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1 Introduction

The flow past a circular cylinder is associated with different types of instabilities
which involve the wake, the separated shear layers and the boundary layer. A com-
prehensive description of the flow phenomena at different Reynolds numbers (Re)
can be found in [15]. It is well known that when the Reynolds number approaches
2× 105 the boundary layer undergoes a transition from laminar to turbulent regime.
The range of Reynolds numbers up to∼3.5×105 is characterised by a rapid decrease
of the drag coefficient with the Reynolds number. Another feature which charac-
terises this regime is the presence of asymmetric forces during the transition regime
as reported experimentally [2]. During this transition, the separation point moves
towards the rear end of the cylinder until it reaches a stationary point with a sta-
ble drag coefficient. This marks the transition from the critical to the supercritical
regime [11].

This work aims at shed some light into the complex physics present at these crit-
ical Reynolds numbers. To do this, large-eddy simulations of the flow at Reynolds
numbers in the range of Re = 1.4 × 105–5.3 × 105 are carried out. Solutions
are compared to experimental measurements available in the literature. One of the
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major outcomes is to understand the physics that characterises the critical regime
and the role of the turbulent transition in the boundary layer on the drag crisis
phenomena.

2 Numerical Method

Large-eddy simulations (LES) of the flow are here performed. The methodology
for solving the filtered Navier-Stokes equations is detailed in [8, 10]. As for the
turbulence model, large-eddy simulations are carried out using the Wall-Adapting
Local Eddy diffusivity model [9] within a VariationalMulti-Scale framework (VMS-
WALE subgrid-scale model) [6].

2.1 Definition of the Case: Geometry and Mesh Resolution

The flow past a circular cylinder at critical Reynolds numbers in the range of
Re = Uref D/ν = 1.4 × 105–5.3 × 105 is considered. The Reynolds number
is defined in terms of the free-stream velocity Uref and the cylinder diameter D. The
cases are solved in a computational domain of dimensions x ≡ [−16D, 16D]; y ≡
[−10D, 10D]; z ≡ [0, 0.5π D] in the stream-, cross- and span-wise directions
respectively, with a circular cylinder at (0, 0, 0). The boundary conditions at the
inflow consist of uniform velocity (u,v,w)= (1, 0, 0), slip conditions at the top and
bottom boundaries of the domain, while at the outlet a pressure-based condition is
used. At the cylinder surface, no-slip conditions are prescribed. As for the span-wise
direction, periodic boundary conditions are imposed.

The governing equations are discretised on an unstructured mesh generated by
the constant-step extrusion of a two-dimensional unstructured grid. Different grids
up to ∼64million CVs are used, depending on the Reynolds number (see Table1).
The boundary layer at the cylinder surface is well resolved, i.e. no wall function is
used. Thus, the meshes are designed so as to keep the non-dimensional wall distance
y+ ≤ 2. To do this, a prism layer is constructed around the cylinder surface. In the
problem here considered, transition to turbulence occurs in the boundary layer. Thus,

Table 1 Main parameters for the different computations

Re NCVt [MCVs] NCV plane Nplanes

1.44 × 105 38.4 299,683 128

2.6 × 105 38.4 299,683 128

3.8 × 105 48.6 379,950 128

5.3 × 105 64 500,516 128

NCVt total number of CVs; NCV plane number of CVs in the plane; Nplanes number of planes in
the span-wise direction
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it should be stressed that in the present formulation transition to turbulence is well
captured by the model, i.e. no artificial mechanism is imposed for triggering this
phenomenon to occur.

3 Results

For obtaining the numerical results presented, the simulations are started from an
initially homogeneous flowfield. Then, simulation is advanced in time until statistical
stationary flow conditions are achieved and the initial transient is completely washed
out. Average statistics are then computed for a sufficient long time span of about
∼100 tU/D, in order to assure that the flow is statistically converged.

In order to gain insight into the coherent structures developed in the separated zone,
the Q-criterion is used [7]. Figure1 shows the isocontours of second invariant of the
velocity gradient tensor (Q) coloured by the velocitymagnitude at Reynolds numbers
of 2.5×105, 3.8×105 and5.3×105.While the lowerReynolds number exhibits aflow
topology more similar to that observed in the sub-critical regime, i.e. laminar flow

Fig. 1 Wake configuration. Left Q iso-countours coloured by the velocity magnitude; right instan-
taneous vorticity magnitude. From top to bottom: Re = 2.6×105; Re = 3.8×105; Re = 5.3×105
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separation at about (φs ∼ 90◦) from the stagnation point and transition to turbulence
in the separated shear layers, at the higher Reynolds numbers the flow shows a
narrow wake with the separation point moving towards the rear end of the cylinder
(φs ≥ 90◦). The wake topology obtained at these critical Reynolds number can also
be observed by means of the vorticity contours depicted at the half span-width plane.

Time-averaged statistical features resulting from the simulation are summarized
in Table2. In the table, the drag coefficient (CD), the base pressure (−Cpb), the
separation angle measured from the stagnation point (ϕsep), and the angular position
where the pressure reaches a minimum (ϕPmin), are given. Experimental data from
the literature are also given. As can be seen, in the range of Reynolds numbers
considered, there is a pronounced decrease in the magnitude of the drag coefficient
accompanied with an increase in the base pressure coefficient. As observed from
the instantaneous flow, separation in the boundary layer is delayed, with increasing
separation angle. The location of the pressure minimum also increases with the
Reynolds number, moving towards the rear end of the cylinder, while its absolute
value decreases (see also Fig. 2).

The variation of the drag coefficient with the Reynolds number is plotted in Fig. 2
together with reference data from the literature. At these Reynolds numbers, the
measured data of the drag coefficient present a large scattering, due to the difficulties

Table 2 Statistical flow features at different Reynolds numbers

Re CD −Cpb ϕsep[◦] ϕPmin[◦]
1.4 × 105 1.215 1.3 95.5 68.5

2.6 × 105 0.83 0.984 95/252 70/280

3.8 × 105 0.328 0.347 102 83.8

5.3 × 105 0.247 0.15 121 86

Cantwell and Coles Re= 1.4e5 1.237 1.21 – –

Achenbach Re= 2.6e5 – – 94 –

Fig. 2 Variation of the drag
coefficient with the Reynolds
number. Comparison with
the literature. Red circles
present results, squares
Achenbach [1], solid squares
Bursnall and Loftin [3], stars
Spitzer [13], crosses Delany
and Sorensen [5]., circles
Vaz et al. [14]
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Fig. 3 Pressure distribution
for the different Reynolds
numbers

associated with the measurements; i.e. sensitiveness to turbulence intensity, cylinder
end conditions, surface roughness, blockage ratio, etc. In spite of the large scatter-
ing in the reference data, results obtained with the present simulations show a fair
agreement, being in the same range of the measured data.

In addition to the total drag coefficient, the pressure distribution at the cylinder
surface at different Reynolds numbers is depicted in Fig. 3. As can be seen, at Re =
1.44×105 it compares very well with that measured by Cantwell and Coles [4] at the
same Reynolds number. As the Reynolds number increases, the pressure distribution
changes with a pronounced decrease in the magnitude of the minimum pressure, and
the position of this minimum moving towards the rear end of the cylinder. At the
same time, the cylinder base pressure rises as was also shown by Achenbach [1] in
his study. This behaviour is characteristic of the critical regime.

One interesting feature observed in the present computations is the presence of
asymmetric forces at the cylinder surface in the regime transition (in the present com-
putations at Re = 2.5×105). Transition to turbulence occurs earlier at one side of the
cylinder boundary layer. Thus, separation in the turbulent side is delayed. This behav-
iour, which causes large fluctuations in the cylinder forces and yields average lift
Cl > 0, was also observed experimentally by Bearman [2] and Schewe [12]. As can
be observed, at the Re = 3.8×105 the forces at the cylinder recover their symmetry
(see Fig. 3), whereas at Re = 5.3 × 105 the drag coefficient reaches its minimum
value (see also Fig. 2), but the pressure distribution is again slightly asymmetric.

4 Concluding Remarks

The flow past a circular cylinder at critical Reynolds numbers in the range of
Re = 1.4 × 105–5.3 × 105 is computed by means of large-eddy simulations. In
the present computations, the mesh used is highly refined in the near-wall, as no wall
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function is used for solving the turbulent boundary layers. Furthermore, it should also
be stressed the capabilities of the current formulation for capturing quite well the
transition to turbulence in the boundary layer without the use of any artificial mecha-
nism which triggers this phenomenon to occur. Results shown are very promising as
they correctly predict the steep drop in the drag coefficient in this range of Reynolds
numbers and the delayed turbulent separation from the cylinder surface, being con-
sistent with the experimental measurements. The presence of asymmetric forces on
the cylinder surface occurring during the critical regime in agreement with previous
experiments is also detected. It should be pointed out that in the present computa-
tions, these asymmetric forces are detected at the Reynolds number of 2.5 × 105,
which is slightly earlier than in experimental measurements. The asymmetries in
the pressure distribution should be interpreted as the starting point of the drag crisis,
with the transition to turbulence occurring earlier at one side of the cylinder boundary
layer, whereas the other side is still laminar. Thus, separation in the turbulent side is
delayed. Last but not the least, mean pressure distributions on the cylinder surface
are computed showing a reasonable agreement with previous experimental results.
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