geometric symmetricity ρ(q,Q)
for a point q and a set Q of points. The geometric symmetricity is introduced in [12],
but in this paper, we modify the definition because we deal with the two sets of points,
P(t) and S .

Definition 3 (The geometric symmetricity ρ(q,Q)). Let q be a point and Q be a set
of distinct points on a plane. Then, if q ∈ Q, the symmetricity ρ(q,Q) is 1, otherwise,
ρ(q,Q) is the number of different angles α (0 ≤ α < 2π) such that rotating Q by α
around q results in Q.

Approximation Algorithms for the Set Cover Formation 241

From the definition of ρ(q,Q), we can also say that Q can be divided into regular k-gons
with co-center q, and ρ(q,Q) is the maximum of such k [11] (when ρ(q,Q) = 1, we say
that each point consists 1-gon). We denote ρ(c(S), S), ρ(c(S), P(t)) and ρ(c(S), S ∪P(t))
by ρS , ρP(t), and ρS∪P(t) simply. Figure 3-(a) is an example of configurations where
ρS = ρP(t) = ρS∪P(t) = 4. Let m = min{ρS , ρP(0), ρS∪P(0)}.

The essential difficulties of the minimum SCF problem are that each robot must agree
on a set cover with other robots based on observation obtained in its local coordinate
system, and that each oblivious robot must detect the termination of construction of a
desired set cover by the robots. For the problem of agreement, our idea is to construct a
temporal x − y axis for each of divided area by some robots. Then, every robot in each
of the divided area agrees on a common solution for the set cover based on the temporal
axis by using SS-OPT algorithm. To guarantee the construction of the temporal x −
y axis, in this section, we assume that a given initial configuration C(0) satisfies the
condition that m is 1, 2, or 4.

The detection of the construction of a desired set cover is also crucial problem for
the SCF problem. The robots may construct a feasible set cover that does not guarantee
the quality of solution initially. Since the robot is oblivious and it cannot know the state
of other robots (i.e, active or asleep), it must decide whether the current configuration
constructs a desired set cover, which guarantees an approximation ratio, or not based
only on the positions of robots.

To distinguish the desired configurations from the other configurations, we define a
safe cover. By definition, S can be partitioned into n/ρS regular ρS -gons S 0, S 1, . . . ,
S n/ρS−1. The definition ρ(c(S), S) is the same as the symmetricity ρ(S) defined in [5].
So, as in [5], all robots agree on an order of these regular ρS -gons, such that the distance
of the points in S i from c(S) is no greater than that of S i+1. We call the target points
in S n/ρS−1 outer points. Let T (t) ⊆ P(t) be the sets of positions of robots on the target
points and Out(t) ⊆ T (t) be the sets of positions of robots on the outer points in C(t).
We say that a configuration C(t) constructs a safe cover if the following conditions are
satisfied in C(t):

1. All robots are in the smallest enclosing circle S C(S) of S (including the circumfer-
ence of the circle),

2. |Out(t)| > 0, and
3. P(t) \ (T (t) \ Out(t)) constructs a feasible set cover for S .

Note that initially T (0) = ∅, and Out(0) = ∅ hold, so even if the robots construct a
feasible set cover in initial configuration, they detect the configuration does not con-
struct a safe cover. In Fig. 3, the configuration in (f) constructs the safe cover while the
configurations in (a)-(e) do not.

The definition of safe cover indicates the idea of our algorithm: We construct a set
cover only by the robots not on the target points (except the outer points). That is, when
a configuration constructs a safe cover, the robots on target points become asleep, and
all robots stop executing the algorithm. However, there is a case such that all of the
robots should be active to cover all points in S . That is, each robot covers at least one
target point and keeps its state active. In this case, every robot must exist not on the
target point. Even for this case, we must detect the termination of the construction of
the desired set cover. To solve this problem, in our algorithm, at least one robot moves

242 T. Izumi, S. Kamei, and Y. Yamauchi

to an outer point (i.e., |Out(t)| > 0), and if necessary, the robot on the outer point keeps
its state active.

The outline of our algorithm in the SSYNC system is as follows: First, some robots
move to specific positions that are outside of the circle S C(S) to define an unique lattice,
which is used to partition of the plane into squares for the shifting strategy. The robots
which define the unique lattice are called axial robots. Then, each of the other robots
moves to the matched target points by the CWM algorithm. After that, every robot on
the target point uses SS-OPT algorithm to get a solution A for the square in which the
robot stays. To construct a safe cover, we modify A and get a feasible solution A′, whose
size is twice of A in the worst case (i.e., |A′| ≤ 2|A|). Each robot computes a matching
between the robots and the positions in A′, and the matched robot for each position q in
A′ moves to q. At the last, the axial robots move to the corresponding outer points. To
distinguish the above phases of the algorithm, the axial robot changes its position.

In what follows, we explain details of our approximation SCF algorithm. The algo-
rithm consists of five phases. We assume that there are no target points and no robots
on c(S) initially. In the case where c(S) is occupied by a target point or robot initially,
we need additional preprocessing phase, which is described later. Let radius(S) be the
radius of S C(S). An axial robot is a robot ri which is the farthest one from c(S) and
satisfies |ric(S)| > radius(S). If the farthest robots stay in the circle S C(S) then we say
that there are no axial robots. Let �ra(t) be the number of axial robots, and dra(t) be the
distance between the axial robots and c(S) in configuration C(t).

If the configuration constructs a safe cover, then the active robot on the target point,
which is covered by at least one robot not on the target point, becomes asleep. The
following phases are executed only when the configuration does not construct a safe
cover (Notice that a safe cover is not constructed until the end of Phase 5). Remember
that the system is SSYNC and movements of robots are rigid.

Phase 1: Phase 1 is executed when the configuration C(t) satisfies the two conditions
that T (t) = ∅, and �ra(t) = 0, or 4 < �ra(t), or dra(t) < radius(S)+3. When 1 ≤ �ra(t) ≤ 4
and dra(t) = radius(S)+ 2 hold, each robot checks the conditions for Phase 5 and if the
conditions are satisfied then it executes Phase 5, not Phase 1.

In this phase, at most m robots become the axial robots by moving to the positions
q which |qc(S)| ≥ radius(S) + 3 holds. Initially, the number of the farthest robots may
be more than 4. By definition, however, at least one of sets S , P(0), and S ∪ P(0) can
be partitioned into the regular m-gons centered at c(S). Thus, every robot can agree on
at most m farthest robots from c(S) by checking the positions of S , P(t) and S ∪ P(t) in
this order, and select them as candidates for axial robots. The candidate robot ri moves
to the position q such that the current position p(ri) of ri is on the segment qc(S) and
|qc(S)| = max{|p(ri)c(S)| + 1, radius(S) + 3} (Fig. 3-(b)). Since the system is SSYNC,
it is possible that some of the candidates does not move while the others move to the
positions q which |qc(S)| ≥ radius(S) + 3 holds. Even in this case, since we assume
that m is 1, 2, or 4, the angle between segments ric(S) and r jc(S) is π/2 or π for any
two axial robots ri and r j after Phase 1.

Phase 2: Phase 2 is executed when 1 ≤ �ra(t) ≤ 4 and dra(t) ≥ radius(S) + 3, and there
is a robot not on the target points except the axial ones. In this phase, the robots except

Approximation Algorithms for the Set Cover Formation 243

(a) An initial configuration (b) Phase 1

(c) Phase 2 (d) Phase 3

(e) Phase 4 (f) Phase 5 and a safe
cover

Fig. 3. An example of executions of our approximation algorithm, where the black and white
circles represent the robots and target points respectively

the axial robots move to the target points by using the CWM algorithm. For each axial
robot ri, let si′ be the nearest outer point from ri (if there are more than one points with
the same distance, the tie is broken in the clockwise manner around ri). Let B be the set
of the nearest outer point for every axial robot. For the set S \ B, the robots except the
axial ones execute the CWM algorithm. At the end of Phase 2, all of the robots except
the axial robots stay on the target points (Fig. 3-(c)).

Phase 3: Phase 3 is executed when 1 ≤ �ra(t) ≤ 4, dra(t) ≥ radius(S) + 3, and the
robots except the axial ones stay on the target points. The axial robot ri goes straight

244 T. Izumi, S. Kamei, and Y. Yamauchi

toward c(S) so that |ric(S)| = radius(S) + 2. This change of the distance dra(t) is used
to distinguish the configurations of Phase 2 from those of Phase 4. Since the system is
SSYNC, the number of axial robots may be decreased during Phase 3 (Fig. 3-(d)); the
axial robot ri moves so that |ric(S)| = radius(S)+ 2 while at least one axial robot waits
on the current position in the cycle. In the next cycle, ri moves to the corresponding
outer point si′ according to the CWM algorithm in Phase 2 because ri is not the axial
robot at the time. However, at least one axial robot remains axial one at the end of
Phase 3. Moreover, if there are more than one axial robots ri and r j, the angle between
segments ric(S) and r jc(S) is π/2 or π.

Phase 4: Phase 4 is executed when dra(t) = radius(S) + 2 and T (t) � ∅. Before the
execution of Phase 4, each robot checks the conditions for Phase 5 and if the conditions
are satisfied then it executes Phase 5, not Phase 4. In Phase 4, the robots on the target
points move to form a set cover obtained by the SS-OPT algorithm in [10]. The shifting
parameter l is set based on the number �ra(t) of the axial robots.

In the case that �ra(t) ≥ 2 holds, l is set to 1. That is, the local optimal algorithm
B in the shifting strategy is applied to the square of side length 2, and we do not use
the shifting process. We consider two lines which run c(S) at right angles, and at least
one of which runs the axial robot (see Fig. 3-(e)). They divide the plane into four areas.
Then, in each area, the x-axis is the right boundary from c(S) and y-axis is the other
boundary. Thus, every robot in each area can agree on the same coordinate system, and
get the same solution of SS-OPT algorithm for each area. Each area is also divided into
the squares of side length 2 so that one side of the square is parallel to x-axis. Assuming
that the north is in the direction of y-axis, the north and west side are included in the
square, but the south and east side are not.

The robot on the target point calculates the minimum set cover for the square in
which it stays. Let AB be the solution by the local algorithm B for the square. The
solution AB may have a point on the target point or on the outside of S C(S), which
does not meet the conditions of safe cover. To construct a safe cover in the square, we
construct a solution A′B from AB by the following two processes:

1. First, set A′B = AB. Then, for every q ∈ A′B which is outside of the circle S C(S), q
is removed from A′B, and q′ defined as follows is added to A′B (see Fig.4): Consider
the chord aa′ where a and a′ are the intersections of circle S C(S) with RC(q). Let
cq be the perpendicular line toward aa′ from q where c is on aa′, and let c′ be the
intersection of S C(S) with cq. The position q′ is a position on segment cc′ which
holds |cq′| = |cc′|/2k, where k = 0, 1, . . . is the minimum integer such that q′ is not
on the target point. The target points covered by q are also covered by q′ because
there is no target point outside of S C(S).

2. Next, for every q ∈ A′B on the target point, q is removed from A′B, and two positions
q1 and q2 defined as follows are added to A′B (see Fig.5)5. We set q1 and q2 so that
the target points covered by q are covered by q1 and q2. The circle RC(q) is divided

5 Here, we assume that there are more than two target points in the circle RC(q). If there are
two target points in the circle, the middle point between the two points is added to A′B instead
of q. If there is one target point, that is, it is on q, the point q′ which is on qc(S) and satisfies
|qq′| = 1/2 is added to added to A′B instead of q.

Approximation Algorithms for the Set Cover Formation 245

Fig. 4. A position q′ Fig. 5. Positions q1 and q2

by chords each of which runs the target point si in RC(q) and q. Since the number
of target points is finite, there is the minimum angle θ > 0 in the angles between
any two chords (tie is broken in the angle to c(S)). Let aa′ and bb′ be the chords
between which the angle is θ. The intersection of segment ab (resp. a′b′) with the
perpendicular line from q toward ab is denoted by c (resp. c′). The position q1

(resp. q2) is a position on segment qc (resp. qc′) which holds |qq1| = |qc|/2k (resp.
|qq2| = |qc′|/2k), where k = 0, 1, . . . is the minimum integer such that q1 (resp. q2)
is not on the target point. Notice that the target points covered by q in AB are also
covered by q1 and q2 in A′B because there are no target points in the sectors with

central angle θ surrounded by chords aa′ and bb′ and circle RC(q).

The total number of disks in A′B is at most twice of AB. By the above described way,
each robot gets the unique solution A′B in the square, and the nearest robot to q ∈ A′B in
the square moves to q. If the robot on the target point detects that the robots not on the
target points construct the solution A′B, it becomes asleep.

In the case that �ra(t) is 1, all robots agree on a single coordinate system. Thus, the
robots get the same solution of SS-OPT algorithm globally. By the same way as the
case that �ra(t) ≥ 2, each robot calculates the solution, modifies it, and it moves to the
position in the modified solution or becomes asleep.

Phase 5: Phase 5 is executed when 1 ≤ �ra(t) ≤ 4 and dra(t) = radius(S) + 2 hold,
and the axial robots detect that the other robots not on the target points construct the
solution of SS-OPT algorithm. This detection is possible by the axial robots because
the axes defined by the axial robots do not change from Phase 2. In Phase 5, the axial
robot ri moves to the corresponding outer point si′ , and if si′ is covered by another robot
not on the target point then ri becomes asleep, otherwise it keeps its state active (Fig.
3-(f)).

In the case that c(S) is occupied by a target point or robot initially, we need additional
preprocessing phase to determine the candidate of axial robots: If there are no robots on
c(S) (i.e., a target point exists on c(S)), one robot r which is matched with c(S) by the

246 T. Izumi, S. Kamei, and Y. Yamauchi

CWM algorithm moves to c(S). The robot r on c(S) moves to radius∅(S ∪ P(t))/2
distance from c(S) in the northern direction on its local coordinate system, where
radius∅(S ∪ P(t)) is the radius of the largest empty circle of S ∪ P(t). The empty circle
means that its interior does not include any point in S ∪ P(t). Based on the position of
r, every robot can select one robot as the candidate of axial robot. If there is the target
point si on c(S), si is covered by r in Phase 4.

The robots construct a set cover at the end of Phase 5. To cover the target points by
the robots not on the target points, we need twice the number of active robots than the
size of solution obtained by SS-OPT algorithm (see Phase 4). Then, from Lemma 1,
we get the following theorem, however, we omit the detailed proofs because of the page
limitation.

Theorem 2. Let l be the integer parameter of the algorithm. In the SSYNC system and
the rigid movement model, there is an approximation SCF algorithm which guarantees
8 approximation ratio for any initial configuration where m =1, 2, or 4, and 2 ·(1+1/l)2

approximation ratio for any initial configuration where m =1.

5 Conclusion

In this paper, we have introduced the set cover formation (SCF) problem by the obliv-
ious mobile robots, which is the first formation problem in which fixed points exist on
the plane and which requires minimization of the number of robots constructing the
pattern. We have proposed the minimal SCF algorithm from any initial configuration in
the ASYNC system, and an 8-approximation SCF algorithm from a configuration with
a low symmetricity in the SSYNC system.

For the minimum SCF problem, one of interesting open problems is to reveal the re-
lationship between the approximation ratio and the symmetricity of an initial configura-
tion. We guess that the upper/lower bounds of the approximation ratio for the minimum
SCF problem depend on the symmetricity. That is, our future work is to propose an ap-
proximation algorithm for the SCF problem for any symmetricity m, and to reveal the
lower bounds for the SCF problem. In addition, the SCF problem in a weak assumption
such as initial non-scattered configuration (i.e., some robots and target points may be
on the same position initially) and non-rigid movement is also an interesting problem.
A challenging task in the research area about distributed mobile robots is to consider
another formation problem with fixed points in which the robots are required to con-
struct a desired structure for the fixed points, such as a (connected) dominating set and
a spanning tree.

References

1. Bronnimann, H., Goodrich, M.T.: Almost Optimal Set Covers in Finite VC-Dimension. Dis-
crete & Computational Geometry 14(1), 463–479 (1995)

2. Deder, T., Greene, D.: Optimal Algorithms for Approximate Clustering. In: Proc. of STOC
1988, pp. 434–444 (1988)

Approximation Algorithms for the Set Cover Formation 247

3. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary Pattern Formation by
Asynchronous, Anonymous, Oblivious Robots. Theoretical Computer Science 407, 412–447
(2008)

4. Fowler, R.J., Paterson, M.S., Tanimoto, S.L.: Optimal packing and covering in the plane are
NP-complete. Information Processing Letter 3(12), 133–137 (1981)

5. Fujinaga, N., Ono, H., Kijima, S., Yamashita, M.: Pattern Formation through Optimum
Matching by Oblivious CORDA Robots. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.)
OPODIS 2010. LNCS, vol. 6490, pp. 1–15. Springer, Heidelberg (2010)

6. Fujinaga, N., Yamauchi, Y., Kijima, S., Yamashita, M.: Asynchronous Pattern Formation
by Anonymous Oblivious Mobile Robots. In: Aguilera, M.K. (ed.) DISC 2012. LNCS,
vol. 7611, pp. 312–325. Springer, Heidelberg (2012)

7. Franceschetti, M., Cook, M., Bruck, J.: A Geometric Theorem for Approsimate Disk Cover-
ing Algorithms, Report ETR035, Caltech (2001)

8. Fu, B., Chen, Z., Abdelguerfi, M.: An Almost Linear Time 2.8334-Approximation Algo-
rithm for the Disc Covering Problem. In: Kao, M.-Y., Li, X.-Y. (eds.) AAIM 2007. LNCS,
vol. 4508, pp. 317–326. Springer, Heidelberg (2007)

9. Gonzalez, T.F.: Covering a set of points in multidimensional space. Information Processing
Letters 40(4), 181–188 (1991)

10. Hochbaum, D.S., Mass, W.: Approximation Schemes for Covering and Packing Problems in
Image Processing and VLSI. Journal of the ACM 32(1), 130–136 (1985)

11. Suzuki, I., Yamashita, M.: Distributed Anonymous Mobile Robots: Formation of geometric
patterns. SIAM J. of Comput. 28(4), 1347–1363 (1999)

12. Yamashita, M., Suzuki, I.: Characterizing Geometric Patterns Formable by Oblivious Anony-
mous Mobile Robots. Theoretical Computer Science 411, 2433–2453 (2010)

Fast Collisionless Pattern Formation

by Anonymous, Position-Aware Robots�

Tamás Lukovszki1 and Friedhelm Meyer auf der Heide2

1Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
lukovszki@inf.elte.hu

2Heinz Nixdorf Institute and Department of Computer Science,
University of Paderborn, Germany

fmadh@uni-paderborn.de

Abstract. We consider a scenario of n identical autonomous robots on
a 2D grid. They are memoryless and do not communicate. Their initial
configuration does not have to be connected. Each robot r knows its
position pr ∈ Z2. In addition, each robot knows the connected pattern
F to be formed. F may be given by a set of n points in Z2, or may be
only partially described, e.g., by ”form a connected pattern”, or ”build a
connected formation with minimum diameter” (Collisonless Gathering).
We employ the Look-Compute-Move (LCM) model, and assume that in
a time step each robot is able to move to an unoccupied neighboring grid
vertex, thus guaranteeing that two robots will never collide, i.e., occupy
the same position. The decision where to move solely depends on the
configuration of its 2-hop neighborhood in the grid Z2.

First we consider a helpful intermediate problem - we call it the Lem-
mings problem - where collision at one single point g, known to all robots,
is allowed and the goal is that all robots gather at g. We present an al-
gorithm solving this problem in 2n+D− 1 time steps, where D denotes
the maximum initial distance from any robot to g. This time bound is
easily shown to be optimal up to a constant factor.

Based on this strategy, forming a connected pattern can be done
within the same time bound. Forming a connected pattern F needs addi-
tional considerations. We show how to do so in time O(n+D∗), where D∗

denotes the diameter of the point set consisting of the initial configura-
tion and F . For Collisionless gathering we obtain the same time bound,
up to constant factors. This significantly improves upon the previous
upper bound of O(nD) for this problem presented in [5].

Keywords: Autonomous mobile robots, pattern formation, gathering.

1 Introduction

We consider various pattern formation problems by n identical autonomous
robots on a 2D grid. They are memoryless (or use only O(1) bits of persistent

� Supported by the German Research Foundation (DFG) within the Collaborative
Research Center ”On-The-Fly Computing” (SFB 901).

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 248–262, 2014.
c© Springer International Publishing Switzerland 2014

Fast Collisionless Pattern Formation 249

memory) and operate without explicit communication. They have computation
and locomotion capabilities and limited visibility range. They are represented
by discs of unit diameter. Each robot r knows its position pr ∈ Z2 but not the
position of the other robots. In addition, each robot knows the connected pattern
F to be formed. F may be given by a set of n points in Z2, or as a predicate,
e.g., ”form a horizontal line segment”, or may be only partially described, e.g.,
by ”form a connected pattern”, or ”build a connected formation with minimum
diameter” (Collisonless Gathering). All robots have a common coordinate sys-
tem. Each robot has a visibility range of 2 units, i.e. it can see the robots within
its local range of 2 units. With other words, the robots only have information
about their 1- and 2-hop grid neighbors. The robots are able to move only on
the edges of the grid. They all move synchronously with unit speed, s.t. they
travel an edge of the grid in one time unit.

The robots operate corresponding to the Look-Compute-Move (LCM) model.
In one cycle, a robot takes a snapshot of its current visibility range (Look), makes
a decision to stay idle or to move to one of the neighboring vertices (Compute),
and in the latter case makes an instantaneous move to this neighbor (Move). We
assume that the LCM cycles are synchronous at each robot. Collision not allowed
during the algoritms, i.e. in each time step each vertex of Z2 can be occupied
by at most one robot. The motion ends when the robots form the connected
pattern F . From now on we will use the terms node and robot interchangeably.

1.1 Our Contribution

First we consider a helpful intermediate gathering (or point formation) problem
- we call it the Lemmings problem - where collision at one single point g, known
to all robots, is allowed. The goal is that all robots gather at g. We consider
oblivious robots, i.e. the robots do not remember results from any of the previous
computations. We present an algorithm solving this problem, called x-y-routing,
where the robots only need local knowledge about their 2-hop neighborhood in
the grid Z2. We show that the x-y-routing method can be used to guarantee the
gathering of all robots at g in 2n+D − 1 time steps, where D is the maximum
initial hop distance of a robot from g. We prove that this time bound is optimal
up to a constant factor.

After this we investigate the gathering problem of n oblivious robots, where
no collision is allowed at g and the robots have to form a connected configuration
containing g. We show that the x-y-routing solves this problem in n + D − 1
time steps. This significantly improves the previous upper bound of O(nD) on
this problem presented in [5].

After this we consider finite state robots, i.e., the robots can use O(1) bits of
persistent memory for the computation. We show, how the set of n robots can
be arranged to form a connected axis parallel line segment containing a given
point g, known to all robots, in 3n+D + 3 steps.

Finally, for finite state robots, we show how an arbitrary connected pattern
F , known to all robots, can be formed in time O(n+D∗), where D∗ denotes the
diameter of the point set consisting of the initial configuration and F . In case

250 T. Lukovszki and F.M. auf der Heide

when all robots know n, this solution can also be applied for solving the focused
coverage problem on the 2D grid. This results in O(n+D) covering time. If the
number of robots n is not known for the robots, then best known upper bound
on this problem is O(S), presented in [2], where S is the sum of initial distances
of the mobile sensors from g.

This paper is organized as follows. Section 2 gives an overview of related
work. In Section 3 we describe the x-y-routing algorithm, which plays a key role
in our solutions. In Section 4 we define the Lemmings problem, where all robots
must be gathered at the given point g. We prove the lower bound of Ω(D + n)
time steps on the running time of each discrete, synchronous algorithm solving
this problem. After this we prove that the x-y-routing algorithm solves this
problem in at most 2n + D − 1 time steps. After this, in Section 5 we study
the gathering problem, where no collision is allowed at g and the robots have
to form a connected configuration containing g. We show that the x-y-routing
solves this problem in n+D−1 time steps. In Section 6 we show how the set of n
robots can be arranged to form a connected axis parallel line segment contaning
a given point g in 3n+D+3 time steps. In Section 7 we show, how a connected
pattern F , known to all robots, can be formed in time O(n + D∗), where D∗

denotes the diameter of the point set consisting of the initial configuration and
F . Section 8 summarizes the work.

2 Related Work

Cohen and Peleg [4] presented an asynchronous algorithm to gather oblivios
robots at the center of gravity. Their algorithm uses the LCM (Look-Compute-
Move) discrete cycle based model to move their robots. They mathematically
proved upper and lower bounds on the convergence speed of their solution.

Cord-Landwehr et al. [6] described an easy-to-check property of target func-
tions that guarantee convergence and gives upper time bounds. This property
holds for the target function in [4] and improves the upper bound on the speed
of the convergence.

Czyczowicz et al. [7] considered the gathering problem for few fat robots,
where the robots are modeled by unit disks. The goal was to gather the robots,
such that the union of the unit disks is connected at the end. Collisions of the
robots are not allowed during the gathering. A main problem which had to be
solved here is that the line sight of a robot may be blocked by the extent of other
robots.

Cord-Landwehr et al. [5] studied the problem of gathering mobile robots with
an extent at a given position as dense as possible to form a disk of minimum
radius around the gathering point. The authors present an algorithm for the
continuous case and the discrete case, where the robots are moving on a grid.
They prove an O(nD) upper bound for the gathering time, where n is the num-
ber of robots and D is the distance of the farthest robot from the gathering
point. They empirically studied the continuous case, where in they report a few
deadlock situations in the simulations.

Fast Collisionless Pattern Formation 251

For the gathering problem of mobile robots many different variants exist dif-
fering in levels of synchronization, computational power of the robots, memory,
range of visibility, agreement on coordinate system. For a survey we refer to [3].

Another related problem in distributed robotics is the Pattern Formation
problem, where a group of mobile robots have to form a desired geometric pat-
tern. The pattern can be given as set of points in the plane (by their coordinates)
or as a predicate (e.g. ”form a circle”). A common requirement is that the robots
have distinct initial positions and that the number of points in the pattern and
the number of robots are the same. Suzuki and Yamashita [13] [14] investigated
the question what kinds of patterns can be formed by a group of autonomous,
anonymous and homogenous mobile robots that do not communicate, but they
are able to observe each others movements. In [13] [14] the authors have shown
that without agreeing a common coordinate system, a pattern can be formed
if and only if it is purely symmetrical, i.e., a regular polygon (or a point), or a
set of regular concentric polygons. They also have shown that by agreeing on a
coordinate system, the robots can form any geometric pattern. Flocchini et al.
[9] have shown that if each robot has a compass needle that indicates North (the
compass needles are parallel), then any odd number of robots can form an arbi-
trary pattern, but an even number, in the worst case, cannot. If each robot has
two independent compass needles, say North and East, then any set of robots
can form any pattern. Pattern Formation by robots with limited visibility has
been studies in [15].

A further related problem is the Focused Coverage self-deployment problem
in mobile sensor networks, where an area with maximum radius around a Point
of Interest (POI) must be covered without sensing holes. This problem was in-
troduced by Li at al. [12], [10], [11]. They solved the problem by driving the
mobile sensors along an equilateral triangle tessellation graph centered at the
POI. They showed that their algorithms terminate in finite time. The conver-
gence time has also been evaluated by simulations. Blázovics and Lukovszki [2]
presented a collision free algorithm solving the focused coverage problem in O(S)
time, where S is the sum of initial distances of the mobile sensors from the POI.
The theoretical results has been also validated by simulations.

Another related fundamental problem is the Filling problem (see [1]), in which
a given region must be covered by robots. In this problem the robots are initially
not in the region, they enter the the space one by one, from a point called ”door”.
When a robot enters the door, it must disperse itself in the region. The goal is
to cover the entire region. Barrameda et al. [1] have proven that the Filling
problem can be solved with limited visibility, for any simple orthogonal space,
i.e., a polygonal region without holes with sides either parallel or orthogonal,
with a single door, by finite-state robots with a common coordinate system and
common unit of distance in finite time.

For an excellent overview on distributed computing by mobile robots we refer
to the the book by Flocchini et al. [8].

252 T. Lukovszki and F.M. auf der Heide

3 Collisionless Routing Towards a Point g

Let V be a set of n robots placed at the vertices of the rectangular grid Z2 and
g ∈ Z2 a gatheting vertex. Each robot knows its own position and the position
of g. We assume that the gathering vertex g has coordinates (0, 0). We use the
synchronous Look-Compute-Move model, i.e. all robots robots perform the Look,
Compute, and Move steps synchronously. In each time step, each robot is able
to move to a neighboring vertex of the rectangular grid or it stays in place. We
assume that each robot can see its local environment within two hops. Thus,
when a robot r chooses a neigboring vertex p to which it wants to move, r sees
all robots that are potentially able to move to p in the same time step. The
knowedge about the 2-hop neighborhood makes possible to decide locally, which
robot can move to a certain vertex, such that no collision occurs.

3.1 The x-y Routing Algorithm

Now we present the routing algorithm. In each time step each robot wants to
decrease its hop distance to the gathering vertex g, such that it moves in x-
direction until it has the same x-coordinate than g. After this, it moves towards
g in y-direction until it reaches g. A path of a robot emerging in this way is called
an x-y-path, which terminates in g. For each robot r, at time t let nexthop(r, t)
be the neighboring vertex of r on the x-y-path towards g. For a robot r at g,
we define nexthop(r, t) = g. If in a time step t the vertex p = nexthop(r, t) is
occupied by another robot, then the robot r must stay in place. If in a time step
t there are two (or more) robots r and r′ with nexthop(r, t) = nexthop(r′, t) = p,
then the robot with smaller y-distance from the gathering vertex g has higher
priority, if r and r′ has the same y-distance from g, then the robot with greater
x-coordinate has higher priority. The robot with highest priority, say r, is allowed
to move to vertex p and the other robot(s) must stay in place. Fomally, let r
and r′ be two robots with coordinates (rx, ry) and (r′x, r

′
y), respectively, s.t. in

time t nexthop(r, t) = nexthop(r′, t) = p. Then priority(r, p) > priority(r′, p)
⇐⇒ |ry| < |r′y| or (p = g and ry > 0 and r′y < 0) or (|ry | = |r′y| and rx > 0).

Algorithm 1. x-y-routing(r)

while r has not yet reached g do
p ← nexthop(r, t)
if p is unoccupied and � another robot r′ with nexthop(r′, t) = p, s.t. r′ has
higher priority than r then

r moves to p
else

r stays in place
end if
t ← t+ 1

end while

Fast Collisionless Pattern Formation 253

r11

r

r2

3

g r

r

11

r

r2

3

4

p

g

a) b)

Fig. 1. Priorties of the robots having the same point p as nexthop(.). a) If p = g, there
are at most four robots r1, r2, r3, r4 having g as nexthop(.). In this case priority(r1, g) >
priority(r2, g) > priority(r3, g) > priority(r4, g). b) If p �= g, there are at most three
robots r1, r2, r3 having p as nexthop(.). In this case priority(r1, g) > priority(r2, g) >
priority(r3, g).

.

The above rule guarantees that, for each unoccupied vertex p, the robot which
can occupy it in the next step – if any – is unique, and the robots are able to
make this decision based on its local knowledge about their 2-hop neighborhood.

The x-y-routing algorithm is oblivious and the decision of each robot where
to move solely depends on the configuration of the 2-hop neighborhood in the
2D grid.

4 The Lemmings Problem

We assume that at the beginning the robots are placed on different vertices of
the grid Z2. They try to move on the edges towards the gathering vertex g. The
goal is to gather all the robots at g. Collision is only allowed at the gathering
vertex g, i.e. we allow that g can be occupied by more than one robots at the
same time. The only modification in Algoritm 1 is that Algoritm 1 treats the
gathering vertex g as it would be always an unoccupied vertex. After performing
the algorithm all robots will reside on vertex g.

4.1 Lower Bound

First we show a lower bound of Ω(n+D) time steps on the Lemmings problem,
where n robots must be gathered at g, where D is the maximum initial hop
distance of a robot from g. We prove the lower bound for robots with infinite
visibility range. Clearly, this bound also holds for robots with limited visibility.

Theorem 1. Let V = {v1, ..., vn} be the set of n robots with infinite visibil-
ity placed on different vertices of the grid Z2. Each algorithm, solving the syn-
chronous discrete Lemmings problem needs Ω(n+D) time steps, where D is the
maximum initial hop distance of a robot from g.

254 T. Lukovszki and F.M. auf der Heide

Proof. Since each robot must arrive at g after performing the gathering algo-
rithm and each robot can move to a neighboring grid vertex in each time step,
at least D steps are necessary until the furthest robot arrives at g. On the other
hand, in each time step only one robot can arrive at g from each direction.
Therefore, each algorithm needs at least n/4 steps. In the case, when the initial
distance of all robots from g is D, then the first robot arrives after D steps. In
this step and in each further step at most four robot can arrive at g. Thus, the
last robot needs at least D+n/4− 1 = Ω(n+D) steps. Consequently, Ω(n+D)
is a lower bound on the running time of each algorithm solving the problem. �

4.2 Upper Bound

Now we turn to the analysis of Algorithm 1. The only modification in Algoritm 1
to solve the Lemmings problem is that Algoritm 1 treats the gathering vertex g
as it would be always an unoccupied vertex.

First we consider the special but important case, where all robots are initially
placed on one x-y-path P terminating in g. We show that after n+D−1 steps all
robots reach g. We use this result for proving the time bound on the Lemmings
problem in the general case.

Lemma 1. Let V = {v1, ..., vn} be the set of n oblivious robots placed on the
same x-y-path P ⊂ Z2 terminating in g, such that all robots are placed on
different vertices. Let D be the maximum initial hop distance of a robot from g,
i.e. D = maxr∈V (d(r, g)). Then by performing Algorithm 1 all robots reach g in
n+D − 1 steps.

Proof. We prove the claim by induction on the number of robots n.
For n = 1, the claim holds obviously, the robot v1 gets strictly closer to g

in each step, until it reaches g. Therfore, for n = 1, the algoritm terminates in
1 +D − 1 = D steps.

Now, assume that the claim holds for n−1 robots. Let {v1, ..., vn} be the set of
robots ordered by their initial hop distances from g, s.t. d(v1, g) < d(v2, g) < ... <
d(vn, g). By the induction hypothesis vn−1 reaches g within d(vn−1)+(n−1)−1 =
d(vn−1)+n−2 steps. Let t1, ..., tk be the time steps in them vn−1 moved towards
g. In time step tk it reaches g. Then in time steps t1 + 1, ..., tk + 1 the robot
vn can also move towards g. In these time steps the distance between vn and g
decreases by d(vn−1, g) units. Therefore, after tk + 1 steps the distance between
vn and g becomes at most d(vn, g) − d(vn−1, g) = δ. In time steps t > tk the
robot vn can move towards g in each step. Therefore, vn reaches g in tk + 1 + δ
steps. By the induction hypothesis, tk ≤ d(vn−1, g)+n−2. Therefore, vn reaches
g within d(vn−1, g) + n − 2 + 1 + δ = d(vn, g) + n − 1 steps, which proves the
claim. �

Now we turn to the general case, where the n robots are arbitrarily placed on
different vertices of Z2. We show that after 2n+D − 1 steps all robots reach g.

Theorem 2. Let V = {v1, ..., vn} be the set of n oblivious robots placed on dif-
ferent vertices of Z2. Let g be the gathering vertex and D be the maximum initial

Fast Collisionless Pattern Formation 255

vi

x

j−1
u

uj

a) PP b)

j−1
u

uj

vi

Fig. 2. Joining of robot vi to the path P
.

hop distance of a robot from g, i.e. D = maxr∈V (d(r, g)). Then by performing
Algorithm 1 all robots reach g in 2n+D − 1 steps.

Proof. Let v1, v2, ..., vn be the robots ordered regarding the time they arrive at
g. The x-y-path of each robot is unique, each such path terminates in g, and the
union of the x-y-paths define a tree.

Consider the robot vn arriving at g as the last one. Let P be the x-y-path
from the initial position of vn to g. Let U = {u1, ..., uk} with uk = vn be the
set of robots that are initially on the tree path P . If we remove all robots in
V \ U from the scene, then by Lemma 1, all robots in U would reach g within
n+D′ − 1 steps, where D′ is the initial distance of uk from g.

Now consider the steps of vn in the presence of the robots in V \ U . The key
observation is that a robot vi ∈ V \U can increase the arrival time of uk at g by
at most two time steps, that are (i) the step ti, in which vi reaches the path P ,
i.e., nexthop(vi, ti) = x ∈ P and vi moves to x, and (ii) the step immediately
after vi has joined the path P (see Figure 2):

Case (i): Consider the time step ti, when the hop distance of vi and P is one
and after peforming this step vi belongs to P (Figure 2.a). Let x be the vertex of
P with x = nexthop(vi, ti). If there is a robot uj ∈ P with nexthop(uj , ti) = x
with lower priority than vi then uj must wait in this step. This will increase the
arriving time of vn to g by one time unit.

Case (ii): The time step ti+1, imediately after vi has moved to x ∈ P (Figure
2.b). In this time step uj must wait because vi is immediatly in front of uj in P ,
i.e. vi occupies the vertex nexthop(uj, ti + 1). Starting with this time step, the
robot vi behaves exactly the same way as uj would behave without the existence
of vi. Thus, vi reaches g at the same time uj would reach g without the existence
of vi. If no other robot joins the path P on the front of uj , then uj reaches g
two time units after vi reached g, i.e. at most two time units later than it would
reach without the existence of vi. The robots vj′ , j

′ = j + 1, ..., k, arrive at g by
at most two time steps later than they would arrive without the existence of vi.

Conequently, joining of all robots of V \ U increases the arrival time of uk
by at most 2|V \ U | = 2(n − k) time units. Therefore, uk arrives at g and the
algorithm terminates in at most D′+k−1+2(n−k) ≤ D′+2n−1 ≤ D+2n−1
steps, where D is the maximum initial distance of a robot from g. �

256 T. Lukovszki and F.M. auf der Heide

Remark 1. By Theorem 1 and Theorem 2 the x-y-routing algorithm solves the
discrete Lemmings problem, where all robots must be gathered at g in optimal
time, up to a constant factor.

5 Forming a Connected Configuration Containing g

Now we turn to the discrete gathering problem, where no collision is allowed at
g and the robots have to form a connected configuration containing g. We show
that the x-y-routing algorithm (Algoritm 1) solves this problem in n + D − 1
steps.

Theorem 3. Let V = {v1, ..., vn} be the set of n oblivious robots placed on dif-
ferent vertices of Z2. Let g be the gathering vertex and D be the maximum initial
hop distance of a robot from g, i.e. D = maxr∈V (d(r, g)). Then by performing
Algorithm 1 the robots form a connected configuration containing g in n+D− 1
steps.

Proof. For each robot v ∈ V , let pv be the initial position of v and Pv the
x-y-path from pv to g. Let T =

⋃
v∈V Pv be the tree defined as the union of

the x-y-paths. For each robot v ∈ V , let p∗v be the closest position of v to g
during the algorithm. Since the hop distance of a robot never increases during
the algorithm, p∗v is the final position of v. Let P ∗

v the x-y-path from p∗v to g and
T ∗ =

⋃
v∈V P

∗
v .

We show that (i) T ∗ contains g, (ii) T ∗ has no unoccupied vertex, i.e. the
robots form a connected configuration, and (iii) each vertex of T ∗ becomes
occupied in n+D − 1 steps.

(i) Obviously, T ∗ contains g. A robot v with smallest initial distance form g
will occupy g, which will be the final position v.

(ii) Assume for contradiction, that T ∗ has an unoccupied vertex. Let x be an
unoccupied vertex of T ∗ with maximum hop distance from g. Let U = {v ∈ V :
x ∈ Pv} be the set of robots whose x-y-paths contain x. Then the final position
of at least one of the robots in U is further from g than x, otherwise x would
not be contained in T ∗. Since x is an unoccupied vertex of T ∗ with maximum
hop distance from g, there is at least one robot u ∈ U with distance one from x,
s.t. d(p∗u, g) = d(x, g) + 1. Then one of these robots occupies x in the next step.

(iii) Now we show that each vertex of T ∗ becomes occupied in n + D − 1
steps. By induction, we prove that after i+D steps, 0 ≤ i ≤ n− 1, all vertices
of T ∗ with hop distance at most i from g are occupied. Thus, after i+D steps,
the robots on those vertices have reached their final positions.

For i = 0, the claim holds, since the robot which occupies g will never be
stopped by another robot and its initial distance from g is at most D. Therefore,
after D steps it occupies g.

Assume that the induction hypothesis holds for i, 0 ≤ i < n−1. Let Vi be the
set of robots with final position of hop distance at most i from g. If Vi = V we
are done. Otherwise, consider a robot v whose final position will be at a vertex
x with distance i+ 1 from g.

Fast Collisionless Pattern Formation 257

We say that a robot u stops v in a certain step t if either nexthop(v, t) is
occupied by u or nexthop(v, t) is unoccupied and u occupies it in step t. Observe,
that during the algorithm none of the robots in V \Vi can stop v before v reaches
its final position. To see this, assume that a robot w ∈ V \Vi stops v in a certain
step t. Then in step t + 1 the robot w becomes on the front of v in the x-y-
path from v to g, i.e. w gets strictly closer to g than v and the distance of w
to g remains strictly lower than the distance of v. Therfore, the final distance
of w from g will also be strictly lower than the final distance of v, which is by
assumption i+ 1.

Therefore, v can be only stopped by robots in Vi before v reaches its final
position. Let u be the robot whose final position q is on the x-y-path of v to g
and the hop distance d(q, g) = i. Let t be the time step in which u reaches q. By
the induction hypothesis t ≤ i+D. If v was stopped by u in some time step t′ < t,
then after this time step v ”follows” u, and thus, in time step t+ 1 ≤ D + i+ 1
the robot v also reaches its final position. If v was never stopped by u then v
was able to get closer to g in each of the t steps. Since the distance between the
initial position of v and its final position x is at most D, the robot v reaches x
in at most D ≤ D + i + 1 steps. This completes the proof of the the induction
hypothesis for i+ 1.

Since the hop distance between g and any vertex of T ∗ is at most n − 1,
each robot reaches its final position within n+D− 1 steps and the claim of the
theorem follows. �

6 Forming an Axis Parallel Line Segment Containing g
as an End Point

Given a point g, known for each robot. The goal is to arrange the n robots in a
connected horizontal line segment containing g as an end point. Now we consider
so called finite state robots, i.e. with O(1) persistent bits of memory (see e.g. in
[1]). The visibility range of the robots is limited to the 2-hop neighborhood in
the 2D grid. We show how the robots can form a connected horizontal line L
containing g as its left end point in 3n + D + 3 steps. A vertical line segment
can be formed in a similar way.

6.1 Forming the Horizontal Line Segment L

Forming the connected horizontal line segment L containing g as its left end
point consists of 3 phases for each robot. Each of the 3 phases are oblivious,
in each step the decision of each robot where to move solely depends on the
configuration of the 2-hop neighborhood in the 2D grid. The only persistent
memory used by a robot is to store, which phase of the algorithm it currently
executes. The robots execute the following phases:

1. Let (gx, gy) be the coordinates of g and let g′ be the point with coordinates
(gx − 1, gy + 1). Each robot with initial y-coordinate greater than gy moves

258 T. Lukovszki and F.M. auf der Heide

one step upwards and each robot with initial y-coordinate less or equal than
gy moves one step downwards. During this step no collision can arrise. At the
end of this step we obtain a horizontal stripe H of height 2 containing the
horizontal line coincident with g and the horizontal line coincident with g′.

2. Execute the Lemmings algorithm with sink g′. More precisely, execute Al-
gorithm 1 with sink g′, such that g′ can be occupied in a step t, if g′ is
unoccupied at the beginning of step t. When a robot occupies g′ in a certain
step, it moves one hop to the right from g′ to the point g′′ = (gx, gy + 1) in
the next step and starts phase 3.

3. Build L from the source g′′ as follows. Let (x, y) be the current coordinates
of a robot. Until the the vertex at (x, y − 1) is occupied, move to the right.
Otherwise, occupy the vertex at (x, y−1) and terminate the algoritm of that
robot.

Theorem 4. Let V = {v1, ..., vn} be the set of n finite state robots placed on
different vertices of Z2. Let g be a point, known for all robots. Then by the above
algorithm the robots form a connected horizontal line segment L with left end
point g in D + 3n+ 3 steps, where D is the maximum initial hop distance of a
robot from g.

Proof. After phase 1, the horizontal stripe H of height 2 containing the hori-
zontal lines coincident with g and g′ is free of robots. Let � be the vertical line
coincident to g′. In phase 2, non of the robots visits any vertex in H \ �. In phase
3 each robot only visits vertices in H \ �. Therefore, no collision can occure.

Phase 1 of the algorithm takes 1 time unit. The only difference between phase
2 of the formation of L and the Lemmings algorithm is that g′ can be occupied
in a step t, if g′ is unoccupied at the beginning of step t. The robot, which has
occupied g′ will move away from g to the left in the next step. and starts phase
3. It is easy to check that all arguments of the proof of Theorem 2 also apply
for this case and the time bound 2n + D′ − 1 stated in Theorem holds, where
D′ = D + 2 is the maximum hop distance of a robot from g′ at the beginning
of phase 2. Therefore, each robot finishes phase 1 and 2 after 2n+D + 3 steps.
It is easy to check that each robot spends at most n time steps in phase 3.
Consequently, the robots build the connected line segment L by the algorithm
in 3n+D + 3 steps.

7 Forming an Arbitrary Connected Pattern F

Now we show how the Lemmings algorithm can be used for forming an arbitrary
connected pattern of n vertices in the 2D grid. We consider finite state robots.
The visibility range of the robots is limited to the 2-hop neighborhood in the 2D
grid.

Given a connected pattern F of size n. Let B be the axis-parallel bounding
box of F and (x, y) the upper left corner ofB. Let g be the point with coordinates
(x− 1, y+ 1) and g′ be the point with coordinates (x, y + 1) (see Figure 3). Let
T be a spanning tree of F . Consider the rooted tree T ∗ with root g that starts

Fast Collisionless Pattern Formation 259

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

H

g g’

Fig. 3. After phase 1, the horizontal stripe H (shaded region) of height h+1 containing
the axis parallel bounding box B′ of F ∪ {g′} is free of robots. In phase 2, each robot
only visits vertices outside B′. In phase 3 each robot only visits vertices in B′.

with a shortest path from g through g′ to a closest node g∗ of F (This path does
not contain further nodes of F) and contains a rooted version of T rooted at g∗.

Assume that n robots appear in g, one after another. Empty steps where no
new robot appears are allowed, all robots have appeared after some number R
of steps. The point g plays a similar role as the ”door” in the Filling problem
[1], but g is not contained in F . As further difference, F can be any connected
pattern in our case. Let d(T ∗) be the depth of T ∗. It is easy to check that a dept-
first filling of T ∗ (more precisely, the depth-first filling of T) can be executed by
the appearing robots, so that, after O(R + d(T ∗)) many steps, each node of F
is occupied by one robot, and no collisions appeared during these steps.

7.1 Forming F

Forming the connected pattern F consists of 3 phases for each robot. The only
persistent memory used by a robot is to store, which phase of the algorithm it
currently executes. The robots execute the following phases:

1. Let xmin and xmax be the minimum and maximum x-coordinate of F , re-
spectively. Let h = xmax − xmin + 1 be the height of the connected pattern
F . Each robot with initial position above or on the lower horizontal boarder
of F moves h + 1 many steps upwards. During this h + 1 steps there are
no collisions. At the end we obtain a horizontal stripe H of height h + 1
containing the axis parallel bounding box B′ of F ∪ {g′} free of robots (see
Figure 3).

2. Execute the Lemmings algorithm with sink g. More precisely, execute Algo-
rithm 1, such that g can be occupied in a step t, if it is unoccupied at the
beginning of step t. When a robot occupies g in a certain step, it moves one
hop to the right from g to the point g′ in the next step and starts phase 3.

3. Build F from the source g′ by depth-first filling of T , using the arrivals of
the robots in g during the Lemmings algorithm as input stream.

260 T. Lukovszki and F.M. auf der Heide

Theorem 5. Let V = {v1, ..., vn} be the set of n finite state robots placed on
different vertices of Z2. Let F be a connected formation, known for all robots.
Then the robots form F in time O(n +D∗), where D∗ denotes the diameter of
the point set consisting of the initial configuration and F .

Proof. After phase 1 of the algorithm, the horizontal stripe H of height h + 1
containing the axis parallel bounding box B′ of F ∪ {g′} is free of robots. In
phase 2, each robot only visits vertices outside B′. In phase 3 each robot only
visits vertices in B′. Therfore, no collision can occure.

Phase 1 takes h+1 = O(D∗) steps. The only difference between phase 2 of the
pattern formation and the Lemmings algorithm is that g can be occupied in a
step t, if it is unoccupied at the beginning of step t. When a robot occupies g in a
certain step, it moves one hop to the right from g to the point g′ in the next step
and starts phase 3. It is easy to check that all arguments of the proof of Theorem
2 also apply for this case and the time bound 2n + D′ − 1 stated in Theorem
holds, where D′ is the maximum hop distance of a robot from g at the beginning
of phase 2. Therefore, each robot finishes phase 2 after O(n + D∗) steps. It is
easy to check that each robot spends O(n) time in phase 3. Consequently, the
formation F becomes built by the algorithm in O(n +D∗) steps.

7.2 Focused Coverage Problem, When n Is Known for All Nodes

A closely related problem to the pattern formation problem is the focused cov-
erage self-deployment problem in mobile sensor networks, where an area with
maximum radius around a Point of Interest (POI) must be covered without
sensing holes. This problem was introduced in [10], [11],[12]. The authors solved
the problem by driving the mobile sensors along an equilateral triangle tessel-
lation graph centered at the POI. They showed that their algorithms terminate
in finite time. Subsequently, in [2] a collision free algorithm has been presented
solving the focused coverage problem in O(S) time, where S is the sum of initial
distances of the mobile sensors from the POI.

Now we consider the focused coverage problem on the 2D grid instead of
the an equilateral triangle tessellation graph. Additionally, we assume that the
number of sensors n is known for each sensor node. Then each node can compute
the connected hole free formation F with maximum radius centered at the POI.
Then our algorithm for connected pattern formation can be applied, which solves
the problem in O(n+D∗) time, where D∗ denotes the diameter of the point set
consisting of the initial configuration and F .

Corollary 1. Let V = {v1, ..., vn} be the set of n finite state mobile sensor nodes
placed on different vertices of Z2. Assume that all nodes know the POI, n, and
the configutation of its 2-hop neighborhood in Z2. Then by applying the connected
pattern formation algorithm, the focused coverage problem can be solved in time
O(n + D∗), where D∗ denotes the diameter of the point set consisting of the
initial configuration of the nodes and the POI.

Fast Collisionless Pattern Formation 261

8 Summary

We have investigated the Pattern Formation problem on a 2D grid in the syn-
chronous Look-Compute-Move model. First we have considered the helpful in-
termediate problem, called the Lemmings problem, where all robots have to be
gathered at a given point g, and thus at the single point g collision is allowed,
we proved a lower bound of Ω(n +D) time steps on the running time of each
discrete synchronous algorithm solving this problem.

We have introduced the x-y-routing algorithm for solving this problem, where
the nodes only need local knowledge about their 2-hop neighborhood in the grid
Z2. Based on this knowledge the nodes are able to move towards the gathering
point g without collision, such that after at most 2n + D − 1 time steps all
robots reach g, where D is the maximum hop distance of a robot from g. Thus,
the running time of the algorithm is optimal up to a constant factor.

We have shown that the x-y-routing method also solves the gathering problem
in n+D − 1 time steps, where no collision is allowed at g and the robots have
to form a connected configuration containing g. This significantly improves the
previous upper bound of O(nD) for this problem presented in [5]

Furthermore, we have shown how a the robots can form a connected axis
parallel line segment L containing g as an end point in 3n+D + 3 steps.

Finally, we have investigated the problem of forming a connected pattern F ,
which is known to all robots. We have shown how to build F in time O(n +
D∗), where D∗ denotes the diameter of the point set consisting of the initial
configuration and F .

In case when all robots know n, this solution can also be applied for solving
the focused coverage problem on the 2D grid. This results in O(n+D) covering
time. If the number of robots n is not known for the robots, then best known
upper bound on this problem is O(S), presented in [2], where S is the sum of
initial distances of the mobile sensors from g.

References

1. Barrameda, E.M., Das, S., Santoro, N.: Deployment of asynchronous robotic sen-
sors in unknown orthogonal environments. In: Fekete, S.P. (ed.) ALGOSENSORS
2008. LNCS, vol. 5389, pp. 125–140. Springer, Heidelberg (2008)

2. Blázovics, L., Lukovszki, T.: Fast localized sensor self-deployment for focused cov-
erage. In: Flocchini, P., Gao, J., Kranakis, E., Meyer auf der Heide, F. (eds.)
ALGOSENSORS 2013. LNCS, vol. 8243, pp. 83–94. Springer, Heidelberg (2014)

3. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by
mobile robots: Gathering. SIAM J. Comput. 41(4), 829–879 (2012)

4. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in
asynchronous robot systems. SIAM J. Comput. 34(6), 1516–1528 (2005)

5. Cord-Landwehr, A., et al.: Collisionless gathering of robots with an extent. In:
Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M.,
Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 178–189. Springer, Heidelberg
(2011)

262 T. Lukovszki and F.M. auf der Heide

6. Cord-Landwehr, A., et al.: A new approach for analyzing convergence algorithms
for mobile robots. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part
II. LNCS, vol. 6756, pp. 650–661. Springer, Heidelberg (2011)

7. Czyzowicz, J., Gasieniec, L., Pelc, A.: Gathering few fat mobile robots in the plane.
Theor. Comput. Sci. 410(6-7), 481–499 (2009)

8. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mo-
bile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan & Clay-
pool Publishers (2012)

9. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation
by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407(1-3), 412–
447 (2008)

10. Li, X., Frey, H., Santoro, N., Stojmenovic, I.: Localized sensor self-deployment for
guaranteed coverage radius maximization. In: IEEE International Conference on
Communications, ICC 2009, pp. 1–5 (2009)

11. Li, X., Frey, H., Santoro, N., Stojmenovic, I.: Focused-coverage by mobile sensor
networks. In: 6th IEEE International Conference on Mobile Adhoc and Sensor
Systems (MASS), pp. 466–475 (2009)

12. Li, X., Frey, H., Santoro, N., Stojmenovic, I.: Strictly localized sensor self-
deployment for optimal focused coverage. IEEE Trans. Mob. Comput. 10(11),
1520–1533 (2011)

13. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots. In: Proc. 3rd In-
ternational Colloquium on Structural Information and Communication Complexity
(SIROCCO), pp. 313–330 (1996)

14. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of
geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

15. Yamauchi, Y., Yamashita, M.: Pattern formation by mobile robots with limited vis-
ibility. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179,
pp. 201–212. Springer, Heidelberg (2013)

Tradeoffs between Cost and Information

for Rendezvous and Treasure Hunt

Avery Miller and Andrzej Pelc�

Université du Québec en Outaouais, Gatineau, Canada
avery@averymiller.ca, pelc@uqo.ca

Abstract. Rendezvous and treasure hunt are two basic tasks performed
by mobile agents in networks. In rendezvous, two agents, initially located
at distinct nodes of the network, traverse edges in synchronous rounds
and have to meet at some node. In treasure hunt, a single agent has to
find a stationary target (treasure) situated at an unknown node. The
network is modeled as an undirected connected graph whose nodes have
distinct identities. The cost of a rendezvous algorithm is the worst-case
total number of edge traversals performed by both agents until meeting.
The cost of a treasure hunt algorithm is the worst-case number of edge
traversals performed by the agent until the treasure is found. If the agents
have no information about the network, the cost of both rendezvous and
treasure hunt can be as large as Θ(e) for networks with e edges.

We study tradeoffs between the amount of information available a pri-
ori to the agents and the cost of rendezvous and treasure hunt. Following
the paradigm of algorithms with advice, this information is provided to
the agents at the start of their navigation by an oracle knowing the net-
work, the starting positions of the agents, and, in the case of treasure
hunt, the node where the treasure is hidden. The oracle assists the agents
by providing them with a binary string called advice, which can be used
by each agent during the algorithm execution. In the case of rendezvous,
the advice given to each agent can be different. The length of the string
given to the agent in treasure hunt and the sum of the lengths of strings
given to the agents in rendezvous is called the size of advice.

Our goal is to find the smallest size of advice which enables the agents
to solve rendezvous and treasure hunt at a given cost C in a network with
e edges. This size turns out to depend on the initial distance D and on
the ratio g = e/C, which is the relative cost gain due to advice. For
arbitrary graphs, we give upper and lower bounds of O(D log(Dg)) and
Ω(D log g), respectively, on the optimal size of advice. Hence, our bounds
leave only a logarithmic gap in the general case. For the class of trees we
give tight upper and lower bounds of Θ(D log g).

Keywords: rendezvous, treasure hunt, advice, deterministic algorithm,
mobile agent, cost.

� Partially supported by NSERC discovery grant and by the Research Chair in Dis-
tributed Computing at the Université du Québec en Outaouais.

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 263–276, 2014.
c© Springer International Publishing Switzerland 2014

264 A. Miller and A. Pelc

1 Introduction

Model and Problems. Rendezvous and treasure hunt are two basic tasks
performed by mobile agents in networks. In rendezvous, two agents, initially
located at distinct nodes of the network, traverse network edges in synchronous
rounds and have to meet at some node. In treasure hunt, a single agent has to find
a stationary target (called treasure) situated at an unknown node of the network.
The network might model a labyrinth or a system of corridors in a cave, in which
case the agents might be mobile robots. The meeting of such robots might be
motivated by the need to exchange previously collected samples, or to agree how
to share a future cleaning or decontamination task. Treasure hunt might mean
searching a cave for a resource or for a missing person after an accident. In other
applications we can consider a computer network, in which the mobile entities
are software agents. The meeting of such agents might be necessary to exchange
data or share a future task of checking the functionality of network components.
Treasure hunt in this case might mean looking for valuable data residing at some
node of the network, or for a virus implanted at some site.

The network is modeled as a simple undirected connected graph whose nodes
have distinct identities. Ports at a node of degree d are numbered 0, . . . , d − 1.
Agents execute a deterministic algorithm, such that, at each step, they choose a
port at the current node. When an agent enters a node, it learns the entry port
number, the label of the node and its degree. The agents may have distinct labels
or be anonymous. The cost of a rendezvous algorithm is the total worst-case
number of edge traversals performed by both agents until meeting. The cost of a
treasure hunt algorithm is the worst-case number of edge traversals performed by
the agent until the treasure is found. If the agents have no information about the
network, the cost of both rendezvous and treasure hunt can be as large as Θ(e)
for networks with e edges. This is clear for treasure hunt, as all edges (except
one) need to be traversed by the agent to find the treasure in the worst case.
The same lower bound for rendezvous follows from Proposition 1 in the present
paper. On the other hand, if D is the distance between the initial positions of the
agents, or from the initial position of the agent to the treasure, a lower bound
on the cost of rendezvous and of treasure hunt is D.

In this paper, we study tradeoffs between the amount of information available
a priori to the agents and the cost of rendezvous and treasure hunt. Following
the paradigm of algorithms with advice [1, 11, 13, 19–25, 27, 28, 34, 39], this
information is provided to the agents at the start of their navigation by an
oracle that knows the network, the starting positions of the agents and, in the
case of treasure hunt, the node where the treasure is hidden. The oracle assists
the agents by providing them with a binary string called advice, which can be
used by the agent during the algorithm execution. In the case of rendezvous, the
advice given to each agent can be different. The length of the string given to
the agent in treasure hunt and the sum of the lengths of strings given to both
agents in rendezvous is called the size of advice.

Tradeoffs between Cost and Information 265

Our Results. Using the framework of advice permits us to quantify the amount
of information needed for an efficient solution of a given network problem (in our
case, rendezvous and treasure hunt) regardless of the type of information that is
provided. Our goal is to find the smallest size of advice which enables the agents
to solve rendezvous and treasure hunt at a given cost C in a network with e edges.
This size turns out to depend on the initial distance D (between the agents in
rendezvous, and between the agent and the treasure in treasure hunt) and on the
ratio g = e/C, which is the relative cost gain due to advice. For arbitrary graphs,
we give upper and lower bounds of O(D log(Dg)) and Ω(D log g), respectively,
on the optimal size of advice. Hence our bounds leave only a logarithmic gap in
the general case. For the class of trees, we give matching upper and lower bounds
of Θ(D log g). Our upper bounds are obtained by constructing an algorithm for
all graphs (respectively, for all trees) that works at the given cost and with advice
of the given size, while the lower bounds are proved by exhibiting networks for
which it is impossible to achieve the given cost with smaller advice.

Missing proofs will appear in the full version of the paper.

Related Work. Treasure hunt, network exploration and rendezvous in networks
are interrelated problems that have received much attention in recent literature.
Treasure hunt has been investigated in the line [10, 26], in the plane [7] and in
other terrains [31]. Treasure hunt in anonymous networks (without any knowl-
edge of the network) was studied in [38, 40] with the goal of minimizing cost.

The related problem of graph exploration by mobile agents (often called
robots) has been intensely studied as well. The goal of this task is to visit all of
the nodes and/or traverse all of the edges of a graph. Many papers, e.g., [16, 35]
studied the scenario where the graph to be explored is labeled and undirected,
and the agent can traverse edges in both directions. In [35], it was shown that
a graph with n nodes and e edges can be explored in time e + O(n). In [37], a
log-space construction of a deterministic exploration for all graphs with a given
bound on size was shown.

The problem of rendezvous has been studied both under randomized and
deterministic scenarios. In the framework of networks, it is usually assumed that
the nodes do not have distinct identities. An extensive survey of randomized
rendezvous in various models can be found in [4], cf. also [2, 3, 5]. Deterministic
rendezvous in networks has been surveyed in [36]. Several authors considered
geometric scenarios (in an interval of the line, e.g., [9], or in the plane, e.g., [6]).

For the deterministic setting, many authors studied the feasibility and time
complexity of rendezvous of agents that move in rounds [16, 29, 38]. In [33] the
authors studied tradeoffs between the time of rendezvous and the number of
edge traversals by both agents. The amount of memory required by the agents
to achieve deterministic rendezvous was studied in [14] for general graphs. The
amount of memory needed for randomized rendezvous in the ring was discussed,
e.g., in [30]. Several authors investigated asynchronous rendezvous in the plane
[12] and in networks [8, 15, 17].

Providing nodes or agents with information of arbitrary type that can be used
to perform network tasks more efficiently has been proposed in [1, 11, 13, 19–25,

266 A. Miller and A. Pelc

27, 28, 32, 34, 39]. This approach was referred to as algorithms with advice. The
advice is given either to nodes of the network or to mobile agents performing some
network task. Most of the authors studied the minimum size of advice required to
solve the respective network problem in an efficient way.

In [28], given a distributed representation of a solution for a problem, the
authors investigated the number of bits of communication needed to verify the
legality of the represented solution. In [20], the authors compared the minimum
size of advice required to solve two information dissemination problems using
a linear number of messages. In [22], it was shown that a constant amount of
advice enables the nodes to carry out the distributed construction of a minimum
spanning tree in logarithmic time. In [19], the advice paradigm was used for
online problems. In the case of [34], the issue was not efficiency but feasibility:
it was shown that Θ(n log n) is the minimum size of advice required to perform
monotone connected graph clearing. In [24], the authors studied the problem of
topology recognition with advice given to nodes.

Among the papers using the paradigm of advice, [13, 21, 32] are closest to
the present work. In [13], the authors investigated the minimum size of advice
that has to be given to unlabeled nodes (and not to the agent) to permit graph
exploration by an agent modeled as a k-state automaton. In [21], the authors
established the size of advice that has to be given to an agent completing explo-
ration of trees, in order to break competitive ratio 2. In [32], the authors studied
the minimum size of advice that must be provided to labeled agents, in order
to achieve rendezvous at minimum possible cost, i.e., at cost Θ(D), where D is
the initial distance between the agents. They showed that this optimal size of
advice for rendezvous in n-node networks is Θ(D log(n/D) + log logL), where
the labels of agents are drawn from the set {1, . . . , L}. This paper differs from
the present one in two important aspects. First, as opposed to the present pa-
per, in [32], agents get identical advice, and nodes of the network are unlabeled.
Second, instead of looking at tradeoffs between cost and the size of advice, as
we do in the present paper, the focus of [32] was on the size of advice sufficient
to achieve the lowest possible cost.

2 Preliminaries

In this section we show that, in the context of advice, treasure hunt and ren-
dezvous are essentially equivalent. More precisely, the following proposition shows
that the minimum advice sufficient to solve both problems at a given cost in the
class of graphs with Θ(e) edges and with the initial distance Θ(D) is the same,
up to constant factors. Throughout the paper a graph means a simple connected
undirected graph. The number of nodes in the graph is denoted by n, and the
number of edges is denoted by e. All logarithms are to base 2.

Proposition 1. Let D ≤ e be positive integers.

1. If there exists an algorithm TH that solves treasure hunt at cost C with advice
of size A in all graphs with e edges and with initial distance D between
the agent and the treasure, then there exists an algorithm RV that solves

Tradeoffs between Cost and Information 267

rendezvous at cost C with advice of size O(A) in all graphs with e edges and
with initial distance D between the agents.

2. If there exists an algorithm RV solving rendezvous at cost C with advice of
size less than A in all graphs with 2e + 1 edges and with initial distance
2D + 1 between the agents, then there exists an algorithm TH that solves
treasure hunt at cost at most C with advice of size less than A in all graphs
with e edges and with initial distance D between the agent and the treasure.

In view of Proposition 1, in the rest of the paper we can restrict attention to
the problem of treasure hunt. All of our results, both the upper and the lower
bounds, also apply to the rendezvous problem.

3 Treasure Hunt in Arbitrary Graphs

In this section, we proceed to prove upper and lower bounds on the advice needed
to solve treasure hunt in arbitrary graphs. These bounds are expressed in terms
of D, which is the distance between the treasure and the initial position of the
agent, and in terms of the ratio g = e/C, where e is the number of edges in the
graph and C is an upper bound on the cost of the algorithm. This ratio is the
relative cost gain due to advice. We first provide an algorithm that solves treasure
hunt using O(D log(Dg)) bits of advice, and then prove that any deterministic
algorithm for this task uses at least Ω(D log g) bits of advice.

ALGORITHM. Consider a graph G and a node s of G, which is the initial
position of the agent. Fix an integer z ≥ 1. We describe a binary advice string
of length Dz and an algorithm that uses this advice when searching for the trea-
sure. To construct the advice, the idea is to find a shortest path P from s to
the treasure, and then to produce D advice substrings to guide the agent along
this path. However, since Dz bits may not be enough to exactly describe the D
edges of the path, the advice will specify a subset of ports that the agent should
try. In particular, the advice consists of D binary substrings A0, . . . , AD−1, each
of length z. For each i ∈ {0, . . . , D − 1}, the substring Ai is created by con-
sidering the node vi on path P that is at distance i from s in G. The set of
ports at this node is partitioned into numbered sectors (i.e., subintervals) of
size �deg(vi)/2

z−1 , and Ai is taken to be the z-bit binary representation of the
number of the sector containing the port that leads to the next node vi+1 on
path P towards the treasure.

Below, we provide pseudocode that describes how the advice is created. First,
Algorithm 1 finds a shortest path P from s to the treasure. The path consists
of node/port pairs (vi, pi) for each i ∈ {0, . . . , D − 1}, where v0 = s and, for
each i ∈ {0, . . . , D − 2}, port pi leads from node vi to node vi+1. Each such
pair (vi, pi) is passed to Algorithm 2, which divides the set of ports at vi into
numbered sectors of equal size, determines to which sector port pi belongs, and
outputs the binary representation of this sector number as a string Ai.

The resulting sequence of substrings (A0, . . . , AD−1) is encoded into a sin-
gle advice string to pass to the algorithm. More specifically, the sequence is

268 A. Miller and A. Pelc

encoded by doubling each digit in each substring and putting 01 between sub-
strings. This permits the agent to unambiguously decode the original sequence,
and to calculate the value of D by looking at the number of separators 01.
Denote by Concat(A0, . . . , AD−1) this encoding and let Decode be the inverse
(decoding) function, i.e. Decode(Concat(A0, . . . , AD−1)) = (A0, . . . , AD−1). As
an example, Concat((01), (00)) = (0011010000). Note that the encoding in-
creases the total number of advice bits by a constant factor. The advice string,
calculated by Algorithm 1 using the strings Ai supplied by Algorithm 2, is
A = Concat(A0, . . . , AD−1). The advice string A is given to the agent.

Algorithm 1. CreateAdvice(G,s)

1: Find a shortest path P in G from node s to the node containing the treasure.
2: for i = 0, . . . , D − 1 do
3: vi ← node on path P at distance i from s
4: pi ← port number leading from vi to node on path P at distance i+ 1 from s
5: Ai ← EncodeSectorNumber(vi , pi)
6: Output Concat(A0, . . . , AD−1)

Algorithm 2. EncodeSectorNumber(v, port)

1: SectorSize ← �deg(v)/2z−1�
2: SectorNumber ← �port/SectorSize�
3: // port is contained in the range {SectorNumber ·SectorSize , . . . , (SectorNumber +

1) · SectorSize − 1}
4: return the z-bit binary representation of SectorNumber

Next, we describe FindTreasure, which is the agent’s algorithm given an
advice string A = Concat(A0, . . . , AD−1). For the purpose of description only,
we define the trail of the agent, which is a stack of edges that it has previously
traversed. The stack gets popped when the agent backtracks. The agent performs
a walk in G starting at node s. In each step of the algorithm, the agent chooses an
edge to add to the trail, or it backtracks along the trail edge that it added most
recently. The number of edges in the agent’s trail will be used to measure the
agent’s progress. In particular, when the agent is located at a node v and there
are i edges in the agent’s trail, we will say that the agent is at progress level i.
The agent keeps track of its current progress level by maintaining a counter that
is incremented when it adds a trail edge and decremented when it backtracks.

The agent maintains a table containing the labels of the nodes that it has
visited, and, for each node label, the smallest progress level at which the agent
visited the node so far. When the agent arrives at a node v from a lower progress
level and does not find the treasure, it checks if its current progress level i is lower
than the progress level stored in the table for node v. If this is not the case, or
if i = D, then the agent backtracks by going back along the edge it just arrived
on. Otherwise, the agent uses the advice substring Ai in the following way: it
divides the set of port numbers into sectors (i.e., intervals of port numbers) of

Tradeoffs between Cost and Information 269

size �deg(v)/2z−1 , numbers the sectors, and then interprets Ai as the binary
representation of an integer that specifies one of these sectors. For each port
number in the specified sector, the agent takes the port and arrives at some
neighbour w of v. The agent terminates if it finds the treasure at node w, or,
otherwise, repeats the above at node w. If, after trying all ports at node v in the
specified sector, the treasure has not been found, the agent backtracks.

Note that the advice was created with the goal of ‘steering’ the agent in the right
direction, i.e., along path P , but we can only guarantee that this will happen when
the agent is located at nodes on path P . In fact, an even stronger condition must
hold: for any node v on path P at distance i from s, we can only guarantee that the
advice will be helpful if the agent is located at node v at progress level i, since this is
when the agent reads the advice substringAi. In other words, it is possible that the
agent visits a node v on P at the ‘wrong’ progress level, in the sense that it won’t
use the advice that was created specifically for v. This is why it is not sufficient to
simply have the agent backtrack whenever it arrives at a previously-visited node,
since during its previous visit, it may have used the wrong advice. Moreover, we
must ensure that the algorithm gracefully deals with the situation where the agent
is at a node w at progress level j, but the advice substring Aj specifies ports that
do not exist at w. In our algorithm, the agent ignores any port numbers that are
greater than or equal to the current node’s degree.

To summarize, in our algorithm, the agent searches for the treasure in a depth-
first manner, but it cannot perform DFS (even only to distance D) because the
cost would be too large. Instead, the agent takes only a fraction of ports at each
node, but may possibly have to pay for it by traversing the same edge several
times (while in DFS every edge is traversed at most twice). As our analysis will
show, this gives a decrease of the overall cost, especially when the advice is large.

The pseudocode of the search conducted by algorithm FindTreasure is de-
scribed by Algorithm 3. It shows how the agent takes a step in the graph, i.e.,
for each i ∈ {0, . . . , D− 1}, how it uses Ai to move from a node at progress level
i to a node at progress level i+ 1.

Algorithm 3. TakeStep(A,v,i,prev)

A is the advice string, v is the node where the agent is currently located, i is the
current progress level, prev is the node from which the agent arrived

1: If treasure is located at v then Stop
2: If (i < D) AND (i < CurrentMin(v)) then
3: UpdateTable(v, i)
4: (A0, . . . AD−1) ← Decode(A)
5: sector ← GetSector(v,Ai)
6: for each port p in sector do
7: if p < deg(v) then
8: take port p
9: w ← the node reached after taking port p
10: call TakeStep(A, w, i+ 1, v)
11: Return to node prev

270 A. Miller and A. Pelc

In order to initiate the search, Algorithm 3 is called at node s with progress
level 0 (and prev = s). Algorithm 4, used as a subroutine in Algorithm 3, shows
how the agent decodes substring Ai to obtain a range of port numbers. We as-
sume that we have two functions related to the agent-maintained table of visited
nodes: UpdateTable(v, i) that writes i into the entry for node v as the smallest
progress level at which the agent has ever visited node v, and CurrentMin(v)
that reads the entry of the table for node v. Each table entry is initialized to ∞.

Algorithm 4. GetSector(v, SectorNumberEncoding)

1: z ← number of bits in SectorNumberEncoding

2: SectorSize ←
⌊

deg(v)

2z−1

⌋
3: SectorNumber ← integer value of SectorNumberEncoding
4: return {SectorNumber · SectorSize , . . . , (SectorNumber + 1) · SectorSize − 1}

ANALYSIS. In what follows, let P be the path from s to the treasure that is
used to create the advice A = Concat(A0, . . . , AD−1). Suppose that P consists
of the nodes v0, . . . , vD, where, for each i ∈ {0, . . . , D}, vi is at distance i from
s, and the treasure is located at node vD. Also, for each i ∈ {0, . . . , D − 1}, let
pi be the port at node vi that leads to node vi+1.

To prove the correctness of the algorithm, we first consider an arbitrary node
vi on path P and suppose that the agent is at progress level i. Clearly, this occurs
at least once during the execution of FindTreasure since the agent is initially
located at v0 at progress level 0. One of the ports at vi that are specified by
the advice substring Ai leads to node vi+1, but the agent may try some other
of these ports first. We can show that either the agent finds the treasure by
recursively calling TakeStep after taking one of these other ports, or, the agent
eventually takes the port that leads to node vi+1. Extending this by induction,
we obtain the following result.

Lemma 1. For any i ∈ {0, . . . , D− 1}, consider the first time that the agent is
located at node vi at progress level i. During the execution of TakeStep(A, vi, i, w),
for some node w, the agent finds the treasure.

By Lemma 1 with i = 0, the agent finds the treasure during the first execution
of TakeStep, hence FindTreasure is correct. Next, we proceed to find an upper
bound on the cost of algorithm FindTreasure in terms of a fixed upper bound
on the amount of advice provided.

Lemma 2. When provided with Dz bits of advice, FindTreasure has cost at
most O(De/2z).

Proof. It suffices to count the total number of times that line 8 of TakeStep

is called. This is because the cost incurred by backtracking (i.e., line 11 of
TakeStep) is at most 1 for each execution of TakeStep, which amounts to an
overall multiplicative factor of at most 2. So, we consider the number of times

Tradeoffs between Cost and Information 271

that line 8 of TakeStep is called at an arbitrary node v. The number of times
that the for loop at line 6 is iterated is at most deg(v)/2z−1, since the size of the
range returned by GetSector is �deg(v)/2z−1 . The number of times that the if
statement on line 2 evaluates to true is bounded above by D: parameter i never
has value larger than D, and the call to UpdateTable on line 3 ensures that
the sequence of values of i such that i < CurrentMin(v) is strictly decreasing.
Therefore, the total number of times that line 8 is executed is bounded above by
D · deg(v)/2z−1. Hence, the total number of calls to TakeStep is bounded above
by
∑

vD · deg(v)/2z−1 = D · (2e/2z−1) ∈ O(De/2z). �

Finally, we fix an upper bound C on the cost of FindTreasure and re-state
Lemma 2 as an upper bound on the amount of advice needed to solve treasure
hunt at cost C.

Theorem 1. Let G be any graph with e edges, and let D ≤ e be the distance
from the initial position of the agent to the treasure. Let C be any integer such
that D ≤ C ≤ e. The amount of advice needed to solve treasure hunt at cost at
most C is at most O(D log(Dg)) bits.

LOWER BOUND. The following lower bound follows immediately from The-
orem 4, which is proven by constructing a tree for which treasure hunt requires
Ω(D log g) bits of advice. This theorem will be proven in Section 4.

Theorem 2. Let D ≤ C ≤ e. There exists a graph G with Θ(e) edges, and a
position of the treasure at distance D from the initial position of the agent, such
that treasure hunt at cost C requires Ω(D log g) bits of advice.

The gap between the upper bound given by Theorem 1 and the lower bound
given by Theorem 2 is at most a factor logarithmic in D. Moreover, it should be
noted that our bounds become asymptotically tight whenever D is polynomial
in the gain g = e/C.

4 Treasure Hunt in Trees

We now proceed to prove upper and lower bounds on the advice needed to
solve treasure hunt in trees. Unlike in the case of arbitrary graphs, where our
upper and lower bounds may differ by a logarithmic factor, for trees we obtain
matching upper and lower bounds. Again, our bounds will be expressed in terms
of D, which is the distance between the treasure and the initial position of the
agent, and in terms of the ratio g = e/C = (n − 1)/C, where e is the number
of edges in the tree, n is the number of nodes, and C is an upper bound on the
cost of the algorithm. Also, for any two nodes a, b, we will denote by d(a, b) the
distance between a and b in the tree, i.e., the number of edges in the simple path
between them.

UPPER BOUND. To obtain our upper bound, we will use FindTreasure

that was defined and proven correct in Section 3 for arbitrary graphs. In this

272 A. Miller and A. Pelc

section, we provide an analysis of the algorithm specifically for the case of trees,
which gives a strictly better upper bound. We start with the following technical
lemma, which shows that, if we take the agent’s initial position as the root of the
tree, the agent’s progress level and the agent’s current depth in the tree (i.e., its
current distance from the root) do not differ. Essentially, this is because there
is only one simple path from the agent’s initial position to each node, and the
algorithm ensures that the agent’s trail does not contain the same edge multiple
times.

Lemma 3. Consider algorithm FindTreasure executed in any tree. Suppose
that, for some neighbouring nodes v and prev, TakeStep(A, v, i, prev) is executed
at node v. If line 2 evaluates to true, then progress level i = d(s, v).

Next, we proceed to find an upper bound on the cost of FindTreasure in
trees in terms of a fixed upper bound on the amount of advice provided. The
proof is analogous to the proof of Lemma 2, the main difference being that we
do not need to multiply by a factor of D in order to account for the different
paths that the agent could use to reach a given node.

Lemma 4. Let D < n be the distance between the treasure and the initial posi-
tion of the agent in an n-node tree. Algorithm FindTreasure executed with Dz
bits of advice has cost at most O(n/2z).

Finally, we fix an upper bound C on the cost of FindTreasure and re-state
Lemma 4 as an upper bound on the amount of advice needed to solve treasure
hunt in trees at cost C.

Theorem 3. Let D ≤ C ≤ e = n − 1. The amount of advice needed to solve
treasure hunt on trees of size n with cost at most C is at most O(D log g) bits.

LOWER BOUND. In order to prove a lower bound on the amount of advice
needed to solve treasure hunt at cost at most C, we first construct a certain class
of trees such that, for an arbitrary treasure hunt algorithm, there exists a tree
on which the algorithm incurs a high cost.

Lemma 5. Consider any treasure hunt algorithm A that takes Dz bits of advice.
For any positive integer k, there exists a tree of size Dk+1 such that A has cost
Ω(D + Dk

2z) on this tree.

Proof. We consider a collection T (D, k) of caterpillar trees, each constructed as
follows. Take a path graph P consisting of D+ 1 nodes v0, . . . , vD, where vi and
vi+1 are adjacent, for every i ∈ {0, . . .D − 1}. For each i ∈ {0, . . . , D − 1}, add
k − 1 nodes to the graph such that each of them has degree 1 and is adjacent
only to node vi. The resulting graph is a tree on Dk + 1 nodes. For each node
v in this tree, the ports at v are labeled with the integers {0, . . . , deg(v) − 1}
so that, for each i ∈ {0, . . . , D − 2}, the port numbers at both ends of the edge
{vi, vi+1} are equal. Finally we fix node labels as follows. Each node vi has label
i(k + 2), and each leaf adjacent to vi has label i(k + 2) + j + 1, where the port
number at vi leading to it is j. Notice that all labels are distinct.

Tradeoffs between Cost and Information 273

For each i ∈ {0, . . . , D− 1}, let pi be the port number at vi corresponding to
the edge {vi, vi+1}. Each tree in T (D, k) is uniquely identified by the sequence
(p0, . . . , pD−1) because the label of each leaf is determined by the port number
(at the adjacent node vi) leading to it. It follows that the number of distinct
caterpillar trees in T (D, k) is kD. Figure 1 gives a diagram of a caterpillar tree
in T (D, k) and shows how nodes are labeled.

{

k − 1

{

k − 1

{
k − 1

v0 v1 vD−1 vD
p0 p1p0 pD−1 pD

i(k+2)+jk−1+1

i(k+2)+j2+1

i(k+2)+j1+1

pi−1

pi

j1

j2

jk−1

i(k+2)

(b)(a)

0

Fig. 1. (a) A caterpillar tree in T (D, k) with ports on path P labeled. (b) The labels
of the k − 1 added leaves adjacent to vi are shown. Node vi is labeled i(k + 2).

Consider any fixed caterpillar tree G ∈ T (D, k). We set the starting node
of the agent to be v0 and place the treasure at node vD. To find the treasure,
the agent must traverse the D edges of path P . Suppose that, for some i ∈
{0, . . . , D− 1}, the agent is located at node vi. If the agent takes port pi, it will
arrive at node vi+1, and we say that this edge traversal is successful. We may
assume that the agent does not return to node vi, i.e., away from the treasure,
because such a move would only increase the cost of the algorithm. Further, the
agent can detect when it has found the treasure and terminate immediately.

By the Pigeonhole Principle, there is a subset S of T (D, k) consisting of at

least |T (D,k)|
2Dz = kD

2Dz caterpillar trees for which the agent is given the same advice
string. We proceed to find an upper bound on the size of such a set S.

When an agent’s step is not successful (that is, when located at node vi, it
chooses a port other than pi) it arrives at a leaf adjacent to vi. In this case,
we say that the agent misses. After a miss, the agent’s next step is to return
to node vi. Let missi,G be the number of times that the agent takes a port
other than pi when located at node vi in G. The cost at node vi, denoted by
costi,G, is 2missi,G+1, since there are two edge traversals for each miss and one
successful edge traversal. Hence, the total cost of any treasure hunt algorithm in
G is

∑D−1
i=0 costi,G = D + 2

∑D−1
i=0 missi,G.

Now, suppose that every execution of algorithm A has cost at most C. For
every G ∈ T (D, k), we know that C ≥ D+2

∑D−1
i=0 missi,G, so

∑D−1
i=0 missi,G ≤

(C−D)/2. Consider any two different trees G,G′ ∈ T (D, k) such that the agent
is given the same advice string for both of them. Let i be the smallest index
such that the port at vi leading to vi+1 is different in G and G′. Then the

274 A. Miller and A. Pelc

behaviour of the agent prior to visiting vi for the first time is the same in G
and in G′. Hence missi,G′ �= missi,G. Therefore, the number of trees in S is
bounded above by the number of distinct integer-valued D-tuples of positive
terms whose sum is at most (C −D)/2. (These tuples correspond to sequences
(miss0,G, . . . ,missD−1,G)). Clearly, this is bounded above by the number of
distinct real-valued D-tuples with non-negative terms whose sum is at most

(C −D)/2, i.e., by the volume of the simplex {(a0, . . . , aD−1) ∈ RD |
D−1∑
i=0

ai =

(C −D)/2 and 0 ≤ ai ≤ (C −D)/2 for all i}. From [18], the volume of such a

simplex is equal to (C−D)D

2DD! . Therefore, we have shown that |S| ≤ (C−D)D

2DD! .

Finally, since kD

2Dz ≤ |S| ≤ (C−D)D

2DD! , we get that

C ≥ D +
D

√
D!
kD2D

2Dz
= D +

D
√
D!

2k

2z

By Stirling’s formula we haveD! ≥
√
D(D/e)D, for sufficiently largeD. Hence

D
√
D! ≥ D1/(2D) · (D/e), where e is the Euler’s constant. Since the first factor

converges to 1 as D grows, we have D
√
D! ∈ Ω(D). Hence the above bound on

C implies C ∈ Ω(D + Dk
2z). �

For any treasure hunt algorithm, Lemma 5 with k = �n/D� proves the exis-
tence of a tree of size Θ(n) in which the algorithm has relatively high cost in
terms of the fixed amount of advice provided. By instead fixing an upper bound
C on the algorithm’s cost, we can re-arrange this lower bound to obtain a lower
bound on the amount of advice needed. This lower bound matches the upper
bound from Theorem 3.

Theorem 4. Let D ≤ C ≤ e = n − 1. There exists a tree of size Θ(n), and a
position of the treasure at distance D from the initial position of the agent, such
that treasure hunt at cost C requires Ω(D log g) bits of advice.

5 Conclusion

We established upper and lower bounds on the minimum size of advice sufficient
to solve the problems of rendezvous and of treasure hunt at a given cost. For
the class of trees our bounds are tight, up to constant factors. For the class
of arbitrary graphs, our bounds (the upper bound O(D log(Dg)) and the lower
bound Ω(D log g)) leave a gap of a logarithmic factor. Closing this gap is a
natural open problem. It should be noted, however, that, even for arbitrary
graphs, our bounds are asymptotically tight, whenever D is polynomial in the
gain g = e/C. This is the case, for example, when we want to accomplish treasure
hunt or rendezvous at cost Θ(

√
n) in an n-node graph. Only in special situations,

if D is very large with respect to the gain, e.g., for an n-node graph with Θ(n3/2)
edges in which the treasure is located at distance Θ(

√
n), and we seek cost

Θ(n3/2/ logn), the gap is non-constant (it is Θ(log n/ log logn) in this case).

Tradeoffs between Cost and Information 275

It should also be noted that, in the context of advice, treasure hunt is not
only equivalent to rendezvous of two agents, as shown in Proposition 1, but also
to rendezvous of many agents, which is often called gathering. This task consists
in gathering several agents at the same node in the same round. In this case
the cost should be defined as the number of edge traversals per agent, and the
reduction given by Proposition 1 remains valid.

References

1. Abiteboul, S., Kaplan, H., Milo, T.: Compact labeling schemes for ancestor queries.
In: Proc. 12th ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 547–556
(2001)

2. Alpern, S.: The rendezvous search problem. SIAM J. on Control and Optimiza-
tion 33, 673–683 (1995)

3. Alpern, S.: Rendezvous search on labelled networks. Naval Reaserch Logistics 49,
256–274 (2002)

4. Alpern, S., Gal, S.: The theory of search games and rendezvous. Int. Series in
Operations research and Management Science. Kluwer Academic Publisher (2002)

5. Anderson, E., Weber, R.: The rendezvous problem on discrete locations. Journal
of Applied Probability 28, 839–851 (1990)

6. Anderson, E., Fekete, S.: Two-dimensional rendezvous search. Operations Re-
search 49, 107–118 (2001)

7. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the plane. In-
formation and Computation 106, 234–252 (1993)

8. Bampas, E., Czyzowicz, J., G ↪asieniec, L., Ilcinkas, D., Labourel, A.: Almost opti-
mal asynchronous rendezvous in infinite multidimensional grids. In: Lynch, N.A.,
Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 297–311. Springer, Hei-
delberg (2010)

9. Baston, V., Gal, S.: Rendezvous search when marks are left at the starting points.
Naval Reaserch Logistics 48, 722–731 (2001)

10. Bose, P., De Carufel, J.-L., Durocher, S.: Revisiting the Problem of Searching on
a Line. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp.
205–216. Springer, Heidelberg (2013)

11. Caminiti, S., Finocchi, I., Petreschi, R.: Engineering tree labeling schemes: A case
study on least common ancestor. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008.
LNCS, vol. 5193, pp. 234–245. Springer, Heidelberg (2008)

12. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by
mobile robots: Gathering. SIAM J. Comput. 41, 829–879 (2012)

13. Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph
exploration by a finite automaton. ACM Transactions on Algorithms 4 (2008)

14. Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: Log-space
rendezvous in arbitrary graphs. Distributed Computing 25, 165–178 (2012)

15. Czyzowicz, J., Labourel, A., Pelc, A.: How to meet asynchronously (almost) ev-
erywhere. ACM Transactions on Algorithms 8, article 37 (2012)

16. Dessmark, A., Fraigniaud, P., Kowalski, D., Pelc, A.: Deterministic rendezvous in
graphs. Algorithmica 46, 69–96 (2006)

17. Dieudonné, Y., Pelc, A., Villain, V.: How to meet asynchronously at polynomial
cost. In: Proc. 32nd ACM Symp. on Principles of Distributed Comp. (PODC), pp.
92–99 (2013)

276 A. Miller and A. Pelc

18. Ellis, R.: Volume of an N-Simplex by Multiple Integration. Elemente der Mathe-
matik 31, 57–59 (1976)

19. Emek, Y., Fraigniaud, P., Korman, A., Rosen, A.: Online computation with advice.
Theoretical Computer Science 412, 2642–2656 (2011)

20. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Communication algorithms with advice. Jour-
nal of Computer and System Sciences 76, 222–232 (2010)

21. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Tree exploration with advice. Information
and Computation 206, 1276–1287 (2008)

22. Fraigniaud, P., Korman, A., Lebhar, E.: Local MST computation with short advice.
Theory of Computing Systems 47, 920–933 (2010)

23. Fusco, E., Pelc, A.: Trade-offs between the size of advice and broadcasting time in
trees. Algorithmica 60, 719–734 (2011)

24. Fusco, E.G., Pelc, A., Petreschi, R.: Use knowledge to learn faster: Topology recog-
nition with advice. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 31–45.
Springer, Heidelberg (2013)

25. Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. Journal
of Algorithms 53, 85–112 (2004)

26. Hipke, C.A., Icking, C., Klein, R., Langetepe, E.: How to find a point on a line
within a fixed distance. Disc. App. Math. 93, 67–73 (1999)

27. Katz, M., Katz, N., Korman, A., Peleg, D.: Labeling schemes for flow and connec-
tivity. SIAM Journal of Computing 34, 23–40 (2004)

28. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distributed Comput-
ing 22, 215–233 (2010)

29. Kowalski, D.R., Malinowski, A.: How to meet in anonymous network. In: Flocchini,
P., G ↪asieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 44–58. Springer,
Heidelberg (2006)

30. Kranakis, E., Krizanc, D., Morin, P.: Randomized Rendez-Vous with Limited Mem-
ory. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008.
LNCS, vol. 4957, pp. 605–616. Springer, Heidelberg (2008)

31. Lopez-Ortiz, A., Schuierer, S.: The ultimate strategy to search on m rays? Theo-
retical Computer Science 261, 267–295 (2001)

32. Miller, A., Pelc, A.: Fast rendezvous with advice. In: Proc. 10th Int. Symp. on Al-
gorithms and Experiments for Sensor Systems, Wireless Networks and Distributed
Robotics (ALGOSENSORS 2014) (2014), Full version at arxiv:1407.1428v1 [cs.DS]

33. Miller, A., Pelc, A.: Time versus cost tradeoffs for deterministic rendezvous in
networks. In: Proc. 33rd Annual ACM Symposium on Principles of Distributed
Computing (PODC 2014), pp. 282–290 (2014)

34. Nisse, N., Soguet, D.: Graph searching with advice. Theoretical Computer Sci-
ence 410, 1307–1318 (2009)

35. Panaite, P., Pelc, A.: Exploring unknown undirected graphs. Journal of Algo-
rithms 33, 281–295 (1999)

36. Pelc, A.: Deterministic rendezvous in networks: A comprehensive survey. Net-
works 59, 331–347 (2012)

37. Reingold, O.: Undirected connectivity in log-space. Journal of the ACM 55 (2008)
38. Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts and strongly

universal exploration sequences. In: Proc. 18th ACM-SIAM Symposium on Discrete
Algorithms (SODA 2007), pp. 599–608 (2007)

39. Thorup, M., Zwick, U.: Approximate distance oracles. J. ACM 52, 1–24 (2005)
40. Xin, Q.: Faster treasure hunt and better strongly universal exploration sequences.

In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 549–560. Springer,
Heidelberg (2007)

Maintaining a Spanning Forest in Highly

Dynamic Networks: The Synchronous Case�

Matthieu Barjon, Arnaud Casteigts, Serge Chaumette,
Colette Johnen, and Yessin M. Neggaz

LaBRI, University of Bordeaux

Abstract. Highly dynamic networks are characterized by frequent
changes in the availability of communication links. Many of these
networks are in general partitioned into several components that keep
splitting and merging continuously and unpredictably. We present an
algorithm that strives to maintain a forest of spanning trees in such net-
works, without any kind of assumption on the rate of changes. Our algo-
rithm is the adaptation of a coarse-grain interaction algorithm (Casteigts
et al., 2013) to the synchronous message passing model (for dynamic
networks). While the high-level principles of the coarse-grain variant are
preserved, the new algorithm turns out to be significantly more complex.
In particular, it involves a new technique that consists of maintaining a
distributed permutation of the set of all nodes IDs throughout the exe-
cution. The algorithm also inherits the properties of its original variant:
It relies on purely localized decisions, for which no global information
is ever collected at the nodes, and yet it maintains a number of critical
properties whatever the frequency and scale of the changes. In particu-
lar, the network remains always covered by a spanning forest in which
1) no cycle can ever appear, 2) every node belongs to a tree, and 3)
after an arbitrary number of edge disappearance, all maximal subtrees
immediately restore exactly one token (at their root). These properties
are ensured whatever the dynamics, even if it keeps going for an arbi-
trary long period of time. Optimality is not the focus here, however the
number of tree per components – the metric of interest here – eventually
converges to one if the network stops changing (which is never expected
to happen, though). The algorithm correctness is proven and its behavior
is tested through experimentation.

1 Introduction

The current development of mobile and wireless technologies enables direct ad hoc
communication between various kinds of mobile entities, such as vehicles, smart-
phones, terrestrian robots, flying robots, or satellites. In all these contexts, the set
of communication links depends on distances between entities, thus the network
topology changes continuously as the entities move. Not only changes are frequent,

� An extended version of this paper is available online [7].

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 277–292, 2014.
c© Springer International Publishing Switzerland 2014

278 M. Barjon et al.

but in general they evenmake the networkpartitionned. Clearly, the usual assump-
tion of connectivity does not hold here, although another form of connectivity is of-
ten available over time and space (temporal connectivity). Also, the classical view
of a network whose dynamics corresponds to failures is no longer suitable in these
scenarios, where dynamics is the norm rather than the exception.

This induces a shift in paradigm that strongly impacts algorithms. In fact,
it even impacts the problems themselves. What does it mean, for instance, to
elect a leader in such a network? Is the objective to distinguish a unique global
leader, whose leadership then takes place over time and space, or is it to maintain
a leader in each connected component, so that the decisions concerning each
component are taken quickly and locally. The same remark holds for spanning
trees. Should an algorithm construct a unique, global tree whose logical edges
survive intermittence, or should it build and maintain a forest of trees that
strive to cover collectively all components in each instant? Both viewpoints make
sense, and so far, were little studied in distributed computing (see e.g. [4,12] for
temporal trees, [3,11] for maintained trees).

We focus on the second interpretation, which reflects a variety of scenarios
where the expected output of the algorithm should relate to the immediate con-
figuration (e.g. direct social networking, swarming of flying robots, vehicles pla-
tooning on the road). A particular feature of this type of algorithms is that they
never terminate. More significantly, in highly dynamic networks, they are not
even expected to stabilize to an optimal state (here, a single tree per component),
unless the changes stop, which never happens. This precludes, in particular, all
approaches whereby the computation of a new solution requires the previous
computation to have completed.

This paper is an attempt to understand what can still be computed (and
guaranteed) when no assumptions are made on the network dynamics: neither on
the rate of change, nor on their simultaneity, nor on global connectivity. In other
words, the topology is controlled by an almighty adversary. In this seemingly
chaotic context, we present an algorithm that strives to maintain as few trees
per components as possible, while always guaranteeing some properties.

1.1 Related Work

Several works have addressed the spanning tree problem in dynamic networks,
with different goals and assumptions. Burman and Kutten [9] and Kravchik
and Kutten [15] consider a self-stabilizing approach where the legal state corre-
sponds to having a (single) minimum spanning tree and the faults are topological
changes. The strategy consists in recomputing the entire tree whenever changes
occur. This general approach, sometimes called the “blast away” approach, is
meaningful if stable periods of time exist, which is not assumed here.

Many spanning tree algorithms rely on random walks for their elegance and
simplicity, as well as for the inherent localized paradigm they offer. In particu-
lar, approaches that involve multiple coalescing random walks allow for uniform
initialization (each node starts with the same state) and topology independence
(same strategy whatever the graph). Pionneering studies involving such processes

Maintaining a Spanning Forest in Highly Dynamic Networks 279

include Bar-Ilan and Zernik [6] (for the problem of election and spanning tree),
Israeli and Jalfon [14] (mutual exclusion), and Chapter 14 of Aldous and Fill [2]
(for general analysis).

The principle of using coalescing random walks to build spanning trees in
mildly dynamic networks was used by Baala et al. [1] and Abbas et al. [5], where
tokens are annexing territories gradually by capturing each other. Regarding
dynamicity, both algorithms require the nodes to know an upper bound on the
cover time of the random walk, in order to regenerate a token if they are not vis-
ited during a long-enough period of time. Besides the strength of this assumption
(akin to knowing the number of nodes n, or the size of components in our case),
the efficiency of the timeout approach decreases dramatically with the rate of
topological changes. In particular, if they are more frequent than the cover time
(itself in O(n3)), then the tree is constantly fragmented into “dead” pieces that
lack a root, and thus a leader.

Another algorithm based on random walks is proposed by Bernard et al. [8].
Here, the tree is constantly redefined as the token moves (in a way that reminds
the snake game). Since the token moves only over present edges, those edges
that have disappeared are naturally cleaned out of the tree as the walk proceeds.
Hence, the algorithm can tolerate failure of the tree edges. However it still suffers
from detecting the disappearance of tokens using timeouts based on the cover
time, which as we have seen, suits only slow dynamics.

A recent work by Awerbuch et al. [3] addresses the maintenance of minimum
spanning trees in dynamic networks. The paper shows that a solution to the
problem can be updated after a topological change using O(n) messages (and
same time), while the O(m) messages of the “blast away” approach was thought
to be optimal. (This demonstrates, incidentally, the revelance of updating a so-
lution rather than recomputing it from scratch in the case of minimum spanning
trees.) The algorithm has good properties for highly dynamic networks. For in-
stance, it considers as natural the fact that components may split or merge
perpetually. Furthermore, it tolerates new topological events while an ongoing
update operation is executing. In this case, update operations are enqueued and
consistently executed one after the other. While this mechanism allows for an
arbitrary number of topological events at times, it still requires that such burst
of changes are only episodical and that the network remains eventually stable
for (at least) a linear amount of time in the number of nodes, in order for the
update operations to complete and thus the logical tree to be consistent with
physical reality.

All the aforementioned algorithms either assume that global update operations
(e.g. wave mechanisms) can be performed contemporaneously, or at least even-
tually, or that some node can collect global information about the tree structure.
As far as dynamics is concerned, this forbids arbitrary and ever going changes
to occur in the network.

280 M. Barjon et al.

1.2 The Spanning Forest Principle

A purely localized scheme was proposed by Casteigts et al. [11] for the mainte-
nance of a (non-minimum) spanning forest in unrestricted dynamic networks, us-
ing a coarse grain interaction model inspired from graph relabeling systems [17].
It can be described informally as follows. Initially every node hosts a token and
is the root of its own individual tree. Whenever two roots arrive at the endpoints
of a same edge (see merging rule on Figure 1), one of them destroys its tokens
and selects the other as parent (i.e. the trees are merged). The rest of the time,
each token executes a random walk within its own tree in the search for other
merging opportunities (circulation rule). Tree relations are flipped accordingly.
The fact that the random walk is confined to the underlying tree is crucial and
different from all algorithms discussed above, in which they were free to roam
everywhere without restriction. This simple feature induces very attractive prop-
erties for highly dynamic networks. In particular, whenever an edge of the tree
disappears, the child side of that edge knows instantly that no token remains on
its whole subtree. It can thus regenerate a token (i.e. become root) instantly,
without global concertation nor further information collection. As a result, both
merging and splitting of trees are managed in a purely localized fashion.

(a) Merging rule (b) Circulation rule

×

(c) Regeneration rule

Fig. 1. Spanning forest principle (high-level representation). Black nodes are those
having a token. Black directed edges denote child-to-parent relationships. Gray vertical
arrows represent transitions.

At an abstract graph level, this very simple scheme guarantees that the net-
work remains covered by a spanning forest at any time, in which 1) no cycle can
ever appear, 2) maximal subtrees are always directed rooted trees (with a token
at the root), and 3) every node always belongs to such a tree, whatever the chaos
of topological changes. On the other hand, it is not expected to reach an optimal
state where a single tree covers each connected component. Even if the network
were to stabilize, convergence to the optimum (though easy to be made certain)
would not be expected to occur fast. Whether this general principle could be
implemented in a message passing model remained an open question.

1.3 Our Contribution

This paper provides an implementation of the spanning forest principle in the
synchronous message-passing model. Due to the loss of atomicity and exclusivity
in the interaction, the algorithm turns out to be much more sophisticated than its
original counterpart. While still reflecting the very same high-level principle, it

Maintaining a Spanning Forest in Highly Dynamic Networks 281

faces new problems that require conceptual differences. In particular, the original
model prevented a node from both selecting a parent and being selected as parent
simultaneously, making it easier to avoid cycle creations. One of the ingredients
in the new algorithm to circumvent this problem is an original technique (which
we refer to as the unique score technique) that consists of maintaining, network-
wide, a set of score variables that always remain a permutation of the set of
nodes IDs. This mechanism allows us to break symmetry and avoid the formation
of cycles in a context where IDs alone could not. The paper is organized as
follows. In Section 2, we present the model and notations that we use throughout
the paper. Then Section 3 presents the algorithm, whose correctness analysis
is outlined in Section 4. (The detailed proofs are in the online version of this
paper [7].) Section 5 finally presents some experimental results that validate our
algorithm in real context.

2 Model and Notations

The network is represented by an untimed evolving graph [13] G = (G1, G2, . . .),
such that Gi = (V,Ei), where V is a static set of vertices and Ei is a dynam-
ically changing set of undirected edges. Following Kuhn et al. [16], we consider
a synchronous (thus rounded) computational model, where in each round i, the
adversary chooses the set of edges Ei that are present. In our case, this set is
arbitrary (i.e. the adversary is unrestricted). At the beginning of each round,
each node sends a message that it has prepared at the end of the previous round.
This message is sent to all its neighbors in Ei, although the list of these neigh-
bors is not know by the node. Then it receives all messages sent by its neighbors
(in the same round), and finally computes its new state and the next message.
Hence, each round corresponds to three phases (send, receive, compute),
which corresponds to a rotation of the original model of [16] where the phases
are (compute, send, receive). This adaptation is not necessary, but it allows
us to formulate correctness of our algorithm in terms of the state of the nodes
after each round rather than in the middle of rounds.

We assume that the nodes have a unique identifier taken from a totally ordered
set, that is, for any two nodes u and v, it either holds that ID(u) > ID(v) or
ID(u) < ID(v). A node can specify what neighbor its message is intended to
(although all neighbors will receive it) by setting the target field of that message.
Symmetrically, the ID of the emitter of a message can be read in the sender

field of that message. Since the edges are undirected, if u receives a message
from v at round i, then v also receives a message from u at that round. We call
this property the reciprocity principle and it is an important ingredient for the
correctness of our algorithm.

Using synchronous rounds allows us to represent the progress of the execution
as a sequence of configurations (C0, C1, C2, ..., Ci), where each Ci corresponds to
the state of the system after round i (except for C0, the initial state). Each
configuration consists of the union of all nodes variables, defined next.

282 M. Barjon et al.

3 The Spanning Forest Algorithm

3.1 State Variables

Besides the ID variable, which we assume is externally initialized, each node has
a set of variable that reflects its situation in the tree: status accounts for the
possession of a token (T if it has a token, N if it does not); parent contains the ID

of this node’s parent (⊥ if it has none); children contains the set of this node’s
children (∅ if it has none). Observe that both variables status and parent are
somewhat redundant, since in the spanning forest principle (see Section 1.2)
the possession of a token is equivalent to being a root. Our algorithm enforces
this equivalence, yet, keeping both variables separated simplifies the description
of the algorithm and our ability to think of it intuitively. Variable neighbors

contains the set of nodes from which a message was received in the last reception.
These neighbors may or may not belong to the same tree as the current node.
Variable contender contains the ID of a neighbor that the current node considers
selecting as parent in the next round (or ⊥ if there is no such node). Finally, the
variable score is the main ingredient of our cycle-avoidance mechanism, whose
role is described below.

Initial values: All the nodes are uniformly initialized. They are initially the
root of their own individual tree (i.e. status = T , parent = ⊥, and children =
∅). They know none of their neighbors (neighbors = ∅), have no contenders
(contender = ⊥), and their score is set to their own ID.

3.2 Structure of a Message (and Associated Variables)

Messages are composed of a number of fields: sender is the ID of the sending
node; senderStatus its status (either T or N); and score its score when the
message was prepared. The field action is one of {FLIP, SELECT,HELLO}.
Informally, SELECT messages are sent by a root node to another root node
to signify that it “adopts” it as a parent (merging operation); FLIP messages
are sent by a root node to circulate the token to one of its children (circulation
operation); HELLO messages are sent by a node by default, when none of the
other messages are sent, to make its presence and status known by its neighbors.
Finally, target is the ID of the neighbor to which a FLIP or a SELECT message
are intended (⊥ for HELLO messages).

Received messages are stored in a variable mailbox, which is a map collection
whose keys are the senders ID (i.e., a message whose sender ID is u can be
accessed as mailbox[u]). In each round, the algorithm makes use of a RECEIVE()

function that clears the mailbox and fill it with all the messages received in that
round (one for each physical neighbor). A node can thus update the set of its
neighbors by fetching the keys of its mailbox. Similarly, it can eliminate from its
list of children those nodes which are no more neighbor.

As mentioned above, every node prepares at the end of a round the message to
be sent at the beginning of the next round. This message is stored in a variable

Maintaining a Spanning Forest in Highly Dynamic Networks 283

outMessage. We allow the short hand m ← (a, b, c, d, e) to define a new message
m whose emitter is node a (with status b and score e); target is node d; and
action is c.

Initial values: The mailbox is initially empty (mailbox = ∅) and outMessage

is initialized to (ID, T,HELLO,⊥, ID).

3.3 Informal Description of the Algorithm

The algorithm implements the general scheme presented in Section 1.2. In this
Section we explain how each of the three core operations (merging, circulation,
regeneration) is implemented. Then we discuss the specificities of the merging
operation in more detail and the problems that arise due to its entanglement
with the circulation operation, a fact due to the loss of atomicity in the message
passing model. The resulting solution is substantially more sophisticated than
its original scheme, and yet it faithfully reflects the same high-level principle.
Let us start with some generalities. In each round, each node broadcasts to
its neighbors a message containing, among others, its status (T or N) and an
action (SELECT, FLIP, or HELLO). Whether or not the message is intended
to a specific target (which is the case for SELECT and FLIP messages), all the
nodes who receive it can possibly use this information for their own decisions.
More generally, based on the received information and the local state, each node
computes at the end of the round its new status and the local structure of its
tree (variables children and parent), then it prepares the next message to be
sent. We now describe the three operations. Throughout the explanations, the
reader is invited to refer to Figure 2, where an example of execution involving all
of them is shown. All details are also given in the listings of Algorithm 1 and 2.

Merging: If a root (i.e. a node having a token), say v, detects the existence
of a neighbor root with higher score than its own, then it considers that node
as a possible contender, i.e. as a node that it might select as a parent in the
next round. If several such roots exist, then the one with highest score, say u,
is chosen. At the beginning of the next round, v sends a SELECT message
to u to inform it that it is its new parent. Two cases are possible: either the
considered edge is still present in that round, or it disappeared in-between both
rounds. If it is still present, then u receives the message and adds v to its children
list, among others (Line 16). As for v, it sets its parent variable to u and its
status to N (Lines 8 and 9). If the edge disappeared, then u does not receive the
message, which is lost. However, due to the reciprocity of message exchange, v
does not receive a message from u either and thus simply does not executes the
corresponding changes. By the end of the round, either the trees are properly
merged, or they are properly separated.

Circulation: If a root v does not detect another root with higher score, then
it selects one of its children at random, if it has any (see Line 27), otherwise it

284 M. Barjon et al.

41

2
3

8

5

6
7

s →
s →

s →

s
→

← s

←
s

(a) round 1

41

2
3

8

5

6
7

← f

f
→

(b) round 2

41

8
3

2

7

6
5

f →

s
→

(c) round 3

4
1

2
3

8

7

6
5

←
f

× ←

(d) round 4

4
1

2
3

7

8

6
5

← f

←
f

(e) round 5

1
4

2
3

7

8

6
5

f →

f
→

(f) round 6

Fig. 2. Example of execution of the algorithm which illustrates all types of operations:
parent selection (s →), token circulation (f →), and tree disconnection (× ←). The
first two symbols represent FLIP or SELECT messages to be sent in the next round.
Black (resp. white) nodes are those (not) having a token at the beginning of the round.
Tree edges are represented by bold directed edges. Dash edges have just disappeared.

simply remains root. Randomness is not a strict requirement of our algorithm
and replacing it with any deterministic strategy would not affect correctness of
the algorithm. Once the child is chosen, say u, the root prepares a FLIP message
intended to u, and sends it at the beginning of the next round. Two cases are
again possible, whether or not the edge {u, v} is still present in that round. If it
is still present, then u receives the message, it updates its status and adds v to
its children list, among others (Lines 15 and Line 16). As for v, it sets its parent
variable to u and its status to N (Lines 8 and 9). If the edge disappeared, then
v can detect it as before simply does not executes the corresponding changes.
Node u, on the other hand, detects that the edge leading to its current parent
disappeared, thus it regenerates a token (discussed next). Notice that in the
absence of a merging opportunity, a node receiving the token in round i will
immediately prepare a FLIP message to circulate the token in the next round.

Maintaining a Spanning Forest in Highly Dynamic Networks 285

Unless the tree is composed of a single node, the tokens are thus moved in each
round. In order for them to remain detectable in this case, the status announced
in FLIP messages is T (whereas it is N for SELECT messages).

Regeneration: The first thing a non-root node does after receiving the mes-
sages of the current round is to check whether the edge leading to its current
parent is still present. If the edge disappeared, then the node regenerates a root
directly (Line 7). A nice property of the spanning forest principle is that this
cannot happen twice in the same tree. And if a tree is broken into several pieces
simultaneously, then each of the resulting subtree will have exactly one node
performing this operation.

The Unique Score Technique: Unlike the high-level graph model from [11],
in which the merging operation involved two nodes in an exclusive way, the
non-atomic nature of message passing allows for a chain of selection that may
involve an arbitrary long sequence of nodes (e.g. a selects b, b selects c, and
so on). This has both advantages and drawbacks. On the good side, it makes
the initial merging process very fast (see rounds 1 and 2 in Figure 2 to get an
example). On the bad side, it is the reason why scores need to be introduced to
avoid cycles. Indeed, relying only on a mere comparison of ID to avoid cycles is
not sufficient. Consider a chain of selection in round i that ends up at some root
node u. Nothing prevents u to have passed the token to a lower-ID child, say v,
in the previous round i − 1 (that same round when u’s status T was overheard
by the next-to-last root in the chain). Now, nothing again prevents v to have
selected one of the nodes in the selection chain in round i, thereby creating a
cycle. The score mechanism prevents such a situation by enforcing that after
each FLIP, the new root has a larger score than its predecessor (see Lines 9
and 13 in Algorithm 2). The score mechanism also guarantees that the current
set of scores (network-wide) is always a permutation of the initial set of scores.
Hence, scores are always unique. All of these elements are crucial ingredients in
the proofs of correctness of Section 4.

A Note about Convergence: Each token performs a random walk in its un-
derlying tree. Hence, unless some of the trees are bipartite, the configuration will
eventually (and with high probability) stabilize into a single tree per connected
component if the network stops changing. Although convergence is not the main
focus here, we believe that pathetic scenarios where some trees are bipartite can
easily be avoided, by making the tokens stop for a random additional round
at the nodes (lazy walk). This way, the symmetry of bipartiteness is eventually
broken w.h.p.

286 M. Barjon et al.

1 repeat
2 SEND(outMessage);

3 mailbox ← RECEIVE(); // Received messages, indexed by sender ID

4 neighbors ← mailbox.keys(); // All the senders IDs

5 children ← children ∩ neighbors

// Regenerates a token if parent link is lost

6 if status=N ∧ parent �∈ neighbors then
7 BECOME ROOT();

// Checks if the outgoing FLIP or SELECT (if any) was successful

8 if outMessage.action ∈ {FLIP,SELECT} ∧ outMessage.target ∈
neighbors then

9 ADOPT PARENT(outMessage)

// Processes the received messages

10 contender ← ⊥;
11 contenderScore ← 0;
12 forall message ∈ mailbox do
13 if message.target = ID then
14 if message.action = FLIP then
15 BECOME ROOT();

16 ADOPT CHILD(message); // called for both FLIP or SELECT

17 else
18 if message.status = T ∧ message.score > contenderScore then
19 contender ← message.ID;

20 contenderScore ← message.score;

// Prepares the message to be sent

21 outMessage ← ⊥
22 if status = T then
23 if contenderScore > score then
24 PREPARE MESSAGE(SELECT, contender);
25 else
26 if children �= ∅ then
27 PREPARE MESSAGE(FLIP, random(children));

28 if outMessage = ⊥ then
29 PREPARE MESSAGE(HELLO, ⊥);

30 ;

Algorithm 1. Main Algorithm

Maintaining a Spanning Forest in Highly Dynamic Networks 287

1 procedure BECOME ROOT

2 status ← T;
3 parent ← ⊥;

4 procedure ADOPT PARENT(outMessage)

5 status ← N;
6 parent ← outMessage.target;
7 if outMessage.action = FLIP then
8 children ← children�parent;

9 score ← min(score, mailbox[parent].score);

10 procedure ADOPT CHILD(message)

11 children.add(message.ID);

12 if message.action = FLIP then
13 score ← max(score, message.score);

14 procedure PREPARE MESSAGE(action, target)

15 switch action do
16 case SELECT

17 outMessage ← (ID, N, SELECT, target, score);
18 case FLIP

19 outMessage ← (ID, T, FLIP, target, score);
20 case HELLO

21 outMessage ← (ID, status, ⊥, ⊥, score);

Algorithm 2. Functions called in Algorithm 1.

4 Outline of the Correctness Analysis

This section summarizes the correctness analysis of our algorithm, whose detail
can be found in the long version of the paper [7]. We first define a handful
of instrumental concepts that help minimize the number of properties to be
proven. Then, as we start formulating the key properties to be proved, we adopt
concise notations regarding the state of the system. Precisely, we denote by
(i−)u.varname (resp. (i+)u.varname) the value of variable varname at node u
before (resp. after) round i. Notice that for any node u, round i, and variable
varname, we have (i+)u.varname = ((i + 1)−)u.varname. We use whichever
notation is the most convenient in the given context.

4.1 Helping Definitions

These definitions are not specific to our algorithm, they are general graph con-
cepts that simplify the subsequent proofs.

Definition 1 (Pseudotree and pseudoforest). A directed graph whose ver-
tices have outdegree at most 1 is a pseudoforest. A vertex whose outdegree is 0
is called a root. The weakly connected components of a pseudoforest are called
pseudotrees.

288 M. Barjon et al.

Lemma 1. A pseudotree has at most one root.

Proof. By definition, a pseudotree T = (VT , ET) is connected, thus |ET | ≥
|VT | − 1. If T has several roots, then at least two nodes in VT have no outgoing
edge. Since the others have at most one, we must have |ET | ≤ |VT | − 2, which
is a contradiction. ��

Lemma 2. If a pseudotree T contains a root r, then it has no cycle.

Proof. Let V1 ⊂ T be the set of nodes at distance 1 from V0 = {r}. Since r has
outdegree 0, there is an edge from each node in V1 to r. Since T is a pseudotree,
these nodes have no other outgoing edge than those ending up in V0. The same
argument can be applied inductively, all nodes at distance i having no other
outgoing edges than those ending up in Vi−1. ��

Definition 2 (Correct tree and correct forest). At the light of Lemma 1
and 2, we define a correct tree (or simply a tree) as a pseudotree in which a
root can be found. We naturally define a correct forest (or simply a forest) as a
pseudoforest whose pseudotrees are trees.

Finally, because forests are considered in a spanning context, we say that a
pseudoforest F is a correct forest on graph G iff F is a correct forest and F
is a subgraph of G. Defining correct trees as pseudotrees in which a root can
be found is the key. When the moment arrives, this will allow us to reduce the
correctness of our algorithm to the presence of a root in each pseudotree.

4.2 Consistency

Forest Consistency: At the end of a round, the state of an edge (whether it
belongs to a tree, and if so, in what direction) must be consistently decided at
both endpoints:

Definition 3 (forest consistency). The configuration Ci is forest consistent
if and only if for all nodes u, (i+)u.parent = v ⇔ u ∈ (i+)v.children.

The proof of forest consistency is inductively established by Theorem 1, based
on consistency of the initial configuration (Lemma 3) and the maintenance the
consistency over the rounds (Lemma 18). Forest consistency allows us to reduce
the output of interest of the algorithm after each round i to the mere parent

variable.

Graph Consistency: At the end of round i, the values of all parent variables
should be consistent with the underlying graph Gi.

Definition 4 (graph consistency). The configuration Ci is graph consistent
if and only if for all nodes u, (i+)u.parent = v ⇒ {u, v} ∈ Ei.

This property is established by Corollary 1. Graph consistency allows us to
say that the output of the algorithm forms a pseudoforest on Gi.

Maintaining a Spanning Forest in Highly Dynamic Networks 289

Definition 5 (Resulting forest). Given a round i ≥ 1, occurring on graph Gi,
the graph Fi = (V,EFi) such that EFi = {(u, v) : {u, v} ∈ Ei, (i

+)u.parent = v}
is called the pseudoforest resulting from round i.

State Consistency: As explained in Section 3.1, the variables parent and
status are somewhat redundant, since the possession of a token is synonymous
with being a root. The equivalence between both variables after each round is
established in Lemma 4. The main advantage of this equivalence is that it allows
us to formulate and prove a large number of lemmas based on whichever of the
two variables is the most convenient (and intuitive) for the considered property.

4.3 Correctness of the Forest

In this section, we prove that the resulting forest is always correct (Definition
2). To achieve that goal, we first define a validity criterion at the node level,
which recursively ensures the correctness of the pseudotree this node belongs to
thanks to Definition 2 (i.e. the existence of a root implies correctness).

Definition 6. A node u is said to be valid at the beginning of round i if either
(i−)u.status = T or (i−)u.parent is valid.

The correctness of the whole forest can thus be established through showing
that, first, it is initially correct (Lemma 3) and, second, if it is correct after
round i, then it is correct after round i + 1 (Theorem 2). The latter is difficult
to prove, and it involves a number of intermediate steps that correspond to a
case analysis based on every action a node can perform (sending FLIP messages,
SELECT messages, etc.).

We first prove that a node u that sends a successful FLIP to v in a round, is
valid at the end of that round (lemma 23) because at the end of that round v
is a root. The proof relies on the fact that during a given round, a node cannot
receive a FLIP and send a SELECT or a FLIP (lemma 20).

We then prove some necessary properties on the score variable at each node.
For instance, a node changes its score at most once during a round (Lemma 25
and 26). Also, the set of all scores are a permutation of the node identifiers after
each round (Lemma 27).

Then we prove that a node that sends a successful SELECT in a round i, is
valid at the end of that round (Lemma 36). This part is the most technical and
is the one that proves that chains of selection can not create cycles thanks to
the property that score variables remain a permutation of all nodes IDs.

Finally, we prove that all roots at the beginning of a round are still valid at the
end of the round (lemma 37). Therefore, if all nodes are valid at the beginning
of round, then they are also valid at the end of the round (theorem 2). Since
they are initially valid (Lemma 3), we conclude by induction on the number of
rounds.

290 M. Barjon et al.

Fig. 3. Number of roots per connected components, assuming 10 rounds per second

5 Simulation on Real World Traces (Infocomm 2006)

We verified the applicability of our algorithm to real world situations. The al-
gorithm was implemented in the JBotSim simulator [10] and tested upon the
Infocomm06 dataset [18]. This dataset is a record of the possible interactions
between people during the Infocomm’06 conference. The resulting graph has the
following characteristics: the number of nodes is 78 and the average node degree
is 1.3. It should also be noted that an edge can appear at any time but the fact
that it is still present is thereafter only tested every 120 seconds; this means
that the presence time of an edge is a multiple of 120 seconds. We assumed
that 10 rounds can be performed per seconds (Figure 3), which seems a reason-
able assumption. The results show the average number of trees per connected
component, averaged over 100 runs.

These results show that the number of trees per connected component, av-
eraged over time, is very close to 1 (about 1.027). Furthermore, the algorithm
achieves an optimal configuration of a single spanning tree per connected compo-
nent about 47% of the time, which is encouraging. These results also illustrate,
incidentally, that the algorithm works correctly in such a scenario.

Maintaining a Spanning Forest in Highly Dynamic Networks 291

Acknowledgment. This work was partially supported by ANR projects DISPLEX-

ITY and ASTRID-Maturation, as well as DGA scholarship No 2013 60 0074.

References

1. Abbas, S., Mosbah, M., Zemmari, A.: Distributed computation of a spanning tree
in a dynamic graph by mobile agents. In: Proc. of IEEE Int. Conference on Engi-
neering of Intelligent Systems (ICEIS), pp. 1–6 (2006)

2. Aldous, D., Fill, J.: Reversible markov chains and random walks on graphs (2002)
3. Awerbuch, B., Cidon, I., Kutten, S.: Optimal maintenance of a spanning tree. J.

ACM 55(4), 18:1–18:45 (2008)
4. Awerbuch, B., Even, S.: Efficient and reliable broadcast is achievable in an even-

tually connected network. In: Proceedings of the Third Annual ACM Symposium
on Principles of Distributed Computing, pp. 278–281. ACM (1984)

5. Baala, H., Flauzac, O., Gaber, J., Bui, M., El-Ghazawi, T.: A self-stabilizing dis-
tributed algorithm for spanning tree construction in wireless ad hoc networks.
Journal of Parallel and Distributed Computing 63, 97–104 (2003)

6. Bar-Ilan, J., Zernik, D.: Random leaders and random spanning trees. In: Bermond,
J.-C., Raynal, M. (eds.) WDAG 1989. LNCS, vol. 392, pp. 1–12. Springer, Heidel-
berg (1989)

7. Barjon, M., Casteigts, A., Chaumette, S., Johnen, C., Neggaz, Y.M.: Maintain-
ing a spanning forest in highly dynamic networks: The synchronous case. CoRR,
abs/1410.4373 (2014)

8. Bernard, T., Bui, A., Sohier, D.: Universal adaptive self-stabilizing traversal
scheme: Random walk and reloading wave. J. Parallel Distrib. Comput. 73(2),
137–149 (2013)

9. Burman, J., Kutten, S.: Time optimal asynchronous self-stabilizing spanning tree.
In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 92–107. Springer, Heidelberg
(2007)

10. Casteigts, A.: The JBotSim library. CoRR, abs/1001.1435 (2013), See also the
project website at http://jbotsim.sourceforge.net

11. Casteigts, A., Chaumette, S., Guinand, F., Pigné, Y.: Distributed maintenance of
anytime available spanning trees in dynamic networks. In: Cichoń, J., Gȩbala, M.,
Klonowski, M. (eds.) ADHOC-NOW 2013. LNCS, vol. 7960, pp. 99–110. Springer,
Heidelberg (2013)

12. Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Shortest, fastest, and foremost
broadcast in dynamic networks. CoRR, abs/1210.3277 (2014)

13. Ferreira, A.: On models and algorithms for dynamic communication networks: The
case for evolving graphs. In: Proc. ALGOTEL (2002)

14. Israeli, A., Jalfon, M.: Token management schemes and random walks yield self-
stabilizing mutual exclusion. In: Proceedings of the Ninth Annual ACM symposium
on Principles of Distributed Computing, pp. 119–131. ACM (1990)

15. Kravchik, A., Kutten, S.: Time optimal synchronous self stabilizing spanning tree.
In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 91–105. Springer, Heidelberg
(2013)

http://jbotsim.sourceforge.net

292 M. Barjon et al.

16. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks.
In: Proceedings of the 42nd ACM symposium on Theory of computing (STOC),
pp. 513–522. ACM (2010)

17. Litovsky, I., Metivier, Y., Sopena, E.: Graph relabelling systems and distributed
algorithms. In: Handbook of Graph Grammars and Computing by Graph Trans-
formation. Citeseer (2001)

18. Scott, J., Gass, R., Crowcroft, J., Hui, P., Diot, C., Chaintreau, A.: Crawdad trace
cambridge/haggle/imote/infocom (January 31, 2006),
http://crawdad.cs.dartmouth.edu/cambridge/haggle/imote/infocom

http://crawdad.cs.dartmouth.edu/cambridge/haggle/imote/infocom

A Communication-Efficient Self-stabilizing

Algorithm for Breadth-First Search Trees

Ajoy K. Datta1, Lawrence L. Larmore1, and Toshimitsu Masuzawa2

1 Department of Computer Science, University of Nevada, Las Vegas, USA
{ajoy.datta,lawrence.larmore}@unlv.edu

2 Graduate School of Information Science and Technology, Osaka University, Japan
masuzawa@ist.osaka-u.ac.jp

Abstract. A self-stabilizing algorithm converges to its designated be-
havior from an arbitrary initial configuration. It is standard to assume
that each process maintains communication with all its neighbors. We
consider the problem of self-stabilizing construction of a breadth first
search (BFS) tree in a connected network of processes, and consider al-
gorithms which are not given the size of the network, nor even an upper
bound on that size. It is known that an algorithm that constructs a BFS
tree must allow communication across every edge, but not necessarily in
both directions. If m is the number of undirected edges, and hence the
number of directed edges is 2m, then every self-stabilizing BFS tree al-
gorithm must allow perpetual communication across at least m directed
edges. We present an algorithm with reduced communication for the BFS
tree problem in a network with unique identifiers and a designated root.
In this algorithm, communication across all channels is permitted during
a finite prefix of a computation, but there is a reduced set of directed
edges across which communication is allowed forever. After a finite pre-
fix, the algorithm uses only m+n−1 directed edges for communication,
where n is the number of processes in the network and m is the number
of edges.

1 Introduction

A self-stabilizing distributed system [8] can eventually recover its intended be-
havior without external intervention even when started from an arbitrary con-
figuration (or global state). Thus, a self-stabilizing distributed system attains
high tolerance to transient faults and high adaptability to dynamic topology
changes of networks. Self-stabilization is usually implemented by combining a
transient-fault detection mechanism and a fault correction mechanism. The for-
mer guarantees that an alarm is raised at a process if the distributed system is
at an illegitimate configuration. The latter is initiated by the alarmed process
to bring the system to a legitimate configuration.

The fault correction mechanism can cost dearly in time and/or communication,
since it must make the distributed system recover from any possible configuration.

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 293–306, 2014.
c© Springer International Publishing Switzerland 2014

294 A.K. Datta, L.L. Larmore and T. Masuzawa

Thus, the prime concern in efficiency of self-stabilization considered so far is ef-
ficiency of the fault correction mechanism, for example, the maximum time (sta-
bilization time) required to recover legitimacy from any configuration, and the
maximum number of bits exchanged until the system reaches a legitimate config-
uration from any configuration.

The cost of the transient-fault detection mechanism is another crucial differ-
ence in cost between self-stabilizing protocols and non-self-stabilizing classical
protocols, since the latter (starting from predetermined initial configurations)
need no transient-fault detection. In a self-stabilizing protocol, the transient-
fault detection mechanism requires each process to keep communicating forever
with some of its neighboring processes to check consistency; otherwise, a process
may initially start and remain forever at a state inconsistent with those of its
neighboring processes, and the protocol cannot recover legitimacy.

Cost of the transient-fault detection mechanism has not caused much concern
so far. Most self-stabilizing protocols proposed up to now require every process to
communicate with all of its neighboring processes repeatedly and forever to check
consistency among them. This leads to a high communication load in networks
and makes self-stabilizing protocols unacceptable in some real situations.

It is worth noting that efficiency of transient-fault detection mechanism is
one of the most important concerns of self-stabilization. In self-stabilizing distri-
buted systems, the transient-fault detection mechanism operates almost all the
time, but the fault correction mechanism operates only when necessary. Thus,
efficiency of the transient-fault detection mechanism normally dominates the
efficiency of self-stabilizing distributed systems.

Our Contribution. In this paper, we present a silent and self-stabilizing commu-
nication-efficient algorithm, ROOT-UID, for constructing a breadth-first search
(BFS) tree in a connected networkG with the UID property, i.e., where processes
have unique IDs, and where there is a designated root process, Root . Throughout
this work, we let n be the number of processes in our network, andm the number
of edges. ROOT-UID is ♦-(m + n− 1)-communication-efficient, meaning that,
eventually, communication is needed across only m + n − 1 of the 2m directed
edges of the network. More specifically, there is 2-way communication forever
across each of the BFS tree edges, but communication in only one direction
across each cross edge. ROOT-UID uses the identifiers to decide which direction
is used: if {x, y} is a cross edge (i.e., an edge which does not connect a process
with its parent) and x.id > y.id then, eventually, x can read the variables of y,
but y cannot read the variables of x.

We introduce two techniques designed to cope with the peculiar problems
of communication efficient computation. We introduce the three color control
scheme, which is used to “wake up” processes when necessary, and “put them
back to sleep” when their job is done. This scheme is important because dur-
ing some finite prefix of a computation, processes may need to read all their
neighbors, but after that prefix, only a subset of neighbors.

We also introduce the concept of “net polarity” by which ROOT-UID detects
whether the putative BFS tree contains all processes of the network. Suppose,

A Communication-Efficient Self-stabilizing Algorithm 295

for example, that, at the initial configuration (which is arbitrary) there is a false
BFS tree, a subgraph T ′ rooted at Root , which locally looks exactly like a BFS
tree, but does not contain all processes. Yet because it “looks good” locally,
all processes of T ′ “think” that a final configuration has been reached, and are
resting. In order to restart the BFS tree construction phase of the algorithm,
some process of T ′ must become aware that T ′ does not contain all processes.
We further suppose that the ID of every process in T ′ is smaller than the ID of
any of its neighbors not in T ′, which implies that, since all processes of T ′ are
resting, none of them can read any neighbor not in T ′. The problem is, how can
the resulting deadlock be broken? That is, how can the processes of T ′ detect
that T ′ does not contain all processes in the network?

Related Work. Anguilera et al. [1] introduce the concept of communication effi-
ciency in implementation of a failure detector Ω1 in partially synchronous sys-
tems. Following their work, there was further investigation of the possibility of
communication efficient implementations of failure detector Ω (e.g., [2,3,4,11]).
The aim of communication-efficiency is to reduce the number of indefinitely com-
municating process pairs [1,2,3,11], and to reduce the number of processes that
broadcast indefinitely [4].

Dolev and Schiller [9] introduce the communication adaptive property of self-
stabilizing protocols. A self-stabilizing protocol is communication adaptive if the
communication load of the transient-fault detection mechanism is low, while that
of the fault correction mechanism is high. They present a communication adap-
tive self-stabilizing protocol for group membership service. Its communication
complexity per asynchronous cycle is O(nm logN) bits before convergence to
a legitimate configuration, and reduces to O(n2 logN) bits after convergence,
where n and m are the numbers of processes and links respectively, and N is an
upper bound on the number of processes.

Delporte-Gallet et al. [6] consider self-stabilizing leader election that can tol-
erate process crashes as well as transient faults. They present an algorithm in
the fully-synchronous system that uses only n − 1 unidirectional links to carry
messages repeatedly and forever.

Devismes et al.[7] introduce communication efficiency with a local criterion.
They consider, as communication-efficiency, the number of neighbors that each
process communicates with forever as well as the total number of communicat-
ing process pairs. They investigate communication-efficiency for the maximal
independent set problem and the maximal matching problem.

The most closely related previous work is [13], which considers communication-
efficiency of self-stabilizing spanning-tree construction and gives possibility and
impossibility results. They show that there exists a self-stabilizing communica-
tion-efficient algorithm for spanning tree construction, where only n− 1 process
pairs maintain communication indefinitely, provided a unique root is designated.
Their algorithm constructs an arbitrary spanning tree, not a BFS tree.

1 Roughly speaking, the failure detector Ω eventually provides all processes with the
identifier of a unique correct process (i.e., a leader).

296 A.K. Datta, L.L. Larmore and T. Masuzawa

In the same paper, Masuzawa et al.give an important lower bound. If there is
no designated root process, even if the UID property holds, any communication
efficient self-stabilizing algorithm for spanning tree construction must use every
edge in one or the other direction, yielding a lower bound of m on the communi-
cation efficiency of spanning tree construction when there is no designated root,
where m is the number of edges in the network.

Takimoto et al. [14] consider communication-efficiency in wireless networks
where a communication primitive is a local broadcast that allows a process to
send a message to all of its neighboring processes. They aim to reduce the number
of processes that keep broadcasting forever. The results of [13] and [14] are also
summarized in [12].

Kutten and Zinenko [10] investigate the possibility of self-stabilizing protocols
that are communication-efficient, both during and after convergence to legiti-
macy. They use randomness to achieve communication efficiency, and present
communication efficient self-stabilizing protocols for spanning tree construction,
distributed reset, and unison.

Outline. In Section 2, we define our model, and describe some of the common
features of our algorithms. In Section 3, we present our algorithm ROOT-UID,
a communication-efficient algorithm for constructing a BFS tree in a connected
network with the UID property, given that the network has a distinguished root
process. In 3.4 we explain the three color control scheme, which is used during
error recovery. In Section 3.6, we explain the need for net polarity variables,
which we use to ensure that each edge is used for communication in at least one
direction. Section 4 concludes the paper.

2 Preliminaries

2.1 Self-stabilization

We use the composite atomicity shared memory model of computation [8]. The
program of each process consists of a finite set of actions of the following form:
< label > < guard > −→ < statement >. The guard of an action in the
program of a process x is a Boolean expression involving the variables of x and
its neighbors. The statement of an action of x updates one or more variables of x.
An action can be executed only if it is enabled , i.e., its guard evaluates to true.
A process is said to be enabled if at least one of its actions is enabled. We use the
distributed daemon. If one or more processes are enabled, the daemon selects at
least one of these enabled processes to execute an action. We also assume that
daemon is unfair , i.e., it selects an arbitrary non-empty set of enabled processes
at a step, if there is at least one. Thus, the daemon need never select a given
enabled process unless it becomes the only enabled process. We measure time
complexity in rounds elapsed before the first legitimate configuration. A round
is defined to be a minimal computation sequence during which every process
initially enabled is selected or becomes disabled by the end of the round [8].

A Communication-Efficient Self-stabilizing Algorithm 297

Self-Stabilization. We say that an algorithm A for a problem IP is self-stabilizing
if there is a given class of configurations of A, which we call the legitimate config-
urations of A, such that the following conditions hold: (i) Closure: If a compu-
tation of A starts in a legitimate configuration, all subsequent configurations of
that computation are legitimate. (ii) Convergence: Starting from an arbitrary
configuration, the configuration of any computation of A contains a legitimate
configuration. (iii) Correctness: If configuration is legitimate, the output con-
ditions of IP are satisfied. Note that Closure and Convergence together imply
that every computation is eventually legitimate. We say that a configuration of
a distributed algorithm A is final if, at that configuration, no process is enabled
to execute any action of A. We say that a self-stabilizing distributed algorithm
A is silent if every computation of A contains a legitimate final configuration.

2.2 Communication Efficiency

Informally, an algorithm is communication efficient [7,13] if, eventually, not all
links are used for communication between processes. We say that a computation
of A is r-communication-efficient if the number of directed edges of the network
used by the computation does not exceed r. That is, for every process x there is
a set R(x) ⊆ N(x), where N(x) is the set of neighbors of x, such that x reads
only its own variables and those of members of R(x) during the computation,
where

∑
|R(x)| ≤ r. We say that an algorithm A is ♦-r-communication-efficient,

or eventually r-communication-efficient, if every computation of A has a suffix
which is r-communication-efficient.

In an implementation of a distributed algorithm, not only must a process
which executes an action have evaluated the guard of that action to true, but
processes which do not execute must evaluate guards of all actions to false.
More specifically, at any particular step, if correctness of A depends on a process
x not executing a particular action, x must evaluate the guard of that action
to be false. If the value of that guard cannot be computed without using the
values of a neighboring process y, then x must read y at that step. This fact
imposes an interesting condition on a communication efficient algorithm. In any
computation, except for a finite prefix, every process must evaluate every guard
using only its own variables and those of R(x), rather than the variables of all
neighbors.

3 BFS Tree Computation with Distinguished
Root and UID

In this section, we give a distributed algorithm, ROOT-UID, which constructs a
BFS tree in a connected network G with the UID property and a distinguished
process. ROOT-UID is silent and self-stabilizing under the unfair daemon, con-
verges in O(n) rounds, and is ♦-(m+n−1)-communication efficient. Eventually,
each tree edge is used in both directions, but each cross edge is used in just
one direction. More specifically, if {x, y} is a cross edge, and x.id < y.id , then
x ∈ R(y) and y /∈ R(x), i.e., eventually, y reads x, but x does not read y.

298 A.K. Datta, L.L. Larmore and T. Masuzawa

3.1 Simple BFS Construction

ROOT-UID is a communication efficient implementations of the algorithm
SIMPLE-TREE given below, a silent self-stabilizing BFS tree construction algo-
rithm for any connected network with a distinguished root, which has only two
variables, level and parent . We assume that Root .levl = 0 and Root .parent = ⊥
are fixed. SIMPLE-TREE is not communication efficient; each process reads all
of its neighbors at every step.

Figure 3.1: Code of SIMPLE-TREE for process x �= Root .

Function: Level(x) = 1 + min {y.level : y ∈ N(x)}
Actions:

3.1.1. x.level �= Level(x) −→ x.level ← Level(x)
3.1.2. (x.level �= 1 + x.parent .level) ∧ (y ∈ N(x)) ∧ (1 + y.level = x.level) −→ x.parent ← y

Remark 1. On a connected network G with a distinguished process Root ,
SIMPLE-TREE is silent and self-stabilizing, and converges in O(d) rounds,
where d is the diameter of G.

Proof Sketch. After t rounds, x.level = ||x,Root || if ||x,Root || ≤ t, and within
one more round, x.parent will be correct. ��

3.2 Variables and Functions of ROOT-UID

In ROOT-UID, each process x has the following variables.
1. x.parent ∈ N(x) ∪ {⊥}.
2. x.level , non-negative integer, the level of x, which is eventually equal to the

distance from x to the root of the BFS tree.

3. x.color ∈ {0, 1, 2}, the color of x, which is used in the three-color control
scheme, which we describe in detail in Section 3.4. If x.color = 0, then x is
resting , while x is alert if x.color ∈ {1, 2}.

4. x.polarity [y] ∈ {−1, 1}, the polarity of the directed edge (x, y), for each
y ∈ N(x). We say that y is a restricted neighbor of x is x.polarity [y] = −1,
otherwise y is an unrestricted neighbor.

5. x.is child [y] for y ∈ N(x), a Boolean array, where x.is child [y] means that
y is a child of x.
Both x.polarity [] and x.is child [] require O(δx) space, where δx is the degree
of x.

6. x.loc net polarity , integer, which can be positive, negative, or zero. Eventu-
ally, the value of this variable is

∑
y∈N(x) x.polarity [y].

7. x.net polarity , integer. Eventually, x.net polarity =
∑

y∈Tx
y.loc net polarity

for all x, where Tx is the subtree of T rooted at x, and Root .net polarity = 0,
We now list the functions of ROOT-UID, each of which (except Root) is

defined for one process x, or for two processes x and y ∈ N(x). Some functions
have names which are capitalized versions of variable names. In each of those
cases, the function returns the corrected value of the corresponding variable.

A Communication-Efficient Self-stabilizing Algorithm 299

8. Root , a designated process. Let Root .parent = ⊥ be fixed, and Root .level = 0
be fixed.

9. Is Child (x, y) ≡ (y.parent = x) ∧ (y.level = 1 + x.level), Boolean, meaning
that y is a child of x.

10. Chldrn (x) = {y ∈ N(x) : x.is child [y]}, the set of children of x.

11. Family(x) = {y ∈ N(x) : x.is child [y] ∨ x.parent = y}
12. False Root(x)≡ (x �= Root)∧((x.parent =⊥)∨(x.level �= 1 + x.parent .level)),

Boolean.

13. Is Root (x) ≡ (x = Root) ∨ False Root(x), Boolean, namely x is a root of
the forest T . At any step in the algorithm, T is the directed graph whose
edges are all (x, y) such that Is Child (y, x). Thus T has out-degree at most
1 at each process, and cannot contain a cycle, since the variable x.level is
decreasing along any directed path, and thus T is a forest.

14. Level(x) =

{
0 if Is Root (x)
1 + min {y.level : y ∈ N(x)} otherwise

15. Polarity(x, y) =

{
1 if y.id < x.id

−1 if y.id > x.id

16. Loc Net Polarity(x) =
∑

y∈N(x) x.polarity [y], integer.

17. Net Polarity(x) = x.loc net polarity +
∑

y∈Chldrn (x) y.net polarity , integer.

18. Nbr Ok (x, y) =
(
x.polarity [y] = Polarity(x, y)

)
∧
(
x.is child [y] = Is Child (x, y)

)
∧(

|x.level − y.level | ≤ 1

)
, Boolean, meaning that y appears, to x, to have values

consistent with legitimacy.

19. Unrestricted Nbrs (x) = Family(x) ∪ {y ∈ N(x) : x.polarity [y] = 1}, the set
of neighbors that can be read by x when x is resting .

20. Visible Nbrs (x) =

{
Unrestricted Nbrs (x) if x.color = 0
N(x) otherwise

the neighbors of x that x can read, given its current state.
21. Visible Nbrs Ok (x) ≡ (∀y ∈ Visible Nbrs (x))Nbr Ok (x, y), Boolean.

22. Ok (x) ≡ Visible Nbrs Ok (x) ∧ ¬False Root(x) ∧ (x = Root ⇒ x.net polarity = 0)

Boolean.
The clause that Root .net polarity = 0 is explained in Section 3.6.

23. Color (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 if Ok (x) ∧

(
(x = Root) ∨ (x.parent .color = 0)

)
∧

∀y ∈ Chldrn (x)(y.color �= 1)
1 if ¬Ok (x) ∨ ∃y ∈ Chldrn (x)(y.color = 1)
2 if Ok (x) ∧ (x.parent .color �= 0) ∧ ∀y ∈ Chldrn (x)(y.color �= 1)

Additional notation which is common to the rest of this paper includes
– Tx, the subtree of T rooted at x.

– δx = |N(x)|, the degree of x.

– Tree edge, an undirected edge of G that connects some process x with
x.parent .

– Cross edge, an undirected edge of G that is not a tree edge.

– Cross(x) = N(x) \ Family(x), the cross neighbors of x.

300 A.K. Datta, L.L. Larmore and T. Masuzawa

3.3 Actions of ROOT-UID

We classify the actions of ROOT-UID as easy or hard. The guard of an easy
action can be evaluated only by examining unrestricted neighbors, while eval-
uation of the guard of a hard action may require examining all neighbors. If
a process x is resting, meaning that x.color = 0, then x cannot be enabled to
execute a hard action, since one of the clauses of the guard of every hard action
is that x.color �= 0, i.e., x is alert.

Figure 3.2: Code of ROOT-UID for one process x and y ∈ N(x).

Easy Actions:
3.2.1. x.color �= Color (x) −→ x.color ← Color (x)
3.2.2. x.loc net polarity �= Loc Net Polarity(x) −→ x.loc net polarity

← Loc Net Polarity(x)
3.2.3. x.net polarity �= Net Polarity(x) −→ x.net polarity ← Net Polarity(x)
Hard Actions:
3.2.4. x.color �= 0 ∧ x.level �= Level(x) −→ x.level ← Level(x)
3.2.5. x.color �= 0 ∧ x.level �= 1 + x.parent .level ∧ −→ x.parent ← y

y ∈ N(x) ∧ 1 + y.level = x.level
3.2.6. x.color �= 0 ∧ y ∈ N(x) ∧ −→ x.polarity [y] ← Polarity(x, y)

x.polarity [y] �= Polarity(x, y)
3.2.7. x.color �= 0 ∧ y ∈ N(x) ∧ −→ x.is child [y] ← Is Child (x, y)

x.is child [y] �= Is Child (x, y)

Figure 3.2 gives the actions of ROOT-UID. We define a configuration of
ROOT-UID to be legitimate if T is a BFS tree, and if the variables x.polarity [y],
x.is child [y], x.loc net polarity , and x.net polarity have the correct values for all
x and y, and if x.color = 0 for all x.

Construction of the BFS tree T is done by Actions 3.2.4 and 3.2.5, both of
which are hard actions. The purpose of the three color control structure is to
ensure that there is enough communication to enable that construction, and also
to ensure that, once that construction is finished, the algorithm is (m+ n− 1)-
communication efficient. Action 3.2.6 is executed at most once for each ordered
pair (x, y), since Polarity (x, y) never changes.

∑
x∈G

∑
y∈N(x) Polarity(x, y) = 0,

since Polarity(x, y) + Polarity (y, x) = 0 for every edge {x, y}. Actions 3.2.2 and
3.2.3 are both easy, and are bottom-up waves which cause Root .net polarity to be
set to

∑
x∈G

∑
y∈N(x) x.polarity [y] which will be zero if all values of x.polarity [y]

are correct. If not, Ok (Root) = false, and the three color control scheme causes
all processes to become alert, ensuring that polarities become correct.

3.4 The Three Color Scheme

We now describe in detail how the three color scheme is used in ROOT-UID.
We define the predicate ˜Enabled Hard(x) to mean that either x is enabled to
execute a hard action, or that x is resting and would be enabled to execute a
hard action if x.color were changed. In order for the three color structure scheme
to work, Property 1, given below, must hold.

A Communication-Efficient Self-stabilizing Algorithm 301

Property 1. If the current configuration is illegitimate and legitimacy cannot
be achieved by easy actions alone, then there exist processes x, y such that

¬Ok(x) ∧ ˜Enabled Hard(y) either holds or will hold at some later step, and x, y
lie in the same component of T .

not locked
not Root

locked Root Root

not Ok

not locked

(g) (h)

(a) (b) (c) (d)

(e) (f)

color = 0 (resting)

color = 2 (alert)

color = 1 (alert)

locked

Figure 3.3: Some examples of color actions. In each case, the value of x.color changes
to match Color (x).

We say that a process x is locked if x.color = 1, and if either ¬Ok (x) or
y.color = 1 for some y ∈ Chldrn (x). Note that a locked process is not enabled
to change its color. Suppose all processes have color 0, and Ok (x) = false for
some x. Then x executes Action 3.2.1; x.color ← 1, and x becomes locked. In a
convergecast wave, every ancestor of x, including Root , changes color to 1 and
becomes locked. A broadcast wave, initiated by Root and by every other process
of color 1, changes all processes to color 2 except for those which already have
color 1 or 2.

The entire path between x and Root will remain in color 1, and locked, and
all processes will remain alert as long as ¬Ok (x) holds. When Ok holds for all
processes, all color 1 processes except Root will change color to 2 in a bottom-up
wave, after which Root will change color to 0. In a broadcast wave, all processes
will then change color to 0. After possibly more executions of easy actions,
legitimacy will be achieved.

Figure 3.3 shows the effect of Action 3.2.1 in various situations. 3.3(a) shows
a convergecast color 1 wave initiated by a process x whose current color is either
0 or 2, where Ok (x) = false. Then x.color ← 1, starting the wave. The wave
is propagated upward, as shown in 3.3(b) and 3.3(c). Figure 3.3(d) shows how a
process in color 1 initiates a broadcast wave which alerts all processes below it.
In this figure, a resting (color 0) process has a parent of color 1, and becomes
alert by changing color to 2. Propagation of that wave downward is illustrated
in 3.3(e).

The next three parts of Figure 3.3 deal with restoring the resting state.
Figure 3.3(f) illustrates locked processes. Figure 3.3(g) shows propagation of
the convergecast wave which eliminates color 1. If a color 1 process is unlocked,

302 A.K. Datta, L.L. Larmore and T. Masuzawa

indicating that its original purpose has been fulfilled, it changes color to 2, unless
it is Root , in which case it changes color to 0. Once Root .color = 0, a broadcast
wave will change the color of all processes to 0. (Unless, of course, there is a new
instance of a process where Ok does not hold.) The propagation of that wave is
illustrated in Figure 3.3(h).

3.5 Example Computation Showing the Three Color Scheme

In Figure 3.4, each ID is the letter shown inside the circle representing the
process. (The ID of Root is not relevant.) Parent pointers are shown as arrows,
and cross edges as dashed lines. The figure shows an example computation of
ROOT-UID on a network where n = 7 and m = 7.

1

2

02

1

3

21

2

02

1

3

21

2

02

1

3

21

2

02

1

3

2

A

C D

E F

Root

B

A

C D

E F

Root

B

A

C D

E F

Root

B

A

C D

E F

Root

B

1

2

02

1

3

4

1

2

02

1

3

4

1

2

02

1

3

4

A

C D

E F

Root

B

A

C D

E F

Root

B

A

C D

E F

Root

B

A

C D

E F

Root

B

(a) (b) (c) (d)

(f) (g) (h)(e)

(l)(k)(j)(i)

not Ok

Enabled_Hard

locked

1

2

02

1

3

4

color = 0 (resting)

color = 2 (alert)

color = 1 (alert)

1

2

02

1

4

3

A

C D

E F

Root

B

A

C D

E F

Root

B

1

2

02

1

3

4

1

2

02

1

2

4

A

C D

E F

Root

B

A

C D

E F

Root

B

1

2

02

1

3

2

Figure 3.4: Example Computation of ROOT-UID. The links of the spanning tree T
are shown as arrows, while other edges of G are shown as dashed lines. Values of level
are shown in red. Initially, T is not a BFS tree. Figure 3.4 (l) shows a configuration in
which T is correct and all processes are resting .

In the initial configuration, shown in Figure 3.4(a), all processes are resting .
T is not correct, since C.parent should be D. The solid outer circle around C

indicates that ˜Enabled Hard(C) = true, while the dashed circle indicates that

A Communication-Efficient Self-stabilizing Algorithm 303

Ok (D) = false. It may seem strange that action by C is required to “fix” the
configuration, but that D, which is far from C in the tree, is the only process
aware of this need. This situation is not unusual. In this case, since C < D, D
can see that C.level = 3, which is inconsistent with its own level, which is 1. On
the other hand, C does not see D, and hence does not notice the inconsistency.

In 3.4(b), D initiates a color 1 convergecast wave, which reaches Root in Figure
3.4(c). The resulting color 2 broadcast wave, which is initiated by both D and
Root , eventually reaches all processes. As soon as the wave reaches C, in 3.4(f),
that process executes a hard action, changing C.parent to D and C.level to 2.
The configuration is still not legitimate, since now E.level = 4. In this case, there
is a circle of each color around E, since Ok (E) = false, and E is also enabled
to execute a hard action, which it does in the next step, changing its level to 3.
Meanwhile, since D is no longer locked in Figure 3.4(g), it changes its color to
2. If there were more color 1 processes between D and Root , their color would
change from 1 to 2 in a bottom-up wave. Root changes color from 1 directly to
0 at 3.4(i), initiating a broadcast wave that causes all processes to change color
to 0, as shown in Figure 3.4(l).

3.6 The Purpose of Polarity

The purpose of the variables
{
x.polarity [y]

}
is to tell x whether y is a restricted

neighbor, information that x must first obtain by reading y. But that presents
a problem: what if both x and y are initialized in such a way that each believes
the other to be a restricted neighbor? In that case, one of them has the wrong
information, but neither knows it.

We solve thatproblembyusing thenet polarity ofT ,
∑

x∈T

∑
y∈N(x) x.polarity [y].

If all values of the polarity variables are correct, this net polarity will be zero, since
each edge contributes 1 at one endand−1 at the other.Thenetpolarity is computed
bottom up, and the total value is stored at Root .net polarity . If that value is not
zero, there is an error, and Root will send a broadcast wave, alerting all processes.
After sufficiently many actions, both easy and hard, T will be correct.

Figure 3.5 illustrates an example which shows the necessity of the net polarity
variables. Suppose the variables loc net polarity and net polarity as well as Ac-
tions 3.2.2 and 3.2.3 are removed from the definition of ROOT-UID, but all other
variables and actions remain. In this case, there is a configuration, illustrated in
Figure 3.5(a) which is both illegitimate and final, i.e., a deadlock.

In Figure 3.5, each ID is the letter shown inside the circle representing the
process, and E = Root . Parent pointers are shown as arrows, and cross edges as
dashed lines. The “+” and “−” signs at the ends of each edge indicate polarity;
if y ∈ N(x), a plus sign indicates that x.polarity [y] = 1, meaning that x can read
y when x is resting , and a minus sign indicates that x.polarity [y] = −1, meaning
that xmust be alert in order to read y. Note that x.polarity [y] = 1 ⇔ x.id > y.id
in a legitimate configuration. In 3.5(a), there are two places where the legitimacy
fails: D.polarity [B] = −1 when it should be 1, and B.parent = G when it should
be D. Both processes are enclosed with solid circles, indicating that they would

304 A.K. Datta, L.L. Larmore and T. Masuzawa

1

2

−1

1 0

2

0

−1

−2

1

0

−2

−2

2

−2

−2 −2−2

−1

−2

2 0

−2

2 0

−2

−2 −2

B

G

D

CE

0

1

1

2

3 B

G

D

CE

0

1

1

2

3 B

G

D

CE

0

1

1

2

2

(a)
(b) (c)

Root Root Root

F A

1 2

F A

1 2

F A

1 2

Figure 3.5: Example showing the necessity of net polarity variables. E = Root . Tree
edges are black arrows, cross edges are dashed, and levels are shown as numerals. A
“+” or “−” near x on the edge between x and y indicates that x.polarity [y] is 1 or −1,
respectively.

be enabled to execute a hard action if they became alert. B would be enabled to
execute Action 3.2.5 if it were alert, while D would be enabled to execute Action
3.2.6 if it were alert. Neither action is enabled, since both processes are resting ,
i.e.,B.color = D.color = 0; in fact no process is enabled. The configuration is a
deadlock.

In Figure 3.5(b), we illustrate the same configuration, but with the values of
loc net polarity and net polarity filled in. The value of x.loc net polarity is shown
as a numeral enclosed in a solid circle, while the value of x.net polarity is shown
as a numeral enclosed in a box. Note that E.net polarity = −2, which means
that Ok (E) = false. since Net Polarity(Root) must be zero in a legitimate
configuration. (Conversely, if Net Polarity(Root) were zero, it would indicate
legitimacy, since if both end processes of an edge have positive polarity, that
error would be detected.) The remaining steps of the computation are not shown,
other than the final configuration at the end. E changes color to 1, triggering a
broadcast wave in which all other processes change color to 2, which means they
are alert and able to execute the needed actions, after which the configuration
is legitimate, as shown in Figure 3.5(c). We list the sequence of changes below.

(a)

(d)

(g)

B.parent ← D

D.loc net polarity ← 0

C.net polarity ← 1

(b)

(e)

(h)

B.level ← 2

D.net polarity ← −2

E.net polarity ← 0

(c)

(f)

D.polarity [B] ← 1

G.net polarity ← 2

3.7 Proof Sketches for ROOT-UID

Lemma 1. The number of steps of any computation of ROOT-UID at which
any hard action is executed is finite.

Proof Sketch. A process can execute Action 3.2.6 at most once in a computation.
We prove by induction on ||x,Root || that a process x can only execute Action

A Communication-Efficient Self-stabilizing Algorithm 305

3.2.4 finitely many times; as a corollary, we have that x can only execute Action
3.2.5 finitely many times. ��

Lemma 2. There is no infinite computation of ROOT-UID during which no
hard action is executed.

Proof Sketch. Suppose Γ is an infinite computation of ROOT-UID, during which
no process executes a hard action. The shape of T does not change, and since
Action 3.2.6 is not executed, the value of x.polarity [y] for any x and y does
not change. Therefore, no process can execute Action 3.2.2 more than once, and
hence there is a last step at which any process executes 3.2.2. After the last
action of Action 3.2.2, the values of x.loc net polarity do not change, and thus
no process can execute Action 3.2.3 more than once thereafter, hence there is a
last step at which any process executes 3.2.3. After the last action of 3.2.3, the
value of Ok (x) does not change for any x. Thus, there is an infinite computation
during which Action 3.2.1 is executed infinitely many times. Finally, we obtain
a contradiction by defining a non-negative integral potential which decreases at
any step at which Action 3.2.1 is executed, but no other action is executed. Since
the potential cannot be less than zero, the computation is finite. ��

Lemma 3. Any configuration of ROOT-UID that is final is also legitimate.

Proof Sketch. Let γ be an illegitimate configuration of ROOT-UID. We break
into cases, and show that in each case, there is some process that is enabled to
execute an action, and thus γ is not final. ��

Theorem 1. ROOT-UID is ♦-(m+n−1)-communication efficient and is silent
and self-stabilizing under the unfair daemon, reaches a legitimate configuration
within O(n) rounds, and uses O(log n+ δx) space per process.

Proof Sketch. The communication efficiency of ROOT-UID follows from Lemmas
1, 2, and 3.

In the initial configuration, the longest chain in T is no longer than n− 1. If
the configuration is not final, every process will be alerted within O(n) rounds.
Thereafter, convergence will occur within O(d) rounds in the same manner as
in SIMPLE-TREE. Thus, ROOT-UID reaches a legitimate configuration within
O(n) rounds.

The value of x.level takes O(log d) space, and x must retain O(1) memory for
each neighbor y to hold the value of x.polarity [y]. The value of x.net polarity is an
integer whose absolute value cannot exceedm, and no other variable requires more
space. Thus, the per process space complexity of ROOT-UID is O(log n+δx). ��

4 Conclusion

We have given a self-stabilizing and silent algorithm, ROOT-UID, for BFS con-
struction in a network with the UID property which has a designated root pro-
cess, which is ♦-(m + n − 1)-communication efficient, and which takes O(n)
rounds to reach legitimacy. The space complexity of ROOT-UID is O(logn+δx)
for each process x.

306 A.K. Datta, L.L. Larmore and T. Masuzawa

Acknowledgement. This work was supported in part by JSPS KAKENHI,
Grant Numbers (B)26280022 and 24650012.

References

1. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Stable leader elec-
tion. In: Welch, J. (ed.) DISC 2001. LNCS, vol. 2180, pp. 108–122. Springer, Hei-
delberg (2001)

2. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On implementing
omega with weak reliability and synchrony assumptions. In: Proceedings of the 22rd
ACM Symposium on Principles of Distributed Computing, pp. 306–314 (2003)

3. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Communication-
efficient leader election and consensus with limited link synchrony. In: Proceedings
of the 23rd ACM Symposium on Principles of Distributed Computing, pp. 328–337
(2004)

4. Biely, M., Widder, J.: Optimal message-driven implementations of omega with
mute processes. ACM Transactions on Autonomous and Adaptive Systems 4(1),
4:1–4:22 (2009)

5. Datta, A.K., Larmore, L.L., Vemula, P.: Self-stabilizing leader election in optimal
space under an arbitrary scheduler. Theoretical Computer Science 412(40), 5541–
5561 (2011)

6. Delporte-Gallet, C., Devismes, S., Fauconnier, H.: Robust stabilizing leader elec-
tion. In: Masuzawa, T., Tixeuil, S. (eds.) SSS 2007. LNCS, vol. 4838, pp. 219–233.
Springer, Heidelberg (2007)

7. Devismes, S., Masuzawa, T., Tixeuil, S.: Communication efficiency in self-
stabilizing silent protocols. In: Proceedings of the 29th International Conference
on Distributed Computing Systems, pp. 474–481 (2009)

8. Dolev, S.: Self-stabilization. MIT Press (2000)
9. Dolev, S., Schiller, E.: Communication adaptive self-stabilizing group membership

service. In: IEEE Transactions on Parallel and Distributed Systems, pp. 709–720
(2003)

10. Kutten, S., Zinenko, D.: Low communication self-stabilization through randomiza-
tion. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp.
465–479. Springer, Heidelberg (2010)

11. Larrea, M., Fernandez, A., Arevalo, S.: Optimal implementation of the weakest
failure detector for solving consensus. In: Proceedings of the 19th IEEE Symposium
on Reliable Distributed Systems, pp. 52–59 (2000)

12. Masuzawa, T.: Silence is golden: Self-stabilizing protocols communication-efficient
after convergence. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS,
vol. 6976, pp. 1–3. Springer, Heidelberg (2011)

13. Masuzawa, T., Izumi, T., Katayama, Y., Wada, K.: Brief Announcement:
communication-efficient self-stabilizing Protocols for spanning-tree construction.
In: Abdelzaher, T., Raynal, M., Santoro, N. (eds.) OPODIS 2009. LNCS, vol. 5923,
pp. 219–224. Springer, Heidelberg (2009)

14. Takimoto, T., Ooshita, F., Kakugawa, H., Masuzawa, T.: Communication-efficient
self-stabilization in wireless networks. In: Richa, A.W., Scheideler, C. (eds.) SSS
2012. LNCS, vol. 7596, pp. 1–15. Springer, Heidelberg (2012)

Self-stabilizing Algorithms for Connected Vertex

Cover and Clique Decomposition Problems

François Delbot1, Christian Laforest2, and Stephane Rovedakis3,�

1 Université Paris Ouest Nanterre / LIP6, CNRS UMR 7606. 4 Place Jussieu,
75252 Paris Cedex, France
francois.delbot@lip6.fr

2 Université Blaise Pascal / LIMOS, CNRS UMR 6158, ISIMA. Campus Scientifique
des Cézeaux, 24 Avenue des Landais, 63173 Aubiere Cedex, France

christian.laforest@isima.fr
3 Conservatoire National des Arts et Métiers / CEDRIC, EA 4629. 292 rue

Saint-Martin, F-75141 Paris Cedex 03, France
stephane.rovedakis@cnam.fr

Abstract. In many wireless networks, there is no fixed physical back-
bone nor centralized network management. The nodes of such a network
have to self-organize in order to maintain a virtual backbone used to
route messages. Moreover, any node of the network can be a priori at
the origin of a malicious attack. Thus, in one hand the backbone must
be fault-tolerant and in other hand it can be useful to monitor all net-
work communications to identify an attack as soon as possible. We are
interested in the minimum Connected Vertex Cover problem, a general-
ization of the classical minimum Vertex Cover problem, which allows to
obtain a connected backbone. Recently, Delbot et al. [11] proposed a new
centralized algorithm with a constant approximation ratio of 2 for this
problem. In this paper, we propose a distributed and self-stabilizing ver-
sion of their algorithm with the same approximation guarantee. To the
best knowledge of the authors, it is the first distributed and fault-tolerant
algorithm for this problem. The approach followed to solve the consid-
ered problem is based on the construction of a connected minimal clique
partition. Therefore, we also design the first distributed self-stabilizing
algorithm for this problem, which is of independent interest.

Keywords: Distributed algorithms, Self-stabilization, Connected Ver-
tex Cover, Connected Minimal Clique Partition.

1 Introduction

In many wireless networks, there is no fixed physical backbone nor centralized
network management. In such networks, the nodes need to regularly flood con-
trol messages which leads to the ”broadcast storm problem” [42]. Thus, the

� The author was supported in part by CNAM Project CONDOR.

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 307–322, 2014.
c© Springer International Publishing Switzerland 2014

308 F. Delbot, C. Laforest, and S. Rovedakis

nodes have to self-organize in order to maintain a virtual backbone, used to
route messages in the network. Routing messages are only exchanged inside the
backbone, instead of being broadcasted to the entire network. To this end, the
backbone must be connected. The construction and the maintenance of a vir-
tual backbone is often realized by constructing a Connected Dominating Set. A
Connected Dominating Set (CDS) of a graph G = (V,E) is a set of nodes S ⊆ V
such that G[S] (the graph induced by S in G) is connected and each node in
V −S has at least one neighbor in S. Nodes from S are responsible of routing the
messages in the network, whereas nodes in V − S communicate by exchanging
messages through neighbors in S. In order to minimize the network resources
consumption, the size of the backbone (and thus of the CDS) is minimized. This
problem is NP-hard [19] and has been extensively studied due to its importance
for communications in wireless networks. Many algorithms have been proposed
in a centralized setting (e.g., see [4] for a survey). In addition to message rout-
ing, there is the problem of network security. Indeed, a faulty node infected by
a virus or an unscrupulous user can be at the origin of flooding or a malicious
attack. Thus, it is necessary to monitor all network communications to identify
these situations, as soon as possible, in order to isolate this node. A CDS S will
not support this feature since two nodes in V − S can be neighbors, i.e., V − S
is not always an independent set.

In order to monitor all network communications, we can consider the Vertex
Cover problem. A vertex cover of a graph G = (V,E) is a set of nodes S ⊆ V
such that each edge e = uv is covered by S, i.e., u ∈ S or v ∈ S (or both). A
vertex cover is optimal if it’s size is minimum. This is a classical NP-complete
problem [19] that can be approximated with a ratio of 2. However, if a vertex
cover allows to monitor all network communications, it is not always connected
and cannot be used as a backbone. A Connected Vertex Cover S of G is a
vertex cover of G with the additional property that G[S] (the graph induced
by S in G) is connected. Similarly, an optimal connected vertex cover is one of
minimum size and the associated problem is also NP-complete. Not a lot of work
has been done on this problem (see [18,44]). More recently, Delbot et al. in [11]
proposed another (centralized) 2-approximation algorithm based on connected
clique partitions of G (presented in the following sections).

In practice, it is more convenient to use distributed and fault-tolerant algo-
rithms, instead of centralized algorithms due to the communications cost to obtain
the network topology. Self-stabilization introduced first by Dijkstra in [13, 15] is
one of the most versatile techniques to ensure a distributed system to recover a
correct behaviour. A distributed algorithm is self-stabilizing if after faults and at-
tacks hit the system and place it in some arbitrary global state, the system recov-
ers from this catastrophic situation without external (e.g., human) intervention
in finite time. Many self-stabilizing algorithms have been proposed to solve a lot
of graph optimization problems, e.g., Guellati and Kheddouci [21] give a survey
for several problems related to independence, domination, coloring and matching
problems in graphs. For the minimal CDS problem, Jain and Gupta [27] design
the first self-stabilizing algorithm for this problem. Drabkin et al. [17] gave then

Self-stabilizing Algorithm for Connected Vertex Cover Problem 309

two self-stabilizing approaches for the construction of CDS. The first approach
connects the nodes of a maximal independent set in order to obtain a CDS, while
the second approach uses a dominating set instead of a maximal independent set.
More recently, Kamei et al. [30–32] considered the minimum CDS problem. They
proposed several self-stabilizing algorithms with a constant approximation ratio
and useful properties during algorithms convergence.

However, as explained above a CDS does not meet all the desired properties.
This is why we study the minimum connected vertex cover from a distributed
and self-stabilizing point of view.

Contributions. We consider the minimum Connected Vertex Cover problem in
a distributed system subject to transient faults. In this paper, we propose a dis-
tributed and self-stabilizing version of the algorithm given recently by Delbot
et al. [11] for this problem while guaranteeing the same approximation ratio of
2. To the best of our knowledge, it is the first distributed and fault-tolerant al-
gorithm for this problem. Moreover, our approach is based on the construction
of a Connected Minimal Clique Partition. As discussed in Section 4, this allows
us to attain a higher level of parallelism in comparison with a self-stabilizing
approach which follows the sequential construction given by Savage [44]. Fur-
thermore, we also design the first distributed self-stabilizing algorithm for the
Connected Minimal Clique Partition problem, which is of independent interest.

In the following section, we describe the model assumed in this paper. In
Section 3, we consider first the Connected Minimal Clique Partition problem.
We give a state of the art related to the graph decomposition problem, then we
present our self-stabilizing algorithm for this problem. Section 4 is devoted to the
Connected Vertex Cover problem. We introduce first related works associated
with this problem, then we give the self-stabilizing connected vertex cover algo-
rithm that we propose. The last section concludes the paper and present several
perspectives. Due to space constraints the correctness proofs are not included in
the present paper, but they are available in [12].

2 Model

Notations. We consider a network as an undirected connected graph G = (V,E)
where V is a set of nodes (or processors) and E is the set of bidirectional asyn-
chronous communication links. We state that n is the size of G (|V | = n) and
m is the number of edges (|E| = m). We assume that the graph G = (V,E) is
a simple connected graph. In the network, p and q are neighbors if and only if
a communication link (p,q) exists (i.e., (p,q) ∈ E). Every processor p can dis-
tinguish all its links. To simplify the presentation, we refer to a link (p,q) of
a processor p by the label q. We assume that the labels of p, stored in the set
Neigp, are locally ordered by ≺p. We also assume that Neigp is a constant input
from the system. Diam and Δ are respectively the diameter and the maximum
degree of the network (i.e., the maximal value among the local degrees of the
processors). Each node p ∈ V has a unique identifier in the network, noted IDp.

310 F. Delbot, C. Laforest, and S. Rovedakis

Programs. In our model, protocols are uniform, i.e., each processor executes the
same program. We consider the local shared memory model of computation1. The
program of every processor consists in a set of variables and an ordered finite
set of actions inducing a priority. This priority follows the order of appearance
of the actions into the text of the protocol. A processor can write to its own
variable only, and read its own variables and that of its neighbors. Each action
is constituted as follows: < label > :: < guard > → < statement > . The guard
of an action in the program of p is a boolean expression involving variables of p
and its neighbors. The statement of an action of p updates one or more variables
of p. An action can be executed only if its guard is satisfied. The state of a
processor is defined by the value of its variables. The state of a system is the
product of the states of all processors. We will refer to the state of a processor
and the system as a (local) state and (global) configuration, respectively. We note
C the set of all possible configuration of the system. Let γ ∈ C and A an action
of p (p ∈ V). A is said to be enabled at p in γ if and only if the guard of A is
satisfied by p in γ. Processor p is said to be enabled in γ if and only if at least
one action is enabled at p in γ. When several actions are enabled simultaneously
at a processor p: only the enabled action of highest priority can be activated.

Let a distributed protocol P be a collection of binary transition relations
denoted by)→, on C. A computation of a protocol P is a maximal sequence of
configurations e = (γ0,γ1,...,γi,γi+1,...) such that, ∀i ≥ 0, γi)→ γi+1 (called a
step) if γi+1 exists, else γi is a terminal configuration. Maximality means that
the sequence is either finite (and no action of P is enabled in the terminal
configuration) or infinite. All computations considered here are assumed to be
maximal. E is the set of all possible computations of P .

As we already said, each execution is decomposed into steps. We consider the
composite atomicity model. That is, each step consists of four sequential phases
atomically executed: (i) every processor evaluates its guards, (ii) a daemon (also
called scheduler) selects a non-empty subset of enabled processors, (iii) each
selected processor computes its new state (invisibly to neighbors) by executing
its enabled action of highest priority, and (iv) each selected processor overwrites
its state with the new one. When the four phases are done, the next step begins.

A daemon can be defined in terms of fairness and distributivity. In this paper,
we use the notion of weak fairness: if a processor p is continuously enabled then
p will be eventually chosen by the daemon to execute an action. Concerning the
distributivity, we assume that the daemon is distributed meaning that, at each
step, if one or more processors are enabled, then the daemon chooses at least
one of these processors to execute an action.

We consider that any processor p executed a disabling action in the compu-
tation step γi)→ γi+1 if p was enabled in γi and not enabled in γi+1, but did
not execute any protocol action in γi)→ γi+1. The disabling action represents

1 To execute the proposed algorithms in wireless networks, we can use the fined grained
communication atomicity model [5] with the transformers for shared memory model
protocols to act in message passing systems suggested in [15,16].

Self-stabilizing Algorithm for Connected Vertex Cover Problem 311

the following situation: at least one neighbor of p changes its state in γi)→ γi+1,
and this change effectively made the guard of all actions of p false in γi+1.

To compute the time complexity, we use the definition of (asynchronous)
round. This definition captures the execution rate of the slowest processor in
any computation. Given a computation e (e ∈ E), the first round of e (let us call
it e′) is the minimal prefix of e containing the execution of one action (an action
of the protocol or a disabling action) of every enabled processor from the initial
configuration. Let e′′ be the suffix of e starting from the last configuration of e′.
The second round of e is the first round of e′′, and so on.

3 Connected Minimal Clique Partition Problem

In this section, we consider a first problem whose aim is the partitioning of the
input graph into subgraphs of maximal size in a distributed fashion, while main-
taining a connectivity constraint between some subgraphs. More particularly, the
goal is to decompose an input undirected graph G = (V,E) into a set of cliques
of maximal size such that all cliques of size at least two are connected. The con-
nectivity constraint can be used for communication facilities. In the following,
we define more formally the Connected Minimal Clique Partition problem.

Consider any undirected graph G = (V,E). A clique is a complete subgraph
of G and we call trivial any clique that contains only one node.

Definition 1 (Connected Minimal Clique Partition). A clique partition

of G is a partition of the set V into disjoint cliques C1, . . . , Ck (i.e.,
⋃k

i=1 Ci = V
and if i �= j, Ci ∩Cj = ∅). A clique partition is called minimal if for all i �= j the
graph induced by Ci ∪ Cj is not a clique. A minimal clique partition C1, . . . , Ck

is connected iff for any pair of nodes u, v ∈ C there is a path between u and v
in the graph induced by C, with C the union of the nodes of all the non trivial
cliques of C1, . . . , Ck.

Since we consider that faults can arise in the system, we give in Specification 1
the conditions that a self-stabilizing algorithm solving the Connected Minimal
Clique partition problem have to satisfy.

Specification 1 (Self-stabilizing Connected Minimal Clique Partition)
Let C be the set of all possible configurations of the system. An algorithm ACMCP
solving the problem of constructing a stabilizing connected minimal clique parti-
tion satisfies the following conditions:

1) Algorithm A reaches a set of terminal configurations T ⊆ C in finite time,
and 2) Every configuration γ ∈ T satisfies Definition 1.

3.1 Related Works

The decomposition of an input graph into patterns or partitions has been exten-
sively studied in the literature, and also in the self-stabilizing context. Most of

312 F. Delbot, C. Laforest, and S. Rovedakis

graph partitioning problems are NP-complete. For the graph decomposition into
patterns, Ishii and Kakugawa [26] proposed a self-stabilizing algorithm for the con-
struction of cliques in a connected graph with unique nodes identifier. Each node
has to compute the largest set of cliques of same maximum size it can belong to
in the graph. A set of cliques is constructed in O(n4) computation steps assuming
an unfair central daemon. Moreover, the authors show that there exists no self-
stabilizing algorithm in arbitrary anonymous graphs for this problem. Neggazi et
al. [40] considered the problem of decomposing a graph into a maximal set of dis-
joint triangles. They give the first self-stabilizing algorithm for this problem whose
convergence time isO(n4) steps under an unfair central daemon with unique nodes
identifier. Neggazi et al. [41] studied later the uniform star decomposition prob-
lem, i.e., the goal is to divide the graph into a maximum set of disjoint stars of p
leaf nodes. This is a generalization of the maximum matching problem which is a
NP-complete. The aim is to construct a maximum set of independent edges of the
graph, thus a 1-star decomposition is equivalent to a maximum matching. The au-
thors proposed a self-stabilizing algorithm constructing a maximal p-star decom-
position of the input graph in O(n

p+1) asynchronous rounds and a (exponential)
bounded number of steps under an unfair distributed daemon with unique nodes
identifier.

A well studied problem related with graph decomposition is the maximum
matching problem. Many works address the maximal matching problem which
is polynomial. The first self-stabilizing algorithm for this problem has been pro-
posed by Hsu et al. [24]. The algorithm converges in O(n4) steps under a central
daemon. Hedetniemi et al. [23] showed later that the algorithm proposed by
Hsu et al. has a better convergence time of 2m + n steps under a central dae-
mon. Goddar et al. [20] considered the construction of a maximal matching in
ad-hoc networks and give a solution which stabilizes in n+1 rounds under a syn-
chronous distributed daemon. Manne et al. [37] have shown that there exists no
self-stabilizing algorithm for this problem under a synchronous distributed dae-
mon in arbitrary anonymous networks. So, they proposed an elegant algorithm
which converges in O(n) rounds and O(m) steps under an unfair distributed
daemon in arbitrary networks with unique nodes identifier. Recently, several
works considered the maximum matching problem to find an optimal or an ap-
proximated solution. Hadid et al. [22] give an algorithm which constructs an
optimal solution in O(Diam) rounds under a weakly fair distributed daemon
only in bipartite graphs. Manne et al. [38] presented a self-stabilizing algorithm
constructing a 2

3 -approximated maximum matching in general graphs within
O(n2) rounds and a (exponential) bounded number of steps under an unfair dis-
tributed daemon. Manne et al. [36] proposed the first self-stabilizing algorithm
for the maximum weighted matching problem achieving an approximation ratio
of 2 in a (exponential) bounded number of steps under a central daemon and
a distributed daemon. Turau et al. [47] gave a new analysis of the algorithm of
Manne et al. [36]. They showed that this algorithm converges in O(nm) steps
under a central daemon and an unfair distributed daemon.

Self-stabilizing Algorithm for Connected Vertex Cover Problem 313

More recently, self-stabilizing works investigated the graph decomposition into
disjoint paths. Al-Azemi et al. [1] studied the decomposition of the graph in two
edge-disjoint paths in general graphs, while Neggazi et al. [39] considered the
problem of dividing the graph in maximal disjoint paths of length two.

Finally, the cluster partitioning of the input graph has been extensively stud-
ied. Belkouch et al. [3] proposed an algorithm to divide a graph of order k2 into
k partitions of size k. The algorithm is based on spanning tree constructions
of height h and converges in O(h) rounds under a weakly fair distributed dae-
mon. Johnen et al. [29] studied the weighted clustering problem and introduced
the notion of robustness allowing to reach quickly (after one round) a cluster
partition. A cluster partition is then preserved during the convergence to a par-
tition satisfying the cluster head’s weight. Bein et al. [2] design a self-stabilizing
clustering algorithm dividing the network into non-overlapping clusters of depth
two, while Caron et al. [6] considered the k-clustering problem in which each
node is at most at distance k from its cluster head. Recently, Datta et al. [10]
design a self-stabilizing k-clustering algorithm guaranteeing an approximation
ratio in unit disk graphs.

All the works presented above concern the decomposition of the graph using
different patterns. However, none of them allow to construct a disjoint maximal
clique partition of the graph. Note that Ishii and Kakugawa [26] compute a set
of maximal cliques which are not necessary disjoint. Moreover, the non trivial
cliques (with at least two nodes) of the partition must be connected.

In [11], Delbot et al. studied the decomposition of an input graph in cliques
while satisfying a connectivity property. They propose a centralized algorithm
for the Connected Minimal Clique Partition problem (see Definition 1). The
proposed algorithm constructs iteratively a set S of maximal cliques. At the
beginning of the algorithm, S is empty and a node u1 ∈ V is randomly (with
equiprobability) selected. A first maximal clique C1 containing u1 is added to S
and all the nodes of C1 are marked in G. Then for any iteration i, any non marked
node ui ∈ V, 1 ≤ i ≤ k, neighbor of at least one marked node of G is randomly
(with equiprobability) selected. As for the first clique, a new maximal clique
containing ui is greedily built among non marked nodes of G. This procedure is
executed iteratively while there is a non marked node in G. As mentioned in [11],
every trivial clique (clique of size one) in the constructed set S is neighbor of no
other trivial clique. Otherwise, it could be possible to merge two trivial cliques
in order to obtain a clique of size two. So, the set of trivial cliques of any minimal
partition computed by this algorithm induces an independent set of G.

3.2 Self-stabilizing Construction

In this section, we present our self-stabilizing algorithm SS − CMCP which is
based on the approach proposed by Delbot et al. [11] (see description in the
precedent subsection). A formal description of SS − CMCP is given in Algo-
rithm 1. To design a distributed version of this approach, we consider here a
designated node in the network called the root node r, and distances (in hops)
from r given in input at each node p noted distp. These distance values can

314 F. Delbot, C. Laforest, and S. Rovedakis

be obtained by computing a BFS tree rooted at r. Several self-stabilizing BFS
algorithms can be used, e.g., [9, 16, 25, 28]. As described below, this allows to
define an order on the construction of a clique partition of the graph.

In the proposed algorithm, the construction of maximal cliques is performed
starting from the root r and following the distances in the graph. Indeed, the pair
(distance, node identifier) allows to define a construction priority for the cliques.
First of all, each node exchanges its neighbors set in its neighborhood, allowing
for each node to know its 2-hops neighborhood. The 2-hops neighborhood is used
by each node to identify its neighbors which can belong to its maximal clique.
For each node p, we define by candidate leaders the set of neighbors q of p such
that the pair (distq, IDq) is lexicographically smaller than (distp, IDp).

In Algorithm SS − CMCP, each node p can construct its maximal clique by
selecting in a greedily manner a set of neighbors S ⊆ Neigp such that (i) for
any q ∈ S we have (distp, IDp) < (distq, IDq) and (ii) S ∪ {p} is a complete
subgraph. A node p is called a local leader if it has not been selected by one
of its candidate leaders, otherwise p is no more a local leader and clears out its
set S. Each node selected by one of its candidate leaders has to accept only the
selection of its candidate leader q of smallest pair (distq, IDq). Finally, any local
leader p which has initiated the construction of its maximal clique considers in
its clique only the selected neighbors which have accepted p’s selection.

The proposed algorithm maintains a connectivity property between non trivial
cliques of the constructed partition. This is a consequence of the construction
order of the maximal cliques, which follows the distances in the network from
r. Indeed, every non trivial clique Ci (that does not contain the root node r) is
adjacent to at least another non trivial clique Cj , such that distlj < distli with lk
the local leader of the clique Ck. Otherwise, li has been selected to belong to the
maximal clique of another local leader lg such that (dislg , IDg) < (distli , IDi),
and the maximal clique Ci would have been removed. In fact, the algorithm
constructs a specific clique partition among the possible partitions computed by
the centralized approach proposed in [11].

Detailed description. In the following, we give more details on the proposed
algorithm SS − CMCP. Our algorithm is composed of four rules executed by
every node and five variables maintained at each node p ∈ V :

– Np: this variable contains the set of neighbors of p which allows to each node
to be informed of its 2-hops neighborhood,

– dp: this variable is used to exchange the value of distp with p’s neighbors,
– Sp: this variable is used by p to indicate in its neighborhood the nodes

selected by p (if p is a local leader),
– Cp: this variable contains the set of nodes which belong to the maximal

clique of p (if p is a local leader),
– leadp: this variable stores the local leader in the neighborhood of p.

As explained above, each node stores in variable Np the set of its 1-hop neigh-
borhood, this is done using Rule N -action of the algorithm which is executed in
case we have Np �= Neigp. Rule N -action allows also to correct variable dp such

Self-stabilizing Algorithm for Connected Vertex Cover Problem 315

that dp = distp. The information stored in this variable is used by each node in
p’s neighborhood for the computation of the maximal cliques.

For each node, the set of candidate leaders is given by Macro LNeigp, and
among this set of nodes the Macro SNeigp indicates the neighbors which have
selected p for the construction of their own maximal clique. Every node p which
is not selected by a candidate leader does not satisfy Predicate Selected(p) and
can execute C1-action to start the construction of its own maximal clique. The
procedure Clique temp() selects in a greedily manner the neighbors which form
with p a complete subgraph. By executing C1-action, a node p stores its identifier
in its variable leadp to become a local leader and notifies with its variable Sp
the neighbors it has selected using Procedure Clique temp(). C1-action can be
executed by a node p only if Sp does not contain the correct set of selected
neighbors, i.e., we have Sp �= Clique temp().

Then, each node p selected by a candidate leader (i.e., which satisfies Predicate
Selected(p)) can execute C2-action to accept the selection of its candidate leader
q of smallest pair (distq, IDq). In this case, we say that q has been elected as
the local leader of p. This is given by Macro Leaderp and stored in the variable
leadp. C2-action is only executed if the variable leadp does not store the correct
local leader for p, i.e., we have leadp �= Leaderp.

Finally, C3-action allows to each local leader p to establish the set of neighbors
q which are contained in its maximal clique. This set is stored in variable Cp and
is given by Macro Clique(p) considering only the neighbors q of p which have
accepted the selection of p (i.e., leadq = IDp). This last rule is executed only by
local leaders which are not selected to belong to another clique (i.e., Selected(p)
is not satisfied) and have not computed the correct set of neighbors contained
in their maximal clique (i.e., Sp = Clique temp() and Cp �= Cliquep).

Example of an execution. We illustrate with an example given in Figure 1 how
the proposed algorithm SS − CMCP constructs a Connected Minimal Clique
Partition. In this example, we consider a particular execution following the dis-
tances in the graph and we give only the correct cliques which are constructed
by the algorithm. We consider the topology given in Figure 1(a). First of all,
each node exchanges its neighbors set using N -action. The root node r cannot
be selected by one of its neighbors, so by executing C1-action it becomes a local
leader (i.e., leadr = IDr) and selects among its neighbors the nodes to include
in its maximal clique, i.e., by indicating in its variable Sr the nodes 1, 2 and 5.
Then, nodes 1, 2 and 5 detect that they have been selected by r (their unique
possible candidate leader) and in response they accept r’s selection using C2-
action. The node r executes C3-action to construct its maximal clique by adding
in its variable Cr the nodes which have accepted r’s selection, i.e., nodes 1, 2 and
5, as illustrated in Figure 1(b). Next, the nodes 3, 4 and 6 become local leaders
since they are not selected to belong to a clique. They execute C1-action to select
among their neighbors of equal or higher distance those which form a complete
subgraph (including themselves), i.e., neighbors 10 and 15 for node 3, neighbor
7 for node 4 and neighbor 9 for 6. The selected neighbors execute C2-action to
accept the selection of their single candidate leader. We remind that in case of

316 F. Delbot, C. Laforest, and S. Rovedakis

Algorithm 1. Self-Stabilizing Connected Minimal Clique Partition ∀p ∈ V
Inputs: Neigp: set of (locally) ordered neighbors of p;

IDp: unique identifier of p;
distp: distance between p and the root (leader node);

Variables:
Np: variable used to exchange the neighbors set Neigp in p’s neighborhood, Np ⊆ Neigp;
dp: variable used to exchange the distance distp in p’s neighborhood, dp ∈ N;
Sp: variable used by p to select neighbors for the construction of its maximal clique, Sp ⊆ Neigp;
Cp: variable used to store the set of neighbors belonging to the maximal clique of p, Cp ⊆ Neigp;
leadp: variable used to store the local leader of p, leadp ∈ Neigp;

. .
Macros:

Cliquep = {q ∈ Sp : leadq = IDp}
LNeigp = {q ∈ Neigp : dq < dp ∨ (dq = dp ∧ IDq < IDp)}
SNeigp = {q ∈ LNeigp : p ∈ Sq}

Leaderp =

{
⊥ If SNeigp = ∅
min{q ∈ SNeigp : (∀s ∈ SNeigp : dq ≤ ds)} Otherwise

. .
Predicate: Selected(p) ≡ SNeigp �= ∅
. .
Procedure:
Clique temp()

1: S := {p};
2: for all q ∈ (Neigp − LNeigp) do
3: if S ⊆ Nq then
4: S := S ∪ {q};
5: end if
6: end for
7: return S;

. .

Actions:
N-action :: Np �= Neigp ∨ dp �= distp → Np := Neigp; dp := distp;
C1-action :: ¬Selected(p) ∧ Sp �= Clique temp() → Sp := Clique temp(); leadp := IDp;
C2-action :: Selected(p) ∧ leadp �= Leaderp → leadp := Leaderp;Sp := ∅;Cp := ∅;
C3-action :: ¬Selected(p) ∧ Sp = Clique temp()

∧Cp �= Cliquep → Cp := Cliquep;

a selection from multiple candidate leaders a selected node accepts the selection
of the candidate leader x of smallest pair (distx, IDx) given by Macro Leader.
Then, the local leaders 3, 4 and 6 execute C3-action to construct respectively
their maximal clique as illustrated in Figure 1(c). In the same way, nodes 8 and
12 become local leaders and select respectively no neighbor and neighbors 11 and
14 to join their clique. The neighbors selected by node 12 accept its selection and
node 12 constructs its maximal clique, while node 8 constructs a trivial clique as
illustrated in Figure 1(d). Finally, node 13 becomes a local leader in Figure 1(e).

Definition 2 (Correct clique). Given a clique partition C1, . . . , Ck of a graph
G = (V,E), a clique Ci, 1 ≤ i ≤ k, is correct iff the following conditions are
satisfied:

1. There is a single local leader pi ∈ V in Ci;
2. pi has selected a subset Spi ⊆ Neigpi of its neighbors such that ∀q ∈ Spi ,

(distpi , IDpi) < (distq, IDq) and pi ∪ Spi forms a maximal clique;
3. Every node q selected by pi has accepted pi’s selection iff pi is the local leader

with the smallest pair (dist, ID) in q’s neighborhood;
4. Every node selected by pi which has accepted the selection of pi belongs to

the clique Ci maintained by pi.

Self-stabilizing Algorithm for Connected Vertex Cover Problem 317

(a) (b) (c)

(e)(d)

3

5 2

4

8

7

12

111413

10

15

r

1

9

6

3

5 2

4

8

7

12

111413

10

15

r

1

9

6

3

5 2

4

8

7

12

111413

10

15

r

1

9

6

3

5 2

4

8

7

12

111413

10

15

r

1

9

6

3

5 2

4

8

7

12

111413

10

15

r

1

9

6

Fig. 1. Execution of Algorithm SS − CMCP

Definition 3 (Legitimate configuration). Let C be the set of all possible
configuration of the system. A configuration γ ∈ C is legitimate for Algorithm
SS − CMCP iff every constructed clique in γ satisfies Definition 2.

Lemma 1. Starting from an arbitrary configuration, the fair composition of Al-
gorithms ABFS and SS − CMCP reach a configuration satisfying Definition 3
in at most O(TBFS +min(nc×Diam, n)) (asynchronous) rounds, with TBFS the
round complexity of self-stabilizing BFS algorithm ABFS , and nc the maximum
number of cliques at any distance from r in G.

Theorem 1. Algorithm SS − CMCP is a self-stabilizing algorithm for Specifi-
cation 1 under a weakly fair distributed daemon.

4 Self-stabilizing Connected Vertex Cover

We define below the Connected Vertex Cover problem.

Definition 4 (2-approximation Connected Vertex Cover). Let G = (V,E)
be any undirected graph. A vertex cover S of the graph G is connected iff for
any pair of node u, v ∈ S there is a path between u and v in the graph induced
by S. Moreover, S is a 2-approximation Connected Vertex Cover, i.e., we have
|S| ≤ 2|CV C∗| with CV C∗ an optimal solution for the Connected Vertex Cover.

In [11], Delbot et al. presented a centralized optimization algorithm to solve
the minimum Connected Vertex Cover problem which uses a solution obtained
for the Connected Minimal Clique Partition problem (see Definition 1). Given
a Connected Minimal Clique Partition S, the authors have shown in [11] that

318 F. Delbot, C. Laforest, and S. Rovedakis

we can construct a solution S′ for the minimum Connected Vertex Cover with
an approximation ratio of 2 by selecting in S′ all the cliques in S which are not
trivial, i.e., by selecting all the cliques composed of at least two nodes.

Specification 2 (Self-stabilizing Connected Vertex Cover) Let C be the
set of all possible configurations of the system. An algorithm ACVC solving the
problem of constructing a stabilizing connected vertex cover satisfies the following
conditions: 1) Algorithm A reaches a set of terminal configurations T ⊆ C in
finite time, and 2) Every configuration γ ∈ T satisfies Definition 4.

4.1 Related Works

The Vertex Cover problem is a classical optimization problem and many works
have been devoted to this problem or to its variations. This problem is known to
be APX-complete and not approximable within a factor of 10

√
5− 21 ≈ 1.36067

[14]. Some very simple approximation algorithms gives a tight approximation
ratio of 2 [19,44,48]. Despite a lot of works, no algorithm whose approximation
ratio is bounded by a constant less than 2 has been found and it is conjectured
that there is no smaller constant ratio unless P = NP [34]. Karakostas [33]
proposed an algorithm with ratio of 2 −Θ(1√

logn
).

From a self-stabilizing point of view, Kiniwa [35] proposed the first self-
stabilizing algorithm for this problem which constructs a 2-approximation vertex
cover in general networks with unique nodes identifier and under a fair dis-
tributed daemon. This algorithm is based on a maximal matching construction
which allows to obtain a 2-approximation vertex cover by selecting the extrem-
ities of the matching edges. Turau et al. [46] considered the same problem in
anonymous networks and gave a 3-approximation algorithm under a distributed
daemon. Since it is impossible to construct a maximal matching in an anony-
mous network, this algorithm establishes first a bicolored graph of the network
allowing then to construct a maximal matching to obtain a vertex cover. Tu-
rau [45] designed a self-stabilizing algorithm for the vertex cover problem with
approximation ratio of 2 in anonymous networks under an unfair distributed
daemon. This algorithm uses the one proposed in [46] executed several times on
sub-parts of the graph to improve the quality of the constructed solution.

For the Connected Vertex Cover problem, Savage [44] proposed a (centralized)
algorithm achieving an approximation ratio of 2 in general graphs. It is based
on the construction of a Depth First Search tree T and selecting in the solution
the nodes with at least a child in T . In 2010 Escoffier et al. [18] proved that
the problem is NP-complete, even in bipartite graphs (whereas it is polynomial
to construct a vertex cover in bipartite graphs). This problem is polynomial in
chordal graphs and can be approximated with better ratio than 2 in several
restricted graphs classes.

To our knowledge, there exists no self-stabilizing algorithm for the Connected
vertex cover problem. However, the approach proposed by Savage [44] can be
used to design a self-stabilizing algorithm. Indeed, any self-stabilizing algorithm
performing a depth first search traversal of the graph (e.g., see [7,8,43]) used with

Self-stabilizing Algorithm for Connected Vertex Cover Problem 319

a modified version of the algorithm described in this section can be used to select
the appropriate set of nodes in the solution. However, this does not enable to
obtain the best complexity in terms of time. Although a low memory complexity
of O(log(Δ)) bits per node is reached, this approach has a time complexity of
Θ(n) rounds. Indeed, a low level of parallelism is achieved because of the DFS
traversal. In contrast, our self-stabilizing algorithm is based on the algorithm
presented in the previous section. Our solution has a better time complexity of
O(min(nc×Diam, n)) rounds because of the parallel construction of cliques, but
a higher memory complexity of O(Δ log(n)) bits per node is necessary.

4.2 Self-stabilizing Construction

In this subsection, we present our self-stabilizing Connected Vertex Cover al-
gorithm called SS − CVC which follows the approach given in [11]. A solution
to the Connected Vertex Cover problem contains all the non trivial cliques of
a Connected Minimal Clique Partition. We give in this section a self-stabilizing
algorithm allowing to select the nodes of all the non trivial cliques, a formal
description is given in Algorithm 2. So, Algorithm SS − CVC is defined as a fair
composition [15] of Algorithms 1 and 2 which are executed at each node p ∈ V .

Algorithm 2 takes in input at each node p the local leader of p and the
set of nodes belonging to the maximal clique of p given by Algorithm 1 (i.e.,
variables leadp and Cp of Algorithm 1) in case p is a local leader. Moreover,
in Algorithm 2 each node maintains a single boolean variable Inp. Any node p
belongs to the Connected Vertex Cover if and only if (1) either it is a local leader
and its maximal clique is not trivial (i.e., leadp = IDp and |Cp| > 1), or (2) it
is contained in a maximal clique constructed by a neighbor which is the local
leader of p (i.e., leadp �= IDp). Predicate InV C(p) is satisfied at each node p if
p is part of the Connected Vertex Cover. Therefore, Algorithm 2 is composed of
a single rule executed by each node p ∈ V to correct the value of Variable Inp
in order that Inp equals the value of Predicate InV C(p). So, a solution to the
Connected Vertex Cover problem contains every node p such that Inp = true.

Algorithm 2. Self-Stabilizing Connected Vertex Cover algorithm ∀p ∈ V
Inputs: IDp: unique identifier of p;

leadp: leader of p computed by Algorithm 1;
Cp: maximal clique of p computed by Algorithm 1;

Variable: Inp ∈ {true, false};
. .
Predicate: InV C(p) ≡ (leadp �= IDp ∨ |Cp| > 1)
. .

Action: V C-action :: Inp �= InV C(p) → Inp := InV C(p);

Definition 5 (Legitimate configuration). A configuration γ ∈ C is legiti-
mate for Algorithm SS − CVC iff for every node p ∈ V we have Inp = InV C(p).

Lemma 2. Starting from any configuration, the fair composition of Algorithms
ABFS and SS − CVC reach a configuration satisfying Definition 5 in at most

320 F. Delbot, C. Laforest, and S. Rovedakis

O(TBFS + min(nc ×Diam, n)+ 1) (asynchronous) rounds, with TBFS the round
complexity of self-stabilizing BFS algorithm ABFS , and nc the maximum number
of cliques at any distance from r in G. O(Δ log(n)) bits of memory are necessary
at each node.

Theorem 2. Algorithm SS − CVC is a self-stabilizing algorithm for Specifica-
tion 2 under a weakly fair distributed daemon.

5 Conclusion

In this paper, we give the first distributed and self-stabilizing algorithm for
the minimum Connected Vertex Cover problem with a constant approximation
ratio of 2. Moreover, to solve this problem we propose also a self-stabilizing
algorithm for the construction of a Connected Minimal Clique partition of the
graph. There are two natural perspectives to this work. First, our distributed self-
stabilizing clique partition construction need a designated root node. This allows
to ensure the connectivity property for the clique partition. This hypothesis
is not used in the centralized algorithm. It could be interesting to design a
distributed algorithm which does not need this hypothesis while guaranteeing
the connectivity property. Second, the self-stabilizing algorithm we propose for
the minimum Connected Vertex Cover problem achieves a better time complexity
than a self-stabilizing solution based on Savage’s approach, but at the price of
a higher memory complexity. Therefore, a natural question is to investigate the
existence of a self-stabilizing algorithm with a low time and memory complexity.

References

1. Al-Azemi, F.M., Karaata, M.H.: Brief announcement: A stabilizing algorithm for
finding two edge-disjoint paths in arbitrary graphs. In: Défago, X., Petit, F., Villain,
V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 433–434. Springer, Heidelberg (2011)

2. Bein, D., Datta, A.K., Jagganagari, C.R., Villain, V.: A self-stabilizing link-cluster
algorithm in mobile ad hoc networks. In: 8th Int. Symp. on Parallel Architectures,
Algorithms, and Networks, pp. 436–441 (2005)

3. Belkouch, F., Bui, M., Chen, L., Datta, A.K.: Self-stabilizing deterministic network
decomposition. J. Parallel Distrib. Comput. 62(4), 696–714 (2002)

4. Blum, J., Ding, M., Thaeler, A., Cheng, X.: Connected Dominating Set in Sensor
Networks and MANETs. Springer US (2005)

5. Burman, J., Kutten, S.: Time optimal asynchronous self-stabilizing spanning tree.
In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 92–107. Springer, Heidelberg
(2007)

6. Caron, E., Datta, A.K., Depardon, B., Larmore, L.L.: A self-stabilizing k-clustering
algorithm for weighted graphs. J. Par. Distrib. Comput. 70(11), 1159–1173 (2010)

7. Collin, Z., Dolev, S.: Self-stabilizing depth-first search. Information Processing Let-
ters 49(6), 297–301 (1994)

8. Cournier, A., Devismes, S., Petit, F., Villain, V.: Snap-stabilizing depth-first search
on arbitrary networks. The Computer Journal 49(3), 268–280 (2006)

9. Cournier, A., Rovedakis, S., Villain, V.: The first fully polynomial stabilizing algo-
rithm for BFS tree construction. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.)
OPODIS 2011. LNCS, vol. 7109, pp. 159–174. Springer, Heidelberg (2011)

Self-stabilizing Algorithm for Connected Vertex Cover Problem 321

10. Datta, A.K., Larmore, L.L., Devismes, S., Heurtefeux, K., Rivierre, Y.: Compet-
itive self-stabilizing k-clustering. In: IEEE 32nd Int. Conference on Distributed
Computing Systems, pp. 476–485 (2012)

11. Delbot, F., Laforest, C., Phan, R.: New approximation algorithms for the vertex
cover problem. In: Lecroq, T., Mouchard, L. (eds.) IWOCA 2013. LNCS, vol. 8288,
pp. 438–442. Springer, Heidelberg (2013)

12. Delbot, F., Laforest, C., Rovedakis, S.: Self-stabilizing algorithms for connected
vertex cover and clique decomposition problems. Tech. rep., HAL (July 2014),
https://hal.archives-ouvertes.fr/hal-01053491

13. Dijkstra, E.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

14. Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover.
Annals of mathematics 162(1), 439–485 (2005)

15. Dolev, S.: Self-Stabilization. MIT Press (2000)
16. Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems assuming

only read/write atomicity. Distributed Computing 7(1), 3–16 (1993)
17. Drabkin, V., Friedman, R., Gradinariu, M.: Self-stabilizing wireless connected over-

lays. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 425–439.
Springer, Heidelberg (2006)

18. Escoffier, B., Gourvès, L., Monnot, J.: Complexity and approximation results for
the connected vertex cover problem in graphs and hypergraphs. J. Discrete Algo-
rithms 8(1), 36–49 (2010)

19. Garey, M., Johnson, D.: Computers and Intractability. Freeman and Co., New York
(1979)

20. Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Self-stabilizing pro-
tocols for maximal matching and maximal independent sets for ad hoc networks.
In: 17th Int. Parallel and Distributed Processing Symp., p. 162 (2003)

21. Guellati, N., Kheddouci, H.: A survey on self-stabilizing algorithms for indepen-
dence, domination, coloring, and matching in graphs. J. Parallel Distrib. Com-
put. 70(4), 406–415 (2010)

22. Hadid, R., Karaata, M.H.: Stabilizing maximum matching in bipartite networks.
Computing 84(1-2), 121–138 (2009)

23. Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Maximal matching stabilizes in time
o(m). Inf. Process. Lett. 80(5), 221–223 (2001)

24. Hsu, S.C., Huang, S.T.: A self-stabilizing algorithm for maximal matching. Inf.
Process. Lett. 43(2), 77–81 (1992)

25. Huang, S.T., Chen, N.S.: A self-stabilizing algorithm for constructing breadth-first
trees. Information Processing Letters 41(2), 109–117 (1992)

26. Ishii, H., Kakugawa, H.: A self-stabilizing algorithm for finding cliques in dis-
tributed systems. In: 21st Symp. on Reliable Distributed Systems, pp. 390–395.
IEEE Computer Society (2002)

27. Jain, A., Gupta, A.: A distributed self-stabilizing algorithm for finding a connected
dominating set in a graph. In: 6th Int. Conference on Parallel and Distributed
Computing, Applications and Technologies, pp. 615–619. IEEE Comp. Soc. (2005)

28. Johnen, C.: Memory-efficient self-stabilizing algorithm to construct bfs spanning
trees. In: 3rd Workshop on Self-stabilizing Systems, pp. 125–140 (1997)

29. Johnen, C., Nguyen, L.H.: Robust self-stabilizing weight-based clustering algo-
rithm. Theor. Comput. Sci. 410(6-7), 581–594 (2009)

https://hal.archives-ouvertes.fr/hal-01053491

322 F. Delbot, C. Laforest, and S. Rovedakis

30. Kamei, S., Izumi, T., Yamauchi, Y.: An asynchronous self-stabilizing approximation
for theminimum connected dominating set with safe convergence in unit disk graphs.
In:Higashino, T., Katayama, Y.,Masuzawa, T., Potop-Butucaru,M., Yamashita,M.
(eds.) SSS 2013. LNCS, vol. 8255, pp. 251–265. Springer, Heidelberg (2013)

31. Kamei, S., Kakugawa, H.: A self-stabilizing distributed approximation algorithm
for the minimum connected dominating set. Int. J. Found. Comput. Sci. 21(3),
459–476 (2010)

32. Kamei, S., Kakugawa, H.: A self-stabilizing 6-approximation for the minimum con-
nected dominating set with safe convergence in unit disk graphs. Theor. Comput.
Sci. 428, 80–90 (2012)

33. Karakostas, G.: A better approximation ratio for the vertex cover problem. In: Int.
Colloquium on Automata, Languages and Programming, pp. 1043–1050 (2005)

34. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε.
Journal of Computer and System Sciences 74(3), 335–349 (2008)

35. Kiniwa, J.: Approximation of self-stabilizing vertex cover less than 2. In: Tixeuil,
S., Herman, T. (eds.) SSS 2005. LNCS, vol. 3764, pp. 171–182. Springer, Heidelberg
(2005)

36. Manne, F., Mjelde, M.: A self-stabilizing weighted matching algorithm. In: Ma-
suzawa, T., Tixeuil, S. (eds.) SSS 2007. LNCS, vol. 4838, pp. 383–393. Springer,
Heidelberg (2007)

37. Manne, F., Mjelde, M., Pilard, L., Tixeuil, S.: A new self-stabilizing maximal
matching algorithm. Theor. Comput. Sci. 410(14), 1336–1345 (2009)

38. Manne, F., Mjelde, M., Pilard, L., Tixeuil, S.: A self-stabilizing 2/3-approximation
algorithm for the maximum matching problem. Theor. Comput. Sci. 412(40), 5515–
5526 (2011)

39. Neggazi, B., Haddad, M., Kheddouci, H.: Self-stabilizing algorithm for maximal
graph decomposition into disjoint paths of fixed length. In: 4th Workshop on The-
oretical Aspects of Dynamic Distributed Systems, pp. 15–19. ACM (2012)

40. Neggazi, B., Haddad, M., Kheddouci, H.: Self-stabilizing algorithm for maximal
graph partitioning into triangles. In: Richa, A.W., Scheideler, C. (eds.) SSS 2012.
LNCS, vol. 7596, pp. 31–42. Springer, Heidelberg (2012)

41. Neggazi, B., Turau, V., Haddad, M., Kheddouci, H.: A self-stabilizing algorithm
for maximal p-star decomposition of general graphs. In: Higashino, T., Katayama,
Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS,
vol. 8255, pp. 74–85. Springer, Heidelberg (2013)

42. Ni, S.Y., Tseng, Y.C., Chen, Y.S., Sheu, J.P.: The broadcast storm problem in
a mobile ad hoc network. In: 5th Annual ACM/IEEE Int. Conference on Mobile
Computing and Networking, pp. 151–162 (1999)

43. Petit, F., Villain, V.: Optimal snap-stabilizing depth-first token circulation in tree
networks. Journal of Parallel and Distributed Computing 67(1), 1–12 (2007)

44. Savage, C.D.: Depth-first search and the vertex cover problem. Information Pro-
cessing Letters 14(5), 233–237 (1982)

45. Turau, V.: Self-stabilizing vertex cover in anonymous networks with optimal ap-
proximation ratio. Parallel Processing Letters 20(2), 173–186 (2010)

46. Turau, V., Hauck, B.: A fault-containing self-stabilizing (3-2/(delta+1))-
approximation algorithm for vertex cover in anonymous networks. Theoretical
Computer Science 412(33), 4361–4371 (2011)

47. Turau, V., Hauck, B.: A new analysis of a self-stabilizing maximum weight match-
ing algorithm with approximation ratio 2. Theor. Comp. Sci. 412(40), 5527–5540
(2011)

48. Vazirani, V.V.: Approximation algorithms. Springer-Verlag New York, Inc., New
York (2001)

Fast and Compact Distributed Verification

and Self-stabilization of a DFS Tree

Shay Kutten and Chhaya Trehan

Faculty of Industrial Engineering and Management, Technion, Haifa, Israel
kutten@ie.technion.ac.il, chhaya.dhingra@gmail.com

Abstract. We present algorithms for distributed verification and silent-
stabilization of a DFS(Depth First Search) spanning tree of a connected
network. Computing and maintaining such a DFS tree is an important
task, e.g., for constructing efficient routing schemes. Our algorithm im-
proves upon previous work in various ways. Comparable previous work
has space and time complexities of O(n logΔ) bits per node and O(nD)
respectively, where Δ is the highest degree of a node, n is the number
of nodes and D is the diameter of the network. In contrast, our algo-
rithm has a space complexity of O(log n) bits per node, which is optimal
for silent-stabilizing spanning trees and runs in O(n) time. In addition,
our solution is modular since it utilizes the distributed verification al-
gorithm as an independent subtask of the overall solution. It is possible
to use the verification algorithm as a stand alone task or as a subtask
in another algorithm. To demonstrate the simplicity of constructing ef-
ficient DFS algorithms using the modular approach, we also present a
(non-silent) self-stabilizing DFS token circulation algorithm for general
networks based on our silent-stabilizing DFS tree. The complexities of
this token circulation algorithm are comparable to the known ones.

Keywords: Fault Tolerance, Self-* Solutions, Silent-Stabilization, DFS,
Spanning Trees.

1 Introduction

A clear separation is common between the notions of computing and verification
in sequential systems. A similar separation in the context of distributed systems
has been emerging. Distributed verification of global properties like minimum
spanning trees have been devised [21].

An area of distributed systems that can greatly benefit from this separation
is that of self-stabilization. Self-stabilization is the ability of a system to recover
from transient faults. A self-stabilizing distributed system can be started in any
arbitrary configuration and must eventually converge to a desired legal behavior.
Self-stabilizing algorithms can run a distributed verification algorithm repeatedly
to detect the occurrence of faults in the system and take the necessary action for
convergence to a legal behavior. This is the approach we take here in devising
a silent-stabilizing DFS algorithm. The concept of first detecting a fault and

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 323–338, 2014.
c© Springer International Publishing Switzerland 2014

324 S. Kutten and C. Trehan

then taking the corrective measures for self-stabilization was first introduced
by [20], [1] and [3]. The approach taken by Katz and Perry in [20] is that of
global detection of faults by a leader node that periodically takes the snapshots
of the global state of the network and resets the system if a fault is detected.
Afek, Kutten and Yung [1], and Awebuch et al. [3] on the other hand, suggested
that the faults in the global state of a system could sometimes be detected by
local means - i.e., by having each node check the states of all its neighbors.
Göös and Suomela further formalized the idea of local detection of faults in [16].
Korman, Kutten and Peleg [23] introduced the concept of proof labeling schemes.
A proof labeling scheme works by assigning a label to every node in the input
network. The collection of labels assigned to the nodes acts as a locally checkable
distributed proof that the global state of the network satisfies a specific global
predicate. A proof labeling scheme consists of a pair of algorithms (M, V), where
M is a marker algorithm that generates a label for every node and V is a verifier
algorithm that checks the labels of neighboring nodes. In this paper, we present
a proof labeling scheme for detecting faults in the distributed representation of a
DFS spanning tree. For self-stabilization, the DFS tree is computed afresh and
new labels are assigned to the nodes by the marker on detection of faults.

1.1 Additional Related Work

Dijkstra introduced the concept of Self-stabilization [10] in distributed systems.
Self-stabilization deals with the faults that entail an arbitrary corruption of the
state of a system. These faults are rather severe in nature but do not occur very
frequently in reality [31].

Table 1 summarizes the known complexity results for self-stabilizing DFS
algorithms. Collin and Dolev presented a silent-stabilizing DFS tree algorithm
in [6]. Their algorithm works by having each node store its path to the root
node in the DFS tree. Since the path of a node to the root in a DFS tree can
be as long as n, the number of nodes in the network, the space complexity of
their algorithm is O(n logΔ) per node, where Δ is the highest degree of a node
in the network. The time complexity of their algorithm under the contention
time model is (nDΔ). We drop the multiplicative factor of Δ from their time
complexity here for the sake of comparison with all the other algorithms that
do not count their time under the contention model. Cournier et al. presented
a snap-stabilizing DFS wave protocol in [7] which snap stabilizes with a space
complexity of O(n log n).

Considerable work has been invested in developing self-stabilizing depth-first
token circulation algorithms with multiple successive papers improving each
other. All of these algorithms also generate a DFS tree in every token circu-
lation round, however these algorithms are not silent. Self-stabilizing depth-first
token circulation on arbitrary rooted networks was first considered by Huang
and Chen in [17]. Their algorithm stabilizes in O(nD) time with a space com-
plexity of O(log n) bits per node. Subsequently several self-stabilizing DFS token
circulation algorithms [9,19,18,26] were devised. All these papers worked on im-
proving the space complexity of [17] from O(log n) to a function ofΔ, the highest

Distributed Verification and Self-stabilization of DFS 325

Table 1. Comparing self-stabilizing DFS algorithms

Algorithm Space Stabilization Time Remarks

[6] O(n logΔ) O(nD) Silent

[7] O(n log n) 0 Snap Stabilizing
first DFS wave, needs Unique IDs

[8] O(log n) 0 Snap Stabilizing
Wave takes O(n2) rounds

[17] O(log n) O(nD) Token Circulation, not silent

[25] O(log n) O(n) Token Circulation, not silent

[9] O(logΔ) O(nD) Token Circulation, not silent

[19] O(logΔ) O(nD) Token Circulation, not silent
Requires neighbor of neighbor info

[18] O(Δ) O(nD) Token Circulation, not silent

[26] O(logΔ) O(nD) Token Circulation, not silent

OUR RESULTS O(log n) O(n) Two algorithms: Silent and
token circulation;
both with the same complexity

degree of a node in the network. The time complexity of all of the above token
circulation algorithms [17,19,18,26] is O(nD) rounds, which is much more than
the time it takes for one token circulation cycle on a given network. Petit im-
proved the stabilization time complexity of depth-first token circulation to O(n)
in [25] with a space complexity of O(log n) bits per node. Petit and Villain [28]
presented the first self-stabilizing depth-first token circulation algorithm that
works in asynchronous message passing systems.

1.2 Our Contribution

The main contribution of the current paper is a silent self-stabilizing DFS span-
ning tree algorithm. The space complexity of our algorithm is O(log n) bits per
node. The only other silent-stabilizing DFS tree algorithm [6] has a space com-
plexity of O(n logΔ). Dolev et al. [12] established a lower bound of O(log n) bits
per node on the memory requirement of silent-stabilizing spanning tree algo-
rithms. Thus, ours is the first memory optimal silent-stabilizing DFS spanning
tree algorithm. The silent-stabilizing DFS construction algorithm is designed in
a modular way consisting of separate modules for fault detection and correc-
tion. The distributed verification module of this algorithm can be considered a
contribution in itself.

Composing self-stabilizing primitives using fair combination of protocols is
a well-known technique(see e.g. [13,30]) to ensure that the resulting proto-
col is self-stabilizing. We use this approach of protocol combination to design
a self-stabilizing depth-first token circulation algorithm which uses our silent-
stabilizing DFS tree as a module of the overall algorithm. The space and time
complexities of our token circulation algorithm are as good as the previously
published work on fast self-stabilizing depth-first token circulation [25].

326 S. Kutten and C. Trehan

1.3 Outline of the paper

In the next section (Section 2), we describe the model of distributed systems
considered in this paper. That section also includes some basic definitions and
notations. Section 3 addresses the distributed verification algorithm which acts
as the Verifier V of the proof labeling scheme. The Marker M of the proof
labeling scheme is presented in Section 4. Section 5 describes the technique used
to make the algorithm self-stabilizing. Section 6 presents the correctness proofs
and performance analysis. Section 7 describes a token circulation scheme based
on the new silent-stabilizing DFS spanning tree.

2 Preliminaries

A distributed system is represented by a connected undirected graph G(V,E)
without self-loops and parallel edges, where each node v ∈ V represents a pro-
cessor in the network and each edge e ∈ E corresponds to a communication
link between its incident nodes. Processors communicate by writing into their
own shared registers and reading from the shared registers of the neighboring
processors. The network is assumed to be asynchronous. We do not require pro-
cessors to have unique identifiers. We do assume the existence of a distinguished
processor, called the root of the network. Each node v ∈ V orders its edges by
some arbitrary ordering αv as in [6]. For an edge (u, v), let αu(v) denote the
index of the edge (u, v) in αu.

As opposed to Collin and Dolev [6], We use the (rather common) ideal time
complexity which assumes that a node reads all of its neighbors in at most one
time unit. Our results translate easily to an alternative, stricter, contention time
complexity used by Collin and Dolev in [6], where a node can access only one
neighbor in one time unit. The time cost of such a translation is a multiplicative
factor of O(Δ), the maximum degree of a node (it is not assumed that Δ is
known to nodes). As is commonly assumed in the case of self-stabilization, each
node has only some bounded number of memory bits available to be used. Here,
this amount of memory is O(log n).

Self-stabilization and silent-stabilization: A distributed algorithm is self-
stabilizing if it can be started in any arbitrary global state and once started, the
algorithm converges to a legal state by itself and stays in the legal state unless
additional faults occur [11]. A self-stabilizing algorithm is silent if starting from
an arbitrary state it converges to a legal global state after which the values stored
in the communication registers do not change, see e.g. [12]. While some problems
like token circulation are non-silent by nature, many input/output algorithms
allow a silent solution.

Spanning Tree: Distributed Representation: A spanning tree T of a con-
nected, undirected graph G(V,E) is a tree composed of all the nodes and some
of the edges of G. A spanning tree T of some graph G is represented in a dis-
tributed manner by having each node locally mark some of its incident edges

Distributed Verification and Self-stabilization of DFS 327

such that the collection of marked edges of all the nodes forms a spanning tree
of G. Actually, it is enough that each node marks its edge leading to its parent
on the tree in a local variable.

DFS Tree and the first DFS Tree of a Graph: A DFS Tree of a connected,
undirected graph G(V,E) is the spanning tree generated by a depth first search
traversal of G. In a DFS traversal, starting from a specified node called the root,
all the nodes of the graph are visited one at a time, exploring as far as possible
before backtracking, see e.g. [15]. The first DFS traversal is the one that acts
as follows: whenever a node v has a set of unexplored edges to choose from,
the chosen edge is the edge with the smallest port number in the port ordering
αv. The tree thus generated is called the first DFS tree [6]. While a connected,
undirected graph can have more than one DFS spanning trees, it can have only
one first DFS spanning tree.

Lexicographic Ordering. A simple path from the root of a graph G to some
node v ∈ V can be represented as a string starting with a ⊥ followed by a
sequence of the port numbers of the outgoing edges on the path [6]. Given such
a string representation of a path, a lexicographic operator ≺ can be defined to
compare multiple paths of a given node v from the root, where ⊥ is considered
the minimum character. In the first DFS tree of a graph, the path leading from
the root to some node v ∈ V is the lexicographically smallest (w.r.t. ≺) among
all the simple paths from the root to v [6].

DFS Intervals. In a DFS traversal, it is common to assign to each node an
interval (in, out) corresponding to the discovery and finish time of exploration
of that node. The discovery time or in is the time at which a node is discovered
for the first time. The discovery time of a node v ∈ V is denoted as inv. The
finish time of node v denoted by outv is the time at which a node has finished
exploring all its neighbors. These intervals have the property that given any two
intervals (in, out) and (in′, out′), either one includes the other or they are totally
disjoint. Assuming without loss of generality that in < in′, we can write this
formally as: either (in < in′ < out′ < out) or (in < out < in′ < out′) [15]. In
other words, the DFS intervals induce a partial order on the nodes of a graph.

2.1 Notation

We define the following notation to be used throughout:

– η(v) denotes the set of neighbors of v in G. ∀v ∈ V (η(v) = {u|u ∈ V ∧(u, v) ∈
E)}).

– intervalv denotes the (in, out) label of v.
– inv denotes the in label of v and outv denotes the out label of v.
– Relational operator ⊂ between two intervals (in, out) and (in′, out′) indicates

the inclusion of of the first interval in the second one. For example: (in, out) ⊂
(in′, out′) indicates that (in, out) is included in (in′, out′).

– Relational operator ⊃ is defined similarly.

328 S. Kutten and C. Trehan

3 DFS Verification: Verifier V
Given a graph G(V,E) and the distributed representation of a spanning tree T
of G, the DFS verification algorithm is required to verify that T is the first DFS
tree of G. The Verifier V takes as input a connected graph G(V,E) where each
node v ∈ V bears an (inv, outv) label in addition to v’s parent on T . Note that
V takes (in, out) labels of nodes as input and is not concerned with how they
are generated.

We assume that each node can read the labels of all its neighbors in addition
to its own label and state. A node cannot look at the state of any of its neighbors,
however. Each node v ∈ V periodically reads the labels of all its neighbors and
locally computes the following additional information from its own state and
label as well as the labels of its neighbors.

3.1 Intermediate Computations

Each node computes the following macros to be used for verification.

1. There are zero or more neighbors of v whose interval includes v’s interval.
Let us call the set of all such nodes the neighboring ancestors of v and denote
this set by by ancl(v).

ancl(v) = {w|w ∈ η(v) and intervalw ⊃ intervalv}
2. The parent of v as perceived by the labels : parentl(v) = w|w ∈ ancl(v)∧∀u ∈
ancl(v) (u �= w → intervalw ⊂ intervalu).

3. There are zero or more neighbors of v whose interval is included in v’s in-
terval, let us call the set of all such nodes the neighboring descendants of v
and denote this set by descl(v).

descl(v) = {w|w ∈ η(v) and intervalw ⊂ intervalv}
4. A child neighbor of v is a neighboring descendant of v whose interval is not

included in the interval of any other neighboring descendant of v.

childl(v) = u|u ∈ descl(v)∧¬∃u′ ∈ descl(v)(u′ �= u∧intervalu′ ⊃ intervalu)

5. childrenl(v) ⊆ descl(v) is the set of all child neighbors of v.

The subscript l in ancl(v) above denotes that the set ancl(v) is computed by
the node v by just looking at the labels of v and those of v’s neighbors. The
same holds for all the other macros defined above. It is worth pointing out that
all these are intermediate computations and the data they generate need not be
stored on the node.

The verification is performed by having each node compute a set of predicates.
If T is indeed the first DFS tree of G and the labels on all the nodes are proper
(i.e. they are as if they were generated by an actual first DFS Traversal of the
input graph); then the verifier accepts continuously on every node until a fault
occurs. If a fault occurs either due to the corruption of the state of some nodes
or due to some nodes having incorrect labels, at least one node rejects. The
node that rejects is called a detecting node. The verifier self-stabilizes trivially
since it runs periodically.

Distributed Verification and Self-stabilization of DFS 329

3.2 Local Interval Predicates

Let parentv denote the local variable used to store the parent of v in T . Following
is the set of local predicates that each node has to compute:

3.2.1 Predicates for the Root Node r

1. parentr = null.

2. ancl(r) = φ.

3.2.2 Predicates for a Non-root Node v

1. parentv �= null.

2. ancl(v) �= φ.

3. parentv = parentl(v). The parent of v on T denoted by parentv is the same
as v’s parent as computed by v from the labels of v and its neighbors.

4. intervalv ⊂ intervalparentv .

5. ∀u ∈ ancl(v) such that u �= parentv (intervalparentv ⊂ intervalu).

3.2.3 Predicates for Every Node(root as well as a non-root) v

1. outv > inv.

2. There is no neighbor of v such that its interval is totally disjoint with v.
Formally
∀u ∈ η(v) (intervalu ⊂ intervalv ∨ intervalu ⊃ intervalv).

3. if |childrenl(v)| = 0 then outv = inv + 1.

4. if |childrenl(v)| > 0 and let childrenDl(v) denote the list of children of v sorted
in ascending order of their in labels and firstChildl(v) and lastChildl(v) be
the first and last members of childrenDl(v) then infirstChildl

= inv + 1 ∧
outv = outlastChildl

+ 1.

5. if |childrenl(v)| > 1 and let childrenPl(v) denote the list of children of v
sorted in the ascending order of their port numbers in v, then childrenDl(v)
and childrenPl(v) sort the members of childrenl(v) in the same order.

6. Let u and w ∈ descl(v), u �= w, such that u ∈ childrenl(v) and w /∈
childrenl(v) and inu < inw then αv(u) < αv(w).

7. ∀(u,w) ∈ childrenDl(v) such that u and w are adjacent in childrenDl(v)
and inu < inw, then inw = outu + 1

Remark 1. The only predicates that deal with the order in which the neighbors
of a node are explored are 5 and 6 of Section 3.2.3. Omitting these two Predicates
leaves us with a set of predicates sufficient to verify that T is some DFS tree(may
not be same as the initial input to the verifier) of G. If an algorithm that uses
the verifier as a subtask is not concerned about the order, it can simply drop
these predicates.

330 S. Kutten and C. Trehan

4 Generating the Labels: Marker M
A natural method for assigning the (in, out) labels is to perform an actual DFS
traversal of the network starting from the root. The required labels can be gener-
ated by augmenting some known DFS tree construction algorithm (e.g. [4], [2], [5])
by adding new variables for the labels and specific actions for updating these
label variables. We assume that the DFS construction algorithm of Awerbuch [2]
can be easily translated to shared memory and the resulting algorithm can be
easily augmented with actions to update the in and out labels. Note that trans-
lating [2] to shared memory is trivial and it decreases the memory from O(Δ)
to O(logΔ), if it changes memory at all, since a node does not need to store
the VISITED message(the message broadcasted by a node to all its neighbors
when it is visited for the first time, See [2]) of a neighbor, instead it can read
the shared register of the neighbor.The pseudo code of the marker will appear
in the full paper.

5 The Silent-Stabilizing DFS Construction Algorithm

We have constructed a proof labeling scheme (M,V) with a non-stabilizing
marker M that takes as input a connected graph G and assigns (in, out) la-
bels to every node in G. It also has a verifier V that takes as input a labeled
(with (in, out) intervals) distributed data structure and verifies whether the in-
put structure is the first DFS tree. The proofs for the correctness and the per-
formance of (M,V) are presented in Section 6. In the meanwhile, we use them
here assuming they are correct.

A simple way to stabilize any input/output algorithm is to run the algorithm
repeatedly to maintain the correct output along with a self-stabilizing synchro-
nizer [3]. This however would not be a silent algorithm. Still, let us use this ap-
proach to generate a non-silent self-stabilizing algorithm as an exercise, before
presenting the silent one. Awerbuch and Varghese, in their seminal paper [3],
present a transformer algorithm for converting a non-stabilizing input/output
algorithm into its self-stabilizing version. Following theorem is taken from the
paper of Awerbuch and Varghese [3]:

Theorem 1. Given a non-stabilizing distributed algorithm Π to compute an
input/output relation with a space complexity of SΠ and a time complexity of
TΠ . The Resynchronizer compiler produces a self-stabilizing version of Π whose
time complexity is O(TΠ + D̂) and whose space complexity is same as that of Π,
where D̂ is an upper bound on the diameter of the network.

Informally, the transformer that Awerbuch and Varghese developed to prove
the above theorem is a self-stabilizing synchronizer. The transformer takes as
input a non-stabilizing input/output algorithm Π whose running time and space
requirement are TΠ and SΠ respectively. Another input it takes is D̂ which is an
upper bound on the actual diameter D of the network. Given these inputs, the
transformer performs Π for TΠ(recall that the transformer is a synchronizer and

Distributed Verification and Self-stabilization of DFS 331

transforms the network to be synchronous). Then it retains the results, performs
Π again and compares the new results to the old ones. If they are the same, the
old results are retained. if they differ, then some faults occurred, the new results
are retained. This is repeated forever.

Since we do not assume the knowledge of n (required for input : TM) or D̂,
we use a slightly modified version of theorem 1 here, that appeared in [22]. The
modified Awerbuch Varghese theorem presented in [22] is as follows:

Theorem 2. Given a non-stabilizing distributed algorithm Π to compute an
input/output relation with a space complexity of SΠ and a time complexity of
TΠ . The enhanced Resynchronizer compiler produces a self-stabilizing version of
Π whose time complexity is O(TΠ+n) for asynchronous networks and O(TΠ+D)
for synchronous networks with a space complexity of O(SΠ + logn).

Informally, Korman et al. used a better synchronizer plus a simple self-stabilizing
algorithm that computes n and D to prove the above theorem. To obtain a non-
silent self-stabilizing DFS construction algorithm, we just plug the marker M of
Section 4 into theorem 2 and obtain the following corollary.

Corollary 1. There exists a non-silent self-stabilizing DFS construction algo-
rithm that can operate in a dynamic asynchronous network, with a time com-
plexity of O(TM + n) and a space complexity of O(SM + logn).

5.1 Achieving Silent-Stabilization

Before going into the details of achieving silence, let us go over how the self-
stabilizing synchronizer of the enhanced transformer of theorem 2 helps co-
ordinate repeated executions of the marker in the algorithm of corollary 1. A
synchronizer simulates a synchronous protocol in an asynchronous network by
using a pulse count at each node which is updated in increments of 1 subject to
certain rules. A node u executes the ith step of the algorithm when pulse count
at u, pulseu is equal to i. The synchronizer maintains the invariant that the
pulse count of a node u differs from any of its neighbors by at most one. Since
the synchronizer module is self-stabilizing, all the nodes may be initialized to
an arbitrary pulse count and thus the network may not be synchronized in the
beginning. The stabilization time of the synchronizer module of the enhanced
transformer is O(n), thus starting from any arbitrary set of pulse counters, the
network is guaranteed to be synchronized after O(n) time. The enhanced trans-
former waits for sufficient time for the nodes to get synchronized and then starts
the execution of the algorithm to be stabilized, in our case, the marker M. If
Te denotes the pulse count at which all the nodes are synchronized, the nodes
run the marker from Te to Te + TM. Due to an allowed difference of at most 1
between pulse counts of neighboring nodes, the maximum difference between the
pulse counts of any two nodes is D, the diameter of the network. Thus any node
with a pulse count of Te + TM has to wait a maximum of D pulses to be sure
that all the nodes in the network have written their output [3]. The node with
a pulse count of Te + TM +D wraps around its pulse count to 0 which destroys

332 S. Kutten and C. Trehan

the synchronization. Essentially the first node(s) to wrap around invoke the re-
set module of the transformer which brings the nodes back in sync for the next
execution of the marker. To make the algorithm silent-stabilizing, we execute
the marker(along with the synchronizer) only once in the beginning to generate
the labels. The silence is achieved by turning the synchronizer off after all the
nodes have finished executing the marker. As explained above, the nodes can
easily detect when the marker has finished by looking at their respective pulse
counts. When a node reaches a pulse count of Te + TM +D, it stops updating
its pulse count, thus turning the synchronizer off. When all the nodes in the
neighborhood of a node have reached Te + TM +D, it turns on the verifier V .
Since V can detect a fault in exactly one pulse, if one occurs, we can manage
without running a synchronizer during the verification. The verifier keeps run-
ning repeatedly until a fault occurs. If a node v detects a fault, it invokes the
synchronizer of the enhanced transformer again by dropping v’s pulse count to
0. Again, as in case of non-silent algorithm, this invokes a reset which resyn-
chronizes the network and subsequently invokes the marker again. Note that the
nodes need not know the TM a priori. The running time of M is a function of
n, the number of nodes which can be computed in a self-stabilizing manner by
the module of the enhanced transformer responsible for computing n.

Observation 1 The only communication that takes place at each node during
verification is the reading of the shared registers of the neighbors. The compu-
tations performed during verification do not affect the contents of the shared
registers at all, thus ensuring silence as defined in [12].

Thus we obtain a silent-stabilizing DFS construction algorithm. The following
theorem summarizes our result:

Theorem 3. The proof labeling scheme (M,V) for a DFS tree implies a silent-
stabilizing DFS construction algorithm, that runs in O(TM+n) time with a space
complexity of O(SM + SV + logn).

6 Correctness and Performance Analysis

In this section, we establish the correctness of our algorithm. The proofs follow
easily from the known properties of a DFS tree and the predicates of the verifier.
Given a labeled (with (in, out) labels) graph G(V,E) and the distributed repre-
sentation of a spanning subgraph T of G, the following lemmas holds on G, if
the local interval predicates (Section 3.2) hold true at every node of G:

Lemma 1. T is a spanning tree of G.

Proof. In order to prove that a graph is a tree, it is sufficient to prove that
it has no cycles and its number of edges is n − 1, where n is the number of
nodes in this graph [15]. For the subgraph T of G to have a cycle, one of the
ancestors of some node v ∈ V has to mark v as its parent. However, this leads to
a contradiction by predicate 4 of Section: 3.2.2 which requires that the interval

Distributed Verification and Self-stabilization of DFS 333

of a node be included in the interval of its parent. Applying predicate 4 to v
and v’s ancestors, implies that for an ancestor u of v which points to v as its
parent, interval(v) ⊂ interval(u) ∧ interval(u) ∧ interval(v), a contradiction.
The parent pointer of each node v ∈ V except the root comprises of a single
incident edge of v and the parent pointer of the root is null, therefore there are
exactly n nodes and n− 1 edges in T .

Observation 2 The macros defined in Section 3.1 extract (periodically) a per-
ceived tree Tl from the (in, out) labels of the nodes in G.

While input tree T is encoded only by the collection of the parent pointers of the
nodes, Tl is extracted by having each node compute its perceived parent, denoted
by parentl as well as its perceived children, denoted by the set childrenl on Tl.

Lemma 2. For any node v ∈ V , the set of children of v in T is same as the set
of perceived children of v in Tl.

Proof. The predicate 3 of section 3.2.2, ensures that the parent pointer parentv
of a node v on the input tree T is the same as v’s perceived parent parentl(v)
on Tl. The set of children of a node v on T is implicitly implied by the parent
pointers of v’s children. Hence, it is sufficient to prove that the set of perceived
children of v on Tl is the same as those implied by the perceived parent pointers
of perceived children of v, i.e., the collection of perceived parents is consistent
with the collection of perceived children on Tl. In what follows, we prove that
if a node v has a node p as its perceived parent (parentl(v) = p), then v ∈
childrenl(p). Assume, for contradiction, that the above does not hold. Note
that, by the definition of a perceived parent and simple inductive arguments, p
has the narrowest interval of any node whose interval includes intervalv, i.e.,
the interval of p does not include the interval of any other node whose interval
includes intervalv. Having v /∈ childrenl(p)∧parentl(v) = p implies that there is
a node x ∈ η(p) with intervalx ⊃ intervalv and moreover intervalp ⊃ intervalx.
This implies that p can not be the parent of v. In a similar way, one can prove
that if c ∈ childrenl(v) then v is the perceived parent of c.

Following lemma 2, in the discussion that follows, childrenl(v) implies the
children of v in T and vice versa.

Lemma 3. For any two children u,w of a node v in T , the intervals of all the
nodes in the subtree of u in T are disjoint from the intervals of all the nodes in
the subtree of w in T .

Proof. The set childrenDl(v) is the set childrenl(v) sorted in the ascending or-
der of the in labels of the nodes ∈ childrenl(v) as defined in Section 3.2.3. Let
us assume, without loss of generality, that inw > inu. Consider a node u′ ∈ η(v)
such that u′ is adjacent to u and appears after u in childrenDl(v)(possibly
u′ = w). Applying predicate 7 of Section 3.2.3 to u and u′ , inu′ = outu + 1.
By predicate 1 of Section 3.2.3, outu′ > inu′ . Thus neither of the two intervals,
interval(u) and interval(u′), includes the other, i.e. they are totally disjoint.

334 S. Kutten and C. Trehan

Applying predicate 4 of Section: 3.2.2 inductively, it is easy to see that the inter-
vals of all the descendants of u in T are included in u’s own interval. Similarly,
the intervals of all the descendants of u′ are included in u′’s interval . Therefore,
intervals of all the descendants of u are disjoint from the intervals of u′ and all
its descendants. By inductively applying the above argument to every adjacent
pair of nodes in childrenDl(v) starting from u′ to w, it is easy to show that the
subtrees of any two children of a node have disjoint intervals.

Lemma 4. For any two children u,w of some node v in T , every simple path
in G from some node in the subtree of u to any node in the subtree of w in T
goes through either v or v’s ancestors.

u

v

u’

w

w’

root

(a) Case 1:path through a de-
scendant of a sibling of u.

u

v

u’

w

w’

root

(b) Case 2: path through a de-
scendant of a sibling of an an-
cestor of u and w

Fig. 1. Figure for proof of lemma 4

Proof. Let u′ be some node in the subtree of u and w′ be some node in the
subtree of w. Let us assume, by way of contradiction, that there is a simple path
P in G between u′ and w′ that does not go through v or v’s ancestors. There
are two possibilities:

– P goes through a descendant of a sibling of u (possibly w).
– or, it goes through a descendant of a sibling of an ancestor (possibly v) of u

and w.

Both these cases require an edge to exist in G that connects a pair of nodes in
two sibling subtrees, known as a cross edge [15]. By lemma 3, the intervals of
all the nodes in the subtree of some node x are disjoint from the intervals of all
the nodes in the subtree of a sibling of x. Thus, the existence of any such edge
in G is ruled out by predicate 2 of Section 3.2.3.

Distributed Verification and Self-stabilization of DFS 335

Observation 3 The proof of Lemma 4 shows that there are no cross edges in
the input tree T which implies that T is a DFS(not necessarily the first DFS)
tree of G.

Theorem 4. If a graph G(V,E) has every node v ∈ V labeled with its (in, out)
interval and interval assignments are such that all the local interval predicates
(Section 3.2) hold true at every node, then the spanning tree T encoded in a
distributed manner in the states of all the nodes of G is the first DFS tree of G.

Proof. The problem of finding the first DFS Tree of a graph can be thought of
as the one of selecting the lexicographically smallest simple path of every node
v ∈ V out of all the simple paths from the root to v, see [6]. Let PT

v denote the
path leading from the root to some node v in T . We now prove that for any node
v ∈ V , PT

v is the lexicographically smallest among all the simple paths from the
root to v in G. By way of contradiction, let us assume that there is another
simple path PAlt

v from the root to v which is smaller than PT
v . Let us assume,

w.l.o.g., that PT
v and PAlt

v are the same up-to(and including) some node vm, the
mth node of the common prefix. Let vTm+1 and vAlt

m+1 denote the (m+ 1)th node
of PT

v and PAlt
v respectively.

Observation 4 For PAlt
v to be lexicographically smaller than PT

v , the edge index
(as defined in Section 2) αvm(vAlt

m+1) must be smaller than the corresponding
index αvm(vTm+1).

There are three possibilities for PAlt
v based on how vAlt

m+1 is related to vm :

1. vAlt
m+1 is an ancestor of vm: This case is ruled out since any such path will

not be a simple path.
2. vAlt

m+1 is a child of vm: vAlt
m+1 and vTm+1 are both children of vm. According to

lemma 4, there is no simple path from vAlt
m+1 to any node in the subtree of

vTm+1 that does not go through vm or any of its ancestors. Since vTm+1 falls
on PT

v , v belongs to the subtree of vTm+1 in T . Thus, there is no simple path
connecting vAlt

m+1 to v that does not go through vm or its ancestors. The path
from vAlt

m+1 to v that goes through either vm or any of its ancestors would
not be a simple path as in case 1. Therefore, this case is also ruled out.

3. vAlt
m+1 is a descendant which is not a child of vm: This case can be further

subdivided into two sub cases:
(a) vAlt

m+1 is also a descendant of V T
m+1 in addition to being a descendant of

vm: This implies that invalt
m+1

> invT
m+1

. Also, vTm+1 is a child of vm. This

leads to a contradiction due to local interval predicate 6 (Section 3.2.3)
which requires that the edge index of the edge (vm, v

T
m+1) be smaller

than the edge index of the edge (vm, v
Alt
m+1) in alphavm .

(b) vAlt
m+1 is a proper descendant of of vm, but not a descendant of vTm+1 :

This case is similar to that of 2.

Theorem 5. The verifier V described in section 3 runs in one time unit and
requires O(log n) bits of memory per node.

336 S. Kutten and C. Trehan

Proof. The running time of V follows from the fact that each node needs to look
only at the labels of its immediate neighbors in order to compute its predicates.
Every node shares its (in, out) labels with its neighbors. The maximum value of
a label is 2n which can be encoded using O(log n) bits.

The following theorem establishes the correctness and performance of the
marker M:

Theorem 6. There exists a marker that constructs the first DFS tree and as-
signs (in, out) labels to all the nodes of the input graph G(V,E) in time O(n)
using O(log n) bits of memory per node.

Proof. As described in Section 4, it is easy to design a marker that adds new
actions1 to a standard DFS tree construction algorithm for computing the in
and out labels. The standard DFS tree construction algorithm in shared mem-
ory model, without any actions for computing the (in, out) labels has a space
complexity of O(logΔ) bits per node. The variables for updating the (in, out)
labels require O(log n) bits per node. Therefore the overall space complexity of
such a marker is O(logn).

The actions for computing the labels do not change the values of any of
the variables of the original algorithm. Also, these actions do not change the
algorithm’s flow of control. The addition of these actions cannot violate the
correctness of the construction algorithm, nor change its time complexity of
O(n).

It is easy to modify the algorithm such that a node v always picks the unvisited
neighbor with the smallest port number. This ensures that the output of the
algorithm is the first DFS tree of the input graph.

7 Self-stabilizing DFS token circulation

The silent-stabilizingDFStree ofSection5.1 canbe combinedwitha self-stabilizing
mutual exclusion algorithm for tree networks to obtain a self-stabilizing token cir-
culation scheme for general networks with a specified root. Self-stabilizing
mutual exclusion algorithms that circulate a token in the DFS order on a tree
network can be found in [14,24,27]. Petit and Villain presented a space optimal
snap-stabilizing DFS token circulation algorithm for tree networks in [29] with a
waiting time(See [29] for a definition of waiting time) ofO(n). We can combine our
silent-stabilizing DFS tree with the snap stabilizing DFS token circulation protocol
of [29] using the fair composition method [13] to obtain a DFS token circulation for
general networks. The space complexity of [29] is O(logΔ) and that of our silent-
stabilizing DFS tree is O(log n). Therefore the space complexity of the resulting
self-stabilizing DFS token circulation algorithm is O(log n).

Acknowledgements. This research was supported in part by a grant from ISF
and Technion TASP center.
1 Actually, these are just common actions of various versions of non-distributed DFS.

Distributed Verification and Self-stabilization of DFS 337

References

1. Afek, Y., Kutten, S., Yung, M.: The local detection paradigm and its applications
to self-stabilization

2. Awerbuch, B.: A new distributed depth-first-search algorithm. Information Pro-
cessing Letters 20(3), 147–150 (1985)

3. Awerbuch, B., Varghese, G.: Distributed program checking: A paradigm for build-
ing self-stabilizing distributed protocols (extended abstract). In: Proceedings of the
32nd Annual Symposium on Foundations of Computer Science, SFCS, 1991, pp.
258–267. IEEE Computer Society, Washington, DC (1991)

4. Chlamtac, I., Kutten, S.: Tree-based broadcasting in multihop radio networks.
IEEE Transactions on Computers 100(10), 1209–1223 (1987)

5. Cidon, I.: Yet another distributed depth-first-search algorithm. Inf. Process.
Lett. 26(6), 301–305 (1988)

6. Collin, Z., Dolev, S.: Self-stabilizing depth-first search. Information Processing Let-
ters 49(6), 297–301 (1994)

7. Cournier, A., Devismes, S., Petit, F., Villain, V.: Snap-stabilizing depth-first search
on arbitrary networks. Comput. J., 268–280 (2006)

8. Cournier, A., Devismes, S., Villain, V.: A snap-stabilizing DFS with a lower space
requirement. In: Tixeuil, S., Herman, T. (eds.) SSS 2005. LNCS, vol. 3764, pp.
33–47. Springer, Heidelberg (2005)

9. Datta, A.K., Johnen, C., Petit, F., Villain, V.: Self-stabilizing depth-first token
circulation in arbitrary rooted networks. Distrib. Comput. 13(4), 207–218 (2000)

10. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

11. Dolev, S.: Self-stabilization. MIT Press (2000)

12. Dolev, S., Gouda, M.G., Schneider, M.: Memory requirements for silent stabiliza-
tion. Acta Informatica 36(6), 447–462 (1999)

13. Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems assuming
only read/write atomicity. Distrib. Comput. 7(1), 3–16 (1993)

14. Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems assuming
only read/write atomicity. Distrib. Comput. 7(1), 3–16 (1993)

15. Even, S.: Graph Algorithms. W. H. Freeman & Co., New York (1979)

16. Göös, M., Suomela Locally, J.: checkable proofs. In: Proceedings of the 30th Annual
ACM Symposium on Principles of Distributed Computing, PODC 2011, San Jose,
CA, USA, June 6-8, pp. 159–168 (2011)

17. Huang, S.-T., Chen, N.-S.: Self-stabilizing depth-first token circulation on networks.
Distributed Computing 7(1), 61–66 (1993)

18. Johnen, C., Alari, G., Beauquier, J., Datta, A.K.: Self-stabilizing depth-first to-
ken passing on rooted networks. In: Mavronicolas, M. (ed.) WDAG 1997. LNCS,
vol. 1320, pp. 260–274. Springer, Heidelberg (1997)

19. Johnen, C., Beauquier, J.: Space-efficient, distributed and self-stabilizing depth-
first token circulation. In: In Proceedings of the Second Workshop on Self-
Stabilizing Systems, pp. 4–1 (1995)

20. Katz, S., Perry, K.J.: Self-stabilizing extensions for meassage-passing systems. Dis-
tributed Computing 7(1), 17–26 (1993)

21. Korman, A., Kutten, S.: Distributed verification of minimum spanning trees. In:
Proceedings of the Twenty-fifth Annual ACM Symposium on Principles of Dis-
tributed Computing, pp. 26–34. ACM, New York (2006)

338 S. Kutten and C. Trehan

22. Korman, A., Kutten, S., Masuzawa, T.: Fast and compact self stabilizing verifi-
cation, computation, and fault detection of an mst. In: Proceedings of the 30th
Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Com-
puting, PODC 2011, pp. 311–320. ACM, New York (2011)

23. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distributed Comput-
ing 22(4), 215–233 (2010)

24. Petit, F.: Highly space-efficient self-stabilizing depth-first token circulation for
trees. In: Lengauer, C., Griebl, M., Gorlatch, S. (eds.) Euro-Par 1997. LNCS,
vol. 1300, pp. 47647–47649. Springer, Heidelberg (1997)

25. Petit, F.: Fast self-stabilizing depth-first token circulation. In: Datta, A.K., Her-
man, T. (eds.) WSS 2001. LNCS, vol. 2194, pp. 200–215. Springer, Heidelberg
(2001)

26. Petit, F., Villain, V.: Color optimal self-stabilizing depth-first token circulation.
In: ISPAN, pp. 317–323. IEEE Computer Society (1997)

27. Petit, F., Villain, V.: Optimality and self-stabilization in rooted tree networks.
Parallel Processing Letters 10(01), 3–14 (2000)

28. Petit, F., Villain, V.: Self-stabilizing depth-first token circulation in asynchronous
message-passing systems. Computers and Artificial Intelligence 19(5) (2000)

29. Petit, F., Villain, V.: Optimal snap-stabilizing depth-first token circulation in tree
networks. Journal of Parallel and Distributed Computing 67(1), 1–12 (2007)

30. Stomp, F.A.: Structured design of self-stabilizing programs. In: Proceedings of the
2nd Israel Symposium on the Theory and Computing Systems, pp. 167–176 (June
1993)

31. Varghese, G., Jayaram, M.: The fault span of crash failures. Journal of the
ACM 47(2), 244–293 (2000)

Loosely-Stabilizing Leader Election on Arbitrary

Graphs in Population Protocols

Yuichi Sudo1,2, Fukuhito Ooshita2,
Hirotsugu Kakugawa2, and Toshimitsu Masuzawa2

1 NTT Secure Platform Laboratories
3-9-11 Midori-cho, Musashino, Tokyo, 180-8585, Japan

sudo.yuichi@lab.ntt.co.jp
2 Graduate School of Information Science and Technology, Osaka University

1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
{y-sudou,f-oosita,kakugawa,masuzawa}@ist.osaka-u.ac.jp

Abstract. In the population protocol model Angluin et al. proposed in
2004, there exists no self-stabilizing protocol that solves leader election
on complete graphs without knowing the exact number of nodes. To cir-
cumvent the impossibility, we previously introduced the concept of loose-
stabilization, which relaxes the closure requirement of self-stabilization.
A loosely-stabilizing protocol guarantees that starting from any initial
configuration a system reaches a loosely-safe configuration, and after
that, the system keeps its specification (e.g. the unique leader) not for-
ever, but for a sufficiently long time. Our previous work presented a
loosely-stabilizing protocol that solves the leader election on complete
graphs using only the upper bound N of n, not the exact value of n. We
take this work one step further in this paper: We propose two loosely-
stabilizing protocols that solve leader election for arbitrary graphs. One is
a deterministic protocol that uses the identifiers of nodes while the other
is a probabilistic protocol that works on anonymous networks. Given the
upper bounds N and Δ of the number of nodes and the maximum degree
of nodes respectively, both protocols keep a unique leader for Ω(NeN)
expected steps after entering a loosely-safe configuration. The former
enters a loosely-safe configuration within O(mΔN log n) expected steps
while the latter does within O(mΔ2N3 logN) expected steps where m
is the number of edges of the graph.

Keywords: Loose-stabilization, Population protocols, Leader election.

1 Introduction

The population protocol (PP) model, which was presented by Angluin et al.[1],
represents wireless sensor networks of mobile sensing devices that cannot control
their movement. Two devices (say agents) communicate with each other only
when they come sufficiently close to each other (we call this event an interaction).
One example represented by this model is a flock of birds where each bird is
equipped with a sensing device with a small transmission range; each device

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 339–354, 2014.
c© Springer International Publishing Switzerland 2014

340 Y. Sudo et al.

can communicate with another device only when the corresponding birds come
sufficiently close to each other. This unique but meaningful model has attracted
broad attention, and there have been numerous studies involving it.

Self-stabilizing leader election (SS-LE) requires that starting from any con-
figuration, a system (say population) reaches a safe-configuration in which a
unique leader is elected, and after that, the population has the unique leader
forever. Self-stabilizing leader election is important in the PP model because
(i) many population protocols in the literature work on the assumption that a
unique leader exists [1,2,3], and (ii) self-stabilization tolerates any finite num-
ber of transient faults and this property suits systems consisting of numerous
cheap and unreliable nodes. (Such systems are the original motivation of the
PP model.) However, there exists strict impossibility of SS-LE in the PP model:
no protocol can solve SS-LE for complete graphs, arbitrary graphs, trees, lines,
degree-bounded graphs and so on unless the exact size of the graph (the num-
ber of agents n) is available [3]. This impossibility holds even if we strengthen
the PP model by assigning unique identifies to agents, allowing agents to use
random numbers, introducing memory of communication links (mediated pop-
ulation protocols [10]), or allowing more than two agents (k agents) to interact
at the same time (the PPk model [5]).

Accordingly, many studies of SS-LE took either one of the following two ap-
proaches. One approach is to accept the assumption that the exact value of n
is available and focus on the space complexity of the protocol. Cai et al. [6]
proved that n states of each agent is necessary and sufficient to solve SS-LE for
a complete graph of n agents. Mizoguchi et al.[12] and Xu et al.[14] improved the
space-complexity by adopting the mediated population protocol model and the
PPk model respectively. The other approach is to use oracles, a kind of failure
detectors. Fischer and Jiang [8] took this approach for the first time. They intro-
duced oracle Ω? that informs all agents whether at least one leader exists or not
and proposed two protocols that solve SS-LE for rings and complete graphs by
using Ω?. Beauquier et al.[4] presented an SS-LE protocol for arbitrary graphs
that uses two copies of Ω?. Canepa et al.[7] proposed two SS-LE protocols that
use Ω? and consume only 1 bit of each agent: one is a deterministic protocol for
trees and the other is a probabilistic protocol for arbitrary graphs although the
position of the leader is not static and moves among the agents.

Our previous work [13] took another approach to solve SS-LE. We introduced
the concept of loose-stabilization, which relaxes the closure requirement of self-
stabilization: we allow protocols to deviate from the specification after following
it for a sufficiently long time. Concretely, starting from any initial configura-
tion, the population must reach a loosely-safe configuration within a relatively
short time; after that, the specification of the problem (the unique leader) must
be kept for a sufficiently long time, though not forever. We then proposed a
loosely-stabilizing protocol that solves leader election on complete graphs using
only an upper bound N of n, not using the exact value of n. Starting from any
configuration, the protocol enters a loosely-safe configuration within O(nN logn)

Loosely-Stabilizing Leader Election on Arbitrary Graphs 341

expected steps. After that, the unique leader is kept for Ω(NeN) expected steps.
Since the specification is kept for an exponentially long time, we can say this
loosely-stabilizing protocol is practically equivalent to a self-stabilizing leader
election protocol. Furthermore, this protocol works on any complete graph whose
size is no more than N while protocols using the exact value of n work only on
the complete graph of size n.

Some works on population protocols assume the probabilistic distribution re-
garding the interactions of agents: any interaction occurs uniformly at random
[1,2,13]. This assumption have been used partly for evaluating the time com-
plexity of protocols. We also adopt this assumption because the measure of time
is crucial in the concept of loose-stabilization.

1.1 Our Contribution

In this paper, we consider loosely-stabilizing leader election for arbitrary undi-
rected graphs. We adopt two settings: the population with agent-identifiers as
in [9] 1 and the population in which agents can use random numbers for state-
transition as in [7]. As mentioned above, no self-stabilizing protocol can solve
SS-LE for arbitrary graphs, even in these settings, unless the exact value of n is
available. For each setting, we propose two protocols PID and PRD respectively.
To elect the unique leader, we take “the minimum ID selection” approach for
PID utilizing the identifiers of agents while we take a novel approach we call
“virus war mechanism” for PRD utilizing random numbers.

Given upper bounds N of n and Δ of the maximum degree of nodes, both
protocols keep the unique leader for Ω(NeN) expected steps after entering a
loosely-safe configuration. Protocol PID enters a loosely-safe configuration within
O(mNΔ log n) expected steps while PRD does within O(mN3Δ2 logN) expected
steps where m is the number of edges of the graph. Both protocols consume
only O(logN) bits of each agent’s memory. We can say this space complexity is
small because even space optimal self-stabilizing protocols that use exact value
of n consume O(log n) bits of each agent[6,12]. For simplicity, our protocols are
presented for undirected graphs. However, they work on directed graphs with
slight modification which is discussed in the conclusion.

Angluin et al.[1] proves that for any population protocol P working on com-
plete graphs, there exists a protocol that simulates P on any arbitrary graph.
However, this simulation can be achieved assuming that all the agents have the
common initial states at the start of the execution. Since we cannot assume
the specific initial states (This is the essence of self-stabilization), we cannot
translate our previous loosely-stabilizing algorithm[13] for complete graphs to a
loosely-stabilizing algorithm that works for arbitrary graphs.

1 Strictly speaking, our model with identifiers is stronger than the model in [9]. We
use identifiers to compare their values while Guerraoui et al.[9] only allow equality-
test of identifiers and prohibited any other calculation of identifiers such as value-
comparing.

342 Y. Sudo et al.

2 Preliminaries

This section defines the model we consider for this paper. The model includes
both agent-identifiers and random numbers while protocols PID and PRD use
only one of them. In what follows, we denote set {z ∈ N | x ≤ z ≤ y} by [x, y].

A population is a simple and weakly-connected directed graph G(V,E, id)
where V (|V | ≥ 2) is a set of agents, E ⊆ V × V is a set of directed edges
and id defines unique identifiers of agents. Each edge represents a possible
interactions (or communication between two agents): If (u, v) ∈ E, agents
u and v can interact with each other where u serves as an initiator and v
serves as a responder. Each agent v has the unique identifier id(v) ∈ I (I =
[0, idmax], idmax ∈ O(nc) for constant c). We say that G is undirected if it sat-
isfies (u, v) ∈ E ⇔ (v, u) ∈ E. We define n = |V | and m = |E|.

A protocol P (Q, Y, I, R, T,O) consists of a finite set Q of states, a finite set
Y of output symbols, a set of possible identifiers I, a range of random numbers
R ⊂ N, transition function T : (Q × I) × (Q × I) × R → Q × Q, and output
function O : (Q × I) → Y . When an interaction between two agents occurs, T
determines the next states of the two agents based on the current states of the
agents, identifiers of the two agents, and a random number r ∈ R generated at
each interaction. The output of an agent is determined by O: the output of agent
v with state q ∈ Q is O(q, id(v)). We assume that the set of possible identifiers
I is a given parameter and not subject to protocol design.

A configuration is a mapping C : V → Q that specifies the states of all the
agents. We denote the set of all configurations of protocol P by Call(P). We say
that configuration C changes to C′ by interaction e = (u, v) and integer r ∈ R,

denoted by C
e,r→ C′, if we have (C′(u), C′(v)) = T (C(u), id(u), C(v), id(v), r) and

C ′(w) = C(w) for all w ∈ V \ {u, v}. A scheduler determines which interaction
occurs at each time. In this paper, we consider a uniformly random scheduler
Γ = Γ0, Γ1, . . . : each Γt ∈ E is a random variable such that Pr(Γt = (u, v)) =
1/m for any t ≥ 0 and any (u, v) ∈ E. We also define the random number
sequence as Λ = R1, R2, . . . : each number Rt ∈ R is a random variable such that
Pr(Rt = r) = 1/|R| for any t ≥ 0 and r ∈ R. Given an initial configuration C0,
Γ , and Λ, the execution of protocol P is defined as ΞP (C0, Γ, Λ) = C0, C1, . . .

such that Ct
Γt,Rt→ Ct+1 for all t ≥ 0. We denote ΞP (C0, Γ, Λ) simply by ΞP (C0)

when no misunderstanding can arise.
The leader election problem requires that every agent should output L or F

which means “leader” or “follower” respectively. We say that a finite or infi-
nite sequence of configurations ξ = C0, C1, . . . preserves a unique leader, de-
noted by ξ ∈ LE , if there exists v ∈ V such that O(Ct(v), id(v)) = L and
O(Ct(u), id(u)) = F for any t ≥ 0 and u ∈ V \ {v}. For ξ = C0, C1, . . . ,
the holding time of the leader HT(ξ,LE) is defined as the maximum t ∈ N
that satisfies (C0, C1, . . . , Ct−1) ∈ LE . We define HT(ξ,LE) = 0 if C0 /∈ LE .
We denote E[HT(ΞP (C),LE)] by EHTP (C,LE). Intuitively, EHTP (C,LE) is
the expected number of interactions for which the population keeps the unique
leader after protocol P starts from configuration C. For configuration sequence

Loosely-Stabilizing Leader Election on Arbitrary Graphs 343

ξ = C0, C1, . . . and a set of configurations C, we define convergence time CT(ξ, C)
as the minimum t ∈ N that satisfies Ct ∈ C. We define CT(ξ, C) = |ξ| if Ct /∈ C
for any t ≥ 0, where |ξ| is the length of ξ. We denote E[CT(ΞP (C), C)] by
ECTP (C, C). Intuitively, ECTP (C, C) is the expected number of interactions by
which the population enters a configuration in C after P starts from C.

Definition Protocol P (Q, Y, I, R, T,O) is an (α, β)-loosely-stabilizing leader
election protocol if there exists set S of configurations satisfying two inequali-
ties maxC∈Call(P) ECTP (C,S) ≤ α and minC∈S EHTP (C,LE) ≥ β.

2.1 Chernoff Bounds

In this section, we quote the three variants of Chernoff bounds [11] used in
several proofs of this paper.

Lemma 1 (from Eq. (4.2) in [11]). The following inequality holds for any
binomial random variable X:

Pr(X ≥ 2E[X]) ≤ e−E[X]/3.

Lemma 2 (from Eq. (4.5) in [11]). The following inequality holds for any
binomial random variable X:

Pr(X ≤ E[X]/2) ≤ e−E[X]/8.

Lemma 3 (from Eq. (4.5) in [11]). The following inequality holds for any
binomial random variable X:

Pr(X ≤ E[X]/4) ≤ e−9E[X]/32.

3 Leader Election with Identifiers

This section presents loosely-stabilizing leader election protocol PID, which works
on arbitrary undirected graphs with unique identifiers of agents (Protocol 1). In
the protocol description, we regard a state of agents as a collection of variables
(e.g. timer), and denote a transition function as pseudo code that updates vari-
ables of initiator x and responder y. We denote the value of variable var of agent
v ∈ V by v.var. We also denote the value of var in state q ∈ Q by q.var.

This protocol elects the agent with the minimum identifier, denoted by vmin,
as the leader. Each agent v tries to find the minimum identifier and stores it
on v.lid. At interaction, two agents x and y compare their lid and store the
smaller value on their lid (Lines 3 and 6), by which the smallest identifier
id(vmin) eventually spreads to all the agents. Then, after some point, vmin is
the unique leader because output function O makes only agents v satisfying
id(v) = v.lid output L and other agents output F .

344 Y. Sudo et al.

Protocol 1. Leader Election with Identifiers PID

Variables of each agent:

lid ∈ I , timer ∈ [0, tmax]

Output function O:

if v.lid = id(v) holds, then the output of agent v is L; Otherwise, F .

Interaction between initiator x and responder y:

1: if x.lid > id(x) then x.lid ← id(x) endif
2: if x.lid < y.lid then
3: y.lid ← x.lid
4: x.timer ← y.timer ← max(x.timer− 1, 0)
5: else if x.lid > y.lid then
6: x.lid ← y.lid
7: x.timer ← y.timer ← max(y.timer− 1, 0)
8: else // x.lid = y.lid at this time
9: x.timer ← y.timer ← max(x.timer− 1, y.timer− 1, 0)
10: end if
11: if id(x) = x.lid or id(y) = y.lid then // a leader resets timers
12: x.timer ← y.timer ← tmax

13: else if x.timer = 0 then // a new leader is created at timeout
14: x.lid ← y.lid ← min(id(x), id(y))
15: x.timer ← y.timer ← tmax

16: end if

However, in the initial configuration, some agents may have false identifiers (or
the integers that are not identifiers of any agent in the population) on lid. A false
identifier may spread to the population instead of id(vmin) if it is smaller than
id(vmin). We define ID = {id(v) | v ∈ V }, which is the correct identifiers set
(Note that ID ⊆ I). Protocol PID removes false identifiers i /∈ ID from lid of
all the agents by the timeout mechanism. Specifically, if x.lid �= y.lid, we take
the timer value of the agent with smaller lid, decrease it by one, and substitute
the decreased value into x.lid and y.lid (Lines 4 and 7). If x.lid = y.lid, we
take the larger value of x.timer and y.timer, decrease it by one, and substitute
the decreased value into x.lid and y.lid (Line 9). We call this event larger value
propagation. If x or y is a leader, both timers are reset to tmax (Line 12). We call this
event timer reset. When a timer becomes zero, agents x and y suspect that there
exists no leader in the population. In this case, they elect the one with a smaller
identifier as a leader by substituting min(id(x), id(y)) into x.lid and y.lid (Line
14). We call this event timeout. Agents with false identifiers never experience timer
reset; thus, their timers keep on decreasing. Hence, timeout eventually occurs and
their lids satisfy lid ∈ ID. This mechanism rarely ruins the stability of the unique
leader because agents with lid ∈ ID keep high value timers because of timer reset
and lager value propagation.

ComplexityAnalysis Theupper bound tmax of variable timer is the only parameter
of PID, which affects the correctness and complexities of the protocol. We assume
tmax ≥ 8δmax(d, 2 + logn) where δ is the maximum degree of the agents and

Loosely-Stabilizing Leader Election on Arbitrary Graphs 345

d is the diameter of population G. (Note that δ is an even number because G is
undirected.) We prove the following equations under this assumption:

maxC∈Call
ECTPID(C,Sid) = O(mδτ logn), (1)

minC∈Sid
EHTPID(C,LE) = Ω(τeτ), (2)

where τ = tmax/(8δ) and Sid is the set of configurations in which v.lid =
id(vmin) and v.timer > tmax/2 hold for all v ∈ V and vmin.timer = tmax holds.
When upper bounds N of n and Δ of δ are available and we assign tmax = 8NΔ,
protocol PID is an (O(mΔN logn), Ω(NeN))-loosely-stabilizing leader election
protocol.

First, we analyze the expected holding time. Let C0 ∈ Sid and ΞPID(C0) =
C0, C1, To prove (2), it suffices to show that both C0, . . . , C2mτ ∈ LE and
C2mτ ∈ Sid hold with probability at least psuc = 1 − O(ne−τ). Then, we have
minC0∈Sid

EHTPID(C0,LE) ≥ 2mτ/(1 − psuc) = Ω(τeτ).

Lemma 4. The probability that every v ∈ V joins only less than tmax/2 inter-
actions among Γ0, . . . , Γ2mτ−1 is at least 1 − ne−τ .

Proof. For any v ∈ V and t ≥ 0, v joins interaction Γt with probability at
most δ/m. Thus, the number of interactions v joins during the 2mτ interactions
is bounded by binomial random variable X ∼ B(2mτ, δ/m). Applying a variant
of Chernoff bound (Lemma 1), we have

Pr(X ≥ tmax/2) = Pr(X ≥ 2E[X]) ∵ tmax = 8δτ

≤ e−E[X]/3

= e−2δτ/3 (By Chernoff Bound of Lemma 1)

≤ e−τ . ∵ δ ≥ 2

Summing up the probabilities for all v ∈ V gives the lemma. ��

Lemma 5. Let C0 ∈ Llid and ΞPID(C0) = C0, C1, Then, we have the fol-
lowing inequality:

Pr(∀v ∈ V, C2mτ (v).timer > tmax/2) ≥ 1 − 2ne−τ .

Proof. It suffices to show Pr(C2mτ (v).timer > tmax/2) ≥ 1 − 2e−τ for any
agent v ∈ V . We denote the shortest path from vmin to v by (v0, v1, . . . , vk)
where v0 = vmin, vk = v, 0 ≤ k ≤ d and (vi−1, vi) ∈ E for all i = 1, . . . , k.
For any t ∈ [0, 2mτ], we define vhead(t) as vl with maximum l ∈ [1, k] such
that there exist t1, t2, . . . , tl satisfying 0 ≤ t1 < t2 < · · · < tl < t and Γti ∈
{(vi−1, vi), (vi, vi−1)} for i = 1, 2, . . . , l. We define vhead(t) = v0 if such l does
not exist. Intuitively, vhead(t) is the head of the agents in path (v0, v1, . . . , vk) to
which a large timer value is propagated from vmin. (Remember that vmin resets
the timers to tmax.) We define J(t) as the number of integers i ∈ [0, t] such that
vhead(i) joins interaction Γi. Intuitively, J(t) is the number of interactions that

346 Y. Sudo et al.

the head agent joins among Γ0, . . . , Γt. Obviously, we have Ct(vhead(t)).timer ≥
tmax − J(t) for any t ≥ 0.

In what follows, we prove Pr(vhead(2mτ) = v) ≥ 1 − e−τ and Pr(J(2mτ) <
tmax/2) ≥ 1 − e−τ , which give Pr(C2mτ (v).timer > tmax/2) ≥ 1 − 2e−τ . For
any i ∈ [1, k], a pair vi−1 and vi interacts with probability 2/m at each in-
teraction. Hence, we can say each interaction makes vhead forward with prob-
ability 2/m. Therefore, by letting Z be a binomial random variable such that
Z ∼ B(2mτ, 2/m), we have

Pr(vhead(t) = v) = 1 − Pr(Z < k)

≥ 1 − Pr(Z < d)

≥ 1 − Pr

(
Z <

1

4
·E[Z]

)
∵ d ≤ τ =

1

4
· E[Z]

≥ 1 − e−9E[Z]/32 (By Chernoff bound of Lemma 3)

> 1 − e−τ .

The probability that vhead(t) joins interaction Γt is at most δ/m regardless of t.
Hence, by letting Z ′ be a binomial random variable such that Z ′ ∼ B(2mτ, δ/m),
we have

Pr(J(2mτ) < tmax/2) > 1 − Pr(Z ′ ≥ tmax/2)

= 1 − Pr(Z ′ ≥ 2E[Z ′])

> 1 − e−E[Z′]/3 (By Chernoff bound of Lemma 1)

= 1 − e−2δτ/3

> 1 − e−τ . ∵ δ ≥ 2

Thus, we have shown Pr(C2mτ (v).timer > tmax/2) ≥ 1 − 2e−τ . ��

Lemma 6. minC∈Sid
EHTPID(C,LE) = Ω(τeτ).

Proof. We have C0, . . . , C2mτ ∈ LE and C2mτ ∈ Sid if C0 ∈ Sid holds, no
timeout happens, and any agent interacts at most tmax/2 times during 2mτ
interactions. Hence, probability psuc discussed in the beginning of this section is
at least 1 − 3ne−τ by Lemmas 4 and 5, which leads to the lemma. ��

Next, we analyze the expected convergence time. To prove (1), we define two
sets of configurations: Clid = {C ∈ Call(PID) | ∀v ∈ V,C(v).lid ∈ ID} and
Llid = Clid ∩ {C ∈ Call(PID) | C(vmin).lid = id(vmin) ∧ C(vmin).timer = tmax}.

Lemma 7. maxC∈Call(PID) ECTPID(C, Clid) = O(mδτ logn).

Proof. Let z be the maximum value of v.timer such that v.lid /∈ ID. This z
decreases by one every time all interactions of E occur. Thus, it takes at most
m
m + m

m−1 + . . . m1 ≤ m(1 + logm) expected steps to decrease z by one. Hence,
maxC∈Call(PID) ECTPID(C, Clid) ≤ tmaxm(1 + logm) = O(mδτ log n). ��

Loosely-Stabilizing Leader Election on Arbitrary Graphs 347

Lemma 8. maxC∈Clid
ECTPID(C,Llid) = O(m).

Proof. We have vmin.lid = id(vmin) and vmin.timer = tmax just after vmin

interacts in any configuration of Clid. This takes O(m) expected interactions. ��

Lemma 9. maxC∈Llid
ECTPID(C,Sid) = O(mτ).

Proof Sketch. Let C0 ∈ Llid and ΞPID(C0) = C0, C1, By similar argument
to Lemmas 4 and 5, we can prove Pr(C2mτ ∈ Sid) > 1 − 2ne−τ . Since C ∈ Llid

cannot change to D /∈ Llid, we have maxC∈Llid
ECTPID(C,Sid) ≤ 2mτ + 3ne−τ ·

maxC∈Llid
ECTPID(C,Sid). Solving this inequality gives the lemma. ��

The following lemma immediately follows from Lemmas 7, 8, and 9.

Lemma 10. maxC∈Call(PID) ECTPID(C,Sid) = O(mδτ logn).

Lemmas 6 and 10 gives the following theorem.

Theorem 1 Protocol PID is a (O(mδτ logn), Ω(τeτ)) loosely-stabilizing leader
election protocol for arbitrary graphs when tmax ≥ 8δmax(d, 2 + logn).

Therefore, given upper bound N and Δ of n and δ respectively, we get a
(O(mΔN logn), Ω(NeN)) loosely-stabilizing leader election protocol for arbi-
trary graphs by assigning tmax = 8NΔ.

4 Leader Election with Random Numbers

This section presents loosely-stabilizing leader election protocol PRD. It works
on arbitrary undirected anonymous graphs with a random number generated at
each interaction (Protocol 2). Random numbers are used in Line 11: When the
protocol enters Line 11, the code is executed with probability p = 1/|R|. This is
implemented as the code is executed only when a specific number is generated.
For example, p = 0.01 if we assign R = [0, 99] and treat 0 as a specific number.

Each agent has binary variable DoA ∈ {DEAD,ALIVE} and three timers
timerL, timerV and timerS. The output function defines leaders based on DoA :
agent v is a leader if v is alive (or v.DoA = ALIVE), and a follower if v is dead (or
v.DoA = DEAD). Protocol PRD consists of a timeout mechanism (Lines 1-7) and
a virus-war mechanism (Lines 8-14). By using timerL, the timeout mechanism
creates a leader when it is suspected that no leader exists. By using timerV and
timerS, the virus-war mechanism reduces the number of leaders.

The timeout mechanism is almost the same as PID. By the timer reset and
the larger value propagation, timeout eventually occurs when no leader exists,
and all agents keep high timer values with high probability when one ore more
leaders exist. At timeout, a dead agent becomes a leader (Line 5).

In the virus-war mechanism, each leader tries to kill other leaders by viruses
and become the unique leader. We say that agent v has a virus if v.timerV > 0,
and v wears a (head) shield if v.timerS > 0. A leader creates a new virus with
probability p when it interacts as an initiator (Line 11). When creating a virus,

348 Y. Sudo et al.

Protocol 2. Leader Election with Random Numbers PRD

Variables of each agent:

DoA ∈ {DEAD, ALIVE}, timerL ∈ [0, tmax], timerV ∈ [0, tvirus], timerS ∈ [0, tshld]

Output function O:

if v.DoA = ALIVE holds, then the output of agent v is L, otherwise F .

Interaction between initiator x and responder y:

1: x.timerL ← y.timerL ← max(x.timerL − 1, y.timerL − 1, 0)
2: if x.DoA = ALIVE or y.DoA = ALIVE then
3: x.timerL ← y.timerL ← tmax // a leader resets timer
4: else if x.timerL = 0 then // a new leader is created at timeout
5: x.DoA ← ALIVE
6: x.timerL ← y.timerL ← tmax

7: end if
8: x.timerV ← y.timerV ← max(x.timerV − 1, y.timerV − 1, 0)
9: x.timerS ← max(0, x.timerS − 1)
10: if x.DoA = ALIVE then
11: Execute (x.timerV ← tvirus, x.timerS ← tshld) with probability p

// An alive initiator creates a new virus and a new shield with probability p.
12: end if
13: if x.timerV > 0 and x.timerS = 0 then x.DoA ← DEAD endif
14: if y.timerV > 0 and y.timerS = 0 then y.DoA ← DEAD endif

the agent wears a shield so as not to be killed by the new virus (Line 11). A virus
spreads among agents by interactions (Line 8), and an agent is killed when it
has a virus without a shield (Lines 13-14). A virus has TTL (time to live), which
is memorized on timerV and decreased by one at each interaction of its owner
(line 8). When timerV becomes zero, the virus vanishes and looses the ability to
kill agents. A shield also has TTL, which is memorized on timerS and decreased
by one at each interaction of its owner (Line 9). When timerS becomes zero, the
shield vanishes and looses the ability to protect its owner from viruses.

The virus-war mechanism correctly works if p is sufficiently small and tshld
is sufficiently greater than tvirus. Consider the case multiple leaders exist. Since
p is small, all viruses and shields eventually vanishes. After that, some agent
eventually creates a new virus and shield. The created virus kills all other agents
unless some of them also create a new virus and shield before the virus reaches
them. Since p is sufficiently small, the probability of the latter is small. Thus,
the unique leader is elected within a relatively short time. Even after that, the
unique leader keeps on creating new viruses, each of which may kill the leader.
However, the leader is not killed for an extremely long time: since tshld � tvirus,
the leader’s shield rarely vanishes before all viruses vanish from the population.

Complexity Analysis We have four parameters in PRD: three upper bounds
tmax, tvirus, and tshld of the timers, and probability p. We assume tvirus =
tmax/2, tmax ≥ 8δmax(d, 2 + log(13nδ�logn�)), tshld ≥ 2δtmax�logn� and p ≤

Loosely-Stabilizing Leader Election on Arbitrary Graphs 349

(4mtshld)
−1. We prove the following equations under this assumption:

maxC∈Call
ECTPRD(C,SRD) = O(mp−1), (3)

minC∈SRD EHTPRD(C,LE) = Ω(τeτ), (4)

where τ = tmax/(8δ) and SRD is the set of configurations we define later. When
upper bounds N and Δ are available and we assign tmax = 8NΔ, tshld =
2Δtmax�logN� and p = (4N2tshld)

−1 (i.e., R = [0, 4N2tshld − 1]), then PRD

is an (O(mΔ2N3 logN), Ω(NeN))-loosely-stabilizing leader election protocol.
Before proving equations (3) and (4), we define five sets of configurations:

Ghalf = {C ∈ Call(PRD) | ∃v ∈ V, C(v).DoA = ALIVE ∧ C(v).timerS > tshld/2},
Vclean = {C ∈ Call(PRD) | ∀v ∈ V, C(v).timerV = 0},
Lhalf = {C ∈ Call(PRD) | #L(C) ≥ 1 ∧ ∀v ∈ V, C(v).timerL > tmax/2},
Lone = {C ∈ Call(PRD) | #L(C) = 1},
SRD = (Ghalf ∪ Vclean) ∩ Lhalf ∩ Lone,

where #L(C) denotes the number of leaders in configuration C. Note that Ghalf

requires that not all agents but at least one leader has timerS more than tshld/2.
First, we analyze the expected holding time. Let C0 ∈ SRD and ΞPRD(C0) =

C0, C1, To prove (4), it suffices to show that both C0, . . . , C8mδτ�logn� ∈ LE
and C8mδτ�logn� ∈ SRD hold with probability no less than psuc = 1−O(nδ logn ·
e−τ). Then, minC0∈SRD EHTPRD(C0,LE) ≥ 8mδτ�logn�τ/(1 − psuc) = Ω(τeτ).

We define two predicates PROPi and HALFi for any i ≥ 0: PROPi = 1 if
C2mτ(i+1)(v).timerL > ti − tmax/2 for all v ∈ V , otherwise PROPi = 0, where
ti = maxv∈V C2mτi(v); HALFi = 1 if every agent joins only less than tmax/2
interactions among Γ2mτi, . . . , Γ2mτ(i+1)−1, otherwise HALFi = 0. Intuitively,
PROPi = 1 means the maximum value of timerL propagates to all the agents
well during the 2mτ interactions, and HALFi = 1 means every agent does not
interact so much during the 2mτ interactions.

Lemma 11. Let C0 ∈ SRD and ΞPRD(C0) = C0, C1, Then, we have both
C0, . . . , C8mδτ�log n� ∈ LE and C8mδτ�log n� ∈ SRD if the following conditions
hold:
(A) #L(Ct) ≥ 1 for all t = 0, . . . , 8mδτ�logn�,
(B) C8mδτ�log n� ∈ Ghalf ∪ Vclean,
(C) PROPi = 1 for all i = 0, . . . , 4δ�logn� − 1, and
(D) HALFi = 1 for all i = 0, . . . , 4δ�logn� − 1.

Proof. We have C2mτi(v).timerL > tmax/2 for any i ∈ [0, 4δ�logn�] from (A)
and (C). Since no agent interacts more than tmax/2 times among each 2mτ inter-
actions (i.e. (D)), timeout does not occur at any interaction Γ0, . . . , Γ8mδτ�log n�−1,
by which we obtain C0, . . . , C8mδτ�logn� ∈ LE . We also obtain C8mδτ�log n� ∈
Lhalf ∩ Lone ∩ (Ghalf ∪ Vclean) = SRD from above discussion and (B). ��

Lemma 12. The probability that every agent joins only less than tshld/2 inter-
actions as an initiator among Γ0, . . . , Γ8mδτ�logn�−1 is at least 1 − ne−δτ .

350 Y. Sudo et al.

Proof. For any v ∈ V and t ≥ 0, v joins interaction Γt as an initiator with
probability at most δ/(2m) since v has at most δ/2 outgoing edges. Thus, the
number of interactions v joins as an initiator during the 8mδτ�logn� interactions
is bounded by binomial random variable X ∼ B(8mδτ�log n�, δ/(2m)). We have

Pr(X ≥ tshld/2) ≤ Pr(X ≥ 8δ2τ�logn�) ∵ tshld ≥ 16δ2τ�logn�
= Pr(X ≥ 2E[X])

≤ e−E[X]/3 (By Chernoff Bound of Lemma 2)

= e−4δ2τ�logn�/3

= e−δτ .

Summing up these probabilities gives the lemma. ��

Lemma 13. Let C0 ∈ SRD and ΞPRD(C0) = C0, C1,
Then, we have Pr(∀t ∈ [0, 8mδτ�logn� − 1], #L(Ct) ≥ 1) ≥ 1 − ne−δτ .

Proof. By Lemma 12, it suffices to show that #L(Ct) ≥ 1 holds for all t ∈
[0, 8mδτ�logn�] when we assume every agent joins only less than tshld/2 inter-
actions as an initiator among Γ0, . . . , Γ8mδτ�logn�−1. Since C0 ∈ SRD, we have
C0 ∈ Ghalf∪Vclean. If C0 ∈ Ghalf , there exists a leader v such that C0(v).timerS >
tshld/2. By the assumption, v decrease its timerS by at most tshld/2; thus, v is
never killed and remains a leader in C0, . . . , C8mδτ�logn�. If C0 ∈ Vclean, no leader
is killed before a new virus is created. Even if some leader u creates a new virus
at interaction Γt (0 ≤ t < 8mδτ�log n�), u wears a new shield at the same time.
Hence, u remains a leader in Ct, . . . , C8mδτ�log n� by the assumption. ��

We define the first round time RTΓ (1) as the minimum t satisfying ∀e ∈
E, 0 ≤ ∃t′ ≤ t, Γt′ = e. For any i ≥ 2, we define the i-th round time RTΓ (i)
as the minimum t satisfying ∀e ∈ E, RTΓ (i − 1) < ∃t′ ≤ t, Γt′ = e. Lemma 15
bounds RTΓ (i) from above with high probability. To prove the lemma, we firstly
prove Lemma 14.

Lemma 14. Let v1, v2, . . . , vl be any l (l < n) agents in V . There exists at least
2l edges of E that are incident to at least one of the l agents.

Proof. Since l < n, there exists agent r ∈ V that differs from any v1, v2, . . . , vl.
Since G is strongly connected, there exists a rooted spanning tree T on G where
r is the root agent of T . Then, every vi (i ∈ [1, k]) has two edges between vi and
the parent agent of vi in T . (Remind that G is undirected, that is, (u, v) ∈ E ⇔
(v, u) ∈ E for any u, v ∈ V .) These edges are mutually exclusive. Thus, we have
2l edges of E that are incident to at least one of the l agents. ��

Lemma 15. Pr(RTΓ (i) < 2im�logn�) ≥ 1 − ne−i/4 holds for any i ≥ 1.

Proof. Each round j (j ≥ 1) finishes when every agent v ∈ V interacts in round
j. Consider the case that k (k ≥ 1) agents have not yet interacted in round j and

Loosely-Stabilizing Leader Election on Arbitrary Graphs 351

only n−k agents have interacted in round j. We call the former uninvolved agents
and the latter involved agents. If k < n, one of the k uninvolved agents joins the
next interaction and becomes an involved agent with probability more than 2k/m
by Lemma 14. If k = n, some uninvolved agent joins the next interaction with
probability 1. Let Xj,k (j ≥ 1, k ≥ 1) be the random variable that corresponds
to the number of trials to the first success in which the success probability of
each trial is 2k/m. From the above discussion, we obtain

Pr(RTΓ (i) ≥ 2im�logn�) ≤ Pr

⎛⎝ i∑
j=1

(
1 +

n−1∑
k=1

Xj,k

)
≥ 2im�logn�

⎞⎠
≤ Pr

⎛⎝n−1∑
k=1

i∑
j=1

Xj,k ≥ 2im�logn� − i

⎞⎠ .
(5)

For binomial random variable Yk ∼ B(� im
k �, 2km), we have Pr(

∑i
j=1Xj,k >

im
k) ≤

Pr(
∑i

j=1Xj,k ≥ � im
k �) ≤ Pr(Yk ≤ i). Hence, we have

Pr

⎛⎝ i∑
j=1

Xj,k >
im

k

⎞⎠ ≤ Pr(Yk ≤ i)

≤ Pr

(
Yk ≤ 1

2
· E[YK]

)
≤ e−E[Yk]/8 (By Chernoff Bound of Lemma 2)

≤ e−i/4.

(6)

From Inequalities (5) and (6), we have

Pr(RTΓ (i) ≥ 2im�logn�) ≤ Pr

⎛⎝n−1∑
k=1

i∑
j=1

Xj,k ≥ 2im�logn� − i

⎞⎠
≤ Pr

⎛⎝n−1∑
k=1

i∑
j=1

Xj,k >
n−1∑
k=1

im

k

⎞⎠
≤

n−1∑
k=1

Pr

⎛⎝ i∑
j=1

Xj,k >
im

k

⎞⎠
≤ ne−i/4,

where
∑n−1

k=1
im
k ≤ im(1 + logn) − i < 2im�logn� − i is used for the second

inequality. Thus, Pr(RTΓ (i) < 2im�logn�) ≥ 1 − ne−i/4 holds. ��

Lemma 16. Let C0 ∈ SRD and ΞPRD(C0) = C0, C1,
Then, we have Pr(C8mδτ�log n� ∈ Ghalf ∪ Vclean) ≥ 1 − 2ne−δτ .

352 Y. Sudo et al.

Proof. Assume that RTΓ (tvirus) < 8mδτ�logn� holds and every agent joins
only less than tshld/2 interactions as an initiator among Γ0, . . . , Γ8mδτ�logn�−1.
These assumptions lead to C8mδτ�logn� ∈ Ghalf ∪ Vclean as follows. If a new
virus is not created among Γ0, . . . , Γ8mδτ�logn�−1, then all viruses in the initial
configuration vanish during the period since each round decreases the maximum
value of timerV by at least one. Thus, C8mδτ�log n� ∈ Vclean holds. If some agent
v creates a new virus at Γt, then v wears a new shield at the same time. Thus,
Ct+1(v).timerS = tshld. Since v interacts as an initiator only less than tshld/2
times among Γt+1, . . . , Γ8mδτ�log n�−1, we have C8mδτ�log n�(v).timerS > tshld/2,
which means C8mδτ�log n� ∈ Ghalf . By tvirus = 4δτ and Lemmas 12 and 15, the

probability that the two assumptions hold is at least 1 − 2ne−δτ . ��

Lemma 17. Pr(PROPi = 1) ≥ 1 − 2ne−τ for any i ≥ 0.

Proof. The same argument as the proof of Lemma 5 gives the lemma. ��

Lemma 18. Pr(HALFi = 1) ≥ 1 − ne−τ for any i ≥ 0.

Proof. Each interaction is independent. Thus, Lemma 4 gives the lemma. ��

Lemma 19. minC∈SRD EHTPRD(C,LE) = Ω(τeτ).

Proof. Probability psuc, discussed in the beginning of this section, is at least
1 − 3ne−δτ − 4δ�logn� · 3ne−τ ≥ 1 − 13nδ�logn�e−τ by Lemmas 11, 13, 16, 17
and 18, which leads to the lemma. ��

Next, we analyze the expected convergence time. We define two sets of con-
figurations: NoVG = {C ∈ Call(PRD) | ∀v ∈ V, C(v).timerV = C(v).timerS = 0}
and L = {C ∈ Call(PRD) | #L(C) ≥ 1}.

Lemma 20. maxC∈Call(PRD) ECTPRD(C,SRD) = O(mp−1).

Proof Sketch. Probability p, with which a leader creates a virus at each in-
teraction, is sufficiently small (p < 1/(4mtshld)). Thus, the probability that all
viruses and shields vanish (i.e. the population enters a configuration of NoVG)
within 2mtshld interactions is at least 1−(2mtshld·p+O(ne−τ)) > 1/2−O(ne−τ).
Even if the reached configuration of NoVG does not have any leader, the timeout
mechanism creates a leader, and the population enters a configuration of NoVG∩
L. This takes less than 16mδτ�logn� interactions with probability 1−O(ne−τ).
After the population enters into NoVG∩L, additional �m/p� interactions create a
new virus with probability 1−e−2. Let v be a leader that creates the virus. Since
v wears a new shield at the same time, v is not killed and remains a leader during
the next 2mτ interactions with probability 1 −O(e−τ). On the other hand, the
virus spreads to all the agents within these 2mτ interactions with probability
1−O(ne−τ), killing all the agents other than v. A leader other than v may create
a new virus during the 2mτ interactions, and survives with a shield. However, this
probability is at most 2mτ · p ≤ 1/4. Hence, v becomes the unique leader within
the 2mτ interactions with probability 3/4−O(ne−τ). After the 2mτ interactions,

Loosely-Stabilizing Leader Election on Arbitrary Graphs 353

all the agents have timerL > tmax/2 with probability 1−O(ne−τ) by the larger
value propagation, and v.timerS > tshld/2 holds with probability 1 − O(ne−τ).
Hence, the population enters a configuration of Lone∩Lhalf ∩Ghalf ⊂ SRD within
the 2mτ interactions with probability 3/4−O(ne−τ). As a result, starting from
any configuration, the population enters into SRD within O(mp−1) interactions
with probability 1/4− e−2 −O(ne−τ) > 0.11− o(1), which gives the lemma. ��

Lemmas 19 and 20 gives the following theorem.

Theorem 2 Protocol PRD is a (O(mp−1), Ω(τeτ)) loosely-stabilizing leader elec-
tion protocol for arbitrary graphs when tmax ≥ 8δmax(d, 2 + log(13nδ�logn�)),
tvirus = tmax/2, tshld ≥ 2δtmax�logn� and p ≤ (4mtshld)

−1.

Therefore, given upper bound N and Δ of n and δ respectively, we get a
(O(mΔ2N3 logN), Ω(NeN)) loosely-stabilizing leader election protocol for ar-
bitrary graphs by assigning tmax = 8NΔ, tvirus = tmax/2, tshld = 2Δtmax�logN�
and p = (4N2tshld)

−1.

5 Conclusion

We have presented two loosely-stabilizing leader election protocols for arbitrary
undirected graphs in the PP model: one works with agent-identifiers and the
other works with random numbers. Both protocols keep a unique leader for an
exponentially long expected time after entering a loosely-safe configuration. The
protocols use only upper bounds N of n and Δ of δ while any self-stabilizing
leader election protocol needs the exact knowledge of n. The restriction of the
protocols to undirected graph is only for simplicity of protocol description and
complexity analysis. The proposed protocols also work on arbitrary directed
graphs with slight modification: it is only necessary that a responder also ex-
ecutes some actions of an initiator (Line 1 of Protocol 1 and Lines 10-12 of
Protocol 2). Our future work is to develop a loosely-stabilizing leader election
protocol without agent-identifiers or random numbers for arbitrary graphs. We
will also tackle with loosely-stabilizing leader election for some classes of graphs
(e.g. rings and trees). We are also interested in the empirical evaluation of the
holding time of loosely-stabilizing protocols. Since our probabilistic evaluation
of the holding time in this paper is not tight, the actual holding time of the
protocols should be much longer. By simulation experiments, we will empirically
evaluate the actual holding time (and convergence time) for various network
sizes and graph topologies.

Acknowledgements. This work was supported by JSPS KAKENHI Grant
Numbers 24500039, 24650012, 25104516, 26280022, and 26330084.

References

1. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distributed Computing 18(4),
235–253 (2006)

354 Y. Sudo et al.

2. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols
with a leader. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 61–75. Springer,
Heidelberg (2006)

3. Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population pro-
tocols. ACM Transactions on Autonomous and Adaptive Systems 3(4), 13 (2008)

4. Beauquier, J., Blanchard, P., Burman, J.: Self-stabilizing leader election in popula-
tion protocols over arbitrary communication graphs. In: Baldoni, R., Nisse, N., van
Steen, M. (eds.) OPODIS 2013. LNCS, vol. 8304, pp. 38–52. Springer, Heidelberg
(2013)

5. Beauquier, J., Burman, J., Rosaz, L., Rozoy, B.: Non-deterministic population
protocols. In: Baldoni, R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012. LNCS,
vol. 7702, pp. 61–75. Springer, Heidelberg (2012)

6. Cai, S., Izumi, T., Wada, K.: How to prove impossibility under global fairness: On
space complexity of self-stabilizing leader election on a population protocol model.
Theory of Computing Systems 50(3), 433–445 (2012)

7. Canepa, D., Potop-Butucaru, M.G.: Stabilizing leader election in population pro-
tocols (2007), http://hal.inria.fr/inria-00166632

8. Fischer, M., Jiang, H.: Self-stabilizing leader election in networks of finite-state
anonymous agents. In: Shvartsman, A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp.
395–409. Springer, Heidelberg (2006)

9. Guerraoui, R., Ruppert, E.: Even small birds are unique: Population protocols with
identifiers. Rapport de Recherche CSE-2007-04, Department of Computer Science
and Engineering, York University, York, ON, Canada (2007)

10. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Mediated population protocols.
Theoretical Computer Science 412(22), 2434–2450 (2011)

11. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press (2005)

12. Mizoguchi, R., Ono, H., Kijima, S., Yamashita, M.: On space complexity of self-
stabilizing leader election in mediated population protocol. Distributed Comput-
ing 25(6), 451–460 (2012)

13. Sudo, Y., Nakamura, J., Yamauchi, Y., Ooshita, F., Kakugawa, H., Masuzawa,
T.: Loosely-stabilizing leader election in a population protocol model. Theoretical
Computer Science 444, 100–112 (2012)

14. Xu, X., Yamauchi, Y., Kijima, S., Yamashita, M.: Space complexity of self-
stabilizing leader election in population protocol based on k-interaction. In: Hi-
gashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M.
(eds.) SSS 2013. LNCS, vol. 8255, pp. 86–97. Springer, Heidelberg (2013)

http://hal.inria.fr/inria-00166632

LCD: Local Combining on Demand�

Dana Drachsler-Cohen and Erez Petrank

Computer Science Department, Technion, Israel
{ddana,erez}@cs.technion.ac.il

Abstract. Combining methods are highly effective for implementing concurrent
queues and stacks. These data structures induce a heavy competition on one or
two contention points. However, it was not known whether combining methods
could be made effective for parallel scalable data structures that do not have a
small number of contention points. In this paper, we introduce local combin-
ing on-demand, a new combining method for highly parallel data structures. The
main idea is to apply combining locally for resources on which threads contend.
We demonstrate the use of local combining on-demand on the common linked-
list data structure. Measurements show that the obtained linked-list induces a low
overhead when contention is low and outperforms other known implementations
by up to 40% when contention is high.

Keywords: Concurrent Data-Structures, Multiprocessors, Synchronization.

1 Introduction

In the era of multi-core architectures, there is a growing need for scalable concurrent
data structures, which are fundamental building-blocks in a wide range of algorithms. A
common approach to design scalable concurrent algorithms is to let each thread execute
as independently as possible of other threads, while making its own progress as fast as
possible. This approach is often highly effective, especially when contention is low.
When resources become contended it is beneficial to consider combining techniques in
which threads help each other to complete operations.

Combining techniques entail overhead and thus one may expect to integrate them
only in highly-contended data structures. Much work follows this guideline and focuses
on techniques designated for data structures which have few contention points, and thus
are contention-prone [1,5,6,7,12,13,18].

We present local combining on-demand (LCD), a combining technique for data
structures with unbounded number of contention points. We show combining con-
tributes even to such data structures for which contention occurs for short periods.

For such data structures, applying one of the general combining techniques (e.g.,
[7,12,13]) often results in a high overhead. General techniques apply combining glob-
ally and involve all threads accessing the data structure. LCD is applied locally, namely
only in contended sections, and does not introduce any overhead to threads access-
ing other sections. This is achieved by applying LCD independently for each resource.
This approach is beneficial for data structures with an unbounded number of contention
points which typically observe contention on small sections.

� This work was supported by the Israeli Science Foundation grant No. 275/14.

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 355–371, 2014.
c© Springer International Publishing Switzerland 2014

356 D. Drachsler-Cohen and E. Petrank

In addition, LCD applies combining on-demand when contention is observed and it
applies the proper combining routine. Examples for combining routines are executing
operations on behalf of other threads, eliminating complementary operations without
affecting the data structure, and notifying threads waiting to lock a resource which has
become irrelevant to their operations due to concurrent updates. Thereby, LCD reduces
the number of accesses to the data structure and the overall waiting time of threads.

We demonstrate the LCD methodology by incorporating it into a fundamental data
structure, the linked-list, for which various concurrent implementations were suggested
(e.g., [8,10,11,20]). The linked-list is a simple data structure that enables us to present
the main challenges and solutions of an LCD design and evaluating its efficiency on
standard workloads. We introduce the LCD-list which is an extension of the lazy-list.
The lazy-list [11] is a lock-based implementation which is arguably the most efficient
and scalable implementation of the linked-list on most workloads. We implemented
the LCD-list in Java and we show it improves the lazy-list performance. While the
application of LCD to data structures whose operations acquire multiple locks is not
trivial, we believe it can be beneficial for other concurrent data structures as well.

We consider one implementation choice as an additional contribution of this work.
We integrated LCD into the Java reentrant lock. A thread acquiring this lock first at-
tempts to obtain it using a single CAS operation. If the attempt succeeds, it usually
implies that contention is low. If this attempt fails, the thread is added to a waiting
queue. LCD is triggered only for threads added to this queue, and thus redundant com-
bining overhead is avoided. Furthermore, LCD leverages the lock queue to detect the
operations to combine. Utilizing one queue for serving threads waiting for the lock and
detecting threads for combining reduces space and maintenance overhead. Measure-
ments show that performance is improved when integrating LCD within the Java lock.

The main contributions of this paper are:
• A novel combining methodology adequate for data structures with an unbounded

number of contention points which is triggered locally on contended sections only.
• An application of the methodology to the linked-list data structure.
• Implementation and evaluation of the LCD methodology and its integration into the

Java lock. Results show that they perform well especially when contention is high
and introduce negligible overhead under little or no contention.

• Implementation and evaluation of the LCD-list. Results show that it outperforms
the lazy-list and other linked-list implementations on most workloads.

Related Work. The technique of combining operations first appears in combining
trees [21]. In combining trees each hot-spot is associated with a tree whose leaves are
pre-assigned to threads. Threads traverse upwards in the tree to gain exclusive access
to the hot-spot which is assigned to threads that reached the root. If during the traver-
sal two threads access concurrently the same tree node, one thread collects the other’s
operations, and the other thread ceases its traversal and waits until its operations are
completed. Several enhancements of this technique have been presented, such as adap-
tive combining tree [18], barriers implementations [9,16], and counting networks [19].

A different approach lets threads waiting to acquire a global lock to append their op-
eration details to a list of requests [17]. This list is collected and executed by threads that
acquire the lock. The flat combining technique [12] enhances this method by eliminating

LCD: Local Combining on Demand 357

the hot spot caused by threads contending on appending requests to the list. Flat
combining was implemented for stacks, queues, and priority queues and showed excel-
lent performance. Later work showed that its application to skip-lists did not improve
performance [3]. Various extensions were suggested to improve performance. Hendler
et al. [13] extend the method to support multiple locks and delegation of requests from
one thread to another. Fatourou and Kallimanis [7] used one queue to implement the
lock and maintain the request list for combining. These approaches were evaluated
for data structures with a small number of contention points, whereas LCD is effec-
tive (and was evaluated) for data structures with an unbounded number of contention
points. Flat combining was also extended for skip-lists by allowing combiners to access
non-intersected sections concurrently [3]. In this technique, combiners are pre-assigned
to static sections on which they operate exclusively. In contrast, our approach reduces
overhead by triggering combining locally and dynamically only when required.

In addition, LCD differs from previous work in its integration of the combining struc-
ture into the Java lock. Previous work either maintained designated data structures for
combining (e.g., [12]) or presented new locks supporting combining (e.g., [5,7]).
Paper Organization. The rest of the paper is organized as follows. Section 2 pro-
vides background. Section 3 overviews the LCD methodology and its application to the
linked-list. Section 4 describes the algorithm details. Section 5 discusses the LCD-list
correctness. Section 6 reports performance evaluation, and Section 7 concludes.

2 Background

Here, we provide the background on the lazy-list algorithm [11], which we extend in
this work, and the Java reentrant lock, in which we embed our combining technique.

2.1 The Lazy-List

The lazy-list algorithm is a concurrent sorted linked-list implementation. It consists
of nodes, each storing: (i) a data object and its unique key, (ii) a lock, (iii) a marked
flag, and (iv) a pointer to the next node in the list. The marked flag signifies whether
the node has been logically removed from the list, even if it has not been physically
unlinked from it. For simplicity, the data object is ignored in the sequel.

Algorithm 1. Search(n, k)

1 prev = n
2 curr = prev.next
3 while curr.key < k do
4 prev = curr; curr = curr.next
5 return prev, curr

Algorithm 2. Contains(k)

1 prev, curr = search(head, k)
2 if curr.marked then return false
3 return curr.key == k

Throughout the execution, the list contains two
sentinel nodes, denoted by head and tail, where
head’s key is −∞ and tail’s key is ∞. Initially,
head’s next node is tail.

The list supports three operations:
• insert(k)– inserts k if it is not in the list;

returns true if it inserted k, and false if not.
• remove(k)– removes k if it is in the list; re-

turns true if it removed k, and false if not.
• contains(k)– checks if k is in the list; re-

turns true if so, and false otherwise.
All operations begin with a traversal along the list to find the correct location for the

operation invocation (Alg. 1). This location is captured by two consecutive nodes, prev
and curr, such that k is greater than prev’s key and smaller or equal to curr’s key. After
the correct location is reached, the operations proceed differently.

358 D. Drachsler-Cohen and E. Petrank

Algorithm 3. Insert(k)

1 prev = head
2 while true do
3 prev, curr = search(prev, k)
4 prev.lock()
5 next = prev.next
6 if !prev.marked && next.key ≥ k then
7 if next.key == k then
8 prev.unlock()
9 return false

10 new = Node(k)
11 new.next = next
12 prev.next = new
13 prev.unlock()
14 return true
15 prev.unlock()
16 if prev.marked then prev = head

Algorithm 4. Remove(k)

1 prev = head
2 while true do
3 prev, curr = search(prev, k)
4 prev.lock()
5 next = prev.next
6 if !prev.marked && next.key ≥ k then
7 if next.key != k then
8 prev.unlock()
9 return false

10 next.lock()
11 next.marked = true
12 prev.next = next.next
13 next.unlock(); prev.unlock()
14 return true
15 prev.unlock()
16 if prev.marked then prev = head

In contains(k) (Alg. 2), curr’s marked is examined and if it is true, false is
returned (since curr was removed). If marked is false, curr’s key is examined and if
it is k, true is returned; otherwise, false is returned. Note no locks are acquired.

In insert(k) and remove(k) (Alg. 3 and Alg. 4) prev is locked, its successor
(which may be different from curr) is stored in next, and then the location is checked
to meet two conditions: (i) prev’s marked is false (it was not removed), and (ii) next’s
key is greater or equal to k . If condition (i) fails, the lock is released and the opera-
tion restarts. If condition (ii) fails, the lock is released and the traversal for the correct
location resumes from prev. If both conditions are met, insert and remove take place.

In insert(k), next’s key is examined and if it is k, false is returned. Otherwise,
a new node with key k is inserted between prev and next and true is returned.

In remove(k), next’s key is examined and if it is greater than k, then k is not in
the list and false is returned. Otherwise, next’s key is k and the removal begins. First,
next’s lock is acquired, then its marked is set to true (the logical removal), and finally
prev’s next node is set to next’s next node (the physical removal) and true is returned.

This description is a slightly optimized version of the lazy-list, in which unnecessary
lock acquires and restarts were removed. In the original lazy-list, insert and remove

lock both prev and curr, check that their marked flags are false and that prev points
to curr. If any condition fails, the operation restarts. Here, curr is not locked, instead,
next (prev’s successor after locking prev) is examined. While holding prev’s lock, its
successor cannot be concurrently changed, not by adding nodes between prev and next,
nor by removing next. Thus, reading next’s key is safe and there is no need to lock it.

The presented description also avoids restarts, namely, a new traversal from the head
of the list. In the original lazy-list, a restart is triggered if any of the conditions following
the lock acquisition has failed. Here, restarts occur only if condition (i) fails (i.e., prev
is marked as removed). If only condition (ii) fails, the traversal resumes from prev. This
is safe, since if only condition (ii) fails, then the key of prev’s successor is smaller than
k, and thus the correct location must appear after prev.

LCD: Local Combining on Demand 359

2.2 The Java Reentrant Lock

Algorithm 5. Lock()

1 if CAS(owner, null, thread) then return
2 enqueue(thread)
3 while true do
4 if thread == next(head) then
5 if CAS(owner, null, thread) then
6 head = thread
7 return
8 sleep()

Algorithm 6. Unlock()

1 owner = null
2 wake up next(head)

The Java reentrant lock, available at Java’s
concurrent package, is a variant of the
CLH lock [4]. For simplicity, the below
description omits some details.

The Java lock is a semi-honest lock
which provides fair access but allows op-
portunistic attempts to acquire it unfairly.
To provide fair access, a queue of pend-
ing threads is maintained using a doubly-
linked list. The lock’s main fields are
head, tail, and owner. The head and tail
point to the queue head and tail. The
owner points to the thread holding the
lock or to null if the lock is free.

The lock supports the lock and unlock operations. The lock operation (Alg. 5)
first attempts to acquire the lock unfairly by updating owner to the current thread via
the CAS operation1. This may succeed only if owner is null, namely no other thread
holds it. If the CAS operation fails, the thread is added to the end of the queue. It is then
allowed to attempt acquiring the lock only when the queue head is its predecessor (i.e.,
the thread is the second in line). In this case, attempting to acquire the lock may fail if its
predecessor has not released the lock yet, or if another thread has acquired it unfairly. If
the acquisition fails, the thread yields and attempts again later. After acquiring the lock,
the queue head is updated and the operation terminates.

The unlock operation (Alg. 6) sets owner to null and notifies the successor of the
queue head it can acquire the lock.

3 Overview
In this section, we provide an overview of the local combining on-demand methodology.

LCD is executed independently for each lock, thus allowing multiple combining
threads to execute concurrently (one for each lock). LCD is executed by threads that
acquired the lock fairly, and thus waited for permission to lock in the lock queue. In
LCD, the permission to lock is granted to the newest thread in the queue (and not to
the oldest one, as in the Java lock). When a thread acquires the lock fairly, it becomes a
combiner and collects the operation requests of threads preceding it in the queue. The
combiner examines the collected requests. Requests not requiring this lock are removed
(and their owners are notified), and identical or complementary requests are eliminated.
Then, the remaining requests are executed. Finally, the owner threads of the combined
requests are reported. Fig. 1 illustrates a flow example of LCD in the lazy-list.

LCD is embedded in the Java lock but requires cooperation from the data structure
operations. The lock is responsible for the combining logic, e.g., picking the next com-
biner and collecting requests. The data structure operations are responsible for search-
ing and updating the data structure, and reporting to the owners of combined operations.

1 CAS(field, old, new) is an atomic operation that updates field to new if field stores old. If field
is updated, the operation succeeded and true is returned; otherwise false is returned.

360 D. Drachsler-Cohen and E. Petrank

 owner = F

F’s request
 list

 owner = A

`

 E
Insert 6

D
Insert 8

C
Insert 4

B
Insert 6

 F
Remove 4

head tail

(1) B locks 3;
A waits to lock

(3) concurrent threads
join the lock queue

(5) F updates
the list

3 7 9

prev

A

(2) A locks and
begins insert

3 6 7

prev

F
9

(4) A unlocks and
enables F to lock;
F locks and collects

(6) F reports
 threads

3 9

A:Insert(7)

prev

B

B:Insert(6)

 owner = B

A
Insert 7

head tail

A
Insert 7

F
Remove 4

head tail

 D:Insert(8)

 D
 Insert 8

 owner = A

A
Insert 7

head tail

F

E
B
Insert 6

C
 Insert 4

F’s request
 list

F

E
B
Insert 6

C
 Insert 4

C:Insert(4)

E:Insert(6)

Fig. 1. LCD in the lazy-list. (1) A invokes insert(7), attempts to lock 3, observes B has
acquired it, and waits in the lock queue, (2) B unlocks and A begins to insert 7, (3) concurrent
threads join the lock queue, (4) A unlocks and wakes the queue tail, F ; F locks and collects
requests: D is notified to search for another lock for its insert(8) request, C’s insert(4)
and F ’s remove(4) are grouped and marked as successful, and B’s and E’s insert(6) are
grouped and E is marked as failed. (5) F inserts 6, and marks B’s request as successful, and
finally, (6) F reports B, C, and E, and terminates.

The LCD Lock. The Java lock is extended with LCD via LCDlock and LCDunlock.
The LCDlock operation begins with an attempt to lock unfairly. If it fails, the thread
joins the lock queue, and waits for permission to lock or for a notification that its re-
quest was combined. If it was granted permission and acquired the lock, it becomes a
combiner and collects requests of threads preceding it in the lock queue. During the
collection, the requests are examined. Identical requests are grouped so eventually only
one may update the data structure (e.g.,B’s andE’s requests in Fig. 1). Complementary
requests are grouped and completed without affecting the data structure (e.g., C’s and
F ’s requests in Fig. 1). Threads whose requests require a different lock are notified to
search again. This case may arise since threads choose a lock after observing a certain
state of the data structure, however, this state may change before they acquire the lock
(e.g.,D’s request in Fig. 1). If the combiner itself requires a different lock, it delegates
the collected requests and the combiner role to another thread that requires this lock.

The LCDunlock operation releases the lock, and if it is invoked by a combiner, a
new combiner is chosen, and it is chosen to be the last thread that joined the lock queue.

Data Structure Adaptation. The data structure operations are adapted to cope with
the LCDlock results. If the lock was acquired unfairly, the operation proceeds without
any LCD overhead. If the lock was acquired fairly, the operation executes the collected
requests and reports to the request owners. If the request was combined, the operation
terminates; and if the lock was unsuitable, the operation searches for the correct lock.

LCD: Local Combining on Demand 361

Operations acquiring several locks require a special care. LCD is applied indepen-
dently for each lock and thus such operations need to be split into sub-operations that
each require one lock for executing its updates safely. We denote such sub-operations
as single-lock operations. Operations are split into single-lock operations as follows.

First, all possible executions are represented as series of steps of the following form:

1 . execute s0, acquire lock l1, and execute s1,
2 . acquire lock l2 and execute s2,

...
k . acquire lock lk, execute sk, and release lk,

...
2’. execute s′2 and release l2,
1’. execute s′1, release l1, and execute s′0.

Where s0, s′0 are sequences of computational operations and for i > 0, si, s′i are se-

quences of computational or update operations which require the lock li.
Next, we divide such execution into k phases, where the ith phase is:
(i) execute step i,

(ii) invoke LCDlock(li+1) to initiate the next phase and upon its completion,
(iii) execute step i′.

Each phase assumes previous steps have acquired locks and completed successfully.
Finally, phases requiring the same lock are grouped into a single-lock operation, and

some criteria are used to decide which phase to execute.
The benefit of single-lock operations is that different combiners may help separately

and independently. Note that combiners may execute several consecutive single-lock
operations provided they gained access to the required locks.

We exemplify this technique on the remove(k) operation of the lazy-list.
A successful removal execution requires the locks of two nodes: prev (the node pre-

ceding k) and next (the node storing k), and it can be split into the following steps:

1 . locate prev (s0), lock it (l1), verify it is not marked and that next’s key is k (s1),
2 . lock next (l2), set its marked flag to true (s2), and release the lock (l2),
1’. update prev’s next to next’s next (s′1), release prev’s lock (l1), and return true (s′0).

An unsuccessful removal execution requires prev’s lock and consists of two steps:
1 . locate prev, lock it, verify it is not marked and that next’s key is greater than k,
1”. release prev’s lock and return false.

A restart removal execution requires prev’s lock and consists of two steps:

1 . locate prev, lock it, verify it is marked or that next’s key is smaller than k,
1”’. release prev’s lock and repeat step 1.

Thus, remove(k) is split into two single-lock operations:
• remove – execute step 1. Then, if prev is not marked and next’s key is k, initiate

step 2 and upon its completion execute step 1’; if prev is not marked and next’s key
is greater than k, execute step 1”; else, execute step 1”’.

• mark – execute step 2.
This separation allows remove and mark to be executed by different threads.

362 D. Drachsler-Cohen and E. Petrank

4 Implementation Details
In this section we present the implementation details and provide pseudo-code. We first
describe the request object, next the LCD lock, and finally the LCD linked-list.

4.1 The Request Object

Algorithm 7. Request

1 Operation op
2 Key key
3 Boolean result
4 Thread threadID
5 State state
6 Request head
7 Request next
8 Set combined

To enable LCD, each thread is equipped with a unique re-
quest object which remains throughout its execution. The
request object (Alg. 7) stores all information required for
the combining. Op and key contain the operation de-
tails. Op may be insert, remove, or mark. Result stores
the operation outcome after it is completed, and initially
it is set to null. ThreadID stores the owner thread ID
to notify upon events, e.g., operation completion.

The request status is stored in state and may be ei-
ther none, locked, pending, completed, or search. None is the initial state. Locked indi-
cates that the request owner acquired the lock fairly and acts as a combiner (if the lock is
acquired unfairly, the request fields are ignored). Pending indicates that a combiner has
collected this request, and completed indicates that a combiner has executed it. Search
signals that the request owner is waiting for a lock unsuitable for its request.

The head field points to the request list of the request owner. The owner is respon-
sible for executing these requests. Initially, each thread is responsible only to its own
request and thus its request list is of size one. The request list may become longer if
its owner thread becomes a combiner and adds requests to its list. The request list may
become empty if a combiner thread collects this request. An invariant of the execution
is that uncompleted requests always belong to a single request list. As a result, each
uncompleted request has at most one successor in the request list it belongs to, and this
successor is stored in next. Thus, the request list can be implemented as a linked-list
whose elements are connected via the next fields. When registering a new operation to
a request, the head is set to this request and next is set to null.

The combined field stores requests which were eliminated or combined by this re-
quest. These requests’ owners are reported after this request completes its execution.

4.2 The LCD Lock

The LCD lock applies combining via the LCDlock and LCDunlock operations.
The LCDlock (Alg. 8) attempts to acquire the lock and returns false if the lock was

acquired unfairly and true otherwise (i.e., true indicates that local combining was
initiated). LCDlock begins with an attempt to acquire the lock unfairly by attempting
to set the owner to be the invoking thread. If it fails, fair locking begins by initializing
the given request, registering the operation details, and adding the thread to the lock
queue. An attempt to acquire the lock occurs only when the thread is the queue head’s
successor. If the lock is acquired, the queue head is advanced to point to the thread that
acquired the lock, the request state is set to locked, and requests are collected.

If the lock is not acquired, the state is examined. If it is pending, the thread yields
until state is updated. If state is none, the thread yields and attempts to acquire
the lock later. Otherwise, if state is completed, search, or locked (in case a combiner
thread delegated it the lock), LCDlock returns since the lock is not required anymore.

LCD: Local Combining on Demand 363

Algorithm 8. LCDlock(req, op, key)

1 if CAS(owner, null, thread) then return false
2 req.state = none; res.result = null
3 req.head = req; res.next = null
4 req.op = op; req.key = key
5 enqueue(thread)
6 while true do
7 if thread == next(head) then
8 if CAS(owner, null, thread) then
9 head = thread

10 req.state = locked
11 collect(req)
12 return true
13 while req.state == pending do sleep()
14 if req.state != none then return true
15 sleep()

Algorithm 9. LCDunlock(req)

1 reqList = new List()
2 if acquired fairly && tail != head then
3 for t = next(head); t != tail; t = next(t) do
4 reqList.add(t.request)
5 head = prev(tail)
6 owner = null
7 wake next(head)

The LCDunlock operation (Alg. 9)
releases the lock, and picks a new
combiner if it is invoked by a combiner
thread and there are threads waiting
in the lock queue. The new combiner
is chosen to be the current queue tail.
To allow it acquire the lock, the queue
head is set to be its predecessor in the
lock queue. Requests of threads pre-
ceding the new combiner in the queue
join the reqList, and they will col-
lected by the new combiner after it ac-
quires the lock.

After choosing the new combiner
(if required), the lock is released by
clearing the owner field and notifying
the queue head successor.

Collecting Requests. Combiners col-
lect requests via the collect oper-
ation (Alg. 10). Collect begins by
checking whether the combiner needs
the current lock and if so, the re-
quests will be collected to its request
list (lines 2-4). If the combiner does
not need this lock, another thread will be selected and requests will be added to its
request list. The request whose request list is extended with the collected requests is
stored in dest. To check whether the combiner needs this lock, its request key is com-
pared to the key of the locked list node’s successor. If the request key is smaller or
equal to the successor’s key, the combiner needs this lock and thus its request is stored
in dest. Otherwise, the combiner’s state is set to search (instead of locked) indicating
that after collecting requests, it passes the lock and the combiner role to another thread,
and searches for the lock required for its own request.

Next, the combiner collects the requests from the reqList (constructed by the
LCDunlock operation) (lines 5-14). At each iteration, one request, denoted by r, is
processed. First, its state is set to pending. Then, if dest is null and r requires this
lock, dest is set to r (lines 7-8). Otherwise, r’s request list is added to dest’s list via
addReqs (line 11). Then, if r’s result was not null before calling addReqs, then
r’s owner is a combiner that completed its own request and proceeded executing other
requests. Thus, after collecting its requests, r completes its execution (lines 12-14).

After all requests were collected, dest is examined. If it is the combiner’s request,
the operation terminates. If dest is null, the lock is released as no thread requires
it (line 15). If dest is a different request, the lock is delegated to dest’s owner by up-
dating the lock’s owner and dest’s state (lines 16-19). The lock queue head remains
unchanged since its task is to signal to LCDunlock the starting point of waiting threads.

364 D. Drachsler-Cohen and E. Petrank

Algorithm 10. Collect(req)

1 k = ownerNode.next.key
2 dest = null
3 if req.head.key ≤ k then dest = req
4 else req.state = search
5 for r in reqList do
6 r.state = pending
7 if dest == null && r.head.key ≤ k then
8 dest = r
9 else

10 rResult = r.result
11 addReqs(dest.head, rHead, k)
12 if rResult != null then
13 r.locked = completed
14 notify r.threadID
15 if dest == null then LCDunlock(req)
16 if dest != req && dest != null then
17 owner = dest.thread
18 dest.state = locked
19 notify dest.threadID

Algorithm 11. AddReqs(dst, src, k)

1 d = p = dst
2 for s = src; s != null; s = s.next do
3 if s.key > k then
4 s.head = s
5 s.state = search
6 notify s.theadID
7 return
8 while d.key < s.key do
9 p = d

10 d = d.next
11 if d.key > s.key then
12 s.next = d
13 p.next = s
14 else
15 if d.op == s.op || d.result then
16 s.result = false
17 else
18 d.result = s.result = true
19 d.combined.add(s)

The addReqs operation (Alg. 11) is invoked after a list node was locked, and it
transfers requests from a source list, src, to a destination list, dst, provided that the
requests in src require this lock. To verify this, addReqs receives the key of the list
node’s successor, k, and only requests whose keys are no greater than k are transferred.
The src and dst lists are sorted by the operation keys in an ascending order.

The addReqs operations iterates the src list and at each iteration examines one
request, denoted by s. If s has a key greater than k, s’s state is set to search and s’s
head is set to s. Thereby, s becomes responsible to all requests succeeding it in src,
whose keys are also greater than k as src is sorted (lines 3-7).

If s’s key is not greater than k, the combiner looks for two requests in dst, p and d,
such that s’s key is greater than p’s key and not greater than d’s key (lines 8-10)2. If d’s
key is greater than s’s key, s is inserted between p and d (lines 11-13). Otherwise, if the
keys are equal, elimination is applied (lines 14-19). If d and s are identical operations, s
is eliminated by setting its result to false. This is correct since if the combiner were
to execute d and s, then swould fail. To illustrate, consider two requests of insert(4):
the first may succeed if 4 is not in the list, but the second will observe 4 and fail.

If d and s are complementary operations (i.e., an insert-remove pair) their result
fields are set to true. If the combiner were to execute them, it could choose an ordering
that would not affect the data structure. To illustrate, assume d and s are insert(4)
and remove(4). If 4 is not in the list, the combiner can execute d and then s; otherwise
it can execute s and then d. Such elimination can be applied once for each request
and thus if d is discovered to be eliminated, then s is eliminated by the request that
eliminated d (and is identical to s), and thus s’s result is set to false.

After eliminating s, it is added to d’s combined set (line 19). After d’s operation
is completed, the state of these requests is set to completed. This is required for

2 For simplicity’s sake, we omit the special treatment required if s becomes dst’s head or tail.

LCD: Local Combining on Demand 365

Algorithm 12. LCDRemove(k,req)

1 prev = head
2 while true do
3 prev, curr = search(prev, k)
4 if prev.LCDlock(req, remove, k) then
5 return combine(req, prev)
6 next = prev.next
7 if !prev.marked && next.key ≥ k then
8 if next.key != k then
9 prev.LCDunlock(req)

10 return false
11 if next.LCDlock(req, mark, k) then
12 combine(req, next)
13 else
14 next.marked = true
15 next.LCDunlock(req)
16 prev.next = next.next
17 prev.LCDunlock(req)
18 return true
19 prev.LCDunlock(req)
20 if prev.marked then prev = head

Algorithm 13. Combine(req, n)

1 while true do
2 if req.state == completed then
3 return complete(req)
4 if req.state == locked then
5 dne = execute(req, req.head, n)
6 n.LCDunlock(req)
7 if dne then
8 return complete(req)
9 if n.marked then

10 n = list.head
11 curr = n.next
12 while curr.key < req.head.key do
13 n = curr; curr = curr.next
14 n.LCDlock(req, req.op, req.key)

Algorithm 14. Complete(req)

1 for r in req.combined do
2 r.state = completed
3 notify r.threadID
4 return req.result

operations eliminated by identical operations, since their results are valid only after the
eliminating requests were executed. In addition, it reduces the number of updates to the
list. For example, delaying the completion of the complementary requests insert(4)
and remove(4) enables to eliminate additional insert(4) with the first insert(4).

4.3 LCD-List

The extended lazy-list insert and remove operations, denoted by LCDInsert and
LCDRemove, access locks via LCDlock and LCDunlock (Alg. 12 shows LCDRemove
which extends remove, and LCDInsert extends insert similarly). If LCDlock re-
turns false, LCD was not initiated and the operation proceeds as in the lazy-list. If
LCDlock returns true, then the invoking thread is either a combiner or its request was
combined, and in any case, the operation is completed via the combine operation.

The combine operation (Alg. 13) receives the thread request, req, and the node
which LCDlock attempted to lock, n. It begins by reading req’s state which may be
completed, locked, or search. If state is completed, req was combined, and the oper-
ation completes (via the complete operation). If state is locked, execute is called
and n’s lock is released. If execute returned true, then all requests were executed
and combine completes. If there are remaining requests or if state is search, a new n

node is located and attempted to be locked, and the loop begins again (lines 9-14).
The complete operation (Alg. 14) receives a request, reports threads whose requests

were combined or eliminated by this request, and returns the request result.
The execute operation (Alg. 15) receives the combiner request, req, the head of

its request list, r, and a locked node, n. It executes all requests requiring n and returns
true if all the requests in the list were executed. It begins by finding the first request
not eliminated in the request list, namely, a request whose result field is null (lines
1-2). If all requests were eliminated, it returns true.

366 D. Drachsler-Cohen and E. Petrank

Algorithm 15. Execute(req, r, n)

1 while r != null && r.result != null do
2 complete(r); r = r.next
3 if r == null then return true
4 insReqs = new List()
5 subHead = null; subTail = null
6 next = n.next
7 while !n.marked && r.key ≤ next.key do
8 req.combined.add(r)
9 if r.op == Insert then

10 if r.key == next.key then
11 r.result = false
12 else
13 new = Node(r.key)
14 if subHead == null then
15 subHead = new
16 else
17 subTail.next = new
18 subTail = new
19 insReqs.add(r)
20 if r.op == Remove then
21 if r.key < next.key then
22 r.result = false
23 else
24 removeNode(req, n, next)
25 next = n.next
26 r.result = true
27 if r.op == Mark then mark = r
28 while r != null && r.result != null do
29 complete(r); r = r.next
30 if r == null then break
31 if subHead != null then
32 subTail.next = n.next
33 n.next = subHead
34 for r in insReqs do r.result = true
35 if mark != null then n.marked = true
36 return r == null

Algorithm 16. RemoveNode(req, p, n)

1 n.LCDlock(frq, mark, n.key)
2 if frq.state == locked then
3 n.marked = true
4 n.LCDunlock(frq)
5 k = n.next.key
6 addReqs(req.head, frq.head.next, k)
7 p.next = n.next

If a non-eliminated request was found,
two conditions are checked similarly to
the lazy-list (line 7). If any condition
fails, execute terminates (lines 31-36).
Note that if the second condition fails,
namely, r’s key is greater than next’s
key, then also all requests succeeding r

require a different lock since the list is
sorted by the operation keys.

If both conditions are met, r begins
execution. First, it is added to req’s
combined set (line 8) so it will be re-
ported after req is completed3. Then, r’s
operation type is examined.

If r’s operation is insert (lines 9-19),
and it is a successful insert, a new node
is created and added to a temporary sub-
list consisting of all nodes created by in-
sertion requests. The sublist is connected
to the list when execute terminates and
only then these requests’ result fields
are set to true (lines 31-34).

If r’s operation is remove (lines 20-
26), and it is a successful removal, the
removeNode operation is invoked. Note
that the sublist cannot contain r’s key, as
complementary requests are eliminated.

If r’s operation is mark, it is de-
layed until all other requests are com-
pleted (lines 27, 35). If r would have
been served immediately by marking n,
then no subsequent request could have
been executed as the check in line 7
would fail. Execute may encounter at
most one mark request, since a thread ini-
tiating a mark request locks the node pre-
ceding n until it is completed.

After serving r, the next request to ex-
ecute is searched for (lines 28-30).

The removeNode operation (Alg. 16)
receives two consecutive nodes, p and n,
and it removes n from the list. It begins
by invoking LCDlock to lock n with a
fresh request, frq (to avoid overriding

3 This is a simplification, requests are actually notified sooner.

LCD: Local Combining on Demand 367

req fields). Then, frq’s state is examined, and it may be either locked or completed (it
cannot be search, as p is locked and thus n’s lock must be the required lock). If state is
completed then p’s next is set to n’s next. Otherwise, if state is locked, n’s marked
flag is set to true and n’s lock is released. Then, collected requests are transferred from
frq to req, starting from the second request in frq’s request list (the first one is frq
since the list is sorted). Finally, p’s next is set to n’s next.

5 Correctness
Here, we provide the linearization points [15] of the LCD-list operations.

Unsuccessful inserts and removes (which were not eliminated) are linearized when
discovered to be unsuccessful in LCDInsert (similarly to the discovery in insert,
line 7), LCDRemove (line 8), or execute (lines 10, 21).

A successful insert is linearized in LCDInsert when prev is set to point to the
new node (similarly to the update in insert, line 12), or in execute when the sublist
containing the new node is appended to the linked-list (line 33). This linearization point
linearizes “atomically” all successful inserts whose nodes share the same sublist. That
is, these inserts are linearized at a single point, and no other operation is linearized
between them. The linearization order between the inserts is by their keys.

A successful remove is linearized when the node’s marked flag is set to true, which
is either in LCDRemove (line 14), execute (line 35), or removeNode (line 3).

Eliminated operations are grouped into disjoint sets as follows. Two complementary
operations which were eliminated (addReqs, line 18), belong to the same set. Opera-
tions that were eliminated by an identical operation or by a complementary eliminated
operation (addReqs, line 16) belong to the set of that operation. The operations of each
disjoint set are linearized together “atomically” in one of the following points. If the op-
eration set contains two complementary operations, then the linearization point is upon
the first update to a state field of any of these operations (complete, line 2). If the
operation set does not contain complementary operations, then it consists of identical
operations and one of them is executed in execute. In this case, the linearization point
of the operation set is the linearization point of the executed operation.

The linearization point ordering between operations belonging to the same opera-
tion set is as follows. If the operation set contains two complementary operations, i.e.,
insert(k) and remove(k), then the ordering is one of the following. If k is present
in the linked-list, then first appears the remove(k) whose result is true. Next, all
the other remove(k) appear in some order. Then, the insert(k) whose result is
true appears; and finally, all the other insert(k) appear in some order. If k is not
present in the linked-list, the ordering is similar only that inserts are linearized before
removes. If the operation set contains only identical operations then the order is first the
operation that was executed (in execute) and then the other operations in some order.

The linearization point of the contains operation is set similarly to the original
lazy-list algorithm. A successful contains is linearized when the marked flag is found
false. An unsuccessful contains has two possible linearization points. The first case
is when k is indeed not in the linked-list and curr’s key is found to be greater than k,
or curr is found to be marked. Here, the linearization point is when curr is examined.
The second case is similar to the first case only that k is concurrently inserted. Since
contains returns false, it is linearized just before the concurrent insert. Note that this

368 D. Drachsler-Cohen and E. Petrank

linearization point occurs after contains begins, since otherwise contains would
have found k. Also note that the linearization points of contains are not affected by
inserts which were eliminated by complementary removes, since these operations do
not affect the list and are linearized “atomically” with their complementary removes.

6 Performance Evaluation
We implemented the LCD-list in Java and ran experiments on an AMD Opteron Pro-
cessor 6376 with 128GB RAM and 64 cores: four processors with sixteen cores each.
We used Ubuntu 12.04 LTS and OpenJDK Runtime version 1.7.0_65 using the HotSpot
64-bit Server VM (build 24.45-b08, mixed mode).

We compared the LCD-list to the following list implementations:
• The Lazy-List – the optimized lazy-list algorithm as presented in Section 2.1.
• The Flat Combining List [12] – this list is protected by a global lock and the lock

owner executes operations of contending threads. We used the authors’ code [2].
• The Lock Free List [10] – the lock-free list by Harris. We used the code provided

with the book “The Art of Multiprocessor Programming” [14].
We also consider two variations of the LCD-list to evaluate two of its main features:
• LCD without elimination – the LCD-list without eliminating operations.
• LCD without integration – the LCD-list without the Java lock integration.

We ran two workloads:
(I) 0% contains, 50% insert, and 50% remove.

(II) 60% contains, 20% insert, and 20% remove.
We ran five-second trials, where each thread reported the number of operations it com-
pleted. We report the total throughput, namely the total number of completed opera-
tions. The number of threads is 2i where i varies between 0-8.

During the trial, each thread randomly chooses a type of operation according to the
workload distribution and then randomly chooses the key for that operation from a given
range. The examined range sizes were: 128, 512, and 1024. Before each trial, the list
was prefilled to a size of half of the key range. Every experiment was run 8 times and
the arithmetic average is reported along with the 95% confidence interval. Each batch
of 8 trials was run in its own JVM instance, and a warm-up phase was run before to
avoid HotSpot effects. Threads were not bound to processors in our experiments.

Table 1 reports the results. The experimental results show that LCD improves the
lazy-list performance on most workloads, mostly by 5%-15% and up to 40%. Under
low contention, the LCD-list performance is similar to the lazy-list and its overhead
is negligible. The lock-free list performance is at best under heavy contention and it
decreases significantly under lower contention. The flat combining performs poorly as
it blocks all concurrent accesses to the list even if they do not contend.

The LCD features appear to improve the LCD performance. The performance of the
LCD-list without the operation elimination is mostly similar to the LCD-list, but as
contention increases and more operations can be eliminated its performance is reduced.
The LCD-list without the Java lock integration performs better than the LCD-list under
low contention and performs poorly under heavy contention. The integration into the
Java lock introduces overhead since volatile fields of the Java lock are updated (e.g., the
queue head and tail), and this overhead is significant under low contention. However,
the lock integration becomes very beneficial as contention increases.

LCD: Local Combining on Demand 369

Table 1. Throughput of linked-list implementations (64 h/w threads)

0% Contains, 50% Inserts, 50% Removes 60% Contains, 20% Inserts, 20% Removes

K
ey

ra
ng

e:
1
2
8

T
hr

ou
gh

pu
t(

m
ill

io
n

op
s/

se
c)

K
ey

ra
ng

e:
5
1
2

T
hr

ou
gh

pu
t(

m
ill

io
n

op
s/

se
c)

K
ey

ra
ng

e:
1
0
2
4

T
hr

ou
gh

pu
t(

m
ill

io
n

op
s/

se
c)

Number of Threads Number of Threads

We next study how often LCD is applied in the LCD-list. There are four avenues
for an operation to be executed: (i) a fast execution without LCD, (ii) a slow execution
when the operation owner is a combiner, (iii) operation elimination, or (iv) combining.

Table 2 reports the percentage of operations completed in each LCD avenue ((ii)–
(iv)). The summation of each column is the percentage of operations completed in an
LCD avenue. The two workloads yielded similar results, thus we present only the results
of the second workload. The results show that as contention increases, more operations
use LCD (up to 22% of the operations). As the number of threads increases, many
operations are eliminated. The number of combined operations is low on all workloads.

370 D. Drachsler-Cohen and E. Petrank

Table 2. Distribution of LCD avenue types

Key Range: 128 Key Range: 512 Key Range: 1024

Pe
rc

en
ta

ge
s

Number of Threads Number of Threads Number of Threads

7 Summary

We presented the local combining on-demand methodology (LCD), a combining tech-
nique for data structures with an unbounded number of contention points. We designed
and implemented the LCD-list, an extension of the lazy-list that provides LCD. Evalu-
ation shows that the LCD-list outperforms the lazy-list typically by 7% and up to 40%.

References
1. Bar-Nissan, G., Hendler, D., Suissa, A.: A dynamic elimination-combining stack algo-

rithm. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109,
pp. 544–561. Springer, Heidelberg (2011)

2. Bronson, N.: The flat combining project,
http://mcg.cs.tau.ac.il/projects/flat-combining

3. Budovsky, V.: Combining techniques application for tree search structures, m.sc. thesis. Tel-
Aviv University, Israel (2010)

4. Craig, T.: Building fifo and priority-queuing spin locks from atomic swap. Technical Report
TR 93-02-02, University of Washington, Dept. of Computer Science (1993)

5. Dice, D., Marathe, V.J., Shavit, N.: Flat-combining numa locks. In: Proceedings of the
Twenty-third Annual ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA 2011, San Jose, California, USA, pp. 65–74. ACM, New York (2011)

6. Dice, D., Marathe, V.J., Shavit, N.: Lock cohorting: A general technique for designing numa
locks. In: Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPOPP 2012, New Orleans, Louisiana, USA, pp. 247–256. ACM,
New York (2012)

7. Fatourou, P., Kallimanis, N.D.: Revisiting the Combining Synchronization Technique. In:
Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP 2012, New Orleans, Louisiana, USA, pp. 257–266. ACM, New York
(2012)

8. Fomitchev, M., Ruppert, E.: Lock-free Linked Lists and Skip Lists. In: Proceedings of the
Twenty-third Annual ACM Symposium on Principles of Distributed Computing, PODC
2004, St. John’s, Newfoundland, Canada, pp. 50–59. ACM, New York (2004)

9. Gupta, R., Hill, C.R.: A Scalable Implementation of Barrier Synchronization Using an Adap-
tive Combining Tree. International Journal of Parallel Programming 18(3), 161–180 (1990)

10. Harris, T.L.: A pragmatic implementation of non-blocking linked-lists. In: Welch, J. (ed.)
DISC 2001. LNCS, vol. 2180, pp. 300–314. Springer, Heidelberg (2001)

http://mcg.cs.tau.ac.il/projects/flat-combining

LCD: Local Combining on Demand 371

11. Heller, S., Herlihy, M.P., Luchangco, V., Moir, M., Scherer III, W.N., Shavit, N.N.: A lazy
concurrent list-based set algorithm. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.)
OPODIS 2005. LNCS, vol. 3974, pp. 3–16. Springer, Heidelberg (2006)

12. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat Combining and the Synchronization-
parallelism Tradeoff. In: Proceedings of the Twenty-second Annual ACM Symposium on Par-
allelism in Algorithms and Architectures, SPAA 2010, Thira, Santorini, Greece, pp. 355–364.
ACM, New York (2010)

13. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Scalable flat-combining based synchronous
queues. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 79–93.
Springer, Heidelberg (2010)

14. Herlihy, M., Shavit, N.: The art of multiprocessor programming. Morgan Kaufmann Publish-
ers Inc., San Francisco (2008)

15. Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst. 12, 463–492 (1990)

16. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for Scalable Synchronization on Shared-
memory Multiprocessors. ACM Trans. Comput. Syst. 9(1), 21–65 (1991)

17. Oyama, Y., Taura, K., Yonezawa, A.: Executing parallel programs with synchronization bot-
tlenecks efficiently. In: Proceedings of International Workshop on Parallel and Distributed
Computing for Symbolic and Irregular Applications, PDSIA 1999, pp. 182–204 (July 1999)

18. Shavit, N., Zemach, A.: Combining Funnels: A Dynamic Approach to Software Combining.
J. Parallel Distrib. Comput. 60(11), 1355–1387 (2000)

19. Shavit, N., Zemach, A.: Diffracting Trees. ACM Trans. Comput. Syst. 14(4), 385–428 (1996)
20. Valois, J.D.: Lock-free Linked Lists Using Compare-and-swap. In: Proceedings of the Four-

teenth Annual ACM Symposium on Principles of Distributed Computing, PODC 1995, Ot-
towa, Ontario, Canada, pp. 214–222. ACM, New York (1995)

21. Yew, P.-C., Tzeng, N.-F., Lawrie, D.H.: Distributing Hot-Spot Addressing in Large-Scale
Multiprocessors. IEEE Trans. Comput. 36(4), 388–395 (1987)

ParMarkSplit: A Parallel Mark-Split Garbage

Collector Based on a Lock-Free Skip-List

Nhan Nguyen1 and Philippas Tsigas1,∗ and H̊akan Sundell2

1 Chalmers University of Technology, Gothenburg, Sweden
{nhann,tsigas}@chalmers.se

2 University of Bor̊as, Bor̊as, Sweden
Hakan.Sundell@hb.se

Abstract. Mark-split is a garbage collection algorithm that combines
advantages of both the mark-sweep and the copying collection algo-
rithms. In this paper, we present a parallel mark-split garbage collec-
tor (GC). Our parallel design introduces and makes use of an efficient
concurrency control mechanism for handling the list of free memory in-
tervals. This mechanism is based on a lock-free skip-list design which
supports an extended set of operations. Beside basic operations, it can
perform a composite one that can search and remove and also insert two
elements atomically. We have implemented the parallel mark-split GC in
OpenJDK’s HotSpot virtual machine. We experimentally evaluate our
collector and compare it with the default concurrent mark-sweep GC in
HotSpot, using the DaCapo benchmarks, on two contemporary multipro-
cessor systems; one has 12 Intel Nehalem cores with HyperThreading and
the other has 48 AMD Bulldozer cores. The evaluation shows that our
parallel mark-split keeps the characteristics of the sequential mark-split,
that it performs better than the concurrent mark-sweep in applications
that have low live/garbage ratio, and have live objects locating con-
tiguously, therefore being marked consecutively. Our parallel mark-split
performs significantly better than a trivial parallelization based on locks
in terms of both collection time and scalability.

Keywords: garbage collector, concurrent programming, mark-split,
mark-sweep, parallel garbage collection, lock-free data structures.

1 Introduction

Garbage collection (GC) is a form of automatic memory management to re-
claim memory occupied by objects that are no longer used. Being introduced in
1960 [1], GC has evolved to become an important feature offered by many mod-
ern programming languages. Mark-sweep [1], copying [2], and their derivations
are among the algorithms that have been extensively studied in the literature;

∗ The research leading to these results has been partially supported by the Euro-
pean Union Seventh Framework Programme (FP7/2007-2013) through the EXCESS
Project (www.excess-project.eu) under grant agreement 611183.

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 372–387, 2014.
c© Springer International Publishing Switzerland 2014

ParMarkSplit 373

and their pros and cons have been identified in a range of scenarios. The mark
phase in mark-sweep has a time complexity proportional to the amount of live
data, while the sweep phase has one proportional to the size of the heap. Mark-
sweep can be improved by executing the sweep phase concurrently with the
execution of the mutator, which has been suspended while marking. This tech-
nique is referred to as lazy sweeping [3]. Mark-region [4] improves the mark-sweep
by dividing the heap in several regions and compacts objects to one end of the
regions, and can thus reduce memory fragmentation. Garbage-First[5], which
also works in per-region manner, marks objects and then evacuates them from
current regions to new ones so that current regions can be reclaimed as a whole.
Differing from the mark-sweep collectors, copying ones need time proportional
to the amount of live data. However, they waste half of the space reserved for
the need of the collectors, and move objects during collection. Copying collec-
tors perform better than mark-sweep ones when the amount of live data is small
compared to the size of the heap. This is the case where mark-sweep is penalized
by the complexity of its sweep phase.

Sagonas and Wilhelmsson [6] introduced a GC technique called mark-split
that can combine advantages of mark-sweep and copying collection. Mark-split
evolves from mark-sweep but removes the sweep phase. Instead, the list of free
spaces is built during marking, and can thus be used for allocation when the
mark phase completes. Mark-split starts by creating the list of free intervals
containing only a big free interval spanning the whole collected space. Then it
proceeds to the mark phase. For each unmarked live object, it marks the object
and calls a special split operation to exclude the marked space from the free
intervals. The split operation which takes an object as an argument splits a free
interval containing that object into two smaller free intervals, one to the left and
the other to the right of the object. When the mark phase completes, the list of
free intervals contains only free memory, thus can be used for new allocation.

Mark-split removes the sweep phase from mark-sweep, and thus achieves a
time complexity proportional to the size of the live data set. However, this comes
with an overhead cost of maintaining a set of free memory intervals. The number
of free intervals is much smaller than the number of live objects because some live
objects reside adjacent to each other. It seems beneficial, in certain situations,
to avoid the sweep phase at the cost of this overhead, which depends on the
distribution of live objects and also highly on the data structure selected to
store the free intervals. The data structure should preferably provide search for
an interval at sub-linear cost, e.g. binary search trees, splay trees, or skip-lists.
The original mark-split uses a sequential balanced search tree [6], which might
hurt its performance.

While mark-split is comparable to mark-sweep and even outperforms it in
some situations, to the best of our knowledge, this is the first effort to design
a mark-split collector for multi-core systems. Our contribution is to parallelize
mark-split based on a highly concurrent data structure to handle the free inter-
vals. We consider using lock-free data structures for their many advantages such
as providing high performance, progress guarantees and immunity to deadlocks

374 N. Nguyen, P. Tsigas, and H. Sundell

and livelocks [7]. However, previous implementations of concurrent data struc-
tures that supported the basic operations couldn’t be used directly to parallelize
mark-split, as they were not powerful enough to build a list of free intervals
in mark-split. This was because mark-split frequently performs a combined op-
eration of multiple basic operations. First it finds the correct interval and then
performs split on it. This latter operation is also a combination of two operations;
i) remove one interval and possibly ii) add two intervals. Concurrent environ-
ments require that split operations must perform all those actions in an atomic
step, and thus the concurrency control is a challenge for the data structure to
be used. A lock-free skip-list such as the one introduced in [8] can satisfy the
performance but not the capability requirements of mark-split. We therefore ex-
tend it with a novel concurrency control to handle the free intervals and use the
new skip-list to parallelize mark-split.

The rest of this paper is organized as follows. Section 2 introduces our ex-
tended skip-list algorithm to meet the requirements for parallelization of mark-
split. The implementation of a parallel mark-split algorithm with the design of
a lazy-splitting mechanism are presented in Section 3. Section 4 shows our eval-
uation of the GC inside HotSpot, along with result discussions before section 5
concludes the paper.

2 Concurrent Skip-List with Extended Functionality

I)

S2 E2E1S1

II a)

S2 E2E1S1 S3 E3X S4 E4

TH

H T

E1S1 S3 E3 S4 E4H T

II b)

...

...

... ...

...

... ...

...

...

...

III a)

S3 E3E1S1 S5 E5X S4 E4H T

...

E1S1 S5 E5 S4 E4H T

III b)
...

S1 S2E1 E2

S1 S3E1 E4S4E3

S1 S5E1 E4S4E5

E1S1 S5 E5 X S4 E4H T

IV a)
...

IV b)

S4 E4E1S1 TH

...... ...

CAS

CAS

CAS

CAS

CAS

CAS

E1 E4S4S1

...

...

...

Fig. 1. Multiple-step process for marking
and deleting blocks simultaneously with
inserting new nodes, thus fulfilling the
corresponding (to the right) abstract op-
erations on the free-list

We present a skip-list with extended
functionality offering significant exten-
sions over the original lock-free skip-list
in [8]. A skip-list is a search data struc-
ture which stores elements in different
layers of ordered linked lists with dif-
ferent densities to achieve tree-like be-
haviour. The original skip-list [8] can
insert a new element, search for or
remove an exiting element, but not a
combination of those in one atomic op-
eration. The use of recursion in that
skip-list also made its memory man-
agement complicated and not efficient.
Our extensions of the new skip-list are
significant both when it comes to op-
erations that it supports and in the
algorithmic design. The new replace2

operation gives the ability to atomically
replace a node with one or two new
nodes; making the skip-list usable in the context of mark-split. Regarding the
performance, we redesigned the data structure to make use of hazard pointers[9]
for memory reclamation purposes and thread-local-storage.

ParMarkSplit 375

The split operation described in the mark-split algorithm operates on an ab-
stract free-list representing a set of free intervals. A free interval can be repre-
sented by a node in a skip-list, where key represents the start address S of the
interval and the corresponding value represents its end address E. As used in
[8], the skip-list is basically made out of a singly-linked list with the nodes or-
dered by their keys. To allow probabilistic logarithmic expected time complexity
for searching a particular node, nodes are inserted with a varying height such
that several auxiliary lists are created with several layers of decreasing density
with increasing height. For modifications to the abstract state of the free-list,
only changes on the lowest layer’s linked list are representative, i.e., changes
are first performed atomically on the lowest layer and then modifications of the
other layers can be performed concurrently with other operations. All necessary
additional steps of the operation are eventually completed by making use of a
suitably designed helping scheme. The helping scheme is designed to allow a
concurrent operation to help another on-going operation when the former want
to access the data that the latter is processing. A node in the skip-list can be
defined to be present as soon as it is inserted on the lowest layer (i.e., there is
another present node with a next pointer on the lowest level pointing to it) and
deleted whenever the next pointer on the lowest layer for the corresponding node
is marked (e.g. bit 0 set to 1). Atomic changes to the state of each node being
present or deleted can be made using the Compare-And-Swap (CAS) primitive1.

The split operation can result in four distinct changes on the abstract free-list.
Each of these four changes must be possible to perform atomically with respect
to each other. The possible changes are to either change S or E of an interval,
replace the interval with two new intervals, or remove the interval altogether.
To facilitate the representation of these abstract changes in the skip-list, an
important observation is that it is possible to extend the skip-list to actually
allow atomic deletion and insertion. The CAS primitive has the capability to
both mark the next pointer and change it in the same operation. Thus, it is
possible to atomically replace a node in the skip-list with one or more new
nodes. The way that this modified skip-list is made to represent the abstract
changes on the free-list, is shown in Fig. 1.

-Step I illustrates how a free-list containing the intervals 〈S1, E1〉 and 〈S2, E2〉
can be represented with two corresponding nodes in the skip-list.
- In Step IIa, the interval 〈S2, E2〉 is split into two intervals 〈S3, E3〉 and
〈S4, E4〉, where S3 = S2 and E4 = E2. By means of a CAS , the pointer on the
lowest level of node [S2, E2] is atomically marked and made to point to the new
node [S3, E3] which is already pointing to the new node [S4, E4]. The deleted
node is then removed (also part of the helping scheme) in step IIb, with the
CAS operating on the previous node’s corresponding next pointer. The remaining
layers are then handled in a similar manner.

1 CAS, a synchronization primitive available in most modern processors, compares the
content of a memory word to a given value and, only if they are the same, modifies
the content of that word to a given new value.

376 N. Nguyen, P. Tsigas, and H. Sundell

- In Step IIIa, the interval 〈S3, E3〉 is modified to become 〈S5, E5〉 where either
S5 = S3 or E5 = E3. By means of a CAS , the pointer on the lowest level of node
[S3, E3] is atomically marked and made to point to the new node [S5, E5]. The
deleted node is then finally removed (also part of the helping scheme) in step
IIIb, with the CAS operating on the previous node’s corresponding next pointer.
The remaining layers are then handled in a similar manner.
- In Step IVa, the interval 〈S5, E5〉 is removed altogether from the free-list. By
means of a CAS , the pointer on the lowest level of node [S5, E5] is atomically
marked. The deleted node is then finally removed (part of the helping scheme)
in step IVb, with the CAS operating on the previous node’s corresponding next
pointer. The remaining layers are then handled in a similar manner.

The lock-free property is fulfilled by properly designing the helping scheme
so that whenever an attempt made to perform a CAS for the a-part of the steps
fails, the helping scheme makes sure that the b-part is being performed before
attempting the a-part again.

2.1 Implementation

The implementation of the extended skip-list is described in Figs. 2 and 3 . The
operation split removes a given interval (i.e., the start and endmemory addresses
of the live object) from the list of free intervals represented by the skip-list. The
node that contains the given interval is searched for, with the search starting
from the head node at the highest level. As the search is done in the skip-
list level by level downwards, the previous node on each level is stored in the
thread-local-storage savedNodes array. These remembered previous nodes are
later used when deciding to either replace or remove the found node, according
to the rules described in Section 2. If the found node, represented by node, is
concurrently modified, the corresponding replace or remove attempts will fail,
and the whole split operation is repeated.

Operation replace2 describes how node can be atomically replaced by two new
nodes node1 and node2. First the next pointer of node on the lowest level is
atomically modified using CAS , to both contain the deletion mark (represented
by the pointer value of 1) and instead point to node1. Thereafter, node is fully
removed from the skip-list, and then node1 and node2 are inserted together,
starting from level 1 and going upwards. During this insertion, node1 or node2
can have been concurrently deleted, in which case the insertion is aborted and
helping is applied to make sure the deleted node is fully removed. Before actually
starting modifying next pointers of previous nodes, the deletion mark is prop-
agated upwards on all levels of the next pointer of node using CAS operations.
This step is also required to be done by all concurrent operations that apply
helping. The next step is then to modify the next pointer of all previous nodes
of node such that they should instead point to the next node of node, starting
with the highest level of the next pointers of node and going downwards. This is
done by using CAS to atomically update the next pointer of the previous node,
possibly given by savedNodes[i], from originally pointing to node to instead

ParMarkSplit 377

1 void s p l i t (void ∗ s t a r t , void ∗end)
2 do
3 Node ∗node , ∗prev = head ;
4 for (i = MAX HEIGHT; i >= 0; i−−)
5 for (; ;)
6 node = prev . next [i] ;
7 i f (node & 1)
8 Go backwards in path using savedNodes[i+ 1] or higher and help prev if needed
9 i f (node matches i n t e r v a l) break ;

10 prev = node ;
11 savedNodes [i] = prev ;
12 bool keepLe f t = (s ta r t−node . s t a r t) ≥ T;
13 bool keepRight = (node . end−end) ≥ T;
14 int he ight = log2random (1 , MAX HEIGHT) ;
15 i f (keepLe f t && keepRight)
16 ok = rep l a c e 2 (node , new Node(node . s t a r t , s t a r t , he ight) , new Node

(end , node . end , he ight)) ;
17 else i f (keepLe f t)
18 ok = rep l a c e 1 (node , new Node(node . s t a r t , s t a r t , he ight)) ;
19 else i f (keepRight)
20 ok = rep l a c e 1 (node , new Node(end , node . end , he ight)) ;
21 else
22 ok = remove (node) ;
23 while (! ok) ;

24 bool r ep l a c e 2 (Node ∗node , Node ∗node1 , Node ∗node2)
25 Connect all next[] of node1 to node2
26 do
27 Node ∗next = node . next [0] ;
28 i f (next & 1) return fa l se ;
29 node2 . next = next ;
30 ok = CAS(&node . next [0] , next , (node1 | 1)) ;
31 while (! ok) ;
32 do remove (node) ;
33 for (i =1; i<node1 . he ight ; i++)
34 do
35 Node ∗prev = savedNodes [i] ;
36 Node ∗next = prev . next [i] ;
37 If prev is deleted or not the previous node according to node1, update savedNodes[i]

while applying helping if necessary, and repeat
38 node2 . next [i] = next ;
39 ok = CAS(&prev . next [i] , next , node1) ;
40 while (! ok) ;
41 If node1 or node2 has been marked for deletion, perform helping if needed and exit

for-loop
42 return true ;

43 bool r ep l a c e 1 (Node ∗node , Node ∗node1)
44 do
45 Node ∗next = node . next [0] ;
46 i f (next & 1) return fa l se ;
47 node1 . next = next ;
48 ok=CAS(&node . next [0] , next , (node1 | 1)) ;
49 while (! ok) ;
50 do remove (node) ;
51 for (i =1; i<node1 . he ight ; i++)
52 do
53 Node ∗prev = savedNodes [i] , ∗next = prev . next [i] ;
54 If prev is deleted or not the previous node according to node1, then update

savedNodes[i] while applying helping if necessary, and repeat
55 node1 . next [i] = next ;
56 ok = CAS(&prev . next [i] , next , node1) ;
57 while (! ok) ;
58 if node1 has been marked for deletion, perform helping if necessary and exit for-loop
59 return true ;

Fig. 2. Operations of the skip-list

378 N. Nguyen, P. Tsigas, and H. Sundell

60 struct Node
61 void ∗ s t a r t , end ;
62 int he ight ;
63 Node∗ next [he ight] ;
64 static Node ∗head = new Node(−∞ , −∞ , MAX HEIGHT) ;
65 static Node ∗ t a i l = new Node(∞ , ∞ , MAX HEIGHT) ;
66 thread static savedNodes [MAX HEIGHT] ;

68 void do remove (Node ∗node)
69 Mark node.next[x] on all levels x using CAS
70 for (i = node . height −1; i >= 0; i −−;)
71 Node ∗prev = savedNodes [i] , ∗next = node . next [i] & (˜1) ;
72 bool ok=CAS(&prev . next [i] , node , next) ;
73 i f (! ok)
74 Update savedNodes[i] to be the previous node of node and perform helping if

necessary of deleted nodes in the path, and repeat. If previous node cannot be
found, perform next lap in the for-loop

75 bool remove (Node ∗node)
76 do
77 Node ∗next = node . next [0] ;
78 i f (next & 1) return fa l se ;
79 ok = CAS(&node . next [0] , next , (next | 1)) ;
80 while (! ok) ;
81 do remove (node) ;
82 return true ;

Fig. 3. Data structures, auxiliary do remove, and remove operation of the skip-list

point to the next node. As concurrent helping can have been applied, it is im-
portant to notify this state when trying to update a possibly outdated pointer
in savedNodes[i].

Operation replace1 , which replaces the free interval with another interval, fol-
lows the similar logic as replace2 but only one new node, node1, atomically re-
places node. Remove operation deletes a node as follow. First, the next pointer
of node on lowest level is atomically modified using CAS , to contain the deletion
mark. Thereafter, node is fully removed from the skip-list by do remove.

For internal memory management, hazard pointers [9] are preferably used.
Each hazard pointer represents a memory address that can be set by an indi-
vidual thread in order to signal that the corresponding object is currently in use
and should not be reclaimed. The thread-local-storage savedNodes can then be
implemented by a corresponding number of hazard pointers. To also allow the
search part of split to safely pass through (i.e., de-reference) next pointers that
are marked, without applying helping, the same hand-over trick as used in [10]
can be applied.

2.2 Correctness

We now sketch (because of space constraints) the proof of correctness for the
linearizability and lock-free criteria.

Lemma 1. The implementation of the split operation, described in Fig.2, is lin-
earizable with respect to other concurrent split operations.

Proof: Linearizability is demonstrated by giving the respective linearizability
points for the corresponding executions of the split operations in four cases:

ParMarkSplit 379

Case 1 - split into two intervals: A split operation that results in this case takes
effect at the successful CAS in line 30. Before the CAS takes effect, the nodes
node1 and node2 cannot be reached by the search part of any concurrent split

invocation, and node is not marked for deletion. After the CAS takes effect,
the nodes node1 and node2 can clearly be reached by the search part of a
concurrent split, as node is now referring to node1 as being the next node, and
node has been logically deleted.

Case 2 - keep the left interval: a split that results in this case takes effect at the
successful CAS in line 48 . Before the CAS takes effect, the node node1 (contain-
ing the left interval) cannot be reached by the search part of any concurrent
split, and node is not marked for deletion. After the CAS takes effect, the node
node1 can clearly be reached by the search part of a concurrent split as node is
referring to node1 as being the next node, and node has been logically deleted.

Case 3 - keep the right interval: a split that results in this case takes effect at
the successful CAS in line 48 . Same arguments holds as for Case 2.

Case 4 - remove the interval: A split that results in this case takes effect at the
successful CAS in line 79 . Before the CAS takes effect, node is not marked for
deletion. After the CAS takes effect, node has been logically deleted, which will
be noted by any concurrent split operations that will fail to modify node, as
the CAS in lines 30 and 48 requires the mark to not be set of the next pointer.

��
Lemma 2. The implementation of the split operation, described in Fig.2, is lock-
free.

Proof: The lock-free property of the split operation is maintained if a not finite
execution of a loop for one invocation of the operation, is a result of a progress of
another concurrent invocation. Assuming that the searched interval exists, the
lines 6-10 are indefinitely repeated due to concurrent deletions. These deletions
are due to successful concurrent CAS in lines 79, 30, and 48, all resulting in
progress for the corresponding invocations. The lines 3-23 are repeated due to
failed replace2 , replace1 , or remove functions. These functions fail in lines 28, 46,
or 78, due to concurrent deletion of node. These deletions are due to successful
concurrent CAS in lines 30, 48 and 79, all resulting in progress for the corre-
sponding invocations. The lines 35-40 can indefinitely repeat due to concurrent
deletions or insertions, which is progress for the corresponding invocations. Same
arguments can be applied for the loops in lines 53-57 and lines 77-80. ��

3 Parallel Mark-Split

We are first presenting the design of a lazy-splitting mechanism for our parallel
mark-split algorithm, and then the main implementation, a.k.a ParMarkSplit.

3.1 Lazy Splitting

We design a lazy-splitting mechanism to improve the efficiency of the splitting
part. Originally, whenever a live object is marked, an interval is split to exclude

380 N. Nguyen, P. Tsigas, and H. Sundell

the space occupied by the marked object from the free intervals. We called
this design aggressive splitting. Splitting for every marked object is inefficient
in multi-threaded environment as it causes high contention at the shared data
structure. We observe that: marking threads often consecutively mark objects
that locate adjacent. The number of those adjacent marked objects is observed
about 10% to 61% of the total number of live objects in applications in the
DaCapo benchmarks. It is possible to perform splitting one time for adjacent
objects that are marked consecutively, instead of splitting for each individual
marked objects. We design a mechanism to do so, called lazy-splitting.

The lazy-splitting mechanism works as follows. Each marking thread main-
tains a memory range of adjacent objects recently marked but not yet “split”.
When it marks a new object, the object’s memory is coalesced to the range if
they are adjacent. Otherwise, it performs split for the range and the range is
set to the object’s memory. At the end of marking, split is called for the re-
mained range. The lazy-splitting mechanism reduces the number of accesses by
marking threads to the list of free intervals compared to aggressive splitting
at a cost of maintaining not-yet-split interval locally at each marking thread.
The lazy-splitting benefits the parallel mark-split algorithm when the perfor-
mance gain by the reduction of the number of calls to split can cover the cost:
(N −M).C1 > N.C2, where N is the total number of live objects; M is the total
number of split operations that the lazy-splitting performs; C1 is the cost of a
split operation and C2 is the cost to add a marked object to the not-yet-split
interval. It is reasonable to assume that, for specific application and platform,
these costs are constants. Therefore, whether the lazy-splitting mechanism ben-
efits ParMarkSplit collector mainly depends on the (N −M)/N ratio. An auto
switch mechanism for determining when to use lazy-splitting is easy to design by
using a threshold t to decide when to use lazy-splitting. Based on the evaluation
results, we recommend t = 10%. By default, lazy-splitting is applied as it is
observed to benefit the parallel mark-split GC. But, lazy-splitting is not going
to be applied when the GC finds, while collecting, that (N −M)/N < t.

3.2 Implementation

A parallel version of mark-split can be achieved by performing the following
modifications to the concurrent mark-sweep collector (CMS) [11]
– When GC starts, empty the skip-list, then add one interval of the entire

region to it.
– When a thread marks an object during the mark phases: If aggressive splitting

is used, the thread calls split to remove the occupied space from the skip-list.
If lazy-splitting is used, the thread book-keeps the object for the lazy-splitting
mechanism.

– At the end of the Remark phase (i.e., the mutator is still suspended), convert
the list of free intervals to the format of the allocator’s free list. Remove the
Sweep phase.

The correctness of the algorithm in the presence of interleaving among concurrent
operations can be achieved thanks to the design of the extended skip-list which

ParMarkSplit 381

allows split to be performed atomically and in a lock-free manner. The lock-free
property of the skip-list, when the number of objects to be marked is finite,
guarantees the termination of all executed split, and therefore, the mark phases.

We implement our parallel mark-split collector as a collector for the 64-bit
OpenJDK 7’s HotSpot virtual machine - an open source implementation of the
Java SE Platform contributed and supported by Oracle. The collector is named
ParMarkSplit. The HotSpot uses a generational heap layout which divides its
memory space into two parts: young and old generations. The young generation
is to contain recently allocated objects, while objects that have been lived for
a while are placed in the old generation. ParMarkSplit serves as a collector for
the old generation, similar to CMS. One implementation issue of ParMarkSplit
based on the CMS is that CMS is dedicated to work for the old generation in
a generational heap. This brings difficulty for a plain comparison of the two
algorithms in which they are used to collect a whole heap. Disabling the genera-
tional option in HotSpot so that the collectors work on the whole heap requires
thorough modifications of the memory management that would have touched
the HotSpot intensively. We find that it is more practical to maintain the gener-
ational heap layout, similar to other known commercial JVM, which also allows
the comparison of the collectors in an industrial standard environment.

4 Evaluation

We are presenting an experimental evaluation of our parallel mark-split collec-
tor and comparing it with other collectors in the HotSpot, using the DaCapo
benchmarks. Then we discuss the memory overhead and characterize applica-
tions that can benefit from ParMarkSplit. We opted to compare ParMarkSplit,
with lazy-splitting (PMS) and without it (PMS1), to existing HotSpot’s CMS
as it was implemented based on CMS. Our evaluation also includes a lock-based
parallel mark-split (PMS Lock) which uses a binary search tree that relies on a
single mutex lock to synchronizes concurrent accesses to store free intervals.

The collectors were evaluated in two scenarios. In the first scenario, GCs were
configured to work in a stop-the-world mode where the mutator was suspended
during collection. This setting allowed us to exclude the synchronization cost
between the old GCs and the mutator. Such an execution provides a better look
at the performance of the design itself. In the second scenario, the GCs were
evaluated in the concurrent mode where the mutator was not suspended during
collection. This is the scenario that CMS was designed for.

The DaCapo suite [12] was used for benchmarking. DaCapo contains a set
of open-source, general-purpose JVM benchmarks, and is representative of real-
world Java applications. We ran the benchmarks and reported results from rep-
resentative applications which have rich memory behaviors, as tested by Gidra L.
et.al [13] and Kalibera T. et al. [14]: lusearch, avrora, sunflow, tomcat and xalan.
We also found that the Dacapo benchmarks use much less memory than our
available memory and do not produce much garbage in the old generation. Too
big heap might not trigger any old generation collection, though the young gen-
eration collection could be triggered often. In order to focus on garbage collection

382 N. Nguyen, P. Tsigas, and H. Sundell

of the old generation, the heap sizes were chosen to be close to the benchmark’s
working set size. They were 50 megabytes (MB) for aurora, 400MB for xalan
and 100MB for the others. Corresponding flags are set to allow the GCs working
in multi-threaded mode. The other flags were left on default values.

The experiments were run on two contemporary NUMA multiprocessor plat-
forms running Ubuntu Linux with kernel 3.0.0. One has two Intel Nehalem 6-core
processors running at 2.4GHz with HyperThreading, 48GB of RAM, and sup-
port up to 24 concurrent hardware threads. The other has four AMD Bulldozer
12-core processors at 2.6GHz, 64GB of RAM and supports up to 48 concurrent
hardware threads. In each experiment, we iterated a benchmark six times so that
the old generation’s collection can be triggered for several cycles.

4.1 Stop-the-world Scenario

In the stop-the-world scenario, we evaluate the lazy-splitting mechanism and the
garbage collection time of the evaluated GCs in five applications of the DaCapo
benchmarks. We varied the number of threads that collect garbage (GC threads).
As we observed that the performance of the evaluated GCs does not change
significantly above 15 threads (due to the known poor scalability of CMS), we
report the results up to this number of GC threads.

We first evaluate the lazy-splitting mechanism by comparing the number of
split operations performed by ParMarkSplit in each collection cycles before and
after adopting lazy-splitting mechanism. In general, the lazy-splitting mechanism
helps ParMarkSplit reducing the number of split operations to be performed. In
avrora and sunflow, lazy-splitting can reduce this number by around 50%. But
in xalan applications, the reduction is only about 4 − 6%. The reason may be
that live objects marked by the GC in xalan interleave with garbage. Therefore
lazy-splitting can not reduce the number of calls to split as much as in other
applications. We expect that the lazy-splitting mechanism benefits PMS, in term
of collection time, the most in avrora and sunflow.

The benefits of lazy-splitting are reflected in the performance of the ParMark-
Split collector. Fig. 4 presents the collection time of different GCs in the HotSpot
in our Intel and AMD systems. In four out of five benchmarks on the Intel one,
lazy-splitting helps reducing the collection time of ParMarkSplit, especially in
avrora and sunflow. Only in xalan, the improvement of lazy-splitting are not
clear as the gained performance is not enough to pay-off for the overhead cost.
Comparing to PMS Lock, the ParMarkSplit implementations perform signifi-
cantly better in all applications. The performance of ParMarkSplit compared to
CMS, however, are mixture of good and bad results. There are two applications,
avrora and sunflow, in which ParMarkSplit works better than CMS. In others,
CMS works better. In seeking for the reason of this result, we notice that avrora
and sunflow have higher ratios of adjacent live objects over the total number of
live objects compared to the other DaCapo applications. These applications can
benefit ParMarkSplit from the caching effect as the GC accessing the same inter-
vals for a short time and help ParMarkSplit to work more efficient. We analyze
this observation further in section 4.4.

ParMarkSplit 383

Fig. 4. Garbage collection time (sec) in the stop-the-world scenario

Fig. 5. Pause time when the GCs work concurrently with the mutator. Data columns
at each label, from left to right: PMS1, PMS, PMS Lock and CMS. Longest concurrent
(or GC) pause when GC works in concurrent mode (or includes pauses when the GC
switches to stop-the-world); Average pause: average of all the pauses by the old GC.

Another observation is the scalability of different GCs in Fig. 4. We can see
that the PMS Lock performs worse as the number of GC threads increases.
This result is not surprised as the lock protecting the skip-list becomes a hot
contention point when many GC threads concurrently access it. Meanwhile, the
ParMarkSplit collectors, with and without lazy-splitting, as well as CMS are, at
least, not scaling down its performance as the number of GC threads increases.

Considering the tested hardware platforms, we found that ParMarkSplit per-
forms better on the Intel than on the AMD. One possible reason can be that the
AMD system has NUMA architecture with four nodes which results in higher
cost for accessing the shared skip-list.

4.2 Concurrent Scenario

In the concurrent scenario, GCs collect garbage concurrently with the mutator,
i.e., the scenario that CMS was built for. We evaluated the pause times of our
GC during the collection, in addition to the benchmark’s execution times.

We measured the pause time at different number of GC threads. CMS sus-
pends applications during the initial mark and remark phase. ParMarkSplit,
which derives from CMS and adds the splitting work to these phases,

384 N. Nguyen, P. Tsigas, and H. Sundell

Fig. 6. Benchmark time (sec) for the HotSpot with different GCs

is expected to have longer pauses than the corresponding CMS’s pauses. This
reflects in the longest concurrent pause and average pause, which are pauses
during concurrent collection, in Fig. 5. The same figure also shows the longest
GC pause of the old generation GC which includes pauses when the collector
switches to working in stop-the-world mode under certain circumstance, e.g the
old generation is full during concurrent collection. Due to the lack of space, we
include only the results of sunflow and xalan applications, representing for ap-
plications which may or may not benefit from ParMarkSplit. We can observe
that both average and longest concurrent pauses of ParMarkSplit are longer
than those of CMS, as expected from the design. In current HotSpot, the initial
mark phase runs single-threaded while the remark phase, though can run multi-
threaded, has many parts running sequentially as well. As these two phases run
mostly sequentially, the pause time in ParMarkSplit, which uses lock-free syn-
chronization based on compare-and-swap operation, are penalized dramatically.
We can expect that when these two phases are fully parallelized in the HotSpot,
pause time of ParMarkSplit will be improved significantly, at least proportion-
ally to the speedup of the lock-free skip-list. Regarding the garbage collection
pause time, we also notice that the longest GC pause time does not follow the
trends of the longest concurrent pause time across the applications. In sunflow,
the ParMarkSplit with or without lazy-splitting usually achieves shorter longest
GC pauses than both the lock-based one and CMS. However, in xalan, the Par-
MarkSplit collectors have shorter longest GC pauses than the lock-based one,
but longer than CMS. This observation can be drawn from both the AMD and
Intel platforms. There are also different in term of absolute values between the
two architecture. The AMD system usually has longer pauses than the Intel one.

Regarding the relation between the application’s response time and the GC’s
pause time, it is noticeable that GC pause time is not necessarily the same as
the application response time, which means how long it takes an application to
responds to a request by users or by other applications. Even though pause time
is an indicator for the maximum application response time in the worst case,

ParMarkSplit 385

Table 1. The estimated size of the skip-list, and of the bitmap of Printesiz’s technique

avrora lusearch sunflow tomcat xalan
Number of nodes (thousands) / Size (MB)

Intel 2.0/ 0.3 14.4/ 2.1 4.9/ 0.7 49.1/ 7.1 55.0/ 7.9

AMD 2.2/ 0.3 16.6/ 2.3 4.3/ 0.7 46.4/ 6.7 57.6/ 8.3

Estimated size of bitmap (MB)

Bitmap 0.78 1.56 1.56 1.56 6.25

the contribution of the GC’s pause time to the mean application response time
is less and less important in systems with heavy loads, as studied by Persson M.
and Cummins H. from IBM [15].

ParMarkSplit brings the split part to the mark phase, but it also removes the
sweep phase. Does this change reflect in the overall throughput of the applica-
tions? Fig. 6 plots the execution time of the benchmarks at different numbers
of GC threads. In some specific cases of lusearch and xalan applications, CMS
performs better than PMS. In sunflow, however, PMS performs slightly better
than CMS. Excepts for those cases, we did not observe significant differences
in the benchmark’s execution time between PMS and CMS. Comparing to the
lock-based parallel mark-split, the benchmark times of ParMarkSplit are lower
in most cases. ParMarkSplit has also shown that it works better than CMS in
sunflow, both in terms of pause time and throughput. We will analyze the reason
that ParMarkSplit works well in certain applications in section 4.4.

4.3 Memory Usage

We can estimate the memory overhead used to store free intervals based on the
memory used by the skip-list. Each free interval is stored as a skip-list’s node,
which occupies approximately 18 memory words; two for the start and the end of
the free interval, one for the node’s level in the skip-list, and at most max level
pointers pointing to the next nodes in the linked list at each level of the skip-
list. During its construction, the skip-list decides max level so that 2max level is
approximately its average size. As our estimated average number of free intervals
is 32000, max level is set statically to 15. The estimated memory used by the
skip-list in a 64-bit system is presented in Table 1.

We observe that avrora and sunflow have the lowest number of free intervals
among the benchmarks. This is because their marked live objects often reside
next to each other as discussed above. The memory overhead in avrora and sun-
flow is less than 1% over the heap size (0.3/50MB and 0.7/100MB, respectively),
which is negligible. This cost is higher in applications where the number of free
intervals are high; approximately 2% in lusearch and xalan, and 7% in tomcat,
where the heap sizes are 100MB, 400MB and 100MB respectively. The size of
the skip-list is usually small in applications where their live objects often reside
adjacent to each other, making the memory overhead become negligible. Com-
pared to the memory overhead of Printezis’s technique, which uses a bitmap to

386 N. Nguyen, P. Tsigas, and H. Sundell

skip over contiguous unmarked objects while sweeping [11], ParMarkSplit uses
less memory in avrora and sunflow, but more in other benchmarks.

The fragmentation behavior of ParMarkSplit is similar to that of CMS, as it
is expected by design. It is possible to check the fragmentation level during or
after a collection cycle by checking the size of the skip-list. When the heap is
considered too fragmented, a compaction algorithm can be applied in a similar
way as it is applied in the CMS garbage collector in HotSpot.

4.4 Characterization of Applications That Benefit from
ParMarkSplit

We try to characterize the applications in which ParMarkSplit performs bet-
ter than CMS so that the system can adaptively select the best GC based on
these characteristics. We have observed from the experimental results that Par-
MarkSplit outperforms CMS in the sunflow and avrora applications, and not
in tomcat and xalan. As ParMarkSplit performance is highly dependent on its
most frequent operation, i.e., split, it usually performs better in applications
where the number of live/garbage ratios are low. Analysis on those applications
shows that sunflow and avrora have live/garbage ratios as low as about 15% and
20%, respectively. Tomcat have higher ratio; 40% on average. We can speculate
that ParMarkSplit maintains the property of its sequential counter-part that it
performs better in applications which have low live/garbage ratio. However, this
property could not be applied to explain ParMarkSplit’s performance in other
applications with the same characteristics. Xalan have similar live/garbage ra-
tios as sunflow and avrora, but ParMarkSplit does not perform well in them. We
need to distinct the formers from the latters to better characterize the applica-
tion that clearly benefit from ParMarkSplit.

We observed that our lazy-splitting design brings significant performance
gains to ParMarkSplit in applications where it already performs better than
CMS, i.e., sunflow and avrora. The benefit of the design in xalan is however not
as much. The main characteristic differentiating the two groups is the ratio of
the number of adjacent marked objects over that of total marked objects. This
ratio is high in sunflow and avrora; and lower in xalan. When the ratio is high,
doing splitting interval operation in ParMarkSplit benefits in two ways. First
one is a cache benefit when a free interval that is previously split can be cached
and reused in the next splitting. Second benefit is that only one split operation is
required for a set of adjacent objects. As ParMarkSplit brings more such advan-
tages to sunflow and avrora than to xalan, it performs better than CMS in the
former applications but not in the latters in our experimental evaluation. All
above observations regarding the characterization of applications that benefit
from ParMarkSplit are consistent across the two evaluated hardware platforms.

To conclude, ParMarkSplit has been shown to perform better than CMS in
applications where the ratio of the number of live objects to that of garbage
objects is low and live objects often reside adjacent to each other. ParMarkSplit
can be used as a complement to other garbage collection mechanisms to target
applications with such characteristics.

ParMarkSplit 387

5 Conclusion

We present a parallel design of the mark-split garbage collector, called ParMark-
Split. To the best of our knowledge, this is the first parallel mark-split design.
The design is based on a lock-free data structure that extends the functionality
of a skip-list to meet the requirements of the mark-split algorithm augmented
with a lazy-splitting design. A complete implementation of the ParMarkSplit
collector was developed and integrated in the OpenJDK HotSpot Java virtual
machine. We evaluated its behavior experimentally and compared it with the
default concurrent mark-sweep garbage collector present in HotSpot, using the
DaCapo benchmarks. The experiments were performed on two multiprocessor
systems of different architectures; Intel’s Nehalem and AMD’s Bulldozer. The
results are encouraging in applications where the ratio of the number of live
objects to that of garbage objects is low and live objects often reside adjacent
to each other. We believe that ParMarkSplit can add weight to other garbage
collection mechanisms when used for applications with such characteristics.

References

1. McCarthy, J.: Recursive functions of symbolic expressions and their computation
by machine, part i. Commun. ACM 3, 184–195 (1960)

2. Cheney, C.J.: A nonrecursive list compacting algorithm. Commun. ACM 13,
677–678 (1970)

3. Hughes, R.J.M.: A semi-incremental garbage collection algorithm. Software: Prac-
tice and Experience 12(11), 1081–1082 (1982)

4. Blackburn, S.M.,McKinley,K.S.: Immix:Amark-region garbage collector with space
efficiency, fast collection, and mutator performance. SIGPLAN Not. 43(6), 22–32
(2008)

5. Detlefs, D., Flood, C., Heller, S., Printezis, T.: Garbage-first garbage collection.
In: Proceedings of the 4th ISMM, pp. 37–48. ACM (2004)

6. Sagonas, K., Wilhelmsson, J.: Mark and split. In: Proceedings of the 5th Interna-
tional Symposium on Memory Management, ISMM 2006, pp. 29–39. ACM (2006)

7. Herlihy,M., Shavit, N.: TheArt ofMultiprocessor Programming. Morgan Kaufmann
(2008)

8. Sundell, H., Tsigas, P.: Fast and lock-free concurrent priority queues for multi-
thread systems. J. Parallel Distrib. Comput. 65(5), 609–627 (2005)

9. Michael, M.M.: Hazard pointers: Safe memory reclamation for lock-free objects.
IEEE Transactions on Parallel and Distributed Systems 15(8) (August 2004)

10. Sundell, H., Gidenstam, A., Papatriantafilou, M., Tsigas, P.: A Lock-Free Algo-
rithm for Concurrent Bags. In: Proceedings of the 23rd ACM SPAA. ACM (2011)

11. Printezis, T., Detlefs, D.: A generational mostly-concurrent garbage collector. SIG-
PLAN Not. 36, 143–154 (2000)

12. Blackburn, S.M., et al.: The dacapo benchmarks: Java benchmarking development
and analysis. SIGPLAN Not. 41, 169–190 (2006)

13. Gidra, L., Thomas, G., Sopena, J., Shapiro, M.: Assessing the scalability of garbage
collectors on many cores. In: Proceedings of the 6th PLOS Workshop. ACM (2011)

14. Kalibera, T., et al.: A black-box approach to understanding concurrency in dacapo.
In: The UK MM-NET Workshop on Memory Management (April 2012)

15. Persson, M., Cummins, H.: Java technology, ibm style: Garbage collection policies.
IBM DeveloperWorks (May 2006)

Practical Concurrent Unrolled Linked Lists

Using Lazy Synchronization

Kenneth Platz, Neeraj Mittal�, and Subbarayan Venkatesan

The University of Texas at Dallas,
Richardson, TX 75080

{kplatz,neerajm,venky}@utdallas.edu

Abstract. Linked lists and other list-based sets are one of the most
ubiquitous data structures in computer science. They are useful in their
own right and are frequently used as building blocks in other data struc-
tures. A linked list can be “unrolled” to combine multiple keys in each
node; this improves storage density and overall performance. This orga-
nization also allows an operation to skip over nodes which cannot contain
a key of interest. This paper introduces a new high-performance concur-
rent unrolled linked list with a lazy synchronization strategy that allows
wait-free read operations. Most write operations under this strategy can
complete by locking a single node. Experiments show up to a 300% im-
provement over other concurrent list-based sets.

Keywords: concurrent data structures, lazy synchronization, linked lists.

1 Introduction

In recent years, processor manufacturers have shifted their development focus
away from increasing clock speeds and single-threaded performance. The rising
prevalence of multi-core and multi-processor systems adds additional import to
the quest for high-performance data structures that permit concurrent reads and
writes while maintaining correct behavior.

Concurrent data structures can synchronize via several methods; the most
common techniques involve locking. An exclusive lock can be used to control
access to some portion of a data structure. When a thread attempts to access
a portion of a data structure, it must first acquire one or more locks. Multiple
techniques exist offering varying degrees of performance. The performance of
a technique depends upon both the number of locks which must be acquired
during an operation and the granularity of each lock (the fraction of the data
structure protected by each lock).

Other algorithms use atomic read-modify-write instructions in lieu of locks.
These instructions, such as compare-and-swap (CAS) or load-linked/store con-
ditional (LL/SC), can be used to provide lock-free or wait-free synchroniza-
tion [1]. Efficient lock-free and wait-free algorithms are inherently more complex

� This work was supported, in part, by the National Science Foundation (NSF) under
grant number CNS-1115733.

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 388–403, 2014.
c© Springer International Publishing Switzerland 2014

Practical Concurrent Unrolled Linked Lists Using Lazy Synchronization 389

than lock-based algorithms; they are harder to design, analyze, implement, and
debug.

The linked list is one of the most ubiquitous data structures in computer
science. It implements the standard set operations: insert, remove, and lookup.
A linked list is typically implemented via a sequence of nodes, each of which
contains a key, possibly a data element, and a pointer to the next node in the se-
quence. Linked lists are of particular interest because many other data structures
(such as graphs and hash tables) use linked lists as “black box” subroutines [2].

Linked lists have been well-studied from a concurrency perspective. Several
efficient lock-based algorithms exist. The simplest algorithm consists of a single
lock which protects all accesses to the list, but this does not allow for any true
concurrency. Improvements have been seen with fine-grained locking, where each
node contains its own lock. These fine-grained algorithms typically scan the list
for a node of interest and acquire the lock on that node (and possibly other
nodes). Two algorithms that use this technique include an “optimistic” algorithm
by Herlihy and Shavit [3] and a “lazy” algorithm by Heller [4].

Linked lists, while extremely useful, do have several disadvantages. One major
disadvantage to a linked list is that any operation must, on average, traverse half
the nodes in the list. Each step in this traversal must dereference that node’s
next pointer and access a memory location that may be far removed from the
prior node. This access pattern makes poor use of the memory hierarchy found
in today’s systems.

Several attempts have been made to increase the efficiency of linked lists by
combining multiple keys into a single node. These “unrolled” lists, first described
by Shao et al [5], improve performance in two ways. First, unrolling reduces the
number of pointers which must be followed to find an item. Second, this groups
multiple successive elements in sequential memory locations and better conforms
to the principle of spatial locality [6, 7].

More recently Braginsky and Petrank developed a “chunked” lock-free linked
list [8]. Their algorithm improves the locality of memory accesses by storing a
sequential subset of key/data pairs within a contiguous block of memory. As time
elapses and elements are inserted and removed from the list, their algorithm splits
full chunks and combines sparsely populated ones. An operation can quickly
locate the appropriate chunk, and searches within a chunk exhibit favorable
spatial locality.

Our Contributions: We present a new lock-based data structure for an unrolled
linked list based upon Heller’s lazy synchronization wherein the majority of
operations complete by locking a single node. We allow our data structure to
contain up to K key/data pairs per node; this improves both the storage density
and locality of reference within a node [6]. Using the algorithms we present,
we can traverse this data structure in O(n/K +K) operations, where n is the
number of key/data pairs stored in the list. We also sketch a proof of correctness,
using linearizability and deadlock-freedom as our safety and liveness properties,
respectively.

390 K. Platz, N. Mittal, and S. Venkatesan

The data structure we present is straightforward to implement and exhibits
excellent throughput. Our analysis shows that it (i) exhibits high degrees of
spatial and temporal locality by accessing sequential memory locations; (ii) re-
sponds extremely well to common compiler optimizations; and (iii) increases
cache efficiency by eliminating extraneous pointers. In performance testing our
implementation provides up to 300% higher throughput than the list presented
by Braginsky and Petrank [8]; the improvement over other concurrent lists is
even higher.

Roadmap: The rest of the paper is as follows. Section 2 describes prior work
related to this paper. Section 3 briefly describes our system model. Section 4
describes our data structure, the algorithms to implement standard set opera-
tions, and provides a proof of correctness. Section 5 describes our experiments
and analyzes the results. Section 6 consists of our conclusions and suggestions
for further work.

2 Related Work

Linked lists have been extensively studied in terms of concurrency; A number
of lock-free and lock-based algorithms for linked lists exist, including lock-free
algorithms by Valois [9], Michael [10], and Harris [11]. In this paper, we present
a lock-based algorithm which permits wait-free reads.

The data structure presented here is modeled after a list by Heller which uses
a “lazy” locking strategy [4]. This implementation stores all keys in sorted order;
a scan identifies the first key greater than or equal to the target key. The scan
returns a window of two nodes: a node of interest and its immediate predecessor.
A lookup operation returns true if the key of the current node matches the
key in question and false otherwise. An insert or remove operation obtains
a window from a scan operation and locks the predecessor and current nodes
(in that order). The thread must next perform a validate; another thread may
modify this section of the list before we acquire the locks. An insert then splices
a new node into the list while a remove removes the node from the list.

Braginsky and Petrank recently developed a “chunked” lock-free linked list [8]
which stores multiple sequential elements within the same memory block. This
chunked list maintains chunk sizes within a specified minimum and maximum by
splitting overfull chunks and merging underfull neighboring chunks. A merge or
split requires “freezing” the chunk(s) in question to prevent further operations
on a chunk. The operation must then stabilize the chunk to quiesce all pending
operations. Multiple threads can help with the freeze and stabilize operations.

3 System Model

Our data structure implements a list-based set that supports three operations. A
lookup operation accepts a key as an argument and returns either a data element
indicating success or nil indicating failure. An insert operation accepts a key and

Practical Concurrent Unrolled Linked Lists Using Lazy Synchronization 391

data element as arguments, returning true if the operation successfully inserted
the key/data pair or false to indicate failure (due to the key already existing
in the list)1. A remove operation accepts a key and returns true for success or
false if the element was not found.

Our algorithms use exclusive locks for coordination between threads. Many
locks exist which provide different performance characteristics and progress guar-
antees. We assume a “black-box” lock which provides the guarantees of deadlock-
freedom and mutual exclusion. For the sake of brevity, we rely on the Resource
Acquisition Is Initialization (RAII) [12] idiom when acquiring these locks. We
assume that acquiring a lock involves creating object with local scope which
releases the lock when destroyed. In C++11, this is implemented with the
std::lock guard class. Other languages have similar constructs, either
language-provided or user-specified.

4 An Unrolled Linked List Using Lazy Synchronization

4.1 Algorithm Overview

Our unrolled linked list maintains a singly-linked list of nodes and stores keys in
partially sorted order. Each node contains (i) an array of key/data pairs, (ii) a
next pointer to the next node in the list, (iii) a count of the number of elements
in the node, (iv) an exclusive lock, and (v) a marked flag indicating a node’s
logical removal. In this data structure lock protects access to the next pointer
which allows most operations to complete while holding a single lock. We define
the parameter K to indicate the maximum number of key/data pairs per node
and the anchor key as the first key in a node. We further define parameters
MinFull and MaxMerge. MinFull is the minimum number of keys before
we attempt to merge nodes; MaxMerge is the maximum number of keys we
allow in a merged node.

The data structure keeps track of the head pointer which points to the first
element in the list. We maintain two invariants: (i) the anchor key of each node
is strictly less than the anchor key of its successors and (ii) all (non-anchor)
keys in a node are strictly greater than their anchor key. We do not impose any
ordering among keys within a node; attempting to keep keys in sorted order
would penalize write performance and complicate wait-free lookups. The layout
of the data structure is depicted in Fig. 1.

We define two sentinel values of −∞ and +∞. We initialize the list with three
sentinel nodes with anchor keys of −∞, −∞, and +∞. The sentinel value of +
indicates a key slot that is unused.

Each operation scans the list to find the appropriate node upon which to
operate and returns that node and its predecessor. An insert replaces a sentinel
key with our new key/data pair and returns true if successful or false if the
element is already in the list. A remove replaces a key with a sentinel key,

1 Sets do not permit multiple entries for a given key. Another option is to replace the
existing data element with the new element.

392 K. Platz, N. Mittal, and S. Venkatesan

head next

marked

lock

count

keys[0]

data[0]

...

keys[K-1]

data[K-1]

next

marked

lock

count

keys[0]

data[0]

...

keys[K-1]

data[K-1]

next

marked

lock

count

keys[0]

data[0]

...

keys[K-1]

data[K-1]

. . .

Fig. 1. Layout of the unrolled linked list

returning true for success or false for failure (i.e. the element was not found
in the list). A lookup returns either the data element associated with the key or
nil if the key is not in the list.

4.2 Algorithm Detail

The first step in any operation on the list involves a scan (Alg. 1). We maintain
three pointers during this scan, prev, curr, and succ. We scan through the list
until the succ contains an anchor key greater than our key of interest. Once succ
meets this criteria, scan returns the pair (prev, curr).

1 Function scan(item) : (node,node)
2 prev ← head
3 curr ← prev.next
4 succ ← curr.next
5 while succ.key > item do
6 prev ← curr
7 curr ← succ
8 succ ← succ.next

9 return (prev,curr)

Alg. 1. Scan

The lookup function starts with a scan of the list (Alg. 2). Once we have our
curr node, we perform a single pass through its keys looking for item. At each
slot, we read the key/data pair atomically (line 13). We can either select key and
data elements that collectively fit within a machine word or use atomic snap-
shots [13, 14]. All of our tested implementations use the former technique2 [8].

2 Specifically we store a 32-bit key and data element in a 64-bit word.

Practical Concurrent Unrolled Linked Lists Using Lazy Synchronization 393

If we encounter key during our scan, we return the associated data element. If
we reach the end of the keys without finding item, it may still be present; a
concurrent remove operation may relocate item to the anchor key of a node. In
this case, we must re-read the anchor key/data pair. If item is present, we return
its associated data element; otherwise, we return nil.

10 Function lookup(item) : Data
11 (prev, curr) ← scan(item)
12 for i ← 0 to K − 1 do
13 (key, data) ← (curr.keys[i], curr.data[i])
14 if key = item then return data

15 (key, data) ← (curr.keys[0], curr.data[0])
16 if key = item then return data
17 return nil

Alg. 2. Lookup

Our insert and remove functions depend upon a validate function (Alg. 3)
similar to Heller’s [4]. We must perform this validation because another thread
may still manipulate prev or curr until we acquire the lock on prev. We validate
by checking that neither prev nor curr are marked for removal, prev.next still
points to curr, and our target key is not less than curr’s anchor key3.

18 Function validate(prev, curr, item) : boolean
19 return ¬prev.marked ∧ ¬curr.marked

∧ prev.next = curr ∧ curr.keys[0] ≤ item

Alg. 3. Validate

The insert operation (Alg. 4), performs a scan to locate an appropriate inser-
tion point, locks prev, performs a validate. If the validation fails, the operation
must return to the head of the list and scan again. Once a validation succeeds,
it checks curr for three conditions. If curr already contains item it leaves the
node unchanged and returns false. If there is at least one empty slot in curr
(denoted by the sentinel +) it atomically replaces the sentinel key and its asso-
ciated data element with the new key/data pair, increments count, and returns
true. If there are no available slots, we must split the node.

To split a node (Alg. 5), we first lock curr. This will not require another
validation since no other thread can modify prev.next. Next we allocate two new
nodes, new1 and new2. We copy all of the key/data pairs from curr to new1,
sort them4, and then copy the upper half to new2. Finally, we replace the upper
half of new1’s keys with +.

3 A concurrent removal of curr’s anchor key may result in this violation.
4 While there is a O(n) algorithm to determine the median and partition a set of
values, in real-world situations, an efficient sorting algorithm is faster [2].

394 K. Platz, N. Mittal, and S. Venkatesan

20 Function insert(key,data) : boolean
21 while true do
22 (prev,curr) ← scan(item)
23 prev.lock()
24 if ¬validate(prev,curr,item) then
25 continue /* Return to head and re-scan */

26 if curr.contains(item) then return false

27 slot ← first location of � in curr
28 if slot is defined then
29 (curr.keys[slot], curr.data[slot]) ← (key, data)
30 curr.count ← curr.count + 1

31 else
32 curr.lock()
33 (new1, new2) ← split(curr)
34 if key < new2′s anchor key then
35 (new1.keys�K/2�, new1.data�K/2�) ← (key, data)
36 new1.count ← new1.count + 1

37 else
38 (new2.keys�K/2�, new2.data�K/2�) ← (key, data)
39 new2.count ← new2.count + 1

40 curr.marked ← true

41 prev.next ← new1

42 return true

Alg. 4. Insert

43 Function split(node) : (Node, Node)
44 Allocate two new nodes, new1 and new2
45 Copy all key/data pairs from node to new1
46 Sort all key/data pairs in new1 ascending by key
47 Copy the upper �K/2� key/data pairs from new1 to new2
48 Replace the upper �K/2� keys in new1 with �
49 new1.next ← new2
50 new2.next ← node.next
51 new1.count ← �K/2�, new2.count ← �K/2�
52 return (new1, new2)

Alg. 5. Split

Practical Concurrent Unrolled Linked Lists Using Lazy Synchronization 395

53 Function remove(item) : boolean
54 while true do
55 (prev, curr) ← scan(item)
56 prev.lock()
57 if ¬validate(prev, curr,item) then
58 continue

59 slot = curr.contains(item)
60 if slot is not defined then
61 return false

62 if slot = 0 then
63 min ← location of next smallest key in curr
64 (curr.keys[0], curr.data[0]) ← (curr.keys[min], curr.data[min]
65 curr.keys[min] ← �
66 else
67 curr.keys[slot] ← �
68 curr.count ← curr.count − 1
69 if curr.count <MinFull then
70 curr.lock()
71 succ ← curr.next
72 if succ.keys[0] = +∞ then
73 return true

74 if curr.count = 0 then
75 curr.marked ← true

76 prev.next ← succ
77 return true

78 succ.lock()
79 if curr.count+ succ.count < MaxMerge then
80 merge(curr, succ)
81 else
82 (new1, new2) ← rebalance(curr, succ)
83 prev.next ← new1

84 return true

Alg. 6. Remove

Removing an element operates in a similar manner (Alg. 6). We perform a
scan to locate the (prev, curr) pair, lock prev, and validate. If this succeeds, we
attempt to locate item in curr.keys. If it is not present, we return false. If item is
present but not the anchor key, we replace item with the sentinel +. If item is the
anchor key, we locatemin, the location of our next smallest key. We then replace
the anchor key/data pair with the min key/data pair and replace the min key
with +. At this time, we also decrement the node’s count. If our node now has
fewer than MinFull keys, some additional checking is required. Specifically, we

396 K. Platz, N. Mittal, and S. Venkatesan

neither merge with the tail (line 72) nor an empty node (line 74)5. Otherwise,
we either merge with our successor node (Alg. 7) or create two new nodes and
partition the key/data pairs equally among them (Alg. 8).

85 Function merge(curr, succ)
86 Copy valid key/data pairs from succ to curr
87 succ.marked ← true

88 curr.next ← succ.next

Alg. 7. Merge

89Function rebalance(curr, succ) : (Node, Node)
90 Create two new nodes new1 and new2
91 Copy valid key/data pairs from curr and succ to new1
92 newcount ← curr.count + succ.count
93 Sort all key/data pairs in new1 by ascending key value
94 Copy the upper �newcount/2� key/data pairs from new1 to new2
95 Replace the upper �newcount/2� keys in new1 with �
96 new1.count ← �newcount/2�, new2.count ← �newcount/2�
97 new2.next ← succ.next, new1.next ← new2
98 curr.marked ← true

99 succ.marked ← true

100 return (new1, new2)

Alg. 8. Rebalance

Optimization. We can further modify the above algorithms to keep all valid
keys at the head of the node; this requires minor changes to remove. Instead
of replacing the affected key with +, we would replace that key with the last
valid key in the node and replace the last valid key with + (this is symmetric
to removing the anchor key). This effectively can cause a valid key to move
forward within a node; therefore, a lookup would need to scan from right-to-left
to correctly identify whether the key is present.

4.3 Correctness Proof

Here we sketch a proof that our algorithm is correct; we provide more rigorous
proof in the accompanying technical report [15]. In our proof, we use deadlock-
freedom as the liveness property and linearizability as the safety property. We
assume that garbage nodes are never reclaimed (all memory accesses are safe).
We also assume that our key space is finite; any traversal of the list will terminate.

5 This can happen if succ is the tail.

Practical Concurrent Unrolled Linked Lists Using Lazy Synchronization 397

We will make use of the following terms: a write operation shall consist of an
insert or a remove, an active node is a node currently reachable from the head
of the list, and a passive node is a node that is no longer active. We similarly
define lookup-hit and lookup-miss operations. We can further treat failed insert
operations as lookup-hits, and failed remove operations can be treated as lookup-
misses.

At any moment in time, one or more threads may hold locks on nodes. We
can order these threads in head-to-tail order according to the lock(s) they hold.
Since our key space is finite, our list is of finite length; therefore, one thread will
hold the rightmost lock. Since a thread always acquires locks from head-to-tail,
this thread will always be able to progress.

We can also define a linearization point for every operation.

– A successful insert operation either linearizes to when the key/data is written
or (for a split operation) when the prev.next pointer is updated.

– A successful remove operation can linearize to the point where + is written
– Any lookup operation which operates on a passive node can be linearized to

the point at which the node becomes passive.
– A lookup-hit operating on an active node can be linearized at the point it

reads the key/data pair.
– A lookup-miss operating on an active node has two subcases. If the key is

not present when the thread starts scanning, we can linearize to the instant
the scan begins. If the key is present at that point, a successful remove
operation must have removed it. We can therefore linearize the lookup-miss
immediately to immediately follow the point of the remove.

5 Experimental Evaluation

5.1 Experiment Setup

We completed our experiments on a 2-processor AMD Opteron 6180SE system
with a clock speed of 2.5GHz, 24 total execution cores, and 64GB of memory
running Linux (kernel 2.6.43). All of our evaluation code was written in C++ and
compiled using gcc-4.8.3 using the same set of optimizations (-O3 -funroll-loops
-march=native). We evaluated the following list implementations:

1. Lazy: The lazy linked list by Heller [4].
2. LockFree: A lock-free linked list by Harris [11] and Michael [10, 16].
3. Chunked: The chunked linked list by Braginsky and Petrank [8]6.
4. Unrolled: The unrolled linked list described in this paper.

Each implementation used hazard pointers for garbage collection. For our ini-
tial experiments we tested node sizes ranging from 8 to 512 keys per node, key
ranges from 1,024 to 1 million, thread counts ranging from 1 to 48, and multiple
workload mixes. Based on our initial observations, we feel the following parame-
ters accurately represent the performance of our and other list implementations7:

6 Source code was obtained with permission from Braginsky and Petrank.
7 Additional experimental data is available in the companion technical report [15].

398 K. Platz, N. Mittal, and S. Venkatesan

1. Node Size: For the chunked and unrolled lists, we evaluated the perfor-
mance with K of 8 and 64 keys per node, MinFull of K/4 and MaxMerge

of 3K/4.
2. Workload Distribution: We evaluated performance against three rep-

resentative workloads: write-dominant with no lookups, 50% inserts, 50%
removes; balanced with 70% lookups, 20% inserts, 10% removes; and read-
biased with 90% lookups, 9% inserts, 1% removes.

3. Degree of Concurrency: We evaluated the performance with 1, 2, 4, 8,
12, 16, 20, and 24 threads.

4. Key Range: Keys were allowed to range from 0 to 5,000 (inclusive)

Each experiment was conducted by initially creating a list with 2,500 entries.
We then spawned the specified number of threads and ran them concurrently.
Each thread executed as many operations as possible using the specified mix of
operations, and we recorded the total number of operations. Each experiment
was repeated until we achieved a 95% confidence interval less than 10% of the
mean. All results are reported in operations per microsecond.

5.2 Experimental Results

Fig. 2 depicts the results of our experiments. The graphs on the left depict results
for 8 keys per node while those on the right show 64 keys per node. From top
to bottom we display results for the 0/50/50, 70/20/10, and 90/9/1 workloads,
respectively. These results show that the relative performance of each algorithm
remains consistent for every workload and thread count. Specifically, we can
rank them fastest to slowest: our unrolled algorithm, Braginsky and Petrank’s
chunked algorithm, Harris and Michael’s lock-free algorithm, and Heller’s lazy
algorithm. The relative throughput at 24 threads is shown in Table 1.

Table 1. Relative throughput at 24 threads with respect to the Lazy algorithm

K = 8 K = 64

Workload Lazy Lock-Free Chunked Unrolled Chunked Unrolled

0/50/50 100 112 143 291 311 1012

70/20/10 100 108 177 435 665 1745

90/9/1 100 114 160 406 1086 2211

Intuitively we can divide the four algorithms into two groups. The lazy and
lock-free lists operate as a single phase; each step along the list visits each entry
in turn. The chunked list and unrolled list take a two phase approach. The first
phase skips over multiple entries while seeking the correct node, and the second
phase scans sequential entries in that node.

When we consider the performance differential between our data structure
and the chunked list, we should consider the following points:

Practical Concurrent Unrolled Linked Lists Using Lazy Synchronization 399

0 10 20
0

1

2

O
p
s
p
er

μ
se
c

K = 8
0/50/50 workload

0 10 20

0

2

4

6

8

K = 64
0/50/50 workload

0 10 20

0

1

2

3

O
p
s
p
er

μ
se
c

70/20/10 workload

0 10 20

0

5

10

70/20/10 workload

0 10 20

0

1

2

Threads

O
p
s
p
er

μ
se
c

90/9/1 workload

0 10 20

0

5

10

Threads

90/9/1 workload

Lazy LockFree

Chunked Unrolled

Fig. 2. Experimental Results

400 K. Platz, N. Mittal, and S. Venkatesan

1. A lookup in the chunked list (once the node has been identified) involves re-
peatedly dereferencing a pointer and accessing a different area of the chunk.
Our list scans sequentially through an array. This provides the added benefit
of spatial locality [17]. When we access a key/data pair, it is likely on the
same cache line as the last-accessed pair.8 Compilers can also aggressively
optimize array scans using techniques such as loop unrolling, cache prefetch-
ing and software pipelining [18]. A compiler can (in some cases) also use
vector instructions to perform multiple comparisons concurrently.

2. In order to perform a split, merge, or rebalance, the chunked list must first
freeze and stabilize the affected node(s). Freezing requires visiting each entry
and setting a freeze bit (using CAS) while stabilizing involves traversing the
chunk and removing any partially-deleted nodes. Our list only requires two
calls to the copy library routine and one call to the sort routine to perform
either operation. These library routines are typically aggressively optimized
for performance.

In order to measure the effect of compiler optimizations on our list and the
chunked list, we disabled all optimizations and recompiled. We then re-ran our
experiments using the balanced workload with 8 and 64 keys per node. We
then compared the performance and calculated the speedup percentage for each
degree of concurrency (Figs. 3 and 4).

0 10 20

0

1

2

3

Threads

O
p
s
p
er

μ
se
c

K = 8

0 10 20

0

5

10

Threads

K = 64

Chunked -O0 Unrolled -O0
Chunked -O3 Unrolled -O3

Fig. 3. Optimization Impact

8 On the AMD architecture we tested, a key/data pair consumes 8 bytes, and the
cache line stores 64 bytes. This allows 8 key/data pairs to share a cache line.

Practical Concurrent Unrolled Linked Lists Using Lazy Synchronization 401

0 10 20
0

200

400

Threads

P
er
ce
n
t
S
p
ee
d
u
p

K = 8

0 10 20
0

200

400

Threads

K = 64

Chunked Unrolled

Fig. 4. Optimization Speedup

The results confirm our hypothesis. While the chunked list did see substantial
improvements (150-200% in most cases), our list achieved a minimum of a 200%
improvement for each thread count, with a maximum improvement of 330% at
2 threads and K = 8. The experiments did exhibit one pair of outlying data
points. At 2 threads, the chunked list exhibited a 430% improvement for K = 8
and 330% improvement at K = 64.

Next we should consider how best to select the value of K. We expect to
traverse O(n/K) nodes to find the correct node; following that, expect to scan
O(K) keys. This results in O(n/K +K) steps per operation. If we select K =
O(

√
n), we should maximize the throughput for our algorithms. In order to

evaluate this, we performed additional experiments. We executed the same tests
as in Fig. 2 with concurrency of 12 and 24 threads, the 70/20/10 “balanced”, a
maximum key size of 5,000 (and therefore a bound on n), and varied the node
size from 2 to 512 keys per node. The results are depicted in Fig. 5.

As expected, each algorithm exhibited peak performance near our predicted
value of

√
n. Specifically, the “chunked” algorithm peaked out at 64 keys per

node, while our unrolled algorithm continued to scale well up until 128 and 256
keys per node.

6 Conclusions and Future Work

Braginsky and Petrank described a means to reorganize a linked list to improve
locality of memory access; in this paper we have improved upon their algorithms.
By storing multiple keys in a node and skipping irrelevant nodes, we can im-
prove performance within a constant factor over traditional linked lists. Storing
the entries in an unsorted array allows us to sequentially scan these entries, a

402 K. Platz, N. Mittal, and S. Venkatesan

0 200 400
0

5

10

Node Size

O
p
s
p
er

μ
se
c

12 Threads

0 200 400
0

5

10

15

Node Size

24 Threads

Chunked Unrolled

Fig. 5. Impact of Node Size on Performance

task which compilers can aggressively and effectively optimize. Our results are
extremely encouraging and suggest that further research should be done in this
area.

We envision three different ideas for further research. One possible improve-
ment involves the use of a group mutual exclusion object to control access to
a node [19]; this would permit multiple insert or multiple remove operations
to operate on the same node concurrently. Second, we can develop a lock-free
implementation of this object. We would expect either technique to provide an
incremental performance improvement over what we have presented.

Additionally, we would like to explore the potential of unrolling other, more
complex, data structures. We imagine that certain implementations of concurrent
hash tables (such as those presented by Shalev and Shavit [20]) and concurrent
skiplists (such as those by Herlihy [21] and Fraser [22]) would be amenable to
this technique.

References

1. Herlihy,M., Shavit, N.: On the nature of progress. In: FernàndezAnta, A., Lipari, G.,
Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 313–328. Springer, Heidelberg
(2011)

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press (2009)

3. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming, 1st edn. Elsevier,
Inc., Waltham (2012)

4. Heller, S., Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N., Shavit, N.N.:
A lazy concurrent list-based set algorithm. In: Anderson, J.H., Prencipe, G.,
Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 3–16. Springer,
Heidelberg (2006)

Practical Concurrent Unrolled Linked Lists Using Lazy Synchronization 403

5. Shao, Z., Reppy, J.H., Appel, A.W.: Unrolling lists. In: ACM Conference on LISP
and Functional Programming (LFP 1994), pp. 185–195. ACM, New York (1994)

6. Demaine, E.: Cache-oblivious algorithms and data structures. In: Lecture Notes
from the EEF Summer School on Massive Data Sets (2002)

7. Patterson, D.A., Hennessy, J.L.: Computer Organization and Design: The Hard-
ware/ Software Interface, 5th edn.Morgan Kaufmann Publishers Inc., San Francisco
(2013)

8. Braginsky, A., Petrank, E.: Locality-conscious lock-free linked lists. In:
Aguilera, M.K., Yu, H., Vaidya, N.H., Srinivasan, V., Choudhury, R.R. (eds.)
ICDCN 2011. LNCS, vol. 6522, pp. 107–118. Springer, Heidelberg (2011)

9. Valois, J.D.: Lock-free linked lists using compare-and-swap. In: 14th ACM Sympo-
sium on Principles of Distributed Computing (PODC 1995), pp. 214–222. ACM,
New York (1995)

10. Michael, M.M.: High performance dynamic lock-free hash tables and list-based sets.
In: 14th ACM Symposium on Parallelism in Alorithms and Architectures (SPAA
2002), pp. 73–82. ACM, New York (2002)

11. Harris, T.L.: A pragmatic implementation of non-blocking linked-lists. In:
Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 300–314. Springer, Heidelberg
(2001)

12. Stroustrup, B.: The Design and Evolution of C++. ACM Press/Addison-Wesley
Publishing Co., New York (1994)

13. Afek, Y., et al.: Atomic snapshots of shared memory. J. ACM 40, 873–890 (1993)
14. Anderson, J.H.: Composite registers. In: Distributed Computing, pp. 15–30 (1993)
15. Platz, K., Mittal, N., Venkatesan, S.: Practical concurrent unrolled linked lists using

lazy synchronization. Technical Report UTDCS-09-14, The University of Texas at
Dallas Computer Science Department (2014)

16. Michael, M.: Hazard pointers: Safe memory reclamation for lock-free objects. IEEE
Trans. Parallel Distrib. Syst. 15, 491–504 (2004)

17. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Ap-
proach, 5th edn. Morgan Kaufmann Publishers Inc., San Francisco (2011)

18. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools, 2nd edn. Addison-Wesley Longman Publishing Co., Inc., Boston (2006)

19. Joung, Y.J.: Asynchronous group mutual exclusion (extended abstract). In:
17th ACM Symposium on Principles of Distributed Computing (PODC 1998),
pp. 51–60. ACM, New York (1998)

20. Shalev, O., Shavit, N.: Split-ordered lists: Lock-free extensible hash tables. J.
ACM 53, 379–405 (2006)

21. Herlihy, M.P., Lev, Y., Luchangco, V., Shavit, N.N.: A simple optimistic skiplist
algorithm. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474,
pp. 124–138. Springer, Heidelberg (2007)

22. Fraser, K.: Practical Lock-Freedom. PhD thesis, Kings College, University of
Cambridge (2003)

Space- and Time-Efficient Long-Lived

Test-And-Set Objects�

Zahra Aghazadeh and Philipp Woelfel

Department of Computer Science, University of Calgary
{zaghazad,woelfel}@ucalgary.ca

Abstract. We provide several space- and time-efficient implementations
of randomized long-lived Test-And-Set (TAS) objects from registers, in
the standard asynchronous shared memory system with n processes. Our
main construction uses O(n) registers, which is optimal, and TAS() and
Reset() methods have expected step-complexity O(log log n) against the
oblivious adversary. Prior to this work, no long-lived TAS implementa-
tion from O(n) registers was known, where all methods have sub-linear
(expected) step complexity. Another construction achieves expected step-
complexity O(log∗ n) for TAS() against the oblivious adversary, constant
worst-case step-complexity for Reset(), but requires O(n1.5) registers.
These results are obtained from general transformations of randomized
one-time TAS implementations (e.g., [3, 11,13]) into long-lived ones.

Keywords: test-and-set, long-lived, memory management, space effi-
ciency.

1 Introduction

Test-And-Set (TAS) objects are standard synchronization primitives that have
many algorithmic applications, for example in mutual exclusion and renaming
algorithms [4–6, 8, 10, 19, 22]. A TAS object stores a bit, which is initially 0.
The one-time version allows only one method TAS(), which sets a bit to 1, and
returns the previous value of that bit. A long-lived TAS object also provides a
Reset() method, which resets the bit to 0 (and has no return value). We say a
process wins a TAS(), if that method call returns 0, otherwise it loses. Only the
process that wins a TAS() method call is allowed to subsequently reset it [1].

One-time TAS objects and registers can be used to implement two-process
consensus and vice versa [15, 20]. Hence, there is no deterministic wait-free lin-
earizable implementation of TAS objects from registers. The famous randomized
one-time TAS implementation of Afek, Gafni, Tromp, and Vitànyi [1] uses O(n)
registers, and the TAS() method takes O(log n) steps in expectation against
a strong adaptive adversary. The long-lived variant provides a constant time

� This research was undertaken, in part, thanks to funding from the Canada Research
Chairs program and from the Discovery Grants program of the Natural Sciences and
Engineering Research Council of Canada (NSERC).

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 404–419, 2014.
c© Springer International Publishing Switzerland 2014

Space- and Time-Efficient Long-Lived Test-And-Set Objects 405

Reset()method but increases the expected step complexity of the TAS() method
to O(n).

Recently, a series of papers focused on improving the time- and space-
complexities of one-time TAS implementations [3, 6, 11, 13]. In particular for
weaker adversary models one-time TAS implementations with almost constant
step complexity were devised. However, research on efficient implementations
of long-lived TAS objects has trailed behind. In fact, prior to our work, no
long-lived construction was known which achieves asymptotically optimal O(n)
space complexity, and is at the same time faster than Afek et al.’s (i.e., pro-
vides TAS() methods with sub-linear expected step complexity). On the other
hand, it was recently shown that memory reclamation techniques can be used
to obtain efficient long-lived TAS objects from a bounded number of one-time
ones: The construction in [2] uses O(n2) one-time TAS objects and registers,
preserves the asymptotic (expected) step complexity of TAS() method and pro-
vides a Reset() method with constant (worst-case) step complexity. However,
even applied to the most space-efficient published randomized wait-free one-time
TAS implementation [11], the long-lived implementation of [2] still results in an
unreasonably high space complexity of Θ(n2.5) registers. This space requirement
is significantly higher than the lower bound of Ω(n) ([9]).

It is a fundamental question whether there are inherent tradeoffs between
the time and space efficiency of long-lived TAS implementations, or whether
implementations exist that achieve similar low step complexities as the best
known one-time TAS implementations, and at the same time have optimal (or
nearly optimal) space complexity.

In this paper we show that the latter is the case. In particular, we construct an
efficient randomized long-lived TAS implementation from O(n) registers (which
is optimal), where TAS() and Reset() methods have expected O(log logn) step
complexity against the oblivious adversary. Our construction applies a space-
improved version of a recent memory reclamation technique [2] to a one-time
TAS implementation with O(log logn) expected step complexity [3, 13].

We also present two general transformations of one-time TAS objects into
long-lived ones. Our base construction transforms any one-time TAS object im-
plemented from m registers into a long-lived one that uses O(n +m) registers
while preserving the (asymptotic) step complexity of TAS() methods, and pro-
viding Reset() methods with O(m) worst-case step complexity. For example,
combined with a one-time algorithm in [11], this yields long-lived TAS objects
with optimal space complexity O(n), and where TAS() and Reset() methods
have (expected) step complexity O(log∗ n) respectively O(

√
n).1 While in this

case Reset() methods are significantly slower than TAS() methods, this may still
be reasonable in applications where Reset()s may be executed less frequently
than TAS() methods (e.g., mutual exclusion).

Our second transformation reduces the step complexity of Reset() meth-
ods to O(1), but sacrifices space optimality by requiring O(n · m) registers.

1 log∗ n denotes the iterated logarithm of n, i.e., the number of times log2 must be
applied iteratively until the resulting value is at most 1.

406 Z. Aghazadeh and P. Woelfel

In particular, using again the one-time algorithm in [11] we obtain a long-livedTAS
object fromO(n1.5) registers, where TAS() and Reset()methods have (expected)
step complexity O(log∗ n) respectively O(1).

Other Related Work. A randomized two-process long-lived TAS implementa-
tion was given by Tromp and Vitànyi [24], which is used in almost all mod-
ern n-process TAS implementations. E.g., the randomized long-lived n-process
implementation by Afek, Gafni, Tromp, and Vitànyi [1] is based on a tour-
nament tree consisting of two-process TAS objects. Alistarh, Attiya, Gilbert,
Giurgiu, and Guerraoui [6] proposed a one-time variant of that tournament tree
in which the expected step complexity of the TAS() method is logarithmic in
the contention, k (against the strong adaptive adversary). Their construction
needs O(n3) registers. Randomized one-time TAS objects with sub-logarithmic
expected step complexity are only known in weaker adversary models. Alistarh
and Aspnes [3] propose a TAS() method that has O(log logn) expected step com-
plexity against the oblivious adversary, using O(n3) registers. Giakkoupis and
Woelfel [13] reduce the space to O(n) and provided an adaptive version of the
algorithm with an expected step complexity of O(log log k) against the oblivious
adversary, where k is the contention. In fact, the double-logarithmic algorithms
of [3] and [13] achieve the claimed step complexities even in slightly stronger
read-write oblivious adversary. Giakkoupis and Woelfel also present an adaptive
one-time algorithm which has O(log∗ k) expected step complexity against the
oblivious (and also a slightly stronger location oblivious) adversary, using O(n)
registers. Giakkoupis, Helmi, Higham, and Woelfel showed how to reduce the
space complexity of this algorithm to O(

√
n) registers, while achieving an ex-

pected step complexity of O(log∗ n) [11]. Note that the best known lower bound
for the space complexity of one-time TAS implementations is Ω(log n) [23], while
from lower bounds for mutual exclusion [9] it follows that any long-lived TAS
implementation needs at least a linear number of registers.

In [1], Afek et al. also discuss how their one-time TAS implementation can
be transformed into a long-lived one which uses O(n) registers, each using O(n)
bits. (To bound the size of the registers they use a modified version of the Se-
quential Time Stamps System by Israeli and Li [18].) The TAS() method has
O(n) expected step complexity against the adaptive adversary, and the Reset()

method has constant step complexity. Hoepman [17] shows how one can imple-
ment a long-lived TAS object fromO(n) registers and n+1 one-time TAS objects,
provided those TAS objects can be reset in a sequential execution. The resulting
TAS() method has, up to a constant additive term, the same step complexity
as the TAS() method on the one-time TAS object, and the Reset() method
requires n steps in addition to the number of steps it takes to sequentially re-
set the one-time TAS object. In a more general approach, Aghazadeh, Golab,
and Woelfel [2] show how to make any object writeable. Since Reset() methods
are a special case of writes, the technique can be used to transform one-time
TAS objects into long-lived ones. Specifically, any one-time TAS implemented
from m registers can be transformed into a long-lived one that uses O(m · n2)

Space- and Time-Efficient Long-Lived Test-And-Set Objects 407

registers, while preserving the (expected) step complexity of the TAS() method,
and providing constant time Reset().

2 Model and Definitions

We consider the standard asynchronous shared memory model with n processes
with IDs 0, . . . , n−1. Processes communicate by executing operations on atomic
shared multi-reader multi-writer registers. They can make random decisions us-
ing (private) coin flips as a source of randomness. A schedule determines the
order in which processes take steps. In the case of randomized algorithms, the
schedule may be determined by an adversary, in response to random choices
made by processes. The strong (adaptive) adversary makes scheduling decisions
based on the entire past execution history including the results of coin-flips. An
adversary is oblivious, if the schedule is fixed in advance, and thus independent
of any random decisions.

The sequence of steps executed by all processes is called history or equiva-
lently execution. We assume w.l.o.g. that the invocation and the response of a
method call coincide with the first respectively the last shared memory step of
the method.

3 Base Algorithm

In this section, we describe our basic construction of a long-lived TAS object
from an implementation of a one-time TAS object from registers. Later, more
efficient constructions employ the techniques introduced here.

Theorem 1. If there is an implementation of a one-time TAS object OT from
m b-bit registers, then there is a a long-lived TAS object T with the following
properties:

1. T uses O(n+m) registers of length max {�log(2n+m+ 1)�, b} bits;
2. the TAS() method of T has asymptotically the same (expected) step complex-

ity as the TAS() method of OT ; and
3. the Reset() method of T has worst-case step complexity O(m).

For example, applying this theorem to the randomized one-time TAS im-
plementation from O(

√
n) registers of [11], which has O(log∗ n) expected step

complexity, yields a long-lived TAS object implemented from O(n) registers
(which is optimal), where TAS() methods have O(log∗ n) expected step com-
plexity, and Reset() methods have worst-case step complexity O(

√
n). We will

later show how the step complexity of Reset() methods can be improved to
O(log logn) (Section 4) respectively O(1) (Section 5) by increasing the expected
time-complexity of TAS() methods to O(log logn) respectively the space require-
ment to O(n1.5).

The proof of Theorem 1 is constructive, i.e., we show how any one-time TAS
implementation OT can be transformed into a long-lived TAS implementation
T satisfying the properties stated in the lemma.

408 Z. Aghazadeh and P. Woelfel

We use an array Ptr [0 . . .m − 1] of O(log n)-bit registers and an array
B[0 . . . r − 1] of r registers, where r is determined below. Each element of Ptr
stores an index j of an array entry of B, such that at each point no two entries
of Ptr are the same. (Unlike [2], each process does not own a set of registers in
B.) We say a register B[j] is in use, if Ptr [i] = j, for some i ∈ {0, . . . ,m− 1}.

To motivate the construction, first assume that B is infinite (r = ∞). In order
to execute a TAS() method call, a process follows the exact implementation of the
TAS() method of object OT , except that when the process wants to executes
an operation (read or write) on the i-th register of OT , it executes the same
operation on the register whose index is in Ptr [i]. To reset TAS object T , a
process goes through all entries of Ptr and replaces all indices in Ptr with indices
of new registers. We say register B[j] becomes retired when value j stored in an
entry of Ptr is overwritten with some value j′.

However, the resulting implementation is not linearizable. A TAS() call which
overlaps a Reset() can obtain an inconsistent view of the object while the
resetter is replacing registers with new ones.

To avoid inconsistent views of registers obtained by TAS() calls during pending
Reset() calls, we exploit that a process can only call Reset() right after it won
a TAS() call. Thus, any TAS() call overlapping a Reset() method call can safely
return 1, as long as it does not affect other TAS() calls (i.e., prevent them from
winning), because a process has already won the TAS object. In addition, our
implementation will ensure that each Reset() method call in any execution
linearizes at its response. As a consequence, no Reset() call rb can get invoked
while a Reset() call ra is still pending, as this would contradict linearizability
of the prefix of the execution ending immediately before the invocation of rb.
Hence, no two Reset() calls can overlap.

All processes share a register Seq, which stores a sequence number, and is
initially 0. For ease of exposition, we assume Seq can store unbounded values.
(In Section 3.2, we discuss how to bound sequence numbers, using n additional
single-bit registers, while maintaining the step complexity.) Register Seq is only
modified in the Reset() method; in particular, it gets incremented twice during
each Reset() call, once at the beginning and once at the end. We prove in
Section 6, that Reset()method calls linearize when the value of Seq gets updated
for the second time at the end of a Reset() call. Thus, Reset() method calls
do not overlap. Hence, Seq stores an odd value if a Reset() call is pending, and
stores a unique even value between every two Reset() calls.

A process that executes a TAS() method can identify whether its TAS() call
overlaps a Reset() method call by checking the current value of Seq. More
specifically, during a TAS() call, at the beginning of the method call and also after
executing every shared memory step (i.e., reading from Ptr or reading/writing
from registers of B), the process checks the value of Seq. If it reads an odd
value from Seq or the value it reads from Seq has changed since the first time
it read the value of Seq during the same TAS() call, then the process concludes
that its TAS() overlaps a Reset() call and it returns 1 immediately. We can
linearize such “failed” TAS() calls during the overlapping Reset() call; this puts

Space- and Time-Efficient Long-Lived Test-And-Set Objects 409

them after the successful TAS() of the process that calls Reset() and before the
linearization point of that Reset() (which occurs at its response).

Since the value of Seq is checked every other shared memory step, a process
whose TAS() call overlaps a Reset() call executes at most one shared memory
step on some register of B after the value of Seq is incremented at the beginning
of the Reset() call. This prevents TAS() calls from making unnecessary steps
and thus bounds their step complexity. Later, in Section 4, we use this technique
to prevent a resetters from having to “clean up” too many registers; this allows
us to improve the time-complexity of Reset() calls.

In the implementation described above, each Reset() puts into use m new
registers, and thus the algorithm requires unbounded space. Various memory
management techniques [7,14,16,21] can be used to bound the space. However,
if they are used directly without any additional tricks they increase the step
complexity or they may even break wait-freedom. Moreover, for most memory
management techniques, such as [7, 14, 16], stronger primitives such as CAS and
FAA are required. Here we use a variant of a memory reclamation technique
introduced by Aghazadeh, Golab, and Woelfel [2], which is time-efficient and
uses only registers. But we exploit the fact that no two Reset() calls can overlap,
to improve the space-complexity of that memory reclamation technique.

Correctness proofs are provided in Section 6.

3.1 Bounding the Space

Our idea for memory recycling builds on [2], but we modify that technique to
reduce the space. This yields long-lived TAS implementations from one-time ones
using O(n + m) additional registers (where m is the number of registers used
by the one-time implementation), while the direct application of the recycling
technique from [2] would require Θ(n2 +m) additional registers.

Figure 1 shows the implementation of the TAS() and Reset() methods. We
also use a helper function recycle(). The array B in our implementation now
has size r = 2n+m + 1. Processes share an array Ann[0 . . . n − 1] of registers,
initially all equal to ⊥. After a process p read an index b from an entry of Ptr
(in line 11) during a TAS() call, and before it executes its operation on B[b]
(in line 17), it announces its access to this register by writing b into Ann[p] (in
line 14).

In order to reset the object, a process replaces the index stored in each entry
Ptr [j], j ∈ {0, . . . ,m− 1}, with an index f ∈ {0, . . . , 2n+m}, such that B[f] is
not in use and is not announced. The fact that f is not announced guarantees
that B[f] will not be accessed until after it has been put back into use again
and also that no TAS() methods that overlap with the Reset() will access B[f].
The resetter finds such an index f by executing a recycle() method in line 4 of
the Reset() method. Then the process resets this register by writing ⊥ in B[f].
Finally, it updates the value stored in Ptr [j] to f (lines 5-6).

A naive implementation of the recycle() method requires processes to read
the entire Ann and Ptr arrays in each recycle() operation. In order to re-
duce the step complexity of the recycle() method to O(1), processes distribute

410 Z. Aghazadeh and P. Woelfel

shared:
Array<register> B[0 . . . 2n+m]
Array<int> Ptr [0 . . .m− 1] = (0, . . . ,m− 1)
Array<int> Ann[0 . . . n− 1] = (⊥, . . . ,⊥)
int Seq = 0

Method Resetp()

1 s := Seq + 1
2 Seq := s
3 for j = 0 to m− 1 do
4 f := recycle(Ptr [j])
5 B[f] := ⊥
6 Ptr [j] := f

7 s := Seq + 1
8 Seq := s

Method TASp()

9 seq := Seq
10 if seq.isOdd() then return 1

Execute the one-shot TAS() method, where every read or write operation
row() on a register i is replaced with the following code:
Read or write register i:

11 b := Ptr [i]
12 s := Seq
13 if s �= seq then return 1
14 Ann[p] := b
15 s := Seq
16 if s �= seq then return 1
17 B[b].row()
18 s := Seq
19 if s �= seq then return 1

Fig. 1. TAS() and Reset() methods of the long-lived Test-And-Set

the work of scanning Ann over many recycle() method calls, and avoid scan-
ning Ptr altogether, as described below. Figure 2 shows the pseudo-code for the
recycle() method.

We use several shared data-structures, but they are accessed only during
Reset() method calls (which don’t overlap), and thus sequentially. A set Free
stores “free” indices in {0, . . . , 2n+m}, i.e., indices among which a process can
choose an arbitrary one to return from a recycle() operation. The set data
structure supports the operations add(x) which adds an element x to it, and
remove() which removes and returns an arbitrary element from the set. Our al-
gorithm ensures that add(x) is only called if x is not in the set, and that the set
is never empty; therefore, sequential implementations with constant worst-case

Space- and Time-Efficient Long-Lived Test-And-Set Objects 411

shared:
Queue<int> RetQ [n] = (⊥, . . . ,⊥)
Queue<int> AnnQ [n] = (⊥, . . . ,⊥)
Set<int> Free = {m, · · · , 2n+m}
Array<Boolean> Use [0 . . . 2n+m] // first m elements are 1, the rest 0

int Inx = 0

Method Recyclep(int �)

20 Use [
] := 0
21 RetQ .enq(
)
22 a := Ann[Inx]
23 AnnQ .enq(a)
24 Inx := (Inx + 1) mod n
25 r0 := AnnQ .deq()
26 r1 := RetQ .deq()
27 for j = 0 to 1 do
28 if rj �= ⊥ then
29 if ¬Use[rj] ∧ ¬AnnQ .contains(rj) ∧ ¬RetQ .contains(rj) then
30 Free .add(rj)

31 f := Free .remove()
32 Use [f] := 1
33 return f

Fig. 2. Recycle() method of the long-lived Test-And-Set

step complexity exist (e.g., based on linked lists). A queue AnnQ keeps track of
the last n elements found in the announce array during the last n recycle()

operations. Similarly, a queue RetQ stores the last n indices that got retired.
Initially, both queues contain n elements ⊥, and the algorithm ensures that the
length of each queue is n before and after each recycle() operation. We as-
sume that each queue supports, in addition to the standard operations enq()

and deq(), an operation contains(�) which returns true if element � is in the
queue and false otherwise. Since the domain of elements stored in the queue
is a bounded set of size 2n+m+ 1, a contains() method with constant step-
complexity can be easily provided by using a register for each element of the
domain that keeps track of the number of times the element occurs in the queue.
Finally, a Boolean array Use[0 . . . 2n + m] is used to indicate for each index
� ∈ {0, . . . , 2n+m} whether the corresponding register B[�] is in use or not.

Now consider a recycle(�) call by a process p that is about to retire index
�. First, in line 20, the process resets the flag Use[�] to indicate that index �
will not be in use anymore, once the Reset() method during which recycle()

was called is completed. Then, in line 21, p enqueues � into RetQ. After that,
p reads one array entry Ann[Inx], where Inx is incremented modulo n with every

412 Z. Aghazadeh and P. Woelfel

recycle() operation, and adds the index it read to AnnQ (lines 22-24). Then p
dequeues an element r0 from AnnQ and an element r1 from RetQ (in lines 25-
26), and thus restores the length of both queues to n. Next, in lines 27-30, p
checks each index rj , j ∈ {0, 1}, whether it is use (by testing the flag Use[rj]),
or whether it still appears in one of the queues. If none of those two conditions is
met, the index is added to the set Free. Finally, process p removes an arbitrary
element f from Free, sets the flag Use[f] to indicate that f will be in use when
the Reset() method terminates, and returns f (lines 31-33).

3.2 Bounding Sequence Numbers

We can bound the sequence numbers used in the base algorithm by using n
additional one-bit registers. We increment Seq during a Reset() call modulo
2n. This might cause an ABA problem: During a TAS() method a process p
might fall asleep after reading some value seq from Seq, and then it wakes up
after Seq has been incremented a multiple of 2n times, so that p later reads
the same value seq from Seq again, even though Seq has changed. To deal with
this, we use an array of shared bits S[0 . . . n− 1], which are initially all 0. At the
beginning of its TAS() call, just before process p reads the value stored in Seq for
the first time, it sets S[p] to 1. When a process executes a Reset(), it sets S[C]
to 0, where C is a counter incremented modulo n once during every Reset()

call. Thus, each bit S[c], c ∈ {0, . . . , n− 1}, is reset at least once while the value
of Seq wraps around. Then during its TAS() call, when process p compares the
value of Seq with the one it read initially at the beginning of its TAS() call, p
also checks bit S[p]. If the value of Seq has wrapped around, that bit must be
0. On the other hand, if that bit is 0, then p’s TAS() call must overlap some
Reset() call. Therefore, even if p does not notice that Seq has changed, it can
safely abort the TAS() call and return 1 if it reads S[p] = 0.

4 Space-Optimal and Fast Long-Lived Test-And-Set

In this section, we explain how we can improve the expected step complexity of
the Reset() method, when we apply the base algorithm of Section 3 to a specific
one-time TAS implementation.

Theorem 2. There is an implementation of a long-lived TAS from O(n)
O(log n)-bit registers, such that the TAS() and Reset() methods have
O(log logn) expected step complexity against the oblivious adversary.2

This is the first implementation of a long-lived TAS object with O(n) space
complexity and sub linear step complexity for both, the TAS() and the Reset()

methods. The space complexity is optimal due to the lower bound on the space
requirement of mutual exclusion [9].

2 The step complexity bound even holds for the stronger read-write oblivious adversary
model used in [13].

Space- and Time-Efficient Long-Lived Test-And-Set Objects 413

We use the one-time TAS implementation by Giakkoupis and Woelfel [13]
from O(n) registers, which in turn is based on an algorithm by Alistarh and
Aspnes [3]. The shared data structure used there can be viewed as having n
special (randomized) objects O1, . . . , On and n randomized 2-process TAS ob-
jects T1, . . . ,Tn. Each object Oi, 1 ≤ i ≤ n, is a combination of a randomized
sifter (also called group election object), and a splitter. It supports an operation
sift(), which each process can call at most once, and which returns one of lose,
win, or undecided. (We say a process wins, loses, or is undecided at object Oi.)
The implementation guarantees that not all processes lose Oi and if only one
process calls Oi.sift(), then that process wins Oi. Moreover, the i-th object Oi

is instantiated with some chosen parameter, which is a function fi, and guaran-
tees that if k processes call Oi.sift(), then in expectation at most fi(k) < k of
them are undecided. Each object Oi is implemented from a constant number of
registers and a sift() method call has constant worst-case step complexity.

We can imagine that the objects O1, . . . , On form a path “down” and the
2-process TAS objects T1, . . . ,Tn form a path “up”. A process p walks the
path down, executing sift() operations on each object Oi that it visits. More
precisely, after each sift() operation on an object Oi (starting with O1) a
process decides how to proceed based on the return value: If p is undecided
at Oi, then it proceeds to object Oi+1; if it loses Oi, then it loses the entire
TAS() method, and does not take any further steps; finally, if p wins Oi, then p
switches to the path “up”, i.e., it executes a TAS() method on the TAS object
Ti. Whenever process p loses a TAS() call on some object Ti, it also immediately
loses the implemented TAS() method, i.e., it returns 1. If it wins a TAS() call on
some object Ti, then it continues to walk up the path by calling Ti−1.TAS() if
i > 1, and if i = 1, then p wins the implemented TAS() and thus returns 0.

The functions fi, 1 ≤ i ≤ n, satisfy fi(k) = O(
√
k), and therefore, in expecta-

tion only approximately k1/2
i

processes reach object Oi. The smallest index i∗,
such that no process reaches object O(i∗) has expectation E[i∗] = O(log logn).
This yields the desired expected step complexity of O(log logn).

Before transforming this one-time TAS implementation into a long-lived one,
we first modify it slightly: We add n shared registers F1, . . . , Fn, which are
initially ⊥. During a TAS() method call, when a process wants to access Oi for
the first time, it first has to write a non-⊥ value to Fi.

Now we transform the modified object into a long-lived one as described in
Section 3. Recall that in the resulting Reset() method, a process first incre-
ments a sequence number Seq, and then it replaces all registers of the TAS()

implementation with recycled ones. (In fact, it replaces indices stored in Ptr
with indices of recycled registers, but this is conceptually the same.) At the end
of the Reset() method, the process increases Seq again. Recall also that no pro-
cess which executes a TAS() method, can execute more than one shared memory
step once a concurrent resetter has incremented Seq. Hence, suppose that at the
point when Seq gets incremented at the beginning of a Reset() method call,
exactly registers F1, . . . , F� have non-⊥ values. Then it is not possible that any
object Oj , Tj , or Fj+1, for j > �, will be accessed by any process before Seq

414 Z. Aghazadeh and P. Woelfel

is incremented again at the end of that Reset() method call. (In fact, no such
object Oj , Tj of Fj+1, for j > �, will be accessed by a pending TAS() method
call that has already executed its first shared memory step.)

Hence, in the Reset() method it suffices to replace the registers used in
O1, . . . , O�, T1, . . . ,T�, and F1, . . . , F�+1 with recycled ones. In particular, during
a Reset()method the resetter can read registers F1, F2, . . . , until it finds the first
one, F�+1, with value ⊥. Then it only replaces those registers with recycled ones
that need to be replaced, which can be done in O(�) time. As proved in [13],
the expected value of � is O(log logn). Each of O1, . . . , On and T1, . . . ,Tn is
implemented from a constant number of registers. Thus, we obtain a long-lived
TAS object from O(n) registers, where the TAS() and Reset() methods have
O(log logn) expected step complexity.

5 Long-Lived Test-And-Set with Constant Time Reset

In this section we show how to construct long-lived TAS objects from one-time
ones, such that the Reset() method needs only constant time in the worst-case.

Hoepman [17] suggested the following straight-forward transformation of a
one-time TAS object into an (inefficient) long-lived one. It is assumed that the
one-time TAS object supports a safe reset() method, which resets the TAS
object, but must not overlap with any other method calls on that object. Pro-
cesses share an array T [0 . . . n] of one-time TAS objects and one register Ptr ,
which stores an index i ∈ {0, . . . , n} to the one-time TAS object T [i] that is
in use. To execute a TAS(), a process reads index i from Ptr , announces that
index, and reads Ptr again. If the value stored of Ptr changes between those two
reads, then the process returns 1, and otherwise, it executes T [i].TAS(). To reset
the long-lived TAS object, a process reads all announced indices, and chooses
an index j ∈ {0, . . . , n} that is not announced and such that the value of Ptr is
not j. Then it resets the one-time TAS object T [j] by executing safe reset().
Finally, the process writes j into Ptr .

We can use this simple algorithm as the base algorithm, but instead of reading
the entire announce array during each Reset(), we use the recycling technique
proposed in Section 3.1, which has constant time complexity. The resulting algo-
rithm still requires only O(n) one-time TAS objects. In addition, we also employ
a technique presented in [2] to reset any fixed set of registers in O(1) steps, as
long as that reset method does not overlap any other array accesses. For sake of
completeness, we explain this simple technique here.

We use one additional shared register Ver , to store a version number. To
execute a safe reset() call, a process simply increments the version number
stored in Ver . If some process wants to execute a TAS() call, it first reads the
current version number from Ver . It then proceeds as in the original implemen-
tation, but whenever it writes some information to a register, it augments that
information with the version number it read at the beginning of its TAS() call.
Whenever the process reads information together with an augmented version
number from a register, it checks whether that version number matches the one

Space- and Time-Efficient Long-Lived Test-And-Set Objects 415

stored in Ver . If yes, it can use the information stored in the register, otherwise
it assumes the register is in an initial state. To bound register Ver , we can in-
crement the version number modulo k, where k is the number of registers used
in the TAS implementation. In order to avoid the ABA problem, we “lazily”
reset registers during a series of safe reset() calls (in each safe reset() we
reset one register), and thus ensure that during any sequence of k consecutive
safe reset() executions, each register gets reset at least once.

As a result, we obtain a safe reset() method with constant worst-case step-
complexity for any one-time TAS object implemented from registers. This yields
the following result.

Theorem 3. If there is an implementation of a one-time TAS object OT from
m (logn)-bit registers, then there is a a long-lived TAS object T with the following
properties:

1. T uses O(n ·m) registers of length O(log n) bits;
2. the TAS() method of T has, up to a constant additive term, the same (ex-

pected) step complexity as the TAS() method of OT ; and
3. the Reset() method of T has constant worst-case step complexity.

Currently, the most space-efficient published randomized wait-free one-time
TAS implementation uses O(

√
n) registers and has step complexity O(log∗ n)

[11]. Applying Theorem 3 to this construction yields the following.

Corollary 1. There is an implementation of a long-lived TAS from O(n3/2)
O(log n)-bit registers, such that against the oblivious adversary the TAS() method
has O(log∗ n) expected step complexity, and the Reset() method requires O(1)
steps in the worst case.

A randomized wait-free one-time TAS object implemented from O(log n) reg-
isters and with O(log∗ n) expected step complexity was recently announced [12],
and thus yields a long-lived TAS object from O(n logn) registers and with the
same time complexity as in Corollary 1. On the other hand, a lower bound of
Styer and Peterson [23] shows that any deadlock-free one-time TAS object re-
quires at least Ω(log n) registers, so the space complexity of a long-lived TAS ob-
ject obtained from a direct application of Theorem 3 cannot go below Ω(n log n).

6 Correctness of the Base Algorithm

Consider the long-lived TAS implementation T in Figures 1 and 2 obtained
from a randomized wait-free TAS implementation OT . We say a history H is
permissible on T , if it can arise from a sequence of T .TAS() and T .Reset()
method calls, where a process calls T .Reset() only immediately after it won a
T .TAS() call.

Lemma 1. If H is a permissible history on T , where no two Reset() calls
overlap and all method calls complete, then H has a linearization S, such that
all Reset() calls in H linearize at their responses.

416 Z. Aghazadeh and P. Woelfel

For a method call m, we denote the invocation of m by inv(m), and the
response of m by rsp(m). As we mentioned before, we assume w.l.o.g. that
inv(m) and rsp(m) coincide with the first respectively the last shared memory
step of m.

Proof of Lemma 1. Suppose H contains k ≥ 0 completed Reset() method calls
r1, . . . , rk, with the same invocation order. Thus, since no two Reset() method
calls overlap in H , rsp(ri) < inv(ri+1), for all i ∈ {1, . . . , k − 1}. It is not
hard to see that values 1, . . . , 2k are written in the same order to Seq during
history H . (A proof of this is omitted due to space restrictions.) Let t0 be the
starting point of H , ti the point during H at which value i is written to Seq,
for i ∈ {1, . . . , 2k}, and t2k+1 the point at which H ends, or t2k+1 = ∞ if H is
not finite. For i ∈ {0, . . . , k}, let Ii denote time interval [t2i, t2i+1) in H . Also,
let Oi be the set of all TAS() method calls m in H , such that inv(m) ∈ Ii.
Moreover, for i ∈ {1, . . . , k}, let Fi be the set of all TAS() method calls m in
H , such that inv(m) ∈ [t2i−1, t2i). Since the values stored in array Ptr only
change during interval (t2i−1, t2i) of a Reset() method call ri, we let Ri denote
the set of all registers that are in use (pointed by Ptr) during time interval Ii,
for i ∈ {0, . . . , k}. Equivalently, for i ∈ {1, . . . , k}, Ri is the set of all registers
that are put into use during Reset() call ri, and for i = 0, Ri is the set of all
registers that are put into use initially.

The remainder of the proof relies on the following claims, whose proofs are
omitted due to space constraints.

Claim 1. Consider some TAS() method call m in H,

a) if m ∈ Fi, for some i ∈ {1, . . . , k}, then method call m returns 1, without
executing any operation on any register B[j], for j ∈ {0, . . . , 2n+m}; and

b) if m ∈ Oi, for some i ∈ {0, . . . , k}, and rsp(m) > t2i+1, then m returns 1.

Claim 2. During each time interval Ii, for i ∈ {0, . . . , k},

(a) only method calls in Oi access registers in Ri; and
(b) method calls in Oi access only registers in Ri.

Let Hi be the history obtained from H , such that it contains only steps in
H that occur during interval Ii, for i ∈ {0, . . . , k}. Moreover, let Hi|Ri be the
history obtained from Hi, such that it contains only steps in Hi that are on
registers of Ri and let Hi|Oi be the history obtained from Hi, such that it
contains only steps of method calls in Oi in Hi. Claim 2 immediately yields the
following.

Corollary 2. For any i ∈ {0, . . . , k}, we have Hi|Ri = Hi|Oi.

It can be shown (the proof is omitted due to lack of space) that for any
i ∈ {0, . . . , k} the following is true.

Claim 3. History Hi|Ri has a linearization Si of a one-time TAS object, such
that Si contains all method calls of Oi and the TAS() call which wins the object
responds before t2i+1.

Space- and Time-Efficient Long-Lived Test-And-Set Objects 417

We construct a sequential history S from H , and then we show that S is a
linearization of H . Let Si be the linearization of Hi|Ri, such that it contains all
method calls in Oi, for i ∈ {0, . . . , k}. By Claim 3, such a linearization exists.
We add all method calls in S0 to S in the same order in which they appear in
S0. Next, for i ∈ {1, . . . , k}, we do the following. We append all method calls
in Fi to S ordered by their response time, then Reset() call ri, followed by all
method calls in Oi, as they appear in Si.

Now we prove that S is a linearization of H . From definitions of Oi and
Fi, it is easy to see that

(⋃
0≤i≤k Oi

)
∪
(⋃

1≤i≤k Fi

)
contains all TAS() calls in

H . Therefore, by the construction, sequential history S contains all TAS() and
Reset() calls in H . Moreover, from the same definitions, it is easy to see that

inv(o0) < inv(f1) < rsp(r1) < inv(o1) < inv(f2) < rsp(r2) <

inv(o2) < · · · < inv(ok−1) < inv(fk) < rsp(rk) < inv(ok)
(1)

where oi ∈ Oi and fi ∈ Fi, for i ∈ {1, . . . , k}. Therefore, the partial happens-
before order of operations as defined by H is preserved in S, i.e., if an operation
o precedes o′ in S, then inv(o) precedes rsp(o′) in H . As each history Si, for
i ∈ {0, . . . , k}, is a valid history on a one-time TAS object, the first TAS()

method call in Si returns 0, and all other method calls in Si return 1. Moreover,
by Claim 1(a) all method calls in Fi return 1. Therefore, the first TAS() method
call in S and the first TAS() method call after each Reset() call return 0, and all
other TAS() calls return 1. Thus, history S is a valid history on a long-lived TAS
object. Hence, S is a linearization of H . Since all TAS() methods overlapping a
Reset() call fail, they can be linearized before that Reset(). Thus, each Reset()

call can be linearized at its response. �

In the following we show that no two Reset() calls can overlap in any per-
missible history on T .

Lemma 2. If H is a permissible history on T , where no two Reset() calls
overlap, then H has a linearization S, where all complete Reset() calls in H
linearize at their responses and a pending Reset() is the last method in S.

Proof. Since no two Reset() calls overlap inH , there can be at most one pending
Reset() call r. First, we let all pending TAS() method calls in H run to comple-
tion, and then the pending Reset() call r. (Since the implementation OT and
thus also T is randomized wait-free, we can let any pending method calls run to
completion in an arbitrary order.) Let H ′ denote the resulting execution. Then
H ′ is a permissible history on T , where no two Reset() calls overlap and all
method calls in H ′ complete. Thus, by Lemma 1, H ′ has a linearization S, such
that all Reset() calls linearize at their responses. As the response of r is the last
step in H , and r linearizes at its response, the last method in S is r. Moreover,
history S is also a linearization of H , as H ′ is an extension of H which contains
only method calls that are invoked in H . �

Lemma 3. In any permissible history on T , no two Reset() calls overlap.

418 Z. Aghazadeh and P. Woelfel

Proof. Suppose for the sake of contradiction that there are Reset() calls in a
permissible history H that overlap. Let ra and rb be the Reset() calls that over-
lap other Reset() calls with the earliest respectively second earliest invocation,
and let pa and pb be the processes executing ra and rb, respectively. Then ra
and rb overlap each other and hence pa �= pb. Let H ′ be the longest prefix of H
in which no two Reset() calls overlap, i.e., H ′ ends just before the invocation
of rb. Then ra is pending in history H ′. By Lemma 2, H ′ has a linearization S,
such that ra is the last method in S.

Since in H process pb invokes Reset() rb immediately after the prefix H ′

of H completes, pb’s last TAS() call mb in H ′ must return 0 in H ′. Then pb’s
last method call in S is also mb, and in particular pb does not call Reset() in
S after mb. By the sequential specification of TAS, the first Reset() call after
mb (which returns 0) in S must be by the same process pb. However, mb is pb’s
last method call in S, and Reset() call ra by process pa appears after mb in
S—contradiction. �

Lemmas 2 and 3 imply that any permissible history on T is linearizable.

Corollary 3. Implementation T is linearizable.

7 Conclusion

We presented several implementations of time- and space-efficient long-lived
Test-And-Set objects from registers in the standard shared memory model with
n processes. As one of the results we obtain the first long-lived TAS implemen-
tation that has optimal (linear) space complexity, and at the same time yields
sub-logarithmic (in fact, almost constant) expected step complexity for both,
TAS() and Reset() methods (against the oblivious adversary). Our techniques
heavily rely on the property that only the winner of a TAS() call can reset the
object. We employ this property to prevent multiple Reset() calls from over-
lapping. It would be interesting to research whether similar techniques can be
applied to obtain other long-lived objects from one-time ones, or whether re-
stricted forms of write operations can be implemented more space efficiently
than in [2].

Acknowledgments. The authors are grateful to Wojciech Golab for insightful
discussions and helpful comments on earlier drafts of the paper. The authors
also thank the anonymous reviewers for their valuable comments.

References

1. Afek, Y., Gafni, E., Tromp, J., Vitanyi, P.M.B.: Wait-free test-and-set. In: Segall, A.,
Zaks, S. (eds.) WDAG 1992. LNCS, vol. 647, pp. 85–94. Springer, Heidelberg (1992)

2. Aghazadeh, Z., Golab, W., Woelfel, P.: Making objects writable. In: Proc. of 33rd
PODC, pp. 385–395 (2014)

3. Alistarh, D., Aspnes, J.: Sub-logarithmic test-and-set against a weak adversary. In:
Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 97–109. Springer, Heidelberg (2011)

Space- and Time-Efficient Long-Lived Test-And-Set Objects 419

4. Alistarh, D., Aspnes, J., Censor-Hillel, K., Gilbert, S., Zadimoghaddam, M.:
Optimal-time adaptive strong renaming, with applications to counting. In: Proc.
of 30th PODC, pp. 239–248 (2011)

5. Alistarh, D., Aspnes, J., Gilbert, S., Guerraoui, R.: The complexity of renaming.
In: Proc. of 52nd FOCS, pp. 718–727 (2011)

6. Alistarh, D., Attiya, H., Gilbert, S., Giurgiu, A., Guerraoui, R.: Fast randomized
test-and-set and renaming. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010.
LNCS, vol. 6343, pp. 94–108. Springer, Heidelberg (2010)

7. Braginsky, A., Kogan, A., Petrank, E.: Drop the anchor: Lightweight memory man-
agement for non-blocking data structures. In: Proc. of 25th SPAA, pp. 33–42 (2013)

8. Buhrman, H., Panconesi, A., Silvestri, R., Vitányi, P.: On the importance of having
an identity or, is consensus really universal? Distributed Computing 18(3), 167–176
(2006)

9. Burns, J., Lynch, N.: Bounds on shared memory for mutual exclusion. Information
and Computation 107(2), 171–184 (1993)

10. Eberly, W., Higham, L., Warpechowska-Gruca, J.: Long-lived, fast, waitfree renam-
ing with optimal name space and high throughput. In: Kutten, S. (ed.) DISC 1998.
LNCS, vol. 1499, pp. 149–160. Springer, Heidelberg (1998)

11. Giakkoupis, G., Helmi, M., Higham, L., Woelfel, P.: An O(
√
n) space bound for

obstruction-free leader election. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205,
pp. 46–60. Springer, Heidelberg (2013)

12. Giakkoupis, G., Helmi, M., Higham, L., Woelfel, P.: Test-and-set in optimal space
(2014) (manuscript submitted for publication)

13. Giakkoupis, G., Woelfel, P.: On the time and space complexity of randomized test-
and-set. In: Proc. of 31th PODC, pp. 19–28 (2012)

14. Gidenstam, A., Papatriantafilou, M., Sundell, H., Tsigas, P.: Efficient and reliable
lock-free memory reclamation based on reference counting. IEEE Transactions on
Parallel and Distributed Systems 20(8), 1173–1187 (2009)

15. Herlihy, M.: Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems 13(1), 124–149 (1991)

16. Herlihy,M., Luchangco, V., Moir, M.: The repeat offender problem: Amechanism for
supporting dynamic-sized, lock-free data structures. In: Malkhi, D. (ed.) DISC 2002.
LNCS, vol. 2508, pp. 339–353. Springer, Heidelberg (2002)

17. Hoepman, J.-H.: Long-lived test-and-set using bounded space. Technical report,
University of Twente (1999)

18. Israeli, A., Li, M.: Bounded time-stamps. In: Proc. of 28th FOCS, pp. 371–382 (1987)
19. Kruskal, C., Rudolph, L., Snir, M.: Efficient synchronization on multiprocessors

with shared memory. ACM Transactions on Programming Languages and Sys-
tems 10(4), 579–601 (1988)

20. Loui, M., Abu-Amara, H.: Memory requirements for agreement among unreliable
asynchronous processes. Advances in Computing Research 4(163-183), 31 (1987)

21. Michael, M.: Hazard pointers: Safe memory reclamation for lock-free objects. IEEE
Transactions on Parallel and Distributed Systems 15(6), 491–504 (2004)

22. Panconesi, A., Papatriantafilou, M., Tsigas, P., Vitányi, P.: Randomized naming
using wait-free shared variables. Distributed Computing 11(3), 113–124 (1998)

23. Styer, E., Peterson, G.: Tight bounds for shared memory symmetric mutual exclu-
sion problems. In: Proc. of 8th PODC, pp. 177–192 (1989)

24. Tromp, J., Vitányi, P.: Randomized two-process wait-free test-and-set. Distributed
Computing 15(3), 127–135 (2002)

WFR-TM: Wait-Free Readers

without Sacrificing Speculation of Writers

Panagiota Fatourou1, Eleni Kanellou2,
Eleftherios Kosmas1, and Md Forhad Rabbi3

1 FORTH-ICS & University of Crete, Heraklion (Crete), Greece
{faturu,ekosmas}@csd.uoc.gr

2 FORTH-ICS & IRISA, Université de Rennes 35042 Rennes Cedex, France
eleni.kanellou@irisa.fr

3 FORTH-ICS
rabbi@ics.forth.gr

Abstract. Transactional Memory (TM) is a promising concurrent
programming paradigm which employs transactions to achieve synchro-
nization in accessing common data known as transactional variables. A
transaction may either commit by making its updates to transactional
variables visible or abort by discarding all its changes.

We introduce WFR-TM, a TM algorithm which attempts to combine
the advantages of pessimistic and optimistic TM. In a pessimistic TM, no
transaction ever aborts; however, update transactions are executed se-
quentially, thus decreasing the degree of achieved parallelism. In opti-
mistic TM, transactions are executed concurrently and they commit if
they have not encountered any conflict during their execution.

In WFR-TM, read-only transactions are wait-free and they never ex-
ecute expensive synchronization operations, like CAS, Fetch&Increment,
Swap, etc. This is achieved without sacrificing the parallelism between up-
date transactions. Update transactions synchronize pessimistically with
concurrently executed read-only transactions and they synchronize opti-
mistically with each other.

Keywords: shared memory, software transactional memory, read-only,
wait-free.

1 Introduction

The multi-core revolution that chip manufacturing has witnessed in the last
decades has in turn created new challenges for software design and transac-
tional memory (TM) [16] has emerged as one of the ways to face them. TM aims
at facilitating concurrent programming by providing the programmer with the
transaction abstraction. A transaction is a piece of code that is used to access
data that become shared in an asynchronous, multiprocess shared memory sys-
tem. Such data are referred to as transactional variables (or t-variables) and
an underlying TM system is in charge of correctly carrying out the process syn-
chronization. The TM system is thus in charge of executing a transaction as if

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 420–436, 2014.
c© Springer International Publishing Switzerland 2014

WFR-TM 421

it had happened atomically. If this can be achieved, then the execution of the
transaction is successful and the transaction commits. This means that all of its
updates to t-variables will take effect. Otherwise, the execution of the transac-
tion fails, in which case the transaction aborts, and none of its intended updates
are realized. A transaction that has been aborted is usually re-executed as many
times as needed to terminate successfully.

Most TM systems are optimistic: they execute transactions speculatively and
they may pro-actively abort transactions if they “suspect” that their execu-
tion may jeopardize consistency. Unfortunately, this proactive behavior often
leads to a big number of spurious aborts, i.e., transactions are aborted even
in cases where they could commit without violating consistency. Research on
TM [2,11,12,14,17,20] has given special attention on avoiding this, as it degrades
performance.

Ideally, we would like to have TM systems in which all transactions terminate
successfully within a finite number of steps. However, Bushkov et al. [4] proved
that no TM algorithm can achieve this property. Pessimistic TM algorithms [1,18]
use locks to achieve the execution of each transaction exactly once before com-
mitting it, i.e., a pessimistic TM never aborts any transaction but the use of locks
results in transactions that may not terminate successfully within a finite num-
ber of steps. The way most existing pessimistic TM algorithms achieve to commit
all transactions is by “pessimistically” imposing sequential execution to update
transactions. This significantly restricts parallelism in many cases and therefore
it also leads to performance degradations.

In this paper, we present WFR-TM, an algorithm which combines the advan-
tages of both optimistic and pessimistic TM, while trying to avoid their drawbacks.
WFR-TM ensures that read-only transactions (i.e., transactions that do not in-
tend to update any t-variable) commit within a finite number of steps, i.e., they
are wait-free; this property is also called local progress [4], in TM context. More-
over, a read-only transaction performs only two writes to shared memory which
write to single-writer registers. Additionally to these desirable properties for the
readers, WFR-TM allows also multiple update transactions (i.e., non read-only
transactions) to execute in parallel. Thus, WFR-TM, in contrast to pessimistic
TM algorithms, imposes less restriction on parallelism.

In WFR-TM, a read-only transaction Tr starts by announcing itself, so that
an update transaction that wants to update a t-variable x after the announce-
ment of Tr (and thus probably after Tr has read x), does so only after Tr has
committed. So, before an update transaction Tw completes, it waits for all read-
only transactions that have been initiated and not yet completed at some point
of Tw’s execution, to commit. We remark that it is not necessary to know in
advance whether a transaction is read-only; any transaction is read-only when
it is initiated and becomes an update transaction the first time it accesses a t-
variable for write. Update transactions employ fine-grained locking for accessing
t-variables, so that those of them that do not conflict can commit in parallel;
a conflict occurs between two concurrent update transactions when they access
the same t-variable and at least one of them writes it.

422 P. Fatourou et al.

On the contrary, in pessimistic TM algorithms [1,18], the updaters use a single
coarse-grain lock for accessing shared data. Popular lock-based TM implementa-
tions, which, like WFR-TM use fine-grained locking on each t-variable that they
update, include [5,7,8,22]. However, in those algorithms, read-only transactions
are not wait-free since they may be aborted spuriously.

In [9], a multi-version TM algorithm is introduced which supports wait-free
read-only transactions by keeping a list for each t-variable, where each value that
it has had is recorded; read-only transactions can find values for the t-variables
that they read that are mutually consistent. In [20], a property, called multi-
version permissiveness or MV-permissiveness, is introduced which requires that
read-only transactions never abort. Multi-version MV-permissive TM algorithms
are also presented in [19,20] enhanced with efficient garbage collection for obso-
lete versions of t-variables. WFR-TM ensures multi-version permissiveness while
being single-version, i.e., it does not maintain multiple versions of t-variables.
Thus, WFR-TM is more space efficient in comparison to multi-version algorithms.
We remark that in WFR-TM read-only transactions not only never abort, but
additionally, they always complete (by committing).

Attiya and Hillel present in [2] PermiSTM, a TM algorithm that ensures
multi-version permissiveness without actually maintaining multiple versions of t-
variables. Instead, transactions that read a t-variable x announce their presence
by incrementing a dedicated read-counter linked to x; this is done by repeatedly
executing CAS until it succeeds. So, if it executes concurrently with update trans-
actions that read x, a read-only transaction may repeatedly fail to increment the
read-counter of x. This means that read-only transactions in [2] are obstruction-
free; obstruction-freedom does not ensure that a transaction completes unless the
thread executing it runs solo for a sufficient number of steps after some point
during the transaction’s execution. PermiSTM pays this cost in order to ensure
disjoint-access parallelism; roughly speaking, disjoint-access parallelism guaran-
tees that transactions that do not conflict do not interfere with each other by
accessing common base objects. It has been proved in [3] that in disjoint-access
parallel TM implementations with wait-free read-only transactions, a read-only
transaction that reads m t-variables has to perform non-trivial operations on at
least m − 1 base objects; a non-trivial operation may change the status of the
object on which it is applied. In WFR-TM, read-only transactions perform only
two writes on base objects and no expensive synchronization operations at all.
However, WFR-TM is not disjoint-access parallel.

Similarly to WFR-TM, PermiSTM supports parallelism among update trans-
actions; update transactions are executed speculatively and they may abort.
In PermiSTM, a write-transaction does not proceed in updating the t-variables
until all read-only transactions that are accessing it are committed (after decre-
menting the read counter of the t-variable). Thus, update transactions writing
to a t-variable may face a never-decrementing read-counter for this t-variable,
leading them to run forever. WFR-TM avoids this by having update transactions
waiting for the completion of only a limited number of read-only transactions.

WFR-TM 423

Snooping into a transaction’s write-set in order to read t-variable values has
also been used in other algorithms, such as WSTM [10] and OSTM [10]. However,
WFR-TM combines this with a waiting mechanism where update transactions let
read-only transactions terminate, in order to guarantee that they are wait-free.
Similar waiting techniques have also been used in [1,2].

2 Model

We consider an asynchronous shared memory system of n processes, which use
transactions in order to synchronize in accessing t-variables. A transaction may
contain multiple such accesses to different t-variables. In the following, we con-
sider that the sequential code of each transaction accesses a bounded number of
t-variables and those accesses can either be reads or writes. The t-variables read
by a given transaction form the transaction’s read-set and those written by it
form the transaction’s write-set. A transaction that is committed or aborted, is
completed. An initiated transaction that has not completed, is active.

Although the code of a transaction is sequential, transactions executed by
different processes may run concurrently. A TM algorithm uses a shared represen-
tation for each t-variable, which consists of the metadata that are necessary
in order to monitor the state of the t-variable. A TM algorithm also imple-
ments certain transactional routines, which are used by processes to access a
t-variable’s shared representation. Commonly, those routines are the following:
(1) BeginTx, which initiates a transaction; (2) CreateTvar, which creates
the shared representation of a new t-variable; (3) ReadTvar, which reads a
t-variable; (4) WriteTvar, which writes a t-variable; (5) CommitTx, which
is commonly invoked after all t-variable accesses of a transaction in order to
attempt to effectuate the transaction’s changes: if it finds that the execution
of the transaction is correct, then the transaction commits, otherwise it aborts;
(6) AbortTx, which aborts a transaction intentionally. The execution inter-
val of a transaction starts when BeginTx is invoked for it and ends when ei-
ther CommitTx or AbortTx return (routines CreateTvar, ReadTvar, and
WriteTvar may only be invoked during a transaction’s execution interval).

A TM algorithm implements the above transactional routines by applying a
sequence of operations on shared base objects provided by the system. WFR-TM
uses read/write (R/W) registers and CAS objects. A R/W register R stores a value
from some set and supports the operations read(R), which returns the value of
R, and write(R, v), which writes the value v in R. A CAS object O stores a value
from some set and supports the operations read(O), which returns the value of
O, and CAS(O, u, v), which checks whether the value of O equals u and, if so, it
sets the value of O to v and returns true, otherwise, the value of O does not
change and false is returned.

A configuration is a vector that consists of the state of each process and the
state of each base object. It describes the system at some point in time. In an
initial configuration, each process is in an initial state and each base object has
an initial value. During a step an operation is applied on a base object by some

424 P. Fatourou et al.

process; each step may also contain local computation by that process. An execu-
tion α is a (finite or infinite) sequence C0, φ0, C1, φ1, . . . , φi−1, Ci of alternating
configurations (Ck) and steps (φk), starting from an initial configuration C0,
where the application of φk to configuration Ck results in configuration Ck+1,
for each 0 ≤ k < i.

Correctness for a TM algorithm is defined through some consistency condi-
tion. A well-known one defined for TM is opacity [13]. Roughly speaking, opacity
ensures that all transactions see consistent values for the t-variables in their
read-sets. This is true not only for the committed transactions but also for the
aborted and non-completed ones.

3 WFR-TM

Main Ideas. Each transaction starts by announcing itself into an appropriate
element of an announce array. This array has size n, with one entry for each
process, used by the corresponding process to announce its transactions. Update
transactions execute speculatively and employ fine-grained locking to ensure
consistency when updating t-variables. Specifically, each transaction T keeps
track of the t-variables that it accesses by maintaining a read-set and a write-
set. The read-set contains an entry for each t-variable that T reads, where the
value read from the t-variable is stored. Similarly, for each t-variable T writes,
the write-set contains an associated entry which stores the value that T wants
to write to the t-variable. At commit time, T attempts to obtain the locks that
are associated with each t-variable in its read-set and its write-set. It is easy to
design a correct variant of WFR-TM that avoids locking the read-set (see details
in paragraph describing the LockDataSet routine below).

In order to avoid deadlocks, the locks are acquired in ascending order based
on the address of the t-variable. After acquiring the lock of some t-variable x
in its write-set, T also maintains in the corresponding entry of its write-set, the
value that x has at the time that it is locked by T . Once T acquires the locks, it
enters its updating phase, where it actually updates the t-variables recorded in its
write-set, and then enters its waiting phase, where it waits for active announced
read-only transactions to commit. T finally releases all the acquired locks. We
remark that WFR-TM guarantees that if T enters its updating phase, it will
commit in a finite number of steps.

For each transaction T , WFR-TM maintains a record associated with it. The
record for T contains T ’s status, a variable that represents the current state of
T and can take the values simulating, updating, waiting, committed or aborted.
Each transaction starts by speculatively executing its code during its simulating
phase. An update transaction (that does not abort early) executes an updating
phase and a waiting phase. This last phase is needed to ensure wait-freedom for
read-only transactions. The record for T also contains the read-set and write-set
of T , as well as a set called beforeMe of active transactions that will be linearized
before T . This set is needed in order to ensure consistency of reads.

WFR-TM 425

For each t-variable x, WFR-TM maintains a record containing the current
value of x, its version which is a strictly increasing sequential number, and a
pointer owner to some transaction’s record which indicates whether x is locked.
An update transaction Tw acquires the lock of x each time it successfully executes
a CAS to identify itself as the owner of x; x is considered to be unlocked if either
the owner field of its record is null or the status of the transaction that it points to
is aborted or committed. Tw releases all the locks it has acquired by successfully
changing its status to either committed or aborted (i.e. in one atomic step).

WFR-TM provides wait-freedom for any read-only transaction T by ensuring
that Tr reads consistent values independently of whether the transactional vari-
ables that it accesses are locked, as follows. When a t-variable x is unlocked,
Tr reads its value from x’s record. Suppose that x is locked by some update
transaction Tw at some point. We define an old value and a new value for x at
that point. The old value for x is the value stored in x’s record at the moment
that it was locked by Tw, whereas the new value for x is the value that Tw wants
to write to x. Notice that the old value of x is contained it its record until Tw
writes the new value for it during its updating phase. Afterwards, the old value
is recorded in the write-set of Tw.

During its initialization, each transaction T takes a snapshot of the announce
array; this snapshot is a consistent view of the announced transactions together
with their statuses. Using this snapshot, T decides whether it must read or ignore
the values written by active update transactions. Specifically, T adds into the
beforeMe set all those announced transactions whose status is waiting. If T
reads from x and finds that it is locked by an update transaction Tw, then it
checks if Tw is in T ’s beforeMe set. If this is so, T reads directly from the record
of x, since Tw’s status was waiting when it was recorded by T . This value is the
new value of Tw. If Tw is not in T ’s beforeMe set, T decides which value to read
based on the phase of Tw. If Tw is in its simulating phase, T returns the value
found in x’s record (and thus ignores the value that Tw wants to write since Tw
has not yet started updating its t-variables). If Tw is in its updating phase, T
reads the old value for x from Tw’s write-set. This is necessary because in this
case, Tw is in the process of updating the t-variables contained in its write-set,
so some of them may contain the new values and some of them may still contain
the old values; so, if for instance the read-set of T contains two t-variables x
and y updated by Tw, and T reads both of them from their records, it may read
the old value for x and the new value for y, which would be inconsistent. The
same action is taken by T , if Tw is in its waiting phase, since similar consistency
problems could appear if T has read other t-variables written by Tw while Tw was
in earlier phases. This procedure ensures consistency of read-only transactions.

Before committing, each update transaction reads all entries of the announce
array and waits for the completion of each announced read-only transaction that
it encounters. By incorporating this waiting mechanism, WFR-TM ensures that
if a read-only transaction Tr ignores the value written to a t-variable by an
update transaction Tw, then Tw does not commit before Tr has committed. This
is necessary to argue that at the time that Tr commits, it will not have read

426 P. Fatourou et al.

1 typedef statval {SIMULATING, UPDATING, WAITING, COMMITTED, ABORTED}

2 type tvarrec

3 value val
4 uint ver
5 txrec *owner

Shared variable:
21 txrec *A[1..n]

6 type txrec

7 uint pid
8 statval status
9 set of rnode elements rset
10 set of wnode elements wset
11 set of pointers to txrec

elements beforeMe

12 type rnode

13 tvarrec *tvar
14 value val
15 uint ver

16 type wnode

17 tvarrec *tvar
18 value oldval
19 uint oldver
20 value newval

Fig. 1. Data structures of WFR-TM

an inconsistent set of values. It is also necessary for guaranteeing the progress
properties of the algorithm.

For each t-variable x, there is a version that is associated to it whose value is
unique for each value stored in x. An update transaction Tw performs its reads by
executing the same actions described above for read-only transactions. Addition-
ally, since the waiting mechanism is not employed between update transactions,
in order to ensure opacity, Tw must validate its read-set whenever it reads a
t-variable for the first time, as well as a final time before it starts its updating
phase. Specifically, Tw validates the read-set by comparing the current version of
each t-variable contained there in, against the version that Tw last read for this
t-variable (which is contained in its read-set). Tw aborts if a mismatch is found
for some t-variable. We remark that, Tw performs a final (indirect) validation by
acquiring the lock of each t-variable contained in its read-set. If a version mis-
match is found, the CAS used to acquire the lock of the corresponding t-variable,
fails, and Tw aborts.

Data Structures. Figure 1 presents the data structures of WFR-TM. For each
t-variable x, WFR-TM stores a CAS object of type tvarrec, containing: i) the
value val of x, ii) the version ver of x, an unsigned integer, and iii) a pointer
owner to a txrec record. To implement WFR-TM with single-word CAS objects,
indirection can be used (as in [15,23]).

For each transaction T , WFR-TM stores a record of type txrec that contains:
1) the identifier pid of the process that initiated T , 2) a three-bit variable status,
storing the status of T , 3) a set rset of rnode elements, implementing the read-
set of T , 4) a set wset of wnode elements, implementing the write-set of T , 5) a
set beforeMe of pointers to elements of type txrec.

We remark that an element of type rnode contains: i) a pointer tvar to the
tvarrec record of x, ii) the value val of x read by T , and iii) an unsigned
integer value ver representing the version of x read by T . Moreover, an element
of type wnode contains: i) a pointer tvar to the tvarrec record of x, ii) the (old)
value oldval of x at the current point in time, iii) an unsigned integer oldver
representing the (old) version of x at the current point in time, and iv) the value
newval that T will store into x.

WFR-TM 427

Finally, A is the announce array maintained by WFR-TM. Initially, all entries
of A are null and for each t-variable x, the fields of the tvarrec record of x have
the following values: i) val contains an initial value, ii) ver is equal to 0, and iii)
own points to a dummy txrec record whose status field is equal to COMMITTED.

Pseudocode Description. The pseudocode is provided in Figures 2 and 3.

BeginTx. When called by process p for transaction T , it creates (line 23) and
initializes (lines 24 - 29) the txrec record of T , and then announces T in A[p].
Finally, it calls CheckIfPerformed to initialize the beforeMe set of T (line 30).
Each iteration of the while loop of CheckIfPerformed, reads all elements of
A (lines 34 - 35) and adds to T ’s beforeMe (line 37) new update transactions (i.e.
those are not already in beforeMe) whose status is either waiting or committed
(line 36). A new iteration will start if some transaction is added to beforeMe
in the current iteration. This procedure guarantees that beforeMe contains a
consistent snapshot at the beginning of the last execution of the for of line 34.
We now explain why CheckIfPerformed terminates within a finite number of
steps. Any transaction T ′ that is announced after the announcement of T cannot
commit before CheckIfPerformed completes, given that even if T ′ reaches
its commit phase, T ′ will consider T as a read-only transaction (since T has an
empty write-set as long as it executes CheckIfPerformed), so T ′ will wait for
T to either terminate or become an update transaction. This ensures that only
a limited number of new transactions can appear while CheckIfPerformed

is executed, which in turn ensures that CheckIfPerformed returns in a finite
number of steps.

ReadTvar. When called by T to read the value of some t-variable x, it first
checks if there is an entry for x in the write-set or in the read-set of T . If this
is the case, ReadTvar returns the value from there (to ensure consistency).
Otherwise, the value of x is determined in lines 47-50.

Initially, the value 〈val , ver , owner 〉 of x’s tvarrec record (line 47) and the
status of x’s owner (line 48) are read. Assume first that x is not locked. Then,
the value for x that T returns is val, as read in line 47. Assume now that x is
locked by a transaction Tw. If the status of Tw is either simulating or committed,
then again the value for x that T returns is val. Otherwise, the status of Tw is
either updating or waiting, and the first and third condition of line 49 evaluate
to true. Recall that we consider that x has an old value and a new value, which
are stored in Tw’s write-set entry for x (specifically, in fields oldval and newval
of this entry, respectively). If Tw is contained in T ’s beforeMe set, i.e. the second
condition of line 49 evaluates to true, then Tw’s update on x has already been
performed before the beginning of T . Therefore, again the value for x that T
should read is val. However, if Tw is not contained in T ’s beforeMe set, then T
should not read Tw’s update on x, i.e. the new value of x, and should instead
read the old value of x; this value is read in line 50.

Then, after determining the value that has to be read, it is added together
with its corresponding version in the read-set of T (line 51). In case T is an
update transaction, then its read-set is validated by calling Validate (line 52);

428 P. Fatourou et al.

22 txrec *BeginTx() by process p:

23 txrec *newTx := new txrec

24 newTx → pid := p

25 newTx → status = SIMULATING

26 newTx → rset := empty set of rnode elements

27 newTx → wset := empty set of wnode elements

28 newTx → beforeMe := empty set of pointers to txrec elements

29 A[p] := newTx /* T announces itself */

30 CheckIfPerformed(newTx) /* initialize set beforeMe */

31 return (newTx)

32 CheckIfPerformed(txrec *newTx) by process p:

33 do

34 for i = 1 up to n, excluding p, do

35 tran := A[i] /* if tran is an update transaction that has entered its waiting phase, ...

36 if (tran /∈ newTx → beforeMe AND tran → wset �= ∅ AND

tran → status ∈ {WAITING, COMMITTED}) then

37 add tran in newTx → beforeMe ... then add it once to beforeMe */

38 while a new element is added in newTx → beforeMe

39 tvarrec *CreateTvar(txrec *tx) by process p:

40 tvarrec newTvar := new tvarrec 〈⊥, 0, tx〉
41 return (newTvar)

42 〈boolean, value〉 *ReadTvar(txrec *tx, tvarrec *tvar) by process p:

43 if an element el with el.tvar = tvar exists in tx → wset then

44 return 〈true, el.newval〉
45 if an element el with el.tvar = tvar exists in tx → rset then

46 return 〈true, el.val〉
47 〈val, ver, owner〉 := *tvar

48 status := owner → status

/* if tvar is write-locked by some transaction T that is not to be linearized before tx

and T is in its updating or waiting phase, then read the old value of tvar from T */

49 if (an element el with el.tvar = tvar ∈ owner → wset AND

owner /∈ tx → beforeMe AND status ∈ {UPDATING, WAITING}) then

50 〈val, ver〉 := 〈el.oldval, el.oldver〉
51 add 〈tvar, val, ver〉 in tx → rset

52 if (tx → wset �= ∅ AND Validate(tx) = false) then /* Validate here ensures opacity */

53 tx → status = ABORTED

54 return 〈false,⊥〉
55 return 〈true, val〉

56 WriteTvar(txrec *tx, tvarrec *tvar, value value) by process p:

57 if an element el with el.tvar = tvar exists in tx → wset then

58 update el.newval with value

59 else add 〈tvar,⊥,⊥, value〉 in tx → wset

Fig. 2. Pseudocode for BeginTx, CheckIfPerformed, CreateTvar, ReadTvar,
and WriteTvar of WFR-TM

WFR-TM 429

60 boolean CommitTx(txrec *tx)by process p:

61 if (tx → wset = null) then /* if tx is read-only, then commit */

62 tx → status := COMMITTED

63 return true

64 if (LockDataSet(tx) = false) then /* if locking of some t-variable fails, then abort */

65 tx → status := ABORTED

66 return false

67 tx → status := UPDATING /* tx enters updating phase */

68 for each element el in tx → wset do

69 CAS(el.tvar,*el.tvar, 〈el.newval, el.tvar → ver + 1, tx〉)
70 tx → status := WAITING /* tx enters waiting phase */

71 WaitReaders(tx) /* tx waits announced read-only transactions */

72 tx → status := COMMITTED /* tx commits */

73 return true

74 boolean Validate(txrec *tx) by process p:

75 for each element el in tx → rset

76 〈val, ver, owner〉 := *el.tvar

77 if (ver �= el.ver) then return false

78 return true

79 boolean LockDataSet(txrec *tx) by process p:

80 for each element el′ of tx → wset ∪ tx → rset, in ascending order (based

on tvar field)

81 if ∃ an element el ∈ tx → rset with el.tvar = el′.tvar then

/* if tx has read the tvar before, use this old value for consistency */

〈val, ver, owner〉 := 〈el.val, el.ver, el.tvar → owner〉
/* otherwise, if the tvar was not read before, use the current value as old value */

82 else 〈val, ver, owner〉 := *(el′.tvar)

83 if (owner → status /∈ {COMMITTED, ABORTED}) /* el′.tvar is locked */

84 if ∃ an element el′′ ∈ owner → wset with el′′.tvar = el′.tvar then

85 return false /* it if is write-locked, locking fails; otherwise, wait until it is unlocked */

86 else wait until owner → status ∈ {COMMITTED, ABORTED}
/* try to lock el.tvar, with l-cas */

87 if (CAS(el′.tvar, 〈val, ver, owner〉, 〈val, ver, tx〉) = false) then return false

/* if el′ is written by tx, then maintain the old value of el′.tvar */

88 if (el′ ∈ tx → wset) then update 〈el′.oldval, el′.oldver〉 with 〈val, ver〉
89 return true

90 void WaitReaders(txrec *tx) by process p:

91 for i = 0 up to n− 1 excluding p do

92 tran := A[i]

93 if (tran �= null AND tran → wset = null) then

94 wait until (tran → status = COMMITTED OR tran → wset �= null)

Fig. 3. Pseudocode for CommitTx, Validate, LockDataSet, and WaitReaders of
WFR-TM

430 P. Fatourou et al.

Validate (lines 75-78) returns true when no version of the elements in T ’s read-
list has changed and false otherwise. We remark that this validation mechanism
can also be implemented using a timestamping mechanism as that presented in
TLII [5] or LSA [21], to boost performance.

WriteTvar. When called by T to update some t-variable x with value val,
T first checks whether it has previously invoked WriteTvar to modify x. If
this is so, then there is already an element for x in T ’s write-set (line 57) and
WriteTvar updates the newval field of this element to val (line 58). Otherwise,
a wnode element is added in T ’s write-set (line 59).

Recall that when T enters its updating phase, the oldval and oldver fields
of x’s wnode must contain the value and version, respectively, written by the
transaction for which it holds that it had x in its write-set and is the last to
commit before T acquired the lock of x (i.e., before x is updated by T). WFR-TM
allows another transaction T ′ to snoop into T ’s write-set in order to read the
old value of some t-variables. Therefore, T ’s write-set must offer a way to T ′ to
read values that are mutually consistent. To achieve this, WriteTvar sets the
oldval and oldver fields of new wnode elements that are added in a write-set
equal to ⊥ (line 59). This is necessary for avoiding bad scenarios such as the
following: Apart from x, assume that T wants to write also another t-variable y
and let C be a configuration at which T has written x but not yet y. Thus, T
has created a write set entry for x, but there is no such entry in T ’s write-set for
y. T has also read (before C) the contents of x’s tvarrec to store in the oldval
and oldver fields of x’s wnode. Now, let another transaction T ′′ lock and update
both x and y, and commit. Then, T continues by writing y. So it places an entry
in its write-set for y and reads the contents of y’s tvarrec to store in the oldval
and oldver fields of this entry. Then, T acquires the locks of both x and y. So,
if T ′ snoops both x and y from T ’s write-set, it reads inconsistent values.

CommitTx. If T is a read-only transaction (its write-set is empty), CommitTx

changes T ’s status to committed and returns true (lines 61-63). If T is an update
transaction, it attempts to acquire the required locks by calling LockDataSet

(line 64). If it fails to acquire some lock (LockDataSet returns false), T
is aborted (lines 64-66). Otherwise, all the required locks have been acquired
(LockDataSet returns true). Then, T enters its updating phase (line 67) and
updates the t-variables in its write-set (line 69). Notice that it also increments
the version of each t-variable by one. Afterwards, T enters its waiting phase
(line 70) and waits until all announced read-only transactions commit. This
is done by calling WaitReaders (line 71). WaitReaders goes through the
announce array A, and waits until each active read-only transaction (line 93)
either commits or turns out to be an update transaction (line 94). Finally, T
commits and CommitTx returns true (lines 72-73).

LockDataSet. It is called by T to lock each t-variable in its read-set and write-
set. Recall that deadlocks are avoided by acquiring the locks in (ascending) order
(based on the tvar pointer contained in each rnode or wnode element). Initially,
LockDataSet determines the value and version of each t-variable x that it
wants to lock, as follows: If x exists in T ’s read-set, these values are taken from

WFR-TM 431

the corresponding read-set entry (line 81). Otherwise, they are read from x’s
tvarrec record.

LockDataSet tries to lock x using a CAS operation which stores a pointer
to T ’s txrec record into the owner field of x’s tvarrec record (line 87). Notice
that this CAS also serves as a final validation of the value of x read by T (in case
x is in T ’s read-set). LockDataSet returns true only if it successfully locks
all the t-variables in T ’s read-set and write-set (line 89). If x is already locked
by some transaction T ′ (lines 83 to 84), LockDataSet by T returns false

(line 84). If x is locked by some transaction that does not intend to update it,
LockDataSet waits until this transaction completes (line 86). Finally, recall
that when LockDataSet is invoked, the contents of the oldval and oldver fields
of x’s element in T ’s write-set are ⊥. In case x is locked, these fields are updated
with the determined current values for x (line 88), so that if T enters its updating
phase these fields are appropriately set in each element of T ’s write-set.

We remark that it is very easy to design a correct variant of WFR-TM that
avoids locking the read-set. In this variant, the only difference would be that
a final read-set validation must be performed explicitly since LockDataSet

will not then lock the variables in T ’s read-set. Moreover, in this case, only the
owner field of a tvarrec is required to be a CAS object, whereas the rest can be
updated with writes.

Correctness. We now provide a sketch of the proof of correctness. The full proof
is provided in [6]. Fix any execution α of WFR-TM and let T be any transaction
in α; let αT be the execution interval of T . Each transaction T is associated
with a unique txrec record; the status of T is the value of the field status in
this record. We abuse notation and we use the same notation to refer both to
the name of some transaction and to its txrec record.

By the code, T.status is initially SIMULATING. If T is a read-only transac-
tion, its status chances from SIMULATING directly to COMMITTED. If T is an
update transaction, then the code implies that its status will change either
from SIMULATING to ABORTED, or from SIMULATING to UPDATING, and then from
UPDATING to WAITING, and from WAITING to COMMITTED. As long as its status is
SIMULATING, UPDATING, or WAITING, we say that T is in its simulating, updating,
or waiting phase, respectively.

An update transaction Tw acquires the lock for x when it successfully executes
the CAS of line 87. Notice that this CAS changes the owner field of the tvarrec

of x to point to Tw. Tw releases this lock (as well as all other locks it has
acquired) by changing its status to COMMITTED or ABORTED. We denote by αx,Tw

the execution interval of αTw during which Tw maintains the lock for x.
The code (lines 68 to 70) implies that before Tw enters its waiting phase, it

has finished with the updating of the t-variables in its write-set. It is easy to
argue that during αx,Tw no transaction T ′

w �= Tw can either lock or update x.
This and the code (lines 40 and 69) imply that the version of each t-variable is
strictly increasing. This holds since (i) at most one transaction may maintain
the lock for x at each configuration and (ii) each transaction updates x only if

432 P. Fatourou et al.

it maintains the lock for x and when it does so it increments by one the version
of x. So, each version of x is unique and it is written by a single transaction.

Lemma 1. The following holds:

1. Consider any update transaction Tw that acquires the lock for some t-variable
x. During αx,Tw , the owner field of the tvarrec record of x contains a pointer
to the txrec record of Tw.

2. The version of each t-variable x is strictly increasing.

We assign linearization points to read-only transactions that commit in α
and to update transactions that enter their waiting phase in α. If T is an update
transaction that enters its waiting phase, we assign the linearization point for it
at the configuration after the execution of line 70, which updates the status of T
to WAITING. If T is a read-only transaction, let CRT be the configuration at the
beginning of the last execution of the for of line 34 in CheckIfPerformed

by T . Notice that this for iteration is executed in the last iteration of the do

while loop of line 38 during this instance of CheckIfPerformed. Also, notice
that during this do while iteration no other element is added in T ’s beforeMe
set. Thus, T ’s beforeMe set contains a consistent snapshot of the announced
transactions. We assign the linearization point for T at CRT .

By the way linearization points are assigned, the linearization point of each
transaction is placed in its execution interval. Moreover, at each configuration
C, there is a sequence lC of transactions of α that have been linearized before or
at C. The read-set of T is the set indicated by the rset field of T . We say that T
reads the version v for some t-variable x if a triple of the form 〈x,−, v〉 is added
to the read-set of T . We say that the version v read by T for some t-variable x
is consistent at C, if it is the version written by the last transaction in lC that
updates x. The read-set of T is consistent at C if the version of each t-variable
included in it is consistent.

We first argue about the consistency of read-only transactions.

Lemma 2. Consider a read-only transaction Tr that completes in α and reads
version v �= 0 for some t-variable x. Let Tw be the update transaction that writes
the value v in the version field of the tvarrec of x. Then, Tw is the last update
transaction that is linearized before Tr.

Proof (Sketch). To prove that Tw is the last update transaction writing to x
that is linearized before the linearization point of Tr, we consider the following
cases. Let C be the configuration at which the value v is read either on line 47
or on line 50. We prove that CRTr follows the configuration CWTw, at which
the status of Tw changes to WAITING. Recall that Tw is linearized at CWTw .

Assume that x is unlocked at C. We prove that if some other update transac-
tion writing x was linearized between Tw and Tr, then Tr would read a version
larger than v for x which is a contradiction.

Assume now that Tw maintains the lock for x atC. By inspection of the code,C
follows CRTr . Thus, C follows CWTw . By inspection of the code, it follows that

WFR-TM 433

Tw acquires the lock for x before CWTw . We prove that Tw is contained in the
beforeMe set of Tr. By inspection of the code, it follows that Tr adds Tw in its
beforeMe set before CRTr , i.e. before the configuration at which Tr is linearized.
SinceTw is still active atC, when this occurred the status ofTw was WAITING. Thus,
Lemma 1 implies thatTw holds the lock for x in every configurationbetweenCWTw

and CRTr . Since any update transaction T ′
w that updates x holds the lock of x at

CWT ′
w
, Lemma 1 implies that no other transaction is linearized between CWTw

and CRTr .
Assume next that x is locked by some other transaction T ′

w at C. Since C
follows CWTw , T ′

w acquires the lock for x after Tw. If T ′
w is not the first to acquire

the lock for x after Tw, then we argue that Tr reads a version larger than v for
x, which is a contradiction. Thus, T ′

w must be the first such update transaction.
We consider again two cases. Assume first that T ′

w has not yet updated x at
C. Then, no update transaction writing x (including T ′

w since its execution has
not yet reached CWT ′

w
) has been linearized between Tw and Tr. Assume finally

that T ′
w has updated x at C, then Tr reads v for the version of x through the

oldver field of the corresponding write-set entry of T ′
w (line 50); thus, T ′

w is not
contained in the beforeMe set of Tr (line 49). We use this to prove that T ′

w is
linearized after Tr. ��

Lemma 2 implies that the read-set of Tr is consistent at CRTr . We next argue
for the consistency of each update transaction Tw.

Lemma 3. The read-set of an update transaction Tw that enters its waiting
phase is consistent at CWTw , where the linearization point of Tw is placed.

Proof (Sketch). Until Tw performs its first write on a t-variable, it is considered
as a read-only transaction (since its write-set is still empty). So, Lemma 2 implies
that its read-set is consistent up to the point that it performs its first write. So,
let’s assume that Tw has performed its first write on a t-variable. Whenever it
reads some t-variable, Tw successfully validates its read-set (line 52); so, the read-
set of Tw is consistent up to the configuration preceding the invocation of the last
instance of Validate. Moreover, before Tw changes its status to waiting (line
70) it has successfully acquired locks. During this lock acquisition procedure, Tw
has successfully validated its read-set in an implicit way through the l-cas that
acquires the locks. By Lemma 1, in any configuration that Tw maintains these
locks, no other transaction can update them. Since Tw locks the variables in its
read-set, its read-set remains consistent. Recall that Tw releases the locks it has
acquired when it changes its status to committed. ��

Theorem 1. WFR-TM is an opaque TM algorithm.

Progress. During BeginTx, each read-only transaction Tr first announces itself
and then calculates its beforeMe set using the for of line 34. This for is exe-
cuted each time a new transaction is added to the beforeMe set of Tr. We remark
that if Tr performs its announcement before an update transaction Tw enters
its waiting phase, then Tw will wait (line 94) for Tr to commit. This implies

434 P. Fatourou et al.

that during the execution of Tr, each process may initiate at most one update
transaction; so, the for of line 34 is executed at most n times. Thus, CheckIf-

Performed has step complexity O(n2). Recall that m is the maximum number
of t-variables accessed by any transaction. Since Tr may have to snoop into an
update transaction’s write-set (line 49), it executes each instance of ReadTvar

in O(m) steps. Finally, by inspecting the code, it follows that Tr completes the
execution of any other transactional routine after a constant number of steps.

Theorem 2. Each read-only transaction executed by a nonfaulty process com-
mits after O(n2 + m2) steps, where m is the maximum number of t-variables
accessed by any transaction.

Consider now a set of concurrently executing update transactions. Since each
update transaction acquires the locks for the t-variables it accesses in (ascending)
order, it follows that at least one transaction in this set will be able to acquire
all the locks it requires. This transaction will also commit since it waits (line
91) for at most n− 1 read-only transactions to complete and Theorem 2 implies
that each read-only transaction commits after O(n2 +m2) steps.

Theorem 3. In an infinite execution in which no process crashes, infinitely
many update transactions commit.

4 Discussion

In this paper our effort was mainly directed towards introducing and combining
TM techniques to design a new TM algorithm, which has some interesting theoret-
ical properties. An experimental evaluation of WFR-TM is still to be done. An
implementation of WFR-TM for this purpose could include several techniques to
enhance its performance. An important such optimization is the use of a global
clock [5,21] in order speed up the validation process through timestamping.

WFR-TM forces each update transaction to wait for each active read-only
transaction it encounters, even if their read-sets share no t-variables with the
update transaction’s write-set. An efficient way of avoiding this type of scenario
is an interesting open problem.

Acknowledgements. This work has been supported by the project “IRAKLI-
TOS II - University of Crete” of the Operational Programme for Education and
Lifelong Learning 2007 - 2013 (E.P.E.D.V.M.) of the NSRF (2007 - 2013), co-
funded by the European Union (European Social Fund) and National Resources.
It has also been supported by the European Commission under the 7th Frame-
work Program through the TransForm (FP7-MC-ITN-238639) project and by
the ARISTEIA Action of the Operational Programme Education and Lifelong
Learning which is co-funded by the European Social Fund (ESF) and National
Resources through the GreenVM project.

WFR-TM 435

References

[1] Afek, Y., Matveev, A., Shavit, N.: Pessimistic software lock-elision. In: Aguilera,
M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 297–311. Springer, Heidelberg (2012)

[2] Attiya, H., Hillel, E.: A single-version stm that is multi-versioned permissive. The-
ory of Computing Systems 51(4), 425–446 (2012)

[3] Attiya, H., Hillel, E., Milani, A.: Inherent limitations on disjoint-access parallel
implementations of transactional memory. In: Proceedings of the 21st Symposium
on Parallelism in Algorithms and Architectures, SPAA 2009, pp. 69–78. ACM
Press, New York (2009)

[4] Bushkov, V., Guerraoui, R., Kapalka, M.: On the liveness of transactional mem-
ory. In: Proceedings of the 31st ACM Symposium on Principles of Distributed
Computing, PODC 2012, pp. 9–18. ACM, New York (2012)

[5] Dice, D., Shalev, O., Shavit, N.N.: Transactional locking II. In: Dolev, S. (ed.)
DISC 2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

[6] Fatourou, P., Kanellou, E., Kosmas, E., Rabbi, M.F.: Wfr-tm: Knowledge of past,
understanding of future, and perseverance in present. Tech. Rep. ICS-FORTH
TR 449, Institute of Computer Science, Foundation of Research and Technology,
Heraklion, Crete (November 2014)

[7] Felber, P., Fetzer, C., Marlier, P., Riegel, T.: Time-based software transactional
memory. IEEE Transactions on Parallel and Distributed Systems 21, 1793–1807
(2010)

[8] Felber, P., Fetzer, C., Riegel, T.: Dynamic performance tuning of word-based soft-
ware transactional memory. In: PPoPP ’08: Proceedings of the 13th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
008, pp. 237–246. ACM, New Yor (2008)

[9] Fernandes, S.M., Cachopo, J.A.: Lock-free and scalable multi-version software
transactional memory. In: Proceedings of the 16th ACM Symposium on Principles
and Practice of Parallel Programming, PPoPP 2011, pp. 179–188. ACM, New York
(2011)

[10] Fraser, K., Harris, T.: Concurrent programming without locks. ACM Trans. Com-
put. Syst. 25(2) (May 2007)

[11] Gramoli, V., Harmanci, D., Felber, P.: Toward a theory of input acceptance for
transactional memories. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008.
LNCS, vol. 5401, pp. 527–533. Springer, Heidelberg (2008)

[12] Guerraoui, R., Henzinger, T.A., Singh, V.: Permissiveness in transactional memo-
ries. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 305–319. Springer,
Heidelberg (2008)

[13] Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In: Pro-
ceedings of the 13th ACM Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP 2008, pp. 175–184. ACM, New York (2008)

[14] Guerraoui, R., Kapalka, M.: The semantics of progress in lock-based transactional
memory. SIGPLAN Not 44(1), 404–415 (2009)

[15] Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional
memory for dynamic-sized data structures. In: Proceedings of the 22nd ACM
Symposium on Principles of Distributed Computing, PODC 2003, pp. 92–101.
ACM, New York (2003)

[16] Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. SIGARCH Comput. Archit. News 21(2), 289–300 (1993)

436 P. Fatourou et al.

[17] Keidar, I., Perelman, D.: On avoiding spare aborts in transactional memory. In:
Proceedings of the 21st Symposium on Parallelism in Algorithms and Architec-
tures, SPAA 2009, pp. 59–68. ACM, New York (2009)

[18] Matveev, A., Shavit, N.: Towards a fully pessimistic stm model. In: 7th ACM
SIGPLAN Workshop on Transactional Computing (TRANSACT) (2012)

[19] Perelman, D., Byshevsky, A., Litmanovich, O., Keidar, I.: SMV: Selective multi-
versioning STM. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 125–140.
Springer, Heidelberg (2011)

[20] Perelman, D., Fan, R., Keidar, I.: On maintaining multiple versions in stm. In:
Proceedings of the 29th ACM Symposium on Principles of Distributed Computing,
PODC 2010, pp. 16–25. ACM, New York (2010)

[21] Riegel, T., Felber, P., Fetzer, C.: A lazy snapshot algorithm with eager validation.
In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 284–298. Springer, Heidelberg
(2006)

[22] Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of the
14th ACM Symposium on Principles of Distributed Computing, PODC 1995, pp.
204–213. ACM, New York (1995)

[23] Tabba, F., Moir, M., Goodman, J.R., Hay, A.W., Wang, C.: Nztm: Nonblocking
zero-indirection transactional memory. In: Proceedings of the 21st Symposium
on Parallelism in Algorithms and Architectures, SPAA 2009, pp. 204–213. ACM,
New York (2009)

On Developing Optimistic

Transactional Lazy Set

Ahmed Hassan, Roberto Palmieri, and Binoy Ravindran

Virginia Tech, ECE Department, Blacksburg VA 24061, USA
{hassan84,robertop,binoy}@vt.edu

Abstract. Transactional data structures with the same performance of
highly concurrent data structures enable performance-competitive trans-
actional applications. Although Software Transactional Memory (STM)
is a promising technology for designing and implementing transactional
applications, STM-based transactional data structures still perform infe-
rior to their optimized, concurrent (i.e. non-transactional) counterparts.
In this paper, we present OTB-Set, an efficient optimistic transactional
lazy set based on both linked-list and skip-list implementations. We
first provide general guidelines to show how to design a transactional
(non-optimized) version of the highly concurrent lazy set with a minimal
reengineering effort. Subsequently, we show how to make specific opti-
mizations to the implementations of the OTB-Set for further enhancing
its performance. We also prove that our OTB-Set provides linearizable
individual operations and opaque transactions. Our experimental study
on a 64-core machine reveals that OTB-Set outperforms competitors in
most workloads.

Keywords: Software Transactional Memory, Semantic, Set Data Struc-
ture, Boosting.

1 Introduction

The increasing ubiquity of multi-core processors motivates the development of
data structures that can exploit the hardware parallelism of those processors.
The current widely used concurrent collections of elements (e.g., Linked-List,
Skip-List, Tree) are well optimized for high performance and ensure isolation
of atomic operations, but they do not compose. This is a significant limitation
from a programmability standpoint, especially for legacy systems as they are
increasingly migrated onto multicore hardware (for high performance) and must
seamlessly integrate with third-party libraries.

Software transactional memory (STM) [20] can be used to implement trans-
actional data structures (e.g., [7,12]), which makes them composable – a signif-
icant benefit. However, monitoring all of the memory locations accessed by a
transaction while executing data structure operations is a significant (and often
unnecessary) overhead. As a result, STM-based transactional collections perform
inferior to their optimized, concurrent (i.e. non-transactional) counterparts.

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 437–452, 2014.
c© Springer International Publishing Switzerland 2014

438 A. Hassan, R. Palmieri, and B. Ravindran

As an alternative to STM, the transactional boosting methodology was intro-
duced in [14] and further investigated in [11], to convert the highly concurrent
data structures into transactional ones. Briefly, in [14], semantic locks are pes-
simistically acquired at early phases of the transaction to reduce false conflicts.
For this reason, and following the trend in [11], we name this approach as pes-
simistic transactional boosting (or PTB). In contrast, the work in [11] lazily
acquires the semantic locks, which motivates the name optimistic transactional
boosting (or OTB). In both approaches, operations are saved in either semantic
undo logs (in PTB) or semantic redo logs (in OTB) to correctly commit/abort
transactions. As discussed in [11], OTB has benefits over PTB. First, OTB does
not require defining inverse operations. Second, it uses the same phases of valida-
tion and commit, with the same semantics, as in STM systems, allowing an easy
integration of OTB data structures with STM frameworks. Finally, it uses the
underlying data structure as a white box, which allows further data structure-
specific optimizations. Inspired by the general OTB’s principles, in this paper
we focus on set-based data structures providing an efficient transactional lazy
set (called OTB-Set hereafter), which boosts the highly concurrent lazy set de-
scribed in [13]. OTB-Set offers the implementation of linked-list and skip-list.

We split the design of OTB-Set into two phases. The first phase consists of: i)
dividing each operation of the original lazy concurrent data structure into three
steps (traversal, validation, and commit); ii) deferring the commit step to the
end of the transaction; iii) modifying the validation step to guarantee opacity [9]
rather than linearizability [17]. This phase is general and does not make any data
structure-specific optimization as it provides guidelines independent from the
actual implementation of the set. These optimizations are taken into account in
the second phase, where we modify the previous OTB-Set design (i.e., the result
of phase one) with the aim of further enhancing its performance. Here, we apply
optimizations related to the implementation of the data structure rather than its
semantic. Splitting the design in such a way allows the programmer to follow the
same pattern for boosting more lazy data structures by first designing a general
“non-optimized” transactional version using well-defined guidelines (phase one),
and then adding optimizations to the specific data structure implementation,
resulting in an “optimized”, more performant, version (phase two).

We acknowledge that using concurrent data structures as “black boxes”, as
proposed by PTB, saves the effort for re-engineering them as transactional, how-
ever through OTB-Set we show that following our general guidelines it is not
difficult to develop a transactional version of lazy set-based data structures, still
retaining the advantage of enabling data structure specific optimizations.

We prove that OTB-Set (both the non-optimized and the optimized) provides
individual linearizable operations and opaque transactions. To evaluate OTB-Set
we compared its performance with both PTB [14] and lazy [13] sets. Our results
show that OTB-Set’s performance is closer to the highly concurrent lazy set
than PTB set in most cases. Beyond the performance improvement, OTB-Set
has an added benefit: it is easy to integrate with lazy STM frameworks without
violating their correctness or progress guarantees. This way, as we showed in [10],

On Developing Optimistic Transactional Lazy Set 439

programmer can execute transactions with mixed access types, namely classical
memory accesses (managed by the STM framework) and data structure accesses
(managed by OTB-Set), without suffering from the disadvantages (i.e., false-
conflict) of using an STM on top of a data structure as explained above.

The PTB and OTB approaches take an orthogonal direction to other works
in literature for allowing semantic conflict detection. Techniques like open nest-
ing [18], elastic transactions [8], transactional collection classes [4], and trans-
actional predication [3] are different alternatives to design transactional data
structures by using STM frameworks more efficiently than the naive STM-based
data structures’ implementation. The distinguishing point in both PTB and
OTB is that they are completely independent and decoupled from STM frame-
works1, and they focus more on digging into the design and the implementation
of the highly concurrent data structures and optimize the specific implementa-
tion of each one of them. Along the same line of OTB, techniques like COP [1,2]
and ParT [21] exploit the same idea of splitting data structures’ operations
into an unmonitored traversal phase and a speculated validation/update phase.
While COP operations are only concurrent (non-transactional), which do not na-
tively compose and cannot be integrated with traditional memory frameworks,
ParT discusses how to compose operations by employing a set of validators. In
this paper, OTB proposes more reliance on the semantics of the data structure
(especially in the “optimized” versions), and provides more details on how to
compose dependent operations. Despite their differences, the above trials, along
with OTB, confirm the trend of moving towards more optimistic approaches for
semantic validation.

Our lazy set is publicly available as JAVA library at http://www.hyflow.org/
software.html.

2 Optimistic Transactional Boosting

Optimistic transactional boosting (OTB) [11] is a methodology to boost lazy
data structures to be transactional. A common feature that can be identified in
all lazy data structures is that they have an unmonitored traversal step, in which
the object’s nodes are not kept locked until the operation ends. To guarantee
consistency, this unmonitored traversal is followed by a validation step before the
last step that physically modifies the shared data structure. As described in [11],
OTB modifies the design of these lazy data structures to support transactions.
Basically, the OTB methodology can be summarized in three main guidelines.
(G1) Each data structure operation is divided into three steps. Traversal . This

step scans the objects, and computes the operation’s results (i.e., its post-
condition) and what it depends on (i.e., its precondition). This requires us
to define (in each transaction), what we call semantic read-set and seman-
tic write-set, which store these information (semantic write-sets can also be
called semantic redo-logs). Validation . This step checks the validity of the

1 In fact, OTB does not use STMs, rather it has been designed to be easily integrated
with existing STM frameworks.

http://www.hyflow.org/software.html
http://www.hyflow.org/software.html

440 A. Hassan, R. Palmieri, and B. Ravindran

preconditions. Specifically, the entities stored in the semantic read-set are
validated to ensure that operations are consistent. Commit . This step per-
forms the modifications to the shared data structure. Unlike concurrent data
structures, this step is not done at the end of each operation. Instead, it is
deferred to the transaction’s commit time. All information needed for per-
forming this step are maintained in the semantic write-sets during the first
step (i.e., traversal). To publish the write-sets, a classical (semantic) two-
phase locking is used. This semantic (or abstract) locking prevents semantic
conflicts at commit.

(G2) Data structure design is adapted to support opacity. The correctness of
transactional data structures does not only depend on the linearization of
its operations (like concurrent data structures), but it also depends on the
sequence of the operations executed in each transaction. Data structure de-
sign has to be adapted to guarantee this serialization part. OTB provides
the following guidelines, which exploit the local read-sets and write-sets
to guarantee opacity [9] 2 , the same consistency level of most STM al-
gorithms [5,6,19,15]:
(G2.1) Each operation scans the local write-set first, before accessing the

shared object. This is important to include the effect of the earlier (not
yet published) operations in the same transaction.

(G2.2) The read-set is re-validated after each operation and during commit,
to guarantee that each transaction always observes a consistent state of
the system (even if it will eventually abort).

(G2.3) During commit, semantic locks of all operations are acquired before
any physical modification on the shared data structure.

(G2.4) Operations are applied during the commit phase in the same order as
they appeared in the transaction and, in case the outcome of an operation
influences the subsequent operations recorded in the write-set, they are
updated accordingly.

(G2.5) All operations have to be validated, even if the original (concurrent)
operation does not make any validation (like contains operation in set).
The goal of validation in these cases is to ensure that the same operation’s
result occurs at commit.

(G3) Data structure design is adapted for more optimizations. Each data struc-
ture can be further optimized according to its own semantic and implemen-
tation. For example, in set, if an item is added and then deleted in the same
transaction, both operations eliminate each other and can be completed
without physically modifying the shared data structure.

Unlike the first two guidelines, which are general for any lazy data structure,
the third guideline varies from one data structure to another. It gives a hint to the
developers that the data structures now are no longer used as black boxes, and
further optimizations can be applied. It is important to note that the generality
of the first two guidelines does not mean that they can be applied “blindly”
without being aware of the data structure’s semantics. OTB, like the former

2 In section 4, we prove that those guidelines are sufficient to guarantee opacity.

On Developing Optimistic Transactional Lazy Set 441

techniques (including PTB) [1,2,21,14], performs better than the naive STM-
based data structures only because it exploits semantics. However, we believe
that OTB’s guidelines make a clear separation between the general outline that
can be applied on any lazy data structure (like validation, in G2.2, and commit,
in G2.4, even if the validation/commit mechanisms themselves vary from one
data structure to another) and the specific optimizations that are completely
dependent on the data structures implementation.

In Section 3, we show in detail how those guidelines can be used to design
OTB-Set, an efficient transactional set based on both linked-list and skip-list. In
Section 3.2, we follow the first two guidelines to design a non-optimized trans-
actional version of the lazy set. Then, in Section 3.3, we show how specific opti-
mizations can be applied on our OTB-Set (according to the third guideline).

3 OTB-Set

3.1 Preliminaries

Set is a collection of ordered items, which has three basic operations: add,
remove, and contains, with the familiar meanings [16]. No duplicate items are
allowed (thus, add returns false if the item is already present in the structure).
All operations on different items of the set are commutative – i.e., two opera-
tions add(x) and add(y) are commutative if x �= y. Moreover, two contains

operations on the same item are commutative as well. Such a high degree of com-
mutativity between operations enables fine-grained semantic synchronization.

Lazy linked-list [13] is an efficient implementation of concurrent (non trans-
actional) set. For write operations, the list is traversed without any locking until
the involved nodes are locked. If those nodes are still valid after locking, the
write takes place and then the nodes are unlocked. A marked flag is added to
each node for splitting the deletion phase into two steps: the logical deletion
phase, which simply sets the flag to indicate that the node has been deleted,
and the physical deletion phase, which changes the references to skip the deleted
node. This flag prevents traversing a chain of deleted nodes and returning an
incorrect result. It is important to note that the contains operation in the lazy
linked-list is wait-free and is not blocked by any other operation.

Lazy skip-list is, in general, more efficient than linked-list as it takes logarith-
mic time to traverse the set. In skip-list, each node is linked to multiple lists (i.e.,
levels), starting from the list at the bottom level (which contains all the items),
up to a random level. Therefore, add and remove operations lock an array of pred
and curr node pairs (in a unified ascending order of levels to avoid deadlock),
instead of locking one pair of nodes as in linked-list. For add operation, each
node is enriched with a fullyLinked flag to logically add it to the set after all
levels have been successfully linked. Skip-list is also more suited than linked-list
in scenarios where the overhead of rolling back (compared to execution) is dom-
inating. In fact, for a linked-list (and especially a long linked-list), even if aborts
are rare, their effect includes re-traversing the whole list again, in a linear time,

442 A. Hassan, R. Palmieri, and B. Ravindran

to retry the operation. In a skip-list, the cost of re-traversal is lower (typically
in a logarithmic time), which minimizes the overhead of the aborts.

The implementation of the PTB version of the set is straightforward and
does not change if the set implementation itself changes. In fact, it uses the
underlying concurrent lazy linked-list (or skip-list) to execute the set operations.
If the transaction aborts, a successful add operation is rolled back by calling the
remove operation on the same item, and vice versa (more details are in [14]).

Despite the significant improvement in the traversal cost and abort overhead,
the implementation of OTB skip-list and OTB linked-list are very similar. Due
to space constraints, and with the purpose of making the presentation clear, we
focus on the linked-list implementation, and we highlight the main differences
with respect to the skip-list implementation when necessary (the full implemen-
tation details of both linked-list-based and skip-list-based OTB-Set can be found
in the source code).

3.2 Non-optimized OTB-Set

Following the first two guidelines (G1 and G2) mentioned in Section 2, in this
section we show how to boost the lazy set to design a transactional set without
any specific optimization related to the details of its implementation. According
to G1, we divide OTB-Set operations into three steps. The Traversal step is
used to reach the involved nodes, without any addition to the semantic read-
set. The Validation step is used to guarantee the consistency of the transaction
and the linearization of the list. We define two different validation procedures:
one is named post-validation, which is called after each operation, and the other
is named commit-time-validation, which is called at commit time and after ac-
quiring the semantic locks. The Commit step, which modifies the shared list, is
deferred to transaction’s commit. Following G2, we show how the usage of lazy
updates, semantic locking, and post-validation guarantees opacity.

Similar to the lazy linked-list, each operation in OTB-Set involves two nodes
at commit time: pred, which is the largest item less than the searched item,
and curr, which is the searched item itself or the smallest item larger than the
searched item3. To log the information about these nodes, with the purpose of
using them at commit time, we adopt the same concept of read-set and write-
set as used in lazy STM algorithm (e.g., [5,6]), but at the semantic level. In
particular, each read-set or write-set entry contains the two involved nodes in
the operation and the type of the operation. In addition, the write-set entry
contains also the new value to be added in case of a successful add operation.

The only difference in skip-list is that the read-set and write-set entries contain
an array of pred and curr pairs, instead of a single pair. This is because the
searched object can be in more than one level of the skip-list.

Algorithm 1 shows the pseudo code of the linked-list operations. We can isolate
the following four parts of each operation.

3 Sentinel nodes are added as the head and tail of the list to handle special cases.

On Developing Optimistic Transactional Lazy Set 443

Algorithm 1. OTB Linked-list: add, remove, and contains operations

1: procedure Operation(x)
� Step 1: search local write-sets

2: if x ∈ write-set then
3: ret = write-set.get-ret(op,x)
4: if op is add or remove then
5: write-set.append(op,x)

6: return ret
� Step 2: Traversal

7: pred = head and curr = head.next
8: while curr.item < x do
9: pred = curr

10: curr = curr.next
� Step 3: Save reads and writes

11: rse = new ReadSetEntry(pred,curr,op)

12: read-set.add(rse)
13: if op is add or remove then
14: wse = new WriteSetEntry(pred,curr,

op,x)
15: write-set.add(wse)

� Step 4: Post Validation
16: if ¬ post-validate(read-set) then
17: ABORT
18: else if Successful operation then
19: return true
20: else
21: return false

22: end procedure

Local writes check (lines 2-6). Since writes are buffered and deferred to the com-
mit phase, this step guarantees consistency of further reads and writes. Each
operation on an item x checks the last operation in the write-set on the same
item x and returns the corresponding result. For example, if a transaction pre-
viously executed a successful add operation of item x, then further additions of
x performed by the same transaction must be unsuccessful and return false. In
addition, if the new operation is a writing (i.e., add/remove) operation, it should
be appended to the corresponding write-set entry (line 5). If there is no previous
(local) operation on x in the write-set, then the operation starts traversing the
shared linked-list as shown in the next step.

Traversal (lines 7-10). This step is the same as in the lazy linked-list. It saves the
overhead of all unnecessary monitoring during traversal that, otherwise, would
be incurred with a native STM algorithm for managing concurrency.

Logging the reads and writes (lines 12-15). At this point, the transaction records
the accessed nodes, that are semantically relevant to the set, into its local read-
set and write-set. All operations must add the appropriate read-set entry, while
add/remove operations modify also the write-set (line 15). It is worth to note
that having no entries in the write-set for contains operation means that it
does not need to acquire locks during the commit phase. This way, although the
contains operation is no longer wait-free, like its concurrent lazy version (be-
cause it may fail during the commit-time-validation), it still performs efficiently
due to the absence of the semantic locks acquisition. We recall that, rather than
OTB, PTB has to acquire semantic locks even for the contains operation to
maintain consistency and opacity.

Post-Validation (lines 16-21). At the end of the traversal step, the involved nodes
are stored in local variables (i.e., pred and curr). At this point, according to point
G2.2 and to preserve opacity [9], the read-set is post-validated to ensure that the
transaction does not observe an inconsistent snapshot. The same post-validation
mechanism is used at memory-level by STM algorithms such as NOrec [5]. More
details about post-validation are discussed later in Algorithm 2.

As mentioned before, there is a difference between linked-list and skip-list
regarding the add operation. In fact, in the skip-list the new node has to be

444 A. Hassan, R. Palmieri, and B. Ravindran

linked to multiple levels, thus there could be a time window where the new node
is only linked to some (and not all) levels. To handle this case in our OTB-Set,
any concurrent operation waits until the fullyLinked flag becomes true, and
then it proceeds.

Algorithm 2 shows the post-validation step. The validation of each read-set
entry is similar to the one in lazy linked-list: both pred and curr should not be
deleted, and pred should still link to curr (lines 6-8). According to G2.5 of OTB
guidelines, contains operation has to perform the same validation as add and
remove, although it is not needed in the concurrent version. This is because any
modification made by other transactions after invoking the contains operation
and before committing the transaction may invalidate the returned value of the
operation, making the transaction’s execution semantically incorrect.

To enforce isolation, a transaction ensures that its accessed nodes are not
locked by another writing transaction during validation. This is achieved by
implementing locks as sequence locks (i.e., locks with version numbers). Before
the validation, a transaction records the versions of the locks if they are not
acquired. If some are already locked by another transaction, the validation fails.
(lines 2-5). After the validation, the transaction ensures that the actual locks’
versions match the previously recorded versions (lines 9-12).

Algorithm 2. OTB Linked-list: validation

1: procedure Validate(read-set)
2: for all entries in read-sets do
3: get snapshot of involved locks
4: if one involved lock is locked then
5: return false
6: for all entries in read-sets do
7: if pred.deleted or curr.deleted or

pred.next �= curr then

8: return false
9: for all entries in read-sets do

10: check snapshot of involved locks
11: if version of one involved lock is

changed then
12: return false
13: return true

14: end procedure

Algorithm 3 shows the commit step of OTB-Set. Read-only transactions have
nothing to do during commit (line 2), because of the incremental validation
during the execution of the transaction. For write transactions, according to
point G2.3, the appropriate locks are first acquired using CAS operations (lines
4-6). Like the original lazy linked-list, any add operation only needs to lock
pred, while remove operations lock both pred and curr. As described in [13],
this is enough for preserving the correctness of the write operations. To avoid
deadlock, any failure during the lock acquisition implies aborting and retrying
the transaction (releasing all previously acquired locks).

After the semantic lock acquisition, the validation is called, in the same way
as in Algorithm 2, to ensure that the read-set is still consistent (line 7). If the
commit-time-validation fails, then the transaction aborts.

The next step of the commit procedure is to publish writes on the shared
linked-list, and then release the acquired locks. This step is not straightforward
because each node may be involved in more than one operation of the same

On Developing Optimistic Transactional Lazy Set 445

Algorithm 3. OTB Linked-list: commit

1: procedure Commit

2: if write-set.isEmpty then
3: return
4: for all entries in write-sets do
5: if CAS Locking pred (or curr if re-

move) failed then
6: ABORT
7: if ¬ commit-validate(read-set) then
8: ABORT
9: sort write-set descending on items

10: for all entries in write-sets do
11: curr = pred.next
12: while curr.item < x do
13: pred = curr
14: curr = curr.next
15: if operation = add then
16: n = new Node(item)
17: n.locked = true

18: n.next = curr
19: pred.next = n
20: for all entries in write-sets do
21: if entry.pred = pred then
22: entry.pred = n

23: else � remove
24: curr.deleted = true
25: pred.next = curr.next
26: for all entries in write-sets do
27: if entry.pred = curr then
28: entry.pred = pred
29: else if entry.curr = curr then
30: entry.curr = curr.next

31: for all entries in write-sets do
32: unlock pred (and curr if remove)

33: end procedure

(a) Two add operations (2 and 3). (b) add(4) and remove(5).

Fig. 1. Executing more operations that involve the same node in the same transaction

transaction. In this case, the saved pred and curr of these operations may change
according to which operation commits first.

For example, in Figure 1(a), both 2 and 3 are inserted between the nodes 1
and 5 in the same transaction. During commit, if node 2 is inserted before node
3, it should be the new predecessor of node 3, but the write-set still records
node 1 as the predecessor of node 3. In OTB guidelines, G2.4 solves this issue.
When node 2 is inserted, the operation scans the write-set again to find any
other operation that has node 1 as its pred and replaces it with node 2. The
same technique is used in the case of removal (Figure 1(b)). When node 5 is
removed, any write-set entry that has node 5 as its curr replaces it with node
6, and any write-set entry that has node 5 as its pred replaces it with node 1.
Lines 20-22 and 26-30 illustrate these cases.

It is clear that the inserted nodes have to be locked until the whole commit
procedure is finished. Then they are unlocked along with the other pred and curr
nodes (line 17). For example, in Figure 1(a), all nodes (1, 2, 3, 5) are locked and
no transaction can access them until the commit terminates.

446 A. Hassan, R. Palmieri, and B. Ravindran

3.3 Optimized OTB-Set

One of the main advantages of OTB over the original PTB is that it uses the un-
derlying (lazy) data structure as a white-box, which allows more data structures-
specific optimizations.

In general, decoupling the boosting layer from the underlying concurrent data
structure is a trade-off. Although, on the one side, considering the underlying
data structure as a black-box means that there is no need to re-engineer its
implementation, on the other side, it does not allow to customize its implemen-
tation and thus to exploit the new transactional specification, especially when
the re-engineering effort can be easily achieved. For this reason, as showed in
the previous section, we decided to split the re-engineering efforts (required by
OTB) into two steps: one general (concluded in OTB guidelines G1 and G2);
and one more specific per data structure (concluded G3). We believe this divi-
sion makes the re-engineering task easier and, at the same time, it allows specific
optimizations for further enhancing the performance.

In this section, we show optimizations for our OTB-Set, leveraging the fact
that it treats the underlying lazy linked-list as a white-box and, therefore, it can
be adapted as needed. Due to space constraints, we put the details on how to
modify the aforementioned “non-optimized” algorithms in the technical report.

Unsuccessful add and remove. The add and remove operations are not neces-
sarily considered as writing operations, because duplicated items are not allowed
in the set. For example, if an add operation returns false, it means that the item
to insert already exists in the set. The commit of such operation can be done by
only checking that the item still exists in the set, which allows to treat unsuccess-
ful add operations as successful contains operations. This way, the transaction
does not acquire any lock for this operation at commit. The same idea can be
applied on the unsuccessful remove operation which can be treated as an unsuc-
cessful contains operation during commit.

Accordingly, in our OTB-Set, both contains and unsuccessful add/remove
operations are considered as read operations (which add entries only to the se-
mantic read-set and do not acquire any semantic locks during commit). Only suc-
cessful add and remove operations are considered read/write operations (which
add entries to both the read-set and the write-set and thus acquire semantic
locks during commit).

In the lazy linked-list, the add and remove operations acquire locks on the
pred and curr nodes even if the operations are unsuccessful. PTB inherits this
unnecessary lock acquisition because it uses the lazy linked-list as a black-box.

Eliminating Operations. As shown in Algorithm 1, each operation starts with
checking the local writes before traversing the shared list. During this step, for
improving OTB performance, if a transaction adds an item x and then removes
the same item x, or vice versa, we allow those operations to locally eliminate
each other. This elimination is done by removing both entries from the write-set,
which means that the two operations will not make any physical modification on

On Developing Optimistic Transactional Lazy Set 447

the shared list. No entry in the read-set is locally eliminated because, this way,
the commit time-validation can still be performed on those operations in order
to preserve transaction’s correctness.

In PTB, due to the usage of the underlying lazy linked-list as a black-box, this
scenario is handled by physically adding x to the shared set, and then physically
removing it, introducing an unnecessary overhead.

Simpler Validation. In the case of successful contains and unsuccessful add
operations, we use a simpler validation than the original validation of the lazy
linked-list. In these particular cases, the transaction only needs to check that curr
is still not deleted, since that is sufficient to guarantee that the returned value is
still valid (recall that if the node is deleted, it must first be logically marked as
deleted, which will be detected during validation). This optimization prevents
false invalidations, where conflicts on pred are not real semantic conflicts.

The validation in the skip-list is similarly optimized because we leverage the
rule that all items have to appear in the lowest level of the skip-list. For successful
contains and unsuccessful add operations, it is sufficient to validate that curr is
not deleted, which ensures that the item is still in the set. We can also optimize
unsuccessful remove and contains by only validating the pred and curr in the
lowest level to make sure that the item is still not in the set, because if the item
is inserted by another transaction, it must affect this level. For successful add
and remove operations, all levels need to be validated to prevent conflicts.

Optimized Commit. To ensure that the operations in Figure 1 are executed
correctly, the write-set has to be re-scanned for each write operation (according
to the OTB guideline G2.4), as we showed in Section 3.2. This overhead be-
comes significant if the write-set is relatively large. We optimize this routine and
avoid the need of re-scanning the write-set by the following points. (1) The items
are added/removed in descending order of their values, regardless of their order
in the transaction execution. This guarantees that the pred of each write-set
entry is always valid, non-deleted, and not touched by any previous operation
in the transaction. (2) Operations resume traversal from the saved pred to the
new pred and curr nodes. At this stage, the pred and curr nodes can only be
changed because of some previous local operations. This is because the trans-
action already finished the lock acquisition and validation, which prevents any
conflicting transaction from proceeding.

Using these two points, the issue in Figure 1(a) is solved without re-scanning
the write-set. The first point enforces that node 3 is inserted first. Subsequently,
according to the second point, when 2 is inserted, the transaction will resume
its traversal from node 1 (which is guaranteed to be locked and non-deleted).
Then, it will detect that node 3 is its new succ, and will correctly link node 2.

The removal case is shown in Figure 1(b), in which node 5 is removed and
node 4 is inserted. Again, 5 must be removed as first (even if 4 is added earlier
during the transaction execution), so that when 4 is added, it will correctly link
to 6 and not to 5. Two subsequent remove operations follow the same procedure.

448 A. Hassan, R. Palmieri, and B. Ravindran

Skip-list uses the same procedure but at all levels. This is because each level
is independent from the others, which means that the preds of the same node
in two or more levels may be different. For this reason, the same procedure
described above is repeated at each level, independently.

4 Correctness

In this section, we discuss the arguments that we use for assessing the correctness
of OTB-Set, and, due to space constraints, we report the detailed correctness
proof in the technical report.

The correctness of OTB-Set can be proved in two incremental steps. The first
step is to show that, after the modifications needed for supporting the execution
of transactions, each single operation on the set is still linearizable, like the lazy
set. The second step consists of showing that the whole transaction is opaque [9].

A) Linearizability : Each operation traverses the set following the same rules
as in the lazy set. After the traversal, we can distinguish between write and read
operations’ behavior. A write operation, instead of acquiring the locks on the
involved nodes instantaneously after the traversal, it acquires the same locks,
but at transaction commit time. Since the transaction is validated after the
locks acquisition using the same validation done by the lazy set, the lineariza-
tion points of each write operation is just shifted to the commit phase of the
transaction (rather than after the operation as in the lazy set). We cannot use
the same arguments for defining the linearization point of the read operations in
our OTB-Set. In fact, in lazy set, a contains operation is wait-free, which im-
plies that its linearization point is when the curr node is checked4. In OTB-Set,
where contains operations are no longer wait-free, this point is replaced with
the point when each operation is re-validated during the transaction commit.

B) Opacity: Considering the transaction as a whole, the combination of lazy
writes, post-validation, and commit-time-validation is sufficient for guarantee-
ing opacity. In fact, this is the same approach used at memory level in many
lazy STM algorithms such as NOrec [5] to enforce opacity. Specifically, all op-
erations are linearized at the transaction’s commit time and after acquiring all
the semantic locks. This allows the committed transactions to appear as hap-
pened at a single indivisible point in time. Aborted transactions do not expose
any write to other transactions, because, in general, transactions never write
in the shared set unless they are sure that they will not eventually abort. Live
transactions (whether they will eventually commit or abort) never observe an
inconsistent state because they validate their entire read-set after each read (in
the post-validation routine) and during the transaction commit (in the commit-
time validation routine). Finally, the effect of interfering operations of the same
transaction is preserved leveraging the points G2.1 and G2.4 of OTB guidelines.

4 In some exceptional cases, discussed in [13], the linearization point of the unsuccessful
contains operation becomes earlier. However, those special cases are not relevant
when we discuss the correctness of our OTB-Set.

On Developing Optimistic Transactional Lazy Set 449

The optimizations described in Section 3.3 do not break opacity simply be-
cause they do not contradict with any of the previously mentioned evidences. It
is also straightforward to prove that composing the operations on two different
OTB-Set instances does not break the opacity of the transaction as a whole.
This is because each read/write-set entry will be validated and/or published
independently.

5 Experimental Evaluation

In this section we evaluate the performance of our OTB-Set’s Java implemen-
tation equipped with the optimizations described in Section 3.3. We compared
it with lazy set [13] and PTB set [14]. In order to conduct a fair comparison,
the percentage of the writes in all of the experiments is the percentage of the
successful ones, because an unsuccessful add/remove operation is considered as
a read operation. Roughly speaking, in order to achieve that, the range of ele-
ments is made large enough to ensure that most add operations are successful.
Also, each remove operation takes an item added by previous transactions as a
parameter, such that it will probably succeed. In each experiment, the number
of add and remove operations are kept equal to avoid significant fluctuations of
the data structure size during the experiments.

The experiments were conducted on a 64-core machine, which has four AMD
Opteron (TM) Processors, each with 16 cores running at 1400 MHz, 32 GB of
memory, and 16KB L1 data cache. Threads start execution with a warm up
phase of 2 seconds, followed by an execution of 5 seconds, during which the
throughput is measured. Each plotted data-point is the average of five runs.

We use transactional throughput as our key performance indicator. Although
abort rate is another important parameter to measure and analyze, it is mean-
ingless in our case. Both lazy set and PTB set do not explicitly abort the trans-
action. However, there is an internal retry for each operation if validation fails.
Additionally, PTB aborts only if it fails to acquire the semantic locks, which is
less frequent than validation failures in the OTB-Set. We recall that the lazy set
is not capable to run transactions at all (i.e., it is a concurrent data structure,
not transactional). We only show it as a rough upper bound for the OTB-Set
and PTB, but it actually does not support transactional operations.

We first show the results for a linked-list implementation of the set. In this
experiments, we used a linked-list with 512 nodes. In order to conduct a com-
prehensive evaluation of OTB-Set’s performance, in the first row of Figure 2 we
show the results for four different linked-list workloads: read-only (0% writes
and 1 operation per transaction), read-intensive (20% writes and 1 operation
per transaction), write-intensive (80% writes and 1 operation per transaction),
and high contention (80% writes and 5 operations per transaction). In both
read-only and read-intensive workloads, OTB-Set performs closer to the (upper
bound) performance of the lazy list than PTB-Set. This is expected, because
PTB incurs locking overhead even for read operations. In contrast, OTB-Set,
like lazy linked-list, does not acquire locks on read operations, although it still

450 A. Hassan, R. Palmieri, and B. Ravindran

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

m
ill

io
n

tr
an

s/
se

c)

Number of threads

Lazy
PessimisticBoosted

OptimisticBoosted

(a) LL 0%

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

m
ill

io
n

tr
an

s/
se

c)

Number of threads

Lazy
PessimisticBoosted

OptimisticBoosted

(b) LL 20%

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

m
ill

io
n

tr
an

s/
se

c)

Number of threads

Lazy
PessimisticBoosted

OptimisticBoosted

(c) LL 80%

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

m
ill

io
n

tr
an

s/
se

c)

Number of threads

Lazy
PessimisticBoosted

OptimisticBoosted

(d) LL 80% and 5 ops

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

m
ill

io
n

tr
an

s/
se

c)

Number of threads

Lazy
PessimisticBoosted

OptimisticBoosted

(e) SL 0%

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

m
ill

io
n

tr
an

s/
se

c)

Number of threads

Lazy
PessimisticBoosted

OptimisticBoosted

(f) SL 20%

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

m
ill

io
n

tr
an

s/
se

c)

Number of threads

Lazy
PessimisticBoosted

OptimisticBoosted

(g) SL 80%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

m
ill

io
n

tr
an

s/
se

c)

Number of threads

Lazy
PessimisticBoosted

OptimisticBoosted

(h) SL 80% and 5 ops

Fig. 2. Throughput of linked-list-based (LL) and skip-list-based (SL) set with 512
elements (labels indicate % write transactions). Four different workloads: read-only (0%
writes), read-intensive (20% writes), write-intensive (80% writes), and high contention
(80% writes and 5 operations per transaction).

has a small overhead for validating the read-set. For the write-intensive work-
load, PTB starts to be slightly better than OTB-Set, and the gap increases in
high contention workloads. This is also expected, because contention becomes
very high, which increases abort rate (recall that aborts have high overhead due
to re-traversing the list in linear time). In these high/very high contention sce-
narios, the “pessimism” of PTB pays off more than the “optimism” of OTB-Set.
For example, in the high contention scenario, five operations are executed per
transaction. In PTB, each operation (pessimistically) locks its semantic items
before executing each operation and then it keeps trying to execute the opera-
tion on the underlying (black-box) concurrent data structure. On the other hand,
OTB suffers from aborting the whole transaction even if the last operation of
the transaction fails.

In the second row of Figure 2, the same results are shown for the skip-list-
based set of the same size (512 nodes). The results show that OTB-Set performs
better in all cases, including the high contention case. This confirms that OTB-
Set gains because of the reduced overhead of aborts. Although the semantic
contention is almost the same (for a set with 512 nodes, contention is relatively
high), using a skip-list instead of a linked-list supports OTB-Set more than PTB.
This is mainly because skip-list traverses less nodes of the set through the higher
levels of the skip-list. Thus, even if the whole transaction aborts, re-executing
skip-list operations is less costly than linked-list.

The last set of experiments (Figure 3), shows the performance when the con-
tention is significantly lower. We used a skip-list of size 64K and measured
throughput for the same four workloads. The results show that in such cases,
which however are still practical, OTB-Set is up to 2× better, even in

On Developing Optimistic Transactional Lazy Set 451

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

m
ill

io
n

tr
an

s/
se

c)

Number of threads

Lazy
PessimisticBoosted

OptimisticBoosted

(a) SL 0%

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

m
ill

io
n

tr
an

s/
se

c)

Number of threads

Lazy
PessimisticBoosted

OptimisticBoosted

(b) SL 20%

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

m
ill

io
n

tr
an

s/
se

c)

Number of threads

Lazy
PessimisticBoosted

OptimisticBoosted

(c) SL 80%

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

m
ill

io
n

tr
an

s/
se

c)

Number of threads

Lazy
PessimisticBoosted

OptimisticBoosted

(d) SL 80% and 5 ops

Fig. 3. Throughput of skip-list-based set with 64K elements (labels indicate % write
transactions). Four different workloads: read-only (0% writes), read-intensive (20%
writes), write-intensive (80% writes), and high-contention (80% writes and 5 operations
per transaction).

write-intensive and high contention workloads. This is mainly because in the very
low contention scenario, the PTB’s eager locking mechanism becomes ineffective
and a more optimistic algorithm, such as OTB-Set, is preferable.

6 Conclusions

In this paper we provided a detailed design and implementation of a trans-
actional optimistic set data structure (OTB-Set). We presented two versions
of OTB-Set: one “non-optimized”, derived from the implementation of general
guidelines; and one “optimized”, which aims at further enhancing the perfor-
mance. We also proved the correctness of the designed set and showed that
OTB-Set operations guarantee opacity. Our evaluation revealed that the per-
formance of OTB-Set is closer to highly concurrent (non-transactional) lazy set
than the original transactional boosting version in most of the cases.

Acknowledgments. This work is supported in part by US National Science
Foundation under grant CNS-1116190.

References

1. Afek, Y., Avni, H., Shavit, N.: Towards consistency oblivious programming. In:
Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109,
pp. 65–79. Springer, Heidelberg (2011)

2. Avni, H., Kuszmaul, B.C.: Improving htm scaling with consistency-oblivious pro-
gramming. In: TRANSACT (2014)

3. Bronson, N.G., Casper, J., Chafi, H., Olukotun, K.: Transactional predication:
High-performance concurrent sets and maps for stm. In: PODC, pp. 6–15 (2010)

4. Carlstrom, B.D., McDonald, A., Carbin, M., Kozyrakis, C., Olukotun, K.: Trans-
actional collection classes. In: PPOPP, pp. 56–67 (2007)

5. Dalessandro, L., Spear, M.F., Scott, M.L.: NOrec: streamlining STM by abolishing
ownership records. In: PPOPP, pp. 67–78 (2010)

6. Dice, D., Shalev, O., Shavit, N.N.: Transactional locking II. In: Dolev, S. (ed.)
DISC 2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

452 A. Hassan, R. Palmieri, and B. Ravindran

7. Diegues, N.L., Romano, P.: Time-warp: Lightweight abort minimization in trans-
actional memory. In: PPoPP, pp. 167–178 (2014)

8. Felber, P., Gramoli, V., Guerraoui, R.: Elastic transactions. In: Keidar, I. (ed.)
DISC 2009. LNCS, vol. 5805, pp. 93–107. Springer, Heidelberg (2009)

9. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In:
PPOPP, pp. 175–184 (2008)

10. Hassan, A., Palmieri, R., Ravindran, B.: Integrating transactionally boosted data
structures with stm frameworks: A case study on set. In: TRANSACT (2014)

11. Hassan, A., Palmieri, R., Ravindran, B.: Optimistic transactional boosting. In:
PPOPP, pp. 387–388 (2014)

12. Hassan, A., Palmieri, R., Ravindran, B.: Remote invalidation: Optimizing the crit-
ical path of memory transactions. In: IPDPS, pp. 187–197 (2014)

13. Heller, S., Herlihy, M.P., Luchangco, V., Moir, M., Scherer III, W.N., Shavit,
N.N.: A lazy concurrent list-based set algorithm. In: Anderson, J.H., Prencipe, G.,
Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 3–16. Springer, Hei-
delberg (2006)

14. Herlihy, M., Koskinen, E.: Transactional boosting: A methodology for highly-
concurrent transactional objects. In: PPOPP, pp. 207–216 (2008)

15. Herlihy, M., Luchangco, V., Moir, M., Scherer III., W.N.: Software transactional
memory for dynamic-sized data structures. In: PODC, pp. 92–101 (2003)

16. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming, Revised Reprint.
Elsevier (2012)

17. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concur-
rent objects. ACM Transactions on Programming Languages and Systems 12(3),
463–492 (1990)

18. Ni, Y., Menon, V., Adl-Tabatabai, A.-R., Hosking, A.L., Hudson, R.L., Moss,
J.E.B., Saha, B., Shpeisman, T.: Open nesting in software transactional memory.
In: PPOPP, pp. 68–78 (2007)

19. Riegel, T., Felber, P., Fetzer, C.: A lazy snapshot algorithm with eager validation.
In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 284–298. Springer, Heidelberg
(2006)

20. Shavit, N., Touitou, D.: Software transactional memory. Distributed Comput-
ing 10(2), 99–116 (1997)

21. Xiang, L., Scott, M.L.: Composable partitioned transactions. In: WTTM (2013)

On the Mailbox Problem�

Uri Abraham and Gal Amram

Ben-Gurion University, Beer-Sheva, Israel
{abraham,galamra}@cs.bgu.ac.il

Abstract. The Mailbox Problem was described and solved by Aguilera, Gafni,
and Lamport in [2] with a mailbox algorithm that uses two flag registers that carry
14 values each. An interesting question that they ask is whether leaner solutions
exists. In addition to their algorithm, the authors of [2] proved that the mailbox
problem cannot be solved with 1 bit flags. In this paper, we show that 2 bit flags
suffice by presenting a mailbox algorithm with two bit flags. The space complex-
ity of Aguilera et al. solution is O(n log n) and they conjectured that a solution
with space complexity O(log n) exists. Our algorithm proves this conjecture. We
also prove that there is no mailbox algorithm with a smaller space complexity.

Keywords: distributed algorithms, shared memory, synchronization, linearizabil-
ity.

1 Introduction: The Mailbox Problem

The Mailbox Problem is a theoretical synchronization problem that arises from ana-
lyzing the situation in which a processor must cater to occasional requests from some
device. The problem, as presented (and solved) in [2] requires the implementation of
three operations: deliver, check, and remove. The device executes a deliver operation
whenever it wants to get the processor’s attention, and the processor executes from time
to time check operations to find out if there are any unhandled device requests. After
receiving a positive answer for its check operation the processor executes a remove op-
eration to find-out the nature of the request and to clear the interrupt controller. In a
serial execution, it is required that a check operation C returns a positive answer if and
only if the number of deliver occurrences that precede C is strictly greater than the
number of remove operations executed before C. The Mailbox Problem is to design a
deliver/check/remove algorithm in which the check operation is as efficient as possible,
namely that it employs bounded registers (called “flags”) that are as small as possible.

In [2] the problem is presented first informally by means of a story about a postman
(which is the device) and a home owner (the processor) in which the postman delivers
its letters, and the owner removes them one by one every time she approaches the mail-
box. The problem is to find an algorithm that ensures that the home owner approaches
her mailbox if and only if it is nonempty. The check function returns a boolean value
which tells the home-owner whether the mailbox is nonempty, and she approaches her

� Research partially supported by the Frankel Center for Computer Science at Ben-Gurion Uni-
versity.

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 453–468, 2014.
c© Springer International Publishing Switzerland 2014

454 U. Abraham and G. Amram

mailbox only after receiving a “nonempty” response. As noted in [2], depending on
the assumptions made on the communication between the device and the processor, the
mailbox problem can be extremely easy or surprisingly difficult. For example, a simple
algorithm is suggested in [2] in which the postman and home-owner employ a flag at
the mailbox. The postman can atomically (in a single step) deliver mail to the box and
raise the flag, and the owner atomically removes mail from the box and lowers the flag.
The mailbox problem becomes highly non-trivial when limitations are imposed on the
communication devices. Specifically, Aguilera et al. require in [2], for efficiency rea-
sons, that the mailbox solutions use only the simplest possible means, and the check
operation (which is possibly invoked at higher frequency) should access only bounded
registers. As formulated in [2], the mailbox problem asks for solutions that satisfy the
following requirements.

1. Only registers with read/write actions can be employed.
2. Whereas the deliver and remove operations are allowed unbounded registers, the

home-owner can only read bounded value registers in check operation executions.
The point of this requirement, as explained in [2], is to make the check operation of
the homeowner as light as possible.

3. Moreover, in her check operations the home-owner cannot use persistent local vari-
ables, that is variables that retain their values from one invocation of the operation
to the following one (see the note at the end of this section).

4. The algorithms for the three operations (deliver, check, and remove) are bounded
wait-free.

A solution is presented in [2] in which each of the two processes uses unbounded
and bounded registers and the check operation decides on the value to return by reading
only bounded registers (which are called ‘flags’). The algorithm of [2] needs 14 values
in each of the two flag registers, and a question is posed there if leaner solutions exist.
Moreover, [2] contains a proof that there is no solution to the mailbox problem with
single bit flags. In this article we describe a mailbox algorithm in which the flag registers
of the postman and the home owner carry 4 values in each of the flag registers; that is,
the mailbox problem can be solved with 2-bit registers. Furthermore, while the space
complexity of the solution in [2] is O(n log n) (where n is the number of operation
executions), the space complexity of our algorithm is O(log n). We also prove that
there is no solution with space complexity f(n) ∈ o(logn) thus, under the problem
constrains, our algorithm is optimal.

The safety property of the mailbox algorithm is expressed in [2] by first stating its
sequential specification, and then requiring that a linearization exists which satisfies this
sequential specification. This is the well-known approach to linearizability as defined
by Herlihy and Wing in [5]. The following is the formulation in [2] for the sequential
specification:

If the homeowner and postman never execute concurrently, then the value re-
turned by an execution of check is true if and only if there are more deliver
than remove executions before this execution of check.

The specifications of a sequential (linear) mailbox are given by reference to a total
ordering ≺ of the events. (≺ is a total ordering of a set if it is a transitive and irreflexive
relation so that for any two members a and b of the set a ≺ b or b ≺ a.)

On the Mailbox Problem 455

Definition 1. Sequential mailbox specification:

1. The events are partitioned into deliver, check, and remove events, and are totally
ordered by ≺. Every event is preceded by a finite number of events in this ordering.
(The deliver events form the postman process, and the check and remove events
form the home-owner process.) For every n = 1, 2, . . . , if the n-th deliver event
exists it denotedDn.

2. For every check event C, the value that C returns, Val(C), is in {true, false}. If
Val(C) = true then the first home-owner event after C is a remove event. For every
remove event R there is a check event C such that Val(C) = true, C ≺ R and R is
the first home-owner event after C.

3. For every check event C let the removal number, removal num(C), be the number
of remove events R with R ≺ C. And let deliver num(C) be the number of deliver
eventsD such thatD ≺ C. Then for every check event C,

Val(C) = “removal num(C) < deliver num(C)”, (1)

that is to say the boolean value of C is true iff the number of deliver events that
precede C exceeds the number of letters that were removed by remove events that
precede C.

As for the liveness requirements, [2] requires that the algorithm is bounded wait-free,
which means (see [6] under the term loop-free, or [4]) that each operation completes
before the process executing it has taken k steps, for some fixed constant k.

For communication, the Mailbox Problem as formulated in [2] requires atomic single-
writer registers, but we prefer to present our algorithm with serial registers. Clearly, this
simplifying assumption does not limit the applicability of our algorithm which works
as well with atomic registers.

Definition 2. For any serial register R we define a function μ over the read actions of
register R, such that for any read r, μ(r) is the last write action on R that precedes r.
That is, μ(r) < r and there is no write action w on R with μ(r) < w < r.

Then seriality of the register means that the read/write actions are linearly ordered and
that r and μ(r) have the same value: Val(r) = Val(μ(r)), where V al(e) for a read/write
action e, is the value that has been written/read at the action e. (To ensure that μ(r) is
defined on all read actions, we have to assume an initial write event that precedes all
read events.) Since the registers are serial it follows that if r1 < r2 are read actions of
R then μ(r1) ≤ μ(r2).

An additional “access restriction” is made in [2] for efficiency’s sake which requires
that the check operation uses no persistent private variables. Namely, the owner’s deci-
sion on whether to approach the mailbox or not should depend just on her readings of
the flag values and not on any internal information sustained from some previous oper-
ation. One may argue that a small persistent variable would not harm the efficiency of
the check operations. We do not argue otherwise, but we chose to accept all limitations
as defined by the authors of [2], so our algorithm uses no persistent local variables in its
check procedure. However, as we prove here, even if local variables are allowed during
a check operation, the space complexity of our solution cannot be improved.

456 U. Abraham and G. Amram

1.1 A Condition Equivalent to Linearizability

In simple cases, linearizability can be obtained by identifying in each operation execu-
tion a lower-level action (the linearization point of that operation execution) such that
the operations “appear to take effect” instantaneously at these linearization points. In
more complex cases no such fixed linearization actions exist, and in some cases the
linearization point of an operation X can be found in some other operation execution
Y that is concurrent with X (and belongs to a different process). The queue algorithm
with which Herlihy and Wing present linearizability in [5] is an example of such a more
complex algorithm, as is the mailbox algorithm that we present here. Our experience
shows that in these complex cases a more natural proof of linearization can be obtained
by finding an abstract intermediary property that implies linearizability, and then prov-
ing that any execution of the algorithm satisfies this intermediary property. In the case of
the mailbox algorithm, we present a property that is in fact equivalent to linearizability
of executions of mailbox algorithms.

As we have said, the two processes communicate by reading and writing serial reg-
isters, and we assume a linear ordering < on all lower-level actions. Any operation
execution consists of a set of lower-level actions, and so < induces a partial ordering
(still denoted<) on the operation executions:A < B for operation executionsA andB
if, for every actions a in A and b in B, a < b holds. Linearization as defined by [5] is
the requirement that the partial ordering< on the operation executions can be extended
to a linear ordering ≺ that satisfies the linear mailbox specifications defined above in 1.

Let τ be an execution of a mailbox algorithm A. Since the postman process is serial,
we can enumerate the deliver operations of τ in increasing order D1 < D2 · · · , and
likewise the remove operations can be enumerated R1 < R2 · · · . We do not claim that
Di or Ri exist for every i, but in case the i-th deliver (remove) operation exists then it
is denotedDi (Ri). If C is any check event, then removal num(C) denotes the number
of remove events that precede C in the ordering < (which is a linear ordering on the
deliver operation executions). Thus, for every i > 0, removal num(C) = i iff Ri is the
last remove event that precedes C.

If C is a check event, we say that C is positive if C returns true and otherwise, C is
said to be negative. Now we can present our intermediary properties.

Theorem 3. Let A be a mailbox algorithm and let τ be an execution of A. τ is lin-
earizable iff for every check operation such that removal num(C) = k the following
hold:

P1. If C is positive thenDk+1 exists and ¬(C < Dk+1).
P2. If C is negative, if Dk+1 exists then ¬(Dk+1 < C).

We leave for the reader the straightforward proof for the “only if” direction of the
theorem, and we focus on proving that the properties P1 and P2 imply linearizability.
We fix an execution τ of a mailbox algorithm A that satisfies the two properties P1 and
P2, and we shall prove that τ is linearizable. The proof is in three steps. First we define
a relation 	 on some of the check and deliver events, and then we prove that the union
< ∪ 	 of the precedence relation < with 	 has no cycles, and finally we note that any
extension of this union into a linear ordering satisfies the linear mailbox specification
given in definition 1.

On the Mailbox Problem 457

	 is defined as the union of the following two sets of ordered pairs:

1. S1 = {〈C,Dk+1〉 : C is a negative check event, rn(C) = k andDk+1 exists},
2. S2 = {〈Dk+1, C〉 : C is a positive check event, and rn(C) = k}.

Any relation is a set of ordered pairs, and hence the union < ∪ 	 is meaningful. A
cycle of length n > 0 in a binary relation R, is a sequence

(X0, . . . , Xn)

so that XiRXi+1 for each i < n and X0 = Xn. A binary relation R can be extended
to linear order iff it admits no cycles.

We leave for the reader to prove that the following hold:

1. IfX 	 Y , then ¬(Y < X).
2. IfX 	 Y 	 Z , thenX < Z .
3. IfX < Y 	 Z < W , thenX < W .
4. IfX < Y 	 Z orX 	 Y < Z , thenX �= Z .
5. There are no cycles in < ∪ 	 of length 1 or 2.

We conclude:

Lemma 4. There are no cycles in < ∪ 	.

Proof. Assume for a contradiction that our lemma is false and consider a cycle of min-
imal length,

(X0, X1, . . . , Xn).

By the minimality of n, since< is transitive and by item 2, there are no two consecutive
occurrences of< and no two consecutive occurrences of 	. Therefore, we may assume
w.l.o.g. that the sequence is of the form

X0 < X1 	X2 < . . .Xn−1 	Xn = X0.

Now, by the item 5, n ≥ 3. Therefore, there is a prefix of the sequence of the form
X0 < X1 	X2 < X3. Hence, by item 3, X0 < X3 in contradiction to the minimality
of n. ��

As< ∪ 	 is an acyclic relation, it can be extended to a linear ordering. For complet-
ing the proof of theorem 3, we leave for the reader to verify that if ≺ is a linear ordering
that extends< ∪ 	, then ≺ satisfies the sequential specification of the mailbox object.

2 The 4/4 Mailbox Algorithm

In this section we define in Fig. 1 a mailbox algorithm with only two-bit flag registers:
FP and FH . The postman process has three registers: D num, TP and FP . D num is
of type N, TP is of type {0, 1, 2} and FP stores values from the set {0, 1, 2, “stop”}.
The home-owner’s registers are R num, TH and FH . R num is of type N, TH is of type
{0, 1, 2} and FH stores values from {0, 1, 2, “go”}. The initial value of FP is “stop”,
and of all other registers is 0.

458 U. Abraham and G. Amram

In addition to the registers, we have the FIFO queue Q which supports two opera-
tions: addition of a letter (executed by the postman process), and removal of a letter
(executed by the home-owner whenQ is nonempty)1. Q is initially empty.

deliver (letter):

1 add letter to Q; // enq
2 dn := dn + 1;

D num := dn; // w1
3 t := TH ; // r1
4 TP := t+ 1 mod 3; // w2
5 rn := R num; // r2
6 if rn < dn then

FP := t+ 1 mod 3
else FP := “stop”; // w3

check():

1 fh := FH ; // r1
if fh = “go” return true;

2 fp := FP ; // r2
3 return “fp = fh + 1 mod 3”;

remove():

1 remove one letter from Q; // deq
2 rn := rn + 1 ;

R num := rn; // w1
3 t := TP ; // r1
4 TH := t; // w2
5 dn := D num ; // r2
6 if rn < dn FH := “go”

else FH := t; // w3

Fig. 1. The 4/4 Mailbox Algorithm. Variables dn and rn are initially 0.

Each instruction line in the pseudocode of Fig. 1 is followed by the name of that
instruction. So, for example, an execution of line 1 of the deliver operation is an enq
action.

A deliver operation execution D is an execution of lines 1–6 of that code. It is a
high-level event, namely a set of lower-level actions which are the executions of the
code instructions. Variable dn (the delivery number) is initially 0, so that ifD is the i’th
deliver operation execution (i = 1, 2, . . .) and dn(D) denotes the value of dn after line
2 is executed inD, then dn(D) = i. Register D num thus contains the current delivery
number.

We shall use this sort of notation, dn(D), for other variables as well. We note that
in our algorithms any local variable is assigned a value in a unique instruction. So if
v is a local variable and E some operation execution that assigns a value to v, then
the notation v(E) for that value that E assigns to v is meaningful and well defined.
Likewise, if G is any register such that E contains a write into G then we denote with
G(E) the value of that write.

In line 3, register TH is read into variable t and then t + 1 (mod 3) is written onto
register TP . We refer to the values that TP writes as “colors”. So, the postman is al-
ways changing the color obtained from the home-owner process, while the home-owner
always copies the value obtained (see lines 3 and 4 in the remove code).

1 As there is a unique process that enqueue elements into Q and a unique process that dequeue
elements, it is not difficult to see that Q can be implemented with single-writer atomic registers.

On the Mailbox Problem 459

There are two sorts of check operations. A “short” check C is one that returns true
immediately after line 1 is executed. In this line, the home-owner process reads her
own register FH and returns true if that register’s value is “go”. Note that line 1 is the
only place in the algorithm where this flag is read, and hence FH is dispensable and
a local home-owner variable could replace it. The access restriction however prohibits
persistent variables, and hence the need for this register which does nothing more than
replacing a persistent local variable. In a “long” check operation C, the read of register
FH returns a value in {0, 1, 2}. Then C contains a read of FP , and then C returns the
truth value of fp = fh + 1 (mod 3). If fp is “stop”, then this equation cannot hold
(as “stop” is not a number) and C returns false in this case.

A remove operation execution removes a letter from the queue, updates its removal
number variable rn, and writes the new value on register R num (line 2). Since the
initial value of rn is 0, the value of R num is the number of letters so far removed.
In lines 3 and 4 the operation copies the value of TP onto TH , and in line 5 the value
of D num is read into variable dn. Then in line 6 the value of flag FH is decided: if
condition rn < dn holds then the operation is positive and the value of the flag is “go”;
otherwise the operation is negative and the value of the flag is t, which is also the value
of register TH .

There are two ways in which a check operation returns a positive answer, and their
subtle combination is the essence of the algorithm. The first idea is that if during an
execution of a remove event, the home-owner finds (in line 6) that condition rn < dn
holds (line 6), then surely there are some letters waiting to be removed from the queue
and any additional actions by the postman can only increase their number. Thus, in this
case home-owner writes “go” to FP (line 6) and correspondingly, the following check
event checks this value and returns true (line 1). A check event C that returns after
executing line 1 solely, is named a “short” check event.

For the second idea, we want to consider the situation in which the deliver/check/re-
move operations are linearly ordered. That is, there is no interleaving and if A and B
are any two operation executions then A < B or B < A. Note that if C is any check
operation that precedes all deliver operations then it must be negative, because the initial
value of FH is 0 (so it is not “go”) and when C reads FP it find the value “stop”. LetD
be the first deliver operation, thenD writes 1 on FP in executing line 6, and if C is any
subsequent check operation that reads this value then (since the initial value of FH is 0)
condition fp = fh+ 1 holds and so C is positive. The interplay with registers TP and
TH , in which the home-owner tries to copy the value found in the postman’s register
and the postman tries to have a newer value, is the second idea of the algorithm. If the
home-owner sees a newer value at the FP register then she is lead to believe that a new
letter is waiting for her at the mailbox.

The reader may notice that if we assume seriality of the operation executions, then
there is no need for the value “stop” at registerFP and the postman process may write to
FP , t+ 1 (mod 3) while executing line 6 regardless of the value it read from R num.
We show that when operations may be executed concurrently, the value “stop” is re-
quired. For verifying this, we assume that postman writes to FP , t+ 1 (mod 3) while
executing line 6 and we consider the following interleaved scenario of the linear oper-
ations algorithm. The first deliver operation D1 writes 1 on D num and 1 on TP and

460 U. Abraham and G. Amram

FP , and is followed by a positive check operation C1. Then a second deliver operation
D2 begins, executes the write w1(D2) (writes 2 on D num) and stops for awhile. Now
a remove operation R1 is prompted by the positive C1, it reads the value 2 in D num,
and writes “go” on FH . The ensuing check operation C2 is short and positive. Then
a remove operation R2 removes the message of D2 and completes: it reads 1 in TP
and writes 1 on TH and FH . We let now D2 complete its operation: it reads 1 in TH
and writes 2 on TP and FP . The queue is now empty since the two messages were re-
moved, and yet a check operation C3 is positive now because it reads 1 in FH and 2 in
FP . Note that a corresponding scenario is not a problem for our mailbox algorithm of
Fig. 1, because in the described scenario, D2 writes “stop” to FP and correspondingly
C3 returns false after reading “stop” from FP .

This explains the need for the “stop” value of the FP register, but what about the
three values of registers TP and TH , wouldn’t two values suffice? Consider the variant
of our algorithm in which mod 3 is replaced everywhere by mod 2. The following
scenario shows that a check operation may return the value true even though the queue
is empty. The first deliver operationD1 writes 1 on D num and 1 on TP and FP and is
followed by a positive check operationC1. Then a second deliver operationD2 begins,
executes the write w1(D2) (writes 2 on D num) and stops for awhile. Now a remove
operation R1 is prompted by the positive C1, it reads the value 2 in D num and 1 in
TP , writes 1 to TH and writes “go” on FH . The ensuing check operation C2 is short
and positive. So far we are as in the previous scenario. Now we let D2 continue with
actions r1, w2, and r2. That is, D2 stops before the last write w3. Note that the value
of r1(D2) is 1, and the value of w2(D2) is hence 0 = 1 + 1 (mod 2). Now comes
R2 the second remove operation: it reads 0 in TP , write 0 in TH , and writes 0 in FH .
Finally, a positive check operationC3 reads 0 in FH and 1 in FP (as it obtains the value
ofD1). So C3 is positive despite the fact that the two letters were removed. Note that in
the properly working algorithm of Fig. 1 this scenario is not problematic since FH(R2)
would be 2. Lemma 8 proves that in a case as described by this scenario check operation
C3 must be negative.

2.1 Correctness of the Algorithm

An action is an execution of an atomic instruction of the algorithm such as a read or a
write of a register or a queue action. Since we assume that the registers are serial, and
as the queue operations (to add or remove a letter) are also instantaneous, we have a
total ordering< on all actions. We write a < b to say that a precedes b in this ordering.

An operation execution is an execution of the deliver, check, or remove algorithm.
Every operation execution is a high-level event, namely a set of lower-level actions
(also called lower-level events in [7]). The total ordering < on the lower-level actions
induces a partial ordering on the operation executions: for operation executions A and
B we define that A < B if a < b for every a ∈ A and b ∈ B. It is also very convenient
to relate high-level events and lower-level actions:A < x for a high-level eventA and a
lower-level event x means that a < x for every a in A. And similarly x < A is defined
when x < a for every a in A. The fact that we use the same symbol < to denote both
the total ordering relation on the actions and the resulting partial ordering relation on
the high-level events should not be a source of confusion.

On the Mailbox Problem 461

The aim of the correctness proof is to define a total ordering ≺ on the operation
executions that extends the partial ordering<, and then to prove that properties P1 and
P2 of Theorem 3 hold.

We assume two initial high-level events Ip and Ih by the postman and home-owner
processes that determine the initial values of the registers and the initial values of the
variables. These events precede all other high level events.

If a is any read/write action, then [a] denotes that high level event to which a belongs.
(Every low level action belongs to some operation execution, except for the assumed
initial write actions which belong to the initial events Ih and Ip.)

The names of the read/write instructions appear in Fig. 1. If X is any operation
execution and s a name of an instruction that X executes, then s(X) denotes the cor-
responding action. That is, the execution of s in X . For example, if R is a remove
operation, then r2(R) is the read of register D num in R.

IfD1 < D2 are two postman operations (D1 is possibly the initial Ip event) thenD2

is said to be the immediate successor ofD1 if there is no postman operationE such that
D1 < E < D2. Similarly if R1 < R2 are two remove operations (orR1 is the initial Ih
event) then R2 is an immediate successor of R1 if there is no remove operation R such
that R1 < R < R2.

It is convenient to define the “color” of operations. If E is a deliver or a remove
operation then color(E) is the value of the write action w2(E). Thus, if D is a deliver
operation, then color(D) = TP (D) (which is that value c = 0, 1, 2 that is written
into register TP when line 4 is executed in D) and if R is a remove operation then
color(R) = TH(R) (which is also the value read from register TP). The color of the
initial events is 0.

The deliver and remove operations play some kind of ping-pong game with the values
of registers TH and TP . The home-owner wants that these registers have the same value,
but the postman wants that its register TH is ahead of the home-owner’s register by 1
mod 3. As a result we have the following lemma.

Lemma 5. IfD2 is an immediate deliver successor ofD1 then color(D2) = color(D1)
or else color(D2) = color(D1) + 1 (mod 3). Similarly, if R2 is an immediate remove
successor ofR1, then either color(R2) = color(R1) or else color(R2) = color(R1)+
1 (mod 3).

Proof. Suppose that the lemma does not hold and there are two operations X1 < X2

such that eitherX2 is the immediate deliver successor ofX1 or elseX2 is the immediate
remove successor of X1, but color(X2) = color(X1) + 2 (mod 3). Since the write
actions on the registers are assumed to be linearly ordered (and every action has only
a finite number of actions that precede it) there is a minimal counterexample X2 to
the lemma, minimal in the sense that there is no counterexample X ′

1 < X ′
2 such that

w2(X ′
2) < w2(X2).

Case 1: the minimal counterexampleX1 < X2 is a pair of deliver operationsD1 <
D2. The proof for this case is accompanied by Fig. 2.1 that illustrates our arguments.
In this figure there is an arrow from a deliver eventX into a remove event Y if postman
reads from TH in X the value that was written to TH in Y (i.e. Y = [μ(r1(X))]), and
there is an arrow from a remove eventX to a deliver event Y if home-owner reads from
TP in X the value that was written to TP in Y (i.e. Y = [μ(r1(X))]).

462 U. Abraham and G. Amram

postman:
D′

color = a+ 1

[v] = D

color = a ∨ a− 1

D1

color = a

D2

color = a+ 2

home-owner:
[u] = R′

color = a− 1

R

color = a+ 1

��

�

Fig. 2. A minimal counter example

Say a is the color of D1 and a + 2 (mod 3) is the color of D2. Since the deliver
operation add 1 (mod 3) to the value read in TH , a = t(D1) + 1 (mod 3), and
likewise a+ 2 = t(D2)+ 1 (mod 3). So t(D1) = a− 1 (mod 3), and t(D2) = a+1
(mod 3). Hence t(D1) �= t(D2), and this already implies that the read r1(D2) did
not obtain the initial value of register TH . Hence w = μ(r1(D2)), the corresponding
write action on TH is not the initial write. Thus there is a remove operationR such that
w = w2(R) is the write of value a+ 1 (mod 3) that t(D2) obtains. The read r1(R) of
register TP in R has the same value as that of w, namely a+ 1 (mod 3). This implies
that it is not the case that w2(D1) < r1(R), and thus r1(R) < w2(D1) (which implies
that D1 is not the initial event). Let v be the last write on TP that precedes D1. By
minimality of the pairD1 < D2, the pair [v] < D1 is not in contradiction to the lemma
and hence the value of v is a or a− 1 (mod 3). This implies that r1(R) < v (because
the value of r1(R) is a + 1 (mod 3)). Since v < r1(D1), r1(R) < r1(D1), and so
r1(D1) obtains the value of u, the last write on TH that is before R. So the value of u
is a− 1 (mod 3), and the pair [u] < R is also a contradiction to the lemma. But this is
impossible by the minimality ofD2.

Case 2: the minimal counterexample is a pair of remove operations R1 < R2. This
is argued in a similar vein. ��

We say that a check operation C is “positive” in case it returns the value true, and
it is “negative” when it returns false. If E is a deliver or a remove operation execution
then E is “positive” when condition rn < dn holds when line 6 is executed (and E
is “negative” otherwise). Equivalently, a deliver operation is negative when it writes
“stop” on FP , and a remove operation is positive when it writes “go” on FH .

For any remove operation R, rn(R) is the value of variable rn that is determined
in executing line 2 and is written on register R num. We also set rn(Ih) = 0 (and the
initial value of variable rn is 0).

On the Mailbox Problem 463

rn(R) is called the “removal number”; it is the number of remove operations R′

such that R′ ≤ R. Clearly, if R1 < R2 < · · · is the sequence of remove operations in
increasing order, then rn(Ri) = i.

The check code does not contain a variable named rn, and so the number rn(C) =
removal num(C) for a check operation executionC is defined directly as the number of
remove operationsR such that R < C.

Likewise, the “delivery number”, dn(D), of a deliver operation D is the value of
variable dn as determined at line 2, and is equal to the number of deliver operationsD′

such thatD′ ≤ D. Thus ifD1 < D2 < · · · is the enumeration of the deliver operations
in increasing order, then dn(Di) = i. We also define dn(Ip) = 0.

Now we define two functions, pre rem and ρ, on the check events.

Definition 6. Let C be any check operation execution. Define pre rem(C) as the last
remove operation execution R such that R < C if there is such a remove operation,
and pre rem(C) = Ih is the assumed initial home-owner event otherwise.

We note that a short check operation is positive, and that a check operation C is short
if and only if pre rem(C) is positive (it writes “go” on FH). Since the assumed initial
value of FH is not “go”, if C is short then pre rem(C) is not the initial event– it is
necessarily a remove operation execution.

The following is a key definition in our correctness proof. It relates every check
operationC to ρ(C) which is the deliver operation (or initial Ip event) that C considers
in order to calculate which value (true or false) to return: we will prove that C is
positive iff rn(ρ(C)) < dn(ρ(C)).

Definition 7. For any check operation execution C we define ρ(C) as follows. In case
C is a short check operation let R = pre rem(C) (which is a remove operation execu-
tion as we noted) and then define ρ(C) = [μ(r2(R))]. In case C is a long operation,
define ρ(C) = [μ(r2(C))]. (Recall that r2(R) is the read of D num in R, and r2(C) is
the read of FP in C. For any read action r μ(r) is the corresponding write action, and
[μ(r)] is the operation execution that contains this write action.)

It is obvious that ¬(C < ρ(C)). We shall prove next some properties of the functions
and predicates that we have defined. These properties will then be used to prove that the
properties of theorem 3 hold.

Lemma 8. Suppose thatC is a long check operation andD = ρ(C). If S = pre rem(C)
is a remove operation such that w2(D) < r1(S), then C is negative.

Proof. Assumption D = ρ(C) implies that fp(C) = FP (D). Assume for a con-
tradiction that C is positive. So C finds that fp = fh + 1 (mod 3) holds, and hence
fp(C) is not “stop”, and this implies that D is positive (it did not write “stop” on FP)
and TP (D) = FP (D) (consider line 6 in the deliver code). Since condition fp = fh+1
(mod 3) holds in C, and as fp(C) = FP (D) and fh(C) = FH(S) = t(S), we get
that

TP (D) = FP (D) = fp(C) = t(S) + 1 (mod 3). (2)

Since w2(D) < r1(S) are a write and read actions on register TP , w2(D) ≤ μ(r1(S))
and so we have two cases.

464 U. Abraham and G. Amram

Case 1. w2(D) = μ(r1(S)). Hence Val(w2(D)) = Val(r1(S)). That is, TP (D) =
t(S), which is in contradiction to the above equation.

Case 2. w2(D) < μ(r1(S)). Then μ(r1(S)) is a write action on register TP in some
deliver operationD′ such thatD < D′ and

t(S) = TP (D′).

Hence (2) implies

TP (D) = TP (D′) + 1 (mod 3). (3)

So w2(D′) < r1(S) < r2(C), and henceD′ must be the immediate succes-
sor of D (or else we would have D < ρ(C)). But now, Lemma 5 says that
color(D′) = color(D) or else color(D′) = color(D) + 1 (mod 3), and
both cases negate (3) which says that color(D) = color(D′) + 1 (mod 3).
So C is negative.

��

Proposition 9. If C is a positive check operation and ρ(C) = D, then D is a deliver
operation execution and

rn(C) < dn(D). (4)

Proof. Assume first that C is a short check operation and letR = pre rem(C) be the
previous remove operation, which necessarily has set its register FH to “go” at line 6.
So rn(R) = rn(C), and inequality

rn(R) < dn(R) (5)

holds (see line 6 in the remove code). Let r = r2(R) be the read of register D num
which obtained the value dn(R). By definition of ρ(C) when C is short,D = ρ(C) =
[μ(r2)], and dn(D) = dn(R) follows. Since dn(R) > 0 follows from (5) and as
dn(Ip) = 0, D �= Ip is concluded and necessarily D is a deliver operation execution
and (4) follows.

Now suppose that C is a long check operation, and let r2 = r2(C) be its read of
register FP . By definition ofD = ρ(C), D = [μ(r)], and FP (D) = fp(C). Since C is
positive, it follows that “fp = fh+1 (mod 3)” holds inC, and hence fp(D) = fp(C)
is not “stop”. Hence rn < dn is evaluated to true when line 6 is executed in D. So

rn(D) < dn(D)

holds.
Define R = [μ(r2(D))]. Then rn(D) = rn(R). We shall prove that

R = pre rem(C). This will show that rn(C) = rn(R), and hence that rn(C) < dn(D)
as required. It thus remains to prove that R = pre rem(C). Note that R < C.

Suppose on the contrary that R �= pre rem(C), and then R < pre rem(C) follows.
Say S = pre rem(C). Since μ(r2(D)) is in R, r2(D) < w1(S). But w2(D) < r2(D).
Hence w2(D) < w1(S) < r1(S) and this implies by Lemma 8 that C is not positive,
which yields a contradiction. ��

On the Mailbox Problem 465

Proposition 10. IfC is a check operation andD = ρ(C) is such that rn(C) < dn(D),
then C is positive.

Proof. A short check operation is always positive, and hence we may assume that
C is long. As rn(C) < dn(D), 0 < dn(D) and D is thus a deliver operation and not
the initial event. Say R = pre rem(C) and then rn(R) = rn(C). Suppose first that
R = Ih is the initial event. So rn(C) = 0. In reading FH , C obtains the initial value 0.
So fh(C) = 0. We shall prove that fp(C) = 1, and hence that C returns true at line 3,
as required.

By definition D = ρ(C) = [μ(r2(C))], and hence D < r2(C). Now, the read of
R num inD returns the value 0 of Ih because pre rem(C) = Ih. Hence rn(D) is 0, but
dn(D) > 0 implies that “rn < dn” holds in D when line 6 is executed, and hence the
value of w3(D) is t(D) + 1 (mod 3). But t(D) = 0 because the initial value of TH is
0, and hence the value of w3(D) is 1. So fp(C) = 1.

So now we assume thatR is a remove execution. In case w1(D) < r2(R), w1(D) ≤
μ(r2(R)) follows, and hence the read of D num in R obtains the write in D or a later
write. Hence dn(D) ≤ dn(R). The fact that rn(R) = rn(C) and our assumption that
rn(C) < dn(D) imply that rn(R) < dn(R). So R is positive, it writes “go” on FH

and C is a short positive check operation.
So we may assume that r2(R) < w1(D). It follows from this assumption that

w2(R) < r1(D) < w2(D) < r2(C), and hence that w2(R) = μ(r1(D)). Say
c = color(R) (that is, by definition, the value of w2(R), which is the write in TH).
Then c is also FH(R), and hence c = fh(C). But as c is the value obtained in the read
r1(D), FP (D) = c+ 1 (mod 3), and hence fp = fh+ 1 (mod 3) holds in C, and C
is therefore positive. ��

Now we can prove the correctness of our algorithm, relaying on theorem 3.
Proof. Let D1, . . ., be the increasing order enumeration of the deliver operations.

According to Theorem 3 we have to prove the following.

Let C be a check operation and suppose that rn(C) = k. Then:
1. If C is positive thenDk+1 exists and C �< Dk+1.
2. If C is negative thenDk+1 �< C.

For the first item suppose that C is positive and rn(C) = k. Define D = ρ(C). By
Proposition 9,D is a deliver operation such that rn(C) < dn(D). That is, k < dn(D),
and hence D = Dm for some m ≥ k + 1. So Dk+1 ≤ ρ(C). Since it is not the case
that C < ρ(C), it is not the case that C < Dk+1.

Now suppose that C is negative and yet Dk+1 < C. Then Dk+1 ≤ ρ(C). That is
ρ(C) = Dm for some m ≥ k + 1. But rn(C) = k < m, and hence Proposition 10
implies that C is positive.

��

3 Space Lower Bound

Aguilera et al. [2] note that the space complexity of their mailbox solution isO(n log n)
where n is the number of deliver and remove operations, and they conjecture that there

466 U. Abraham and G. Amram

is a solution with space complexity O(log n). Clearly, our algorithm proves this con-
jecture since the n-th deliver operation writes the number n and needs no more space
than 4+ logn (taking into account 12 values for the TP and FP registers), and them-th
remove operation writes the numberm and needs no more space than 4+ logm. In this
section we prove that there is no solution to the mailbox problem with space complexity
f(n) ∈ o(log n).

Roughly speaking, this lower bound holds as the postman needs at least log(n) bits
in order to inform the home-owner that n messages where delivered. For each n > 0
we consider the scenario in which the postman process delivers n letters in a solo run,
and since the home-owner must distinguish between any two of theses scenarios, the
postman must use at least log(n) bits in any of these executions for the home-owner to
infer the number of messages that are to be removed. Note that this argument holds even
if persistent local variables are allowed during a check operation, and even if the check
operation may access unbounded registers. In fact, this result holds also if the shared
registers support operations that are stronger than read/write actions. For the reader who
wishes to see more details, we give below a detailed proof.

We consider a computation model which is much stronger than the model of
read/write shared registers. In this model each of the two processes, home-owner and
postman, has a single register, RH and RP respectively, that can hold words of any
length. Any process can in a single atomic step read the two registers, perform an inter-
nal computation and write the computed value to its register. We use standard notations
in our proof. A process is a state machine and a configuration is a tuple consisting of
the local states of the processes and the values of the shared registers. An initial con-
figuration is assumed. An execution is an interleaving sequence of configurations and
actions that starts from some initial configuration. Two configuration C and C′ are in-
distinguishable for a process P , if the local state of P is the same in both configurations
and the two shared registers store the same values in C and in C′.

Aiming for a contradiction we assume that there is a wait free algorithm A that solves
the mailbox problem, with space complexity f(n) ∈ o(log n). For each k ≥ 0, we let
τk be the execution in which the postman performs k deliver events in a solo run starting
from the initial configuration. Let wk denote the binary word that RP stores at the end
of τk. Since f(n) ∈ o(log n), it is not difficult to prove:

Lemma 11. For some two natural numbersm �= k, wm = wk.

Our lower bound can now be proved.

Theorem 12. There is no mailbox algorithm with space complexity f(n) ∈ o(logn).

Proof. Assume for a contradiction that A is a wait free mailbox algorithm with space
complexity f(n) ∈ o(log n). By lemma 11, there are some k < m so thatRP stores the
same value at the end of the executions τk and τm, executions that start from the initial
configuration. τk leads to some configuration, C1 and τm leads to some configuration
,C2. Thus, C1 and C2 differ only by the state of the postman process and hence C1

and C2 are indistinguishable for the home-owner. As a result, if we let the home-owner
process to take several steps starting from C1, and starting from C2, home-owner will
reach the same local state and will write the same values to RH .

On the Mailbox Problem 467

We consider the execution τk · σ, namely the concatenation of τk and σ, where σ
is a solo run by the home-owner in which, home-owner performs k-times check and
remove events. Note that each check operation in σ returns true as there are k letters in
the queue at the end of τk. The execution τk · σ leads to a configuration C′

1. As C1 and
C2 are indistinguishable for the home-owner process, the execution τm · σ is valid and
this execution leads to a configurationC′

2.
Now, since σ is an home-owner solo run, C′

1 and C′
2 are also indistinguishable for

the home-owner. However, if we let the home-owner execute a check operation starting
from C′

1, this operation will return false as there are no messages in the queue. On the
other hand, if we let the home-owner execute a check operation starting from C′

2, this
operation will return true since there are m − k > 0 messages in the queue at C′

2.
This of course, contradicts our conclusion that C′

1 and C′
2 are indistinguishable for the

home-owner process. ��

4 Conclusions

In [2], Aguilera, Gafni, and Lamport define the Mailbox problem, and present a solution
in which the check operation reads two registers (the “flag” registers) that can carry 14
values each. Moreover, they prove that there is no solution to the problem with two
single-bit flags. The authors of [2] asked if there is a solution with flags of smaller size
and in this paper we provide a positive answer by presenting a much simpler solution
to the Mailbox problem with two flags of two bits each.

Another problem from [2] is whether the space complexity of the mailbox algorithm
presented in that paper can be improved. The algorithm of [2] uses Θ(n logn) bits of
shared memory, where n is the number of executions of deliver and remove, and the
authors of [2] conjecture that there is a solution using logarithmic space. In addition to
the 4-valued flags, our algorithm uses two registers D num and R num of width exactly
logn bits for n procedure executions, and thus we answer this conjecture positively.

We prove in Theorem 12 that the space complexity of our algorithm is optimal. The
question about the exact size of the flag registers however remains open. As we have
mentioned, Aguilera et al. proved that there is no solution to the mailbox problem with
two valued flags, and our solution needs two flags of size 4 each. We do not know if
there is a solution with flags of size 3, or a solution in which one of the processes uses
a flag of size 3 and the other process a flag of size 4.

The Signaling Problem is another interesting question with which [2] deals. The
authors of [2] give a non-blocking solution and ask about the possibility of a bounded
wait-free solution. The ideas developed in this paper have contributed to a solution of
this wait-free Signaling Problem which was obtained by the second author [3]. These
two algorithms, the one presented here and the algorithm of [3] have some ideas in
common. However, the design of each algorithm among these two, also relay on unique
ideas that fit the exact nature of each problem. Aguilera et al. also note in [2] that
the mailbox problem can be solved by using a signaling algorithm. Accordingly, the
signaling algorithm in [3] also provides a mailbox algorithm with 3 bit flags. Thus, the
solution we present here is more efficient than the solution obtained by the reduction
suggested in [2].

468 U. Abraham and G. Amram

While introducing the mailbox problem, Aguilera et al. required that persistent local
variables are not allowed during an execution of a check event. One may argue that using
local variables of small size do not harm the efficiency of a mailbox algorithm. We chose
to adapt this restriction and our algorithm does not use local variables during a check
event. An interesting question asked by Aguilera et al. if there is a mailbox algorithm
that use 1 bit flags in case that local variables are allowed during execution of check
operations. We do not know the answer to this question. However, the Θ(log n) space
lower bound we present here, hold even when persistent local variables are allowed.

References

1. Aguilera, M.K., Gafni, E., Lamport, L.: The Mailbox Problem (Extended Abstract). In:
Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 1–15. Springer, Heidelberg (2008)

2. Aguilera, M.K., Gafni, E., Lamport, L.: The Mailbox Problem. Distributed Computing 23,
113–134 (2010)

3. Amram, G.: On the Signaling Problem. In: Chatterjee, M., Cao, J.-n., Kothapalli, K.,
Rajsbaum, S. (eds.) ICDCN 2014. LNCS, vol. 8314, pp. 44–65. Springer, Heidelberg (2014)

4. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Languag. Syst. 11(1),
124–149 (1991)

5. Herlihy, M., Wing, J.: Linearizability: A correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems 12, 463–492 (1990)

6. Lamport, L.: A new solution of dijkstraś concurrent programming problem. Communications
of the ACM 17(8), 453–455 (1974)

7. Lamport, L.: On Interprocess Communication, Part I: Basic formalism, Part II: Algorithms.
Distributed Computing 1, 77–101 (1986)

Distributed Universality

Michel Raynal1,2, Julien Stainer2, and Gadi Taubenfeld3

1 Institut Universitaire de France
2 IRISA, Université de Rennes 35042 Rennes Cedex, France

3 The Interdisciplinary Center, PO Box 167, Herzliya 46150, Israel
{raynal,julien.stainer}@irisa.fr, tgadi@idc.ac.il

Abstract. A notion of a universal construction suited to distributed computing
has been introduced by M. Herlihy in his celebrated paper “Wait-free synchro-
nization” (ACM TOPLAS, 1991). A universal construction is an algorithm that
can be used to wait-free implement any object defined by a sequential specifi-
cation. Herlihy’s paper shows that the basic system model, which supports only
atomic read/write registers, has to be enriched with consensus objects to allow the
design of universal constructions. The generalized notion of a k-universal con-
struction has been recently introduced by Gafni and Guerraoui (CONCUR, 2011).
A k-universal construction is an algorithm that can be used to simultaneously im-
plement k objects (instead of just one object), with the guarantee that at least one
of the k constructed objects progresses forever. While Herlihy’s universal con-
struction relies on atomic registers and consensus objects, a k-universal construc-
tion relies on atomic registers and k-simultaneous consensus objects (which are
wait-free equivalent to k-set agreement objects in the read/write system model).

This paper significantly extends the universality results introduced by Herlihy
and Gafni-Guerraoui. In particular, we present a k-universal construction which
satisfies the following five desired properties, which are not satisfied by the previ-
ous k-universal construction: (1) among the k objects that are constructed, at least

 objects (and not just one) are guaranteed to progress forever; (2) the progress
condition for processes is wait-freedom, which means that each correct process
executes an infinite number of operations on each object that progresses forever;
(3) if any of the k constructed objects stops progressing, all its copies (one at each
process) stop in the same state; (4) the proposed construction is contention-aware,
in the sense that it uses only read/write registers in the absence of contention;
and (5) it is generous with respect to the obstruction-freedom progress condi-
tion, which means that each process is able to complete any one of its pending
operations on the k objects if all the other processes hold still long enough. The
proposed construction, which is based on new design principles, is called a (k,
)-
universal construction. It uses a natural extension of k-simultaneous consensus
objects, called (k,
)-simultaneous consensus objects ((k,
)-SC). Together with
atomic registers, (k,
)-SC objects are shown to be necessary and sufficient for
building a (k,
)-universal construction, and, in that sense, (k,
)-SC objects are
(k,
)-universal .

Keywords: Asynchronous read/write system, universal construction, consensus,
distributed computability, k-simultaneous consensus, wait-freedom, non-blocking,
obstruction-freedom, contention-awareness, crash failures, state machine
replication.

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 469–484, 2014.
c© Springer International Publishing Switzerland 2014

470 M. Raynal, J. Stainer, and G. Taubenfeld

1 Introduction

Asynchronous crash-prone read/write systems and the notion of a universal construc-
tion This paper considers systems made up of n sequential asynchronous processes that
communicate by reading and writing atomic registers. Up to n− 1 processes may crash
unexpectedly. This is the basic (n− 1)-resilient model, also called read/write wait-free
model, and denoted here ARWn,n−1[∅]. A fundamental problem encountered in this
kind of systems consists in implementing any object, defined by a sequential specifica-
tion, in such a way that the object behaves reliably despite process crashes.

Several progress conditions have been proposed for concurrent objects. The most
extensively studied, and strongest condition, is wait-freedom. Wait-freedom guarantees
that every process will always be able to complete its pending operations in a finite
number of its own steps [14]. Thus, a wait-free implementation of an object guarantees
that an invocation of an object operation may fail to terminate only when the invoking
process crashes. The non-blocking progress condition (sometimes called lock-freedom)
guarantees that some process will always be able to complete its pending operations in a
finite number of its own steps [17]. Obstruction-freedom guarantees that a process will
be able to complete its pending operations in a finite number of its own steps, if all the
other processes “hold still” long enough [15]. Obstruction-freedom does not guarantee
progress under contention.

It has been shown in [10,14,19] that the design of a general algorithm implement-
ing any object defined by a sequential specification and satisfying the wait-freedom
progress condition, is impossible in ARWn,n−1[∅]. Thus, in order to be able to imple-
ment any such object, the model has to be enriched with basic objects whose computa-
tional power is stronger than atomic read/write registers [14].

Objects that can be used, together with registers, to implement any other object which
satisfies a given progress condition PC, are called universal objects with respect to PC.
Previous work provided algorithms, called universal constructions, based on universal
objects, that transform sequential implementations of arbitrary objects into wait-free
concurrent implementations of the same objects. It is shown in [14] that the consensus
object is universal with respect to wait-freedom. A consensus object allows all the cor-
rect processes to reach a common decision based on their initial inputs. A consensus
object is used in a universal construction to allow processes to agree –despite concur-
rency and failures– on a total order on the operations they invoke on the constructed
object.

In addition to the universal construction of [14], several other wait-free universal
constructions were proposed, which address additional properties. As an example, a
universal construction is presented in [8], where “processes operating on different parts
of an implemented object do not interfere with each other by accessing common base
objects”. Other additional properties have been addressed in [2,9].

From consensus to k-simultaneous consensus (or k-set agreement) in read/write sys-
tems. k-Simultaneous consensus has been introduced in [1]. Each process proposes a
value to k independent consensus instances, and decides on a pair (x, v) such that x is
a consensus instance (1 ≤ x ≤ k), and v is a value proposed to that consensus instance.
Hence, if the pairs (x, v) and (x, v′) are decided by two processes, then v = v′.

Distributed Universality 471

k-Set agreement [7] is a simple generalization of consensus, namely, at most k differ-
ent values can be decided on when using a k-set agreement object (k = 1 corresponds
to consensus). It is shown in [1] that k-set agreement and k-simultaneous consensus
have the same computational power in ARWn,n−1[∅]. That is, each one can be solved
in ARWn,n−1[∅] enriched with the other1. Hence, 1-simultaneous consensus is the
same as consensus, while, for k > 1, k-simultaneous consensus is weaker than (k− 1)-
simultaneous consensus.

While the impossibility proof (e.g., [14,19]) of building a wait-free consensus object
in ARWn,n−1[∅] relies on the notion of valence introduced in [10], the impossibility
to build a wait-free k-set agreement object (or equivalently a k-simultaneous consensus
object) in ARWn,n−1[∅] relies on algebraic topology notions [5,16,26].

It is nevertheless possible to consider system models, stronger than the basic wait-
free read/write model, enriched with consensus or k-simultaneous consensus objects.
These enriched system models, denoted ARWn,n−1[CONS] and ARWn,n−1[k -SC]
(1 ≤ k < n), respectively, are consequently computationally strictly stronger than the
basic model ARWn,n−1[∅].

Universal construction for k objects. An interesting question introduced in [12] by
Gafni and Guerraoui is the following: what happens if, when considering the design
of a universal construction, k-simultaneous consensus objects are considered instead
of consensus objects? The authors claim that k-simultaneous consensus objects are k-
universal in the sense that they allow to implement k deterministic concurrent objects,
each defined by a sequential specification “with the guarantee that at least one machine
remains highly available to all processes” [12]. In their paper, Gafni and Guerraoui
focus on the replication of k state machines. They present a k-universal construction,
based on the replication –at every process– of each of the k state machines.

Contributions. This paper is focused on distributed universality, namely it presents a
very general universal construction for a set of n processes that access k concurrent
objects, each defined by a sequential specification on total operations. An operation on
an object is “total” if, when executed alone, it always returns [17]. This construction
is based on a generalization of the k-simultaneous consensus object (see below). The
noteworthy features of this construction are the following.

– On the object side, at least � among the k objects progress forever, 1 ≤ � ≤ k. This
means that an infinite number of operations is applied to each of these � objects.
This set of � objects is not predetermined, and depends on the execution.

– On the process side, the progress condition associated with the processes is wait-
freedom. That is, a process that does not crash executes an infinite number of oper-
ations on each object that progresses forever.

– An object stops progressing when no more operations are applied to it. The con-
struction guarantees that, when an object stops progressing, all its copies (one at
each process) stop in the same state.

1 This is no longer the case in asynchronous message-passing systems, namely k-simultaneous
consensus is then strictly stronger than k-set agreement (as shown using different techniques
in [6,24]).

472 M. Raynal, J. Stainer, and G. Taubenfeld

– The construction is contention-aware. This means that the overhead introduced
by using synchronization objects other than atomic read/write registers is elimi-
nated when there is no contention during the execution of an operation (i.e., inter-
val contention). In the absence of contention, a process completes its operations
by accessing only read/write registers2. Algorithms which satisfy the contention-
awareness property have been previously presented in [3,21,22,27].

– The construction is generous3 with respect to obstruction-freedom.This means that
each process is able to complete its pending operations on all the k objects each
time all the other processes hold still long enough. That is, if once and again all the
processes except one hold still long enough, then all the k objects, and not just �
objects, are guaranteed to always progress.

This new universal construction is consequently called a wait-free contention-aware
obstruction-free-generous (k, �)-universal construction. Differently, the universal con-
struction presented in [12] is a (k, 1)-universal construction and is neither contention-
aware, nor generous with respect to obstruction-freedom. Moreover, this construction
suffers from the following limitations: (a) it does not satisfy wait-freedom progress, but
only non-blocking progress (i.e., infinite progress is guaranteed for only one process);
(b) in some scenarios, an operation that has been invoked by a process can (incorrectly)
be applied twice, instead of just once; and (c) the last state of the copies (one per pro-
cess) of an object on which no more operations are being executed can be different at
distinct processes. While issue (b) can be fixed (see [25]), we do not see how to modify
the construction from [12] to overcome drawback (c).

When considering the special case k = � = 1, Herlihy’s construction is wait-
free (1, 1)-universal [14], but differently from ours, it does not satisfy the contention-
awareness property.

To ensure the progress of at least � of the k implemented objects, the proposed con-
struction uses a new synchronization object, that we call (k, �)-simultaneous consen-
sus object, which is a simple generalization of the k-simultaneous consensus object.
This object type is such that its (k, 1) instance is equivalent to k-simultaneous con-
sensus, while its (k, k) instance is equivalent to consensus. Thus, when added to the
basic ARWn,n−1[∅] system model, (k, �)-simultaneous consensus objects add com-
putational power. The paper shows that (k, �)-simultaneous consensus objects are both
necessary and sufficient to ensure that at least � among the k objects progress forever.

From a software engineering point of view, the proposed (k, �)-universal construc-
tion is built in a modular way. First a non-blocking (k, 1)-universal construction is de-
signed, using k-simultaneous consensus objects and atomic registers. Interestingly, its
design principles are different from the other universal constructions we are aware of.
Then, this basic construction is extended to obtain a contention-aware (k, 1)-universal

2 Let us recall that, in worst case scenarios, hardware operations such as compare&swap() can
be 1000× more expensive that read or write.

3 Generosity is a general notion. Intuitively, an algorithm is generous with respect to a given
condition C, if, whenever C is satisfied, the algorithm does more than what it is required
to do in normal circumstances. The condition C specifies the “exceptional” circumstances
under which the algorithm does “more”. These “exceptional” circumstances depend on the
underlying system behavior.

Distributed Universality 473

construction, and then a wait-free contention-aware (k, 1)-universal construction. Fi-
nally, assuming that the system is enriched with (k, �)-simultaneous consensus objects,
1 ≤ � ≤ k, instead of k-simultaneous consensus objects, we obtain a contention-aware
wait-free (k, �)-universal construction. During the modular construction, we make sure
that the universal construction implemented at each stage is also generous with respect
to obstruction-freedom.

Roadmap The paper is made up of 5 sections. Section 2 presents the computation
models and the specific objects used in the paper. Section 3 presents a non-blocking
(k, 1)-universal construction. Then Section 4 extends it so that it satisfies contention-
awareness, wait-freedom, and the progress of at least � out of the k constructed objects.
This section shows also that (k, �)-simultaneous consensus objects are necessary and
sufficient for the design of (k, �)-universal constructions. Due to page limitation, (1)
all proofs, (2) the presentation of an interesting simple variant of the general universal
construction which is an obstruction-free (1, 1)-universal construction based on atomic
registers only, and (3) definitions and notions which can be used to establish a (k, �)-
universality theory, are presented in [25].

2 Basic and Enriched Models, and Wait-Free Linearizable
Implementation

2.1 Basic Read/Write Model and Enriched Model

The basic model presented in the introduction is the wait-free asynchronous read/write
model denoted ARWn,n−1[∅] (see also [4,20,23]). The processes are denoted p1, ...,
pn. Considering a run, a process is faulty if it crashes during the run, otherwise it is
correct.

In addition to atomic read/write registers [18], two other types of objects are used.
The first type does not add computational power, but provides processes with a higher
abstraction level. The other type adds computational power to the basic system model
ARWn,n−1[∅].

Adopt-commit object. The adopt-commit object has been introduced in [11]. An adopt-
commit object is a one-shot object that provides the processes with a single operation
denoted propose(). This operation takes a value as an input parameter, and returns a
pair (tag, v). The behavior of an adopt-commit object is formally defined as follows:

– Validity.
• Result domain. Any returned pair (tag, v) is such that (a) v has been proposed

by a process and (b) tag ∈ {commit, adopt}.
• No-conflicting values. If a process pi invokes propose(v) and returns before

any other process pj has invoked propose(v′) with v′ �= v, then only the pair
(commit, v) can be returned.

– Agreement. If a process returns (commit, v), the only pairs that can be returned
are (commit, v) and (adopt, v).

– Termination. An invocation of propose() by a correct process always terminates.

474 M. Raynal, J. Stainer, and G. Taubenfeld

Let us notice that it follows from the “no-conflicting values” property that, if a single
value v is proposed, then only the pair (commit, v) can be returned. Adopt-commit
objects can be wait-free implemented in ARWn,n−1[∅] (e.g., [11,23]). Hence, they
provide processes only with a higher abstraction level than read/write registers.

k-Simultaneous consensus object. A k-simultaneous consensus (k-SC) object is a one-
shot object that provides the processes with a single operation denoted propose(). This
operation takes as input parameter a vector of size k, each entry containing a value, and
returns a pair (x, v). The behavior of a k-simultaneous consensus object is formally
defined as follows:

– Validity. Any pair (x, v) that is returned by a process pi is such that (a) 1 ≤ x ≤ k
and (b) v has been proposed by a process in the x-th entry of its input vector before
pi decides.

– Agreement. If a process returns (x, v) and another process returns (y, v′), and x =
y, then v = v′.

– Termination. An invocation of propose() by a correct process always terminates.

Let ARWn,n−1[k -SC] denote ARWn,n−1[∅] enriched with k-SC objects. It is shown
in [1] that a k-SC object and a k-set agreement (k-SA) object are wait-free equivalent
in ARWn,n−1[∅]. This means that a k-SC object can be built in ARWn,n−1[k -SA],
and a k-SA object can be built in ARWn,n−1[k -SC].

2.2 Correct Object Implementation

Let us consider n processes that access k concurrent objects, each defined by a deter-
ministic sequential specification. The sequence of operations that pi wants to apply to
an object m, 1 ≤ m ≤ k, is stored in the local infinite list my listi[m], which can be
defined statically or dynamically (in that case, the next operation issued by a process
pi on an object m, can be determined from pi’s view of the global state). It is assumed
that the processes are well-formed: no process invokes a new operation on an objectm
before its previous operation onm has terminated.

Wait-free linearizable implementation. An implementation of an object m by n pro-
cesses is wait-free linearizable if it satisfies the following properties.

– Validity. If an operation op is executed on objectm, then op ∈ ∪1≤i≤nmy listi[m],
and all the operations ofmy listi[m] which precede op have been applied to object
m.

– No-duplication. Any operation op on object m invoked by a process is applied at
most once tom. We assume that all the invoked operations are unique.

– Consistency. Any n-process execution produced by the implementation is lineariz-
able [17].

– Termination (wait-freedom). If a process does not crash, it executes an infinite num-
ber of operations on at least one object.

Distributed Universality 475

Weaker progress conditions In some cases, the following two weaker progress condi-
tions are considered.

– The non-blocking progress condition [17] guarantees that there is at least one pro-
cess that executes an infinite number of operations on at least one object.

– The obstruction-freedom progress condition [15] guarantees that any correct pro-
cess can complete its operations if it executes in isolation for a long enough period
(long enough period during which the other processes stop progressing).

3 A New Non-blocking k-Universal Construction

As mentioned in the Introduction, the construction is done incrementally. In this sec-
tion, we present and prove the correctness of a non-blocking k-universal construction,
based on new design principles (as far as we know). This construction is built in the
enriched model ARWn,n−1[k -SC]. In Section 4, we extend the construction, without
requiring additional computational power, to obtain the contention-awareness property,
and the wait-freedom progress condition (i.e., each correct process can always execute
and completes its operations on any object that progresses forever). Then (k, �)-SC ob-
jects are introduced (which are a natural generalization of k-SC objects), and are used
to design a (k, �)-universal construction which ensures that least � objects progress for-
ever. In Section 4, we also show that (k, �)-SC objects are necessary and sufficient to
obtain a (k, �)-universal construction.

3.1 A new Non-blocking k-Universal Construction: Data Structures

The following objects are used by the construction. Identifiers with upper case letters
are used for shared objects, while identifiers with lower case letters are used for local
variables.

Shared objects

– kSC [1..]: infinite list of of k-simultaneous consensus objects; kSC [r] is the object
used at round r.

– AC [1..][1..k]: infinite list of vectors of k adopt-commit objects; AC [r][m] is the
adopt-commit object associated with the objectm at round r.

– GSTATE [1..n] is an array of SWMR (single-writer/multi-readers) atomic regis-
ters; GSTATE [i] can be written only by pi. Moreover, the register GSTATE [i]
is made up of an array with one entry per object, such that GSTATE [i][m] is the
sequence of operations that have been applied to the object m, as currently know
by pi; it is initialized to ε (the empty sequence).

Local variables at process pi

– ri: local round number (initialized to 0).
– g statei[1..n]: array used to save the values read from GSTATE [1..n].
– operi[1..k]: vector such that operi[m] contains the operation that pi is proposing to

a k-SC object for the object m (as we will see in the algorithm, this operation was
not necessarily issued by pi).

476 M. Raynal, J. Stainer, and G. Taubenfeld

– my opi[1..k]: vector of operations such thatmy opi[m] is the last operation that pi
wants to apply to the objectm (hencemy opi[m] ∈ my listi[m]).

– � histi[1..k]: vector with one entry per object, such that � histi[m] is the sequence
of operations defining the history of object m, as known by pi. Each � histi[m] is
initialized to ε. The function append() is used to add an element at the end of a
sequence � histi[m].

– tagi[1..k] and ac opi[1..k]: arrays that, for each objectm, are used to save the pairs
(tag, operation) returned by the invocation of AC [r][m] of current round r.

– outputi[1..k]: vector such that outputi[m] contains the result of the last operation
invoked by pi on the objectm (this is the operation saved inmy opi[m]).

Without loss of generality, it is assumed that each object operation returns a result,
which can be “ok” when there is no object-dependent result to be returned (as with the
stack operation push() or the queue operation enqueue()).

3.2 Eliminating Full Object Histories

For each process pi and object m, the universal construction uses a shared register
GSTATE[i][m] to remember the sequence of all the operations that have been suc-
cessfully applied to objectm, as currently known to pi. We have chosen this implemen-
tation mainly due to its simplicity. While it is space inefficient, it can be improved as
follows.

– Recall that we have assumed that all the operations are unique. This can be easily
implemented locally, where each process attaches a unique (local) sequence num-
ber plus its id to each operation. The (local) sequence number attached can be the
number of operations the process has invoked on the object so far. Now, instead
of remembering (by each process) for each object m its full history, it is sufficient
that each process pi computes and remembers only the last state of m, denoted
� statei[m], plus the sequence number of the last operation successfully applied to
m by each process.

– As far as the function compute output(op, h) used at line 9 and line 20 is con-
cerned, we have the following, where OUTPUT [1..n] is an array made up of one
atomic register per process. Immediately after line 18, a process pi executes the
following statements, which replace lines 19-23.

outputi[m] ← compute output(ac opi[m], � statei[m]);
let pj be the process that invoked ac opi[m];
if (i = j) then lines 21-22

else OUTPUT [j] ← outputi[m]
end if.

When executed by a process pj , line 9 is replaced by outputj[m] ← OUTPUT [j].

It is easy to see that these statements implement a simple helping mechanism that allow
processes, which invoke append() at line 18, to pre-compute the operation results for
the processes that should invoke compute output(op, h) at line 9. Consequently, the
distributed universal construction can be easily modified to use this more space efficient
representation instead of the “full history” representation.

Distributed Universality 477

3.3 A New Non-blocking (k, 1)-Universal Construction: Algorithm
To simplify the presentation, it is assumed that each operation invocation is unique.
This can be easily realized by associating an identity (process id, sequence number)
with each operation invocation. In the following, the term “operation” is used as an
abbreviation for “operation execution”.

The function next() is used by a process pi to access the sequence of operations
my listi[m]. The x-th invocation of my listi[m].next() returns the x-th element of
this list.

Initialization The algorithm implementing the k-universal construction is presented in
Figure 1. For each object m ∈ {1, ..., k}, a process pi initializes both the variables
my opi[m] and operi[m] to the first operation that it wants to apply to m. Process pi
then enters an infinite loop.

Repeat loop: using the round r objects kSC [r] and AC [r] (lines 1-4) After it has
increased its round number, a process pi invokes the k-simultaneous consensus ob-
ject kSC [r] to which it proposes the operation vector operi[1..n], and from which it
obtains the pair denoted (ksc obj, ksc op); ksc op is an operation proposed by some
process for the object ksc obj (line 2). Process pi then invokes the adopt-commit ob-
ject AC [r][ksc obj] to which it proposes the operation output by kSC [r] for the object
ksc op (line 3). Finally, for all the other objects m �= ksc obj, pi invokes the adopt-
commit object AC [r][m] to which it proposes operi[m] (line 4). As already indicated,
the tags and the commands defined by the vector of pairs output by the adopt-commit
objects AC [r] are saved in the vectors tagi[1..k] and ac opi[1..k], respectively. (While
expressed differently, these four lines are the only part which is common to this con-
struction and the one presented in [12].)

The aim of these lines is to implement a filtering mechanism such that (a) for each
object, at most one operation can be committed at some processes, and (b) there is at
least one object for which an operation is committed at some processes.

Repeat loop: returning local results (lines 5-13) Having used the additional power sup-
plied by kSC [r], a process pi first obtains asynchronously the value of GSTATE [1..n]
(line 5) to learn an “as recent as possible” consistent global state, which is saved in
g statei[1..n]. Then, for each object m (lines 6-13), pi computes the maximal lo-
cal history of the object m which contains � histi[m] (line 7). (Let us notice that
g statei[i][m] is � histi[m].) This corresponds to the longest history in the n histo-
ries g statei[1][m], ..., g statei[n][m] which contains � histi[m]. If there are several
longest histories, they all are equal as we will see in the proof. If the last operation it
has issued on m, namelymy opi[m], belongs to this history (line 8), some process has
executed this operation on its local copy ofm. Process pi computes then the correspond-
ing output (line 9), locally returns the triple (m,my opi[m], outputi[m]) (line 10), and
defines its next local operation to apply to the objectm (line 11).

The function compute output(op, h) (used at lines 9 and 20) computes the result
returned by op applied to the state of the corresponding objectm (this state is captured
by the prefix of the history h ofm ending just before the operation op).
Repeat loop: trying to progress on machines (lines 14-29) Then, for each object m,
1 ≤ m ≤ k, pi considers the operation ac opi[m]. If this operation belongs to its

478 M. Raynal, J. Stainer, and G. Taubenfeld

for each m ∈ {1, . . . , k} do
my opi[m] ← my listi[m].next(); operi[m] ← my opi[m] end for.

repeat forever
(1) ri ← ri + 1;
(2) (ksc obj, ksc op) ← kSC [ri].propose(operi[1..k]);
(3) (tagi[ksc obj], ac opi[ksc obj]) ← AC [ri][ksc obj].propose(ksc op);
(4) for each m ∈ {1, . . . , k} \ {ksc obj} do

(tagi[m], ac opi[m]) ← AC [ri][m].propose(operi[m]) end for;

(5) for each j ∈ {1, . . . , n} do g statei[j] ← GSTATE [j] end for;
% the read of each GSTATE [j] is atomic %

(6) for each m ∈ {1, . . . , k} do
(7)
 histi[m] ← longest history of g statei[1..n][m] containing
 histi[m];
(8) if (my opi[m] ∈
 histi[m]) % my operation was completed %
(9) then outputi[m] ← compute output(my opi[m],
 histi[m]);
(10) return {(m,my opi[m], outputi[m])} to the upper layer;
(11) my opi[m] ← my list[m].next()
(12) end if
(13) end for;

(14) res ← ∅;
(15) for each m ∈ {1, . . . , k} do
(16) if (ac opi[m] /∈
 histi[m]) % operation was not completed %
(17) then if (tagi[m] = commit) % complete the operation %
(18) then
 histi[m] ←
 histi[m].append(ac opi[m]);
(19) if (ac opi[m] = my opi[m]) % my operation was completed %
(20) then outputi[m] ← compute output(ac opi[m],
 histi[m]);
(21) res ← res ∪ {(m,my opi[m], outputi[m])};
(22) my opi[m] ← my list[m].next()
(23) end if;
(24) operi[m] ← my opi[m]
(25) else operi[m] ← ac opi[m] % tagi[m] = adopt %
(26) end if
(27) else operi[m] ← my opi[m] % ac opi[m] ∈
 histi[m] %
(28) end if
(29) end for;

(30) GSTATE [i] ←
 histi[1..k]; % globally update my current view %
(31) if (res �= ∅) then return res to the upper layer end if
end repeat.

Fig. 1. Basic Non-Blocking Generalized (k, 1)-Universal Construction (code for pi)

local history � histi[m] (the predicate of line 16 is then false), it has already been

Distributed Universality 479

locally applied; pi consequently assignsmy opi[m] to operi[m], where is saved its next
operation on the objectm (line 27).

If ac opi[m] /∈ � histi[m] (line 16), the behavior of pi depends on the fact that the
tag of ac opi[m] is commit or adopt. If the tag is adopt (the predicate of line 17 is
then false), pi defines ac opi[m] as the next operation it will propose for the object
m, which is saved in operi[m] (line 25): it “adopts” ac opi[m]. If the tag is commit
(line 17), pi adds (applies) the operation ac opi[m] to its local history (line 18). More-
over, if ac opi[m] has been issued by pi itself (i.e., ac opi[m] = my opi[m], line 19),
pi computes the result locally returned by ac opi[m] (line 20), adds this result to the set
of results res (line 21), defines its next local operation to apply to the objectm (line 22).
Finally, pi assigns my opi[m] to operi[m] (line 24).

Repeat loop: making public its progress (lines 30-31) Finally, pi makes public its cur-
rent local histories (one per object) by writing them in GSTATE [i] (line 30), and re-
turns local results if any (line 31). It then progresses to the next round.

Theorem 1. The algorithm of Figure 1 is a non-blocking linearizable (k, 1)-universal
construction.

Generosity wrt obstruction-freedom We observe that the construction of Figure 1 is also
obstruction-free (k, k)-universal. That is, the construction guarantees that each process
will be able to complete all its pending operations in a finite number of steps, if all
the other processes “hold still” long enough. Thus, if once in a while all the processes
except one “hold still” long enough, then all the k objects (and not “at least one”) are
guaranteed to always make progress.

4 A Contention-Aware Wait-Free (k, �)-Universal Construction

4.1 A Contention-Aware Non-blocking k-Universal Construction

Contention-aware universal construction A contention-aware universal construction
(or object) is a construction (object) in which the overhead introduced by synchro-
nization primitives which are different from atomic read/write registers (like k-SC ob-
jects) is eliminated in executions when there is no contention. When a process invokes
an operation on a contention-aware universal construction (object), it must be able to
complete its operation by accessing only read/write registers in the absence of con-
tention. Using other synchronization primitives is permitted only when there is con-
tention. (This notion is close but different from the notion of contention-sensitiveness
introduced in [27].)

A contention-aware non-blocking (k, 1)-universal construction A contention-aware
(k, 1)-universal construction is presented in Figure 2. At each round r, it uses two adopt-
commit objects per constructed object m, namely AC [2ri − 1][m] and AC [2ri][m],
instead of a single one. When considering the basic construction of Figure 1, the new
lines are prefixed by N, while modified lines are postfixed by M.

A process pi first invokes, for each object m, the adopt-commit object AC [2ri −
1][m] to which it proposes operi[m] (new line N1). Its behavior depends then on the

480 M. Raynal, J. Stainer, and G. Taubenfeld

for each m ∈ {1, . . . , k} do
my opi[m] ← my listi[m].next(); operi[m] ← my opi[m] end for.

repeat forever
(1) ri ← ri + 1;
(N1) for each m ∈ {1, . . . , k} do

(tagi[m], ac opi[m]) ← AC [2ri − 1][m].propose(operi[m]) end for;
(N2) if (∃m ∈ {1, . . . , k} : tagi[m] = adopt) then
(2M) (ksc obj, ksc op) ← kSC [ri].propose(ac opi[1..k]);
(3M) (tagi[ksc obj], ac opi[ksc obj]) ← AC [2ri][ksc obj].propose(ksc op);
(4M) for each m ∈ {1, . . . , k} \ {ksc obj} do

(tagi[m], ac opi[m]) ← AC [2ri][m].propose(ac opi[m]) end for
(N3) end if;
lines 5- 31 of the construction of Figure 1
end repeat.

Fig. 2. Contention-aware Non-Blocking (k, 1)-Universal Construction (code for pi)

number of objects for which it has received the tag commit. If it has obtained the tag
commit for all the objects m (the test of the new line N2 is then false), pi proceeds
directly to the code defined by the lines 5- 31 of the basic construction described in Fig-
ure 1, thereby skipping the invocation of the synchronization object kSC[r] associated
with round r.

Otherwise, the test of the new line N2 is true and there is at least one object for
which pi has received the tag adopt. This means that there is contention. In this case,
the behavior of pi is similar to the lines 2-4 of the basic algorithm where, at lines 2
and 4, the input parameter operi[m] is replaced by the value of ac opi[m] obtained at
line N1 (the corresponding lines are denoted 2M and 4M). Moreover, at line 3, ri is
replaced by 2ri (new line 3M).

Interestingly, for the case of k = 1, the above universal construction is the first
known contention-aware (1, 1)-universal construction.

Theorem 2. The algorithm of Figure 2 is a non-blocking contention-aware (k, 1)-
universal construction.

It is possible to still reduce the number of uses of underlying k-SC synchronization
objects. by replacing the lines N1-N3 in Figure 2 as described in Figure 3. There is one
modified line (N2M) and three new lines (NN1, NN2, and NN3). More precisely, if after
it has used the adopt-commit objects AC [2ri−1][m], for each constructed objectm, pi
has received only tags adopt (modified line N2M), it executes the lines 2M, 3, and 4M,
as in basic contention aware construction of Figure 2. Differently, if it has received the
tag commit for at least one constructed object, it invokesAC[2r][m] for all the objects
m for which it has received the tag adopt (new lines NN1-NN3).

4.2 On the Process Side: From Non-blocking to Wait-Freedom

The aim here is to ensure that each correct process executes an infinite number of op-
erations on each object that progresses forever. As far as the progress of objects is

Distributed Universality 481

(N1) for each m ∈ {1, . . . , k} do
(tagi[m], ac opi[m]) ← AC [2ri − 1][m].propose(operi[m]) end for;

(N2M) if (∀m ∈ {1, . . . , k} : tagi[m] = adopt) % ∀m replaces ∃ m%
(2M) then (ksc obj, ksc op) ← kSC [ri].propose(ac opi[1..k]);
(3) (tagi[ksc obj], ac opi[ksc obj]) ← AC [2ri][ksc obj].propose(ksc op);
(4M) for each m ∈ {1, . . . , k} \ {ksc obj} do

(tagi[m], ac opi[m]) ← AC [2ri][m].propose(ac opi[m]) end for
(NN1) else for each m ∈ {1, . . . , k} do
(NN2) if (tagi[m] = adopt) then

(tagi[m], ac opi[m]) ← AC [2ri][m].propose(ac opi[m]) end if
(NN3) end for
(N3) end if.

Fig. 3. Efficient Contention-aware Non-Blocking (k, 1)-Universal Construction (code for pi)

concerned, it is important to notice that it is possible that, in a given execution, several
objects progress forever.

Going from non-blocking to wait-freedom requires to add a helping mechanism to
the basic non-blocking construction. To that end, the following array of atomic registers
is introduced.

– LAST OP [1..n, 1..m]: matrix of atomic SWMR (single-writer/multi-readers) reg-
isters such that LAST OP [i,m] contains the last operation ofmy listi invoked by
pi. Initialized to ⊥, such a register is updated each time pi invokesmy listi.next()
(initialization, line 11n and line 22). So, we assume that LAST OP [i,m] is im-
plicitly updated by pi when it invokes the function next().

Then, for each object m, the lines 24 and 27 where is defined operi[m] (namely, the
proposal for the constructed object m submitted by pi to the next k-SC object) are
replaced by the following lines (|s| denotes the size of the sequence s).

(L1) j ← |
 histi [m]| mod n+ 1; next prop m ← LAST OP [j,m];
(L2) if next prop m /∈ ({⊥} ∪
 histi[m])
(L3) then operi[m] ← next prop m
(L4) else operi[m] ← my opi[m]
(L5) end if.

This helping mechanism is close to the one proposed in [14]. It uses, for each object
m, a simple round-robin technique on the process identities, computed from the current
state ofm as known by pi, i.e., from � histi[m]. More precisely, the helping mechanism
uses the number of operations applied so far to m (to pi’s knowledge) in order to help
the process pj such that j = |� hist i[m]| mod n+ 1 (line L1). To that end, pi proposes
the last operation issued by pj on m (line L3) if (a) there is such an operation, and
(b) this operation has not yet been appended to its local history of m (predicate of line
L2). This operation has been registered in LAST OP [j,m] when pj executed its last
invocation ofmy listj[m].next(). If the predicate of line L2 is not satisfied, pi proceed
as in the basic algorithm (line L4).

482 M. Raynal, J. Stainer, and G. Taubenfeld

Theorem 3. When replacing the lines 24 and 27 by lines L1-L5, the algorithms of
Figure 1 and Figure 2 define a wait-free contention-aware linearizable (k, 1)-universal
construction.

Let us remark that requiring wait-freedom only for a subset of correct processes, or only
for a subset of objects that progress forever is not interesting, as wait-freedom for both
(a) all correct processes, and (b) all the objects that progress forever, does not require
additional computing power.

4.3 On the Object Side: From One to � Objects That Always Progress

Definition: (k, �)-Simultaneous consensus Let (k, �)-simultaneous consensus (in short
(k, �)-SC), 1 ≤ � ≤ k, be a strengthened form of k-simultaneous consensus where
(instead of a single pair) a process decides on � pairs (x1, v1), ..., (x�, v�) (all different
in their first component). The agreement property is the same as for a k-SC object,
namely, if (x, v) and (x, v′) are pairs decided by two processes, then v = v′.

Notations Let (k, �)-UC be any algorithm implementing the k-universal construction
where at least � objects always progress4. Let ARWn,n−1[(k , �)-SC] be ARWn,n−1[∅]
enriched with (k , �)-SC objects, and ARWn,n−1[(k , �)-UC] be ARWn,n−1[∅] en-
riched with a (k, �)-UC algorithm.

A contention-aware wait-free (k, �)universal construction A contention-aware wait-
free (k, �)-UC algorithm can be implemented on top of ARWn,n−1[(k , �)-SC] as fol-
lows. This algorithm is the algorithm of Figure 2, where lines 24 and 27 are replaced
by the lines L1-L5 introduced in Section 4.2, and where the lines 2M, 3M, and 4M, are
modified as follows (no other line is added, suppressed, or modified).

– Line 2M: the k-simultaneous consensus objects are replaced by (k, �)-simultaneous
consensus objects, Hence, the result returned to a process is now a set of � pairs
whose first components are all distinct. It is denoted {(ksc obj1, ksc op1), ...,
(ksc obj�, ksc op�)}. Let L be the corresponding set of � different objects, i.e.,
L = {ksc obj1, ..., ksc obj�}. As already indicated, two different processes can be
returned different sets of � pairs.

– Line 3M: process pi executes this line for each object m ∈ L. These � invocations
of the adopt-commit object (i.e.,AC [2ri][ksc objx].propose(ksc opx), 1 ≤ x ≤ �)
can be executed in parallel, which means in any order. Let us notice that if several
processes invokes AC [2ri][ksc objx].propose() on the same object ksc objx, they
invoke it with the same operation ksc opx.

– Line 4M: AC [2ri][m].propose(operi[m]) is invoked only for the remaining ob-
jects, i.e., the objects m such that m ∈ {1, ..., k} \ L. As in the algorithm of Fig-
ure 2, the important point is that a process invokes AC [2ri][ksc objx].propose()
first on the set L of the objects output by the (k, �)-SC object associated with the
current round, and only after invoke it on the other objects.

4 It is possible to express (k,
)-UC as an object accessed by appropriate operations. This is not
done here because such an object formulation would be complicated without providing us with
more insight on the question we are interested in.

Distributed Universality 483

Theorem 4. With respect to the model ARWn,n−1[∅], (k, �)-UC and (k , �)-SC have
the same computational power: (a) a (k, �)-UC algorithm can be wait-free implemented
in ARWn,n−1[(k , �)-SC], and, reciprocally, (b) a (k , �)-SC object can be wait-free
built in ARWn,n−1[(k , �)-UC].

This theorem shows that (k, �)-SC objects are both necessary and sufficient to ensure
that at least � objects always progress in a set of k objects. Let us remark that this
is independent from the fact that the implementation of the k-universal construction
is non-blocking or wait-free (going from non-blocking to wait-freedom requires the
addition of a helping mechanism, but does not require additional computational power).

5 Conclusion

Our main objective was to build a universal construction for any set of k objects, each
defined by a sequential specification, where at least � of these k objects are guaranteed
to progress forever. To that end, we have introduced a new object type, called (k, �)-
simultaneous consensus ((k, �)-SC), and have shown that this object is both necessary
and sufficient (hence optimal and universal) when one has to implement such a universal
construction. We have related the notions of obstruction-freedom, non-blocking, and
contention-awareness for the implementation of k-universal constructions. The paper
has also introduced a general notion of algorithm generosity, which captures a property
implicitly addressed in other contexts. The constructions presented in the paper can
be seen as innovative generalizations of the universality notions introduced in [12,14].
More specifically, we have presented the following suite of constructions:

– A contention-aware construction, based on k-SC objects and atomic registers, which
is both obstruction-free (k, k)-universal and wait-free k-universal (Section 3).

– A contention-aware (k, �)-universal construction based on (k, �)-SC objects which
is both obstruction-free (k, k)-universal and wait-free (k, �)-universal (Section 4).

Finally, a simple obstruction-free (1, 1)-universal construction based on atomic regis-
ters only, and elements for a theory of (k, �)-universality can be found in [25].

References

1. Afek, Y., Gafni, E., Rajsbaum, S., Raynal, M., Travers, C.: The k-simultaneous consensus
problem. Distributed Computing 22(3), 185–195 (2010)

2. Anderson, J.H., Moir, M.: Universal constructions for large objects. IEEE Transactions of
Parallel and Distributed Systems 10(12), 1317–1332 (1999)

3. Attiya, H., Guerraoui, R., Hendler, D., Kutnetsov, P.: The complexity of obstruction-free
implementations. Journal of the ACM 56(4), Article 24, 33 (2009)

4. Attiya, H., Welch, J.L.: Distributed computing: Fundamentals, simulations and advanced
topics, 2nd edn., p. 414. Wiley Interscience (2004) ISBN 0-471-45324-2

5. Borowsky, E., Gafni, E., Generalized, F.L.P.: impossibility results for t-resilient asyn-
chronous computations. In: Proc. 25th ACM Symposium on Theory of Computing (STOC
1993), pp. 91–100. ACM Press (1993)

484 M. Raynal, J. Stainer, and G. Taubenfeld

6. Bouzid, Z., Travers, C.: Simultaneous consensus is harder than set agreement in message-
passing. In: Proc. 33rd Int’l IEEE Conference on Distributed Computing Systems (ICDCS
2013), pp. 611–620. IEEE Press (2013)

7. Chaudhuri, S.: More choices allow more faults: Set consensus problems in totally asyn-
chronous systems. Information and Computation 105(1), 132–158 (1993)

8. Ellen, F., Fatourou, P., Kosmas, E., Milani, A., Travers, C.: Universal construction that ensure
disjoint-access parallelism and wait-freedom. In: Proc. 31th ACM Symposium on Principles
of Distributed Computing (PODC), pp. 115–124. ACM Press (2012)

9. Fatourou, P., Kallimanis, N.D.: A highly-efficient wait-free universal construction. In: Proc.
23th ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp. 325–334.
ACM Press (2012)

10. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one
faulty process. Journal of the ACM 32(2), 374–382 (1985)

11. Gafni, E.: Round-by-round fault detectors: unifying synchrony and asynchrony. In: Proc.
17th ACM Symp. on Principles of Distr. Computing (PODC), pp. 143–152. ACM Press
(1998)

12. Gafni, E., Guerraoui, R.: Generalized universality. In: Katoen, J.-P., König, B. (eds.) CON-
CUR 2011. LNCS, vol. 6901, pp. 17–27. Springer, Heidelberg (2011)

13. Guerraoui, R., Kapalka, M., Kouznetsov, P.: The weakest failure detectors to boost
obstruction-freedom. Distributed Computing 20(6), 415–433 (2008)

14. Herlihy, M.P.: Wait-free synchronization. ACM Transactions on Programming Languages
and Systems 13(1), 124–149 (1991)

15. Herlihy, M.P., Luchangco, V., Moir, M.: Obstruction-free synchronization: double-ended
queues as an example. In: Proc. 23th Int’l IEEE Conference on Distributed Computing Sys-
tems (ICDCS 2003), pp. 522–529. IEEE Press (2003)

16. Herlihy, M.P., Shavit, N.: The topological structure of asynchronous computability. Journal
of the ACM 46(6), 858–923 (1999)

17. Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems 12(3), 463–492 (1990)

18. Lamport, L.: On inter-process communications, Part I: Basic formalism. Distributed Com-
puting 1(2), 77–85 (1986)

19. Loui, M., Abu-Amara, H.: Memory requirements for agreement among unreliable asyn-
chronous processes. Advances in Computing Research 4, 163–183 (1987)

20. Lynch, N.A.: Distributed algorithms, vol. 872. Morgan Kaufmann (1996)
21. Luchangco, V., Moir, M., Shavit, N.N.: On the Uncontended complexity of consensus. In:

Fich, F.E. (ed.) DISC 2003. LNCS, vol. 2848, pp. 45–59. Springer, Heidelberg (2003)
22. Merritt, M., Taubenfeld, G.: Resilient consensus for infinitely many processes. In: Fich, F.E.

(ed.) DISC 2003. LNCS, vol. 2848, pp. 1–15. Springer, Heidelberg (2003)
23. Raynal, M.: Concurrent programming: Algorithms, principles, and foundations, 515 p.

Springer (2013) ISBN 978-3-642-32026-2
24. Raynal, M., Stainer, J.: Simultaneous consensus vs set agreement: A message-passing-

sensitive hierarchy of agreement problems. In: Moscibroda, T., Rescigno, A.A. (eds.)
SIROCCO 2013. LNCS, vol. 8179, pp. 298–309. Springer, Heidelberg (2013)

25. Raynal, M., Stainer, J., Taubenfeld, G.: Distributed universality. Tech Report, pages, IRISA,
Université de Rennes, France (2014)

26. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: the topology of public
knowledge. SIAM Journal on Computing 29(5), 1449–1483 (2000)

27. Taubenfeld, G.: Contention-sensitive data structures and algorithms. In: Keidar, I. (ed.) DISC
2009. LNCS, vol. 5805, pp. 157–171. Springer, Heidelberg (2009)

A Practical Distributed Universal Construction
with Unknown Participants�

Pierre Sutra, Étienne Rivière, and Pascal Felber

University of Neuchâtel, Switzerland

Abstract. Modern distributed systems employ atomic read-modify-write
primitives to coordinate concurrent operations. Such primitives are typi-
cally built on top of a central server, or rely on an agreement protocol. Both
approaches provide a universal construction, that is, a general mechanism
to construct atomic and responsive objects. These two techniques are how-
ever known to be inherently costly. As a consequence, they may result in
bottlenecks in applications using them for coordination. In this paper, we
investigate another direction to implement a universal construction. Our
idea is to delegate the implementation of the universal construction to the
clients, and solely implement a distributed shared atomic memory on the
servers side. The construction we propose is obstruction-free. It can be im-
plemented in a purely asynchronous manner, and it does not assume the
knowledge of the participants. It is built on top of grafarius and racing ob-
jects, two novel shared abstractions that we introduce in detail. To assess
the benefits of our approach,wepresent aprototype implementation on top
of the Cassandra data store, and compare it empirically to the Zookeeper
coordination service.

1 Introduction

The management of conflicting accesses to shared data plays a key role in exe-
cuting correctly and efficiently distributed applications. In general, strongly con-
sistent operations on shared data are serialized either through a central server,
or using the replicated state machine approach (e.g., with the Paxos consensus
protocol [1]). These two techniques implement a wait-free universal construction,
that is, a general mechanism to obtain responsive atomic objects [2]. It is how-
ever well-established that these two mechanisms are costly. This comes from the
fact that in both cases a server serializes all updates emitted by the clients, cre-
ating a potential bottleneck in the system. Furthermore, central servers require
human intervention to be constantly operational, and replicated state machines
are known to be difficult to deploy and maintain.

In this paper, we propose to delegate the logic of strongly consistent opera-
tions to the client side, and to replace the central server/replicated state machine
by a distributed shared memory. The resulting universal construction is depend-
able, while being conceptually simpler than state-machine-replication. Similar
� This work is sponsored in part by European Commission’s Seventh Framework Pro-
gram (FP7) under grant agreement No. 318809 (LEADS).

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 485–500, 2014.
c© Springer International Publishing Switzerland 2014

486 P. Sutra, É. Rivière, and P. Felber

in spirit to [3,4], or more recently [5], we aim at bridging the gap that exists in
practice between shared memory literature on universal constructions and their
counterparts in distributed systems. Our approach is nonetheless different as
we do not rely on a shared log to order all accesses, but instead make use of a
distinct set of registers to implement each object used by the application. This
leverages the intrinsic parallelism of the workload.

To achieve this, our first contribution is an obstruction-free universal construc-
tion on top of an asynchronous distributed shared memory that works even if the
participants are unknown. We base our construction on two novel abstractions: a
grafarius and a racing. A grafarius is close to the more common notion of ratifier,
or adopt-commit object [6,7]. A racing object encapsulates the behavior of algo-
rithms that repeatedly access new objects to progress. By combining these two
abstractions, we devise an obstruction-free universal construction whose time
complexity is optimal during contention-free executions.

Our previous solution makes use of an unbounded amount of memory to store
the state of the object it implements. We solve this problem with a second con-
tribution, in the form of a novel memory management mechanism. We formalize
the notion of recycled objects then propose a mechanism to recycle all the base
objects of our previous implementation. In a distributed system, the time com-
plexity of the resulting universal construction during uncontended executions is
constant, and it uses O(k2) shared registers, where k is the amount of processes
that actually access the construction.

Our third contribution is a practical assessment of this approach. We present
a prototype implementation on top of the Cassandra distributed data store [8]
which we compare to Zookeeper, a state-of-the-art coordination service [9].
Several empirical results show that our system achieves results comparable to
Zookeeper when clients rarely contend on shared objects, and that in addition,
it exhibits a good scalability factor. For instance, with 12 servers and when the
workload is completely parallel, our system is as dependable as a 3 servers de-
ployment of Zookeeper, while being 3.2 times faster. This last property comes
from the fact that our approach exhibits no bottleneck. Thus, the more it scales-
out, the more likely operations that access distinct objects execute in parallel
on the servers, improving performance.

Paper Outline. Section 2 surveys related work. In Section 3, we introduce
the notions of grafarius and racing objects, and we present our first universal
construction. We refine this construction to bound its memory footprint in Sec-
tion 4. Section 5 describes a prototype implementation of our algorithm on top
of Cassandra, and we evaluate it against Zookeeper. We close in Section 6. For
the sake of conciseness, all the proofs are deferred to our companion technical
report [10].

2 Related Work

Our work deals with the problem of transforming a sequential object into a
concurrent strongly-consistent one. Such a mechanism is named in literature a

A Practical Distributed Universal Construction 487

universal construction. At core of this construction is consensus, an abstraction
with which processes agree on the next state of the concurrent object. In a dis-
tributed system, the classical approach to implement consensus is the Paxos
algorithm [1]. Due to the impossibility result of Fischer et al. [11], Paxos is in-
dulgent [12]. This means that Paxos guarantees safety at all times but provides
progress only under favorable circumstances. The alpha of consensus [13] cap-
tures the indulgent part of Paxos. This notion is close to the ranked-register
object [14] which models the Disk Paxos algorithm of Gafni and Lamport [4].

Processes executing Paxos iteratively calls the alpha abstraction with a tuple
(k, v), where k is a round number and v some (appropriately chosen) proposal
value. Each such call translates the execution of a round in the original algorithm
of Lamport [1]. A ratifier, or adopt-commit, object [6] is a one-shot object encap-
sulating the safety property of a round. Hence, from a high-level perspective, the
alpha of consensus can be seen as successive (consistent) calls to adopt-commit
objects (see [7] or [15, Fig.5]). In Section 3.3, we present the racing object that
allows abstracting such iterative calls.

When there is no assumption on the proposed values, the result of Aspnes and
Ellen [16] tells us that the solo time complexity of an adopt-commit belongs to
Ω
(√

logn/ log logn
)
. Surprisingly, some consensus algorithms exhibit constant

solo decision time (e.g., [17]). This difference is explained by the convergence
property of adopt-commit objects which requires processes to commit a value
in case they all propose it. In Section 3.2, we introduce the notion of grafarius
object. A grafarius can be seen as an adopt-commit object with a weak con-
vergence property, namely a process has to commit its value only if it executes
solo. As shown in Section 3.4, we can build an obstruction-free consensus with
constant solo decision time on top of the grafarius and racing objects.

Some algorithms, e.g. [17,15] in shared-memory, or [4,14,3,5] in distributed
systems, use strong synchronization primitives to implement consensus. On the
contrary, our approach relies solely on a set of registers emulated by the un-
derlying distributed system. As a consequence of this choice, our universal con-
struction is obstruction-free. The work of Fich et al. [18] describes a practical
transformation to convert an obstruction-free algorithm into a wait-free one.
Jayanti et al. [19] proves an Ω(n) lower bound on the solo decision time and the
space complexity of obstruction-free implementations.

During a step-contention free execution, processes do not contend on the base
objects that implement the desired abstraction. The work of Attiya et al. [15]
studies obstruction-free implementations that only make use of history-less prim-
itives during step-contention free executions, but might rely on stronger ones
under contention. The authors show that such implementation have Ω(n) space
complexity, and that they exhibit Ω(log n) time complexity in step-contention
free executions.

The time complexity of the wait-free universal construction of Herlihy [2] is
O(n). Jayanti and Toueg [20] propose a variation of this construction which
does not use unbounded integers. The space complexity of this last algorithm
is O(n2). Attiya et al. [15] present an obstruction-free universal construction

488 P. Sutra, É. Rivière, and P. Felber

that employs an unbounded amount of memory. In Section 4.3, we describe a
space-bounded universal construction that works in the case where processes
participating to the construction are unknown. In a distributed system, it makes
use of O(k2) registers, where k is the amount of processes that actually access
the construction. To achieve this, we present a novel recycling mechanism in
Section 4.2. At core of our mechanism is the observation that properly recycled
grafarius objects can be concurrently accessed in different rounds.

3 The Construction

This section first introduces our system model. Then, it details the grafarius and
the racing objects. Based on these two abstractions, we further depict a consensus
algorithm that exhibits a constant time complexity in the contention-free case.
This algorithm is our core building block to obtain an efficient universal con-
struction. All the objects we present hereafter are depicted in the asynchronous
shared-memory model, and they all support a bounded yet unknown amount of
processes. These two assumptions reflect the message-passing system we target.

3.1 System Model and Notations
We consider an asynchronous message-passing system characterized by a com-
plete communication graph where both communication and computation are
asynchronous. Processes take their identities from some bounded set Π, with
n = |Π|. The set Π is not accessible to processes for computation, but they may
execute operations on the identities (e.g., equality tests).

During an execution, a process can fail-stop by crashing, but we assume
that at most �n

2 � − 1 such failures occur. There exists an implementation of
an asynchronous shared-memory (ASM) under such an assumption [21,22].
Consequently, we shall write all our algorithms in the ASM model where pro-
cesses communicate by reading and writing to atomic multi-writer multi-reader
(MWMR) registers.

In what follows, we detail how to implement higher level abstractions using
the shared registers. Most of the objects we describe in this paper are lineariz-
able [23]. An object is one-shot when a process may call one of its operations at
most once. When there is no limit to the number of times a process may invoke
the object’s operations, the object is long lived. Besides, we shall be considering
the following two progress conditions on the invocations and responses of opera-
tions [24]:(Obstruction-freedom) if at some point in time a process runs solo then
eventually it returns from the invocation; and (Wait-freedom) a process returns
from the invocation after a bounded number of steps.

In this paper, we are most interested in executions where processes rarely
contend on shared objects. The canonical case of such an execution is the solo
execution in which a single process executes computational steps. This class
of execution is appropriate for one-shot objects but we need extending it for
long-lived ones. To that end, we define the notion of contention-free execution
that is an execution during which calls to the implemented shared object do not

A Practical Distributed Universal Construction 489

Algorithm 1. Grafarius – code at process p
1: Shared Variables:
2: s // A splitter object
3: c // Initially, false
4: d // Initially, ⊥
5:
6: adoptCommit(u) :=
7: if ¬ s.split() then
8: c ← true
9: if d �= ⊥ then
10: return (adopt, d)

11: d ← u
12: return (adopt , u)

13: d ← u
14: if c then
15: return (adopt , u)

16: return (commit, u)

interleave. The contention-free time complexity of an algorithm is the worst case
number of steps made by a process during such executions.

3.2 Grafarius
The first abstraction we employ in our construction is a shared object named
grafarius. A grafarius is a one-shot object defined on a domain of values V . It ex-
ports a single operation adoptCommit(u ∈ V) that returns a pair (flag , v), with
flag ∈ {adopt , commit} and v ∈ V . During every history of a grafarius, and for
every process p that invokes adoptCommit (u), the following properties are satis-
fied:(Validity) If p adopts v, some process invoked the operation adoptCommit (v)
before. (Coherence) If p commits v, every process either adopts or commits v.
(Solo Convergence) If p returns from its invocation before any other process in-
vokes adoptCommit then p commits u. (Continuation) If some process returns
before p invokes adoptCommit , p adopts or commits a value proposed before it
invokes adoptCommit .

The grafarius is closely related to the notion of adopt-commit object in-
troduced by Gafni [6]. Nevertheless, the two abstractions are not comparable.
On the one hand, the solo convergence property of a grafarius is weaker than
the convergence property of an adopt-commit object. This avoids the lower
bound Ω

(√
logn/ log logn

)
on the time complexity to execute adoptCommit

in ASM [16], while being sufficient to implement obstruction-free consensus.
On the other hand, an adopt-commit object does not satisfy the continuation
property, meaning that a process can return a value (u, adopt) despite that such
invocation follows a call which returned (v, adopt). The continuation property
improves convergence speed under contention. This also makes the grafarius a
decidable object, which is needed by our memory management schema. We give
further details regarding this last point in Section 4.

Algorithm 1 depicts a wait-free implementation of a grafarius. This algorithm
makes use of a splitter object that detects a collision when two processes con-
currently access the shared object. We first remind below how a splitter works,
then we detail the internals of Algorithm 1.

490 P. Sutra, É. Rivière, and P. Felber

Algorithm 2. Racing on L – code at process p
1: Shared Variables:
2: L // A map from Π to N, initially ∅

3:
4: Local Variables:
5: F // A function from N to L
6: last // Initially, 0
7:
8: enter() :=
9: L[p] ← last
10: S ← codomain(L)
11: let m = max(S)
12: if last = m then
13: last ← m + 1
14: else
15: last ← m
16: return F(last)

The splitter object was first introduced by Lamport [25] then later formalized
by Moir and Anderson [26]. A splitter is a one-shot shared object that exposes a
single operation: split(). This operation takes no parameter and returns a value in
{true, false}.1 When a process returns true, we shall say that it wins the splitter;
otherwise it loses the splitter. When multiple processes call split(), at most one
receives the value true, and if a single process calls split(), this call returns true.
Furthermore, when a process calls split() after some other process returned, it
necessarily loses the splitter. A splitter is implementable in a wait-free manner
with atomic MWMR registers (see [26, Fig. 2] for further details).

Algorithm 1 works as follows. Upon calling adoptCommit (u), a process p tries
to win the splitter (line 7). If p fails, it raises the flag c to record that a collision
occurred, i.e., the fact that two processes concurrently attempted to commit a
value. Then, in case a decision was recorded, p adopts it; otherwise p adopts its
own value (lines 9 to 12). On the other hand, if p wins the splitter, it writes its
proposal u to the register d. Then, process p commits u if it detects no conflict,
otherwise p adopts it (lines 14 to 16).

3.3 Notion of Racing
Many algorithms (e.g., [3,27]) repeatedly access new objects to progress. A racing
is a long-lived object that captures such an iterative pattern. Its interface consists
of a single operation enter(p, l), defined on a countably infinite domain L of laps.
During a history h, a process p enters lap l when enter(p, l) occurs in h. Process
p leaves lap l when l is the last lap entered by p and p enters a new one. The
following invariant holds during every history of a racing:(Ordering) There exists
a strict total order ,h on the set of entered laps in h such that for every process
p that enters some lap l, either(i) some process left l before p enters it, or (ii) the
last lap left by p is the greatest lap smaller than l for the order ,h.

Let us consider an unbounded counter c at each process, and an indexing
function F from N to L. Whenever a process p enters a new lap, suppose that
1 A splitter is generally defined with the returned values {L, S,R}. Here, we make no
distinction between L and R.

A Practical Distributed Universal Construction 491

Algorithm 3. Consensus – code at process p
1: Shared Variables:
2: R // A racing on grafarius objects
3: d // Initially, ⊥
4:
5: propose(u) :=
6: while true do
7: if d �= ⊥ then
8: return d
9: o ← R.enter()
10: (f, u) ← o.adoptCommit(u)
11: if f = commit then
12: d ← u

p increments c and then returns the object F (c). This simple local algorithm
implements a linearizable racing. However, because this construction does not
bound the amount of laps a process has to retrieve before knowing the most
recent one, it might be expensive when contention occurs.

Algorithm 2 presents a more efficient approach that allows a process to skip
the laps it missed. This algorithm makes use of an initially empty shared map L
from Π to N. We map x to the value y via L when writing L[x] ← y; operation
codomain(L) returns the codomain of L. For some process p, the local variable
last stores the index of the last lap entered by p. When it calls enter(), process
p stores the last index in L (line 9). Then, p retrieves the content of L and
computes the maximum element m in its codomain. Process p assigns m+ 1 to
last , if last = m holds, and m otherwise (lines 12 to 15). The value of F (last) is
then returned as the result of the call.

Time Complexity. The adaptive collect object of Attiya et al. [28] can im-
plement the shared map L used in Algorithm 2, without having the knowledge
of Π. In such a case, the time complexity of Algorithm 2 is O(k), where k ≤ n
denotes the amount of processes that actually access the racing object.

3.4 Racing-Based Consensus

Using the racing abstraction introduced in the previous section, we now depict an
obstruction-free implementation of consensus. Recall that consensus is a shared
object whose interface consists of a single method propose . This method takes as
input a value from some set V and returns a value in V ensuring both (Validity) if
v is returned then some process invoked propose(v) previously, and (Agreement)
two processes always return the same value.

Algorithm 3 describes our implementation of consensus. In this algorithm,
processes compete on two shared abstractions: a racing R on grafarius objects,
and a decision register d. When a process p suggests a value u for consensus, it
attempts to commit u by entering the next grafarius object in R (line 9). Every
time p executes adoptCommit on a grafarius object o, p updates its proposed
value with the response returned by o (line 10). In case the grafarius returns a
committed value, this value is stored in d as the result of the call to propose
(lines 11 and 12).

492 P. Sutra, É. Rivière, and P. Felber

Algorithm 4. Universal Construction – code at process p
1: Shared Variables:
2: R // A racing on consensus objects
3:
4: Local Variables:
5: C // Initially, R.enter()
6: s // Initially, s0
7:
8: invoke(op) :=
9: while true do
10: d ← C.d
11: if d �= ⊥ then
12: s ← d[1]
13: C ← R.enter()
14: else
15: (s′, v) ← τ(s, op)
16: if s = s′ then
17: return v
18: d ← C.propose((p, s′))
19: if d[0] = p then
20: return v

Time Complexity. The call to the splitter object in Algorithm 1 requires four
computational steps [26]. Besides, the solo time complexity of the adaptive collect
object of Attiya et al. [28] belongs to O(1). It follows that Algorithm 3 solves
consensus in O(1) steps during solo executions.

This fast resolution of consensus allows us to implement a universal construc-
tion with a linear time complexity when no contention occurs. We detail our
approach in the next section.

3.5 A Fast Obstruction-Free Universal Construction
A universal construction is a general mechanism to obtain linearizable shared
objects from sequential ones. A sequential object is specified by some serial data
type that defines its possible states as well as its access operations. Formally, a
serial data type is an automaton defined bya set of states (States), an initial
state (s0 ∈ States), a set of operations (Op), a set of response values (Values),
and a transition relation (τ : States × Op → States × Values). Hereafter, and
without lack of generality, we shall assume that every operation op is total, i.e.,
States× {op} is in the domain of τ .

Algorithm 4 depicts our obstruction-free linearizable universal construction.
The algorithm uses a single shared variable: a racing on obstruction-free con-
sensus objects named R. When a process p invokes an operation via invoke(op),
p first checks the decision of the latest consensus object it entered (line 11). If
a decision was taken, p updates its local variable s with the new state of the
object. Then, p enters the next consensus (lines 12 to 13). Once p reaches the last
consensus that was decided, variable s stores a state of the object that is older
than the time at which p invoked op. At this point, process p executes tentatively
the operation on s and stores the result in the pair (s′, v). When s equals s′,
the invocation does not change the result of the object and p can immediately
returns v. Otherwise, p proposes the pair (p, s′) to change the state of the object
to s′. If it successes, process p returns the response v (lines 19 and 20).

A Practical Distributed Universal Construction 493

Time Complexity. As pointed out previously, the case we consider to be the
most frequent one is the contention-free case, that is when multiple processes
access the object but interleavings do not occur. In the worst case, a process
freshly calling invoke() in a contention-free execution first retrieves the largest
decided consensus, then it enters the next consensus and decides. From our
previous time complexity analysis of Algorithms 2 and 3 and the lower bound
result of Jayanti et al. [19], the contention-free time complexity of Algorithm 4
is optimal and belongs to Θ(k).

4 Managing Memory Usage

Every time the state of the object implemented by the universal construction
changes, Algorithm 4 accesses a new consensus instance. This implies that the
number of consensus instances is not bounded and may rapidly exhaust the
available memory. In this section, we present a novel recycling technique that
addresses this problem. To that end, we first introduce several definitions that
capture the notion of recycled objects. Then, we depict a mechanism to recycle
the objects used in Algorithm 4.

4.1 Preliminary Notions

Intuitively, every time an object is reused, it should behave according to its
specification. We formalize this idea in the definitions that follow.

Definition 1 (Round & Decomposition). Given some history h, a round r
of h is a sub-history of h such that every invocation complete in h is complete
in r. A decomposition of h is an ordered set of rounds {r1.rm≥1} satisfying
h = r1.rm.

Definition 2 (Recycled Object). Consider a history h of some object o. We
say that o is a recycled object of type T during h, when there exists a decompo-
sition of h such that every round r in this decomposition is a correct history for
an object of type T.

In order to illustrate these definitions, let us consider two processes p and q,
and a shared object o exporting an operation op. We can decompose history
h1 = invp,1(op).inv q,1(op).resq,1(op)u.resp,1(op)v.invp,2(op) in rounds r1 =
invp,1(op).invq,1(op).resq,1(op)u.resp,1(op)v and r2 = invp,2(op). However, if
we consider that op = propose and u �= v, there is no decomposition of h1 for
which o is a recycled consensus object.

The usual approach to recycle an object is to reset all its fields once the
processes have stopped accessing it, that is once all the operations pending in a
round have completed. The universal construction of Herlihy [2] implements this
idea by provisioning for each process O(n2) cells, each cell storing the state of
the implemented object. An array of O(n) bits associated to each cell indicates
when it can be reset by its owner.

494 P. Sutra, É. Rivière, and P. Felber

Since the participants to the universal construction are unknown in our con-
text, we cannot employ the previous approach. Instead, we propose to recycle
the objects used in Algorithm 4 by signing each modification with the round at
which it occurs. An operation that updates such an object will be oblivious to
modifications made in prior rounds. If now the operation is in late, that is when
a new round has started before it returns, the operation will observe the object
in a state consistent with one of the rounds to which it is concurrent. We develop
this idea in the next section, then apply it to Algorithm 4.

4.2 Recycling Objects
As a starter, let us remind the definition of a decidable object. This category
of objects contains consensus, but also the splitter and the grafarius objects we
described in Section 3.

Definition 3 (Decidable Object). A decidable object o is a shared object
whose state contains a decision register d taking its value in some set V, the
domain of o, union ⊥ /∈ V, and which initially equals ⊥. The object is said
decided when d ∈ V holds. For every operation op of o, once o is decided, there
exists some deterministic function f of d such that f(d) is a valid response value
for op.

As an example of the previous definition, let us consider a grafarius object. We
observe that when the decision register d does not equal ⊥, the pair (adopt , d)
is a sound response for the call adoptCommit .

The first step of our recycling mechanism consists in recycling the MWMR
registers that form the basic building blocks of our algorithms. We detail it
below.

(Construction 1) Let (T , <) be a set of timestamps totally ordered by some
relation < and containing a smallest element 0 ∈ T . For every register x
having some initial state s0 , we initialize x to (0, s0). Then, consider some
timestamp t. When a value v is written to x, we write (t, v) to x. Now, upon
reading from x, the value returned is the value u in the case where x contains
(t′, u) with t ≤ t′, and s0 otherwise.

In a second step, we extend this technique to decidable objects as follows.

(Construction 2) For some decidable object o, a call to recycle(o, t) returns a
copy of o such that upon a call to an operation op of o,(i) if the object is
decided then we return f(d), and otherwise (ii) op is executed but read and
write operations on the shared registers that implement o are replaced by
the steps described in Construction 1 using timestamp t.

For some decidable object o, we shall write recycle(o) the object obtained by
proxying every call to the operations of o by corresponding calls to recycle(o, t)
for some timestamp t.

Proposition 1 establishes that, provided the timestamps are appropriate,
recycle(o) implements a recycled object of the same type as o.

A Practical Distributed Universal Construction 495

Algorithm 5. Universal Construction – code at process p
1: Shared Variables:
2: L // A map from Π to N, initially ∅

3:
4: Local Variables:
5: F // A function from N to consensus objects
6: s // Initially, s0
7: last // Initially, 0
8: ts // Initially, 0
9: C // Initially, enter()
10:
11: invoke(op) :=
12: while true do
13: d ← C.d
14: if d �= ⊥ then
15: (s, last , ts) ← (d[1], d[2], d[3])
16: C ← enter()
17: else
18: (s′, v) ← τ(s, op)
19: if s = s′ then
20: return v
21: d ← C.propose((p, s′, free(), ts + 1))
22: if d[0] = p then
23: return v

24: function free() :=
25: S ← codomain(L)
26: let (γ, Γ) = (min(S),max(S))
27: if γ > 0 then
28: return γ − 1

29: return Γ + 1

30: function enter() :=
31: L[p] ← last
32: return recycle(F(last), ts)

Proposition 1. Consider a decidable object o of type T and some history h of
recycle(o) during which the following invariant holds:
(P1) For any pair of operations op and op′, executed respectively on recycle(o, t)

and recycle(o, t′) in h, if op′ does not precede op in h and t′ < t holds, there
exists an operation on recycle(o, t′) that precedes op′ in h and writes to the
decision register d of o.

Then, recycle(o) implements a recycled object of type T during history h.

4.3 Application
Algorithm 5 depicts our second obstruction-free universal construction. In com-
parison to Algorithm 4, we introduce two modifications:(i) processes now compete
to decide which consensus will store the next state of the object, and (ii) consensus
objects are recycled using the mechanism we presented in Construction 2.

With more details, Algorithm 5 works as follows. We implement a racing
on consensus objects with variables L and F . When an operation changes the
state of the implemented object, the calling process proposes to consensus the
new state s′ together with the index of the consensus object that will be used
next and its associated timestamp (line 21). The index is determined by a call
to the function free(). This function retrieves the codomain of L, and com-
putes the smallest consensus index that is not currently accessed by a process
(lines 25 to 29). In case all objects between 0 and Γ are busy, where Γ is the
greatest index accessed so far, the index Γ + 1 is returned.

Algorithm 5 recycles the consensus objects in the codomain of F using the
timestamping schema we introduced in Section 4.2. During an execution, for
every object recycle(o) with o ∈ codomain(F), the algorithm maintains the
invariant P1 of Proposition 1. This ensures that accesses to variables L and F
implement a racing on consensus objects, reducing Algorithm 5 to Algorithm 4.

496 P. Sutra, É. Rivière, and P. Felber

Time and Space Complexity. The contention-free time complexity of Algo-
rithm 5 is the same as for Algorithm 4, i.e., it belongs to Θ(k) in ASM. From
the code of function free(), Algorithm 5 employs at most k+1 consensus objects.
In a distributed system, a quorum system can implement a collect object by em-
ulating O(k) shared registers. It results that in such a model the contention-free
time complexity of Algorithm 5 measured in message delay is O(1), and that its
space complexity belongs to O(k2).

5 Empirical Assessment

To assess the practicability of our approach, we evaluate in this section a pro-
totype implementation of Algorithm 5. This implementation is built on top of
the Apache Cassandra distributed data store [8] which provides a distributed
shared memory using consistent hashing and quorums of configurable sizes. In
what follows, we describe the internals of our implementation then detail its
performance in comparison to the Apache Zookeeper coordination service [9].
For the sake of reproducibility, the source code of our implementation, as well
as the scripts we run during the experiments, are publicly available [29].

5.1 Implementation Details
Cassandra offers a data model close to the classical relational model at core of
the database systems. The smallest data unit in Cassandra is a column, a tuple
that contains a name, a value and a timestamp. Columns are grouped by rows,
and a column family contains a set of rows. Each row is indexed by a key, and
stored at a quorum of replicas (following a consistent hashing strategy). A client
can read a whole row and write a column. The consistency of such operations
is tunable in Cassandra. When the cluster running Cassandra is synchronized
and both read and write operations operate on quorums, Cassandra provides an
atomic snapshot model. This storage system also supports eventually consistent
operations. When this consistency level is employed, a write operation accesses a
quorum of replicas, while a read occurs at a single replica. Cassandra reconciles
replicas via a timestamp-based mechanism in the background.

Prototype Implementation. Our implementation uses the Python programming
language and it consists of the different shared objects we detailed in the pre-
vious sections (splitter, grafarius, consensus, and universal construction). The
conciseness of Python allows the whole implementation to contain around 1,000
lines of code. Our implementation closely follows the pseudo-code of the algo-
rithms. Each object corresponds to a row in a column family, and is named after
the type of the object. When an object relies on lower-level abstractions, e.g.,
consensus employs multiple grafarius objects, the objects’ keys at the low-level
are named after the key at the higher one, e.g., consensus:12:grafarius:3. By
changing the consistency of the decision register d in Algorithm 3, we can tune
the consistency of our universal construction. When d is eventually consistent,
the universal abstraction is sequentially consistent for read operations; otherwise
it is linearizable. In Zookeeper, updates are linearizable while read operations

A Practical Distributed Universal Construction 497

are sequentially consistent. For that reason, when we compare the performance
of our implementation to Zookeeper during the experiments, we use the sequen-
tially consistent variation of our algorithm.

5.2 Evaluation
We conducted our experiments on a cluster of virtualized 8-core Xeon 2.5 Ghz
machines running Gentoo Linux, and connected with a virtualized 1 Gbps
switched network. Network characteristics, as measured by ping and netperf, are
0.3 ms for a round-trip and a bandwidth of 117MB/s. Each machine is equipped
with a virtual hard-drive whose read/write (uncached) performance, as measured
with hdparm and dd, is 246/200 MB/s. A server machine runs either Cassandra
or Zookeeper. A client machine emulates multiple clients accessing concurrently
the shared objects. During an experiment, a client executes 104 accesses to one
or more objects. We used 1 to 20 clients machines, emulating 1 to 100 clients
each, and 3 to 12 server machines. In all our experiments, the client machines
were not a bottleneck.

0

10

20

30

40

50

60

0 5 10 15 20

L
at

en
cy

(m
s)

Clients

Mapp = 10

Mapp = 20

Mapp = 40

M = 10

M = 20

M = 40

Fig. 1. Compare-And-Swap

Compare-and-swap. We first evaluate
in Figure 1 the performance of our
implementation when clients execute
compare-and-swap operations, and the
system is composed of 3 server ma-
chines. Recall that a compare-and-
swap object exposes a single operation:
C&S (u, v). This operation ensures that
if the old value of the object equals u,
it is replaced by v. In such a case, the
operation returns true; otherwise it re-
turns false. In Figure 1, we plot the la-
tency to execute a compare-and-swap operation as a function of the number of
clients and the arguments of the operations. The initial state of the compare-
and-swap object is 0. Each client executes in closed-loop an operation C&S (k, l),
where k and l are taken uniformly at random from the interval �0,M� with M
some maximum value.

When the size of the interval �0,M� shrinks, each C&S () operation is more
likely to success in transforming the state of the object; hence contention
increases. Consequently, as observed in Figure 1, performance degrades. Con-
tention between clients occur mainly on the splitter objects that form the build-
ing blocks of Algorithm 1. We briefly analyze how contention is related to
performance next.

An operation C&S (u, v) is successful when the state is changed from u to v.
Let us note ρ the ratio of successful operations, that is 1/M , and λs (respectively
λf) the latency to execute solo a successful (resp. failed) operation. In Figure 1,
the light lines (Mapp) plot for each value of M the curve λf (1− ρ) + λsρn. This
is a reasonable approximation where the term λsρn follows Little’s law [30] and
translates the convoy effect [31] on successful operations.

498 P. Sutra, É. Rivière, and P. Felber

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350

L
at

en
cy

(m
s)

Avrg. Inter-arrival Time (ms)

Algorithm 5

Zookeeper

Fig. 2. Critical Section

Critical section In Figure 2, we com-
pare the performance of our imple-
mentation and Zookeeper when clients
access a critical section (CS). Such an
object is not in line with the non-
blocking approach, but it is commonly
used in distributed applications. We
implemented the CS on top of our
universal construction using a back-off
mechanism. For Zookeeper, we em-
ployed the recipe described in [9]. Fig-
ure 2 presents the average time a client
takes to enter then leave the CS, and we
vary the inter-arrival time of clients in
the critical section according to a Pois-
son distribution.

We observe in Figure 2 that when the inter-arrival time is high, and thus
little contention occurs, a client accesses the CS with Zookeeper in 20 ms. For
Algorithm 5, it takes 60 ms, but the performance degrades quickly when clients
access more frequently the CS. This comes from the fact that(i) we implemented
a spinlock and thus clients are constantly accessing the system, and (ii) as pointed
out previously, when clients are competing on splitter objects, the performance
of our algorithm degrades.

0

10

20

30

40

50

Zk 3 6 9 12

T
h
ro

u
gh

p
u
t
(x

10
00

op
/s

)

Fig. 3. Scalability

Scalability Our last set of experi-
ments assesses the scalability of our ap-
proach. To that end, we compute the
maximal throughput of our prototype
implementation when clients access dif-
ferent objects, precisely C&S () forM =
10. The amount of available server ma-
chines varies from 3 to 12 servers. In
all cases, we implement a register with
the help of a quorum of 3 servers. We
compare our results to an instance of
3 Zookeeper machines. Zookeeper does
not implement natively a compare-and-swap operation. We devised the follow-
ing implementation relying on the versioning mechanism exposed to the clients
by Zookeeper. When a client executes C&S (u, v) it first retrieves the value w
and the attached version k of the znode identifying the object. In case w = u,
the client attempts writing v with version k + 1. If this write fails, the client
re-executes C&S (u, v). In our experiments, a single client accesses each object.
Thus it never retries and this implementation is optimal.

Figure 3 depicts the maximal throughput with 3 to 12 servers. With 3 servers,
our system delivers 18.4K op/s and ZooKeeper 12.6K op/s. The bottleneck na-
ture of the ZooKeeper leader which serializes all updates explains this gap.

A Practical Distributed Universal Construction 499

Our prototype achieves 33K op/s when using 9 servers, and 40K op/s with 12.
In this last case, our system is 3.2 times faster than Zookeeper on 3 machines.

6 Conclusion

This paper presents a novel algorithmic solution to implement a distributed uni-
versal construction when participants are unknown. Contrary to previous works,
which mostly focus on state machine replication, our approach employs solely
a distributed asynchronous shared memory, the logic of consistent operations
being delegated to the client side. Hence, and as exemplified by our prototype,
we can implement it in a client library that runs on top of an off-the-shelf dis-
tributed shared memory. To obtain this result, we introduce two novel shared
abstractions: a grafarius and a racing, which we believe are of interest on their
own. We also present a new mechanism to recycle the base objects at core of our
construction.

References

1. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169
(1998)

2. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1),
124–149 (1991)

3. Balakrishnan, M., Malkhi, D., Prabhakaran, V., Wobber, T., Wei, M., Davis, J.D.:
Corfu: A shared log design for flash clusters. In: Proceedings of the 9th USENIX
Conference on Networked Systems Design and Implementation, NSDI 2012,
pp. 1–1. USENIX Association, Berkeley (2012)

4. Gafni, E., Lamport, L.: Disk paxos. In: Herlihy, M.P. (ed.) DISC 2000. LNCS,
vol. 1914, pp. 330–344. Springer, Heidelberg (2000)

5. Balakrishnan, M., Malkhi, D., Wobber, T., Wu, M., Prabhakaran, V., Wei, M.,
Davis, J.D., Rao, S., Zou, T., Zuck, A.: Tango: Distributed data structures over
a shared log. In: 24th ACM Symposium on Operating Systems Principles, SOSP
(2013)

6. Gafni, E.: Round-by-round fault detectors (extended abstract): unifying synchrony
and asynchrony. In: Proceedings of the Seventeenth Annual ACM Symposium on
Principles of Distributed Computing, PODC 1998, pp. 143–152. ACM, New York
(1998)

7. Aspnes, J.: A modular approach to shared-memory consensus, with applications to
the probabilistic-write model. In: Proceedings of the 29th ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, PODC 2010, pp. 460–467.
ACM, New York (2010)

8. Lakshman, A., Malik, P.: Cassandra: A decentralized structured storage system.
SIGOPS Oper. Syst. Rev. 44(2) (April 2010)

9. Junqueira, F.P., Reed, B.C.: The life and times of a ZooKeeper. In: PODC 2009:
Proceedings of the 28th ACM Symposium on Principles of Distributed Computing,
pp. 4–4. ACM, New York (2009)

10. Sutra, P., Rivière, E., Felber, P.: A practical distributed universal construction
with unknown participants. CoRR abs/1309.2772 (2013)

500 P. Sutra, É. Rivière, and P. Felber

11. Fischer, M.J., Lynch, N.A., Patterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

12. Guerraoui, R.: Indulgent algorithms (preliminary version). In: PODC 2000,
pp. 289–297. ACM, New York (2000)

13. Guerraoui, R., Raynal, M.: The information structure of indulgent consensus. IEEE
Trans. Comput. 53(4), 453–466 (2004)

14. Chockler, G., Malkhi, D.: Active disk paxos with infinitely many processes. In:
Proceedings of the Twenty-first Annual Symposium on Principles of Distributed
Computing, PODC 2002, pp. 78–87. ACM, New York (2002)

15. Attiya, H., Guerraoui, R., Hendler, D., Kuznetsov, P.: The complexity of
obstruction-free implementations. J. ACM 56(4), 24:1–24:33 (2009)

16. Aspnes, J., Ellen, F.: Tight bounds for anonymous adopt-commit objects. In:
23rd Annual ACM Symposium on Parallelism in Algorithms and Architectures,
pp. 317–324 (June 2011)

17. Luchangco, V., Moir, M., Shavit, N.N.: On the uncontended complexity of con-
sensus. In: Fich, F.E. (ed.) DISC 2003. LNCS, vol. 2848, pp. 45–59. Springer,
Heidelberg (2003)

18. Fich, F.E., Luchangco, V., Moir, M., Shavit, N.N.: Obstruction-free algorithms
can be practically wait-free. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724,
pp. 78–92. Springer, Heidelberg (2005)

19. Jayanti, P., Tan, K., Toueg, S.: Time and space lower bounds for nonblocking
implementations. SIAM J. Comput. 30(2), 438–456 (2000)

20. Jayanti, P., Toueg, S.: Some results on the impossibility, universality, and decid-
ability of consensus. In: Segall, A., Zaks, S. (eds.) WDAG 1992. LNCS, vol. 647,
pp. 69–84. Springer, Heidelberg (1992)

21. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing
systems. J. ACM 42(1), 124–142 (1995)

22. Lynch, N.A., Shvartsman, A.A.: Robust emulation of shared memory using dy-
namic quorum-acknowledged broadcasts. In: Proceedings of the 27th International
Symposium on Fault-Tolerant Computing (FTCS 1997). IEEE Computer Society,
Washington, DC (1997)

23. Herlihy, M., Wing, J.: Linearizability: A correcteness condition for concurrent ob-
jects. ACM Trans. on Prog. Lang. 12(3), 463–492 (1990)

24. Herlihy, M., Shavit, N.: On the nature of progress. In: Fernàndez Anta, A.,
Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 313–328. Springer,
Heidelberg (2011)

25. Lamport, L.: A fast mutual exclusion algorithm. ACM Trans. Comput. Syst. 5(1),
1–11 (1987)

26. Moir, M., Anderson, J.: Fast, long-lived renaming. In: Tel, G., Vitányi, P.M.B.
(eds.) WDAG 1994. LNCS, vol. 857, pp. 141–155. Springer, Heidelberg (1994)

27. Guerraoui, R., Ruppert, E.: Anonymous and fault-tolerant shared-memory com-
puting. Distributed Computing 20(3), 165–177 (2007)

28. Attiya, H., Fouren, A., Gafni, E.: An adaptive collect algorithm with applications.
Distributed Computing 15(2), 87–96 (2002)

29. Sutra, P.: (2013), http://github.com/otrack/pssolib
30. Allen, A.O.: Probability, Statistics, and Queueing Theory with Computer Science

Applications. Academic Press Professional, Inc., San Diego (1990)
31. Blasgen, M., Gray, J., Mitoma, M., Price, T.: The convoy phenomenon. SIGOPS

Oper. Syst. Rev. 13(2), 20–25 (1979)

http://github.com/otrack/pssolib

Author Index

Abraham, Uri 453
Aghazadeh, Zahra 404
Amram, Gal 453
Androulaki, Elli 76
Avva, Bharadwaj 17

Barjon, Matthieu 277
Bouzid, Zohir 139

Cachin, Christian 1, 76
Casteigts, Arnaud 277
Chaumette, Serge 277
Chlebus, Bogdan S. 186
Czygrinow, Andrzej 49

Datta, Ajoy K. 293
Delbot, François 307
De Marco, Gianluca 186
Demirbas, Murat 17
Dobre, Dan 76
Dotti, Fernando Lúıs 123
Drachsler-Cohen, Dana 355
Duan, Sisi 91

Eikel, Martina 107

Fatourou, Panagiota 420
Felber, Pascal 485
Flocchini, Paola 217
Fraigniaud, Pierre 155

Gafni, Eli 139
Gelashvili, Rati 171
Ghaffari, Mohsen 171

Hanćkowiak, Michal 49
Hassan, Ahmed 437

Izumi, Taisuke 60
Izumi, Tomoko 233

Jalili Marandi, Parisa 123
Johnen, Colette 277

Kakugawa, Hirotsugu 339
Kamei, Sayaka 233
Kanellou, Eleni 420

Kosmas, Eleftherios 420
Kowalski, Dariusz R. 186
Kulkarni, Sandeep S. 17
Kutten, Shay 323
Kuznetsov, Petr 139

Laforest, Christian 307
Larmore, Lawrence L. 293
Leone, Marcelo 17
Li, Jerry 171
Lukovszki, Tamás 248

Madappa, Deepak 17
Masuzawa, Toshimitsu 293, 339
Meling, Hein 91
Mendizabal, Odorico M. 123
Meyer auf der Heide, Friedhelm 248
Miller, Avery 263
Mittal, Neeraj 388

Neggaz, Yessin M. 277
Newport, Calvin 202
Nguyen, Nhan 372

Ohrimenko, Olga 1
Ooshita, Fukuhito 339

Palmieri, Roberto 33, 437
Pedone, Fernando 123
Peisert, Sean 91
Pelc, Andrzej 263
Peluso, Sebastiano 33
Petrank, Erez 355
Platz, Kenneth 388
Prencipe, Giuseppe 217

Rabbi, Md Forhad 420
Rajsbaum, Sergio 155
Ravindran, Binoy 33, 437
Raynal, Michel 469
Rivière, Étienne 485
Rovedakis, Stéphane 307
Roy, Matthieu 155

Santoro, Nicola 217
Scheideler, Christian 107

502 Author Index

Setzer, Alexander 107
Shavit, Nir 171
Sherr, Micah 202
Stainer, Julien 469
Sudo, Yuichi 339
Sundell, H̊akan 372
Sutra, Pierre 485
Szymańska, Edyta 49

Tan, Henry 202
Taubenfeld, Gadi 469
Travers, Corentin 155
Trehan, Chhaya 323
Tsigas, Philippas 372
Turcu, Alexandru 33

Venkatesan, Subbarayan 388

Viglietta, Giovanni 217

Vukolić, Marko 76

Wacek, Chris 202

Wattenhofer, Roger 60

Wawrzyniak, Wojciech 49

Witkowski, Marcin 49

Woelfel, Philipp 404

Yamauchi, Yukiko 233

Zhang, Haibin 91

	Preface
	Organization
	Salt: Combining ACID and BASE in a Distributed Database
	Distributed Large-Scale Data Stream Analysis
	Integrity, Consistency, and Verification of Remote Computation
	Table of Contents
	Consistency
	Verifying the Consistency of Remote Untrusted Services with Commutative Operations
	1Introduction
	1.1 Related Work

	2Definitions
	3The Commutative-Operation Verification Protocol
	4Authenticated Computation
	4.1Authenticated COP
	4.2Server
	4.3Client

	5Conclusion
	References

	Logical Physical Clocks
	1Introduction
	1.1Brief History of Time
	1.2Contributions of This Work

	2Preliminaries
	3HLC: Hybrid Logical Clocks
	3.1Problem Statement
	3.2Description of the Naive Algorithm
	3.3HLC Algorithm
	3.4Properties of HLC

	4 Resilience of HLC
	4.1Self-stabilization
	4.2Masking of Synchronization Errors

	5Experiments
	5.1AWS Deployment Results
	5.2Stress Testing and Resilience Evaluation in Simulation

	6Discussion
	6.1Snapshots
	6.2Compact Timestamping Using l and c
	6.3Other Related Work

	7Conclusion
	References

	Be General and Don't Give Up Consistency in Geo-Replicated Transactional Systems
	1 Introduction
	2Related Work
	3 Assumptions and System Model
	4Alvin: Geo-Replicated Transactional System
	4.1Partial Order Broadcast Layer
	4.2Parallel Concurrency Control Layer

	5Evaluation
	6Conclusion
	References

	Distributed Graph Algorithms
	Distributed Local Approximation of the Minimum k-Tuple Dominating Set in Planar Graphs
	1Introduction
	2Lower Bounds
	3Notation and Tools
	3.1Bunches

	4The 7-Approximation
	4.1The Proof of Theorem 1

	5Summary
	References

	Time Lower Bounds for Distributed Distance Oracles
	1Introduction
	1.1Background
	1.2Distance Oracles
	1.3Our Contribution
	1.4Related Work
	1.5Roadmap

	2Preliminaries
	2.1Round-Based Synchronous Systems
	2.2Problem Definition

	3Lower Bound for Unweighted Graphs
	3.1Two-Party Communication Complexity
	3.2Gadget Construction

	4Lower Bound for Weighted Graphs
	5Lower Bound for Bounded Label Size Oracles
	6Conclusion
	References

	Fault Tolerance
	Erasure-Coded Byzantine Storage with Separate Metadata
	1Introduction
	2Related Work
	3Definitions
	4Protocol AWE
	4.1Protocol Overview
	4.2Details

	5Complexity Comparison
	6Necessity of Cryptography
	7Conclusion
	References

	BChain: Byzantine Replication with High Throughput and Embedded Reconfiguration
	1Introduction
	2System Model
	3BChain-3
	3.1Conventions and Notations
	3.2Protocol Overview
	3.3Chaining
	3.4Re-chaining
	3.5View Change
	3.6Reconfiguration
	3.7Optimizations

	4BChain without Reconfiguration
	5Evaluation
	5.1Performance under Failures
	5.2A BFT Network File System

	6 Related Work
	7Conclusion
	References

	RoBuSt: A Crash-Failure-Resistant DistributedStorage System
	1Introduction
	1.1Model and Preliminaries
	1.2Related Work
	1.3Our Contribution

	2Underlying Datastructure
	2.1Internal Storage Strategy of the Buckets

	3The Write Protocol
	3.1Preprocessing Stage
	3.2Writing Stage Overview

	4The Lookup Protocol
	4.1The Preprocessing Stage
	4.2 The Zone Examination Stage

	5Conclusion and Future Work
	References

	Checkpointing in Parallel State-Machine Replication
	1Introduction
	2System Model and Assumptions
	3Parallel State-Machine Replication
	4Checkpointing in P-SMR
	4.1blackCoordinated Checkpointing
	4.2blackUncoordinated Checkpointing
	4.3Coordinated versus Uncoordinated Checkpointing

	5Performance Analysis
	Simulations
	Implementation

	6Related Work
	7Conclusion
	References

	Models
	Strong Equivalence Relations for Iterated Models
	1Introduction
	2Related Work
	3Definitions
	4From AS to IIS: Resolving and Bringing to the Front
	5From IIS to AS: Identical Snapshots and Helping
	6Conclusion
	References

	The Opinion Number of Set-Agreement
	1Introduction
	2Preliminaries
	3Wait-Free Languages Monitoring
	4Monitoring k-Set Agreement
	5Opinion Number of (n,k)-Set Agreement
	5.1Preliminaries
	5.2The Lower Bound

	References

	On the Importance of Registers for Computability
	1Introduction
	2Consistent Sets and Two Consensus
	3Unbounded Number of Objects
	References

	Radio Networks
	Scalable Wake-up of Multi-channel Single-Hop Radio Networks*
	1Introduction
	2Technical Preliminaries
	3A Lower Bound for Deterministic Algorithms
	4A General Deterministic Algorithm
	5A Deterministic Algorithm for Sufficiently Many Channels
	6A Randomized Algorithm
	References

	A Disruption-Resistant MAC Layer for Multichannel Wireless Networks
	1Introduction
	2Model and Problems
	3Upper and Lower Bounds
	3.1Non-adaptive Broadcast Algorithm
	3.2Adaptive Broadcast Algorithm
	3.3Broadcast Lower Bounds
	3.4Unicast Algorithm

	4Evaluation: A Disruption-Resistant Link Layer Protocol
	4.1Experimental Setup
	4.2Performance Results

	5Conclusion
	References

	Robots
	Distributed Computing by Mobile Robots: Solving the Uniform Circle Formation Problem
	1Introduction
	2Definitions
	3The Algorithm
	3.1High-Level Description
	3.2Basic Tools
	3.3The Initial Tests
	3.4The Intermediate Tests
	3.5The Periodic Test
	3.6The Aperiodic Tests

	4Correctness
	References

	Approximation Algorithms for the Set Cover Formation by Oblivious Mobile Robots
	1Introduction
	2Preliminaries
	2.1System Model
	2.2The Set Cover Formation (SCF) Problem

	3Minimal Set Cover Formation Algorithm
	4An Approximation Algorithm for the Minimum SCF Problem
	4.1The Shifting Strategy
	4.2An Approximation Algorithm

	5 Conclusion
	References

	Fast Collisionless Pattern Formation by Anonymous, Position-Aware Robots
	1Introduction
	1.1Our Contribution

	2Related Work
	3Collisionless Routing Towards a Point g
	3.1The x-y Routing Algorithm

	4The Lemmings Problem
	4.1Lower Bound
	4.2Upper Bound

	5Forming a Connected Configuration Containing g
	6Forming an Axis Parallel Line Segment Containing g as an End Point
	6.1Forming the Horizontal Line Segment L

	7Forming an Arbitrary Connected Pattern F
	7.1Forming F
	Focused Coverage Problem, When n Is Known for All Nodes

	8Summary
	References

	Tradeoffs between Cost and Information for Rendezvous and Treasure Hunt
	1Introduction
	2Preliminaries
	3Treasure Hunt in Arbitrary Graphs
	4Treasure Hunt in Trees
	5Conclusion
	References

	Self-Stabilization
	Maintaining a Spanning Forest in Highly Dynamic Networks: The Synchronous Case
	1Introduction
	1.1Related Work
	1.2The Spanning Forest Principle
	1.3Our Contribution

	2Model and Notations
	3The Spanning Forest Algorithm
	3.1State Variables
	3.2Structure of a Message (and Associated Variables)
	3.3Informal Description of the Algorithm

	4Outline of the Correctness Analysis
	4.1Helping Definitions
	4.2Consistency
	4.3Correctness of the Forest

	5Simulation on Real World Traces (Infocomm 2006)
	References

	A Communication-Efficient Self-stabilizing Algorithm for Breadth-First Search Trees
	1Introduction
	2Preliminaries
	2.1Self-stabilization
	2.2Communication Efficiency

	3BFS Tree Computation with Distinguished Root and UID
	3.1Simple BFS Construction
	3.2Variables and Functions of ROOT-UID
	3.3Actions of ROOT-UID
	3.4The Three Color Scheme
	3.5Example Computation Showing the Three Color Scheme
	3.6The Purpose of Polarity
	3.7Proof Sketches for ROOT-UID

	4Conclusion
	References

	Self-stabilizing Algorithms for Connected Vertex Cover and Clique Decomposition Problems
	1Introduction
	2Model
	3Connected Minimal Clique Partition Problem
	3.1Related Works
	3.2Self-stabilizing Construction

	4Self-stabilizing Connected Vertex Cover
	4.1Related Works
	4.2Self-stabilizing Construction

	5Conclusion
	References

	Fast and Compact Distributed Verification and Self-Stabilization of a DFS Tree
	1Introduction
	1.1Additional Related Work
	1.2Our Contribution
	1.3Outline of the paper

	2Preliminaries
	2.1Notation

	3 DFS Verification: Verifier V
	3.1Intermediate Computations
	3.2Local Interval Predicates

	4Generating the Labels: Marker M
	5The Silent-Stabilizing DFS Construction Algorithm
	5.1Achieving Silent-Stabilization

	6Correctness and Performance Analysis
	7Self-stabilizing DFS token circulation
	References

	Loosely-Stabilizing Leader Election on Arbitrary Graphs in Population Protocols
	1Introduction
	1.1Our Contribution

	2Preliminaries
	2.1Chernoff Bounds

	3Leader Election with Identifiers
	4Leader Election with Random Numbers
	5Conclusion
	References

	Shared Data Structures
	LCD: Local Combining on Demand
	1Introduction
	2Background
	2.1The Lazy-List
	2.2The Java Reentrant Lock

	3Overview
	4Implementation Details
	4.1The Request Object
	4.2The LCD Lock
	4.3LCD-List

	5Correctness
	6Performance Evaluation
	7Summary
	References

	ParMarkSplit: A Parallel Mark-Split Garbage Collector Based on a Lock-Free Skip-List
	1Introduction
	2Concurrent Skip-List with Extended Functionality
	2.1Implementation
	2.2Correctness

	3Parallel Mark-Split
	3.1Lazy Splitting
	3.2Implementation

	4Evaluation
	4.1Stop-the-world Scenario
	4.2Concurrent Scenario
	4.3Memory Usage
	4.4Characterization of Applications That Benefit from ParMarkSplit

	5Conclusion
	References

	Practical Unrolled Linked Lists Using Lazy Synchronization
	1Introduction
	2Related Work
	3System Model
	4An Unrolled Linked List Using Lazy Synchronization
	4.1Algorithm Overview
	4.2Algorithm Detail
	4.3Correctness Proof

	5Experimental Evaluation
	5.1Experiment Setup
	5.2Experimental Results

	6Conclusions and Future Work
	References

	Shared Memory
	Space- and Time-Efficient Long-Lived Test-And-Set Objects
	1Introduction
	2Model and Definitions
	3Base Algorithm
	3.1Bounding the Space
	3.2Bounding Sequence Numbers

	4Space-Optimal and Fast Long-Lived Test-And-Set
	5Long-Lived Test-And-Set with Constant Time Reset
	6Correctness of the Base Algorithm
	7Conclusion
	References

	WFR-TM: Wait-Free Readers without Sacrificing Speculation of Writers
	1Introduction
	2Model
	3WFR-TM
	4Discussion
	References

	On Developing Optimistic Transactional Lazy Set
	1Introduction
	2Optimistic Transactional Boosting
	3OTB-Set
	3.1Preliminaries
	3.2Non-optimized OTB-Set
	3.3Optimized OTB-Set

	4Correctness
	5Experimental Evaluation
	6Conclusions
	References

	Synchronization and Universal Construction
	On the Mailbox Problem
	1Introduction: The Mailbox Problem
	1.1A Condition Equivalent to Linearizability

	2The 4/4 Mailbox Algorithm
	2.1Correctness of the Algorithm

	3Space Lower Bound
	4Conclusions
	References

	Distributed Universality
	1Introduction
	2Basic and Enriched Models, and Wait-Free Linearizable Implementation
	2.1Basic Read/Write Model and Enriched Model
	2.2Correct Object Implementation

	3A New Non-blocking k-Universal Construction
	3.1A new Non-blocking k-Universal Construction: Data Structures
	3.2Eliminating Full Object Histories
	3.3A New Non-blocking (k,1)-Universal Construction: Algorithm

	4 A Contention-Aware Wait-Free (k,)-Universal Construction
	4.1A Contention-Aware Non-blocking k-Universal Construction
	4.2On the Process Side: From Non-blocking to Wait-Freedom
	4.3On the Object Side: From One to Objects That Always Progress

	5 Conclusion
	References

	A Practical Distributed Universal Construction with Unknown Participants
	1Introduction
	2Related Work
	3The Construction
	3.1System Model and Notations
	3.2Grafarius
	3.3Notion of Racing
	3.4Racing-Based Consensus
	3.5A Fast Obstruction-Free Universal Construction

	4Managing Memory Usage
	4.1Preliminary Notions
	4.2Recycling Objects
	4.3Application

	5Empirical Assessment
	5.1Implementation Details
	5.2Evaluation

	6 Conclusion
	References

	Author Index

