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Preface

Representing turbulence by a small number of quantities, such as intensity and
length scale, for example, is appropriate and efficient in many engineering situa-
tions. Resolving most of or even all turbulent motion by means of Large-Eddy
Simulation (LES) or Direct Numerical Simulation (DNS), respectively, provides
much more information but is computationally very demanding. Recent years have
witnessed an ever-increasing availability of computer power so that the approach
can now be applied by many researchers. Indeed, a minimum number of operations,
determined by the grid size and the required time steps, needs to be executed to
obtain sound separation of length and timescales between the smallest and the
largest resolved ones.! During recent years, the required performance threshold is
met by more and more computer systems. Also, discretization methods and solution
algorithms have improved as a result of decades of scientific activities in this field.
As a consequence, meaningful DNS and LES can now be performed for more and
more applications. For the same reason, a central issue of LES, subgrid-scale
modelling, has become less critical today as the grid scales are further away from
the resolved scales than before. Still, these methods present lots of pitfalls, and a
cost-effective simulation requires optimal models. Much work has been done on
improving discretization schemes, subgrid-scale models and other model contri-
butions such as generation of inflow turbulence. On this basis, the development and
application of these methods and models continues to be a very active field of
research. More and more data sets from DNS nowadays provide detailed and
accurate reference for improved understanding and development of physical
models.

“Direct and Large-Eddy Simulation 9” was organized in Dresden, Germany,
with a local team from the Institute of Fluid Mechanics at TU Dresden and the
Helmholtz Center Dresden Rossendorf. This ninth edition took place almost two
decades after the start of this ERCOFTAC workshop series in 1994. The first event,
DLESI, had been organized by Peter Voke at the University of Surrey and seen 25

! S.B. Pope, New J. Phys. 6:35, 2004.
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papers, almost equally partitioned into four sessions, turbulent structures and round
jets, subgrid-scale modelling, stratified and atmospheric flows and transition. The
papers mainly came from those European countries in possession of large com-
puters, six from Great Britain, four from France, the Netherlands and Germany,
each, two from Italy and Sweden, one from Switzerland and Norway and two from
overseas, USA and Japan, all attributed according to the first author.

During the 20 years since then, the workshop has substantially increased in size
and has been tracing the development of the subject from an exclusive one to a
broadly applied and fast developing area of research. DLES9 in 2013 so far was the
biggest event of the series with 86 contributed talks and 23 poster presentations,
selected after a careful reviewing process. Naturally, the range of session topics has
become much broader compared to DLES1. Beyond the traditional core subjects of
DLES, LES modelling, numerics, turbulent structures, transition and environmental
flows, they have been spreading to further applications, among which reactive flows
and combustion together with multiphase flows being the larges ones, in terms
of the number of papers. Certain methodological topics which have come up over
recent years were also featured at DLESY, such as quality of LES and extension to
hybrid LES/RANS methods, while other sessions dealt with developments and
results in further application areas. A special session on MHD turbulence was put
together by HZDR. In addition to the regular contributions, nine keynote presen-
tations provided overviews of recent developments and state of the art for transition
(Dan Henningson), cavitation (Stefan Hickel), marine boundary layers (Peter Sul-
livan), combustion (Heinz Pitsch), LES modelling (Roel Verstappen), MHD tur-
bulence (Annick Pouquet), multiphase flow (Alfredo Soldati), jet noise (Tim
Colonius) and applications to industrial flows (Florian Menter).

Most of the invited and contributed papers have been submitted for inclusion in
the Proceedings of DLES9 and after a careful review procedure most of these can
be found in this volume. The papers are grouped into themes, mostly along the
order of the sessions of the workshop. These contributions give a good overview
of the most important current issues and application areas in DNS and LES. Fun-
damental issues related to the usage of LES and the development of the various
models required for LES are still an important research topic. The applications to
various research questions show that LES and DNS have become important tools
for fundamental research able to generate substantial physical insight into numerous
phenomena related to various and diverse turbulent flows.

The organization of the ERCOFTAC DLES9 Workshop and the preparation
of these proceedings would not have been possible without the support of many.
We thank the members of the Scientific Committee for their contribution to the
reviewing process and the numerous helpers involved in preparing and managing
the event as well as handling the proceedings. We also gratefully acknowledge
financial support from the J.M. Burgerscentrum, ANSYS Germany, Innius GTD,
Howden Germany, DFG priority programme MetStrom, Gesellschaft der Freunde
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und Forderer der TU Dresden and Helmholtz-Zentrum Dresden Rossendorf. The
European Research Community on Flow, Turbulence and Combustion, ERCOF-
TAC, supported the attendance and contribution of young scientists to DLES9 by
making available scholarships to Ph.D. students.

Dresden, May 2014 Jochen Frohlich
Hans Kuerten

Bernard J. Geurts

Vincenzo Armenio
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Part 1
LES Modelling



On Scale Separation in Large Eddy
Simulations

Roel Verstappen

1 Large Eddy Simulation

Since the larger eddies in turbulent flow cannot reach a near equilibrium between
the rate at which energy is supplied and the rate at which energy is dissipated (by
the action of viscosity), they break up, transferring their energy to somewhat smaller
scales. The smaller scales undergo a similar break-up process, and transfer their
energy to yet smaller scales. The energy cascade continues until the scale becomes
so small that dissipation is getting predominant. The entire spectrum—tranging from
the scales where the flow is driven to the smallest, dissipative scales—is to be resolved
numerically when turbulence is computed directly. In most applications, however,
we can only resolve the larger eddies, and certainly not the small scales where the
dissipation takes place. Therefore, finding a coarse-grained description is one of the
main challenges to turbulence research. Large eddy simulation (LES) seeks to predict
the dynamics of spatially filtered turbulent flows. Therefore a spatial filter is applied
to the incompressible Navier-Stokes (NS) equations,

Qi+ C@, @) + D@ +Vp=C@,u) - Cuu)=—-V-(u@u—-a®u) (1)

where it is assumed that the filter u — u commutes with linear differential operators
in the NS-equations. This applies for example to the diffusive operator D = —vV?2,
The main problem is that the filter does not commute with the nonlinear, convective
operator C(u,v) = (u - V)v.

The right-hand side in Eq. (1) represents the effects of the residual scales on the
larger eddies (the part of the fluid motion with velocity ). It depends on both u# and
u, due to the nonlinearity. To remove the dependence on u the commutator of C and
the filter is replaced by a closure model —V - 7(u). The motion of the larger eddies
is then governed by
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4 R. Verstappen
v+ CHv,v)+ D)+ Vg=-V-t(v). 2)

Here the variable name is changed from u to v to stress that the solution of the
equation above differs from that of Eq. (1), because the closure model is not exact.

The inequality V-t(#) # V- (u ® u —u# ® ) is crucial, since information is to be
lost: the solution v of Eq. (2) must possess less scales of motion (degrees of freedom)
than the Navier-Stokes solution u; see also Guermond et al. [1]. Finding a closure
model that is both inexact (to reduce the complexity of the flow) and accurate (to
approximate the dynamics of the larger eddies well) represents the main difficulty to
LES. Because turbulence is so far from being completely understood, there is a wide
range of closure models, mostly based on heuristic, ad hoc arguments that cannot be
derived from the NS-equations, see for example [2] and the references therein.

2 Scale Truncation

The very essence is of LES is that the solution v of Eq. (2) contains only scales of
size > §, where § is the user-chosen length of the filter u +— u. This property enables
us to solve (2) numerically when it is not feasible to compute the full turbulent field
u numerically. Therefore we view the closure model 7 as a function of v that is
designed such that it stops the production of small scales of motion from continuing
at the filter scale. Here the filtering operator u +— u is defined by

1
u=— [ ulx,t)dx
[$25] /
£2s

where the domain £2; has diameter §. This filter is known as a box or top-hat filter.
Furthermore, we suppose that 25 is a periodic box, so that boundary terms resulting
from integration by parts (in the computations to come) vanish. It may be emphasised
here that the periodicity conditions are applied to v, not to u, and § is supposed to be
the smallest scale in v.

Poincaré’s inequality states that there exists a constant Cg, depending only on £2s,
such that for every function v in the Sobolev space W12 (£2s),

/||v—v||2dx < c5/||vV||2dx 3)

The optimal constant Cy - the Poincaré constant for the domain £2; - is the inverse of
the smallest (non-zero) eigenvalue of the dissipative operator —V? on £25. Payne and
Weinberger [3] have shown that the Poincaré constant is given by Cs = (8/7)? for
convex domains §2;s. It may be stressed here that the upper bound given by Poincaré’s
inequality is sharp: the equality sign in Eq. (3) holds if v is fully aligned with the
eigenfunction of —V? on £2; that is associated to the eigenvalue 1/Cs.
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The residual field v/ = v — v contains eddies of size smaller than §. These small
scales are produced by the nonlinear, convective term in Eq. (2). The closure model
must keep them from becoming dynamically significant. Poincaré’s inequality (3)
shows that the L2(£2s) norm of the residual field v/ is bounded by a constant (inde-
pendent of v) times the L?(£2s) norm of Vv. Consequently, we can confine the
dynamically significant part of the motion to scales > § by controlling the velocity
gradient. To see how the evolution of the L?(82s) norm of Vv is to be restrained by
the closure model, we consider the residual field V' first:

HV|Pdx = /(—uuw’n2 + T(7V) + r/(v):w)dx 4)
25 £2s

dt

The middle term in the right-hand side stands for the energy transfer from v to v'; the
last term represents the eddy dissipation, i.e., the dissipation resulting from the closure
model. Equation (2) should not produce residual scales, i.e., the eddy dissipation has
to balance the energy transfer at the scale set by the filter. Now suppose that the
closure model is taken such that the last two terms in (4) cancel each other out. Then,

d
a/%uv’nzdx = —v/||W||2dx (5)

25 25

This equation shows that the evolution of the energy of v’ is not depending on V.
Stated otherwise, the energy of residual scales dissipates at a natural rate, without
any forcing mechanism involving scales larger than §. With the help of the Poincaré
inequality (3) and the Gronwall lemma, we obtain from Eq. (5) that the energy of
the residual scales decays at least as fast as exp (—vt/Cs), for any filter length §.
Applying Poincaré’s inequality and Gronwalls lemma to

d
a/%HVszdx =—v/||V2v||2dx (6)
25 25

results into the same rate of decay. So, we can keep the residual v under control by
imposing (6). The left-hand side in Eq. (6) can be rewritten with the help of Eq. (2).
This yields (after integration by parts with vanishing boundary terms),

d
o %||Vy||2dx=/(—v||vzv||2 — V((v-V)v): Vv — r(v):VVzv) dx
25 Qs

Thus we see that Eq. (6) holds if the contributions of the last two terms in the
right-hand side above cancel each other out. Since the convective derivative is skew-
symmetric,

V-V)'=-@-V), (M
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we have fgﬁ V(v V)W) : Vvdx = f-Qa VvT Vv : Vvdx. Consequently, the
energy of the residual scales decays at least as fast as exp (—v¢/Cs), for any filter
length § if

/ ) S(VA) dx = / (Az(v) - Sz(v)) . S(v) dx (8)

25 £2s

where we have split the velocity gradient into its symmetric S(v) = %(Vv + vy

and skew-symmetric part A(v). In addition, t is supposed to be symmetric.
Condition (8) can also be derived with the help of the vorticity w = V X v, since

/||a)||2dx=/||Vv||2dx
25 25

By taking the curl of Eq. (2) we find the vorticity equation and from that we obtain

a Hwl?dx = /(—v||Vw||2 F o -SOMo + t0): V(Y X o) ) dx

In the right-hand side we recognise the vortex stretching term that can produce smaller
scales of motion and the eddy dissipation that should counteract the production of
smaller scales at the scale §. As before, the net contribution of these terms should
vanish. Now, by comparing this condition and our previous condition term-by-term
we obtain the equality

/a) -SWwdx = /(Az(v) — Sz(v)) :S(v)dx

£2s 25

Furthermore, the (point-wise) identity o @ w = 4 AZ(0) +|w]?1 yieldsw-S(v) w =
o ®w: Sv) = 4A%(v) : S(v). In this way we find that ff?a A2(v) : S()dx =
—% fS?s S2(v) : S(v) dx.Consequently, the right-hand side in Eq. (8) can be expressed
in terms of the third invariant,

r(v) = —%tr(S3(v)) = —det(S(v)),
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of the strain rate tensor S. This leads to the following condition

/ T(v): S(V2v)dx = 4 / r(v)dx )

25 25

which guarantees that scales of size smaller than § are not produced.

3 Modelling Consistency

Ideally we want to meet Eq. (9) for a closure model that represents the effects of the
residual scales on the larger eddies accurately, i.e., T(¥) ~ u®u —u ® u. The
closure error can be estimated for a convolution filter with a Gaussian kernel, e.g.
This is typically done in Fourier space. There the Gaussian filter reads

2
u(k) = exp (—j—y|k|2) u(k) (10)

where y is the shape parameter. Equation (10) can be inverted since the exponential
is nonzero. However, the inversion is not stable, because 1 /exp(—|k|282 /4y) — 00
as the wavenumber |k| goes to infinity. Therefore Eq. (10) is inverted inexactly. By
omitting terms of the order of 8%, we get the approximation u’ = —(a8)? V?u. The
coefficient «®> = 1/(4y) depends on choice of the shape parameter in the kernel.
The lowest order approximation u’ = —(a8%) VZu is generic for symmetric filters,
i.e., applies to our box filter too. Any convolution filter satisfies Young’s inequality
which states that the energy of the filtered field u is less than (or at most equal to)
the energy of the full, unfiltered field u. For a box filter with the approximation
u' = —(d)? V2u, we have

A
N

(1)

1 2
z/llull dx
£2s

provided Cs — 2(058)2 < 0. Often, y is taken equal to 6, which results into a? = 1/24.
Since this choice of y violates Young’s inequality, we take

%/nﬁuzdx = %/Huuz—2<a6>2||vbt||2+||u/||2dx
25 25

%/I|u||2+(Ca—2(013)2)||VM||2dx
$2s

IA

u' = —1Cs Vu (12)
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This approximation results into t(z) = Cs VulVu + 0 (8*). The leading term
T(v) = Cs Vvl Vy (13)

is known as the Clark model [4], where we have modified the coefficient so that
Young’s inequality is satisfied. The Clark model is notorious for its unstable behav-
iour. Again this illustrates the conflicting demands between which we compromise;
here: modelling consistency versus stability.

4 Forward Transfer: Eddy Viscosity

In this section, we consider the closure problem in the case that the third invariant r (v)
of the rate-of-strain tensor S(v) is nonnegative. This corresponds to forward transfer
of energy at the scale § set by the filter; the other possibility (backward transfer) will
be dealt with in the next section. In case that » > 0, the larger eddies lose energy by
interacting with the smaller scales of motion. This loss can be described by an eddy
viscosity model,

T(v) — %tr(t)I = =21, 85W) (14)

where v; denotes the eddy viscosity. The classical Smagorinsky model reads v; =
C% 6% /4q in which
q(v) = 3u(SM?)

is the second invariant of the strain rate tensor S(v). For the eddy viscosity model
(14) the scale separation condition (9) reads

2v; /S(v):S(—Vzv)dx = 4 /r(v)dx (15)

25 £2s

where we have taken v, constant in §25. The symmetric differential operator —Vv2is
positive definite on £2s. The eigenvalues u; of —V? can be ordered. The inverse of
the Poincaré constant is the smallest: 0 < 1/Cs = w1 < 2 < u3 < - - - Hence,

/S(v) : S(—Vzv)dx > i /S(v) :S(v)ydx = i /q(v)dx
C(s C(S
25 Qs Qs

where the equality sign applies if v is fully aligned with the eigenfunction associated
with the smallest eigenvalue ; = 1/Cs. Thus we obtain the lowerbound
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w > ¢ T (16)

q)

where the bar denotes the box filter, i.e., the average over £25.
It has not been established, thus far, that taking the minimal amount of eddy
viscosity, that is

r(v)
= Cy —=, 17
Vy 8 70 (17

will adequately model the subfilter contributions to the evolution of the filtered veloc-
ity. Projecting both the eddy viscosity model (14—17) and the Clark model (13) onto
the tensor —S(v) leads to the following consistency question

2Cs 2 SWw) : Sv)dx 2 —Cs /VVTVV :S(v)dx.
q()

25 £2s

In Sect. 2 it was shown that the right-hand side equals 4C f 2 r(v)dx. That is, r(v)
provides a measure of the alignment of the Clark model and S(v). By definition we
have S : § = 2q. So, the eddy viscosity model given by Eq. (17) coincides with
the projection of the Clark model. Stated differently, the eddy viscosity model (17)
yields as much dissipation as the Clark model, i.e., the eddy viscosity model (17)
is consistent in that sense. The overall situation is sketched in Fig. 1. The horizontal
axis in this figure represents all possible eddy viscosity models; the axis is spanned
by —2S5(v) and parameterised by the eddy viscosity. The shaded part of the horizontal
axis in Fig. 1 depicts the subset of eddy viscosities that satisfy the scale separation
condition (16).

To compute the eddy viscosity v; according to Eq. (17), we need know how g and
r vary within £25. Here, we cannot simply take ¢(v) = ¢(v), because the relation
between g and v is nonlinear. This problem is similar to the closure problem in LES,
except that the original closure problem concerns the residual of the NS-solution u,
whereas here it is about the residual of the large-eddy solution v. To recover some of
the information lost in the filtering process, we make use of the approximation

Fig.1 Some LES-models in - exact
the space of symmetric 3 x 3
tensors

eddy viscosity models

-28
gt
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VvV =-1cs v (18)

Compare Eq. (12). In homogeneous, isotropic turbulence, the ratio of r and ¢3/2
scales like Re¥. This scaling law suggests to adopt the approximation

@ (a0)”
_ r(v q(v —
A TRE (q(v)) "

With the help of Eq. (18) it can be shown that ¢ (v) < (%)2 q (v) where the equality-
sign holds if ¥ is fully aligned with eigenfunction of —V? on 25 associated with the
eigenvalue 1/Cjs. Thus we obtain (in lowest order) the eddy viscosity model

3 r(v)

U[(V) = 3 C(S % (19)

This model has the following properties: (a) v; = 0 in any (part of the) flow where
r = 0, i.e., the eddy viscosity vanishes if the transport to scales < & is absent; (b)
vy = 01in all 3D flows in which it should vanish according to Vreman [5]; (c) v; =0

at a wall; (d) v, — 0 if § approaches the Kolmogorov scale, i.e., § « Re 3% and
(e) the corresponding Smagorinsky coefficient is bounded by Lilly’s value: Cg <

1/vV/272/3 ~ 0.17 [6, 7].

5 Regularization of Backward Transfer

So far the closure model (eddy viscosity) has been determined such that the corre-
sponding dissipation neutralises the production of scales of size smaller than §. In
case the production is negative, r < 0, the scale separation condition (15) results
into a negative eddy viscosity. This is because energy is transferred from the residual
scales to the larger eddies. Hence, in case of backscatter (r < 0) the eddy viscosity
has to become negative to represent the influx of energy to the larger eddies. Since
this leads to stability problems (comparable to the Clark model), we consider an
alternative for the eddy viscosity model in case of backscatter. Alternatively, the
computational complexity can also be reduced by replacing the nonlinearity C (u, u)
in the NS-equations by a regularization C (i, u), where the regularization is to be
taken such that the large scales of motion remain unaltered, whereas the tail of the
modulated spectrum falls of much faster than the NS-spectrum. Examples can be
found in [8, 9], e.g.

Regularization is usually applied to the NS-equations. We do something else:
here a regularization is applied the filtered (!) NS-equations (1). The term C (u, u)
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appears on both sides of the filtered NS-equations. Hence, on both sides, it can
be replaceid by a regularization C(u, u). Thus if the closure —V - T(v) models the
rhs-term C(u, u) — C(u, u), we get the blend

v+ Cw,v)+ D) +Vg=—-V-7©) (20)

where, as before, the solution v is supposed to approximate the filtered velocity field
u. Once again, the closure can be described by an eddy viscosity model:

T(v) — (@I = =27, S() (1)

where v, denotes the (modified) eddy viscosity. This eddy viscosity is also restricted
by a scale separation condition. To determine that condition, we must first choose
the regularization method.

The NS-equations conserve particular quantities (like the energy, enstropy (in
2D) and helicity) if there is no viscous dissipation. These conservation properties
are a crucial factor in determining how solutions behave. For that reason, we want
to preserve them under regularization. The conservation properties follow from the
skew-symmetry of the convective derivative; see Eq. (7). Therefore this symmetry
is preserved. As usual the regularization is based upon an self-adjoint filter v — v,
which differs from the previously introduced LES-filter. The residual v—V is denoted
by v. The following regularization

Cu,v) = Cu,v) — C@@,7) (22)

preserves the skew-symmetry (7); see [9]. Furthermore, the regularization (22) pre-
serves the structure of the vorticity equation. Consequently, the analysis of the pro-
duction of scales of size smaller than § (see Sect. 2) can also be performed if C is
replaced by C. In this way we find that if the regularization is given by Eq. (22), the
scale separation condition (9) becomes

/t(v) (S(VAv)dx = 4/ (r(v) —r()) dx (23)
25 £2s
The basic idea is to blend eddy viscosity with regularization by taking the eddy
viscosity model (19) if »(v) > 0 and applying the regularization if r(v) < 0. The

regularization method can then be seen as a way to clip negative values of the eddy
viscosity. To that end, the regularization is based upon the generic filter

V=v+ %Cgvzv, (24)

where C, is the Poincaré constant of a domain §2, with diameter ¢ (the length of
the regularization filter). Note that we again use of the generic form v = —%Csvzv;
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cf. Egs. (12-18). Now, we want to determine the two parameters, v; and Cg, of
our LES-model in such a manner that all dynamically significant scales of motion
in the solution v of Eq. (20) are greater than (or equal to) §. In case r(v) > 0
Eq. (23) is satisfied by taking v, according to Eq. (19) and C, = 0. If r(v) < O,
we take v, = 0 and satisfy the scale separation condition (23) by determining the
regularization parameter such that the right-hand side of Eq. (23) vanishes. Therefore
the regularization parameter C. is to be solved from

r(v) —r(® = r() + $Car(V?v) = 0

Notice that r(v) < 0 implies that r(v) < 0, since their difference is zero. Conse-
quently, r does not change sign over a range of scales. Finally, it may be emphasised
that we have a smooth transition between forward and backward transfer, since we
have bothe =0 and v, = 0if r(v) = 0.

6 First Results

As a first step the scale truncation model was tested for turbulent channel flow by
means of acomparison with direct numerical simulations. This flow forms a prototype
for near-wall turbulence: virtually every LES has been tested for it. The results are
compared to the DNS data of [10] at Re; = 590. The dimensions of the channel
are taken identical to those of the DNS of Moser et al. The computational grid used
for the large-eddy simulation consists of 64> points. The DNS was performed on a
384 x 257 x 384 grid, i.e., the DNS uses about 144 times more grid points than the
present LES. The LES-results were obtained with an incompressible code that uses
a fourth-order, symmetry-preserving, finite-volume discretization, see [11]. Unlike
the standard Smagorinsky model (even with the relatively low value Cs = 0.1), the
present eddy viscosity model showed an appropriate behaviour. As can be seen in
Fig.2 both the mean velocity and the root-mean-square of the fluctuating velocity
are in good agreement with the DNS (Fig. 3).

Fig. 2 Forward (r > 0) and LES " residual scales
backward (r < 0) transfer of production D
energy at the scale § set by =
the filter &
scales >§ S, scales <§
baclﬁscatter

e
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3 The left-hand figure shows the mean velocity obtained with the help of the 643 LES and

the DNS by Moser et al. Here the results obtained without any models and without regularization
model are also shown for comparison. The right-hand figure displays the root-mean-square of the
fluctuating velocities. The boxes and circles represent LES data; every symbol corresponds to data
in a grid point
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Numerical Experiments with a New Dynamic
Mixed Subgrid-Scale Model

P. Lampitella, F. Inzoli and E. Colombo

1 Introduction

One of the main drawbacks of the classical LES approach [1] is the lack of connec-
tion with its practical implementation in numerical solvers and the consequent limits
in the derivation of proper subgrid-scale (SGS) models. A well known example of
this comes from the implicit filtering approach; indeed, it can provide full adher-
ence to the continuous classical LES model if performed with certain fully spectral
methods, but also to a completely different one if performed with low order finite
difference/volume methods. Both perform a projection of the relevant fields into a
lower dimensional phase space, but for low order numerical methods the resulting
LES attractor is substantially distorted by numerical artifacts. In this case, a possibil-
ity is to resort to the explicit filtering approach, but then one has to face the additional
burden of the non commutation between the numerical filtering and the numerical
differentiation operators. A possible approach to deal with commutation errors (CE)
is to adopt higher order commuting filters, e.g., [2]. However, the divergence of the
resulting SGS stress tensor is also affected and the two maintain the same scaling
with respect to the filter cutoff length, showing the pivotal need for CE modeling
within the classical LES approach [3]. While direct CE modeling has found various
contributors, very few authors [4, 5] have considered removing CE ab initio by a
proper interpretation of the LES problem.

The aim of the present work is twofold. First, previous works [4, 5] are gen-
eralized and unified in a single, more flexible, formulation allowing implicit and
explicit filtering approaches; multilevel features are also exploited to extend its gen-
eral applicability. Finally, a Taylor series analysis of the SGS stress tensor arising in
the new framework is used to derive a consistent form of scale-similar model. Then,
this is combined with a classical eddy viscosity term in a new form of dynamic proce-
dure which is consistent with the proposed LES methodology. Model performances
are assessed in the simulation of the turbulent channel flow at Re; = 590 [6].

P. Lampitella () - F. Inzoli - E. Colombo
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2 LES Framework

As in classical LES, let us introduce the filtering operator G':

q‘&(x,t, A") — G s (x, 1) =/G [X—E,Ai (x)]qs(g,t)dg (1)

2

where §2 is the generally finite fluid domain and G' is a spatially varying filter kernel
with width A’ (x). For future reference, we also introduce the conventions:

P"=G"%x¢" ' =G"xG" k- kG xGOx " 2)
Gk @ =" =; G =5 ¢ =pg' /"

where the ith filter kernel G’ has an associated filter width A” > A=l which is
generally different from the cutoff length of the actual filter determining ¢", A,. To
remain general, we also introduced the classical Favre filtering with p the density
of the fluid. With this notation, it is a matter of simple manipulations to express the
Navier-Stokes equations at a generic filter level n > 0; limiting the discussion to the
momentum equations, for the sake of conciseness, we get:

(p" i) 0 (znpnsn ~n) _ 0 n—0)
o toag \Pruiu o) =50 T

5 = 5" — 2 (Spy — 450,817 ) 3)

where /" with m = 0 is the SGS stress tensor arising in the formulation (3).

With respect to classical LES formulations, we notice that: (a) no commutation with
spatial derivatives is ever required, (b) there is full correspondence with the implicit
filtering approach if the filter (1) is interpreted as a finite volume discretization, (c) an
explicit filtering approach can be adopted if the filter (1) is effectively applied trough
a numerical procedure. A classical criticism with the proposed formulation is the
lack of Galilean invariance. However, it is worth noting that this is a property of any
quantity which is non-uniformly filtered in space, hence it is natural that equations
based on such quantities also inherit this property.
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3 SGS Tensor Analysis

The main effect of reformulating the LES problem is the appearance of the SGS
tensor in a different form; hence, the question of what form of SGS model should
be used, naturally arises. In order to attempt an answer, we analyze the Taylor series
development for rl.';_” assuming that, for m > n, the following hold [7]:

o=@+ AAMEE 10 (aY) A=Y (ami) )
i=0

where M are filter dependent coefficients. Under this circumstance, and for suffi-
ciently smooth variations of A,,, the following estimates are valid:

9% p" it " dap it}
P — p = Aanka - zAﬁ,Mkﬁ"Ea— +o (A4) 5)
k
_ _ 32 —-n
- =m0 (A;) 6)
dx2
k

- . 1| 9 92" 9 820"
Sm 8 =~ | — A2 M — — A2 M —L
ij ij 2 |:8xj( m 7k 8x£)+8xi( m Tk Bxlf
L 2A,2an 3p" it L 2A31Mk op" Oy
2| 0x; o dxg 0xk 0x; P 0xg 0xg
+0 (Ajil) )

The resulting approximation for 7/; ™" can then be summarized as follows:

= anf (7 N")+%h( 0" ~’I)ﬂL%h (5" @) +0(ah) ®

where f and & are functional forms easily derived from Eqgs. (5-7). However, when

the same analysis is performed for the true SGS stress tensor ‘L”; 0 , recalling that

@™ = ¢" + O (A2), the resulting estimate is:

zl; 0_ A2 f( —n ~”,u’}) 8A2 ( —n ~7) 8A%h(,5”,ﬁ?)+0(Aﬁ) ©)

0x; 0x;

Hence, even under the most simplifying assumptions, e.g., Eq. (4), a scale-similar
model based on tl.'}%”, as originally proposed in [5], has a second order difference

with respect to the true SGS stress tensor rl.”._o. In order to overcome such deficiency,
we propose to adopt a scaled version of scale-similar term according to the following
estimate:
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A? . -
A U R LRI

+0 (Aanz) +0 (A4) (10)
g — 1Ay 1 aA; _ 9 |:10g (A_;)}
A2 Ox; A2 ox; ox; A2
From which it follows that, for any two couples of filter levels satisfying the

scale-similarity hypothesis and the assumption (4), the proposed scale- similar tensor
(A2 /A2 ) 7" approximates the convective/pressure part of the tensor 7’ ¥ O with

o (Ai) accuracy, if, in addition, the ratio A,% / Ai is constant in space, the accuracy
is restored also for the diffusive part.

4 Dynamic SGS Modeling

As in the computational practice some of the assumptions concerning the model
derivation might be violated, we implemented the previous model in a dynamic
version trough the following Germano identity, consistent with the formulation (3):

g = (11)
It is worth noting that the lack of commutation between the filter and derivative
operators results in Eq. (11) not involving any test filtered tensor. This, in turn,
produces two major advantages: there is no arbitrary extraction of model constants
from the test filter and no commutation property is required for the test filter. An
additional advantage is the lack of filtered products of variables: for the dynamic
mixed model presented below only 6 scalars need to be test filtered while for a
classical dynamic Smagorinsky model the required number of filter applications is
15. Besides Eq. (11) and the cited advantages, the proposed dynamic procedure
follows the classical approach. Two-parameter, mixed SGS models are introduced
for the basic (n) and test (m) filter levels:

1—6

(6) 7 1) e ()

) )

‘L’U = Cp2p" |S"

0 = € 25" ‘Sm‘ (kiGe) = A (S;;’— S 5j) + Cos (%

with the additional test filter level r (A, > A,, > A,) and:

n—m __ 1 on o _ pom ~n __ ~m
ksgs =2 ( j ”j) (”j ”j)

sn 1/2Sl”jSl’;

13)
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Fig. 1 Results for & = 0. Left fine grid, Right coarse grid. Top mean velocity, Center r.m.s.
stream-wise velocity fluctuations, Botfom stream-wise spectra of stream-wise velocity at y/H=1

The dynamic constants C,, and Cy, are then computed as in classical two para-
meter dynamic models [8].
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5 Numerical Experiments and Discussion

The model is implemented in a commercial, unstructured, finite volume solver [9] by
exploiting the implicit filtering features of the formulation. Numerical tests are per-
formed on the turbulent channel flow at Re; = 590 [6] on a domain with extensions
Ly =2nH,Ly, =2H and L, = 7w H, in the stream-wise, wall-normal and span-
wise directions, with H the channel half-height. Two different grids are adopted,
both having 64 cells in the homogeneous directions and 33 (coarse) or 99 (fine) cells
in the wall-normal direction, distributed according to a sin stretching law.

Grid effects are investigated in Fig. 1 for 6 = 0 (DM); results for the same
model without the proposed scaling (DM-NDR), a classical dynamic Smagorinsky
model (DS) and a no model computation (NM) are also reported. Major differences
are evident on the fine grid. The DM model is the only one capable of recovering
the mean velocity profile and the peak of the velocity fluctuation which, however,
is over-predicted in the core of the channel. Notably, the DM-NDR model fails in
reproducing the mean velocity profile at the first few points near the wall, where the
grid stretching is higher, somehow showing the incorrect scaling. The differences
are mitigated for the coarse grid, possibly because of the higher influence of the
numerical error and the reduced effect of the scarcely resolved near-wall region, but
the DM model is still the only one correctly reproducing the logarithmic slope of
the velocity profile. Finally, on both grids, velocity spectra highlight that the present
scale-similar formulation is necessary in order to recover a substantial part of the
energy in the smallest resolved scales; in contrast, no actual difference is found in
the spectra for the remaining modeling options. This energy recovery also allows
the DM model to suppress the energy pile-up observed for the other models. This
effect has been observed for different eddy-viscosity parameterizations (6) with no
substantial differences in the remaining quantities.

In conclusion, despite some grid-effect limitations arising from the implicitly fil-
tered approach, the proposed model is found effective and necessary in removing
major drawbacks of SGS closures not considering the LES framework in their deriva-
tion. Some pitfalls emerged as well, like the over-prediction of stream-wise velocity
fluctuations in the core of the channel and of span-wise energy spectra (not shown);
the model dependence on the Reynolds number and some preliminary tests suggest
that a tensorial scale-similar dynamic constant might alleviate the problem.

References

Leonard, A.: Adv. Geophys. A 18, 237-248 (1974)

Vasilyev, O.V., Lund, T.S., Moin, P.: J. Comp. Phys. 146, 82—-104 (1998)

van der Bos, F., Geurts, B.J.: Phys. Fluids 17, 035108 (2005)

Denaro, FM., De Stefano, G.: Theor. Comput. Fluid Dyn. 25, 315-355 (2011)

Vreman, A.W., Geurts, B.J.: A new treatment of commutation errors in large-eddy simulation.
In: Proceedings of the IX European Turbulence Conference, Barcelona, Spain (2002)

6. Moser, R.D., Kim, J., Mansour, N.N.: Phys. Fluids 11-4, 943-945 (1999)

Nk v =



Numerical Experiments with a New Dynamic Mixed Subgrid-Scale Model 21

7. Vreman, B., Geurts, B., Kuerten, H.: Theor. Comp. Fluid Dyn. 8, 309-324 (1996)

Sarghini, F., Piomelli, U., Balaras, E.: Phys. Fluids 11-6, 1596-1607 (1999)

9. Lampitella, P., Colombo, E. Inzoli, F.: Sensitivity analysis on numerical parameters for large
eddy simulation with an unstructured finite volume commercial code. In: Proceedings of the XX
AIMETA Conference, Bologna, Italy (2011)

*®



Implicit Large-Eddy Simulation of Isotropic
Turbulent Mixing

F.F. Grinstein, A.J. Wachtor, J.R. Ristorcelli and C.R. DeVore

1 Introduction

In practical turbulent flow applications exhibiting extreme geometrical complexity
and a broad range of length and time scales direct numerical simulation (DNS) is
prohibitively expensive and dependable large scale predictions of highly nonlin-
ear processes must be typically achieved with under-resolved computer simulation
models. In large-eddy simulation (LES) [1] large energy containing structures are
resolved, smaller structures are spatially filtered out, and unresolved subgrid scale
(SGS) effects are modeled; implicit LES (ILES) relies on the SGS modeling and
filtering implicitly provided by physics capturing numerical algorithms [2]. At mod-
erately high Reynolds number (Re) when convective time-scales are much smaller
than those associated with molecular diffusion, we are primarily concerned with the
numerical simulation of the convectively-driven interpenetration mixing processes
(entrainment and stirring due to velocity gradient fluctuations) which can be captured
with sufficiently resolved ILES. Assessing predictability of under-resolved scalar
mixing by an under-resolved turbulent velocity field in the ILES framework is the
particular focus of this paper; we investigate the performance of ILES in the con-
text of passive scalar mixing in isotropic turbulence as function of grid-resolution
dependent effective Re [3].
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The mixing of a passive scalar by a fluctuating flow field is a classical problem
in turbulence. Pullin [4] noted that classical scaling laws (e.g. [5]) give insights
into the physics of mixing but do not provide a general means of calculating the
scalar statistics in a general turbulent flow, and proposed that LES might be used
in this context. Overholt and Pope [6] conducted DNS of the mixing of a passive
scalar in the presence of a mean scalar gradient in one direction, by forced, spatially
periodic, isotropic turbulence. In this flow, a statistically steady-state scalar variance
is achieved by balancing the scalar variance production and dissipation. Pullin [4]
revisited this problem and proposed a model for the flux of a passive scalar by the SGS
motions. The LES results [4] predict the normalized scalar variance asymptotically
approaches a nearly constant value for large Taylor Re consistent with laboratory
experiments [7] also indicating essentially constant scalar variance as a function of
Re for Schmidt number Sc ~ 1. The velocity-to-scalar dissipation time-scale ratio
was also reported to be asymptotically constant in [4] but comparisons with DNS [6]
available at the time were inconclusive as to whether such a result captured physical
behavior. Subsequent theoretical [8] and high Re DNS [9] studies have shown that the
time scale ratio should exhibit continued growth with increasing Re. The prediction of
the asymptotic behavior of the scalar variance and velocity-to-scalar Taylor micro-
scales ratio (which is directly proportional to the dissipation time scale ratio) are
specifically investigated in this work to benchmark the performance of ILES against
the previously reported work.

ILES is presently based on solving the compressible, nominally-inviscid con-
servation equations for mass, momentum, energy, and a passive scalar, with a well
established multidimensional 4th-order FCT algorithm (e.g., [10]) suitably extended
for the forced isotropic turbulence studies [3]. The simulation model effectively mod-
els high- Re, miscible (Schmidt number Sc¢ ~ 1) convection-driven flow. An isotropic
turbulence simulation strategy [11] was implemented by which low wave-number
forcing can be enforced separately for solenoidal and dilatational components on the
momentum equations. The configuration studied assumes triply-periodic boundary
conditions on a cubical domain with unit box length and uniformly spaced 323, 643,
1283, and 256> grids. The simulated flow is characterized by volume-time-averaged
quantities: rms-velocity-fluctuation u’, velocity and scalar Taylor micro-scales A and
Ag, and effective viscosity v,rr computed as ratio of forced dissipation and squared
strain-rate magnitude [12]. For a given grid resolution, and u’ based turbulence Mach
numbers Ma = 0.13, 0.29, effective Re;fff = u/)»/veff can be thus directly eval-
uated from the resolved developed simulation data.

2 Results

Figure 1 exemplifies our developed vorticity field, dominated by elongated structures
characteristic of high-Re isotropic turbulence; Fig.2 shows typical scalar visualiza-
tions for the finest resolution case. Figure 3 demonstrates scalar & velocity spectra
as function of grid resolution. The scalar spectra exhibit longer inertial ranges and
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Fig. 2 Colormaps of fluctuating scalar field scaled by the rms of the fluctuating scalar field in
mid-planes of the domain for 2563 grid resolution; for reference, superimposed on the lower left of
each colormap is a box with side length equal to the scalar Taylor micro-scale

more pronounced spectral bumps than their velocity counterparts at corresponding
resolutions—consistent with [9]; the latter results directly reflect on the (A /)Le)2
results discussed further below.
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Figure4 compares nondimensionalized scalar variance results for present ILES
with previously reported (incompressible, Ma = 0) scalar mixing predictions using
LES [4]; ILES shows asymptotically constant scalar variance behavior as function
of Re, attained above the mixing transition threshold Re; = 100 — 140 [13] as
previously reported with LES [4] (when explicit scalar SGS model was used) and
suggested by experiments [7]. Lower scalar variance predictions with present ILES
are mainly attributed to differences between forcing schemes used here and in [4],
and somewhat less to compressibility effects.

The ratio (A /Ag)z—directly proportional to the velocity-to-scalar dissipation
time-scale ratio (r) through (A/ 1) =r@5 /3)Sc—is plotted in Fig. 5 for the current
ILES, the (Sc = 0.7) LES of [4], DNS [6, 9], for which S¢ = 0.7 and Sc = 1,
respectively. Following the theory in [8], using small scale isotropy assumptions,
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and rearranging the stationary forced equations for the scalar variance and scalar
dissipation, we can derive an expression for ()L/)\g)2 [3] which exhibits its linear
dependence with Re, for Sc = 1.0 and high Re — also plotted in Fig. 5. This result is
noteworthy on several accounts. For one it shows that the ratio r—or squared ratio of
Taylor micro-scales (1/Ag)>—is a function of Re in developed turbulence. That the
eddy turnover rate of turbulent kinetic energy and scalar variance are proportional to
each other and not a function of Re has been a fundamental assumption underlying
many models in turbulence phenomenology (e.g., as noted in [4]).

Early DNS results [6] showed continued growth of (A/ 19)? with increasing Rey,
while the LES results using an explicit scalar SGS model [9] are asymptotically
constant. Moreover, when the explicit scalar SGS model of [4] is turned off, the ratio
rapidly decreases with Re;. However, the ILES simulation (also without an explicit
scalar SGS term), exhibits neither decreasing nor asymptotically constant behavior,
but shows continued growth over the simulated range of effective Re) very consistent
with the early DNS [6] and the trends suggested by the more recent DNS data in [9].
The asymptotically linear dependence on Re;, of of (1/Ag)> can thus be predicted
by theory [8], and it is suggested by DNS [6, 9] and the present ILES.

3 Summary

We find that sufficiently resolved ILES can capture the fundamental aspects of the
mixing transition and characteristics of developed isotropic turbulence for high Re
and Sc ~ 1. Detailed analysis based on statistical turbulence metrics and probability
distribution functions (PDFs) of velocity and scalar, including effects of Ma and
grid resolution are addressed in detail in [3]. As the effective Re is increased, the
SGS scalar mixing model implicitly provided by a well designed ILES numerics is
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found to be adequate to consistently capture expected mixing characteristics from
previously reported studies, namely, the gaussian behavior of fluctuating velocity and
scalar PDFs, non-gaussian (and appropriately biased—when applicable) PDF tails of
their derivatives, and asymptotically constant non-dimensional scalar variance and
increasing squared-ratio of the Taylor micro-scales with Re. The results are regarded
as a clear demonstration of the feasibility of predictive under-resolved simulations of
high—Re turbulent scalar mixing with ILES. They strongly suggest enslavement of
the small scale mixing dynamics to that of the larger scales of the flow for sufficiently
large Re.
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New Differential Operators for Large-Eddy
Simulation and Regularization Modeling

F.X. Trias, A. Gorobets, A. Oliva and R.W.C.P. Verstappen

1 Introduction

We consider the numerical simulation of the incompressible Navier-Stokes (NS)
equations. In primitive variables they read

du+%u,u) =%u—Vp, V.-u=0, (1)

where u denotes the velocity field, p represents the pressure, the non-linear convective
term is given by uv = (u - V) v, and the diffusive term reads Zu = vAu, where
v is the kinematic viscosity. Direct simulations at high Reynolds numbers are not
feasible because the convective term produces far too many scales of motion. Hence,
in the foreseeable future numerical simulations of turbulent flows will have to resort
to models of the small scales. The most popular example thereof is the Large-Eddy
Simulation (LES). Shortly, LES equations result from filtering the NS equations in
space

Ju+€wmu)=2u—-Vp—-V.t@@; V-u=0, (2)
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where u is the filtered velocity and t(u) is the subgrid stress tensor and aims to
approximate the effect of the under-resolved scales, i.e. T(@) * U®uU — U Q T.
Then, the closure problem consists on replacing (approximating) the tensor u @ u
with a tensor depending only on u (and not u). Because of its inherent simplicity and
robustness, the eddy-viscosity assumption is by far the most used closure model

T(u) ~ —2v,S(w), 3)

where v, denotes the eddy-viscosity. Notice that 7 () is considered traceless without
the loss of generality, because the trace can be included as part of the pressure, p.
Following the same notation than in [1], the eddy-viscosity can be modeled in a
natural way as follows

Ve = (Cn8)* Dy (1) )

where C,, is the model constant, § is the subgrid characteristic length and D,, is a
differential operator associated with the model. This provides a general framework
where most of the existing eddy-viscosity models can be represented [1].

Alternatively, regularizations of the non-linear convective term basically reduce
the transport towards the small scales: the cionvective term in the NS equations, %,
is replaced by a smoother approximation, &,

du: + € (U, up) = Ju; — Vp,, V.u =0. (5)

The first outstanding approach in this direction goes back to Leray [2]. The Navier-
Stokes-a model also forms an example thereof [3]. More recently, a family of reg-
ularization methods that exactly preserve the symmetry and conservation properties
of the convective term was proposed in [4]. In this way, the production of smaller
and smaller scales of motion is restrained in an unconditionally stable manner. A
very recent application of this regularization approach can be found in [5].

2 Restraining the Production of Small Scales

The essence of turbulence are the smallest scales of motion. They result from a subtle
balance between convective transport and diffusive dissipation. Numerically, if the
grid is not fine enough, this balance needs to be restored by a turbulence model. Both
regularization modeling and LES aim to do so by decreasing the non-linear transport
and increasing the dissipation, respectively. Hence, in our opinion, the success of any
turbulence model strongly depends on the ability to capture well this (im)balance.

Let us consider an arbitrary part of the domain flow, §2, with periodic boundary
conditions. The inner product is defined in the usual way: (a, b) = f o a-bds2. Then,
taking the L? inner product of (1) with—Au leads to the enstrophy equation
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%%”w”? = (w0, € (w,n)) —v(Vo, Vo), (6)

where ||a)||2 = (w, w) and the convective term contribution (¢ (u, w), w) = 0 van-
ishes because of the skew-symmetry of the convective operator. Following the same
arguments than in [6], the vortex-stretching term can be expressed in terms of the
invariant R = —1/31r(S%) = —det(S)

(0, € (w,0)) = —f/ 1r(S3)dR = 4/ RdS2 = 4R, (7
3/a Q

whereas the diffusive terms may be bounded in terms of the invariant Q =
—1/2tr (8%

Vo, Vo) = —(v, Aw) < —ipa(w, w) = 4)LA/ Qds§2 =4xx é, ®)
2

where A4 < 0 is the largest (smallest in absolute value) non-zero eigenvalue of the
Laplacian operator A on §2 and (-) denotes the integral over £2. However, it relies
on the accurate estimation of Ao on §2. The latter may be cumbersome, especially
on unstructured grids. Alternatively, it may be (numerically) computed directly from
(Vw, Vw) or, even easier, by simply noticing that (Vw, Vo) = 4 f_Q O(w)ds2 =
45(\:0). However, from a numerical point-of-view, this type of integrations are not
straightforward. Instead, recalling that V. x V xu =V(V.-u) — Auand V-u =0,
a more appropriate expression can be obtained as follows

(Vo, Vo) = —(0, Aw) = (0, V x V x @) = (V x 0, V x ) = | Aul®.  (9)

Then, to prevent a local intensification of vorticity, i.e. ||w||; < 0, the inequality
Ho < v(Au, Au)/(w, Sw) must be satisfied, where Hg; denotes the overall damping
introduced by the model in the (small) part of the domain 2. Additionally, the
dynamics of the large scales should not be significantly affected by the (small) scales
contained within the domain £2, i.e. (w, Sw) < 0. Hence, to confine the dynamics
of the small scales suffices to modify the previous inequality by simply taking the
absolute value of its right-hand-side. Then, from Eq. (7) and noticing that 0 < Hp <
1, a proper definition of the overall damping factor follows

Hg = min {u||Au||2/|§|, 1}. (10)

This differential operator satisfies a list of desirable properties. Namely, it auto-
matically switches off (R — 0) for laminar flows (no vortex-stretching), 2D flows
(k2 = 0 = R = 0) and in the wall (the near-wall behavior of the invariants is R o y!
and Q o« y°, where y is the distance to the wall). Notice that these features would
be automatically inherit by any type of model based on this differential operator.
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2.1 Regularization Modeling

Following the same notation than in [4], the action of a regularization model within
the (small) part of the domain §2 (see above) can be approximated as follows

(@, (@, W) ~ fo(,C (@, W), (1)

where the damping factor, fi, depends on the specific regularization method and the
kernel of the filter (see [4, 5], for details). Hence, the criterion proposed in Eq. (10)
can be applied for regularization modeling equating f; and Hp, i.e. fo = Ho =
min{v ||Au||2/ |§ [, 1}. For implementation details the reader is referred to [5].

2.2 Towards a Simple LES

An eddy-viscosity model, T (u) = —2v,S(u), adds the dissipation term (Vw, v, V)
to the enstrophy equation. Then, the eddy-viscosity, v,, would result from a simple
balance in order to prevent the local intensification of vorticity, ||5||l2 <0,

ve = 4|R|/|| AW|1%. (12)
This analysis can be extended further for other differential operators. For instance,

/(W) = 2v,S(Aud) and T (@) = —2v//S(A%0), where A> = AA is the bi-Laplacian,
lead to the following hyperviscosity terms in the enstrophy equation

— (Vo,v.VAB) and (Vo,V!VA D). (13)
Then, following similar reasonings, v, and v,/ follow
v, = —4|R|/(AT, A’7w) and V) =4|R|/| A% (14)

Itis noticeable that, apart from the computation of R, all these models can be straight-
forwardly implemented by simply re-using the discrete diffusive operator.

3 Performance of ¢4-Regularization for Turbulent
Buoyancy Driven Flows

The configuration adopted to illustrate the performance of the %;-regularization
(see [4], for details) method in conjunction with the differential operator proposed in
Eq. (10) corresponds to an air-filled (Pr = 0.7) differentially heated cavity (DHC) of
aspectratio 5 and Rayleigh number Ra = 4.5 x 10'° (based on the cavity height, L3).
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Table 1 The overall, the maximum and the minimum of the averaged Nusselt number

DNS RM1 RM2
Mesh 128 x 318 x 862 8 x 20 x 54 8 x 14 x 38
2 =2.0,y3=0.0 2=20,13=10 |»n=23,y3=1.0
No model | %4 No model | %,
Nu 154.5 223.8 1534 | 207.7 152.3
Nupa, | 781.5 520.6 709.4 | 500.4 680.0
Nutyin 10.5 60.4 7.1 71.0 6.1

The DNS corresponding to this configuration was carried out on the MareNostrum
supercomputer using a 128 x 318 x 862 mesh (the coordinate system is: xj-spanwise,
xz-horizontal and x3-vertical, respectively) and presented in [5] (for details about
this configuration the reader is referred to this work and references therein). Firstly,
we have considered two coarse meshes consisting of 8§ x 14 x 38 (RM2) and 8 x
20 x 54 (RM1) grid points, respectively (see Table 1). The meshes are constructed
keeping the same grid points distribution as for the DNS but with much coarser
spatial resolution. y» and y3 are the concentration parameters in the horizontal and
vertical directions, respectively (for further details about the mesh generation the
reader is referred to [5]). The domain size in the periodic direction is the same as for
the DNS, i.e. L1/Ly = 0.1. In Table 1, the overall Nusselt number, Nu, together with
the maximum and minimum local Nusselt numbers obtained with the coarse meshes
RM1 and RM2 are compared with the DNS reference solution. Regarding the Nu,
%4 solutions are able to provide good predictions whereas the results obtained with
the same meshes but without any modeling are very far from the reference value
Nu = 154.5. With regard to Nuy,, and Nu,,ip,, this tendency becomes even more
evident. In order to confirm the reliability of the model on coarse grids, the same
DHC problem has been solved on a series of 50 randomly generated meshes where
the number of grid points varies within the limits: 8 < N < 12, 16 < Ny < 28
and 44 < N3 < 70, respectively. The number of grid points in each direction
has been randomly generated irrespectively of the number of points in the other two
directions; therefore, some of the numerical experiments correspond to highly skewed
meshes. Results for the overall Nusselt and the center-line stratification are displayed
in Fig. 1 (left). The very good prediction of Nu for all the tested configurations is
remarkable; in contrast, the results obtained without modeling substantially differ
from the reference solution. Even more important is the fairly good prediction of the
stratification. Notice the inaccuracy of the results obtained with a relatively fine mesh
of 32 x 80 x 216 (MeshC) grid points. Similar behavior is observed in Fig. 1 (right)
where the results for the maximum vertical velocity and the wall shear stress at the
horizontal mid-plane, x3 = 0.5, are displayed. These two quantities provide valuable
information about whether the boundary layer is correctly captured by the model.
The %4 solutions predict quite well the (0.430, 0.227) reference solution whereas
both quantities are clearly under-predicted when the model is switched off.
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Fig. 1 Left The overall Nusselt number and the center-line stratification. Right The maximum
vertical velocity and the wall shear stress scaled by Ra~!/# at the horizontal mid-height plane

4 Concluding Remarks and Future Research

A family of new differential operators for turbulence modeling has been derived by
considering the balance between the vortex-stretching contribution and the dissipa-
tion in the enstrophy equation. They are suitable to be used for both regularization
and LES modeling. In the context of LES, three eddy-viscosity-type models have
been obtained. Namely, (i) t(@) = —2v,S@), (i) /(@) = 2v,5(Au) and (iii)
/(W) = —2vS(A™u), where v,, v, and v/ are given by Eqs. (12) and (14), respec-
tively. They can be related with already existing approaches. Firstly, the model (i)
is almost the same than the recently proposed Q R-model [6]. Essentially, they only
differ on the calculation of the diffusive contribution to the enstrophy equation:
instead of making use of the equality (9) it is bounded by means of the inequal-
ity (8); therefore, the eddy-viscosity is given by v, & AZl |§ |/ é instead of Eq. (12).
Regarding the models (ii) and (iii) they can be respectively related to the well-
known small-large and small-small variational multiscale methods [7] by noticing
that u’ = — (&2 /24)Au + O (). All these models switch off (R — 0) for laminar
(no vortex-stretching), 2D flows (A, = 0 — R = 0) and near the wall (R yl).
The performance of the first differential operator has been successfully tested for a
buoyancy driven turbulent flow. To test the performance of the rest of the proposed
turbulence models is part of our research plans.
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Assessment of Implicit Subgrid-Scale
Modeling for Turbulent Supercritical Mixing

C.A. Niedermeier, S. Hickel and N.A. Adams

1 Introduction

Space transportation systems predominantly rely on cryogenic rocket combustion
engines, which have successfully been used for decades. However, satisfying the
increasing requirements in terms of rocket performance and reliability is very chal-
lenging due to decreasing budgets and the request for short development cycles.
Therefore, the importance of computational methods in the development process
increases steadily, raising the demand for computational fluid dynamics (CFD) tools
that are able to simulate the flow at rocket combustor conditions.

The process of the propellant injection into a rocket combustion chamber is
strongly three-dimensional and unsteady. Therefore, Large Eddy Simulation (LES)
appears to be the most suitable method for future CFD tools.

Many propellants are in a supercritical state at injection, because the pressure
in modern combustion chambers often exceeds 100 bar. As the fluid properties are
significantly affected by molecular interactions in this high pressure environment, a
real-gas equation of state and suitable relations for the transport properties have to
be used for the numerical simulation.

The subgrid-scale (SGS) turbulence models of all well-established LES methods
were originally designed and calibrated for incompressible or ideal gas flows. There-
fore, they have to be validated and, if necessary, adjusted for the simulation of flows
at supercritical pressure. We already successfully validated our in-house code INCA
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in terms of real-gas thermodynamics and general applicability for the simulation of
supercritical flows [3, 5].

‘We now apply this methodology to supercritical nitrogen jet experiments of Mayer
et al. [4]. The setup of the experiments, where cold, transcritical nitrogen is injected
into nitrogen at supercritical temperature and pressure, reproduces the situation in a
real rocket combustion chamber to a realistic extent.

2 Turbulence Modeling and Numerical Method

As an intermediate approach between Reynolds-averaged Navier-Stokes (RANS)
simulations and Direct Numerical Simulations (DNS), LES resolves the large scales
of turbulence while the small scales below the grid width have to be modeled. In this
paper, we apply the Adaptive Local Deconvolution Method (ALDM), which follows
an implicit LES (ILES) approach.

The basic idea of ILES is to combine turbulence modeling and numerical dis-
cretization of the conservation equations. ALDM is a nonlinear finite volume method
and incorporates free parameters in the discretization scheme, which can be used to
control the truncation error. A physically motivated implicit SGS model that is con-
sistent with turbulence theory is obtained through parameter calibration, see Ref. [2].

ALDM is implemented in our in-house code INCA for Cartesian collocated grids
and used to discretize the convective terms of the Navier-Stokes equations (see
Ref. [2] for a detailed description). The diffusive terms are discretized by 2nd order
centered differences and a 3rd order explicit Runge-Kutta method is used for time
integration.

3 Thermodynamic Modeling and Transport Properties

All thermodynamic properties are calculated as the sum of an ideal reference value
and a departure function that accounts for real gas effects. These departure functions
are determined by the Peng-Robinson (PR) equation of state (EOS) [6]

_RT a(T)
T V—b V242Vb-—b2"

p (D

where V is the molar volume and R is the universal gas constant with a value of
R = 8.314472J/(mol K). The constants a (T') and b are calculated from empirical
relations. a (T') accounts for attractive forces between the molecules in the fluid and
is calculated from the empirical equation

R’T? T
a(T) = 0.457235 l—wf1-=]]). (2)
Pe T,
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where k = 0.37464 4+ 1.54226 » — 0.26992 w? is a function of the acentric factor w.
The effects of the reduction of free volume by the particular volume of the molecules
are taken into account via b = 0.077796 RT./p.. T, and p are the critical tempera-
ture and pressure of nitrogen (126.2 K/3.40 MPa). The PR EOS does not predict the
density very accurately in the transcritical region. Therefore, the empirical volume
correction (VC) method of Harstad et al. [1] was chosen for the final implementation.

As INCA is a density-based code, pressure and temperature have to be calculated
at each timestep from internal energy and density. For ideal gases, this can be done
in a straightforward manner by using the ideal gas law. For real gases, however, an
iterative procedure is necessary to find the correct values for pressure and tempera-
ture. A nonlinear least squares optimization method is best suited to efficiently solve
the problem. Therefore, a trust region method is used for the iterative calculation.

Viscosity and thermal conductivity are calculated according to an approach devel-
oped by Chung et al., which uses empirical correlations for dense fluids. A detailed
description of this method can be found in Ref. [8].

4 Computational Setup

The test chamber used in the experiments by Mayer et al. [4] had a cross section of
60 x 60 mm with an adiabatic front wall and isothermal outer walls at a temperature of
298 K. In contrast to previous simulations of these experiments, where only a round,
smaller section of the chamber was simulated [7, 9], we use the original width
and height of the chamber for our simulations and apply the same wall boundary
conditions as in the experiments. The length of our simulation domain is 80 mm
with a convective outlet condition at the downstream boundary and the diameter of
the jet at the inlet is D=2.2mm.

We performed LES for two parameter sets corresponding to case 3 and case 4
of the experimental database. The inital and boundary conditions applied in the
simulations are listed in Table 1. At the inlet, a constant temperature is prescribed
along with a time varying fully turbulent velocity profile resembling a turbulent pipe
flow. The grid is refined near the central cutplanes of the domain in both the x-z-
and the x-y-direction to improve the resolution near the centerline of the jet, see
Fig. 1. The grid spacing in downstream direction is homogenenous, leading to a total
number of about 3.9 million cells.

Table 1 Mean flow Case 3 3 4 4

properties of the computed -

test cases Location Inlet Chamber Inlet Chamber
iy, 4.9 0 54 0
p. 4578 | 45.08 1644 [45.19
Po, bar 39.7 39.7 39.8 39.8
T,K 126.9 298 137 298
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Fig. 1 Case 4—isosurface
of the density 50kg/m> and
grid resolution in y- and
z-direction

5 Results

In the following, we analyze the results for both cases in terms of flow visualizations
for the velocity magnitude as well as for the temperature. Furthermore, we compare
our results for the mean density along the centerline in streamwise direction with
results from previous works [7, 9].

5.1 Flow Visualizations

Figure2a, b show the velocity magnitude and the temperature for both cases in the
central x-z-cutplane. It is clearly visible that the instabilities of Kelvin-Helmholtz
type at the edge of the jet arise further downstream in case 3, which is the expected
behaviour due to the higher density in the core region. This cold and therefore dense
core region is also much longer in case 3, meaning that the main mixing process
between the injected, cold nitrogen and the surrounding, warm nitrogen takes place
at a later stage.

Fine structures of cold and warm packets of fluid mixing with each other and
thus illustrating this process can be seen in Fig. 2b although the grid is rather coarse,
meaning that ALDM is able to reproduce such flow patterns also with alow resolution.
When compared to flow visualizations of Petit et al. [7], the main features of our
results are very similar while being obtained on a grid with less than one third of the
grid points.
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(a) (b)
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Fig.2 a Velocity magnitude (m/s) in the central x-z-cutplane: case 3 (top), case 4 (bottom) b Tem-
perature (K) in the central x-z-cutplane: case 3 (top), case 4 (bottom)

5.2 Centerline Density

Figure 3 shows the mean density along the centerline in x-direction for different
SGS models and EOS for our simulations as well as from previous works [7, 9].
The results for both cases indicate that the well-defined density of the jet at the inlet
is matched best with the thermodynamic modeling which we chose for our work,
namely the PR EOS with VC. Furthermore, ALDM matches the experimental data
for case 4 best. The slight deviations from the experimental data for case 3 might
be caused by the coarse grid and are currently under investigation. Overall, ALDM

450 < ] 180 ]
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400 R —ALDM PR VC (present work)| —ALDM PR VC (present work)
\ - WALE PR (Schmitt et al.) 160 —WALE PR (Schmitt et al.)
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— 300 a —
"’E ME 120
S 250 : S
[)] . )]
= =, 100
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Fig. 3 Mean density along the centerline in x-direction for different SGS models (ALDM, WALE,
Smagorinsky) and EOS (PR with VC, PR without VC, Soave-Redlich-Kwong) compared with
experimental data: case 3 (left), case 4 (right)
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delivers the best results for the combination of both test cases, especially when the
coarser mesh of our simulations is taken into account.

6 Summary and Outlook

We applied the Adaptive Local Deconvolution Method to simulate supercritical nitro-
gen jets, resembling a realistic injection and mixing process as it is present in current
rocket combustion chambers. Our results show a good agreement with the experi-
mental data as well as with previous works, although we used a mesh which was
significantly coarser than in other simulations of the same experimental setup. This
means that ALDM is suitable for the simulation of realistic flows at rocket combustor
conditions and therefore promising to be used in future industry-oriented CFD tools.

In the future, we will use ALDM for the simulation of multi-component coaxial
injection and the subsequent mixing and combustion process of different species
like Oxygen and Hydrogen or Oxygen and Methane. Our final goal is to provide an
ILES methodology suitable for the design and the predictive analysis of future rocket
combustors.
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Validation of an Entropy-Viscosity Model
for Large Eddy Simulation

J.-L. Guermond, A. Larios and T. Thompson

1 Introduction

A primary mainstay of difficulty when working with problems of very high Reynolds
numbers is the lack of computational resources; this implies that numerical simula-
tions in this realm are, in general, always under-resolved. That is, large gradients and
eddy-phenomena, exist at the sub-grid level and cannot be correctly represented by
the mesh; therefore, at the mesh scale, these solutions can be considered as behaving
in a singular manner. As time progresses, these unresolved facets of the flow are likely
to produce still larger gradients through the coupling of wave modes via the action of
the nonlinear term; this induces an accumulation of energy at the grid scale. A solution
proposed in [1] consists of monitoring the local kinetic energy balance and introduc-
ing a localized dissipation in these regions that is proportional to the violation of this
balance (this is the so-called entropy viscosity). The deviation from the local energy
balance (which we call the entropy residual) can be thought of as an indicator for local
entropy production in analogy with entropy production for scalar conservation laws.

1.1 Motivation

Here a brief overview of the motivation for the entropy-viscosity is presented. See
[1] and the references therein for a more in-depth discussion of the central ideas of
the entropy-viscosity technique.
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Let (up, pn) be an approximate velocity and pressure, where & denotes the grid
scale, and define the numerical residual of the energy equation, Dy, (x, t), by

Dy(x, 1) = 8 Rud) + V- (Lui + prun)
— Re 'AGup) + Re ' (Vup)? — f - up. 1)

In a resolved flow Dj(x, t) should be on the order of the consistency error of the
method; a large value! of | D, (x, )] is caused by under-resolution. In such situations,
one would therefore wish to enforce

|Dp(x, )| = 0. 2

However, enforcing (2) directly may over-determine the problem. In [1], the authors
circumvent this difficulty by constructing a viscosity proportional to | Dy, (x, t)|. This
viscosity is called the entropy-viscosity (EV), and is defined by

| Dp(x, 1) )

[u?|| L (02)

3)

Vg (x, 1) == min (cmaxhu)m(x, D, ceh?(x)

The momentum equation is then modified by adding the term —V - (vg (x, 1) Vu). The
entropy-viscosity” regularizes regions which are in violation of (2) and promotes a
dissipative effect on numerical singularities.

In definition (3), the constants ¢;,4, and cg are tunable parameters which depend
only on the numerical method and the geometry of the mesh. For instance, in the
setting of scalar conservation laws, the analogue of (3) gives ¢ = % in one space
dimension with piecewise linear finite elements. Definition (3) ensures that the LES
viscosity will never exceed the first-order upwind viscosity. When /(x), the local
grid size, is small enough so that all scales are resolved, then | Dy (x, t)| is on the
order of the consistency error. Hence, the LES viscosity which is proportional to
hz(x)th (x, t)|, is far smaller than the first order upwind viscosity. The entropy-
viscosity is therefore consistent, and it vanishes when all of the scales of the flow are
properly resolved at the grid scale. The remainder of this paper details the context in
which the entropy viscosity was tested as well as the ensuing numerical results.

2 Numerical Method

Our investigations into the efficacy of the entropy-viscosity for regularizing the
Navier-Stokes equation are carried out via a well-verified periodic spectral code dis-
cussed in the context of [3, 4]. Entropy-viscosity in the setting of bounded domains,

! The sign of the residual has a physical interpretation discussed in [1].

2 For a discussion of a generalized framework for definition an entropy-viscosity, presented in the
context of hyperbolic conservation laws, see [2].
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utilizing an ADI approach found in [5], is currently being investigated by the authors;
results will appear in a forthcoming paper. The spectral code mentioned above has
been well validated [3, 4, 6]. Standard 2/3’s de-aliasing was utilized in a periodic
box of length L = 1. The time-stepping scheme implemented is a fully explicit
four-stage Runge-Kutta method with dynamic time-stepping respecting the CFL
condition. The entropy-viscosity is formed via the canonical pseudo-spectral tech-
nique whereby derivatives are computed in spectral space and products in physical
space. For this situation, ¢;;4x = 0.1 and cg = 0.25 were used in (3). The entropy-
viscosity, computed explicitly following (3), is formulated using the current time
step in conjunction with the two time-steps prior; BDF2 is employed to compute
the time derivative. The result is applied, as a regularization, for the next time-step.
The action of the entropy-viscosity is not present for the first three time-steps of the
simulation; in practice this has caused no stability issues, even in the case of high
Reynolds numbers. Finally, the divergence free condition is enforced exactly via
projection onto the space of solenoidal vector fields. All the simulations presented
here are done with a low-wave number forcing designed to keep the total kinetic
energy approximately constant, as described in [7].

3 Results

In this section we discuss three main results: the consistency of the entropy-viscosity
(i.e., when all scales are properly resolved, there is no noticeable contribution from
the entropy-viscosity), energy spectrum verification results, and the action of the
entropy-viscosity in the context of under-resolved and severely under-resolved flows.
Results regarding additional statistics are forthcoming.

3.1 Consistency

For a resolved flow, we expect that the contribution of the entropy-viscosity should
be on the order of the local consistency error of the method. Indeed, the notion of
entropy-viscosity is constructed to satisfy this requirement. It is expected that the
entropy-viscosity should go to zero significantly faster than &'(h?).

We first test an inviscid flow with the following two-dimensional initial data:
u = cos(8mx) sin(8wy), v = —sin(8zx) cos(8wy), w = 0. The flow remains two-
dimensional at later times (i.e. laminar) and the total kinetic energy is constant in time.
We compute the Euler solution up to t = 4 using the DNS code, the entropy-viscosity
technique and the Smagorinsky model on various grids (323, 643, 1283, 256%). We
show in Fig. 1a the time evolution of the kinetic energy for the entropy-viscosity
solution and the Smagorinsky solution on the 323 grid and that of the DNS solution
on the 256> grid. It is striking that the Smagorinsky solution loses energy fast even
though the flow is laminar, whereas the entropy-viscosity solution tracks the DNS
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Fig. 1 a Total energy versus time for Smagorinsky and EV models for an inviscid flow at 323.
b Energy loss [lu — uoll 2/ [luol 2 at 1 = 4

solution rather closely. The reason why the entropy-viscosity model outperforms
the Smagorinsky model is that the entropy-viscosity is very small since the flow is
laminar. The entropy viscosity is significantly smaller than 4> due to the spectral
accuracy of the Fourier approximation.

We show in Fig. 1b a table displaying the relative kinetic energy loss for the DNS,
entropy-viscosity, and the Smagorinsky solutions at time ¢+ = 4 on the four grids
323 643, 1283, 256°. We observe that the DNS does not lose any energy at all the
resolutions and the entropy-viscosity solution does not lose any significant amount
of energy, even at low resolution. The Smagorinsky solution on the other hand has
lost 68 % of the energy by time t = 4 on the 323 grid and 3.3 % on the 256> grid.
This test confirms that contrary to the Smagorinsky method, the entropy-viscosity
method does not dissipate energy in the laminar regions of the flow.

A full investigation of the consistency of the entropy viscosity method will be
carried out in a forthcoming paper.

3.2 Entropy-Viscosity as an LES Model

We are interested in the applicability of the entropy-viscosity as an LES model.
One expects that the entropy-viscosity should damp spurious high wave-mode con-
tributions and resolve an otherwise unresolved flow. Therefore it is reasonable to
conjuncture that entropy-viscosity is well-suited to LES.

The fundamental question of whether or not the local energy balance, being
enforced via the entropy-viscosity, evinces the quintessential dynamics of resolved
flow, and to what extent, is addressed; specifically the Kolmogorov —% trend in the
inertial range of the energy spectrum is examined.

We examine how entropy-viscosity effects the energy spectrum of under-resolved
flows. In Fig.2a—d, we show the energy spectra of simulation runs at Re ~ 6,500
for various resolutions. All runs are compared against a resolved DNS run at reso-
lution 2563 (called “No Model”). Each under-resolved simulation is done using the
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10" 10' 10° 10’

Fig. 2 a 256> resolution with entropy-viscosity (EV) and with Smagorinsky (Smag). DNS sim-
ulation included for comparison (DNS). b 1283 resolution: entropy viscosity, unresolved DNS,
Smagorinsky. “No Model” 256> DNS simulation included for comparison. ¢ 643 resolution: entropy
viscosity, unresolved DNS, Smagorinsky. “No Model” 256> DNS simulation included for compar-
ison. d 323 resolution: entropy viscosity, unresolved DNS, Smagorinsky. “No Model” 2563 DNS
simulation included for comparison

entropy-viscosity model and the Smagorinsky model. One can see that unregularized
(“No Model”) flows fail to capture the correct spectra as expected, while the flows
regularized with entropy-viscosity perform significantly better. Note also that the
entropy viscosity model is always closer to the DNS spectrum than the Smagorin-
sky model.

3.3 Structure of the Enstropy

An important characteristic to capture in modeling isotropic turbulent flow is the
structure of coherent vortex tubes, that is, the level sets of the enstropy, |V x u(x, )|.
We compare vortex tubes of an unresolved simulation against a simulation with
exactly the same parameters, except that entropy-viscosity is added. In Fig.3a,
b, several level-surfaces with values in a range of ~50-75% of the maximum
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Fig. 3 a Surfaces of constant enstrophy for a 643 simulation with Re ~ 6,500 (unresolved).
Darker surfaces indicate larger enstrophy. b Surfaces of constant enstrophy for a 64> simulation
with Re &~ 6,500 with entropy-viscosity regularization at the same time step

enstropy at the same fixed time step (taken after the flow has reached a statistical
steady-state) are shown. While the enstrophy of the unresolved flow appears quite
polluted (Fig.3a), the enstrophy of the entropy-viscosity regularized flow (Fig.3b)
contains well-defined vortex tubes, and is more characteristic of turbulent flow.
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A Stochastic Closure Approach for LES
with Application to Turbulent
Channel Flow

P. Metzner, M. Waidmann, D. Igdalov, T. von Larcher,
I. Horenko, R. Klein, A. Beck, G. Gassner and C.D. Munz

1 Introduction

The integral conservation laws for mass, momentum and energy of a flow field are
universally valid for arbitrary control volumes. Thus, if the associated fluxes across
its bounding surfaces are determined exactly, the equations capture the underlying
physics of conservation correctly and guarantee an accurate prediction of the time
evolution of the integral mean values.

Starting from this concept, we model the space-time structure of the fluxes to
create a discrete formulation whose justification is independent of the underly-
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ing grid resolution. There are many alternatives for realizing this concept. Here,
we directly aim at flux correction terms that should correct for the influence of
the non-resolved small scale information. The classical closure problem would
thus be reduced to the faithful reconstruction of spatio-temporal fluctuations of
the fluxes across grid cell interfaces. We model those fluctuations by an advanced
time series analysis approach [3], leading to mixed deterministic-stochastic model
formulation.

In preparation of a new LES closure approach, the reconstruction capabilities of
the data-based modeling approach are tested against 3D turbulent channel flow data
computed by direct numerical simulation (DNS) for an incompressible, isothermal
fluid at Reynolds number Re; = 590 (computed by Uhlmann [7]).

In this paper, we present the outcome of our reconstruction test, and we show
specifically results of the non-trivial time series data analysis rather than a simulation
of the turbulent channel flow. We found, surprisingly, that the deterministic model
part alone is good enough to fit the flux correction terms well. That encourages us
for the ambitious attempt at dynamic LES closure along these lines.

We should like to mention that our approach particularly allows for the analysis
of non-stationary and non-homogeneous data, resp., as the turbulent channel flow
data are. Here, therefore, stationary/homogenous patterns, e.g. first order (Mean) and
second order (Variance) statistics, often used in data analysis representations, could
lead to biased results, as those moments typically do not represent the characteristics
of inhomogeneous/instationary data.

2 Stochastic Subgrid Scale Approach

The stochastic subgrid scale modelling strategy is developed for application in finite
volume (FV) Large Eddy Simulation (LES) codes. The approach is similar in spirit
to earlier propositions by e.g., [5], but differs in terms of both the stochastic model-
ing ansatz as described in this paper, and in terms of the underlying discontinuous
Galerkin numerical techniques as described in a companion paper [1].

Advanced methods of time series analysis for the data-based construction of
stochastic models with inherently non-stationary statistical properties are used to
construct stochastic surrogate models for the non-resolved fluxes from specific
time series (cf. [4]). Vector-valued auto-regressive models with external influences
(VARX-models) form the basis for the modeling approach (see Eq.1). We realize
non-stationary statistical properties of these models by allowing for time dependent
switches between different fluctuation regimes which are represented by different,
but fixed, sets of the stochastic model parameters. The LES-grid-averaged conserved
quantities on the coarse grid cells in the immediate vicinity of a given LES grid cell
interface are interpreted as external influences in constructing the VARX surrogate
model. In this fashion the stochastic models incorporate the information available
from a typical numerical discretization stencil as would be used, e.g., in formulating
a classical Smagorinsky closure.
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The ansatz of the VARX model reads

Afix = p,X) + AW, X)P1(Aft—, ... Aft—mo)x + B, )2 (us x) + €1.x, (1)

where A f; x is the flux correction term (¢ as time, x as 3D space vector), (i, A, B)(¢, X)
are time-dependent model parameters (m as the memory depth), ¢, ¢» are model
ansatz functions which are generally non-linear, u, x denotes the external influences
(here the coarse-grid stencil data), and ¢; x is the model-data discrepancy.

The basic idea of the approach is to detect the switching processes between the
fluctuation regimes and their parameters, here named (y; (¢, x), ®;) (j as the cell
index), which characterize the local models. @; denotes K sets of k parameters
{©;=(0q,..., (N)k)j}f:l representing the model parameters (i, A, B), and y; are

model affiliation functions with y; (¢, x) € [0, 1] and Zle y;(t,x) = 1. The total
variation TV of y; is bounded

TVi(yj(t,x) = C.

With (k, K, C) given, the best-fit and therefore the optimal parameters are found
with minimization of the model-data distance, i.e.

@.
J
& x

K
//8,’,( dx dt — 17511(51 where §; x = Z‘; vi(t,x)
t X J=

A balance between the requirements of high representation quality and low number
of free parameters (Occam’s razor) is achieved by involving criteria from information
theory.

3 Data Preprocessing and Numerical Flux Computation

The DNS data for the primary conserved quantities from detailed numerical turbulent
channel flow simulations are averaged on a coarse LES grid which is a cartesian
finite volume grid with equidistant spacing in all coordinates, hereafter referred to
as coarse-grid.

Resolved LES-grid fluxes are determined from these averages using a straight-
forward finite volume approximation for the Euler equations. By subtracting these
resolved fluxes from the DNS fluxes averaged over the cell faces of the LES-grid, we
obtain one time series of non-resolved fluxes for each cell interface of the LES grid.

We compute a so-called exact flux (F,,) based on the preprocessed DNS data,
and, furthermore, a reference flux (F.r) and numerical fluxes of particular order
from the average velocity data on the coarse grid. Once those flux data are generated,
flux correction terms are calculated as described below.

For each cell C/ and each face ¢ = 1,...,6 on the coarse-grid, a time
series of the following LES-observables is calculated: a) the exact flux corrections

AFZ (1) € %3,b) the Istorder flux corrections A F i/ (1) € %3, c)the 2nd order flux
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corrections Asz “A(t) € %3, and d) the 3rd order flux corrections AF3j A1) e B,

where '
AF,':F,'—Fref,l:LZ,:;, AFoy = For — ref s

and, finally, the velocity field V/(r) € %>! consisting of the average velocity field
of cell C/ and of the average velocity fields of all cells sharing a common face with
C/ (neighbored cell).

Generally, the numerical flux function proposed by Hickel et al. [2] is used to
compute fluxes of the particular order. For Fi, the cell average state value is assumed
to cover the whole grid cell and, thus, the values at the cell faces are assumed to be
equal to the cell center value. Consequently, no state reconstruction is needed. How-
ever, for F», piecewise linear state reconstruction within the grid cells is performed
direction by direction based on the cell center values as in standard second order
FV methods using a monotonized central limiter, [8], for slope limiting during the
reconstruction. This yields higher-order accurate cell interface data. Finally, for F3,
state recovery at the cell faces is obtained via a third order WENO scheme proposed
in [6]. For F.r, no state reconstruction or specific numerical flux function is used
but the simple flux average is calculated.

4 Results

Figure 1 shows time series of the exact flux correction data and of the raw numer-
ical flux corrections of 1st, 2nd and 3rd order resulting from the finite volume
approximation for the Euler equations. While the graphs indicate that the 3rd order

Cell 12-3-12, face=1, dim=1 Cell 12-3-12, face=1, dim=2 Cell 12-3-12, face=1, dim=3
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Fig. 1 Exact flux correction and raw numerical flux corrections of 1st, 2nd and 3rd order available
for face 1 of two specific cells. Upper row near-boundary cell, lower row cell located in the center
of the channel. From left to right x-, y-, z-component of the specific flux correction term. Note the
different scaling of each figure
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Fig.2 AsinFig. | but for the fitted flux corrections available from the stochastic model framework.
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flux corrections generally fits the exact correction well, and noticeably well in the
centered-channel case, deviations appear in the near-boundary cell [and also in cells
directly adjacent to the boundary (not shown)].

Figure 2 shows time series of the model flux correction which fits the exact flux
correction data remarkably well also in the near-boundary cell [which was also
observed in cells directly adjacent to the boundary (not shown)].

Only two particular fluctuation regimes, a wall model and a core model, are
explored by the stochastic model framework to yield such a good agreement between
the exact flux correction data and the model-fit of the flux correction data (cf. Fig. 3).

Fig.3 Snapshot of the two fluctuation regimes, the wall regime (dark grey) and the core regime (light
grey), determined by the stochastic model approach, cross-section through the channel geometry.
Left figure highlights the grid cells with the core model, right figure the cells with the wall model.
The arrow indicates the main flow x-direction
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As the name already indicates, the wall model is assigned to the boundary cells at the
rigid boundaries in y-direction and the core model is assigned to all other grid cells.
In addition, not discussed here, the stochastic model shows no time-dependence i.e.
there is no switch between those two fluctuation regimes, and one and only one of
the two fluctuation regimes has been assigned to each specific cell in time.

5 Conclusions and Outlook

We have presented the application of a novel stochastic model framework, based on
stencil-conditioned subgrid scale modeling of flux correction terms, as a first step
towards a dynamical LES closure. The approach was tested on turbulent channel flow
DNS data computed by M. Uhlmann, and we have shown results of a reconstruction
test of flux correction terms.

The best-fit deterministic flux corrections agree very well despite the roughness
of the coarse-grid data. This non-trivial result mentions also the role of deterministic
LES closure approaches. Moreover, we find that the linear contribution to the closure
uses only next neighbors on the coarse grid.

Beyond the results given here, our study reveals more remarkable features that
can not be discussed in depth due to lack of space: e.g. (a) the best-fit is reached
when the auto-regressive part of the stochastic model framework is not considered
in the data analysis process, i.e. we have used a VX model approach instead of a
VARX one, (b) when the turbulent channel flow data are coarsened to 50 x 50 x 50
grid cells, a third fluctuation regime, called transition model, has been detected,
i.e. we found resolution-dependent closure regimes, (c) our approach also captures
non-stationary regimes, as we have applied the stochastic model framework to Taylor-
Green-Vortex flow data showing a transition from laminar to fully turbulent flow at
specific Reynolds numbers. Those results will be described in detail in an upcoming
publication.

In future work, we further will make use of the stochastic approach for the analysis
of local flow features, and will make a thorough comparison of the implicit-LES
ansatz presented here versus explicit-LES by coupling the stochastic based flux
correction model to finite volume solvers.
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Comparison of URANS, PANS, LES
and DNS of Flows Around Simplified
Ground Vehicles with Passive

Flow Manipulation

X. Han, S. Krajnovié¢, C.-H. Bruneau and I. Mortazavi

1 Introduction

Flow control of ground vehicles has recently attracted large interest in both industry
and academia. The potential in energy savings seems to be considerable and at the
moment both passive and active control strategies are explored. Regardless of the
choice of control strategy, numerical methods are required for our understanding
of flow control processes and improvement of its performance. The present work
explores applicability of whole spectra of numerical techniques from URANS, PANS
to LES and DNS for prediction of two flows with an additional body.

2 Description of the Flow Cases

The first flow is that of a passive flow control around a D-shaped bluff body studied
at Re = 13000 [1]. A small secondary body is placed behind the main D-shaped
bluff body whose drag has to be reduced (see Fig. 1). The height of the main body is
D = 25 mm and the free stream velocity is Uy = 8 m/s. The length in the spanwise
direction is 4D and in pitchwise direction is 16D. Constant velocity is imposed
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Fig. 1 The arrangement of the first case left main bluff body and the control cylinder in one x Oy
plane and set-up of the second case right two 2D Ahmed bodies in a tandem arrangement

at the inlet, periodic conditions are used in the spanwise direction, and slip wall
conditions are used on the upper and lower walls. Non-dimensional time step is
dt =7 x 1072 D/ Uy.

The second case represents the so called platooning where drag reduction is
obtained by placing a second vehicle in the wake of the leading one [2]. Two generic
vehicles in form of 2D Ahmed bodies have a chord length / = 181 mm, body height
h = 50 mm and spanwise width w = 474 mm. The second body is placed at a dis-
tance of d = 5 h behind the first body as shown in Fig. 1. The Reynolds number with
respect to body height and free stream velocity is Re, =16,200. The computational
domain in both the spanwise and pitchwise directions is the same as in the experiment.
Constant velocity is imposed at the inlet, periodic conditions are used in the spanwise
direction, and non-slip wall conditions are used on the upper and lower walls.

3 Numerical Methods

In the present study, numerical technique from URANS to DNS will be applied.
3D PANS and LES, which are the suitable candidates for flow control problems at
this stage [3] will be evaluated in the two selected cases. Partially-Averaged Navier-
Stokes (PANS) is a bridging technique between RANS and DNS [4]. The new variant
¢ — f PANS method [5] is used in the present simulations in which the unresolved-
to-total-kinetic-energy ratio f; is a variable parameter that depends upon the grid
spacing and the integral length scale of turbulence.

URANS simulations use ¢ — f turbulence model and are thus comparable with
the PANS ¢ — f method. In the LES studies, the SGS stress tensor t;; = w;ju; —u;u
is modeled by the Coherent Structure Model (CSM) [6] using the coherent structure
function defined as the second invariant of the velocity gradient tensor normalized
by the magnitude of a velocity gradient tensor.

The URANS, PANS and LES simulations were made with a finite volume CFD
solver, AVL FIRE. A blend of central differencing scheme and upwind scheme is used
for PANS and LES. The time integration is performed using the second-order implicit
scheme. The SIMPLE algorithm is used to couple the velocity and pressure fields.
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The DNS method uses high-order finite differences approximation with a multigrid
method to solve the genuine Navier-Stokes equations in velocity-pressure [7]. The
method has been used to simulate flow control around Ahmed bodies with active and
passive procedures [8].

In the first case, the computational domain in the spanwise direction is 4D and
16D in the pitchwise direction. Constant velocity is imposed at the inlet, periodic
conditions are used in the spanwise direction, and slip wall conditions are used on
the upper and lower walls. In the second case, the computational domain in both the
spanwise and pitchwise directions is the same as in the experiment. Constant velocity
is imposed at the inlet, periodic conditions are used in the spanwise direction, and
non-slip wall conditions are used on the upper and lower walls.

4 First Flow Case: Results and Discussions

3D URANS, PANS and LES are performed for both the natural body (NAT) and
with control by an additional cylinder (CON). For all simulations, PANS and LES
use the same numerical schemes and the same mesh: 6.27 million cells for NAT
and 7.35 million cells for CON, while 3D URANS uses 1.38 and 0.74 million cells,
respectively. The global parameters of the mean drag and lift coefficients and their
RMS values on the main bluff body are shown in Table 1. It can be seen that PANS and
LES predict quite close results for both NAT and CON flows, and give a drag reduction
of about 28 %. 3D URANS predicts close results for NAT but higher values for CON.
Figure 2 shows the iso-surfaces of the second invariant of the velocity gradient
between the natural and the controlled case by LES. Similar results are produced
by PANS (not shown here). The wake is significantly changed due to the presence
of the control cylinder and a longer wake region is produced in the controlled case.
Figures 3 and 4 show the comparisons of the predicted time-averaged streamwise
velocity U/ Uy with the experiment [1] for the NAT and CON cases, respectively.
The numerical predictions of PANS and LES agree well with experiment for NAT.
The numerical results produce a correct tendency of the interactions of shear layer
with the control cylinder but the wake regions are smaller compared with experiment.

Table1 Global parameters of the total drag Cp, pressure drag Cp), and the total lift C, coefficients.

Case Cpp.ave | Cp,ave | Cop,rms | Cp,rms | CLrms | ACDp,ave (%) | ACp ave (%)
3D URANS-NAT |0.741 0.798 |0.026 0.028 |0.215

PANS-NAT 0.776 0.811 |0.090 0.094 |0.217

LES-NAT 0.772 0.810 |0.062 0.063 | 0.231

Exp.-NAT [1] 0737 077 |0027 |- -

3D URANS-CON | 0.612 0.653 [0.018 0.020 10.084 |—-174 —18.2
PANS-CON 0.554 0.586 |0.012 0.013 0.038 | —28.7 —27.8
LES-CON 0.553 0.586 |0.013 0.013 |0.035 | —28.5 —-27.6
Exp.-CON [1] 0.444 0.47 0.004 — — —39.7 —39.0
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Fig. 2 Iso-surface of the second invariant of the velocity gradient (Q = 1.0 x 10°): a NAT by
LES; b CON by LES, colored by pressure
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Fig. 3 Comparison of mean velocity U/ Uy between 3D URANS, PANS, LES and experiment [1]
(from left to right, respectively), in the natural case

Fig. 4 Comparison of mean velocity U/ Uy between 3D URANS, PANS, LES and experiment [1]
(from left to right, respectively), in the controlled case

5 Second Flow Case: Results and Discussions

D URANS, 3D URANS, PANS and LES are performed for both a single Ahmed body
(C1) and two Ahmed bodies (C2). For all simulations, PANS and LES use the same
numerical schemes and the same mesh: 6.36 million cells for C1 and 10.54 million
cells for C2, while 2D URANS and 3D URANS use 0.043 and 1.64 million cells for
C1,2.76 and 10.54 million cells for C2. The global parameters are shown in Table 2.
It can be seen that PANS and LES predict close results in same flow configurations.
They produced big drag reduction up to 45.8 % for the Ahmed body in the wake.
URANS simulations under-predict a lot of the Strouhal number and over-predict the
mean drag for the Ahmed body in the wake. Figures 5 and 6 show the iso-surfaces
of the second invariant of the velocity gradient for the natural and controlled cases,
respectively, by 3D URANS, PANS and LES. Similar results are produced by PANS
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Table 2 Global parameters of the Strouhal number, St, total drag Cp, and RMS drag and lift
coefficients.

Ahmed body Turbulence model St Cp.ave CD.rms CL.rms ACD qve (%)
Cl 2D URANS 0.150 |0.898 0.023 0.463 —

Cl1 3D URANS 0.187 |0.766 0.008 0.142 —

Cl1 PANS 0.246 |0.854 0.050 0.317 —

Cl LES 0.234 | 0.816 0.042 0.202 -
C2-up 2D URANS 0.158 |0.846 0.024 0.481 —6
C2-up 3D URANS 0.187 |0.718 0.008 0.114 —6
C2-up PANS 0.224 |0.822 0.049 0.255 —4
C2-up LES 0.228 |0.793 0.033 0.295 -3
C2-down 2D URANS 0.157 |0.504 0.017 0.655 —40.4
C2-down 3D URANS 0.193 | 0.520 0.019 0.233 -27.5
C2-down PANS 0.224 | 0.388 0.048 0.485 —52.8
C2-down LES 0.228 0429 0.043 0.592 —45.8
Cl1 2D DNS 0.742 0.513

C2-up 2D DNS 0.648 0.546 —13
C2-down 2D DNS 0.248 —67

C1 means the single body case, C2-up means the leading body in the case with two bodies and
C2-down means the body in the wake
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Fig. 5 Iso-surface of the second invariant of the velocity gradient (Q = 1.0 x 10%) in the single
body case by: a 3D URANS; b PANS; and ¢ LES, colored by pressure
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Fig. 6 Iso-surface of the second invariant of the velocity gradient (Q = 1.0 x 10%) in the two-body
case by: a 3D URANS; b PANS; and ¢ LES, colored by pressure
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and LES. The vortex shedding from the first Ahmed body affects a lot the flow
around the second Ahmed body, and thus reduces its drag substantially as observed
in Table 2. Figure 7 shows comparisons of LES predictions of time-averaged stream-
wise velocity U/ Uy for one and two bodies respectively. The changes of flow pattern
around the second Ahmed body can be observed. Figure 8 shows the RMS veloc-
ity Vims/Up by PANS and LES. The two models produce similar flow structures



62 X. Han et al.

Fig. 7 Comparison of mean velocity U/ Uy in the C1 a and C2 b cases by LES

(a) (b) (c) (d)

Fig. 8 Contours of RMS velocity V,,,s/Up by: PANS in natural flow a; LES in natural flow b;
PANS in controlled flow ¢ and LES in controlled flow d

Fig. 9 Comparison of mean velocity U/ Uy in the C1 a and C2 b cases by DNS

although peak values are different. It can be seen that the RMS velocity in the wake
of the second Ahmed body is depressed by large extent. The 2D DNS simulations
are performed on a uniform Cartesian grid with about 15.85 million cells for C1 and
31.7 million cells for C2. Figure 9 shows comparisons of DNS predictions of time-
averaged streamwise velocity U/ Uy for one and two bodies respectively. It appears
clearly that the flow around the first body is very similar for cases C1 and C2 while the
flow is moderated around the second body. This can be seen in particular on the drag
coefficient in Table 2. The trend observed in Table 2 are confirmed by the DNS study.

6 Conclusions

The present work explores the applicability of URANS, PANS, LES and DNS for
prediction of two flows with passive flow control. The results show that the presence
of a body behind a first one can induce a significant drag reduction. In the case of
platooning there is a tremendous change for the second body as expected but without
an increase and even with a small decrease of the drag coefficient of the leading body.
The results demonstrate that PANS and LES have potentials for capturing the main
features of the flow and giving realistic evolution of the physical quantities.
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Variational Multiscale LES Investigation
of Drag and Near-Wake Flow
of an Axisymmetric Blunt-Based Body

A. Mariotti, M.V. Salvetti and G. Buresti

1 Introduction

The characterization of the relationship between the base pressure of bluff bodies
and the geometrical and fluid dynamical parameters defining a certain configuration
is a complex and still open problem, of interest for both fundamental research and
practical applications. One of the most interesting applications concerns the devel-
opment of methods for the reduction of drag, and thus of fuel consumption, of road
vehicles. Indications exist in the literature that increasing the thickness of the bound-
ary layer developing over the lateral surface of a bluff body may lead to an increase of
the base pressure and to a decrease of the drag of two-dimensional or axisymmetric
blunt-based bodies (see e.g. [1, 2]). Nonetheless, the physical mechanisms and flow
features that are responsible for this result are not yet completely understood.

This work is part of an experimental and numerical research activity aimed at
characterizing the flow features influencing the base drag of an axisymmetric blunt
body. As for the experiments, it was observed in [3] that the increase of the boundary
layer thickness produces a reduction of the base suctions. This is probably connected
with an increase of the length of the mean recirculation region present behind the
body, and with the consequent reduction of the convex curvature of the streamlines
outside the boundary layer in the separation region.

In the present work, the results of Variational MultiScale (VMS) LES carried out
on the same body as in the experiments are presented and analysed. Numerical sim-
ulations can give complementary information compared to the experiments, useful
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for a better comprehension of the physical mechanisms leading to drag variations
on the considered body. In particular, the complete flow dynamics is available in the
VMS-LES simulations, while the available experimental measurements are limited
to hot-wire anemometry velocity signals, pressure distributions on the body surface
and aerodynamic loads. Moreover, the flow conditions are easier to be controlled in
numerical simulations. The VMS-LES approach adopted in the present work has been
successfully used for the simulation of bluff-body flows in the past (see e.g. [4-6]).

2 Geometry Definition, Simulation Set-up
and Numerical Method

The axisymmetric model configuration comprises a forebody with a 3:1 elliptical
contour, and a cylindrical main body with a sharp-edged base perpendicular to the
axis (see Fig. 1). The ratio between the diameter, d, and the overall length, /, is
d/l = 0.175. The Reynolds number is Re = [ - U/v = 5.5 x 10°, as in the exper-
iments. Differences are that simulations can be carried out for laminar freestream
conditions, while a freestream turbulence intensity of 0.9 % is present in the experi-
ments. Moreover, the model support present in the experiments (see [3]) is not present
in the simulations.

In the numerical simulations a reduction of the boundary layer thickness is
obtained by using a free-slip boundary condition over different initial portions of
the body surface (see Fig. 2a, b). Conversely, in the wind tunnel tests strips of emery
cloth were wrapped in various position around the body circumferences in order
to anticipate boundary layer transition and, thus, to increase its thickness (see [3]).
In particular, in the case NT there was natural boundary layer transition, while in
the cases 7'1 and T2 the transition points were kept fixed at x;/I = 0.75 and at
x¢/1 = 0.875, respectively.

(a) Slip No slip (b) Slip No Slip

- o e

O —— L . RS
0251 0.751 | . 06251 . 03751,

Fig. 2 a Case 075/, b Case 0.375
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Variational multiscale large-eddy simulations (VMS-LES) of the considered
configuration were carried out by using AERO, an in-house developed numerical
code based on a linearized implicit time advancing and on a mixed finite-volume/
finite-element method, applicable to unstructured grids for space discretization (see
e.g. [4]). The accuracy of the numerical method is second order both in space and
time. The Smagorinsky model is used as subgrid scale model in order to close the
VMS-LES equations.

The computational domain is cylindrical, with a diameter of 154 and a length of
50d (30d being the distance from the body base to the outflow); it is discretized by
an unstructured grid having approximately 2.4 x 10° nodes. The grid is particularly
refined near the body surface and in the near wake (the wall y™ is lower than 1).
Characteristic-based boundary conditions [4] are used at the inflow, outflow and lat-
eral surfaces of the computational domain. The boundary conditions on the body are
chosen, as previously explained, in order to vary the boundary-layer thickness on the
lateral surface. In particular, three simulations are presented here, which correspond
to no-slip over the entire body (case /), over 75 % (case 0.75]) and 37.5 % (0.3751)
of the body lateral surface respectively. In all cases, no-slip is imposed on the base
(see Fig. 2a, b).

3 Results

An overall impression of the main flow features is provided by the streamlines of
the velocity field averaged in time and in the azimuthal direction, shown in Fig. 3
(case I). In the considered operating conditions, the boundary layer remains com-
pletely attached over the lateral surface of the model, up to the separation at the
sharp-edged base contour. The flow separation at the base leads to the development
of a free shear layer, to the creation of a trailing stagnation point and to a flow recircu-
lation behind the base. The mean-velocity streamlines bend inwards after the end of
the body, aside the previous mentioned recirculation zone. This mean recirculation
region is usually referred to as the near-wake and it has a significant influence on base
drag. Indeed, the base pressure is connected with the velocity outside the boundary
layer in the separation region, which, in turn, increases with the convex curvature of
the outer streamlines in the near wake.

Fig. 3 Streamlines of the
velocity field averaged in
time and in the azimuthal
direction
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Table1 Summary of the boundary layer characteristics, the length of the mean recirculation region,
and the integral of the base suctions on the body base

Case s/d 8*/d 0/d H Ljd |17 )d | Cppase | Cpp-2t
0.375  |0.0306 |0.0078 [0.0036 [2.15 [145 [1.55 —0.135 | —0.136
075 00411 |0.0107 |0.0050 |2.14 |148 |1.59 —0.130 | —0.131
! 0.0663 |0.0146 |0.0072 |2.03 |154 |1.64 —0.122 | —0.124

(a) (b) (©)
0.1 0.1 0.1
i 1 —o— | —o—1
——0.751 ) ——0.751 —0—0.751
——0.375l ) ——0.375l ——0.375l
2
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0 - - 0 i
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Fig. 4 a Profiles of x-velocity. b Rms of x-velocity. ¢ Profiles of vorticity

As previously explained, three different boundary layer thicknesses § /d, measured
0.1d from the base contour, are obtained in the simulations (see Table 1). The dis-
placement thickness 8*/d, the momentum thickness 0 /d and the shape factor H are
also summarized in Table 1. The three non-dimensional profiles of the x-velocity, of
the rms of the x-velocity and of the azimuthal vorticity, wg, are shown in Fig. 4a—c,
respectively.

The local pressure coefficients on the base, averaged in time and in the azimuthal
direction, are shown in Fig. 5 for the three considered simulations. The corresponding
average values (Cppqse, averaged on the whole base surface) are reported in Table 1. It
can be seen that the base suctions decrease with increasing boundary layer thickness.
This variation is found to be connected with an increase of the length of the mean

Fig. 5 Cp distribution on [o-1 < 0.751 < 0.375]
the base -0.1

0 0.25 0.5
r/d
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Fig. 6 Mean flow

k [—I1---0.751—0.375!
streamlines

r/d

recirculation region that is present behind the body, whose values, I, /d, are also
reported in Table 1; [, is evaluated as the distance from the body base of the point
at which the mean streamwise velocity on the axis is equal to zero. The mean flow
streamlines bounding the recirculation region are shown in Fig. 6, together with the
mean flow streamlines passing at the edge of the boundary layer x/d = —0.1. It is
evident that a reduction of the length of the mean recirculation region is connected
with an increase of the inward curvature of the streamlines, as suggested in [3].

In order to directly compare the present results with the experimental ones of
[3], the length of the mean recirculation region was also evaluated, as done in the
experiments, as the distance from the base of the point on the centreline at which
the maximum of velocity fluctuations occurs; the obtained values, [J"** /d, are also
reported in Table 1. Similarly, the averaged base pressure coefficient was also cal-
culated for r < 0.4, since experimental measurements are available only inside this
zone (see sztfsocj4 in Table 1).

The effect of boundary layer thickness on the mean recirculation zone length
and on the base pressure are graphically summarized in Fig. 7a, b. The momentum
thickness 6/d is only shown for the sake of brevity. The experimental results are also
reported. In spite of the previously outlined differences, the simulation with no-slip
conditions over the full body and the experimental case with natural transition (cases
[ and NT) can sensibly be compared. First, it appears that the measured boundary-
layer momentum thickness is slightly larger than the computed one. This difference
is consistent with the fact that in the wind tunnel the oncoming flow is not perfectly
smooth as in the numerical simulations and this moves the boundary-layer transi-
tion upstream, resulting in a thicker and fully-developed turbulent boundary layer
at the end of the body. The different state of the boundary layer in experiments and
simulations is confirmed by the values of the shape factor, H, i.e. the ratio between
the displacement and the momentum thickness. In the experiments, H is equal to
1.41, which is typical of turbulent boundary layers, while the boundary layer at the
end of the body in the numerical simulation seems to be still in a transitional state
(H = 2.03). The length of the recirculation zone is definitely shorter in the experi-
ments rather than in the simulations (see Fig. 7a). Again, this is consistent with the
significant turbulence level in the experimental oncoming flow. Note, however, that
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base

the increasing trends of /™ /d with the boundary-layer thickness 6/d are analo-
gous for the experiments and the simulations. In the experiments larger suctions are
present on the base than in the simulations (see Fig. 7b). As will be explained in the
following, this is due to the shorter length of the recirculation region. Nonetheless,
the dependence of the base pressure on 6 /d is again similar in experiments and sim-
ulations. The connection between the length of the mean recirculation region and the
base pressure is highlighted in Fig. 7c. The experimental and numerical data collapse
on a single straight line, meaning that the relationship between the base pressure and
7% /d is independent of the status of the boundary layer before separation at the
body base and of the turbulence level of the oncoming flow. Additional simulations,
carried out at a lower Reynolds number and not shown here for the sake of brevity,
indicate that this relationship is also independent of the Reynolds number. Thus, it
appears that in different flow conditions the most important parameter controlling
the base drag is the length of the mean recirculation zone. On the other hand, [/ /d
can be varied by changing the boundary layer thickness, independently of the status
of the boundary layer, or the freestream turbulence level. Different techniques to
control I/ /d can clearly be used, such as, for instance, blowing and suction on the
body basis.
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carrying out the numerical simulations.
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SVV-LES and Active Control of Flow
Around the Square Back Ahmed Body

Noele Peres and Richard Pasquetti

1 Introduction

This work is motivated by the need of the automotive industry to manufacture vehicles
that progressively reduce and ultimately eliminate both their negative environmental
impact and dependence upon oil. To this end, we focus on a simplified ground
vehicle, the so-called Ahmed body [1], and try to develop an efficient and validated
methodology of drag reduction (up to 10 %). This methodology will be based on
active control through the implementation of synthetic MMEMS (Micro-Magneto-
Electro-Mechanical-Systems) microjets. As a preliminary step, we are interested in
highly resolved simulations of the Ahmed body wake flow, in view of predicting
accurately the effect of microjets and minimizing the drag by optimization of their
use. In order to develop new efficient strategies to reduce the aerodynamic drag
force, that should be able to change locally the flow, remove or delay flow separations
without constraints of design, comfort and safety, many research groups have focused
on the implementation of active flow control techniques. These techniques can range
from blowing, steady and pulsed jets to synthetic jets in open or closed loops [2—4].
More recently, in [5] synthetic jets, i.e. with zero-net mass-flux, are applied on an
Ahmed body with slant angle ¢ = 25° to decrease the aerodynamic drag between
6.5 and 8.5 %.

In the present work, the influence of both steady and synthetic microjets on the flow
field are pointed out. The present active flow control technique extends the concept
applied by Rouméas et al. [4], where blowing steady jets at the rear of the Ahmed
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body are used to reduce the transverse wake section, leading to an increase of the
static pressure distribution on the rear part of the vehicle and a reduction of the total
pressure losses in the near-wake flow.

2 Geometry and Mathematical Modelling

The geometry of the car model proposed by Ahmed and Ramm [1] with slant angle
@ = 0° is considered. The square back Ahmed body, of length / = 1,044 mm, height
h = 288 mm, and width w = 389 mm, is placed at d = 50 mm from the ground. The
computational domain, 2 = (—5.44 h, 7.25 h) x (0,3.2 h) x (—2.16 h,2.16 h), is
channel-like. The bluff body is located at the distance 1.8125 & from the inlet. The
blockage factor, defined as the ratio between the bluff body section to the channel
one, is then 9.77 %.

The Reynolds number equals Re = Uh/v = 768,000, where U is the mean
upstream velocity and v the kinematic viscosity. The boundary conditions are the
following: no-slip condition at the obstacle and at the ground, free-slip condition at
the top boundary of the domain and a steady boundary layer like profile at the inlet.
Periodicity is assumed versus the z-spanwise direction. At the initial time the fluid
is at rest.

The flow is assumed to be governed by the incompressible three-dimensional
Navier-Stokes equations. The numerical method is based on a multidomain Cheby-
shev Fourier approximation. In the streamwise direction, the computational domain
is decomposed in nonoverlapping subdomains of different lengths. At the subdomain
interfaces, the C' continuity of the velocity components and C° continuity of the
pressure are ensured by using an influence matrix technique [6]. In each subdomain,
a collocation Chebyshev method is used in the vertical and streamwise directions,
whereas a Fourier Galerkin method is used in the spanwise periodic direction. In the
vertical direction a mapping is used to accumulate grid points at the roof of the car
model. The discretization in time is based on a fractional step method, involving first
an explicit treatment of the advection terms, then an implicit treatment of the diffu-
sion terms using a second order backward Euler approximation (BDF2) of the time
derivative and third, an incremental projection step is applied to enforce the velocity
divergence free constraint, see details in [7]. The LES capability is based on the SVV
stabilization technique, see [8] and references herein. The SVV dissipation term is
characterized by the threshold parameter m y = /N and by an amplitude sy = 1/N,
with N for the polynomial approximation degree in each direction. The Ahmed body
is modeled using a pseudopenalization technique, that consists of a modification of
the time scheme in order to approximately cancel the velocity field inside the volume
of the obstacle [9]. As a result, inside the bluff body we solve the stabilized steady
Stokes equations penalized with a cvu/7 term, where u is the velocity field, t the time-
step and o a time scheme dependent coefficient. In case of the BDF2 scheme o = 3/2.
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The active flow control makes use of microjets located around the rear part of
the body. Blowing steady and synthetic micro-jets are considered. Due to the small
size of the jets, a modelling is required , see e.g. [10]. In this work the jets are, like
the bluff body, modeled by pseudo-penalization, i.e., by introducing implicitly in
the momentum equation an additional forcing term, >-; o) (u — u;)/7, where u;
stands for the velocity enforced at the grid-point location y; of the jet j. Note that
this is done at the level of the provisional step of the projection technique. In our
modelling, each jet is located at the first point out of the Ahmed body. In case of the
synthetic jets the amplitude of the imposed velocity is always positive for the blowing
period and zero for the suction period. Indeed, the ingested fluid has essentially an
impact on the actuator device (internal flow and membrane) and a negligible one on
the external flow. Moreover, setting a zero value during the suction provides a rough
modeling of the actuator slot.

3 Results

The computational domain is decomposed in eight sub-domains in the x-streamwise
direction. Three of them localized around the Ahmed body. In each subdomain the
polynomial approximation is 40 x 190 x 128, yielding about 15.7 millions of grid-
points. The dimensionless time-step is taken equal to 7 = 2.0 1073,

Figure 1a present visualizations of the instantaneous pressure, both in the median
vertical plane and in an horizontal plane, whereas in Fig. Ib we display the mean
pressure field. These visualizations highlight the low pressure regions at the rear and
front of the car.

The statistics have been computed in the time interval ¢ € (667, 787). The mean
flow is visualized in Fig. 2a, which clearly points out the large spreading of the wake
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downwards of the car model, the formation of a recirculation zone at the rear of the
bluff body and also the separation of the flow at the front of the car, both on the top
and on the sides of the Ahmed body. Figure 2b displays the turbulent kinetic energy
with extrema at the rear, and also at the top and on the sides. The slight lacks of
symmetry observed with respect to the symmetry plane of the body in Figs. 1b and 2,
suggests to use a longer time to compute such statistics, but this was not done for
computational cost reasons.

The strategies to reduce the aerodynamic drag force presented in this work consists
of reducing the transversal wake section. To achieve this goal, one uses steady or
synthetic jets, located around the rear part of the Ahmed body, as sketched in Fig. 3d.
The angle between each jet and the rear wall is & = 45° inward, except in Fig.3a
where a study of its influence is carried out.

Several configurations are studied using these two techniques. Figure 3a, ¢ rep-
resent the time evolution of the aerodynamic drag force F, considering blowing
steady jets with blowing velocity Uj,; = 1.5 U. One observes a reduction of the
aerodynamic drag force up to 30 % that agrees with the results obtained by Rouméas
et al. [4]. The influence of the angle 6 between each jet and the rear wall is pre-
sented in Fig. 3a for 0 = 45° and 6 = 30°, showing a weak variation of F, between
these two angles. The dependence of the number of jets on the reduction of drag is
presented in Fig. 3c, where starting from a configuration where jets are localized at
all the considered mesh-points, we only keep jets at one over two or one over three
points.

The second technique, based on synthetic micro-jets, uses a truncated sinusoidal
variation such that U jo; = max(Ujmp sin(2n ft+¢), 0), with Ujy,p, € {1.5U,2.0U}.
We have used the dimensionless frequency f = 5, which is much greater than the
dominant one of the recirculation bubble. Moreover, a phase lagging between the
successive micro-jets is implemented, i.e. ¢ € {0, /2, m, 37w /2}. Note that these
choices of frequency and phase lagging are used to retrieve as much as possible
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(a) Blowing steady jets (b} Synthetic microjets
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Fig. 3 a Time evolution of the drag force F\, for the natural flow and the controlled flow using
blowing steady jets at different angles 6, b time evolution of the drag force Fy, for the natural
flow and the controlled flow using synthetic microjets with different velocities, ¢ time evolution
of the drag force F, and its dependence of the space distribution of the blowing steady jets, d jet
localizations at the rear of the Ahmed body

the efficiency of the steady jet configuration. The dimensionless frequency f = 5
corresponds with 7 = 288mm and U = 40ms~! to the realistic value 700 Hz.
Figure 3b shows a reduction of the aerodynamic drag force up to 10 %, using the
parameters described above. The mean values of the drag force (F,) were computed
fort € (590, 615).

Figure4a shows the mean pressure field in the median vertical plane without
control, with active flow control using synthetic micro-jets and steady jets, from
top to bottom respectively. In the case of the synthetic micro-jets U;,, = 1.5 U.
Figure 4b represents the mean streamwise velocity component. These visualizations
highlight the influence of the jets in the wake flow.

Future works will focus on the optimization of the drag reduction system, i.e.
localization, frequency and amplitude of the micro-jets. The possibility of improving
their modelling should be considered as well as the balance between the energy
losses due to the microjets consumption and the profits related to the drag force
reduction.
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Design of High-Order Implicit Filters

on Unstructured Grids for the Identification
of Large-Scale Features in Large-Eddy
Simulations

L. Guedot, G. Lartigue and V. Moureau

1 Motivation

Large-Eddy Simulation (LES) and Direct Numerical Simulation (DNS) are
increasingly popular modeling tools for the understanding and the prediction of
turbulent flows. The mesh resolution in these 3D unsteady simulations has been in a
constant increase over the last decade driven by the development of massively par-
allel super-computers. The post-processing of the large amount of data generated by
these simulations is however very challenging. The extraction of large-scale features
in turbulent flows is particularly difficult because it requires to process either wide
regions of the computational domain or to perform some averaging of the flow.

The extraction of large eddies in turbulent flows may be achieved using Proper
Orthogonal Decomposition or Dynamic Mode Decomposition [1-3] but both meth-
ods require the storing of a large amount of snapshots, which is presently intractable
for billion-cell simulations. Those methods might require to perform some temporal
or spatial filtering, to remove high-frequency motions and avoid aliasing issues.

A complementary approach, which is presented in this paper, is to use high-order
filters. Novel high-order filters have been developed to extract turbulent scales of
a given size on unstructured grids, and they have been successfully applied in a
semi-industrial swirl bruner (as presented in Sect.5).
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2 High-order Implicit Filters
The filtering of a scalar ¢ with high-order implicit filters (HOF), as defined in [4, 5],
can be written in a one-dimensional domain as

Ax2P
(—4)P sin?? (ke Ax/2)

¢+ BpyDPd = ¢, where B, = (1)

q_b is the filtered value, D the second derivative operator, 2 p the order of the filter, k.
the cut-off wave number, and Ax the homogeneous grid spacing.

This filter may be analyzed in the complex Fourier space assuming a monochro-
matic signal ¢ = A exp(ikx), where A is the amplitude, k is the wave number and
x the space coordinate. The filter response defined as the ratio of the filtered and
unfiltered amplitudes A/A is

% = (1 sin®” (kAx/2) )_1 : @)

N sin?? (ke Ax/2)

This damping function is plotted in Fig. 1 for various orders. The definition of this
filter family ensures that the amplitude damping is 50 % at the cut-off wave number,
i.e. where all curves intersect each other. The selectivity of a filter can be defined as
its ability to damp the smallest scales while not affecting the largest ones. The higher
is the order, the sharper is the filter response. The slope of the filter response at the
cut-off wave number is a good estimate of the filter selectivity. The HOF shows a
good selectivity which is an essential property to extract structures of a given scale
from the flow.

Fig. 1 Damping functions 1 = - — T
of high order filters, for order Raymond filter order 4 -
N Raymond filter order 8
4, 8 and 16, Gaussian filter, Raymond filter order 16 -
and low-pass filter 0.8 Ideal Low Pass Filter —— -
Gaussian Filter - - - -
0.6
0.4
0.2
0

200 250 300
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3 Derivation and Implementation of Raymond Filters
on Unstructured Grids

A first part of the work consisted in the generalization of the filters to 3D unstructured
grids with non-uniform grid spacing. In this case, the second-order derivative oper-
ator D is replaced by a node-centered Laplacian operator. Then, to ensure discrete
conservative properties of the filter, the coefficient 8, is included in the Laplacian
operator itself leading to a modified operator D’.

The HOF require the inversion of a symmetric matrix to find the filtered values.
The linear system may be written as

(I+D"¢=0¢ 3)

where D’ is the modified symmetric Laplacian operator. The algorithm used to invert
the linear system and to compute ¢ is a Preconditioned Conjugate Gradient (PCG).

To make this filter suitable for meshes of several millions of cells, some work has
been done to accelerate the convergence and improve the robustness of the linear
solver. The decomposition of the matrix of the linear system described in Eq. (3)
into p complex matrices (polynomial factorization, where «; are the complex roots
of the polynomial):

k
[ +eiarg =0 )

i=1

reduces the system to p smaller systems. Each n x n complex symmetric matrix is
then transformed into a 2n x 2n real symmetric matrix that can be inverted with the
PCG algorithm [6].

4 Application of the Filters to Canonical Flows

4.1 Taylor Vortices

In this section, a linear combination of 2D Taylor vortices with three different sizes
(L/2,L/4and L/8), where L is the size of the computational domain, is considered.
The mesh used in this case is a 2D cartesian grid, but the filtering is performed with
an unstructured code.

The velocity field has been filtered with filter widths of L/2 and L/4. The L/4
filtering removes the structure of smallest size L/8. The L /2 filtering removes both
L/8 and L /4 vortices, leaving only the biggest vortices. The L /2-filtered field can
be compared to the analytical solution of Taylor Green vortices of size L/2 (Fig.2
(top)). Plotting the difference between the unfiltered field and the L /4-filtered field
enables to extract the L /4 vortices, which can also be compared to the exact solution
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Exact Solution 12th order filter Gaussian filter

Fig. 2 Extraction of Taylor vortices with 12th order band pass filter (center), Gaussian band-pass
filter (right) and comparison with exact solutions (left)

(Fig.2 (center)). The same can be done for the smallest vortices (Fig.2 (bottom)).
The same was done with a Gaussian filter, and the difference between the two types
of filter is clearly visible. The three types of vortices are recovered with the HOF,
while Gaussian filter hardly captures the biggest vortices, and yet they are stretched
and damped. For the smaller vortices, traces of the other frequencies are still visible
since the Gaussian band-pass filter is not selective enough.

4.2 3D Homogeneous Isotropic Turbulence

The HOF are then applied in a 3D Homogeneous Isotropic Turbulence on a 1283
Cartesian grid and compared to a Gaussian filter. In this case, the performances of
the filter are obtained from the analysis of the Q-criterion spectrum. An example is
given in Fig.3a . The higher selectivity of the HOF is clearly visible. The spectrum
fits better the unfiltered spectrum for the low wave numbers, and decreases faster
after the cut-off. The HOF provide a better dissipation of the smaller scales.
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Figure 3b compares the spectra of filtered Q-criterion with order from 4 to 16. As
the order increases, the selectivity of the filter is improved. The higher is the order,
the sharper is the spectrum for high wave numbers.

5 Application of the Filters to Turbulent Flows in Complex
Geometries

The HOF were also applied in a complex semi-industrial swirl burner in order to
assess the proper behavior of the filters on massive unstructured grids and evaluate
their ability to extract large-scale features of a turbulent flow. In aeronautical swirl
burners, the Precessing Vortex Core (PVC) is a well-known 3D structure which
dominates the flow dynamics and part of the mixing process [7]. This kind of large
coherent structure becomes hard to be extracted as the size of the mesh increases.

The Preccinsta swirl burner has been widely studied and is a challenging test for
the HOF since it has been computed with several mesh resolutions from 1.7 millions
of tetrahedrons to 2.6 billions [8]. On the simulation performed with the 1.7 millions
mesh, Q-criterion isosurface colored by the axis distance shows the existence of
a Precessing Vortex Core (helical vortex, Fig.4a). With bigger meshes, this large
structure becomes hard to post process. Large scale structures can be visualized
with Q-criterion isosurfaces, but this method reveals both large and small structures
regardless of their size. The bigger is the structure compared to the mesh resolution,
the harder it is to be extracted. For the refined simulations (14—110 millions), Q-
criterion was filtered with a 12th order filter at the approximate size of the PVC.
The same isosurface is then plotted with this filtered Q-criterion (Fig.4b—d). All the
small-scale structures were removed by the filtering, leaving a big 3D helical vortex
similar to the PVC observed on the 1.7 millions.
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Fig. 4 alsosurface of unfiltered Q-criterion on the coarse mesh. b Isosurface of filtered Q-criterion
(12th order) on the 14 M mesh. ¢ Isosurface of filtered Q-criterion (12th order) on the 41 M mesh.
d Isosurface of filtered Q-criterion (12th order) on the 110 M mesh

6 Conclusions and Perspectives

The HOF implemented in the code show good results on canonical test cases, and
were successfully applied in the PRECCINSTA semi-industrial swirl burner. The
extraction of large-scale strutures with HOF in this type of burner, associated with
two-phase flow simulations will enable to understand and analyse the interaction
between the liquid fuel spray and the large-scale vortices.

Those filters can also be a valuable tool to interpolate data on a coarse grid and
perform modal analysis (POD, DMD) with reduced computational costs.
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DNS of Canonical Turbulent Flows Using
the Modal Discontinuous Galerkin Method

J.-B. Chapelier, M. De La Llave Plata, F. Renac and E. Lamballais

1 Introduction

The discontinuous Galerkin (DG) method is a particular class of finite element
methods which was first introduced by Reed and Hill in 1973 [1] for the treat-
ment of the neutron transport equations. The first applications to fluid mechanics
appeared two decades later with the resolution of the Euler equations [2—4], and
the compressible Navier-Stokes equations [5]. This method has gained increased
popularity during the last decade for CFD applications. An interesting property of
DG discretizations is their arbitrarily high-order of accuracy, achieved by writing
the solution in terms of a polynomial expansion of order p in each element of the
computational domain. Another significant property of these methods is their ability
to deal with unstructured meshes over complex geometries. Finally, a smart choice
of the numerical fluxes can lead to compact discretization, which is advantageous
for parallel strategies based on the MPI technique. The combination of these three
properties makes the DG method interesting for the computation of turbulent flows
using DNS or LES. In this paper, we present Direct numerical simulations of canon-
ical test cases using a modal DG method. Special emphasis is placed on the interest
of high-order DG discretizations for the simulation of turbulence.
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2 Numerical Methods

We consider the compressible set of Navier Stokes equations written in conservative
form. The DG discretization is based on a variational form of these equations, in
which the continuity of the solution is not enforced at the interfaces between elements.
The surface integrals are therefore computed by introducing a numerical flux, which
takes into account the discontinuities in the solution. We consider a modal approach,
for which the solution is expressed within an element as an expansion of locally
orthogonal polynomials. This property is necessary to ensure that the mass matrix
is diagonal. In this case, the degrees of freedom are the expansion coefficients in
each element. We consider in this study a Lax Friedrichs flux for the discretization
of the convective terms and the BR2 method [6] for the discretization of the viscous
terms. This approach guarantees a convergence order of p + 1, where p is the
polynomial degree of the expansion, while keeping the compacity of the method.
We consider a third-order explicit Runge-Kutta method for the temporal integration.
The code has been parallelized using the MPI approach. For the following studies,
the meshes considered are composed of hexahedra, and the basis is composed of
Legendre polynomials.

3 DNS of Canonical Flows

3.1 Collision of a Dipole Vortex with a No-Slip Wall

The first configuration considered represents the impact of a vortex-dipole on a no-
slip wall. This configuration provides complex near-wall phenomena that are difficult
to capture for most numerical codes. The following initialization refers to the work
of Clercx [7]. We consider a square domain §2 = [—h, +h]? with no-slip adiabatic
boundary conditions at x = %A and periodicity conditions in the y-direction. The
expression of the Reynolds number is Re = \/Eo/2h/v, where Ey is the total kinetic
energy in the domain. We consider a Reynolds number of 1,000 for comparison with
the reference spectral computations of Keetels et al. [8].

We have performed a high-order DG computation using a coarse mesh (see Table 1
for the details). The associated number of degrees of freedom is low compared
to reference spectral computation. Regarding the evolution of enstrophy and the
isocontours of vorticity at a time after the first collision, the agreement is excellent
between the two computations (see Figs.1 and 2). This result shows the interest
of high-order DG methods for the accurate resolution of vortex-based flows using
coarse discretizations.
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Table 1 Details of the computations for the vortex-wall collision

Computation Order Elements DOFs Axg
DG p5 6 322 1922 2.58
Keetels et al. - - 2048 x 1024 -

2 1600 -

DG - p5 - 32° 1400 _ DG - p5 - 32°

i Keetels et al. r Keetels et al.
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Fig. 1 Evolution of statistics for the dipole-wall collision at Re = 1, 000
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Fig. 2 Vorticity contours at = 0.5 for the pseudo-spectra (left) and DG (right) computations

3.2 Turbulent Channel Flow

We consider in this section a DG computation of the turbulent channel flow, which
is a more realistic configuration for the study of turbulence. The flow is developed
between two walls separated by a distance 2/, and the computational domain is
2 = [0,47h] x [0, 2h] x [0, %nh]. We consider periodicity boundary conditions in
the streamwise (x) and spanwise (z) directions. This flow is statistically homogeneous
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Fig. 3 L,-error of velocity and temperature for different fourth-order DG discretizations, for the
laminar channel flow. Solid lines fourth-order DG computations; Dashed lines theoretical error
scaling

Table 2 Resolution details of the computations for the compressible channel flow

Computation Degrees of freedom Collocation / Quadrature points A yl+
DGp=3 104 x 92 x 64 130><115><80(%1.2x106) 5.7
Coleman et al 110 x 90 x 60 144 x 119 x 80 (% 1.37 x 106) -

in these two directions, allowing to plot the various profiles as a function of y only.
We consider a body force as a source term in the x-momentum equation to account
for the mean pressure gradient that drives the flow. In order to validate the isothermal
boundary conditions, we first perform computations of the laminar channel flow. The
evolution of the error in the L, norm is plotted for the velocity and the temperature,
as a function of the number N of the elements of the discretization. As seen in Fig. 3,
we verify the theoretical order of convergence p + 1, which validates the boundary
conditions.

A DNS of the turbulent channel flow at Mach 1.5 is performed. We consider a
bulk Reynolds number of 2,800, which corresponds to a friction Reynolds number
of about 180. The reference spectral computation has been performed by Coleman
et al. [9]. The details of the computations are shown in Table 2.

As seen in Fig. 4, the correlation is very good for the mean and fluctuating velocity
profiles between the DG and the reference computation. There is also an excellent
agreement between the mean and fluctuating density and temperature (see Fig.5),
showing that the DG method allows for an accurate representation of the compress-
ibility effects in the channel. The friction Reynolds number, as seen in Table3, is
also in very good agreement with the reference computation.

This DG computation shows the suitability of high-order DG methods for the
representation of near-wall turbulence submitted to compressibility effects.
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Fig. 5 Profiles of mean and fluctuating density and temperature for the compressible channel flow

Table 3 Physical parameters of the computations for the compressible channel flow

Re: Ur T Pc Pe/ Pw
DGp=3 221.4 0.0547 1.375 0.980 0.726
Coleman et al. 221.6 0.0545 1.378 0.980 0.723

4 Conclusion

The accuracy of the DG modal approach for the DNS of turbulent flows has been
assessed by considering two different flow settings.

Firstly, a 2D configuration representing the normal collision of a dipole with a
no-slip boundary has been investigated. It appears that the high-order DG approach
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is able to provide good quality solutions on coarse meshes. In particular, we have
shown that accurate solutions can be obtained with only 192> DOFs, with respect to
the reference simulation which shows 2048 x 1024 DOFs.

Finally, a high-order DG computation has been performed for the turbulent chan-
nel flow configuration in the compressible regime. The DG solution turns out to be in
good agreement with the reference computation both in terms of mean and fluctuating
velocity profiles. We also found an excellent agreement with Coleman’s reference
DNS for the fluctuating thermodynamic quantities (density and temperature).

High-order DG discretizations are able to provide a level of accuracy equivalent
to that offered by spectral methods for a comparable number of DOFs. Thanks to
the flexibility provided by the DG method in terms of hp-refinement the size of the
simulation can be further reduced through an appropriate choice of the discretization
parameters & and p.

Acknowledgments This research is funded by ONERA’s scientific board (DSG). We would like
to thank Prof. G.N. Coleman for providing the reference data for the compressible channel flow,
and Dr. Werner Kramer and Prof. Herman Clercx for the reference data for the dipole configuration.
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LES Using a Discontinuous Galerkin
Method: Isotropic Turbulence,
Channel Flow and Periodic Hill Flow

C. Carton de Wiart, K. Hillewaert, L. Bricteux and G. Winckelmans

1 Introduction

This paper presents the second step of the validation of a compressible discontinuous
Galerkin method (DGM) for the Direct numerical simulation (DNS) and the large
eddy simulation (LES) of turbomachinery flows. The method has already been suc-
cessfully validated for the DNS of academic flows [1] as well as for the flow around
complex geometries [2]. During these studies, the interesting dissipation properties
of the method have been highlighted, showing a natural tendency to disspate only the
under-resolved scales (i.e the smallest scales), leaving intact the larger scales. This
phenomena is even emphasised when going to high order polynomials. Indeed, the
dissipation increases on the largest wave numbers and its range of impact is reduced.
These properties of DGM makes it an excellent candidate for efficient implicit LES
(ILES). A validation of this DGM/ILES approach is here investigated on cannonical
flows, allowing us to deeply study the impact of the discretisation for under-resolved
computations. The first case studied is the homogeneous isotropic turbulence (HIT)
at infinite Reynolds number, as studied by Cocle et al. [3]. This benchmark allows
the assessment of the spectral behaviour of the method. The LES of the channel
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flow [4, 5] at various high Reynolds numbers is then presented. Finally, the method
is applied to the DNS of the two-dimensional periodic hill flow [6] at Re;, = 2800.
This computation is the preliminary step to the LES at Re;, = 10595.

2 The Discontinuous Galerkin/Symmetric Interior
Penalty Method

The discontinuous Galerkin method [7] is a Galerkin finite element method based
on an interpolation space @, composed of functions v that are polynomials of order
p on each of the elements e in the mesh &, but not required to be continuous across
any of the interfaces f between elements.

After choosing an appropriate set of basis functions ¢; for @ = span
{do, ..., dn}, with N the number of degrees of freedom per element, DGM then
approximates the different components W,, of w by w,, = >, Wim¢;.

As for any Galerkin method, the expansion weights W;,,, are found by requiring
that the residual of the model equations, evaluated with w, is orthogonal to any
function v € @. This principle is further complemented with consistent and penalty
terms on the element interfaces, using, as Riemann solver .#, the Roe upwind flux
for the convective terms whilst the diffusive terms are discretised according to the
Symmetric Interior Penalty (SIP) method:

Vo e ®, Vm: Y, [ i lmav — %, [ 2z + 25y av

axk
Tk K — i
+§‘/f[[¢,]] nk Ay (W™, w ,n)dS-l—;/f[[qbl]] [Dmn o7 45
CI DI
i
+Z/f[[wn]]"[D%W]dSJrZo/f[[wm]]" [[g:11" dS = 0.
f f
DS DP

F and 2 respectively stand for the convective and diffusive fluxes, DX for the
Jacobian of the diffusive fluxes with respect to the solution gradients. {.} and [[.]]
denote the interface average and jump operators. The penalty parameter o must be
chosen to be large enough to guarantee stability. Sharp bounds for the value of o

have been elaborated for simplices and recently for hybrid meshes [8].

3 HIT at Infinite Reynolds Number

The LES of incompressible decaying homogeneous isotropic turbulence (HIT) at
very high number is considered. The molecular viscosity is negligible leading to an
infinite Reynolds number. After a given transient phase, due to the sudden absence
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Fig. 1 Energy spectra (time
averaged between ¢t = 5 and 101k
t = 20). DGM/ILES results:
p = 2 (solid), p = 3 (dash) < 102
and p = 4 (dash-dot); PS =t
method: RVMs (thin solid). 103}
A k=3 slope is also shown
(thin dash) 104+
10° 10' 10°

of viscosity, the kinetic energy evolves following a power law %{? = (%) ‘I
the spectral domain, the energy spectrum should give a semi-infinite range, with a
true k—/3 behaviour according to Kolmogorov theory. Three orders of accuracy are
investigated using DGM.: third (p = 2), fourth (p = 3) and fifth (p = 4) order. The
number of degrees of freedom (dof) is the same for all computations and is equal to
1283. As the DGM solver is compressible, a Mach number of 0.1 is taken to simulate
the incompressible flow.

Figure 1 presents the resulting energy spectra. The results are compared with
those of Cocle et al. [3] obtained with a pseudospectral (PS) method on the same
grid, using the “regularized variational multiscale” model, (RVMs, as applied on the
small scales). DGM results present a behaviour very similar to the RVMs model,
with a significant k—/3 inertial subrange, followed by a moderate bump. This one
is even less pronounced for DGM/ILES than PS/RVMs. As expected, this bump
moves towards the high wave numbers when increasing the order of accuracy of the
computation, offering a slightly larger inertial range.

4 Channel Flow at Re,; = 395, 590 and 950

The wall-resolved LES of the fully developed two-dimensional turbulent flow
between two parallel walls separated by a distance 2§ is investigated. The flow is
assumed to be periodic in the streamwise and the spanwise directions. Three Reynolds
numbers are considered: Re; = u;8/v = 395, 590 and 950, with u, the friction
velocity based on the shear stress u; = 1/7,,/p. The computational domain is the
same for all computations: 271§ x 26 x 8. The computational grids are summarized
on Table 1. Here again, a Mach number of 0.1 (based on the bulk velocity) is chosen

Table 1 LES of the channel Re, dof (nx x ny x nz) Order (p)

flow. Reynolds numbers,

number of dof and order of 395 64 x 48 x 43 4(p=3)

accuracy considered 590 96 x 64 x 96 4(p=3)
950 192 x 96 x 192 4(p=3)




100 C.C. de Wiart et al.

20 20
15} 15
+ +

S 10 : 10
5 5
0 0

107 10° 10t 10? 107 10° 10t 10?

+ +
Y Y

Fig. 2 LES of the channel flow at Re; = 395 (left) and 950 (right). Mean velocity profiles.
DGM/ILES (dot) compared to DNS (solid line) of Moser et al. [4] (Re; = 395) and Hoyas et al. [5]
(Re; =950)

to match the incompressible conditions of the reference DNS of Moser et al. [4]
(Re; =395, 590) and Hoyas et al. [5] (Re; = 950).

Figure 2 shows the averaged velocity profile obtained at Re; = 395 and 950 with
DGM/ILES. Re; = 590 is not showed here for compacity but the behaviour at this
Reynolds number is very similar to the Re; = 950. The results are in very good
agreement with the DNS references, especially for Re; = 950. It is interesting to
stress that this result is obtained on a very coarse mesh at the near wall. Indeed,
for each computation, the first node is located at a wall distance y*t = 2.5 when,
typically, most methods need to stay below y™ = 1 to obtain satisfactory results.

Figure3 shows the three components of the turbulent intensity profile. Small
oscillations can be seen. Those are due to the discontinuities in the solution and do
not affect significantly the overall values. Globally, the profiles are well captured,
even if some discrepancies can be found on u’Ij'M 5 at both Reynolds numbers. On the
other hand, v;r s €t w’I;rM  are very well captured.

50 100 150 200 250 300 350

Fig. 3 LES of the channel flow at Re; = 395 (left) and 950 (right). RMS turbulent velocities:
u'R+M s (top), v'R+M s (bottom) and w’R+M s (middle). DGM/ILES (dot) compared to DNS (solid line)
of Moser et al. (Re; = 395) and Hoyas et al. (Re; = 950)
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5 DNS of the 2D Periodic Hill at Re;, = 2800

The 2D periodic hill is a generic case of a flow separating from a curved surface.
As the channel flow, the computational domain is periodic in the streamwise and the
spanwise directions. The flow separates at the hill crest and reattaches downstream,
creating a large recirculation bubble. The Reynolds number of the flow is based on
the bulk velocity at the hill crest Re, = uph/v, with h the hill height and u;, =
2.0g5h h3‘035h u(y)dy. As preliminary study to the LES of the periodic hill at Re, =
10595, a DNS is performed at Re, = 2800.

As the previous cases, the Mach number is set to 0.1 to match incompressible
conditions. The mesh is composed of 128 x 64 x 64 elements (curved near the lower
wall). Combined with a fourth order interpolant, this leads to 384 x 192 x 192 dof.
The results are compared to those obtained by Breuer et al. [6] on a 13M dof DNS
using the LESOCC finite volume solver.

Figures4 and 5 show the mean velocity profile and the x-component of the tur-
bulent intensity profile at the hill crest (x//h = 0) and in the recirculation bubble

3.0 3.0

2.5 25

“‘5 2.0 “‘5 2.0

15 15

1.0 1.0
00 02 04 06 08 1.0 1.2 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Fig. 4 DNS of the 2D periodic hill flow at Rep = 2800. x-component of the turbulent velocity.
DGM/DNS (dot) compared to DNS (solid line) of Breuer et al. at the hill crest (x/h = 0)
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Fig. 5 DNS of the 2D periodic hill flow at Re;, = 2800. x-component of the turbulent velocity.
DGMY/DNS (dot) compared to DNS (solid line) of Breuer et al. [6] atx/h = 2
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(x/h = 2). The results are in excellent agreement with the reference. The curves
are almost superimposed everywhere. Some discrepancies can be found on the mean
velocity fluctuation and can be explained by the small number of convective times
used to average the solution. Only a dozen of convective times have been computed
so far.

6 Conclusion

A compressible DGM solver has been assessed for the LES of academic flows using
an implicit LES strategy. This study pointed out the ability of DGM/ILES to perform
accurate LES. The results on HIT at infinite Reynolds number showed the ability of
the method to target the numerical dissipation only on the smallest scales, thus acting
like a subgrid scale model. The behaviour of the method is very similar to a state of
the art PS/RVMSs method. The LES of the channel flow at Re; = 395, 590 and 950
are also considered. The results match well those of the reference DNS, showing the
ability of the method to capture wall-bounded turbulence on relatively coarse grid.
Finally, a preliminary DNS has been successfully performed on the two-dimensional
periodic hill flow at Re, = 2800. This computation is a first validation for the LES
of the case at Re, = 10959 that will be performed shortly. Those results are very
encouraging and studies are currently performed to validate the method on more
complex cases.
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Underresolved Turbulence Simulations
with Stabilized High Order Discontinuous
Galerkin Methods

Andrea D. Beck, Gregor J. Gassner, Thomas Bolemann, Hannes Frank,
Florian Hindenlang and Claus-Dieter Munz

1 Motivation and Scope

Due to the broad range of spatial and temporal structures of turbulent flows, the
resolution requirements for a fully resolved representation of all scales are pro-
hibitively expensive and make Direct Numerical Simulations (DNS) impossible in
all but a very limited number of cases. Thus, the simulation of turbulent flows becomes
restricted to coarse grid solutions, combined with a suitable modeling approach for
the subgrid physics. For the DNS simulations of turbulence, the superiority of high
order schemes compared to their low order counterparts in terms of fidelity and
efficiency is well-established. However, for coarse grid simulations which are by
necessity underresolved, the term “order of convergence” of a formulation loses its
meaningfulness, as its definition requires sufficient smoothness of the underlying
flow field. Instead, other quality features of a discretization method have to be con-
sidered, such as e.g. dispersion and dissipation properties for a large range of scales.

In the case of the Discontinuous Galerkin (DG) method, it can be shown that its
high order variants yield very favorable dispersion and dissipation behavior over a
broad range of scales [17]. In addition, the DG method is particularly attractive for
massively parallel simulations as it shows excellent strong scaling properties and
it also allows geometry flexibility [1, 10]. Thus, the combination of these features
make an interesting candidate for the simulation of underresolved turbulence. In this
work, we will investigate the potential of DG methods for the simulation of turbulent
flows and show applications to canonical test cases.
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2 Description of Numerical Method

Starting from a general system of hyperbolic conservation equations
U+V-FU)=0 (1)

with U being the vector of the conservative variables and F = (F, G, H )T the flux
vector, we obtain the weak form of the Discontinuous Galerkin method as

%/U(bdx—i-/(F-N)*d) ds —/F(U)~(Vx¢)dx=0 2)
0 90 0

where Q is an arbitrary grid cell, N denotes the surface normal vector, and the
superscript * indicates the introduction of an approximate Riemann solver to remedy
the double-valuedness at the grid cell interfaces. The solution U is approximated in

each cell as
P(N)

Ux.0)= Y Ui)i(x) 3)

i=0

with l}i () as the time-dependent degrees of freedom, ¥; (x) a suitable basis of the
polynomial space with degree N and P (N) the number of basis functions.

Many different choices of basis functions, element types, flux functions and
integration methods exists, which all add their own flavor to the DG method (see
e.g. [4, 8, 12]). In this work, we will focus on the Discontinuous Galerkin Spectral
Element Method (DGSEM) proposed in [12], which employs tensor-product nodal
Lagrange basis functions on Gauss points in hexahedral elements, together with the
associated quadrature rules for volume and surface integrals. Full details can be found
in [10]. The non-linearity of the flux function F(U') makes an exact evaluation of the
inner products very expensive, and these integrals are thus often approximated by an
inexact quadrature rule to keep the computations efficient. This numerical inaccuracy
introduces an aliasing error into the solution, which can lead to positive eigenvalues
in the operator spectrum and thus to an unstable computation (Fig. 1). There are a
number of countermeasures to this unwanted build-up of aliased energy due to the
inexact integration of the inner products, among them filtering and skew-symmetric
formulations of the operator. We will focus herein on the application of the traditional
spectral de-aliasing method for Fourier spectral methods by Orszag to a polynomial-
based approximation: The so-called “polynomial de-aliasing” introduced by Kirby
and Karniadakis [11]. It should be noted that this approach ensures an exact evalu-
ation of the inner products and thus results in an “analytic” DG formulation, where
the only remaining parameter in Eq. (2) is the choice of the numerical flux function.
In this work, we use the local Lax-Friedrichs flux for the convective fluxes and the
second method of Bassi and Rebay for the viscous contribution.
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Fig. 1 Left DG operator spectrum with increasing quadrature precision, from [2]. Right Zoom

3 Results

As a first test case, we have investigated the results of very high order fully de-
aliased DG computations for the Taylor-Green Vortex test case [3]. To facilitate a
fair comparison with results from literature, we have chosen the same total number
of degrees of freedom (64°) as previous authors. We have discretized the triple-
periodic domain of this flow with only 43 elements, but chosen a polynomial ansatz
of order 15 in each spatial direction, leading to the total of 64° degrees of freedom.
While keeping the number of DOF fixed, three different Reynolds number were
computed with this setup, ranging from 800 to 1,600 to 3,000. We have compared
our results to those reported by Hickel [9], wherein he presented Finite-Volume based
LES computations of this flow. It should be emphasized that our approach contains
neither an explicitly added subgrid scale model for the unresolved terms, nor an
adapted discretization in an implicit LES sense. Figure2 presents the results of the
underresolved computations of this turbulent flow for increasing Reynolds numbers
and a comparison with an explicit LES with a dynamic Smagorinsky model and
an implicit approach based on the Approximate Local Deconvolution implict LES
method. The rate of kinetic energy dissipation of a DNS of this flow conducted by
Brachet for the Re = 1600 case (from [3], using 2563 pseudospectral DOF) and
a DNS by Fauconnier for Re = 3000 (from [5], using 384> pseudospectral DOF)
serve as a reference. As can be seen from Fig. 2, the results obtained with the N = 15
scheme are in very good agreement with the DNS results. The only deviation occurs
at the maximum of the dissipation rate at + ~ 9s. The slight general deterioration
of the match with the DNS for increasing Reynolds number can be attributed to the
increased ratio of physical to resolvable scales.

In a next step, we have extended our investigations to the flow over a circu-
lar cylinder at Rep = 3,900, which has been studied extensively in literature as
a benchmark for LES computations [6, 13, 15, 16]. Since most of the published
results where obtained with incompressible codes, we select a Mach number for our
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Fig.2 Comparison of high order stabilized DG with LES computations for the Taylor-Green vortex
for Re = 1600 (left) and Re = 3000 (right). More details can be found in [7]

computations of 0.1. For the spatial discretization, we choose two different setups:
a coarse grid of 8 x 6 x 6 grid cells and polynomial degree N = 11 resulting in
about 500k DOF and a medium grid of 16 x 12 x 12 grid cells and polynomial
degree N = 7 resulting in about 1.2 mio DOF. The full spatial domain is circular in
the plane of the cylinder, with its center co-located with the geometry center and a
radius of 40 cylinder radii. In the spanwise direction, the domain is extruded along
the cylinder axis to a length of 8 radii. No-slip isothermal wall boundary conditions
are applied on the geometry, periodicity is enforced in the spanwise direction and
all other boundaries are set to the freestream values. Turbulent statistics are gath-
ered over 144 shedding cycles after the initial transient phase from uniform flow
conditions to the development of the steady vortex shedding.

As before for the Taylor-Green vortex test case, all computations are de-aliased
with approximately 2 N quadrature points to prevent a build-up of excess energy
in the higher modes, i.e. the inner products are evaluated exactly. Figure 3 gives a

Fig.3 Instantaneous flow around cylinder at Rep = 3900, Left de-aliased streamwise momentum,
Right aliasing error of streamwise momentum
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Table 1 Integral quantities and simulation parameters for Rep = 3900 cylinder flow

Author Cppase | Str | Cp | L,/D | Scheme LES DOF (M)
Kravchenko and Moin [13] | —0.94 | 0.210 | 1.04 | 1.35 | B-Spline SEM | Smag | 1-2
Meyer and Hickel [15] —0.92 [ 0.210 | 1.05 | 1.38 |FV ALDM | 6.0
Frohlich et al. [6] —1.03 |0.216 | 1.08 | 1.09 |FV Smag |14
Ouvrard et al. [16] —0.85 [0.218 |0.99 | 1.54 |FV/FE Smag |1.5
Ouvrard et al. [16] —0.81 [0.226 |0.93 | 1.68 |FV/FE-VMS |Smag |1.5

Ma et al. (DNS) [14] —0.96 [0.203 | 0.96 | 1.12 | h/p-FEM - 30
Current: 0'(12) —1.00 {0.212 | 1.09 | 1.26 |DG - 0.5
Current: 0'(8) —0.93 [0.208 | 1.04 | 1.37 |DG - 1.2

visual impression of this instantaneous aliasing error introduced into the streamwise
moment component by inexact integration and compares the error component with
the fully de-aliased momentum. The error visualization was obtained by computing
the instantaneous content of the higher polynomial modes that would be aliased
onto the computational grid through inexact integration. It should be noted that the
computation would become unstable immediately if the de-aliasing was turned off.

The shape and outline of the vortex street is clearly reflected in the aliasing error.
This is to be expected, since it is the non-linear term in the momentum equation that
causes the physical vortex cascade and through it the occurence of aliasing errors in
underresolved regions. The excitation of the higher modes through aliasing is also
evident in the high-frequency checkerboard pattern of the error.

Table 1 summarizes the integral quantities of interest for the cylinder flow and the
simulation parameters, both for our computations and published results. A certain
spread of the reported quantities exists, but our current results agree very well within
this range while using no LES modelling approach and with equal or in most cases
less DOF. In particular, the results obtained on the medium grid (Current: &' (8) case)
are for all integral quantities in very close agreement with the data published by
Kravchenko and Moin.

4 Conclusion

In this work, we have investigated the potential of very high order Discontinuous
Galerkin schemes with exact integration for the simulation of underresolved turbu-
lence without explicitly added subgrid model (explicit LES) or adapted discretization
(implicit LES). We have shown that for two canonical test cases of turbulent flows,
our results are in very good agreement with DNS results and various LES approaches
reported in literature, while using the same number or even less degrees of freedom.
We attribute this favorable behavior to the very low approximation errors of high
order DG schemes, resulting in a much wider range of well-resolved scales. Thus,
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high order DG schemes are an attractive candidate as a baseline scheme for further
LES studies of more complex, higher Reynolds number flows. In the future, we plan
to extend our investigations by developing both explicit and implicit LES strategies
for DG.
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A Characteristic-Based Volume
Penalization Method for Arbitrary Mach
Flows Around Solid Obstacles

Eric Brown-Dymkoski, Nurlybek Kasimov and Oleg V. Vasilyev

1 Introduction

Volume penalization is a subclass of immersed boundary methods for modeling
complex geometry flows, which introduces the effects of obstacles by modifying
the governing equations. The method presented in this paper encompasses general
boundary conditions as an extension of the Brinkman Penalization Method (BPM)
[1], which was originally developed for solid, isothermal obstacles in incompress-
ible flows. A principal strength of Brinkman penalization is that error can be rigor-
ously controlled a priori, with the solution converging to the exact in a predictable
fashion [4, 5].

While much work has been done to refine BPM for various numerical techniques
and flow regimes, boundary conditions have lacked generality, especially for com-
pressible flows. They have been typically limited to slip and no-slip conditions for the
inviscid and viscous flow around isothermal obstacles, though additional boundary
conditions have been developed on a problem specific basis. In this way, BPM has
been inapplicable and inflexible for many fluid problems, notably those demanding
heat-flux and insulating boundary conditions on solid surfaces.

The novel Characteristic-Based Volume Penalization method (CBVP), discussed
in this paper, employs hyperbolic forcing terms to impose general homogeneous and
inhomogeneous Neumann and Robin boundary conditions. The method is flexible
and can be applied to parabolic and hyperbolic evolutionary equations. In this paper
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it is demonstrated for viscous and inviscid flows of arbitrary Mach number. As with
BPM, this method maintains rigorous control of the error through a priori chosen
parameters for all boundary conditions.

2 Characteristic-Based Volume Penalization

The Characteristic-Based Volume Penalization method imposes Dirichlet, Neumann,
and Robin type boundary conditions by introducing localized forcing terms into the
constitutive equations. For a domain containing obstacles O,,, a masking function,
X (x, 1), is defined where

1 ifx € O,

X, 1) = 0 otherwise,

separates the domain into a physical region and a penalized region.

Dirichlet conditions are imposed in the same fashion as with the Brinkman penal-
ization method [7, 9]. For the boundary condition # = uq (X, #) on an obstacle surface
a0, (x, t), the constitutive equation is modified into the penalized equation

au X 9%u

— =(1- RHS — & (u — 1 ,
o7 (I—x)x nb(u uo(x ))+Xvn8xi,3x,'

(D

with summation implied over repeated indices and where RHS is simply the physical
right hand side fluxes. Convergence of the penalization parameter, as 1, — O,
controls the error on the solution by decreasing the timescale of the forcing term
[1]. The Robin boundary condition, of which the Neumann condition is a special
case, has the form a(x, t)u + bdu/on = g(x, t) for inward-oriented surface normal
n = ng. It is penalized through forcing applied to the appropriate derivatives of u.
The result is a hyperbolic equation,

au X du
— =0 —-—x)xRHS — = {ax,t)u+bny— — g . 2)
ot Ne dX

With the normal defined everywhere, (2) has inward-pointing characteristics that
extend perpendicular to the surface into O,,. This propagates the solution at the
surface inward with a spatial growth or decay, based on g and au, that enforces
the desired BC. It can easily be seen that within O,,, Robin/Neumann penalized
equation (2) converge to the desired boundary condition on the timescale n.. With
ne << 1 onthe normalized problem timescale, the disparity asymptotically controls
the penalization error.
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3 Compressible Viscous Flows

3.1 Penalized Navier-Stokes Equations

For viscous flows, the fluid is governed by the fully compressible Navier-Stokes
equations. The nondimensionalized continuity, momentum and energy equations are

ap opu i
L= 3)
Jat 8x‘,~
apu; a(pu;iuj a0 1 9t
PU; __ (puiuj) _ _P_'__ﬂ’ @)
dt 0x; 0x; Re, 0x;
ape 0 1 8(14,'1’,']')
a  dx; (e + pruj]+ Re, 0x;
n 1 1 0 oT
(y — 1) RegProx; \"'ox; )
(5)

The acoustic Reynolds number is Re, and Pr is the Prandtl number, and the char-
acteristic velocity is a reference speed of sound cyp.

For the viscous benchmark problems considered in this paper, no-slip and
adiabatic/heat flux conditions are imposed on velocity and temperature through (1)
and (2). In order to apply these penalized boundary conditions to the constitutive
equations (3-5), the equations of state are used to determine consistent penalization
of the integrated variables p, pu, and pe, from the native variables u, T, and an
appropriate penalized equation for p.

For p to be a passive, evolutionary condition, a CBVP Neumann condition is
applied within O,,, where the target is

(6)

This closes the penalized equations for the desired conditions on u# and 7' without
over constraining the problem. The forcing terms for the compressible Navier-Stokes
equations then become

9 )
P xRES - L (22— o 7
dt me \  9xk
apu; 1
8—l=(X_1)XRHS—X|:—,0(Mi_M0i)
t Nb

02u; 1 ap
+ pvn + —u; Mk~ P ®)

0x;0x; Ne Xk
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3 1 ) P — o)
9pe :(X—l)xRHS—X[— (nk—pe)+—p(u’ o;)u;
ot Ne dxk Nb
ouj du; 8%u; 1 1
——Lnp— — pujv——— — —e® — —cypq |, Q)
Ne 0xk 0x; 0x; Ne Ne

where RHS denotes the corresponding right hand sides of Egs. (3-5).

3.2 Benchmark: 2D Cylinder Flow

To verify the efficacy of CBVP for unsteady solutions, CBVP is applied for low
Reynolds number vortex shedding around a two-dimensional cylinder. For Ma = 0.2
and Re = 1000, the flow past a cylinder remains laminar but experiences vortex shed-
ding from the trailing edge. The domain discretization and penalization parameters
remain as for the pseudo-incompressible case, namely 2 = [-5, 10] x [-5, 5],
m = 5 x 1073 and 5. = 1072. Two temperature conditions are considered: an
adiabatic cylinder and constant heat flux at 37 /on = 1.5.

Periodic vortex shedding can be seen in the laminar wake behind the cylinder
in Fig. 1. For laminar flows in the region of Re =~ 1000, the frequency is insensi-
tive to the Reynolds number [3] and temperature driven viscosity fluctuations. The
heating is therefore best seen only through the direct effect on the temperature of
the fluid. Examination of the temperature profile along an arbitrary surface normal
verifies that the desired heat-flux of ¢ = 1.5 is properly enforced on the penalized
boundary.

Time varient lift and drag coefficients Cz, and Cp agree well with previous numer-
ical results [3], though a slightly shorter shedding period can be seen. This higher
frequency is reflected in a Strouhal number of St = 0.245, compared to St = 0.238
from published results [3].

N0 N »

Fig. 1 The vorticity fields for flow past a circular (Re = 1000) and square (Re = 150) 2-D
cylinders, demonstrating the flexibility of CBVP for arbitrary geometry
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To demonstrate the applicability of the method to arbitrary geometry, flow past
a square cylinder is shown in Fig. 1 for Re = 150. The masking function x (x) and
normal n(x) were assembled from piecewise smooth facets.

4 Compressible Inviscid Flows

4.1 Penalized Euler Equations

Inviscid flow is governed by the Euler equations, where the viscous terms are removed
from (4) and (5). In this case, only the normal component of velocity will be penalized
for a no-penetration condition and the curvature of the surface must be accounted for
in the boundary conditions. For consistency, the energy and momentum equations
are modified based upon the penalized native variables and the equations of state.
The following terms are added to the Navier-Stokes equations (7-9) in the inviscid
limit:

9 K puspu’

_pz...+_#’ (10)

ot Ne p
opu’ putputu’

LT A Lt (11)
ot Ne p

7,7 T T

%Z..._}_i'oujuj+£pujpuj“ituit_u?“lr}’ (12)
ot ney—1 me p 2

where u” = (u -n)n,u* =u—u", 7 =u"/||u’||, and k = V,; - n is a curvature
along the streamline based on 7. The operator V,,; is a projection of gradient operator
to the n, 7 plane, thatis V,; =n(n-V)+t(r - V).

4.2 Benchmark: 2D Shocks Around Obstacles

In order to evaluate efficacy of the method, several test problems were examined:
supersonic flow around multiple cylinders, and supersonic flow around the wedges
with sub- and supercritical apex angles. All results showed good qualitative corre-
spondence with published experimental and numerical results [2, 8]. For the case
with supersonic flow around a wedge at a subcritical angle, there is an oblique shock
inclined with some angle 8. The exact, steady-state oblique shock solution is well
known [6]. As shown in Fig. 2, the numerical solution for a volume penalized wedge
approaches the exact at steady-state. For the case with supercritical angle, a detached
bow-shape shock was observed, in accordance with established results [6].
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Fig. 2 Numerical Schlieren image of supersonic flow around randomly spaced multiple 2D cylin-
ders (left) and density field of supersonic flow around the wedge with subcritical angle (right). The
exact steady-state solution for the attached oblique shock wave at the wedge is drawn as the solid
black line

5 Conclusions

A new volume penalization method has been developed and demonstrated to extend
Brinkman penalization to generalized Neumann and Robin conditions. This is accom-
plished through hyperbolic penalization terms whose characteristics point inward
along the surface-normal direction. The process of prescribing general boundary
conditions is flexible and systematic, allowing for straightforward construction of
penalization schemes for arbitrary Mach and Reynolds number flows.
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DNS of Square-Cylinder Flow Using Hybrid
Wavelet-Collocation/Volume-Penalization
Method

G. De Stefano and O.V. Vasilyev

1 Introduction

The direct numerical simulation (DNS) of unsteady flow past a square-cylinder has
a very high computational cost, even at moderately low Reynolds-numbers (Re),
where the transition to a complex 3D wake occurs. In fact, the cylinder wake is
unstable to two main spanwise disturbances that are referred to as “Mode A” and
“Mode B” in the literature, similarly to what happens for circular cylinders. For the
long-wavelength Mode A, the critical Re has been observed to be around 160, while
the short-wavelength Mode B has been found to become unstable for Re &~ 190. The
spanwise wavelengths of the above two modes are about 5.2 and 1.2 times the side
length of the cross section, respectively [1].

In order to numerically predict the essential features of the transitional shedding
flow past the cylinder, the extent of the computational domain in the homogeneous
spanwise direction, where periodic boundary conditions are applied, must be suffi-
ciently high to capture the evolution of the 3D disturbances. Furthermore, the numer-
ical grid must be properly refined close to the body surface, to resolve the boundary
layer, as well as in the wake region. The degrees of freedom of the solution and,
thus, the associated computational cost can be drastically reduced by using adaptive
numerical methods, where the spatially non-uniform grid is not prescribed a-priori
but dynamically adapted following the flow evolution.

In this study, the mesh adaptation is based on the wavelet decomposition of
the velocity field, by automatically refining the grid where high gradients in
the solution exist. The wavelet-based eddy-capturing approach [2] is extended to
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non-homogeneous bluff-body flow, where the presence of the obstacle is mimicked
by using the Brinkman volume-penalization method [3].

2 Hybrid Method

The volume-penalization approach results in slightly modifying the governing equa-
tions with the addition of an appropriate forcing term, without altering the underlying
numerical grid. Instead of solving the incompressible Navier-Stokes equations in the
fluid domain £2¢, with the associated no-slip BC on the body surface 92, the fol-
lowing (dimensionless) governing equations for the penalized velocity field i; are
solved in the entire domain 2 = £2¢ | J £2;:

ol

— =0, 1

ox; (D
;. Al ap 1 9% Xs .
— (@ +U)) = + — ~ 2+ Up). 2
ot + (uj + j) 0x; dx; Redx;ox; n (i + Ui) @

The imposed uniform velocity field U; corresponds to the given freestream velocity.
The additional term at the RHS of the penalized momentum equation (2) mimics the
presence of a porous obstacle, where x; stands for the mask function associated with
the obstacle domain £2.

The positive constant 7, which has the dimension of time and reflects the fictitious
porousness of the obstacle, stands for the key-parameter in the volume-penalization
approach. For vanishing 7, the solution i; of the penalized equations (1) and (2)
converges to the solution of the original equations with the global penalization error
scaling as 1'/2 in £2¢. Therefore, the no-slip BC can be enforced to any desired accu-
racy by appropriately reducing the penalization parameter. In addition, the Brinkman
approach is particularly advantageous because the aerodynamic force acting on the
obstacle can be simply evaluated as

Fi(t) = %/(ﬁi + Uj)dx, 3)
25

i.e., by integrating the total velocity field over the volume occupied by the obstacle.

Generally, the continuity (1) and penalized Navier-Stokes (2) equations could be
solved with any numerical technique. In this work, the efficient combination of the
volume-penalization approach with the adaptive wavelet-collocation (AWC) solver
is used [4]. The governing equations are evaluated at collocation points, which leads
to a set of nonlinear ODEs for the collocated velocity unknowns. The method allows
the numerical grid to be dynamically adapted in time, following the evolution of the
dominant flow structures, which are unambiguously identified and tracked during
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the simulation. Namely, the mesh adaptation is obtained through the use of nested
wavelet grids, owing to the one-to-one correspondence between wavelets and grid
points. The method is particularly effective in the simulation of shedding flow past
bluff bodies, where the wavelet-based adaptation allows the grid to be continuously
modified in time in order to follow the space-time evolution of the wake.

Formally, the perturbation velocity field, #; (x), is decomposed in terms of wavelet
basis functions and approximated by retaining only significant wavelets:

400 2"—1
L= D AR+, > D A . )
le.£0 j=0 pn=1 ke rij

ldy ™ |>lu;|

Each level of resolution j consists of wavelets belonging to the same family, having
the same scale but located at different grid positions. Collocation points are in fact
omitted from the computational grid if the associated wavelets are omitted from
representation (4), which occurs when the corresponding coefficients are below the
given thresholding level. In a practical calculation, the level of resolution is bounded
so that j < jmax, Where the choice of the maximum resolution, which corresponds
to the finest allowable wavelet grid, is dictated by the physically required spatial
resolution as well as the acceptable computational cost. Depending on the choice of
the parameter ¢, only a small fraction of the available wavelets is used in representing
the velocity field #;, which results in the characteristic compression property of the
wavelet-based methods [5]. The thresholding level ¢ determines the relative energy
level of the eddies that are resolved and, consequently, controls the importance of
the residual field associated with the discarded wavelets. A very low but non-zero
value for this parameter can be prescribed so that the effect of unresolved motions
can be completely ignored and the wavelet-based DNS solution of the penalized
equations (2) is carried out, like it happens for the present study.

When combining the AWC method with the volume-penalization technique, the
presence of the cylinder is automatically taken into account by adapting the compu-
tational mesh on the penalized velocity field and, possibly, the mask function.

3 Square-Cylinder Flow

The hybrid method presented above is applied to the simulation of vortex shedding
behind a stationary right prism with square cross-section, immersed in a uniform
fluid stream. The flow around the cylinder is described in a Cartesian coordinate
system (x, y, z), where the first axis corresponds to the inlet flow direction and
the third one coincides with the spanwise direction. The computational domain is
chosen to be £2 = [—6, 18] x [—9, 9] x [—3, 3], while the domain occupied by the
cylinder is £23 = [—0.5, 0.5] x [—0.5, 0.5] x [—3, 3], the side length of the square-
section being assumed as reference length. Zero-velocity conditions are imposed
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at the inflow boundary (x = —6), while convective conditions are prescribed at the
outflow boundary (x = 18). Free-slip conditions are imposed at the lateral boundaries
(y = 49), i.e. duy/dy = up = duz/dy = 0, and periodicity is assumed in the
homogeneous spanwise direction (z = £3).

The DNS of square-cylinder transitional flow at Re =200 is obtained starting from
zero perturbation velocity. The incoming flow is undisturbed and the transition is
naturally promoted by the numerical truncation errors. The penalization parameter
is set to n = 0.001, while two different thresholding levels, namely, ¢ = 0.005
and ¢ = 0.01, and seven levels of resolution (1 < j < 7) are used for the AWC
solver. Here, differently from similar studies, the non-uniform mesh spacing is not
prescribed a-priori, but dynamically determined according to the flow evolution.
In particular, close to the body surface, the local resolution is dictated by the high
gradients of the mask function xs and, thus, the finest wavelet collocation grid is
used. Due to the moderately low Re, the prescribed maximum resolution is adequate
to resolve the kinematic boundary layer inside the fluid region.

After a transient period, during which the wake develops from initial free-stream
conditions, the aerodynamic forces exhibit the classical oscillatory behavior of bluff-
body flows, as illustrated in Fig. 1, where the time histories of the spanwise-averaged
drag and lift coefficient are reported. In the higher accuracy case, the time-averaged
drag-coefficient is Cp = 1.54 and the associated RMS value is C b = 0.027 while,
for the lift-coefficient, it holds [Cz| = 5.3 x 1073 and C 7 = 0.31. The fundamental
frequency of vortex shedding corresponds to the Strouhal-number St = fyL/U =
0.15. The present global results are in good agreement with solutions provided by dif-
ferent non-adaptive DNS solutions, e.g. [1], as well as experimental findings, e.g. [6].

2.5

2

force coefficient

_1”\‘|‘ - - - .
0 50 100 150 200 250

time

Fig. 1 Time-history of the drag (fop) and lift (down) coefficient for two different wavelet thresh-
olding levels that are ¢ = 0.01 (lower) and 0.005 (higher accuracy)
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The flow dynamics is governed by the vortical structures that are shed from the
cylinder and convected downstream, while secondary vortices are generated in the
near wake. During a high-force phase, like for instance at + = 175, the wake is
characterized by the presence of large spanwise vortices. Eventually, these structures
are destroyed and, during a low-force phase, like for instance at + = 190, the wake
shows a complex 3D shape due to symmetric two-sided dislocation. It appears that
the time history of the retained wavelets number reflects the oscillations of the wake-
induced forces, as demonstrated in Fig. 2.

Inorder to present a clear 3D view of the cylinder wake, the main vortical structures
can be identified according to the Q-criterion, which simply defines a vortex as a
connected region with a positive second invariant of the velocity-gradient tensor, e.g.
[7]. The evolution of the wake is visualized on Fig.3, by reporting three different
pictures at three different time instants. The iso-surfaces of Q0 = 0.1 and 0.3 are drawn
(on the left of the figure) along with the scatter plot (on the right) of the collocation
points associated to the retained wavelets. Since all the wavelets belonging to the
coarser levels of resolution with j < 3 are actually kept throughout the computational
domain, for the sake of clarity, the scatter plot, which is colored by the variable grid
level, is reported only for4 < j < 7.

In fact, the number and the spatial distribution of the retained wavelet collocation
points follow the evolution of the wake. During a period of high force, the rather
simple wake can be simulated by using a relatively low number of wavelets. On the
contrary, during a period of low force, which corresponds to a very complex shape
of the wake, much more grid-points are included in the computation as the wavelet
collocation grid is automatically refined where smaller vortical structures are created.
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wavelets number
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Fig. 2 Time-history of the number of retained wavelets for two different wavelet thresholding
levels that are & = 0.01 (lower) and 0.005 (higher accuracy)
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Fig.3 Main vortical structures identified by the iso-surfaces of Q = 0.1 (blue) and 0.3 (green), on
theleft, and scatter plot of the wavelet collocation points at higher levels of resolution (4 < j < 7),
on the right. Close-up view in the domain: —2 < x < 17, =3 < y < 3, =3 < z < 3, at three
different time instants
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4 Concluding Remarks

The application of the hybrid volume-penalization/wavelet-collocation method to
the simulation of unsteady 3D incompressible square-cylinder transitional flow is
presented. The method allows the adaptive DNS to be performed with a reasonable
computational cost, while directly controlling the errors in the numerical approxi-
mation. Due to its flexibility and efficiency, the proposed combined method appears
very promising for the simulation of more challenging flows. For instance, higher
Re and/or more complex geometry bluff body flows could be considered, where the
adaptive wavelet-based method are expected to become even more efficient.
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Generation of Intermittent Turbulent Inflow
and Initial Conditions Based on Wavelet
Construction Method

L.Zhou, J.Grilliat and A.Delgado

1 Introduction

In the current context of steady computational power increase, high-resolved unsteady
simulations such as Large Eddy Simulation (LES) or Direct Numerical Simulation
(DNS) are no longer restricted to academic usage, and becoming tools of interest
for the industry. Though, issues still remain, which prevent from getting a reliable
picture of reality. Among them, initial boundary conditions techniques for DNS and
LES are always the first barrier.

The current methods, the so-called stochastic methods, developed in the 1990s
[4, 6] are now widely spread and intensively used for this purpose. These methods
consist in generating velocity perturbations, assuming stationary stochastic distrib-
utions. They are able to successfully recover low-level statistical properties of the
flow, such as energy spectra or spatial correlations, but unable to render high order
statistics from turbulent flows. As the matter of fact, velocity fluctuations related to
bursts of small eddies are typically non stationary processes. This phenomenon, often
referred to as intermittency [3], is characterized with non zero statistical moments
of third (skewness) and fourth (flatness) orders. Therefore, this accounts -at least
partly- are not able achieved by current methods.

The present study shall address this problem. Based on the idea of random cascades
on wavelet dyadic trees [1] and an energy cascade model, p-model, a series of velocity
increments are constructed in different level of scales. Wavelet reconstruction method
in multiresolution analysis (MRA) [7] is then performed on the generated velocity
increments. As a results, a type of synthetic homogeneous velocities are created. The
statistical properties are studied and compared with DNS results. It must be pointed
out that although the current discussions are based on two-dimension, the method
can be easily extended to three-dimension case.
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2 Description of the Numerical Method

The turbulence energy cascade is modeled with help of p-model [9, 10], which
is a simplified case of Mandelbrot’s multifractal theory. The basic idea is that the
cascade can be cast into a successive breakdown of turbulent eddies. Each eddy with
an energy p breaks into two eddies of same size, but different energy p; and p» such
that 1 = p; + pa. Here p represents the percentage of total energy. The relative
energy distribution p; and p; is evaluated by experimental results. Typically, p; and
p2 are set to 0.7 and 0.3 respectively. The p-model is able to successfully recover the
multifractal properties of one-dimensional energy-cascading in the inertial range.

Juneja et al. [5] used a multiplicative method to construct one-dimensional inter-
mittency signal. The statistical properties are close to turbulence. However, the
method bears its limitation to one-dimension. The higher dimensional extension
do not reproduce non-Gaussianity. Moreover, correlation and coherency will also be
lost due to the superposition of signals in high dimensional extension.

The present method starts from this point. Mathematically, the method take
advantage of the # -cascade framework [1], which is a superclass of .# -cascade
[8]. The % -cascade is built using a wavelet orthogonal basis. The scaling function
¢ (x), and the wavelet function ¥ (x) are defined in L>([0, 1]) space:

i =2 x — k), Vi =2y @ x —h). M

Since ¢ (x) and ¥ (x) are orthonormal basis, the L2 space can be constructed by
two-dimensional MRA,

J—12/-12/-1

£Gy) = 0000000, y)+ D DD Z Civiy Viieiy (6 3). ()

J=0iy=0iy=0 pu=1

The scaling coefficient ¢y and the wavelet detail coefficients c¢; play an important
role in capturing turbulent intermittency. The index j represents the level of scales,
while iy, 7, are spatial indexes in a specific level. The notation y is a index of the
three detail subbands. The construction method is shown in Fig. 1.

A recursive step to calculate the coefficients in HL (1« = 1) suband can be defined
as follows:

C},o,o = E|,
clj+l,2i,2j =E;1Gley
C5+1,2i+1,2j =E;11G ey j.
C}+1,2i,2j+1 = EJHGICJ,i,j,

1 _ Ar o
Cry12i2j+1 = Ern1Geyij. )
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Different as one-dimensional p-model, the two-dimensional wavelet p-model
defined here, breaks energy into four pieces which represented as variables G'c, G"c,
G'c and G"c in above equations. In order to consist with one-dimensional case, the
summation of each two variables should be equal to 0.7 or 0.3 depending on which
subbands they are located. For instance, in HL subband the four variables can be
defined as G'c + Glc = 0.7, G"¢ + G"¢ = 0.3 while in LH subband, they are read
asGle +G'c=0.7,Glc + G'e =03.

The wavelet energy spectrum E is explicitly given as a constrain in the corre-
sponding level. Here wavelet energy spectrum E is calculated from Fourier energy

spectrum E (k):
o (kyk
1”( k )

where ky, is the centroid wave-number of the analysing wavelet ¥ and Cy, is defined
by the admissibility conditions given in [12].

2
dik’ 4)

- 1 i ,
Ek) = %/E(k)
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In second step, the scheme outlined above is used to generate two independent
scalar fields u” and V' which together define the vector field u. A divergence-free
velocity field (u®) can be obtained as follows:

v =u-—Vy,
V.Vy=V.u (5)

The irrotational velocity potential 1 is computed by above Poisson equation which
can be efficiently solved by multi-grid method.

3 Results and Discussions

The Daubechies wavelet are chosen here for reconstruction purpose. Velocities con-
structed by Daubechies wavelet with low moments (D2 or D4) are compared with
velocities constructed by higher moments (D8 and D16). No surprise, higher moment
filters which take advantage of less cut off loss, predict the velocities close to real
turbulence. For this reason, The D8 are chosen for the rest of this section.

3.1 Some Statistical Properties

As similar with real turbulence, the flatness factor, an index of turbulent intermit-
tency, grows slowly with construction levels. The PDF of vorticity in Fig.2 shows
a strong deviation from Gaussian with increasing of construction levels. Following
with suggestion of Kolmogorov, the relation between construction levels and the
Reynolds number can be predicted by

_ l n
R =n/L ~ (5) . (6)

n represents current level. With five levels construction, the Reynolds number is
R;. >~ 10. It must be pointed out that the construction level can be inconsistent with
wavelet reconstruction level. For example, the coefficients can be constructed by
level 1-5 whereas wavelet reconstruction can be performed on seven levels with the
top two levels empty or nearly empty. This is specially useful when synthesizing fully
developed turbulence, where the empty levels correspond to a dissipation region.
By using the framework of W-cascade and an explicit energy constrain, the energy
spectrum shows a desired —5/3 slop in inertial range (see Fig. 3), typical for isotropic
turbulence. Moreover, synthetic field which has banded shape of energy spectrum,
absent from low frequencies for instance, could be interesting for LES simulation,



Generation of Intermittent Turbulent Inflow ... 129
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Fig. 5 Energy spectrum 1
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where the synthetic field can be served as sub-grid models. Those type of velocity
fields can be constructed by simply jumping over the corresponding levels. Figure 5
shows an energy spectrum containing only high frequencies constructed by level 5-7
with nine levels reconstruction. Due to the constrain E ;, the spectrum still maintain
a —5/3 slop though the low frequency information is absent. Furthermore, as the
reconstruction proceeds in different level of scales in advantage of the multi-fractal
structure of wavelet, a much better agreement is obtained between high order sta-
tistical moment from synthesized to measured velocity fluctuations. Figure 4 shows
a series of even moment structure functions comparing with a DNS test case. The
slops from synthetic turbulence which present exponent of structure functions agree
well with corresponding DNS results. In the last two figures, the streamlines of DNS
and synthetic velocity are plotted using linear integral convolution method (LIC).
Figure 7 which depicts the integral scale L and a multiple of Kolmogorov scale n
according to the construction levels resemble the ones in real turbulence (Fig. 6).
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Fig. 7 Synthetic field with
construction level 1-5 and
seven levels of
reconstruction

3.2 Conclusion

The features of wavelet based synthetic turbulence method have been presented. It
can well predict the turbulence statistics based on scales as well as Reynolds numbers.
Moreover, coherent structures are greatly preserved based on the modified wavelet
2-D p-model. Current ongoing work has as objective the extension of the method to
three-dimension and inhomogeneous anisotropic turbulence.
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A New High-Order Method for the Accurate
Simulation of Incompressible Wall-Bounded
Flows

Peter Lenaers, Phillip Schlatter, Geert Brethouwer
and Arne V. Johansson

Abstract A new high-order method for the accurate simulation of incompressible
wall-bounded flows is presented. In stream- and spanwise direction the discretisation
is performed by standard Fourier series, while in wall-normal direction the method
combines high-order collocated compact finite differences with the influence matrix
method to calculate the pressure boundary conditions that render the velocity field
divergence-free. The main advantage over Chebyshev collocation is that in wall-
normal direction, the grid can be chosen freely and thus excessive clustering near
the wall is avoided. Both explicit and implicit discretisations of the viscous terms
are described, with the implicit method being more complex, but also having a wider
range of applications. The method is validated by simulating fully turbulent channel
flow at friction Reynolds number Re; = 395, and comparing our data with existing
numerical results. The results show excellent agreement proving that the method
simulates all physical processes correctly.

1 Introduction

The last few decades, Direct Numerical Simulations (DNS) have proven very useful
to investigate the features and properties of incompressible wall-bounded turbulent
flows. A major issue when solving the governing three-dimensional incompressible
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Navier—Stokes equations is the lack of an evolution equation for the pressure. Instead,
the pressure is present in the momentum equations and instantaneously corrects the
velocities such that the continuity equation is satisfied. Different methodologies have
been developed to deal with this issue, one of them being the influence matrix method
[1]. In this method, a Poisson equation for the pressure is derived that replaces the
continuity equation in the interior of the flow domain. For problems with non-periodic
boundaries in one dimension, this results in a sequence of one-dimensional scalar
Helmholtz equations, which are solved to calculate the pressure boundary conditions
that after applying a correction step, render the entire velocity field divergence-free.
The advantage of this method is that continuity is fulfilled exactly in the discretised
equations and that it can also be applied on a collocated grid, thus avoiding interpola-
tion that can cause unwanted filtering effects. All of the previous implementations of
the influence matrix method [5] use Chebyshev polynomials in wall-normal direction.
Although the use of Chebyshev collocation is widespread in the simulation of wall-
bounded flows, it also has its disadvantages. The prescribed grid when using Cheby-
shev collocation is the Gauss—Lobatto—Chebyshev grid which becomes extremely
clustered near the wall at high resolution causing numerical errors. Because of the
numerical issues caused by extreme clustering of gridpoints, there exists a desire
to have more freedom in the location of the grid points in wall-normal direction.
An alternative to Chebyshev collocations are compact finite difference schemes [2]
which show good resolution characteristics over a large range of wavenumbers,
while maintaining the freedom to choose the grid points and boundary conditions.
We extend the influence matrix method to allow the use of compact finite differences,
which gives the user the freedom to choose the location of the grid points and thus
providing more flexibility.

The viscous terms can be treated both explicitly and implicitly. The equations are
simpler when they are treated explicitly, but this does impose more severe restrictions
on the maximum allowable time step in certain flow cases.

2 Problem Formulation

To illustrate our method we consider the case with one homogeneous and one inhomo-
geneous direction such as plane Poiseuille flow. It illustrates all of the features of the
method while keeping the equations relatively simple. The theory is easily extended
to three dimensions, or adapted when other boundary conditions are chosen.

In the periodic x-direction the velocity components and pressure are expanded in
Fourier series while compact finite differences are used in y-direction. The compact
finite difference scheme for the first derivative in wall-normal direction can be written
in matrix form as:

A’ = Bif (1)
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withf = [f1, ..., fNy] where N, is the number of points in y-direction, and A
and B; the coefficient matrices. It follows that:

f' = A7'Bif := Dif. )

A analogous formulation holds for the second derivative matrix D>.

The non-linear terms are discretised using a third-order Runga—Kutta method,
while the viscous terms are split into an implicit and an explicit part using the theta-
method. The discretised momentum equations are then:

Linomu? ™t ik By Atptth = rd, wit(x1) =0 (3)
LoV + B AtDy p?™ = 1], vl (£1) =0 4)
with
1, 1
Linom := (14 Bg At 0kT ) I = py At——0Ds, (5)

1
rd = [1 + By Ao (1= 0) (D2 — kﬁl)] u? — y, AINY — £, AINY~!(6)
(]

and N the non-linear term, the superscripts ¢ the Runge—Kutta substeps, B, vy,
and ¢, the coefficients used in the Runge—Kutta method [6], k, the wavenumber
in streamwise direction, and 6 the parameter used in the theta-method with & = 0
equal to the fully explicit method, and & = 0.5 corresponding to the Crank-Nicolson
method. Taking the divergence of the momentum equations will give a Poisson
equation for the pressure:

1
By At (D% - k)%l) P! = RY+ By A0 (D1 Dy = D2D) v,

DIt (£1) =0 (7)

with RY = ik,r{ + Dyry. The term B, At 3=6 (DD, — D, D1) 4+ in the right-
hand side of the Poisson equation stems from the fact that the matrices D; and
D> do not commute and is not present when Chebyshev polynomials are used in
wall-normal direction [1]. Usually, the system is solved by first calculating the new
pressure p?t! after which the velocities #9+! and v¢*! are calculated. However,
since v4*! is unknown when solving for p4+! an iterative scheme is required in
this method to calculate the solutions. Note that in the fully explicit method 6 = 0,
such that this term disappears and no iterations are required. A second problem when
solving the Poisson equation is that the prescribed boundary conditions are a function
of v4*1 and not of p?*!. This problem is solved by applying the influence matrix
method. The solution for p?*! is written as a linear superposition as follows:

Pt = p, +81p1 + 822 ®)
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with p,, the solution of the Poisson Eq. (7) but with boundary conditions
pp(£l) =0, ©)

and p; and p, the solutions of the homogenous Poisson equation with boundary
conditions

pi=hH =1 pi(+) =0 (10)
p2(=1) =0, pa(+D) =1 (1)

The parameters §; and &, follow from the boundary conditions DpItli(£1) =0
and are thus solutions of:

Dyvi(=1) Diva(=1)\ (1) _ _ ( D1vp(=1) (12)
Dvi(+1) Diva(+1) J \ 82 Dyv,(+1)
withv,, vy, and v; the solutions for the wall-normal velocity corresponding to p,, p1,
and p; respectively. Note that all three solutions p, p1, and p; contain a discretisa-

tion error that needs to be corrected for. This can be done by applying a superposition
for each as described in detail by Kleiser and Schumann [1].

3 Results

To validate our method, we ran a simulation of a three-dimensional fully turbulent
channel at friction Reynolds number Re; = 395 where the third direction (the
spanwise direction) is denoted by z. It is periodic and discretised using Fourier
collocation just like the x-direction. To ensure that the grid spacing in the y-direction
is clustered near both walls, we use a hyperbolic tangent spacing [4]:

__tanh (o (§; — 0.5))
" tanh(0.5 )

 — 1
g,-:}\l, o fori=1....Ny. (14)
=

. with (13)

For y — 0, the spacing becomes equidistant, while it becomes more stretched
and thus more dense near the wall for higher values of «. Our simulation has been
performed with oy = 4. The corresponding grid is sufficiently dense near the wall
to resolve the viscous sublayer while avoiding excessive clustering which would
severely lower the maximum allowable time step, in particular for the explicit method.

The bulk Reynolds number Re := uph /v = 6,867 with u;, the bulk velocity cor-
responds to a nominal friction Reynolds number of Re; := u;h/v = 395 with u,
the friction velocity. We used the same parameters as Moser et al. [3], which means
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the boxsize is 2w h x 2h X wh, and the resolution 256 x 193 x 192. This corresponds
toaspacing of Axt = 9.6, Azt = 6.4, Ay,f =0.6,and Ay} = 8.5, with Ay the
spacing in y-direction near the wall, which is the minimum, and Ay the spacing at
the centre line, which is the maximum. The superscript ™ indicates wall units with
AxT = u;Ax/v. The pressure gradient driving the flow is adjusted dynamically
such that the mass flux is constant throughout. Statistics from the simulation were
taken from ¢ = 500 until ¢+ = 1,500, which corresponds to 38 eddy turnover peri-
ods u, T/ h, sufficient to ensure converged statistics. The actual calculated friction
Reynolds number was Re; = 391.4. Figure 1 compares the mean velocity and root
mean square (rms) velocities as a function of the wall-normal distance y™ of the new
code with results by Moser et al. [3]. The results are virtually identical indicating that
the new code performs well when simulating fully developed turbulent channel flow.

Figure 2 shows the bottom half of the flow field at # = 750. The structures are

contours of negative ){ = —0.003 indicating vortical motion. They are coloured
(a) (b) 5
20
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(%]
15 8
8
2 10 E 157
(2]
e 13
5 E
05
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100 10 102 0 50 100 150 200 250 300 350

y* y*

Fig. 1 The mean (a) and rms velocities (b) of the new code (full lines) and the code by Moser
et al. [3] (x symbols). The red line and symbols in Fig. (b) represent u,,s, green vyys, and blue

Wrms

Fig. 2 A visualisation of the flow field at + = 750. Half of the flow field in y-direction is shown
and the same colouring is used. The structures are isocontours of A;’ = —0.003. Note that the mean
flow is in positive x-direction



138 P. Lenaers et al.

according to distance to the wall, from blue representing close to the wall through
green and red for increasing wall-normal distance. The bulk of the vortices are clearly
clustered near the wall, which is typical for turbulent wall-bounded flows.

4 Conclusions

In this paper we present a new high-order method to perform direct numerical simula-
tions of wall-bounded flows. The novel feature is that it combines collocated compact
finite differences in the wall-normal direction with the influence matrix method to
calculate the boundary conditions that render the entire velocity field divergence-
free. In stream- and spanwise direction, Fourier collocation is used, while any time
discretisation can be used, but we illustrate the method by applying a third-order
Runge—Kutta method. The fact that the grid is collocated means that it avoids inter-
polation, which is necessary on staggered grids and can cause unwanted filtering
effects. A further advantage over other high-order methods such as Chebyshev col-
location is that the grid is not predetermined and can thus be defined such that dense
clustering of gridpoints near the wall is avoided. This becomes especially important
when simulating high Reynolds number flows, which require a high wall-normal res-
olution. Note that the method is described with Dirichlet boundary conditions at the
wall, but that this can easily be extended to Neumann or Robin boundary conditions
by making minor alterations.

The method is validated by simulating fully developed turbulent channel flow. It
shows excellent comparison with existing numerical results.
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Investigations on the Effect of Different
Subgrid Models on the Quality of LES
Results

F. Proch, M.W.A. Pettit, T. Ma, M. Rieth and A.M. Kempf

1 Introduction

Subgrid stress modelling plays an important role in the quality of LES results, and
a number of different closure methods exist. One of the most common is the eddy-
viscosity approach, where subgrid stresses are treated as an additional contribution
to the flow viscosity. Several models have been proposed to evaluate this ‘turbulent’
viscosity, with both static and dynamic variants. In this work, the classical Smagorin-
sky model and the relatively new and promising o model are compared in their static
and dynamic forms. To assess the performance of each model, simulation results for
a simple channel flow, as well as for a more complex annular geometry, are compared
against DNS and experimental data respectively.

2 Description of the Numerical Method

With the eddy-viscosity approach, the turbulent viscosity u; is modelled in a form
that is similar to the mixing-length model in RANS:

fte = p (CnA)? Dy (i) (1)

where D,, is a differential operator depending on the resolved velocity field i, A is
the LES filter width, p is the density, and C,, is a model constant.
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The differential operator D,, for the classical Smagorinsky model [1] is

1

i Ol
Dy, = /28;;S;j where S§;; :E(i—i_ﬂ) 2)

8xj axl’

represents the strain rate of the resolved velocity field. For the static version of the
model, the constant C,, = Cy usually takes values between 0.05 and 0.2. Though
the model is simple to implement, it tends to over-predict turbulent viscosity in
regions with high strain rates, such as near walls or in shear layers. This behaviour
can be overcome by adapting the modelling constant C; in a dynamic procedure, as
introduced by Germano et al. [2]. Within this work, a slightly modified version is
used to adapt C; in time and space [3] in a formulation for non-constant density.

The o model [4] uses the singular values of the velocity gradient to build the
differential operator:

03 (01 — 03) (02 — 03)

2
0

D,, = with 01 >02>03>0 (3)

where the values o; are equal to the square root of the eigenvalues of the tensor

= o O )
3)6,' 0x j

This model yields ;; o y* near walls, where y is the wall-normal distance, and
avoids the over-prediction of i, in shear layers. Furthermore it vanishes in purely two-
dimensional or two-component flows, and for pure rotation or shear, as appropriate.
The model constant usually takes values of C,, = C, & 1.5 [4], or is determined
dynamically by the same procedure as used for the Smagorinsky model. Simulations
are performed with the in-house ‘PsiPhi’ LES code [5-7].

3 Test Cases

To compare the influence of the different models on LES quality, the results of two
different test cases are evaluated. To investigate any effect of filter width (cell size)
on model performance, both cases are computed at two different grid resolutions.

3.1 Channel Flow

The primary purpose of the first test is to assess model behaviour in near-wall
regions. The simulated geometry is chosen to be a cube that is periodic in the x-
and z-directions, as this leads to maximum computational efficiency for the applied
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e @38.1 » Boundary conditions inlet: Artificial turbulence properties inlet:
234.8 U;=8.31m/s (Re =5960) Iy =2.5mls

U, = 18.7 m/s (Re = 11500) Ly, = 1.0 mm

U = 0.4 m/s

no-slip boundary condition at walls
zero-gradient boundary condition at all other boundaries

Fig. 1 Cross-section and boundary conditions of the Cambridge burner. Measurements are in mm

distributed memory parallelization. We found that the very shape of the computa-
tional domain has only minor influence on the results. The friction Reynolds number

Re; is chosen as
Ury

v

Re; = yt|s =395 with y'™ = 5)

where yT is the dimensionless wall co-ordinate, 8 is the channel half-width, u, is
the friction velocity and v is the kinematic viscosity. The model constants are set to
Cy; = 0.065 [8] and C, = 1.5 for the static Smagorinsky and o models, respectively.
Coarse grids are usually more practically affordable; we therefore test the models at
arelatively coarse resolution of A = 13.2 y™, leading to 61 cells across the channel.
The finer grid has A = 6.1 y™, yielding 121 cells over the channel height. Using
these grids we investigate the behaviour of the models within not perfectly resolved
near-wall regions, which likely occur in meshes for engineering applications.

3.2 Cambridge Stratified Flame Series

A cross-section of the Cambridge stratified burner [9], consisting of a central bluff
body and two annular jets, together with the corresponding boundary conditions
is shown in Fig. 1. Fluid properties of air at standard temperature and pressure are
assumed. Grid resolutions of 0.5 mm (coarse) and 0.25 mm (fine) are used, leading
to domains of 13 and 105 million cells respectively. The static model constants are
Cy = 0.173 [10] and C, = 1.5, where this (relatively high) Smagorinsky constant
has previously delivered good results in simulations of the similar Darmstadt stratified
flame series [7].

4 Results

This section compares simulation results from the two test cases, where the investi-
gated models are as mentioned above: Smagorinsky static (SMA STA), Smagorinsky
dynamic (SMA DYN), o static (SIG STA) and o dynamic (SIGDYN). Asin all cases
the discussed trends and conclusions are comparable for both investigated cell sizes,
the coarse grid results have been omitted in the plots for clarity and brevity.
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Fig. 2 Comparison of fine grid results to DNS data (DNS MOS), showing mean and rms profiles
of dimensionless axial velocity and turbulent viscosity over dimensionless wall co-ordinates

4.1 Channel Flow

Profiles for mean and root mean square (rms) dimensionless axial velocity (nor-
malised by u.) and turbulent viscosity over the wall co-ordinate y* are shown in
Fig. 2. The velocity statistic is in agreement with the DNS data computed by Moser
et al. [11], while an improvement with grid refinement is also observed. All models
yield similar velocity, but differences become apparent in the predictions of turbulent
viscosity. SIG STA and SIG DYN predict a decline of i, to zero at the wall; SMA
DYN also yields declining values, but at a shallower gradient. In contrast, SMA STA
predicts an inverse wall behaviour. Overall, SIG STA, SIG DYN and SMA DYN
predict similar qualitative trends. The two versions of the o model yield consistent
values of u; in the free stream, but SIG DYN shows a larger peak near the wall. Val-
ues from SMA DYN are larger than for SMA STA, but generally less than for the o
models. The near-wall peak from SMA DYN is comparable to the peak of SIG STA.

4.2 Cambridge Stratified Flame Series

Mean and rms axial velocity profiles are compared to experimental measurements
for a non-reactive case [9] at different heights above the burner nozzle exit in Fig. 3.
Simulation results and experimental values are in good agreement. An improvement
with grid refinement is observed, as before. Velocity predictions are not strongly
dependent on the subgrid model; however, fluctuations near the burner exit show
better agreement with SIG STA and SIG DYN. Instantaneous snapshots of y; are
shown in Fig.4. The predictions of SMA STA show the largest and least universal
structures, where the influence of shear layers and walls can be clearly identified. In
contrast, SIG STA predicts the smallest structures, while SMA DYN and SIG DYN
yield intermediate structure sizes. Finally, turbulent viscosity statistics are shown in
Fig.5. Similar to the results of the channel flow, the differences in model predictions
of u, are much larger than those observed for velocity predictions. The increased
sensitivity of SMA STA to resolved strain rates results in over-prediction of u; in
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Fig. 3 Comparison of mean and rms axial velocity profiles from the fine grid to experimental data
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the region near the burner exit, while SIG DYN generally yields the highest mean
and rms values. The viscosity ratio r,, = ji;/q; has a maximum value of r;, & 2 for
SMA STA and is less for the other models, indicating a sufficient grid resolution and
a good LES quality [5].

5 Conclusions

Investigations have been carried out for two different subgrid models, in both static
and dynamic forms. Two test cases of different complexity have been computed on
coarse and fine grids. No major influence of the models on velocity predictions was
observed. However, distinct differences were found in the predictions of turbulent
viscosity. The subgrid model may therefore be more influential on velocity predic-
tions for other cases, especially where Reynolds numbers are higher or the geometry
plays a more significant role. The static o model with C, = 1.5 produced good
results for both cases, and avoids the shortcomings of the static Smagorinsky model
at walls and within shear layers. The dynamic procedure for the ¢ model seems
to have less influence on turbulent viscosity predictions than for the Smagorinsky
model with these cases.
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Computational Complexity of Adaptive LES
with Variable Fidelity Model Refinement

Alireza Nejadmalayeri, Oleg V. Vasilyev and Alexei Vezolainen

1 Introduction

Adaptive methods with both mesh and polynomial order refinements have been used
extensively in computational fluid dynamics to achieve optimal accuracy with the
minimal computational cost. However hp-refinement by itself is not sufficient for
numerical simulation of turbulent flows of engineering interest. For instance, even
for the extreme Ap-refinement such as spectral DNS, the requirement to resolve
Kolmogorov length-scale results in a daunting computational cost. LES is a much
less expensive approach, but for high Reynolds number turbulent flows only large
scales of the flow are captured and most of the dissipation is provided by the SGS
model. The marginally resolved LES with small ratio of SGS and the total dissipations
resolves more of the flow physics, but scales approximately the same as DNS in the
limit of high Reynolds numbers, thus, making it impractical.

The quest for an appropriate criteria to identify the hierarchical change of scale for
multi-scale simulations brought us to define the turbulence resolution in a broader per-
spective rather than the structure-size distinction as in classical LES, or the extreme
case of resoling Kolmogorov length-scale as in DNS, or decomposing deterministic-
coherent and stochastic-incoherent modes as in CVS, or even capturing more/less
energetic structures as in SCALES. This new definition is based on the measure that is
required in practical applications: “how much the flow-physics is modeled/resolved?”’
In essence, maintaining the percentage of modeled and resolved physically important
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quantity (e.g. turbulent kinetic energy, dissipation, or enstrophy) at a constant level
implies that the methodology should exhibit synergistic transition between various
levels of fidelity both in space and time as well as take advantage of spatial and
temporal flow intermittency. This dynamically adaptive transition between different
regimes necessitates the model adaptation.

Therefore, the missing component for turbulence simulation is not either /- or p-
refinement but coupling the model with the numerics. That is to say, the selection
and adjustments of the model fidelity, computational mesh, and/or the order of the
numerical method need to be dynamically adaptive in order to take into account
the intermittency of the turbulent flow filed. This new concept of model-refinement,
which is named m-refinement [4], is utilized to perform Stochastic Coherent Adaptive
Large Eddy Simulation (SCALES) of linearly-forced homogeneous turbulence at
various fixed levels of turbulence resolution.

2 Computational Framework

The SCALES equations that govern evolution of coherent energetic structures are
obtained by filtering the Navier-Stokes equations using wavelet-thresholding filter
[2]. In this study, homogeneous turbulence with linear forcing [3] applied in the phys-
ical space over the whole range of wavenumbers [1] is investigated. The objective
is to control the turbulence resolution, defined as the local fraction of SGS dissipa-
tion, % : SM%, where g5 = 2v Eff E;jg is the resolved viscous dissipation and

I = —ri’; §,~>j€ is the local SGS dissipation. This ratio of the SGS dissipation to the
total dissipation, can be viewed as turbulence resolution since it indicates how much
the flow is modeled/resolved. Therefore, by controlling .%, one can explicitly con-
trol the percentage of the flow physics that is desired to be resolved. To maintain the
turbulence resolution at a constant level, the spatially variable thresholding method-
ology [4, 5] is used. This approach automatically provides the required numerical
resolution and the model-fidelity in a space/time adaptive fashion based on a two-
way coupling of numeric and physics. This method dynamically tracks the regions
of interest in spatial and time space and not only adapts the grid but adjusts the model
as well (hm-refinement).

In the classical non-adaptive explicitly filtered LES, the filter-width is priori user-
defined based on which the resolution is determined; therefore, both the CFD engine
(through the resolution) and the filtering mechanism (via the filter-width) depend on
priori defined filter-width, which is not fine-tuned based on the results (Fig. 1a). The
original SCALES has improved this by its dynamically adaptive wavelet-filtering
mechanisms via constantly adapting both the numerical grid and the filter-width
based on the instantaneous flow field (Fig. 1b). However, the wavelet thresholding
filter (WTF) uses a priori user-defined threshold-level and as a result of filtering the
velocity-filed with this constant threshold, the WTF is indeed imposing a feedback
based on a constant level of resolved kinetic energy. This limitation has been recently
removed [4] by means of constructing a fully adaptive wavelet thresholding filter [5].
The new m-refined SCALES requires a priori user-defined level of resolution/fidelity
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Fig. 1 Dependency diagram for a classical explicitly filtered LES, b original SCALES, and ¢
the variable-fidelity SCALES. Notation G filter, R results, m model refinement, A user provided
LES filter width, & wavelet threshold for model adaptation, &, wavelet threshold controlling the
accuracy of the solution, F' an arbitrary dynamically important physical quantity to be controlled,
e.g., F

based on which the threshold is dynamically adapted in order to maintain the fidelity
constant as user has requested. In original SCALES, the filtering mechanism is a
function of the results (kinetic energy) and a constant threshold, while in the newly
developed m-refined SCALES, threshold itself is a function of the results (any physi-
cal quantity and not limited to kinetic energy) and the user-defined fidelity. All in all,
m-SCALES integrates all components of the computational methodology including
numerics, models, and physics altogether to construct a fully dynamically adaptive
computational framework (Fig. 1c).

3 Reynolds Number Scaling

To construct the Reynolds number scaling statistics, a series of simulations where
the Reynolds number is progressively increased are performed. SCALES of lin-
early forced homogeneous turbulence [1] with linear forcing constant coefficient
Q = 20/3 are performed in the computational domain of [0, 2713 on a dynam-
ically adaptive dyadic grid with effective nonadaptive resolutions of 2563, 5123,
10243, and 20483, These correspond to Taylor micro-scale Reynolds number of
Re; = 70,120, 190, 320 based on viscosities of v = 0.09, 0.035, 0.015, 0.006.
These choices of viscosities are based on maintaining the ratio of Kolmogorov length-
scale to the smallest grid-spacing constant, i.e., Aimm = 2, to ensure the resolution
required for a well-resolved DNS.

In order to study the influence of the fidelity of simulation on the Reynolds number
scaling of SCALES, a series of simulations of different turbulence resolution is
conducted. The different fidelity is achieved by using spatially variable thresholding
approach [5] with different goal values of .%, namely ¢ = 0.2, 0.25, 0.32, 0.4, 0.5.
Itis observed that in the logarithmic scale the slope of Re;, scaling of SCALES spatial
modes at least up to 1024 remains approximately the same regardless of the level of
turbulence resolution, Fig. 2. In other words, the scaling exponent of constant-fidelity
m-SCALES is nearly insensitive to the level of fidelity.
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The scaling statistics presented by this work proves that the developed model
can resolves more flow-physics phenomena yet with profoundly smaller number
of spatial modes compared with marginally resolved LES. It is demonstrated that
depending on what flow physics is desired to be captured, the same model and the
same numerical method result in different Reynolds scaling. Therefore, the broad
message of this computational complexity work is not to advertise the wavelet-based
methods but to promote the physics-based turbulence modeling as a marriage of
model and numerics. This m-refinement concept can be easily implemented into
the existing adaptive Large Eddy Simulation methodologies in order to construct
continuously variable fidelity LES. The possible implementation can be illustrated
as Fig.3. Such an LES would include an additional feedback mechanism from the
results (any physical quantity) in order to incorporate a filter-width/model adaptation
preferably coupled with adaptation of the numerical resolution as well. Hence, both
filtering-mechanism/model (via the filter-width) and CFD-engine/numerics (through
the resolution) should be dynamically coupled based on any objective physics-based
fidelity measure.
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Elimination of Curvature-Induced Grid
Motion for r-Adaptation

C. Hertel, M. Joppa, B. Krull and J. Frohlich

1 Introduction

Using an adaptive method in the context of a large eddy simulation (LES) is rarely
seen in literature. A challenging aspect for this combination is the interplay between
the resolution of the grid and the governing equations to be solved, since the grid
spacing defines the scale separation between the resolved large-scale turbulent fluctu-
ations and the unresolved subgrid-scale turbulence, so that whenever the grid changes
in time this decomposition changes as well. The adaptive method employed here is
a so-called r-adaptation, aiming at redistributing a given number of grid points in
space to achieve a clustering in regions where a certain, preferably LES-specific,
criterion indicates the need for a higher resolution. The movement of grid points can
be realised by solving a moving mesh partial differential equation (MMPDE) in each
time step or in selected time steps during an adaptation phase. The latter was applied
to adapt the grid according to statistical quantities of interest [1-3], and substantial
improvement of the results was demonstrated.

To carry the method over to unsteady adaptation by means of instantaneous quan-
tities of interest, aiming to track vortices travelling through the domain for example,
the flow around a circular cylinder was chosen as a test case. Using a low Reynolds
number offers the opportunity to address unsteady grid movement in the well known
context of the Karman vortex street, while large Reynolds numbers offer the oppor-
tunity to use LES-specific criteria. First investigations for this test case, however,
pointed to a serious problem concerning the adaptive method itself. Spurious clus-
tering of points in radial direction was observed when using a body-fitted grid around
the cylinder. This issue needs to be resolved before any adaptation can be performed.
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The present paper provides an analysis of this feature and proposes a versatile strategy
for its remedy based on an appropriate modification of the monitor function.

All simulations below were conducted with the in-house code LESOCC?2, a curvi-
linear block-structured finite volume solver [4] supplemented with the Arbitrary
Eulerian Lagrangian (ALE) formulation to enable the solution of the governing equa-
tions on moving grids [3].

2 Curvature-Induced Grid Motion

2.1 Basic Method

To shift grid points in space the MMPDE proposed by Huang [5] is used

dax p PN, dax
G ) g (o) v

where x is a cell center point in physical space and £ its coordinate in computa-
tional space. Furthermore, 7 is a global time scaling parameter, p (£, t) a local grid
adjustment factor, and a’ the covariant basis vectors. The heart of this method is the
monitor function w, which is a scalar quantity here, governing the motion of the grid
according to the quantity of interest ¥ with [6]

2
o= /1+a(w‘” ) @)

Here, ¥4, is the maximum of ¢ in the domain, while the global parameter « is
used to adjust the size of the monitor function.

A finite volume formulation is used to discretize (1) for the cell center coordinates.
An interpolation algorithm is then employed to obtain the cell corners, in fact a non-
trivial issue as discussed in [2]. The ‘median-based interpolation” proposed in that
reference is applied in the following.

2.2 Problem Description

The quasi two-dimensional test case, chosen for the results presented here, is the flow
around a circular cylinder with R being its radius and D its diameter. For reasons of
simplicity an O-grid is used in a circular computational domain of diameter 41 D.
Simulations presented in the following sections were conducted at Re = 100 on a
coarse grid consisting of 80 x 80 x 2 cells in radial, azimuthal and axial direction.
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Fig. 1 Detail of the two dimensional grid. Left initial grid. Right obtained, stationary grid for a
given constant monitor function w

A detail of the initial grid is shown in Fig. 1 (left), displaying grid clustering near the
cylinder.

The monitor function w drives the adaptation such that the grid is refined in regions
where w or its gradient is large. It was then expected that an uniform value of w leads
to Ar = const and A = const. Indeed, employing w(X,t) = w* = const
and running the adaptation according to (1) leads to a stationary grid. The resulting
distribution of the grid points, shown in Fig. 1 (right), however, is not as expected.
While in azimuthal direction a constant step A6 is observed, the radial distribution
of the grid points exhibits increasing step size Ar for increasing r.

2.3 Analysis of Grid Motion

To identify the origin of the grid finally obtained Eq. (1) is analysed. Motivated by the
current grid topology, the MMPDE (1) is transferred to cylindrical coordinates and
simplified using r = r(&1) and 6 = 0(&,) motivated by the initial grid. A stationary
grid has to fulfill (1) with the time derivative of the grid points set to zero. For radial
and azimuthal direction, (1) then reads

19 Pr (ar\ 7,1

s =) +r &)
w or 0&; \ 06 r

1w 9% (00\° @
w30 g2 \o&r)

respectively. If the monitor function is constant, ® = w*, (4) requires the second
derivative of 6 to vanish. This is achieved with an equi-distributed grid (A6 = const)
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in that direction. With @ = w* the MMPDE for the radial direction (3) yields

8%r 1(or\>

— == (—) : )

0E; r \ &
The term 9dr/0&; must be larger than zero to get non-vanishing Ar. Hence, the
second derivative is 9%r/ 8512 > 0 and Ar # const for the steady-state solution
of (3). Equation (3) was solved analytically for the present geometry, leading to

a distribution where Ar ~ r, e.g. where the radial extent of a cell increases with
increasing radius r, in agreement with the final grid shown in Fig. 1 (right).

2.4 Modification of the Monitor Function

A multiplicative factor, named wy, for the monitor function w is introduced to com-
pensate the geometry-induced grid motion. The combined monitor function then
reads

wior (X, 1) = (X, H)wp(X). (6)

Now, wy is determined such that a desired reference grid X,y is achieved for a given
reference monitor function w = wy.f, €.g. wref = const. The combined monitor
function wy,; is then used in (1).

For the determination of wy the MMPDE (1) must be solved once using the grid
X;¢r and the monitor function wy.s. The time derivative on the left hand side of (1) is
set to zero as the corresponding grid should be a steady state solution of (1), giving

10X D N 0Xpef
0=71— = ——— (a’ -af)—(a) wp ) @)
ot (a)refa)O)2 zZJ: 0§; ref 0&;

which needs to be solved for wg. Equation (7) does not have a solution for arbitrary
entries X,.f, Wref,an issue that will be considered elsewhere.

3 Results for the Modified Monitor Function

3.1 Reference Grid for Uniform Criterion

Here, we only report the result for w,.r = w* = const and the reference grid X,.¢
chosen to have constant step sizes in radial and azimuthal direction. Then (7) yields
wo = Cr, with C being a constant. For obvious reasons, @ > 0 in (1) and with (2)
w > 1 for stability reasons. Hence we chose C = 1/R here to yield wy > 1.
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3.2 Physically Motivated Criterion

The modification of the monitor function described above is now used for unsteady
adaptation of the flow around a circular cylinder at Re = 100. As a scalar quantity to
capture the alternating separation of vortices the vorticity of the instantaneous fluid
velocity u was used setting ¥ = |V x u|. The corresponding monitor function w for
a randomly chosen point in time during the simulation is displayed in Fig.2 (left).
A detail of the adapted grid obtained without correction of the monitor function is
shown in Fig.?2 (right), revealing a strong clustering of grid points in the vicinity of
the cylinder. The adaptation itself is dominated by the curvature-induced grid motion.
This is visible due to the grid refinement behind the cylinder, although the criterion
is vanishing there as illustrated by Fig. 2 (left). This strong and unwanted refinement
leads to a limitation of the parameters for the MMPDE. For the results presented in
Fig.2 these are: = 0.001, o = 10. An increase of « or decrease of 7, both leading
to a stronger refinement, resulted in the divergence of the simulation.

Employing the modification of the monitor function (6) successfully compensates
the curvature-induced grid movement. The grid obtained for the previous values of
7 and «, however, led to a non-physical velocity filed as the grid was too coarse near
the cylinder.

Hence, o was adjusted to @ = 10 with the corresponding result reported in Fig. 3.
The grid is now only refined in regions, where the criterion is large, as desired. The
compensation of the curvature-induced grid motion now also allows even larger
values for « leading to a stronger grid refinement (Fig. 4).

y/D
(=]

N |

Fig. 2 Simulation result without correction of the monitor function for an randomly chosen point
in time. Left monitor function, right corresponding grid

1)

Fig. 3 Results at the same time as Fig.2 for the monitor function w (left) and the corresponding
grid (right) for a simulation with correction of the monitor function and o = 102
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y/D

Fig. 4 Results at the same time as Fig.2 for the monitor function w (left) and the corresponding
grid (right) for a simulation with correction of the monitor function and o« = 103

We conclude that the multiplicative factor wg(x) for the monitor function is an
appropriate method to compensate unwanted curvature-induced grid motion.
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Reliability of LES Simulations in the Context
of a Benchmark on the Aerodynamics
of a Rectangular 5:1 Cylinder

M.V. Salvetti and L. Bruno

1 Introduction

The international Benchmark on the Aerodynamics of a Rectangular 5:1 Cylinder
(BARC [2]) was launched in 2008 with the support of Italian and international associ-
ations. The flow setup is characterized by the high Reynolds number, low turbulence
incoming flow around a stationary, sharp-edged rectangular cylinder of infinite span-
wise length and of chord to depth ratio equal to 5. The considered flow configuration
is of practical interest because many civil and industrial structures (e.g. tall buildings,
towers and bridges) are characterized by rectangular cross sections. Moreover, the
5:1 aspect ratio was chosen because it is characterized by shear-layers detaching at
the upstream cylinder corners and reattaching on the cylinder side rather close the
downstream corners. This leads to a complex dynamics and topology of the flow
on the cylinder side, which adds to the vortex shedding from the rear corners and
to the complex unsteady dynamics of the wake (see e.g. [5]). Among the aims of
the benchmark are the following: to assess the consistency of computational results
obtained through different flow models and numerical approaches and of wind tun-
nel measurements carried out in different facilities, to compare experimental and
computational results, to develop best practices for computations and to create a
database to be made available to the scientific community for future reference. It is
worth pointing out that BARC has not adopted a single set of measurements as a ref-
erence at its launching. Hence, statistics over a large enough number of realizations
of the flow (obtained by means of both experimental and computational approaches)
are preferred to validation against a single measure or simulation. In 2012 about
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40 groups from 17 different countries were contributing to BARC and presently
70 realizations of this flow configuration obtained in both wind tunnel experiments
[3, 4, 14, 15] and numerical simulations [1, 5-13, 16] have been collected. LES
simulations [1, 5-9, 16] represent the 51 % of the collected numerical contributions,
hybrid URANS/LES ones the 30 % [12, 16] and, finally, URANS computations the
29% [10, 11, 13]. Therefore, this context gives also a good opportunity for the
assessment and the validation of results obtained through LES codes. The aim of
the present work is precisely to review the LES contributions to BARC currently
available in order to quantify the result dispersion and to investigate the sensitivity to
different simulation parameters, also in comparison with experiments and numerical
simulations using different approaches to turbulence.

2 Description of the Test Case and of the Computational
Studies

As previously mentioned, BARC addresses the flow around a stationary rectangular
cylinder, and the associated aerodynamic actions [2]. The breadth (B) to depth (D)
ratio is set equal to 5. The following common requirements are set for both wind tun-
nel tests and numerical simulations: (i) the Reynolds number based on the freestream
velocity and the cylinder depth, Rep, should be in the range of 2 x 10*~6 x 10%*;
(ii) the oncoming flow has to be set parallel to the breadth of the rectangle; (iii) the
maximum intensity of the longitudinal component of the freestream turbulence is
setto I, = 0.01; (iv) the minimum spanwise length of the cylinder for wind tunnel
tests and 3D numerical simulations is set to L/D = 3. Additional requirements are
specified for wind tunnel tests [2], which are not listed herein for the sake of brevity.
In addition to the main setup described above, sensitivity studies to some parameters,
viz. the angle of attack, the Reynolds number and the freestream turbulence intensity
are encouraged.

The various numerical contributions differ for modeling, numerical methods
and simulation set-up. A brief overview is herein given of the main aspects of
the studies based on the LES approach, while we refer to the original papers
for hybrid and URANS simulations. As for modeling, both the classical and the
Variational Multi Scale (VMS) LES formulations are used in conjunction with a
number of subgrid models: standard and dynamic Smagorinsky model, kinetic-
energy one-equation model, Wall-Adapting Local Eddy-viscosity (WALE) model.
As for numerical discretization, commercial codes (Fluent in [1]), opensource codes
(Openfoam in [5-7, 9]) and proprietary codes [8, 9] have been used. All codes are
based on the finite-volume method, except for the one used in [8, 9], based on a
mixed finite-element/finite-volume discretization. Only a single LES simulation in
[1] adopts a 2D domain and it is aimed at comparing its accuracy with the 3D LES
simulations in the same work. In most cases, the x- and y-wise domain dimensions
(9, and Z)) are about 20-50 times the breadth B of the cylinder section, with the
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exception of [16] (2,/B = 8, 9,/B = 3). The ensemble-average value of the
spanwise domain size Z, /B is close to unit, but higher values are adopted in studies
addressed to the evaluation of spanwise correlation [7, 9], while shorter lengths are
adopted in [16]. Most of the grids are hybrid in the x — y plane (i.e. body-fitted,
structured in the near wall region and unstructured elsewhere), and structured along
the spanwise direction z. Remarkable exceptions are the fully unstructured grids
adopted in [8, 9] and the fully structured ones used in [16]. The overall number of
grid cells varies over 4 orders of magnitude among the studies, from 10° cells in the
2D simulation in [1] to more than 5 x 107 in [16]. All the LES simulations are wall
resolved with a near wall grid resolution of y* ~ 1 or lower. All the LES simulations
consider a perfectly smooth incoming flow (7, = 0), while Rep ranges from 2 x 10*
to 10°.

2.1 Results and Discussion

As previously mentioned, the near wake flow is dominated by the vortex shedding
from the rear corners of the cylinder. The mean flow is characterized by a recirculation
region and by almost constant suctions on the cylinder base, which yield the largest
contribution to the aerodynamic drag. An overall good agreement is found among the
different numerical predictions of the near-wake dynamics and of its mean features;
the comparison with the available experimental data is also generally good. As an
example, let us analyze more in detail the mean drag coefficient, which is directly
connected with the distribution of the mean pressure on the cylinder base. Only
one measurement of this quantity is available [14] and it gives (Cp) = 1.029;
previous experimental works on similar configurations also indicate that the mean
drag coefficient is very close to 1 (see, for instance, the data reported in [11]). The
LES contributions to BARC give (Cp) € [0.96, 1.39], while the URANS and hybrid
simulations give (Cp) € [0.965, 1.295]. Therefore, rather surprisingly, the LES
simulations are characterized by a larger dispersion than the URANS and hybrid ones,
with a maximum discrepancy with the experimental value of 35 %. Nonetheless, it
turns out that the largest values of (Cp) are obtained in the 2D simulation in [1] and in
the LES carried out in [16] on a small computational domain. If these simulations are
eliminated, the range of the LES predictions is reduced to (Cp) € [0.96, 1.04], with
an ensemble average of 0.99 and the largest discrepancy from the experimental value
of —10%. Similar considerations can be made for the vortex-shedding frequency
(not shown here for the sake of brevity). Therefore, it appears that the choice of
the computational domain may significantly affect also the prediction of quantities
which are rather unsensitive to modeling and to the other simulation parameters.
Conversely, the flow features along the cylinder lateral surfaces and, hence, the
lift are characterized by a significant dispersion of the numerical and experimental
data. As an example, Fig. 1 summarizes the ensemble statistics of the mean pressure
coefficient distributions on the lateral cylinder side; in particular, the range of the
experimental and numerical mean C, values is reported for different locations over
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Fig. 1 Statistics of the mean Cp distributions: wind tunnel (a) and computational (b) results

the cylinder lateral side, together with the median, the 25-th and the 75-th percentile
values computed among all the contributions. It is evident that a large dispersion
is present both in experiments and in numerical simulations; surprisingly, most of
the numerical results are contained in a narrower range than the experimental ones
(note that Fig. 1b contains also URANS and hybrid URANS/LES results). Various
sources of uncertainty are present in experiments, which are generally different from
those affecting numerical simulations; experimental uncertainties may arise, for
instance, from difficulties in controlling the characteristics of the oncoming flow
(turbulence, homogeneity) or the quality of the model (e.g. sharpness of the corners)
or from a possible misalignment between the oncoming flow and the model. As for
the numerical simulations, the mean pressure coefficient distribution on the cylinder
lateral side is strictly connected with the mean lateral flow topology, which is in
turn highly sensitive to modeling and simulation parameters. The mean flow on the
lateral cylinder side is characterized by a main recirculation region closing near the
downstream corners, where the flow is reattaching to the surface. The numerical pre-
dictions of the position of the center of the main recirculation region range from 21.2
to 65 % of the cylinder breadth, while its reattachment point is found to vary between
63.2 and 95.8 %. Since the mean C), behavior on the cylinder side is characterized
by a low-pressure plateau extending from the upstream corners to the center of the
main recirculation and then by a positive gradient roughly up to the reattachment
point, the previous differences lead to a large dispersion of the mean C, predictions,
as observed in Fig. 1b.

The data obtained for the time fluctuations of the pressure coefficient are even
more dispersed, as can be seen in Fig. 2, in which the same statistics as in Fig. 1 are
reported now for the C), standard deviation. In this case the variability is larger for
the numerical results than for the wind tunnel measurements. In all cases there is a
peak located slightly upstream of the reattachment of the main mean recirculation
vortex, in the zone where the mean Cp increases. In average, the peak is located
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more downstream and is more intense in numerical simulations than in experiments
(compare Fig.2a, b). Figure 2c, d compare the distributions of the standard devia-
tion of C), obtained on the cylinder lateral surface in hybrid and LES simulations to
those given by URANS models. Quite surprisingly the differences in the intensity
and location of the main peak are rather small; therefore, it seems that turbulence
modeling has an effect on the dynamics of the flow over the lateral cylinder sides
which is comparable to that of other sources of uncertainties present in simulations
and experiments. The main difference is that in hybrid and LES simulations, consis-
tently with the wind tunnel measurements, the value of the standard deviation of C),
has an unique peak along the cylinder side, while in the URANS ones a minimum is
also found at a distance of approximately 2D from the upstream corner. The reasons
of this behavior are not clear at this stage. The previously described variability in
the values of pressure on the cylinder lateral sides leads to a large dispersion in the
predictions/measurements of the amplitude of unsteady lift loads (not shown here
for the sake of brevity).
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As a general remark, the dispersion, which characterizes both the experimental and
numerical results for some quantities in the considered flow configuration, suggests
that the performance of a LES simulation (but also of an experiment) should be
put and evaluated in a probabilistic context, possibly using tools developed in the
context of uncertainty quantification. To this aim, the number of flow realizations
in the ensemble should be increased. Collaborative and hybrid studies mixing wind
tunnel tests and computational simulations are also encouraged.
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Quantifying the Impact of Subgrid Scale
Models in Actuator-Line Based LES

of Wind Turbine Wakes in Laminar

and Turbulent Inflow

H. Sarlak, C. Meneveau, J.N. Sgrensen and R. Mikkelsen

1 Introduction

Large Eddy Simulations (LES) have in recent years been applied to studies of wind
turbine wakes and their interactions with the atmospheric boundary layer [1-5].
While many subgrid-scale (SGS) models have, over the years, been proposed (see
[6]), the effects of various SGS models in simulations of wind turbine wakes has not
been documented in great detail yet. In this study, we explore such effects in sim-
ulations of single wind turbine under laminar and turbulent inflow conditions. LES
of wind turbine wakes are carried out using the actuator line (ACL) model [7]. To
examine the effect of using different turbulent closures, various SGS models includ-
ing the Smagorinsky model and two variants of the mixed-scale model presented
in [8], are tested. Simulations are performed on a single turbine placed in uniform
and turbulent inflow. Four simulations are performed to identify the role of SGS
modeling on the wake characteristics. It is shown that in the near wake region, the
mean velocity profiles in the wake are rather insensitive to the SGS model while the
different models predict a different far wake. Considerable effects can be observed
in profiles of second-order statistics of resolved velocities, as well as in profiles of
subgrid-scale eddy viscosity. From comparisons of laminar and turbulent flow it is
confirmed that the wake region in laminar inflow case grows less rapidly and extends
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further downstream in a more concentrated fashion, as compared to the turbulent
inflow case, in which the wake grows (i.e. the velocity recovers) much faster.
The Navier-Stokes equation for the problem reads

av Vp
§+V-VV=—7+V~[(V+vsgs)VV]+f, )]
where
Vsgs =0 . if No model (NO)
Vg5 = s A%[S| if Smagorinsky (SM)

Vsgs = Cms Ag02 5|5 if Mix-S (MS)
Vsgs = CmoAYg0P (2195 if Mix-o (MO)

and p and v are the fluid density and molecular viscosity, respectively. Also, v
represents the filtered velocity vector, p is the modified pressure, and f is the external
body force acting on the flow due to the presence of the wind turbine. vyg is the
eddy viscosity to be specified by the SGS model. Four different SGS models are
used to evaluate vyg, as described in Eq. 1. Here, NO model refers to the case in
which there is no explicit representation for turbulent viscosity and the only effects
of kinetic energy dissipation are those arising from numerical dissipation. This case
is included here as a measure of the relative impact of the SGS models. Smagorinsky
refers to the standard Smagorinsky model, and Mix-S and Mix-w represent the two
variants of the mixed-scale model [8]. g. = (u; — fti)z is the sub-filter scale kinetic
energy obtained by an explicit filtering (shown by bar) of larger size than the grid
size, § being the grid size, S’,-j (x,1) and 2 = V x u(x,t) are the resolved strain
rate and vorticity, respectively. ¢, = 0.01, ¢, = 0.01 and ¢, = 0.06 are (fixed)
model constants used in the present study. The mixed-scale model is chosen in the
existing code (see below) because of its low computational cost and its performance.
Formally, it depends on the small scales through the term ¢, (as a result of scale
similarity) and on the resolved large scales through the resolved velocity gradient
tensor. As a result, the model is able to predict a laminar flow close to the solid wall
without a damping function.

In the ACL approach [7], each turbine blade is represented by a line on which the
forces are being applied according to the velocity field and the angle of attack:

f=(L,D)=0.5pV2,c(Crer + Cpep), )

where V,; is the relative velocity, Cy and Cp are lift and drag coefficients, e; and
ep are unit vectors showing the direction of the (local) lift (L) and drag (D) forces
and c is the airfoil section chord length. These forces are commonly smeared out by
Gaussian regularization function which is applied to the flow field as shown in Fig. 1.
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Fig. 1 Actuator line (ACL) concept and velocity triangle used to compute the angle of attack. V..
is formed from the normal V), and tangential Vj velocity components, ¢ is the angle between V..
and the rotor plane, §2 is the angular velocity of the rotor, and « is the angle of attack. The circle
shows how the force is smeared out around the center point and applied to the flow field

2 Simulation Set Up

Simulations are performed using the in-house finite volume solver Ellipsys3D [9, 10].
The equations are discretized in time using a second order backward Euler method.
The convective fluxes are discretized using a blend of fourth order central differencing
(CDS4) (90 %) and QUICK (10 %) to maintain the required accuracy while avoiding
numerical oscillations. The CFL number is kept around 0.1 using a non-dimensional
time step of dr* = 0.005 (time is non-dimensionalized with inflow velocity and the
rotor radius). A structured grid with a total of 576 x 144 x 144 points is employed in a
domain of S0R x 20R x 20R (to avoid wall effects according to the criteria proposed
in [11]) in the streamwise (x), spanwise (y) and vertical (z) directions, respectively.
The turbine is resolved using 20 points per blade. R represents the blade length.
Symmetry boundary condition is used for all surrounding walls while inflow and
convective outflow BC are reserved for the inlet and outlet planes. Turbine is located
at 7R downstream the inlet.

A uniform inlet velocity is applied to the flow, and the viscosity is set corre-
sponding to a Reynolds number of Re, = 50,000 where Re, refers to the Reynolds
number based on the inflow velocity and the rotor radius. For the turbulent case,
(under) resolved turbulence [12], is generated with high mean turbulence intensity
of 14 %. Based on the Taylor’s frozen hypothesis, moving 2D snapshots are taken
from the box and inserted upstream of the rotor using body forces (to maintain
velocity profile) in the momentum equation, to input the turbulence.

3 Results

To have a clear comparison, both time averaged and instantaneous values are com-
pared for different SGS models in laminar as well as turbulent inflow cases. The
first step is to verify whether the different models predict different eddy viscosities.
Figure2 shows that in both laminar and turbulent inflow cases the different SGS
models predict quite different values of eddy viscosity. The eddy viscosity predicted
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x[R] x[R]

Fig. 2 Time averaged viscosity ratio in laminar (/eft) and turbulent (right) inflow. Upper MO,
middle MS, lower SM

Fig. 3 (Top to bottom) Instantaneous streamwise velocity, vorticity field, and the mean streamwise
velocity plots in laminar (left) and turbulent (right) inflow for (fop to bottom) NO, MO, MS, and
SM models respectively

by the NO model is obviously zero so it is excluded from the plots. As can be seen the
Mix-» model predicts the lowest eddy viscosity ratios, ranging around 2-3, while
the Mix-S gives the highest ratios (Fig. 2).

Figure 3 shows the instantaneous streamwise velocity, vorticity and time averaged
streamwise velocity plots in laminar inflow (left) as well as turbulent (right) inflow.
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As can bee seen visually in the laminar inflow case, the velocity and vorticity are
almost the same in the near wake region and the results are insensitive to the SGS
model up to about 25R downstream. As one goes down to the far wake, differences
begin to appear. The flow goes through a rapid transition and the vortices break
down quickly when the NO model is used, and, correspondingly, the fastest wake
recovery is obtained with the NO model. The wake recovery is slowest for the SM
(Smagorinsky) model where the transition extends all the way to the outlet in SOR
downstream. Both versions of the mixed model perform somewhere in between the
NO model and the Smagorinsky model, with the Mix-w closer to the NO model
and the Mix-S closer to the Smagorinsky, the latter being reasonable due to the
similarities of both models. Results of both mixed models are in agreement with the
eddy viscosity behaviour plotted in Fig. 2.

For the turbulent inflow case, however, there is almost no difference in instanta-
neous and the time averaged velocities, neither in the near wake nor the far wake,
although the eddy viscosities are still quite influenced by the SGS models. The instan-
taneous vorticity plots show however a small difference in the turbulent structures;
notably, the flow downstream the ACL looks more homogeneous with stronger vor-
ticity cores in the NO and Mix-w models and, again, the Mix-S and Smagorinsky
models are more similar.
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Fig.4 (Top to bottom) Plots of the normalized eddy viscosity, streamwise mean velocity and (u/u’)
component of turbulent stress tensor downstream the rotor in laminar (left) and turbulent (right)
inflow for (top to bottom) NO, MO, MS, and SM models respectively (the downstream location is
indicated only in the fop left figure)
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Figure4 compares the wake profile and turbulent (kinematic) normal stress
obtained at different locations downstream of the turbine. As it was seen before,
the eddy viscosities are predicted with very large variations for different models and
also for laminar versus turbulent inflow. The velocity profiles are less sensitive to the
SGS models and there is some difference in turbulent stresses predicted by different
models, especially in the laminar near wake region, where the flow is more symmet-
ric than is the far wake. It is also clear from the figures that the wake expansion is
higher in turbulent inflow as compared to the laminar inflow, and hence it recovers
much faster.

4 Conclusions and Future Work

Results from LES of a wind turbine using the ACL model with laminar and turbulent
inflow are compared for four different SGS models. Results show that the SGS
models have a strong impact for both laminar and turbulent inflow on the eddy
viscosities and for the laminar inflow on the turbulent normal stresses in the near
wake. There is however very little dependence of mean velocity profiles with respect
to SGS models, for both laminar and turbulent inflows in the near wake region. From
comparisons of laminar and turbulent inflow, it is shown that the wake region in the
laminar inflow case grows less rapidly and extends further downstream in a more
concentrate fashion, as compared to the turbulent inflow case in which the wake
grows (recovers) much faster. Validation of the results with new experimental data
is being performed and will be published in a later paper.
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Part IV
Hybrid Models



Elements and Applications
of Scale-Resolving Simulation Methods
in Industrial CFD

F. Menter

1 Introduction

Historically, industrial CFD simulations have been based on the Reynolds Averaged
Navier-Stokes Equations (RANS). For many decades, the only alternative to RANS
was Large-Eddy Simulation (LES), which has however failed to provide solutions
for most flows of engineering relevance due to excessive computing power require-
ments for the simulation of wall-bounded flows. On the other hand, RANS models
have shown their strength essentially for wall-bounded flows, where the calibration
according to the law-of-the-wall provides a sound foundation for further refinement.
For free shear flows, the performance of RANS models is much less uniform. For this
reason, hybrid models are gaining acceptance, where large eddies are only resolved
away from walls and where the wall boundary layers are entirely covered by a
RANS model e.g. Detached Eddy Simulation DES [1] or Scale-Adaptive Simulation
SAS [2].

Such simulations are possible today for industrial-scale applications on medium
sized computing systems (100-1,000 cores) and make their way into the industrial
environment. These models are typically applied to flows with strong flow instabili-
ties which cover a wide range of applications. Examples are the simulation of heat-
transfer phenomena [3], acoustic stimulations [4] or gas turbine simulations [5]. The
grids used in such simulations are typically in the range of 10’—10® and therefore
not drastically larger than high quality RANS meshes. The increase in computing
costs results mainly from a need to integrate the equations in the time domain. This
requires sufficiently long running times for establishing a proper flow-field and for
allowing sufficient time for statistical averaging.
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While these methods can lead to a significant increase in accuracy, their application
is still not a routine procedure in most companies, partly due to the intricacies in
mesh generation and simulation setup and partly because of the long turn-around-
time. Nevertheless, such methods are well on their way of gaining acceptance into
the industrial design cycle within the next few years.

A further step in hybrid modeling involves the resolution of parts of the turbulence
inside of wall boundary layers. Due the well-known resolution demands of classical
wall-resolved LES, industrial methods aim at the application of a RANS model in
the innermost part of the wall boundary layer and then to switch to an LES model
for the main part of the boundary layer [6]. Such models are termed Wall Modelled
LES (WMLES). It can be shown that this approach avoids/reduces the unfavorable
Reynolds number scaling of classical LES, which results from ever decreasing scales
(with increasing Reynolds number) close to the viscous sublayer. While such models
are available in advanced industrial CFD codes, their exploration as industrial CFD
tools is just starting. There are several reasons for that. The first being that RANS
models are fairly strong in predicting attached and mildly separated boundary layers.
The second is that the CPU power required for WMLES is still too high for most
applications to be practical for complete configurations. However, such methods can
be used for studying reduced parts of the flow domain, either in separation or in the
framework of an embedded or zonal LES method.

Another essential element of Scale-Resolving Simulations (SRS) are methods
for generating resolved turbulence structures at inlets to the LES domain. This is
most conveniently achieved by synthetic turbulence generated from the information
from the upstream RANS model. One of the methods favored by the authors group
is the Vortex Method [7], which offers a fair compromise between complexity and
accuracy.

Finally, for large domains, it is frequently only necessary/possible to cover a
small portion with Scale-Resolving Simulation (SRS) models, while the majority of
the flow can be computed in RANS mode. In such situations, zonal or embedded
LES methods are attractive e.g. [8, 9]. Such methods are typically not new models
in the strict sense, but allow the combination of existing models/technologies in
a flexible way in different zones of the simulation domain. Important elements of
zonal models are interface conditions, which convert turbulence from RANS mode to
resolved mode at pre-defined locations. In most cases, this is achieved by introducing
synthetic turbulence based on the length and time scales from the RANS model,
however with direct coupling with the upstream RANS model.

The challenge for the engineer is to select the most appropriate model for the
intended application. Unfortunately, none of the available SRS models is able to effi-
ciently cover all industrial flows. A compromise has to be made between generality
and CPU requirements. The paper will discuss the main modeling approaches avail-
able in todays industrial CFD codes and provide some guidelines as to their optimal
usage. Numerous examples of validation cases will be shown and the pros and cons
of the different methods will be highlighted.
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2 Elements of Hybrid RANS-LES Turbulence Models

In this chapter, different elements and aspects of modeling industrial flows with
hybrid RANS-LES methods will be discussed, focusing on formulations favored by
the authors group.

2.1 Global RANS-LES Hybrid Model Formulation

The authors group focuses on two types of global hybrid RANS-LES models, namely,
Detached Eddy Simulation (DES) and Scale-Adaptive Simulation (SAS). The first is
an explicit blend of RANS and LES based on the ratio of the turbulence length scale
and the grid spacing. The second is a so-called second generation URANS model,
which does not involve the grid spacing explicitly in the RANS formulation. Both
formulations have their advantages and disadvantages.

The main potential problem with DES is that the RANS solution can be affected
by the grid spacing. If that happens inside boundary layers, the result is often “Grid-
Induced Separation (GIS)” [10]. In order to protect the boundary layer from this
effect, the use of shielding functions has been proposed [10] and later adopted by
[11]. The resulting model is termed Delayed Detached Eddy Simulation (DDES). It
should be noted that shielding can only reduce the problem, but not eliminate it. This
means that GIS can still happen in case of strong mesh refinement. Without shielding,
the problem appears approximately if Ap,x < § and with shielding if Apax < 0.28
(Amax being the max. edge length of a local cell and § the local boundary layer
thickness) [12]. In addition, DDES can show “grey zones”, where the model does
operate neither in RANS nor in LES mode. This can happen either, because the grid
resolution is not sufficient for LES (but already affects the RANS model) or when
there is insufficient instability in the flow to generate turbulence structures quickly
enough in the zone of interest.

The main potential problem with SAS is that it can remain in (U)RANS mode,
even though the user is interested in a scale-resolved simulation. This situation occurs
in flows, which do not show a strong enough flow instability to push the model into
the LES regime [13].

2.2 Models for Large Eddy Simulation (LES)

There is a variety of model formulations for LES implemented in the ANSYS CFD
codes.

e Smagorinsky (standard and dynamic [14, 15])
e k-equation based model (dynamic [16])

e WALE model [17]

e Wall Modelled LES (WMLES, [18])
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Inindustrial CFD (and not only there) the LES models of choice are eddy-viscosity
formulations. Their main purpose is to provide proper dissipation at the small scales.
This is in principle not a very demanding task and can be achieved by all models
listed. LES model selection is therefore much less demanding on the user than RANS
model selection. However, the standard Smagorinsky model has the disadvantage that
it does not provide zero eddy-viscosity for simple shear flows (laminar flows, viscous
sublayer). This problem is avoided by the dynamic and the WALE model. Due to some
of the conceptual problems of the dynamic modeling approach (need for averaging,
potentially negative eddy-viscosities, large variation of dynamic coefficient), the
more optimal choice in this authors opinion is the WALE model.

Wall Modelled LES (WMLES) models are a fairly new member of industrial
LES formulations. Their main goal is to allow integration to the wall, even at high
Reynolds numbers, without the excessive grid resolution requirements of classical
wall-resolved LES. WMLES is based on the concept of covering the inner portion
of the boundary layer by a RANS and the outer portion by a LES formulation. This
avoids the very high resolution requirements of LES in the inner wall layer. A very
simple and promising approach to WMLES has been proposed by Shur et al. [18]. It
is based on a reformulation of the length scale used in the LES zone and by blending
it with the mixing length (RANS) model in the inner part of the boundary layer. The
formulation of Shur et al. is given by:

v =min fedw)?, Couac0?} {1 —exo[- (0F 25|} s )

where dy is the wall distance, S is the shear strain rate and A a measure of the cell
size. This model was originally calibrated for a 4th order central difference scheme
(Shur et al. [18]), and needs to be lightly adjusted for lower order schemes.

2.3 Periodic Channel Flow

Simulations were carried out for periodic channel flows on grids with the charac-
teristics given in Table 1. The domain size was LX = 16h, LY = 2h, LZ = 3h
(h being half the channel height—this corresponds approximately to the boundary
layer thickness for wall boundary layers). The main characteristics of WMLES is
clearly visible from Table 1: the non-dimensional values for AX+ and AZ+ are far
beyond the limits of standard LES methods (which are AX+ = 40, AZ+ = 20).
For WMLES, one only has to ensure a minimum number of cells per boundary layer
volume § x § x §. In the current formulation the minimum resolution per boundary
layer volume is of the order of 10 x 40 x 20 cells (streamwise, normal and spanwise).

Figure 1 shows the velocity profiles in logarithmic scale for these simulations using
ANSYS-Fluent. It is well known that the use of hybrid models like DES can result
in a strong log-layer mismatch and a corresponding error in the wall shear stress
when applied as a WMLES model. Figure I shows that the log-layer miss-match
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Table 1 Grids for periodic channel flow at different Reynolds number using WMLES
Re, Cells Nodes AX+ AY+ AZ+
395 384,000 81 x 81 x 61 040.0 0.2+30 20.0
395 1,764,000 141 x 141 x 91 026.6 0.2+20 13.3
760 480,000 81 x 101 x 61 76.9 0.2+30 38.5
1,100 480,000 81 x 101 x 61 111.4 0.2+30 55.7
2,400 528,000 81 x 111 x 61 243.0 0.2+30 121.5
18,000 6,240,000 81 x 131 x 61 1822.7 0.2+30 911.4
X Velocity Profile
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Fig. 1 Velocity profiles in logarithmic scale for periodic channel flow using WMLES for various
Reynolds numbers

can be reduced to a relatively small shift at the RANS-LES interface, resulting in a
high quality solution even at very high Re numbers for the above formulation (see

also [18]).

2.4 Flat Plate Boundary Layer

A more challenging test case is the flow over a flat plate boundary layer, where the
boundary layer grows and where synthetic turbulence needs to be provided at the
inlet. The grid for the boundary layer test case has the parameters given in Table 2.

Table 2 Grids for boundary layer flow at different Reynolds number using WMLES

Rep

Cells

Nodes

1,000/10,000

1,050,000

251 x 71 x 62
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Fig. 2 Turbulence structures
for wall boundary layer flow.
Top Reo = 1,000, Bottom
Reo = 10,000

Re=1000

Figure?2 shows the turbulent structures for a wall boundary layer flow using the
WMLES option. Again the outer part is covered by LES and the near wall part by
RANS. The flow was computed with ANSYS-Fluent and the turbulence at the inlet
was generated by the Vortex Method (e.g. [19]). The turbulence was well maintained
as can be seen from Fig.2. In Fig. 3 the wall shear stress is displayed. The WMLES
recovers quickly from the synthetic turbulence and maintains a proper wall shear
stress downstream.

Figure 4 shows the velocity profile of a simulation for the boundary layer at Reg =
10,000. Such a Re number is typically out of reach for wall-resolved LES due to the
large grid resolution required. In the present study a grid with only & 1.3 x 10° cells
was used (Ax+ =~ 700, Az+ = 350). Synthetic inlet turbulence was generated using
the Vortex Method. The logarithmic layer is captured very well as seen in Fig.4.

It should be noted that WMLES is still substantially more computationally expen-
sive than RANS. However, it avoids the excessive Re number scaling of classical
wall-resolved LES and allows the simulation of limited parts of technical devices
at high Reynolds numbers for which RANS model simulations are not of sufficient
accuracy.

2.5 Zonal RANS-LES Models

As pointed out in the previous sections, hybrid models like DES and SAS rely on
flow instabilities to generate turbulent structures in large separated regions without
the explicit introduction of unsteadiness through the boundary conditions. However,
there are situations, where such instabilities are not present or are not reliable to
serve this purpose. In such cases, it is desirable to apply RANS and the LES models
in predefined zones and provide clearly defined interfaces between them. At these
interfaces, the modeled turbulent kinetic energy from the upstream RANS model is
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converted explicitly to resolved scales at an internal boundary to the LES zone. The
LES zone can then be limited to the region of interest where unsteady results are
required. There are numerous zonal RANS-LES concepts, and it is not possible to
cover all of them. The following results are therefore limited to the Embedded LES
(ELES) method implemented in ANSYS-Fluent [8].

This approach has been selected as it is attractive from an industrial CFD per-
spective. It allows the user to pre-specify RANS and LES zones in a single CFD
simulation. At the RANS-LES interface, the modeled turbulence from the RANS
model is converted into resolved turbulence using the methods previously available
for this purpose at inlets. ELES allows the selection of virtually all RANS models in
the RANS domain and all algebraic LES models in the LES region. Figure 5 shows
the application of ELES to a channel flow. The front portion of the channel is covered
by the SST RANS model [20]. The RANS-LES interface uses the Vortex Method
to convert modeled turbulence to resolved synthetic turbulence and the WALE LES
[17] model to provide an LES eddy-viscosity. Downstream, the method switches
back to RANS. The numerical method allows switching from Second Order Upwind
to Central Difference between the RANS and the LES region.
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Figure 6 shows a comparison of the LES results inside the embedded region with
DNS data, both for the mean flow profile and the turbulence RMS values. The agree-
ment is quite close, considering the limited length of the LES zone.

3 Application Examples

Numerous application examples will be shown. They typically originate from
industry-specific validation projects/workshops in which the authors group has par-
ticipated. Such test cases are characterized by reduced geometric complexity, but
provide experimental data, typically not available for industrial applications.
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3.1 Acoustic Cavity

Air flow past a 3-D rectangular shallow cavity was calculated in order to test the
SAS models ability to predict correct spectral information for acoustics applications.
The cavity geometry and flow conditions corresponding to the M219 experimental
test case of Henshaw [21]. The experiment investigates the noise generation due to
turbulent structures forming from the front lip of the cavity and interacting with the
cavity walls.

Figure 7 shows the turbulent structures, produced by the SST-SAS model (iso-
surface Q-criterion). The power spectral density (PSD) of the transient pressure
signals calculated and measured by sensors on the cavity bottom near the leading
and the downstream wall respectively is plotted in Fig. 8. These plots show that the
PSD levels are captured in good agreement with the data. Similar agreement was
achieved for the other experimental locations (not shown here) Kurbatskii et al. [22].

3.2 NACA 0021 Airfoil Beyond Stall

This low Mach number flow around a symmetric NACA 0021 airfoil was experi-
mentally investigated by Swalwell et al. [23]. The flow is characterized by a massive
separation zone behind the airfoil. The experiment was carried out at a high angle of
attack of o = 60° and at a chord-based Reynolds number of Re = 2.7 x 10°.

The spanwise extension of the computational domain was selected to be four
chord-lengths for this calculation, and an O-type hexahedral grid with 140 x 101 x
134 nodes, provided for the DESider consortium, was used for the SST-SAS sim-
ulation with the ANSYS-CFX solver. A timestep equal to 3% of the convective
timescale (chord length over the inlet velocity magnitude) was used. This corre-
sponds to a Courant number of about unity in the separated zone just downstream of
the airfoil.

Fig. 7 Resolved turbulent
structures for cavity flow:

iso-surface 22 — S2 = 0 1000
S5x105s—2

Eddy viscosity ratio
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Figure9 shows a comparison of the computed and the experimental pressure
distributions. The agreement is good and within the range of other simulations in the
DESider project. Figure 10 shows the turbulent structures (iso-surface Q-criterion)
computed by the SST-SAS model behind the airfoil. The structures are essentially
resolved down to the grid limit with the larger structures indicating the grid coarsening
away from the airfoil. Unsteady SST simulations show the typical single-mode vortex
separation expected from classical URANS models.

The experience gained during the simulation of this flow showed the importance
of sufficiently long physical time integration for the correct prediction of the average
surface pressure and for the low-frequency part of the spectra of forces. During the
reported simulation, about 400 convective units based on chord length have been run
for the transient statistics after first establishing the solution. In order to achieve better
averaging, the spectra of forces have been calculated for each grid section separately
and then averaged across the spanwise direction. Figure 11 shows the power spectral
densities of the lift and drag coefficients, which are in good agreement with the data,
demonstrating the correct temporal response of the model.

The integral lift and drag coefficients, presented in Table 3, are predicted with 2 %
accuracy compared to the measurements. It should be noted that a slight dependency
of these values on the spanwise size of the domain was observed by some partners
in the DESIDER project. This ratio was not varied in the current simulations.
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The good prediction of the power spectral densities for this test case using the SST-
SAS model demonstrates the accuracy of the model in the time/frequency domain.
In Refs. [2, 24] the SAS model is described in detail and is applied to a wide variety
of generic and industrial-like flows.

3.3 Generic Fighter Aircraft

Figure 12 shows SAS simulations over a generic airplane geometry. The simulation
(Re = 2.8 x 10° o = 15°) has been carried out on an unstructured mesh with
11 x 106 control volumes. The upper part shows the geometry and the turbulent
structures produced by the simulation. The lower part shows a comparison between
the experimental data and the time averaged simulation. The simulation is in good
agreement with the exp. data [25].
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Table 3 Lift and drag Lift coefficient, CL | Drag coefficient, C D
coefficients for the NACA
0021 at 60° angle of attack SST-SAS 0.915 1.484

Experiment | 0.931 1.517

3.4 Heat Transfer in T-Junction

The following example is a flow through a pipe T-junction with two streams at differ-
ent temperatures. This testcase was a used as a benchmark of the OECD to evaluate
CFD capabilities for reactor safety applications [26]. The geometry and grid are
shown in Fig. 13a, b. The grid consists of &5 million hexahedral cells. This flow is
not easily categorized. In principle it can be computed with SAS and DDES models
in SRS mode (not shown). This means that the instability in the interaction zone
between the two streams is sufficiently strong to generate unsteady resolved turbu-
lence. However, it was also observed, that these simulations are extremely sensitive
to the details of the numerical method employed or the shielding function used. The
SAS model provided “proper” solutions only when a pure Central Difference scheme
was selected, but remained in URANS mode in case of the Bounded Central Differ-
ence scheme. The DDES model provided correct solutions, when a non-conservative
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Fig. 12 Flow over generic WSYS
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shielding function was used but produced only weak unsteadiness in case of a con-
servative shielding function. It is therefore better to apply the ELES model, where
modeled turbulence is converted into synthetic resolved turbulence in both pipes
upstream of the interaction zone at pre-defined RANS-LES interfaces. In addition,
the turbulence model was switched from SST to WMLES at these interfaces. This
approach then avoids the need for the flow instability of the interacting streams to
generate resolved scales.

Figure 13c shows that the resolved turbulence starts already upstream of the inter-
action zone due to the introduction of synthetic turbulence. Figure 13d shows a com-
parison of computed and experimental axial velocity profiles in the main pipe at
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X/D = 1.6. The method provides a good agreement between the simulations and

the
not

experimental data. It can also be seen that the switch from CD to BCD does
affect the solutions. This is different from the observation with the SAS model,

which reacts sensitive to such changes in the current testcase.

4 Summary

An overview of Scale-Resolving Simulation (SRS) technologies developed for the
ANSYS CFD codes was presented. The underlying principles, as well as some of the
pros and cons of different modeling approaches haven been discussed. Numerous
genetic and application-oriented examples have been shown.
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Hybrid LES-URANS Methodology
for Wall-Bounded Flows

S. Schmidt and M. Breuer

1 Introduction

Since wall-resolved LES suffers from very fine near-wall grid resolutions required
(Ayf;t < 2, Axt = 0(50-150), Azt = 0(15-40)), the idea to embed a near-wall
(U)RANS region within a LES represents both, a specific type of hybrid approach
and an enhanced kind of wall model. A variety of hybrid LES-(U)RANS concepts
were suggested during the last years [6] following different ideas to combine both
methodologies. Nevertheless, the basic objective is always the same. By combining
the advantages of the LES concept and the RANS approach a new simulation tech-
nique should emerge which consumes less CPU-time than pure LES and guarantees
predictive capabilities much better than RANS and similar or even better than LES.
Especially non-equilibrium turbulent flows for which the RANS approach evidently
suffers from reliability, e.g., large-scale separation/reattachment or vortex shedding
postulates the application of advanced simulation methodologies going beyond the
capabilities of pure RANS. This is the main focus of interest of the present study.

2 Hybrid Methodology for Wall-Bounded Flows

According to the catalog of requirements mentioned above the strategy followed
here is as follows: the URANS approach is used for the near-wall region, whereas
LES is performed in regions, where large unsteady vortical structures such as flow

S. Schmidt - M. Breuer ()

Department of Fluid Mechanics, Helmut—Schmidt—Universitit,
Hamburg, Germany

e-mail: breuer @hsu-hh.de

S. Schmidt
e-mail: schmidst@hsu-hh.de

© Springer International Publishing Switzerland 2015 197
J. Frohlich et al. (eds.), Direct and Large-Eddy Simulation IX,
ERCOFTAC Series 20, DOI 10.1007/978-3-319-14448-1_25



198 S. Schmidt and M. Breuer

separations are present, which should be resolved directly. Besides a definition of
the interface between URANS and LES which is realized in the present study by
a dynamic interface criterion automatically reacting on the flow field variations,
appropriate models for both domains are decisive.

In the near-wall URANS region the strong anisotropy of the Reynolds stresses
should be taken into account. Although a full Reynolds stress model (RSM) would
be the optimal choice, an explicit algebraic Reynolds stress model (EARSM, Wallin
and Johansson [13]) is applied instead owing to two reasons. First, it represents a
compromise between the too expensive full RSMs and classical linear eddy-viscosity
models not capable to account for the stress anisotropy. Second, for the implementa-
tion the EARSM can be formally expressed in terms of a non-linear eddy-viscosity
model. Its extra computational effort is small, still requiring solely the solution of
one transport equation for the modeled turbulent kinetic energy k;,0q = kurans- This
additional scale-determining part of EARSM provides the velocity scale. The trans-
port equation for k.4 includes the production, diffusion and dissipation term which
all presuppose reasonable modeling assumptions. Owing to EARSM the production
term can be closed on the basis of the consistent Reynolds stress formulation includ-
ing the anisotropy term [7] which improves the production term and subsequently
kmoa- Instead of a classical gradient-diffusion approach as used for the LES zone, for
EARSM (URANS only) the enhanced representation of the Reynolds stresses can
be introduced into the diffusion term by applying the model of Daly and Harlow [5].
Finally, the dissipation rate was recently refined [2]. Originally, the near-wall model
by Chen and Patel [4] relying on an algebraic relation for the length scale was applied.
The drawback of this model is that it is based on the equilibrium assumption at solid
walls (P = ¢) not taking the anisotropy of the stresses into account. Recently,
Jakirli¢ and Jovanovi¢ [8] showed that the total dissipation rate can be expressed
as a sum of the homogeneous and the non-homogeneous dissipation. The latter is
exactly equal to one half of the molecular diffusion of &, . Furthermore, in the direct
vicinity of the wall the homogeneous part can be expressed by an exact formulation
using the Taylor microscale. Both refinements were shown to further enhance the
results [2]. In the following the Jakirli¢ and Jovanovi¢ formulation will be used for
the dissipation term of the hybrid methodology. The modeling approach for the LES
region is less sophisticated. In order to rely on a unique modeling concept also a one-
equation subgrid-scale model is applied [11]. Here the transport equation describes
the velocity scale based on the subgrid-scale turbulent kinetic energy k,,q = ksgs.
Furthermore, the length scale is naturally given by the filter width. In conclusion,
the resulting modeling strategy consists of a single transport equation for k.4 with
different meanings for the URANS (kyrans) and LES (ksGs) modes. Owing to the
particular importance of the near-wall region, special emphasis is put on an adequate
modeling in this critical region.
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3 Applications and Results

The proposed hybrid LES-URANS approach for non-equilibrium turbulent flows
was validated based on several well-known test cases, i.e., the plane channel flow,
the periodic hill flow and two different 3-D diffuser flows [1, 2, 7]. Besides these
internal flows the present application is concerned with the flow around a SD 7003
airfoil [12]. The airfoil possesses a relative thickness of 8.51 % and a relative camber
of 1.46 %. The prediction of the flow around the airfoil was performed at a Reynolds
number of 60,000 based on the chord length ¢ and the free-stream velocity #s,. An
angle of attack « = 4° was chosen, where due to the adverse pressure gradient a
stable laminar separation bubble (LSB) on the leeward side can be observed in the
measurements [3] starting at about 0.25 c. Inside the LSB the transition to turbulence
starts with the amplification of the two-dimensional instability mechanism known
as Tollmien-Schlichting (TS) waves. In the separated shear layer Kelvin-Helmholtz
(KH) instabilities are observed. Due to the onset of turbulence a rapid pressure drop
leads to a highly instantaneous reattachment at about 0.7 c. The LSB is a major reason
for the increase of the pressure drag and the decrease of the lift. To understand the
fluid dynamic interactions represents a demanding benchmark. Earlier numerical
investigations [10] based on the EARSM by Wallin and Johansson [13] in pure
URANS mode showed at the same moderate angle of attack a too fast onset of
turbulence, which leads to a too small bubble length. The inaccuracy of the pure
URANS results and the CPU-time requirements of the LES predictions are the main
motivations to promote the hybrid LES-URANS approach.

For comparison purposes a LES prediction was carried out on a fine grid allowing
adetailed evaluation of the hybrid method. The grid for the pure LES consists of about
16.8 million control volumes (CVs) and satisfies the resolution requirements for a
wall-resolved LES at the suction as well as the pressure side (AxT <15, Ayt < 1.5,
AzT < 15). Since an airfoil configuration is examined, the C-grid topology is suit-
able. The airfoil is placed inside a computational domain of the height 4 /c = 14 and
the wake regime is prescribed with a length [/c = 4. At the inlet of the computa-
tional domain the constant velocity U/U = 1 is imposed, whereas at the outlet a
convective boundary condition is used. For the lateral edges the symmetry bound-
ary condition is applied. Furthermore, along the airfoil surface the no-slip boundary
condition is employed. The flow past the airfoil is assumed to be homogeneous in
spanwise direction allowing the application of periodic boundary conditions for a
depth z/c = 0.25 of the domain. To ensure the correct prediction of the transition
phenomenon, the dynamic SGS model of Germano/Lilly [9] was chosen as the ref-
erence case. In the present study, the hybrid LES-URANS method is performed on a
coarser grid with 5.8 million CVs. In addition, to show the possible performance of
the hybrid model a pure LES relying on a one-equation SGS model [11] was carried
out on the same grid as the hybrid approach. Both grids offer the same wall-normal
resolution for the wall-nearest grid point yiy; /c = 5x 10™% (AxT < 22, Ayt < 1.5,
Azt < 30).
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The dynamic interface criterion based on the modeled turbulent kinetic energy
(Cswitch, y+ criterion [1, 2, 7]) was developed and tested in the framework of internal
flows. For the present external flow with a laminar boundary layer at the front of the
airfoil an additional criterion is necessary to exclude that due to vanishing values of
kmoq 1n this region the hybrid methodology switches into the URANS mode. For this
purpose an additional criterion TR is introduced evaluating the ratio between two
different meaningful length scales. The first length scale is prescribed owing to the
filter width A of the mesh, whereas the flow setting is taken into account with the
aid of the Kolmogorov length scale Lx = (1)3/‘»2)1/4 withe =2v -5 - 5t

TR — A [ <1 — laminar/DNS-like
Lk | > 1 — turbulent/hybrid LES-URANS.

This additional criterion TR is combined with the original one based on Ciyircp, y*
and thus dynamically reacts on the local flow structure. Since the transition onset is
dominated by highly instantaneous processes, the calculation of the fluctuation strain
rate s;; for the determination of L ¢ ensures the right estimation of the transient flow
phenomena. At the leading edge of the airfoil the values of TR are expected to
be small. Thus it is possible to resolve all information of the flow field with the
existing grid and the usage of the LES mode in this region guarantees the right flow
description owing to the negligible influence of the subgrid-scale model. After the
transition onset the values of TR rises and it can be expected to be larger than one.
This region does not satisfy the well-known requirements of the LES grid resolution
and furthermore the influence of the used SGS model is appreciable. Accordingly,
the application of the hybrid LES-URANS is the natural choice. It is well known
that the Kolmogorov length scale is derived for high Reynolds numbers to describe
the universal smallest scales of turbulence. Despite the moderate Reynolds number
of the present test case and the two-component anisotropy of the near-wall scales,
the refined criterion produces meaningful results.

Figure 1 depicts the comparison of the mean streamwise velocity U/Uy and
the total kinetic energy ky,;/ Ugo for the fine LES, the coarse LES and the hybrid
LES-URANS approach at nine positions. First of all it is noteworthy that the hybrid
method predicts the complete flow field well compared with the fine LES. The coarse
LES shows inside the LSB area a high level of agreement with the reference LES,
whereas the hybrid LES-URANS method slightly underestimates the reference LES.
Further downstream in the trailing-edge region of the airfoil the hybrid model delivers
superior results for the streamwise velocity compared to the coarse LES. As expected
from the internal flow evaluations, the results for the total kinetic energy calculated
by the hybrid methodology exhibit no visible kink in the profiles underlining the
applicability of the LES-URANS approach for external flows. In the free shear layer
the coarse LES strongly overpredicts the total kinetic energy in comparison to the
fine LES. In contrast, the hybrid method exhibits smaller discrepancies regarding
ktot. Further downstream (x/c > 0.6) after the transition onset the hybrid model
matches the results of the fine LES quite well.
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Fig. 1 Profiles of U/ U (upper) and ko / Ugo (lower) for the SD 7003 airfoil flow configuration
at Re, = 60,000 and @« = 4°. Short dashes indicate the interface location in the averaged flow
field

To assess the global performance of the simulations the pressure coefficient ¢, and
the friction coefficient ¢ s are plotted in Fig. 2a, b. The profile of ¢, shows the typical
distribution for a LSB. After the separation a plateau can be observed, which ends in
a ¢, drop in the area of the transition. The coarse LES as well as the hybrid method
yields the right prediction of the LSB characteristics in agreement with the results of
the fine LES. Based on Fig. 2b the exact location of the separation and reattachment
points can be appointed. Due to the nearly steady location of the separation point
it is not surprising that all three methods predict the same position. Owing to the
highly instantaneous reattachment the estimation of the reattachment location seems
to be more demanding. Compared with the fine LES the hybrid method exhibits a
high level of agreement regarding the reattachment point. Contrarily, the coarse LES
overestimates its position.
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Fig.2 a Distribution of the pressure coefficient ¢, = (p— poo)/(0.5 po Ugo) of the time-averaged
flow field. b Distribution of the friction coefficient ¢y = tw /(0.5 pso Uozo) of the time-averaged
flow field

4 Conclusions

To validate the applicability of the hybrid LES-URANS methodology for external
flows, the flow around the airfoil SD 7003 is considered comprising a LSB and
transition. As shown the improvements by the hybrid LES-URANS approach are
obvious compared to pure LES and justify the small additional CPU-time effort.
To further increase the performance of the hybrid model, additional evaluations are
needed including the application of even coarser grids, higher Re, or other «.
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Stability and Transition



Investigations of Stability and Transition
of a Jet in Crossflow Using DNS

A. Peplinski, P. Schlatter and D.S. Henningson

1 Introduction

The so-called jet in cross-flow (JCF) refers to fluid that exits a nozzle and interacts
with the surrounding boundary layer flowing across the nozzle. This case has been
extensively studied both experimentally and theoretically over the past decades due to
its high practical relevance. Smoke and pollutant plumes, fuel injection and mixing or
film cooling are just a few applications. On the other hand, it is considered a canonical
flow problem with complex, fully three-dimensional dynamics which makes the JCF
a perfect tool for testing numerical methods and simulation capabilities. Recent
reviews on this flow configuration are given in [7, 8].

The JCF is characterised by three independent non-dimensional parameters: free-
stream and the jet Reynolds numbers (Re56, Rej.) and jet to free-stream velocity
ratio R, which is a key parameter in this work. The major flow features are (see e.g.
Fig. 1 in [7]): the counter-rotating vortex pair (CVP) in the far field, the horseshoe
vortex developing upstream of the jet orifice, and vortices shed from the shear layers
that result from the interaction of the jet with the cross-flow both upstream and
downstream of the jet trajectory. Some other features, such as wake vortices or
upright vortices, are visible at higher values of the cross velocity ratio R only. As
the ratio R increases, the flow evolves from a stable (and thus steady) configuration
consisting of (steady) CVPs and horseshoe vortices, through simple periodic vortex
shedding (a limit cycle) to more complicated quasi-periodic behaviour, before finally
becoming turbulent. In Refs. [2, 6, 12] the stability of the JCF was studied by means
of modal analysis. The first linear global stability analysis of this flow at R = 3 was
presented by Bagheri et al. [2, 12]. For this jet to free-stream velocity ratio the JCF
was found to be dominated by an interplay of three common instability mechanisms:
a Kelvin—Helmholtz shear layer instability, a possible elliptic instability of the CVPs,

A. Peplinski - P. Schlatter - D.S. Henningson (B<)

Linné FLOW Centre and Swedish e-Science Research Centre (SeRC),

KTH Mechanics, Royal Institute of Technology, 100 44 Stockholm, Sweden
e-mail: henning @mech.kth.se

© Springer International Publishing Switzerland 2015 207
J. Frohlich et al. (eds.), Direct and Large-Eddy Simulation IX,
ERCOFTAC Series 20, DOI 10.1007/978-3-319-14448-1_26



208 A. Peplinski et al.

and a near-wall vortex shedding mechanism similar to a von Kdrmén vortex street. It
was also shown that the flow acts as an oscillator, with high-frequency unstable global
eigenmodes associated with shear-layer instabilities on the CVP and low-frequency
modes resulting in vortex shedding in the jet wake. This work was later extended to the
wider range of R € (0.55, 2.75) [6], focusing on transition from steady to unsteady
flow as R is increased. The first bifurcation (first unstable eigenmode) was found to
occur at R &~ (0.675, when shedding of hairpin vortices characteristic of a shear layer
instability is observed, and the the source of this instability (wavemaker) was located
in the shear layer just downstream of the orifice. Results of linear stability analysis
were consistent with nonlinear direct numerical simulations (DNS) at the critical
value of R predicting well the frequency and initial growth rate of the disturbance. It
was also concluded that based on linear analysis good qualitative predictions about
the flow dynamics can be made even for higher values of R, where multiple unstable
eigenmodes are present. The authors pointed out, however, that the critical value
of R cannot be determined exactly due to sensitivity of the results to changes in
the domain length as well as to the presence of the fringe region enforcing periodic
boundary condition (BC).

In the current study we follow Ref. [6] focusing on the transition from steady
to unsteady flow and, using linear global stability analysis, searching for the value
of R at which the first bifurcation occurs. The scope of this work is to test the
numerical methods and techniques, and to identify the major difficulties related to
linear stability of this type of complex flows. As modal analysis is known to fail
in predicting the practical critical Reynolds number for transition to turbulence in a
number of systems, we apply in our studies both modal and non-modal analyses. A
classical example of such a flow is the convectively unstable flat-plate boundary layer
[4], which behaves as broadband amplifier of incoming disturbances and is globally
stable according to linear global analysis. However, a global stability analysis based
on the asymptotic behaviour of single eigenmodes of the system does not capture
relevant dynamics, and transition to turbulence at lower Re occurs due to transient
effects. Following Refs. [9, 10] we investigate the linear growth of perturbations in
the JCF for a limited time, before the exponential modal behaviour is most dominant,
and determine an optimal initial condition (initial condition yielding largest possible
growth in energy) adopting a time-stepper method.

2 Numerical Setup

We adopt the computational setup from Ref. [6], modelling the interaction of a
boundary layer with a perpendicular jet exiting a circular pipe with diameter D =
3 * 8§, where &) is the displacement thickness at the inflow placed 9.375 * &;
upstream the centre of the pipe orifice; §} is adopted as length unit. Following Ref.
[6] we use both laminar cross-flow and jet inflow profile and, as the jet pipe is
absent in our simulations, an inhomogeneous (Dirichlet) BC prescribing the inflow
jet profile is employed. This is an important limitation of the problem setup requiring
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e.g. smoothing of the jet profile by a Gaussian function (Eq.2.1 in [6]). We will list
here only the key parameter of the setup referring the reader to [2, 6] for more
details. The flow is fully described by pipe diameter D, cross-flow Reynolds number
Reaa = Usod/v and jet to cross-flow velocity ratio R = V /Uy, where Uy, V and
v are free-stream velocity, peak jet velocity and the kinematic viscosity, respectively.
As before [6] we set Rega = 165, and choose R as 1.0, 1.4, 1.5 and 1.6.

The simulations are performed with two different massively parallel DNS solvers
for the incompressible Navier—Stokes equations: SIMSON [3] and Nek5000 [5].
SIMSON was used in Refs. [2, 6, 12] and is a fully-spectral code suitable for stabil-
ity computations. However, a major constraint is the requirement for periodic BC in
streamwise direction necessitating a fringe region (Sect.4.2.2 in Ref. [3]) for damp-
ing disturbances. We use SIMSON to investigate the influence of the fringe length
L on the stability results in nonlinear DNS. Fringe parameters are adopted from
[6] with varying L set to 15 (like in [6]), 45 and 75 units. As the fringe region
reduces the useful part of the computational domain we doubled the length of the
box as compared to Ref. [6] setting its size to Ly = 150, L, = 20, L, = 30, with
the resolution of 512 x 201 x 144 modes in the streamwise (x), wall-normal (y),
and spanwise (z) directions, respectively. Nek5000 is a spectral-element code pro-
viding spectral accuracy while allowing for complex geometries. In this method the
governing equations are cast into weak form and discretised in space by the Galerkin
approximation, following the Py — Py_» approach with the velocity space spanned
by Nth-order Lagrange polynomial interpolants. In our studies we use Nek5000 to
investigate the influence of resolution (N = 6 and 9), box length (L, = 150 and
250) and grid structure. Domain decomposition into hexahedral elements is used to
reduce resolution where it is not needed. We keep uniform resolution in the pipe
vicinity within 5 unit distance from the orifice, and reduce it at larger distance by
smooth element stretching (mesh M1). In mesh M2 we double the vertical resolution
next to the wall. There are no periodic BC in streamwise direction, however, we
found our results to be dependent on the outflow BC unless we set a sponge layer at
the outflow as well as making the computational domain longer to reduce reflections
from the boundary. The forcing function for the sponge was adopted from the fringe
in SIMSON, and the sponge length was set to 25 and 35 units for L, = 150 and
250, respectively. Nek5000 is also used as time-stepper for solving the linearised
Navier—Stokes equations in modal and non-modal linear stability analyses. Detailed
descriptions of the implementation and validation can be found in Refs. [5, 10].

3 Direct Numerical Simulations

We performed a number of nonlinear DNS to investigate the dependence of critical
R value on different simulation parameters.

The studies of results sensitivity to damping in the fringe for R = 1 were per-
formed with SIMSON and are presented in Fig. 1. The left plot shows the time
dependent amplitude of a single Fourier component in the signal of the streamwise
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Fig. 1 Temporal amplitude evolution (left) and energy as function of streamwise position (right)
of the single most unstable Fourier component for R = 1 and different fringe length L (1, 2, 3)
and simulation time (4, 5). Simulation results of STMSON

velocity component of a probe located 15 units downstream of the pipe centre for
Ly = 15, 45 and 75 (curves 1, 2 and 3). The frequency of the chosen Fourier
component is given by the period T, of the signal, and the amplitude at time 7 is
calculated by projection of the signal on sine and cosine functions within the win-
dow (t — Tp/2,t + T,/2) and finally smoothed by Bézier curves. The right plot
presents the energy of the same Fourier component of the streamwise velocity com-
ponent integrated over y — z plane and plotted as a function of streamwise position x.
Curves 1 and 2 correspond to Lr = 15,¢ = 800 and L r = 45, t = 500 respectively,
and curves 3, 4 and 5 give the time evolution of energy distribution for L = 75 and
t equal 500, 1,000 and 1,500 (time is counted from the beginning of simulation). The
pipe centre is marked by the vertical line, and the size of the fringe layer is clearly
visible. The first simulation was performed with Ly = 15 and Blasius boundary
layer as initial condition, and run up to + = 880, when the probe signal saturated.
This state provided the initial conditions for the two other runs. Note that the final
velocity field of the first run consists of more than one frequency component, and
curve 1 in Fig. 1 give only an estimate of observed oscillations.

According to Ilak et al. [6] the JCF for R = 1 appears globally unstable, however,
closer examination of Fig. 1 shows this flow to be convectively unstable, and the
misinterpretation of the instability mechanism to stem from insufficient damping in
the fringe. The temporal amplitude evolution of the simulation with the shortest fringe
features a short phase of approximately exponential decay (after initial transient
phase) ending at r &~ 160, when the signal from the fringe reaches the pipe after
re-entering the domain and triggers instability. It is because the energy damping in
the fringe (of the order of 10%) is too small compared to the growth rate in the domain
leading to nonlinear saturation of the signal. Similar conclusions can be drawn from
the second run (Lr = 45), where the nonlinear saturation on the energy plot is
still visible. To achieve sufficient damping the fringe with at least L = 75 (50 %
of the computation domain) is required. In this case the signal amplitude decays
exponentially and the saturation is no longer visible after 500 time units. However,
even in this case the decay rate after + = 400 is relatively low leaving considerable
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amount of energy in the strongest Fourier mode after + = 1,500. This proves that
methods relying on periodic domains to be unsuited for flow cases with considerable
spatial (and temporal) growth rates. To employ those methods one has to ensure the
damping within the fringe region is sufficient to make perturbations re-entering the
domain not relevant for the flow dynamics.

All subsequent runs are performed with Nek5000, which does not require peri-
odicity in streamwise direction. Nevertheless, even in this case a correct treatment
of outflow BC was found to be crucial. The time-dependent amplitudes of a single
Fourier component in the signal of the streamwise velocity component of a probe
located 15 units downstream of the pipe for R = 1.4 and 1.5 are shown in Fig.2.
Curves 1-3 correspond to lower resolution runs with N = 6, and curves 4, 5 show
results with higher order N = 9 for R = 1.5. Two different domain lengths are
studied: L, = 150 (curves 1, 2 and 4) and 250 (curves 3 and 5). All DNS start with
Blasius initial condition, and in runs 2, 3, 4 and 5 the instability is triggered by adding
non-symmetric noise of amplitude 10~ to the velocity field at 7 = 500 (marked by
vertical line). All presented simulations were performed on the M1 mesh. For all
cases, an initial transient phase (ending around ¢ = 220) is followed by short phase
of nearly exponential decay. Depending on the domain size and whether noise was
added or not, this phase ends with a rapid amplitude increase followed by exponen-
tial decay/saturation, or with the slow growth of low amplitude oscillations. Strong
dependency on grid resolution is clearly visible, as the R = 1.5 run is globally
unstable for N = 6 and stable for N = 9. On the other hand, small amplitude
(10~* — 1073) oscillations visible at the end of all runs with shorter domain (inde-
pendently whether noise was added or not) are manifestation of interaction between
pipe vicinity and outflow BC. In the lower resolution simulations those oscillations
are excited during the phase of exponential decay (at # &~ 400 and 370 for R = 1.4
and 1.5) and reach final amplitude of 10~ — 1073, In the unstable case R = 1.5
(curve 1 inright plot) they are later overtaken by growing unstable modes with similar
frequency. Such oscillations are not visible in the simulations with longer domain,
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Fig. 2 Time dependent amplitude evolution of the single Fourier component of the velocity probe
for R = 1.4 (left) and 1.5 (right) for different domain length and grid resolution. See text for
description
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where all the disturbances are damped exponentially. Increased resolution allows to
delay excitation of those waves (no longer visible in the first decay phase), but it does
not reduce significantly the final amplitude. Note that for the low resolution runs at
R = 1.5 the final saturation is reached faster in the longer domain, and the maximum
amplitude reached after the noise is added for N = 9 is higher in the longer domain
as well. This illustrates the need for proper non-reflective BC.

4 Modal Analysis

Modal stability is the classical method hydrodynamics stability, where the critical
value of given parameter, for which a single exponentially growing disturbance exist,
is computed. In the linear theory for global analysis those disturbances, the so-called
linear global modes, are associated with eigenmodes of the linearised Navier—Stokes
operator. Their identification requires finding the base flow Uy, i.e. stationary solution
to the nonlinear Navier—Stokes equations, and next solving an eigenvalue problem
of the linearised operator. As the considered flow configuration is usually unstable,
to calculate U, one has to adopt additional stabilisation mechanism to eliminate time
dependency of the solution. In our calculations selective frequency damping (SFD)
[1] was used. Furthermore, the dimension of the state space of the eigenvalue prob-
lem dim(U) ~ 107 makes explicit construction of the matrix impossible and requires
projection on the low dimension subspace. To achieve this we adopt the Arnoldi algo-
rithm using special matrix-free methods based on time-steppers. Detailed description
of the problem with governing equations, implementation in Nek5000, validation
and application to JCF can be found in Peplinski et al. [11]. An example of the base
flow and spectra (growth rate w; vs frequency w,) is shown in Figs. 1 and 5 in Ref.
[11]. Here we present results of the DNS performed on meshes M1 and M2 with
domain length L, = 150 for two resolutions N = 6 and 9, and two velocity ratios
R = 1.5 and 1.6. As the plot of spectra is symmetric with respect to w, = 0 we
utilise the negative and positive w, parts to compare different cases, and we plot only
those part of spectra matching for both direct and adjoint operator (compare positive
w, part of the left plot in Fig.5 in [11]).

Results are presented in Fig. 3. In all studied cases increasing resolution decreases
the growth rates of all the modes except the ones with zero frequency. The upper
left plot presents spectra for R = 1.5 and two meshes M1 and M2 (negative versus
positive w, part of spectra) for two resolutions N = 6 (symbols 1 and 3) and 9
(symbols 2 and 4). The importance of high resolution close to the wall is shown, as
the low resolution run on mesh M1 is globally unstable, and the run on mesh M2
is stable. On the other hand, most of the converged modes in the spectra of higher
resolution runs match each other for both meshes suggesting the resolution necessary
for numerical convergence was reached. Simulations with R = 1.6 and 1.5 performed
on mesh M2 are presented in the upper right plot (negative versus positive w, ). As
before, symbols 1,3, and 4, 5 correspond to N = 6 and 9 respectively. The shift of w; is
larger for higher w,, and it seems to be independent of value of R. For both resolutions
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Fig.3 Upper row sensitivity of the spectra to the mesh structure and resolution for different velocity
ratios. Left spectra for R = 1.5 run on M1 (negative w, ) and M2 (positive w, ) meshes. Right spectra
for R = 1.6 (negative w,) and R = 1.5 (positive w, ) run on M2 mesh. Lower left growth rate of the
strongest mode as the function of polynomial order N for the modal analysis and nonlinear DNS.
Lower right Modulus of the direct (far field) and adjoint (pipe orifice) strongest eigenmode

the R = 1.6 case remains unstable. The results are summarised in the lower left plot
presenting the growth rate of the strongest mode as a function of N for both linear
modal analysis and nonlinear DNS. Symbols 1, 2, and 3 correspond to simulations
at R = 1.5, mesh Ml; R = 1.5, mesh M2; R = 1.6, mesh M2, respectively,
while symbol 4 gives the growth rate of the strongest Fourier component in DNS
for R = 1.5 (mesh M1). Higher resolution runs of the linear analysis and nonlinear
DNS are consistent with each other giving similar frequency and growth rate.

The lower right plot shows the modulus of the strongest eigenmodes of the direct
(far field) and adjoint (pipe vicinity) operators for R = 1.5 and N = 9. The pipe,
marked by red circle, is located at x = 0 and the modes maxima are normalised to
unity. The colour scale is logarithmic and the surface of the plotted region corresponds
to 1% of the maximum value illustrating fast decay of the eigenmodes. The total
growth of the direct mode (ratio of the maximum to the value at the pipe orifice)
is of the order of 10°. The visible strong streamwise separation of the direct and
adjoint global modes is induced by the basic flow advection and is a signature of
non-normality of the linearised operator. This is important since a high degree of an
operator non-normality leads to great sensitivity of the corresponding eigenvalues.
It is also well-known that, as a result of non-normality, the perturbation energy may
experience transient growth even though the flow is globally stable.
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5 Non-Modal Analysis

In this section we discuss results of linear optimal disturbances, which is a well
established technique to identify the initial condition leading to the largest growth of
the disturbance at finite time. We look for the perturbation u(x = 0) which leads to
maximum energy (u(7"), u(7")) at time 7'. This problem is equivalent to solving the
eigenvalue problem Au(0) = exp(AJr T) exp(AT)u(0), where exp(A*T) exp(AT) is
the forward and adjoint composite propagator, and A is a linearised Navier—Stokes
operator. The largest eigenvalue can be found iteratively by (matrix-free) power
iterations, where the state is first marched forward in time with the standard numerical
solver (direct propagator) and then backward with the corresponding adjoint solver
(adjoint propagator). The initial condition is white noise and the procedure is repeated
until the assumed convergence criterion for |u,(0) — u,_1(0)| is reached, where n
is the iteration number. For more detailed discussion, description of implementation
in Nek5000 and validation see Ref. [9, 10].

Our simulations were performed on the fine mesh M2 with domain length L, =
150 and integration time 7 = 77 for R = 1.5 and 1.6. The initial state u(0) for
each of step (direct and adjoint) was normalised (u(0), u(0)) = 1, and the assumed
convergence criteria was 5 x 1 079, reached after 36 iterations. Note that the backward
time marching in our simulations does not mean negative time step, so in the adjoint
time stepper phase both time and energy are growing. To keep direct and adjoint
problem consistent we apply sponge layers together with Dirichlet zero BC both at
the inflow and outflow in the flow. The results are presented in Figs. 4 and 5.

The left plot in Fig. 4 presents the energy growth with time for direct (curves
1, 3) and adjoint (curves 2, 4) phases for stable (R = 1.5; curves 1, 2) and unstable
(R = 1.6; curves 3, 4) cases. The energy evolution is similar in both cases and its final
value differs only by factor of 2 (E = 8 x 10'! and 1.6 x 10'2 for R = 1.5 and 1.6
respectively) showing the transient growth to be only weakly dependent on R. Similar
conclusions can be drawn from the nonlinear DNS simulations, in which the optimal
disturbance added on top of steady base flow is used as initial conditions. Evolution
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Fig. 4 Energy (left) and time dependent amplitude (right) evolution for the transient growth of the
optimal disturbance. See text for description
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Fig. 5 Comparison of the optimal disturbance (upper row) and the resulting wave packet (lower
row) for the stable (front, R = 1.5) and unstable (back, R = 1.6) case

of time dependent amplitude of a single Fourier component in the signal of the veloc-
ity probe (located 15 units downstream from the pipe) is presented in the right plot in
Fig. 4 (curves 1 and 2 correspond to R = 1.5 and 1.6, respectively). The initial ampli-
tude development is identical both for stable and unstable cases, however the final fate
is consistent with modal analysis. The amplitude saturation at 10~ for the stable case
R = 1.5(curve 1) is caused by interaction with outflow BC discussed in Sect. 3 above.

Figure 5 presents a comparison of optimal initial conditions for the streamwise
velocity component u, (0) (upper row) and corresponding final wave packet uy (T)
(lower row) for stable R = 1.5 and unstable R = 1.6 cases. Angled and top view
are shown. As the optimal conditions and wave packets are symmetric with respect
to the grid symmetry plane we plot results of both simulations on a single frame
placing the stable case in front/lower part of the plot. The maximum value of all the
functions is normalised to unity, and the plotted isosurface corresponds to 0.2. Both
the optimal disturbances and wave packets for stable and unstable cases are almost
identical, however they are slightly shifted with respect to each other due to different
shape of the base flow. The wave packets differ also by the wavelength, which is
minimally shorter for the stable case.

An important advantage of the non-modal analysis is its insensitivity to the out-
flow BC, as the travelling wave packet never reaches the outflow. However, in our
simulations we could see the influence of the inflow BC on the adjoint stepper phase
manifesting itself by small oscillations of the energy curve at the end of integration
period (barely visible in Fig. 4).
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6 Conclusions

In the current work we performed a stability analysis of the JCF testing the numerical
methods and stability techniques. We focus on the calculation of the critical velocity
ratio R, at which first bifurcation (transition from the steady to unsteady flow) occurs.
We performed a number of simulations using different numerical methods and codes
finding the JCF to be so sensitive to the simulation parameters and setup, that the
critical velocity ratio can be found for a particular numerical setup only. In particular
we found that spectral methods to be not well suited for simulation of the flow cases
with considerable disturbance growth rate due to the periodic BC in streamwise
direction, as the insufficient damping in the fringe region can significantly change
the flow dynamics. Even for codes with inflow/outflow BC, we demonstrate the need
for proper non-reflective BC for the spectral-element code, and the sensitivity of the
modal stability analysis to the grid resolution. This great sensitivity of the eigenvalue
at the bifurcation point indicates that it may not be a particularly interesting quantity
to consider, as the flow itself is very sensitive to external disturbances and that
transient effects are more relevant than the asymptotic growth rate associated with
a particular global mode. We calculated the optimal disturbance finding its growth
and shape robust and almost independent on R.
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DNS of a Double Diffusive Instability

J.G. Wissink, H. Herlina, S.I. Voropayev and H.J.S. Fernando

1 Introduction

In the present numerical study we consider a body of water with a stable temperature-
induced density gradient and an unstable salinity-induced density gradient resulting
in an overall density gradient that is weakly stable. As a result of the difference in
diffusivity between the temperature (with a Prandtl number of Pr = 6) and the salin-
ity (with a Schmidt number of Sc¢ = 700) any disturbance added to the temperature,
salinity or velocity field will result in the development of a diffusive instability that
eventually leads to the occurrence of so-called salt-fingers—consisting of fluid with
a relatively high salinity contents—that penetrate the fluid immediately underneath.

This salt fingering phenomenon plays an important role in the oceanic vertical
mixing. In regions where warm salty water lies over cool fresh water, such as in the
Tyrrhenian Sea, researchers have recognized that the small scale salt fingers result in
the generation of a salinity stratification with a distinct layering [1]. As it is important
to oceanic mixing, double-diffusion processes also have a strong influence on the
oceanic heat and gas fluxes [2]. In an experiment performed by Voropayev et al. [3]
it was found that also in the case of a (single diffusive) unstable salinity-induced
density gradient the developing instability led to the intermediate formation of a
layered salinity distribution despite the initially smooth salinity gradient. To establish
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whether a similar layering in a double diffusive environment can be reproduced
numerically and to obtain more insight in the physics that drives this phenomenon
it was decided to perform a series of two-dimensional and three-dimensional direct
numerical simulations (DNS-s).

2 Computational Details

The computational domain is shown in Fig. 1. Periodic boundary conditions for all
variables were employed in the horizontal directions. At the top and bottom free-slip
boundary conditions were used for the velocity. For the scalars in the two-dimensional
simulations either constant flux or zero flux boundary conditions were employed.
Two three-dimensional simulations are performed, one with a small height (as seen
in Fig. 1) and one with a much larger height (to allow more space for the layer
formation). In the three-dimensional simulations a zero flux boundary condition is
used along the top and bottom of the computational domain. The Reynolds number,
based on a characteristic length scale of L = 1 cm and a characteristic velocity scale
of U = 1cm/s, is Re = 100. The simulations are initialised with constant salinity
and temperature gradients. The salinity distribution induces an unstable constant
density gradient 3—’; =5x 10’4$, while the temperature distribution induces a

stable density gradient g—‘; = —6x 10_4ﬁ. The resultant density gradient is stable
(see Fig. 1). To seed possible instabilities a random disturbance of 1 % is added to
the temperature field at f = Os.

To accurately resolve the convection of low-diffusive scalars it is important to
avoid any undershoot or overshoot at locations where the concentration gradient is
steep without introducing an excessive amount of artificial diffusion. The problem of
resolving steep gradients is very similar to the problem of shock-capturing in com-
pressible fluid flow simulations. Because of this, it was decided to adopt the fourth-
order accurate Weighted Essentially Non-Oscillatory (WENO) scheme—developed
by Liu et al. [4]—to calculate the scalar convection. The scheme was adapted for
usage on a staggered mesh and the coefficients of the third-order interpolation polyno-
mials were determined using Lagrange interpolations so that the algorithm would also

Fig. 1 Schematic of Free-slip, adiabatic
computational domain |
p(T)
p(Sy+p(T) 10 cm
p(S)

Free-slip, adiabatic
= 20cm
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work on stretched meshes. The scalar diffusion term was calculated using a fourth-
order-accurate central discretisation and the time-integration of the scalar convection-
diffusion equations was performed using a three stage Runge Kutta method.

The reason for using a staggered mesh was to avoid a decoupling of the flow and
pressure field in the numerical approximation of the incompressible Navier-Stokes
equations. A fourth-order-accurate kinetic energy conserving numerical method was
used for the discretisation of the convective terms (a detailed description of this
discretisation can be found in Wissink [5]). The diffusive terms were discretised by a
fourth-order accurate central discretisation. Second-order central discretisations were
used for the discretisation of the pressure gradients and the continuity equation. The
Poisson equation for the pressure was iteratively solved using a conjugate gradient
solver with a simple diagonal preconditioning. Time-stepping was performed using
the second-order accurate Adams-Bashforth method.

Because the fluid viscosity can be more than two orders of magnitude larger than
the scalar diffusivities it was decided to incorporate a dual mesh capability in the
program in which the scalars are resolved on a mesh that can be up to eight times
finer than the base mesh used to resolve the flow field. In the present calculations the
base mesh (using sufficient mesh points to resolve the salt-fingering) was used for
both flow and scalar fields.

A Boussinesq approximation was used to account for the small local differences
in density of the fluid which is directly linked to the local temperature and salinity.

The numerical solver was parallellised by dividing the computational mesh in
blocks that each contain the same number of grid points. Communications between
blocks was performed by using the standard Message Passing Interface (MPI) pro-
tocol. More detailed information on the solver, including some grid refinement tests,
can be found in [6].

3 Results

Figure 2 shows contours of the salinity distribution obtained for ¢ = 30, 40, 50, 60s
after the start of the 2D simulation with a zero flux boundary condition for the scalars
at the top and bottom of the computational domain. The sequence of snapshots illus-
trate the evolution of the diffusive instability driven by the difference in diffusivity
between the temperature and the salinity. Salt fingers can already be clearly identified
in the first snapshot at # = 30s. In time a progressive mixing of fresh (blue) and salt
(red) water can be seen. As aresult, with increasing time the salinity-induced density
gradient becomes less and less unstable.

The effect of the scalar boundary condition at the top and bottom of the computa-
tional domain only has a localised influence on the development of the instability. In
the simulation with a zero scalar flux the overall density gradient (i.e. the sum of the
temperature and salinity-induced density gradients) becomes unstable near the upper
and lower boundary. Compared to the simulation with a constant scalar flux, a faster
growth of the instability close to the upper and lower boundaries is obtained during
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Fig. 2 Contours of the salinity distribution after ¢+ = 30, 40, 50, 60
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the early stages of the simulation. Figure 3 shows the non-dimensional horizontally-
averaged salinity concentration. Weak evidence is found of layer formation (locations
identified by the arrows).

The first results from the three-dimensional simulation with an increased vertical
size can be seen in Fig.4. The sequence of pictures shows contours of the salinity

Fig. 4 Salinity contours in the upper half of the (x, z)- and (y, z)-planes through the centre of
the computational domain. The three snapshots were taken at t = 35, 45 and 55s. The red colour
corresponds to the maximum salinity concentration
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concentration in the (x, z)- and (y, z)-planes through the centre of the computational
domain at ¢ = 35, 45, 55s. The initial development of the double diffusive instabil-
ity through the formation of salt fingers is clearly visible. The boundary condi-
tions applied at the top and bottom were found to lead to a gradual change in the
horizontally-averaged density distributions related to both the salinity and the temper-
ature. As aresult, the salinity distribution becomes less and less unstable which affects
the layer formation in the overall density gradient. To avoid this unwanted change
in the mean salinity gradient, a new boundary condition at the top and bottom of the
computational domain will be introduced. By assuming periodicity for the velocity
and combining this with quasi-periodic boundary conditions for the scalar (which
allows the scalar at the top to differ by a fixed constant from the scalar at the bottom
thereby ensuring that the mean scalar gradient remains continuous) the mean temper-
ature and salinity gradients will be forced to remain constant at all vertical locations
of the computational domain. We are confident that in our further simulations, using
this new boundary condition, we will be able to obtain a much clearer formation of
layers in the overall density distribution. We also hope to further identify whether in
three dimensions this layering—that should lead to a step-wise salinity distribution
[1]—becomes more evident than in two dimensions, in which case we should be able
to clarify/confirm the exact physical mechanisms that drive this phenomenon.
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Flow Past a NACA0012 Airfoil: From
Laminar Separation Bubbles to Fully
Stalled Regime

L. Rodriguez, O. Lehmkuhl, R. Borrell and A. Oliva

1 Introduction

The flow around airfoils in full stall is a problem of great interest in aerodynamics
and specifically for the design of turbo-machines (turbines, propellers, wind turbines,
etc.). However, mechanisms of quasi-periodic oscillation observed near stall and stall
behaviour, which affect airfoil efficiency, remain still not fully understood. Thus, the
study of the separation mechanism and the correct prediction of boundary layer
transition are both key aspects for improving engineering designs.

The advances in computational fluid dynamics together with the increasing
capacity of parallel computers have made possible to tackle such complex turbulent
problems by using high-performance numerical techniques such as direct numerical
simulation (DNS) [1, 4]. DNS has a key role for improving the understanding of the
turbulence phenomena and for the simulation of transitional flows in complex geome-
tries. In the present work DNS of the flow past a NACA0012 airfoil at Re = 5 x 10%
and angles of attack (AO A) of 5°, 8°, 9.25° and 12° (the last one correspond to a
full-stall situation) have been carried out. This work aims at investigating the mecha-
nisms of separation and the prediction of the transition to turbulence in the separated
shear-layer, while at the same time to gain insight into coherent structures formed in
the separated zone at low-to-moderate Reynolds numbers.
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2 Numerical Method

The governing equations are discretised on a collocated unstructured grid arrange-
ment, by means of second-order conservative schemes [9]. Such discretisation pre-
serves the symmetry properties of the continuous differential operators, and ensure
both stability and conservation of the global kinetic-energy balance on any grid.
For the temporal discretisation the one-parameter second-order explicit scheme on a
fractional-step method has been used for the convective and diffusive terms [8], while
for the pressure gradient term an implicit first-order scheme has been implemented.
This methodology has been previously used with accurate results for solving the flow
over bluff bodies with massive separation (see for instance [7]).

3 Results

All computed flows are around a NACA-0012 airfoil extended to include sharp
trailing edge. Solutions are obtained in a computational domain of dimensions
40C x 40C x 0.2 C with the leading edge of the airfoil placed at (0, 0, 0).The
boundary conditions at the inflow consist of a uniform velocity profile (u, v, w) =
(Uref cos AOA, Uyersin AOA, 0). As for the outflow boundary, a pressure-based
condition is imposed. No-slip conditions on the airfoil surface are prescribed. Peri-
odic boundary conditions are used in the spanwise direction.

Flow around an airfoil is mostly laminar with the exception of a zone close to the
surface of the airfoil (suction side) and in the wake of it. When performing DNS,
it must be ensured that the grid size is enough to resolve the smallest flow scales
well in the turbulent zones. Furthermore, within laminar zones boundary layer must
be also well-resolved. Taking into account that the accuracy of the results is highly
grid-dependent, specially in the region of the separated shear-layer where transition
to turbulence occurs, care must be taken when the computational grid is constructed.
Another critical region is the near wake of the airfoil, where a poor grid resolu-
tion may cause notable upstream flow distortions. With these criteria, more control
volumes have been clustered in these zones. Although the grids used are unstruc-
tured, they have been constructed as uniform as possible in the regions of interest.
Thus, simulations have been performed on different grids depending on the AoA:
263522 x 96 planes (~25.3 million CVs) for AOA = 5°; 280876 x 96 planes (~27
million CVs) for AOA = 8° and 381762 x 128 planes (~48.9 million CVs) for
AOA =9.25° and 12°.

3.1 Instantaneous Flow Structures

In order to gain insight into the coherent structures developed in the separated zone,
the Q-criterion proposed by Hunt et al. [3] has been used. Q iso-surface plots are
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Fig. 1 Visualisation of the instantaneous vortical structures on the suction side of the airfoil by
means of Q-iso-surfaces; Q = 30 coloured by the velocity magnitude

depicted in Fig. 1. A first inspection of the figure reveals the large quantity of small
scales in the separated zone. In fact as the AOA increases one can note how this region
is broadened due to the increase of the adverse pressure gradient. At all AOAs, the
flow separates laminarly from the airfoil surface near the leading edge, as can be
inferred from the two-dimensional shear-layer. Vortex breakdown occurs at the end
of the laminar shear-layer as a consequence of the instabilities developed by the
action of a Kelvin-Helmholtz mechanism (see Fig.2). The velocity field which grow
in magnitude as the distance from the leading edge increases and eventually causes
shear layer to roll-up and undergo transition to turbulent flow. For instance, if the
flow at AOA = 12° is inspected, these instabilities can be seen at the end of the
laminar shear-layer. Indeed, the increase in their amplitude until finally transition to
turbulence occurs is also shown in the figure. This mechanism of transition is similar

KH instabilities KH instabilities

...

KH instabilities KH instabilities

— o

Von Karman vortices Von Karman vortices

Fig. 2 Instantaneous pressure contours for top left AOA = 5°, top right AOA = 8°, bottom left
AOA = 9.25° and bottom right AOA = 12°
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to that observed in shear-layers developed in other bluff bodies such as the flow past
a circular cylinder (see for instance [5]) or the flow past a sphere [7].

A close-up of the developing flow structures in the separated shear-layer is
shown in Fig. 2 by means of pressure and vorticity isocontours projected into a two-
dimensional plane. The extension of the separated zone increases with the AOA.
For the lower A O As after transition to turbulence, the flow reattaches to the airfoil
surface, while at the two largest A O As, the flow fails to reattach and a large detached
zone origins within the suction side. Kelvin-Helmholtz instabilities appear as small
vortices in the pressure field at all AOAs. In fact, at AOA = 12°, trailing edge
vortices enter the suction side and interact with those developed at the leading edge
to form a pattern similar to a von Karman like vortex street (not shown here), which
resembles that of a circular cylinder.

According with Huang and Lin [2] observations of the flow past a NACA(0012
airfoil at low-to-moderate Reynolds numbers, the way vortices are shed into the wake
present four characteristics modes: laminar, subcritical, transitional and supercritical.
In this characterisation, the subcritical mode corresponds with a vortex shedding
process where turbulent fluctuations due to upstream instabilities are superimposed,
in the transitional mode vortices shed are irregular and without coherence, forming
a disorganised wake. They did not detect any vortex shedding in this regime. On
the other hand, in the supercritical mode, the flow is coherent and turbulent vortex
shedding is re-established. Following Huang and Lin classification, at AOA = 5°
the flow is in the subcritical mode, at AOA = 8° and 9.25° the wake mode should
correspond to the transitional one, whereas at AOA = 12° the supercritical mode
should be detected. In fact, from the inspection of time series at x/C = 1.2; y/C =
0.04 (see Fig. 3), stream-wise velocity exhibits an organised behaviour just disturbed
by upstream fluctuations of the flow at AOA = 5°, while at AOA = 8° and 9.25°
the loss of coherence in the signal, typical of the transitional regime can be observed.
At AOA = 12°, the stream-wise signal is highly coherent which agrees well with
Huang and Lin’s supercritical mode.

3.2 Mean Aerodynamic Coefficients

The pressure distribution on the airfoil surface obtained at all AOAs is plotted in
Fig.4 (left). In addition, the mean skin friction distribution is given in Fig. 4 (right).
Near the leading edge, the pressure gradient causes separation of the boundary layer.
This separation point moves towards the leading edge with the increase in the AOA
(see also Fig.4). When comparing the pressure distribution at the larger AOAs with
that obtained at pre-stall angles of AOA = 5° and 8°, a strong decrease in the
suction pressure peak near the leading edge, which is typical of stalled airfoils, can
be observed. The pressure profile at AO A = 9.25° exhibits a plateau after the suction
peak and a further gradual pressure recovery until reaching the trailing edge. This
behaviour is quite different of pre-stall angles in which there is a sudden recovery
of the suction pressure. Indeed, at AOA = 9.25° pressure behaviour is halfway
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Fig. 3 Stream-wise velocity time series for top left AOA = 5°, top right AO A = 8°, bottom left
AOA = 9.25° and bottom right AOA = 12°
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Fig. 4 Left Mean pressure coefficient distribution; Right Mean skin friction distribution

from the profile obtained in flows with laminar separation bubble and flows with
full separation (e.g. AOA = 12°). A similar pressure distribution was obtained by
Rinoie and Takemura [6] at Re = 1.3 x 107 and AOA = 11.5°-12°, just after stall.
At AOA = 12° a much flatter profile is observed, which is typical of fully stalled
airfoils. Near the trailing edge a slight depression is also observed. This is due to the
vortex entrainment produced by the formation of a much wider wake in the detached
zone and the shedding of vortices at the trailing edge (see Sect. 3.1). As for the mean
skin friction distribution on the suction side of the airfoil, it is in correspondence with
the pressure profile measured. For the larger AOAs, a large reversed flow forming
a long bubble in the upper surface is observed. For AOA = 12°, there is a small
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recirculation near the leading edge and underneath the large recirculation zone. It
is between x/C = 0.127 and x/C = 0.245. The broad recirculation region at this
AOA closes near the trailing edge at x/C = 0.954.

4 Conclusions

In the present work, the flow past a NACAO0012 airfoil at a low-to-moderate Reynolds
number of 50000 has been studied. Depending on the AOA, the flow separates form-
ing a laminar separation bubble (AO A = 5°, 8°) with further reattachment to the air-
foil surface or fails to reattach forming a large separated zone (AO A = 9.25°, 12°).
It has been observed that the separated flow is slightly different depending on the
AOA. Indeed, coherent structures identified have shown that, in agreement with
the experimental observations, at AOA = 5° the flow is in the subcritical mode,
at AOA = 8° and 9.25° the wake mode should correspond to the transitional one,
whereas at AO A = 12° the supercritical mode is detected. The pressure and skin fric-
tion distributions have also been evaluated. Pressure distribution at the larger AOAs
exhibits a strong decrease in the suction pressure peak near the leading edge, if com-
pared with that obtained at pre-stall angles of AOA = 5° and 8°. At AOA = 9.25°,
the pressure exhibits a plateau after the suction peak and a further gradual recovery
until reaching the trailing edge. This compares well to experimental observations
measured just after stall.
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Large-Eddy Simulation of a Shallow
Turbulent Jet

R. Mullyadzhanov, B. Ilyushin, M. Hadziabdi¢
and K. Hanjali¢

1 Introduction

Turbulent shallow jets discharged into ambient fluid of much larger spanwise and
streamwise dimensions can be considered as a paradigm of effluent discharges into
shallow lakes, rivers, and coastal waters as well as large-scale geophysical flows in
the atmosphere and oceans. It is also a generic configuration for a number of cooling
devices encountered in various industries. However, because of a large disparity
between the small fluid thickness and much larger width and length of the receiving
fluid, the flow contains interesting physics as the unsteady large-scale structures tend
to remain basically two-dimensional. The small lateral dimension inhibits the natural
vortex stretching, thus far blocking the natural down-scale energy cascade making
room for small scales to exert feedback on the large-scale quasi-two-dimensional
motion. If the flow is bounded by narrowly-spaced solid walls on both sides, the wall
impermeability and viscous damping exert additional effects that influence the vortex
and turbulence dynamics. The characteristic feature of the far-field in such flows
reported by several researchers is the dominant two-dimensional large-amplitude
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Fig. 1 Flow geometry and solution domain (streamwise and spanwise dimensions of receiving
tank are not in scale)

quasi-periodic motion, which gives it the appearance of a meandering jet (e.g. [3]).
Experiments (e.g. [3, 6, 10, 12]) indeed showed that the flow is strongly unsteady
despite the steady inflow and strong wall damping, but the effects depend on the ratio
of the jet slot height H and its spanwise width B.

We report on large-eddy-simulation (LES) of a turbulent plane jet discharged
from a rectangular slot H x B into an open-ended wall-bounded container having
the same flow depth H as the jet, but much larger width W and length L, Fig. 1. This
configuration with H <« B was selected because it mimics more closely the typical
real-life situations of environmental effluent discharge (B/H > 4) in contrast to the
cases with H > B or H > B considered in most of the earlier studies reported in
the literature. The aim of the work is to gather information from LES about the flow
and turbulence dynamics in general, and especially on the interaction and energy
transfer between different scales of turbulence.

2 Computational Details and Flow Characteristics

The LES is performed using the finite-volume computational code T-FlowS, with
the cell-centred collocation grid structure. We solve the equations for the filtered
incompressible velocity field u;, where the overbar denotes the low-pass filter:

Oty + 9 (Wi ;) = —0;p + voTu; — 0,7ij, (1)
811 =0, @)

where P is the (modified) pressure, v is the kinematic viscosity. The subgrid-scale
stress tensor 7;; = u;u; —u;u j is modelled using the dynamic Smagorinsky model. A
fully implicit three-level time scheme is used for time-marching, while the diffusion
and convection terms in the momentum equations are discretized by the second-
order central-differencing scheme. The velocity and pressure fields are coupled by
the iterative pressure correction algorithm SIMPLE. The computations have been



Large-Eddy Simulation of a Shallow Turbulent Jet 235

performed for the Reynolds number Re = U, H /v = 10*, where U, is the bulk
velocity in the slot (duct) flow. The convective outflow condition is used at the end of
the domain, while the no-slip condition is applied for all walls. The inflow channel
(20H x 10H x H) is meshed with Ny x N, x N, = 220 x 72 x 190 hexahedral
cells in streamwise (x), wall-normal (y), and spanwise (z) directions respectively.
The mesh of the receiving volume consists of about 15 mln cells (336 x 72 x 622).
A velocity profile is extracted every time step from the precursor simulation of a
duct flow (10H x 10H x H, Ny x Ny x N; = 200 x 72 x 190) with periodic
streamwise conditions and imposed as the inflow condition. The mesh is clustered
towards the walls and within the mixing layers with an increment <5 %. In the duct
cell sizes in wall units near the wall are AxT = 23.1, yfr = 1.49, Azt = 91, thus
satisfying the recommended criteria, apart from Az™, which was expected to be of
little importance for our analysis. The value for v,/v in the mixing layer is less than
4, where v; is the turbulent viscosity defined by the dynamic Smagorinsky model.

The computated results were compared with the PIV data of [1] (not shown here
because of space limitation) obtained in a configuration of the same geometry and
flow parameters. Admittedly the inflow into the experimental duct was generated by
a matrix of small jets issuing through holes in a pipe wall placed across the flow
at a distance of about 7B upstream from the inlet, which produces much higher
inflow turbulence than generated numerically by imposing periodic conditions. This
led to a slower decay of the computed axial velocity downstream compared to the
experiments. However, both sets of data exhibit linear decay.

Following [7], we consider a time correlation function R(t) between two points
of the fixed x coordinate at opposite sides of the jet to detect the meandering motion.
Figure 2 suggests that the Strouhal number Sty = fH/ U, is around 1072, where
f = t~!is the frequency of the meandering. However, using B = 10H for the
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scaling of St we obtain Stp = 10!, which agrees well with St = 0.07 measured
in [3, 10], thus supporting the earlier findings that B (or the half-width of the jet) is
the proper scaling length.

3 Energy Transfer Analysis

A strictly two-dimensional turbulence may exhibit two inertial ranges, with the
isotropic energy spectrum E (k) oc £2/3k /3 at small wavenumbers and E (k) o
n*/3k =3 at larger wavenumbers «, where ¢ and 7 denote the constant energy and
enstrophy flux respectively [9]. The same spectral distributions have been detected in
atmospheric wind [2], but also in some quasi-two-dimensional laboratory flows such
as shallow meandering jets [1, 3, 10], but with interchanged wavenumber ranges, i.e.
the “—3” distribution at low and “—5/3” at higher wavenumbers. The consequence
of the constant enstrophy flux in the “—3” range is the upscale (inverse) energy
transfer which feeds into the large-scale meandering vortices, as manifested in their
continuous growth as they move downstream. The probable source of energy is the
instability of the meandering jet.

In this section we attempt to identify this inverse energy transfer from the LES
results. Despite 15 mln cells, the mesh resolution in the central zone seems just
sufficient to capture only the “—3” range, but not the “—5/3” one, Fig. 3. Nevertheless,
the obtained spectra permit still to detect the inverse transfer, as shown below.

The technique described in [5] is usually used to study the energy transfer among
scales in spectral space via the Fourier transforms. However, it is limited to the flows
with homogeneous directions. The averaged equations relating the second-order to

Fig. 3 Normalised energy
spectra of axial velocity at
x =49H; 92H; and 110H
(bottom to up). For clarity,
the two bottom curves are
shifted downwards by one
decade each
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the third-order structure function derived in [8] represent a generalization of the
Kolmogorov equation. In [8, 13] the authors studied a channel flow using DNS and
showed that the buffer layer provides the inverse energy transfer. This methodology
requires time-averaging and, as a consequence, abundant reliable statistics.

In the present geometry no periodic directions are available, which poses a prob-
lem of detecting the energy transfer via correct averaging. Instead of working with
averaged quantities we analyze the flow using instantaneous fields. We introduce an
additional filtering following the ideas described in [4]. Providing A is the charac-
teristic value of the grid, we introduce a new scale A > A. Filtering equation (1) on
this new scale and multiplying it by #, ui, we obtain an equation for kinetic energy of
motion K = u]u]/2 for scales larger than A:

3,]2 + 0 (kﬁ/ +§ﬁ ﬁ,’gij —ﬁ,'(f,'j + T,j)) = (7 + Ti./)S,’j — 21)5','./'5',"/,(3)

where §;; is the strain-rate tensor and f} j = ujuj — ﬁiﬁ ; is introduced for conve-
nience. The first term on the right-hand side of the equation

(Tij + Tip)Sij = —11 )

corresponds to the energy transfer between scales smaller and larger than A. Note that
this representation of source terms is Galilean invariant. If IT < 0, the energy moves
from scales less than A to larger ones, and vice versaif I7 > 0.In this work additional
filtering on various A scales is made in the finite-volume sense. The averaging over
neighboring cells is performed where only neighbors in y and z are taken into account.
Figure 3 show A (black line) and A (a set of colour lines) at x = 92H as vertical
dashes. These frequencies f; < fx are computed as follows: fo = Uy/A, where
U, is the mean axial velocity at that point, A = (A)zc + A% + Ag)l/2 and Ay, Ay,
and A, are the cell size in the corresponding direction.

Figure 4 shows instantaneous vector and pressure fields together with IT contours
characterizing local energy transfer between turbulent scales. Pressure minima iden-
tify large-scale growing vortices due to the meandering of the jet. At some distance
downstream several areas with IT < 0 are revealed. These areas happen to be inside
(and around) quasi-two-dimensional vortices. Note that varying A blue areas do not
change their positions downstream, while upstream they move corresponding to the
common backscatter. IT represents the transfer of energy through the particular scale
defined by A. According to the spectral cascade ideas, the presented analysis sug-
gests that the energy goes from smaller to larger scales once the “—3”-slope appears
in this particular situation.
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ZIH ZIiH ZI/H ZIH

Fig.4 Snapshotofinstantaneous velocity vectors and pressure fieldat y = H /2 (dark low pressure)
together with contours of I for A = 1.08A, 1.4A, and 1.84A. Red IT > 0, blue IT < 0

4 Conclusions

Large-eddy simulation of a turbulent shallow jet issuing from a plane channel into a
much larger wall-bounded receiver of the same depth reveals meandering large-scale
quasi-two-dimensional vortices growing on both sides of the jet. The axial velocity
decreases linearly downstream in accordance with the experiment, though at a slower
rate due to less turbulent inflow fluid. The time correlations confirms the meandering
motion, with a Strouhal number Stz = 10~!, in agreement with the experimental
data in the literature.

The energy spectra of the axial velocity showed a consistent “—3” slope at lower
wavenumbers in the flow region where meandering motion appears indicating at an
inverse energy transfer. This has been confirmed by the analysis of energy transfer
of the LES data using several test filters larger than the computational cell size.
The approach reveals that the inverse energy transfer takes place inside (or around)
these quasi-two-dimensional vortices. We do not discuss any analogies with two-
dimensional turbulence on purpose since the nature of “—3” cascade in this case is
not yet clear.

It is interesting that the main physics of the flow is captured together with its
right meandering frequency using a relatively coarse mesh. A better resolution with
much finer mesh (10 times finer in the jet core) is required to identify the “—5/3"-
slope spectrum at large wavenumbers to study the interaction between broad range
of turbulent scales of the flow. These simulations are currently in progress together
with the application of some other energy transfer detection methods such as the
local scale-by-scale analysis [11] and interactions between the ensemble-averaged
and stochastic fields.
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Large Scale Motions in the Direct
Numerical Simulation of Turbulent
Pipe Flow

B.J. Boersma

1 Introduction

From an engineering point of view turbulent pipe flow is a very important flow
geometry, because of its wide range of technical applications. Although most engi-
neering problems involving pipe flows can be solved by simple engineering correla-
tions, there is still considerable fundamental interest in turbulent pipe flow. One of the
open questions is the scaling of turbulent statistics in pipe flows. For instance, in the
past it has been argued that the peak of the axial root mean square (rms) value of the
turbulent fluctuations is nearly constant and thus independent of the Reynolds num-
ber, see for instance [10]. However, the Princeton super pipe experiments indicate
that there is a strong dependence of the peak value of the axial rms on the Reynolds
number, see for instance [9, 12]. In a recent paper [5] by the Princeton group a new
calibration procedure has been used for the probe which is more accurate for low
values of the velocity, hence it should be more reliable near the curved pipe wall.
The new calibration gives results which are more or less in line with the observation
of [10]. Other issue in pipe flow are for instance, the scaling of the mean velocity
profile and the existence of very long meandering structures. Large scale meandering
structures have been observed in turbulent boundary layers [6] and channel flow [7].
They are also experimentally observed in pipe flows [11] however two point correla-
tions indicate that these structures are considerably longer in pipes than in channels.
Hutchins and Marusic [6] argue that these large scale structures can penetrate into
the near wall layer and can make a significant contribution to the kinetic energy in
this layer, even down to D/2 —r = 15 v/u,, (where u, is the friction velocity, D the
pipe diameter and v the kinematic viscosity). This is the location where in general
the peak of the turbulent kinetic energy is observed. Given the points above, and the
lack of accurate simulation data for pipe flow, it is in our view useful to perform well
resolved direct numerical simulations of pipe flow at high Reynolds numbers. These
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simulations will be especially useful for the study of near-wall quantities which are
very difficult to measure experimentally, especially at high Reynolds numbers where
distances to the wall become extremely small.

2 Numerical Method

In we will shortly describe the numerical method which has been used to solve these
equations.

It is assumed that the flow in the pipe is governed by the incompressible equations
for conservation of mass and momentum. The governing equations are normalized
with the friction velocity u, and the pipe diameter D. The friction velocity is by
definition equal to the square root of the wall friction divided by the fluids density, i.e.
us = +/7,,/p. The frictional Reynolds number can now be defined as Re, = uyD/v
and the bulk Reynolds number Rep, = (Up/uy) Re,, where Uy is the bulk velocity.

In the present study we have chosen, for a pseudo spectral method in the
streamwize and circumferential direction combined with a highly accurate 6th order
staggered compact finite difference method in the radial direction. This solution
strategy has been employed by us before [1, 2]. The non-linear terms in equation
momentum equation are reformulated in the skew symmetric form, with an additional
term involving the divergence du;/dx;:

8uiuj _ 1 (814,'14]' '3141' + 314])

= u;
8Xj 2 3)(]' ’ ax]' ax]'

This formulation is sometimes referred to as the Arakawa form [4].

The time integration of the momentum equation is split into two steps. In the first
step the velocity vector u” is integrated from ¢ to r + At with help of 3rd order
Adams-Bashforth method

23 16 5
*—":A[—"——"_l = n=2 0At3 1
u —u [12g ¢ tg D|toln (1)
where u* is the predicted value of the velocity vector at time level 7 + Az, with
At as the time step and g" 7/ denotes the spatial discretization of the terms in the
momentum equation at time ¢ = (n — j)Az. Subsequently the pressure at time level
n + 1/2 can be used to calculate the velocity at time level n + 1:

1
un+l — u* _ Atzvpn+1/2 (2)

So far the pressure at the time level n + 1/2 is unknown but it can be be computed
from a Poisson equation which can be derived by taking the divergence of Eq. (2),
and enforcing the divergence to zero at time level n 4+ 1, this gives:

V.out = %v. (Vp"+1/2) 3)
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After the solution of the pressure p”*1/2 from the Poisson equation, Eq.(3), the
final velocity u"*! can be computed with help of Eq. (2). It should be noted that for
a consistent formulation it is essential to use the form given by Eq.(3) and not to
replace the term on the right hand side of Eq.(3) by the Laplacian of p”"*1/2. The
algorithm above is well known and has with an explicit advection and diffusion step
in principle third order time accuracy for the velocity and second order time accuracy
for the pressure. The Poisson equation for the pressure is solved with help of Fourier
Transforms in the axial and circumferential direction. The compact discretization in
the radial directions results in matrix vector system with a full coefficient matrix.
This system is solved with an LU decomposition (routines dgetrf/dgetrs from the
LAPACK library). The L and U matrices are only calculated during the first time
step and stored in memory, for subsequent time steps the L and U are retrieved from
the memory and not recomputed to save computational time.

For an explicit method in a cylindrical system the time step is in general limited by
the gridspacing in the circumferential direction (r Af) close to the centerline where
r & 0.In previous studies this limitation is overcome by using in an implicit time inte-
gration method for the circumferential direction, see for instance [3] and [14]. Here
we have followed a different approach. Atr = 0 there is only a single Fourier mode in
the 6 direction, i.e. the velocity is single valued at the centerline. For larger values of r
there are multiple Fourier modes.To mimic this effect we have assumed that the num-
ber of Fourier modes in the circumferential direction depends on the radial position .
For r > r. we use the full Fourier expansion. In the region 0 < r < r. we gradually
reduce the number of modes from N atr. to 8 at r = Ar/2. A typical value of r, =
0.02D. It turned out that the results are insensitive to the value of r..The value of the
time step At is estimated from a Courant criterion and eventually set to a fixed value
of 20.2...1.0x 107* D /u,, depending on the Reynolds number and on the grid size.

3 Results

In this section we will present results obtained from three DNS of pipe flow, details
of the simulations are given in Table 1. The Reynolds number of the first simulations
corresponds with the Reynolds number of the experiments reported by [13]. In Fig. 1
we have compared the root mean square profiles from our DNS with the experimental
data reported by [13], furthermore we have also included the result of the DNS carried

Table 1 A list of the simulations, with some details

Re, N, x Ng x N, Nproc L, Repuix Ary,

1,383 206 x 896 x 2,560 512 18D 24,688 0.52r"
1,840 320 x 1200 x 3,360 3,840 18D 34,351 0.54r"
3,685 440 x 2400 x 7,200 12,009 18D 76,191 0.54r"

Re, denotes the frictional Reynolds number, N; the number of grid point in the i-direction, Npro¢
the number of CPUS used for the calculation, L, the domain length, Rep,x the bulk Reynolds
number and Ar,, the radial distance between the first grid point and the wall
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Fig. 1 The root mean square profiles obtained from the DNS with a Reynolds number of 24,600.
The symbols are the experimental results reported by [13] for the same Reynolds number. As a
further validation we have also included the DNS results of [14]
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Fig. 2 Left figure The mean velocity profiles for the three Reynolds numbers reported in Table 1.
Right figure The axial rms profiles for the Reynolds numbers reported in Table 1

out by [14]. Overall the agreement between DNS and experiment is very good. In
Fig.2 we present the mean axial velocity and rms profiles of the three simulations
reported in Table 1. The peak of the axial rms presented in Fig.2 shows a slight, but
noticeable, dependence on the Reynolds number. In Fig. 3 the Reynolds shear stress
and the flatness of the radial velocity component are reported. All profiles show a
slight dependence on the frictional Reynolds number.

In Fig. 4 a snapshot of the instantaneous axial velocity component as a function of
0 and z at a radial location r = D /4 is shown for two different Reynolds numbers.
It can clearly be observed that there is an increased small scale activity but also that
there are structures present with have an extend comparable or longer than the pipe
diameter. (The vertical extend of the picture is equal to 2D /4w ~ 1.5D).

In Fig.5 we show the autocorrelations of the axial velocity in the streamwize
direction as a function of r and z. For increasing Reynolds numbers we observe a
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Fig.3 Left figure The profiles of the Reynolds shear stress for the three Reynolds numbers reported
in Table 1. Right figure The flatness of the radial velocity for the Reynolds numbers reported in
Table 1.

Fig. 4 The instantaneous axial velocity component as a function of 6 and z at a radial location
r = D/4; top Re=24,600, bottom Re=75,009
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Fig.5S The autocorrelation of the streamwize velocity in the downstream direction versus the radial
coordinate; left Re=24,600, right Re=75,009
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longer area in the downstream direction were a noticeable non-zero correlation exits.
This is an indication that turbulent structures tend to become longer with increasing
Reynolds number. These long structures we observe for higher Reynolds numbers is
in agreement with experimental observations by [8, 11].

4 Conclusion

In this paper we have presented results of the DNS of turbulent pipe flow at bulk
Reynolds numbers of 24600, 35009 and 76009. The numerical model uses a combi-
nation of spectral and high order compact finite difference methods. The results agree
very well with existing experimental and numerical data. It is shown that the peak of
the axial root mean square profile is a weak function of the Reynolds number. It is
shown that large scale streamwize structures with a spatial extend of the order of the
pipe diameter exist for all studied Reynolds numbers. For the highest Reynolds num-
ber there is some indication that structures with a streamwize dimension exceeding
the pipe flow diameter exist.
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Turbulent Kinetic Energy Transport
in Oscillatory Pipe Flow

Claus Wagner and Daniel Feldmann

1 Introduction

Laminar as well as turbulent oscillatory pipe flows occur in many fields of biomedical
science and engineering. Pulmonary air flow and vascular blood flow are usually
laminar, because shear forces acting on the physiological system ought to be small.
However, frictional losses and shear stresses vary considerably with transition to tur-
bulence. This plays an important role in cases of e.g. artificial respiration or stenosis.
On the other hand, in piston engines and reciprocating thermal/chemical process
devices, turbulent or transitional oscillatory flows affect mixing properties, and also
mass and heat transfer. In contrast to the extensively investigated statistically steady
wall bounded shear flows, rather little work has been devoted to the onset, amplifi-
cation and decay of turbulence in pipe flows driven by an unsteady external force.
Experiments [1-3] indicate that transition to turbulence depends on only one para-
meter, i.e. Res ~ Re/Wo with a critical value of about 550, at least for Womersley
numbers Wo > 7. We perform direct numerical simulations (DNS) of oscillatory
pipe flows at several combinations of Re and Wo to extend the validity of this critical
value to higher Wo. To better understand the physical mechanisms involved during
decay and amplification of the turbulent flow, we further analyse the turbulent kinetic
energy distribution and its budgets terms.

2 Numerical Approach

We consider a Newtonian fluid confined by a straight pipe of diameter D and length
L. The fluid is driven in axial direction (z) by the time dependent pressure gradient
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P(1) = [0.0,0.(p)y]" = [o, 0, —4cos(%t>]T,where p=p+ e

according to Reynolds’ decomposition. Prime denotes the fluctuating part and angle
brackets the mean quantity averaged over equal oscillation phases. Normalisation and
the set of non-dimensional control parameters is given by the Womersley number
Wo = D/2./w/v and the friction Reynolds number Re; = u.D/v. Here, v =
27/ T is the forcing frequency, v the kinematic viscosity, and u the friction velocity
of a fully developed statistically steady turbulent pipe flow. Thus, the governing
equations read

V-u=0 and a,u+(u-V)u+vp’—RLeTAu=P(t) )

with u denoting the velocity vector, d; being the partial derivative with respect to time
t and V and A being the Nabla operator and the Laplacian, respectively. Equations (1)
and (2) are supplemented by periodic boundary conditions (BC) for u and p in the
homogeneous directions z and ¢ and no-slip and impermeability BC at »r = D/2
in the radial direction. They are directly solved by means of a fourth order accurate
finite volume method and advanced in time using a second order accurate leapfrog—
Euler time integration scheme. Further details on the numerical method are given in
Feldmann Wagner [5] and references therein. The initial flow field was taken from
a well correlated statistically steady turbulent pipe flow at Re; = 1,440 discussed
in [5]. The criterion < ﬁ(Reg/(k:)z,(p@)lM for the mean grid size leads to h=
{6.2;7.1; 5.7} for cases I to III based on the maximum turbulent dissipation rates
plotted in Fig. 3. Since the mean grid spacing varies from the wall to the axis between
06 <h" <10,13<h" <22,and0.6 < < 1.1, respectively, we conclude,
that the used grids are sufficiently fine to resolve all relevant length scales.

3 Computational Parameters and Flow Regimes

We focus on DNS results obtained for three combinations of Wo = {13, 26, 52} and
Re; = {1440, 5760, 11520}, resulting in different peak Reynolds numbers Re =
iD /v based on the maximum value of the respective bulk velocity (it(r))¢ within
0 <t < T. Here, ¢ symbolises averaging over N = 14 equal phases with t +nT /2
forn = {n € N : n < N}. The resulting parameter space in terms of Re and Wo is
shown in Fig. 1, where Res = 8ii/v = Re/ Wo+/1/2 is the Reynolds number based
on the Stokes layer thickness § = /2v/w. All flows denoted by circles laminarise
despite of high Re up to ~12,000. The stabilising effect of the oscillatory forcing
increases with Wo, at least beyond a certain value of about seven, in agreement with
findings from stability analysis [4] and experimental investigations [1-3].

Figure 2 presents time series of the applied forcing P(z), the predicted mean shear
stress at the wall (7)}); 4, and the axial velocity component u,(r,t) close to the
wall (r/D = 0.49) and near the center line (/D = 0.01). The time series of u,
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Fig. 2 Time series of the axial velocity component u.(r, t) close to the wall at /D = 0.49 and
close to the centre line at r/D = 0.01, the forcing P(¢), and the mean wall shear stress () ¢

reveal conditionally turbulent flows for all three parameter combinations, i.e. case
T at Wo = 13 and Re = 11,460, case Il at Wo = 26 and Re = 48,175, and
case IIl at Wo = 52 and Re = 48,250, respectively. For I and III, i.e. the two
slightly supercritical cases both at Res ~ 600, the near wall velocity characteristics
are similar. Fluctuations suddenly grow only at deceleration (DC), while they are
damped again during flow reversal (RV) and the following acceleration (AC) phase.
These turbulent bursts during DC are also reflected in the t,}; history. However, the
most conspicuous difference between I (lower Wo) and III (higher Wo) in this respect
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is that the AC phase is more stable for Wo = 13 despite of the similar Res, while
fluctuations in the near wall flow do not completely decay for higher Wo. Contrarily,
the u, history at the centre line is completely smooth for case III, while for case I
the core region is characterised by substantial velocity fluctuations throughout the
whole oscillation cycle.

For higher values of Reg, i.e. case II, the velocity time series reveal a completely
different behaviour without distinct bursts and strong velocity fluctuations at the
centre line. The turbulence intensity close to the wall and in the core region rather
increases during AC and decreases during DC analogously to the bulk flow with
laminarisation only during RV.

4 Turbulent Kinetic Energy

To shed light on the mechanisms leading to the different behaviour in decay and
amplification of turbulence in the oscillatory pipe flows discussed above, we analyse
the turbulent kinetic energy k* as well as the production and dissipation terms of its
transport equation, see e.g. [S]. During all oscillation phases, both flows at Res ~
600 develop a boundary layer with one major characteristic, which is typical for
wall-bounded shear flows. The turbulent kinetic energy profiles exhibit an obvious
maximum very close to the wall with a very steep decrease towards the wall (r* = 0)
and a moderate drop towards the pipe centre line. This can be seen from the radial k*
distribution for I and III, shown in Fig. 3. They reach the same maximum value for
similar Reg and thus the ratio of Re to Wo is the governing parameter defining equally
turbulent oscillatory pipe flows. However, due to the shorter oscillation phase in case
III, i.e. a four times higher Wo, the same amount of energy is produced in a shorter
period of time, as reflected by the four times higher production rate k, presented
in Fig. 3. For I and III, the turbulent kinetic energy monotonically decays from DC
via RV even until AC. The production term &} further confirms, that turbulence is
mostly generated when turbulent near-wall bursts occur during DC, cf. Fig. 2. During
RV, more energy is dissipated than produced at a dissipation rate k. even higher as
during AC. Furthermore, for Res ~ 600 the k. profile becomes negative in a small
annular region, where turbulent kinetic energy is transferred back to the mean flow,
see also [5]. Both phenomena in combination account for the rigorous laminarisation
during RV.

In contrast, for Res = 1,310 the turbulent kinetic energy decreases to the half
during RV and increases again during AC to about the same value as in DC, due to
the highest production rate & during AC. Case I is also different in such a way that
the turbulent kinetic energy is also rather high in most of the core region during DC,
characterised by a flat broad k* profile only showing a vague near-wall maximum.
While during AC the k* distribution clearly exhibits the above described typical shear
flow profile. The same typical shear flow behaviour is reflected by the k;* distribution
with a maximum dissipation at the wall and a distinct plateau during all oscillation
phases for Res = 1,310. The slightly supercritical cases I and III at Res ~ 600, on
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Res = 623; I1: Wo = 26, Res = 1310; and III: Wo = 52, Res = 656

the other hand, develop a second local dissipation maximum, which becomes more
pronounced in the k; profiles with ongoing laminarisation during RV and AC.

The wall distance r* = (1/2 — r) D/$ of the k* maxima are also the same for
similar Regs, when the length is scaled in Stokes layer thicknesses §. During DC
and AC, when the bulk flow is high, the £* maximum occurs closer to the wall for
higher Res. Vice versa, the energy maximum occurs closer to the wall for lower
Res during RV, when viscous effects dominate. Thus, the ratio of Re to Wo defines
the thickness of the annular region in terms of §, in which the oscillatory pipe flow
exhibits turbulent features, even though the thickness of this turbulent boundary layer
is strongly phase dependent. Also the budget terms shown in Fig. 3, reveal that the
wall distance of all the characteristics in the profiles, i.e. maxima, inflection points,
plateaus and so on, scale with Res. However, for decreasing Wo per definition the
Stokes layer becomes large compared to the pipe radius and thus the geometrical
constraint of the pipe wall gains importance. In case I turbulent near-wall structures
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evolve during DC and RV, penetrate farther towards the centre line, and thus span
almost the whole core region, cf. Fig.2. As a result, the turbulent kinetic energy is
rather high over most parts of the pipe radius and, more important, does not vanish
at the pipe axis for lower Wo. Whereas, in case III at higher Wo but equal Reg the k*
distribution reflect a high turbulent kinetic energy for »* < 9 and an almost laminar
flow over the second half of the pipe radius. As indicated before by the velocity time
series shown in Fig. 2, the turbulence is confined to a smaller (in terms of ») annular
region close to the wall, while the flow remains very smooth in the whole core region
for the highest Wo. The contribution of all other transport terms, i.e. the viscous,
turbulent, and pressure diffusion as well as the pressure strain, to the overall budget
is much lower. In principle, these terms reflect the typical shear flow mechanisms,
which are simply damped and amplified by the oscillatory forcing, and thus for the
sake of brevity not further discussed here.

5 Conclusions

Decay, amplification, and redistribution of turbulent kinetic energy in oscillatory
pipe flow were studied by means of DNS for various combinations of Re and Wo.
We found, that oscillatory flows at Res < 550 relaminarise when started from a
fully developed turbulent flow field despite of high Re. In very good agreement with
experiments [1-3], we confirm oscillatory flows at Res > 550 to be conditionally
turbulent.

However, we contradict [1] who stated that core flow remains stable for Res <
1,310. Our DNS results extend the validity of this experimentally determined critical
value up to Wo = 52 in the Re-Wo-space. Nevertheless, from the analysed turbulent
kinetic energy distributions we conclude that decay and amplification of turbulence in
oscillatory pipe flows rather depend on the combination of Re and Wo then on its ratio
(Res) alone. This is a significant difference to the case for the oscillating boundary
layer over a flat plate, which has been extensively studied by Spalart and Baldwin
[6] using DNS. Even if experiments have shown that, the transition to turbulence can
be characterised by only using Res, at least for Wo > 7, our study revealed that for
oscillatory pipe flow the additional geometrical constraint considerably affects the
decay and amplification of turbulence in the core flow.
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Large-Eddy Simulation of the Interaction
of Wall Jets with External Stream

I.Z. Naqavi and P.G. Tucker

1 Introduction

The jets issuing tangentially to a solid surface are called wall jets. Plane two
dimensional wall jets are the simplest and have been studied extensively [5]. The
wall jets are used in heat, mass and momentum transfer along the walls. A large part of
wall jet study is concerned with the search for the existence of self-similar parameters
[3, 13].

Bradshaw and Gee [1] made early fundamental studies on the wall jets with
an external stream. It was shown that for thin incoming boundary layer with no
wake, the jet shear layer can absorb the boundary layer in a short distance. However,
the presence of external stream results in the involvement of several parameters,
determining the evolution of the wall jet. These external parameters can be controlled
to produce the desired effects in the wall jets, depending on their application. The
two major applications of wall jets with external streams are cutback trailing edge
(TE) film cooling in gas turbines and the control of the boundary layers over high
lift bodies e.g. Coanda jets [9]. In both of these cases wall jets are interacting with
the external stream, however, the desired outcome of the interactions are completely
opposite. In case of TE thin film cooling a cold stream is introduced as a wall jet along
the trailing edge. The objective is to keep the external hot stream (combustion gases)
away from the wall and to avoid the mixing of the two streams as far downstream as
possible. For the Coanda jet a strong mixing of two streams is required to prevent
the boundary layer separation.

In case of TE film cooling major focus is the measurement and prediction of film-
cooling effectiveness of this flow. Martini and Schulz [7] performed measurements
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on scaled-up trailing edge model with internal structures for coolant slot. These
structures determine the turbulence character of incoming jet and have strong in-
fluence on the film cooling effectiveness. Recent LES of TE film cooling [10, 11]
for a series of blowing ratios (i.e. jet to free stream velocity ratio), in the rage of
0.35-1.4, showed large coherent structures shed from the plate separating the two
streams. These have dominant role in the heat transfer. The jet velocity ratio is usually
around 1.5 or less for TE film cooling. Whereas for Coanda jets based flow control
it is higher than 2.0 [9]. In previous studies the wake plate thickness separating the
two streams is also of the order of the slot height for wall jets. In this work a high
resolution LES is performed to study a geometrically simple model for wall jet with
external stream and a thin wake plate. Two different velocity ratios are considered.
The objective is to study the effect of the velocity ratios on the development of the
coherent structures in the near field and the development of the mean flow properties
downstream.

2 Problem Formulation and Validation

The interaction of wall jet with external stream is simulated with filtered conservation
of mass and momentum equations for incompressible flow. A finite volume code with
second order collocated descretization and semi-implicit time advancement scheme
is used. The subgrid-scale (SGS) stresses are modeled with Lagrangian-averaged
dynamic eddy-viscosity model [8].

In this study the blowing ratios U;/Ux of 0.75 and 2.30 are considered. The
U is free stream velocity of external incoming boundary layer and U; is the wall
jet bulk velocity. The domain is shown in the schematic Fig. 1. This case has been
studied experimentally by [4]. At the inlet plane of the computational domain, mean
streamwise velocity profiles for the wall-jet and boundary layer from the experiment
are used. A channel and a boundary layer flow simulation based on [6] are used to
generate time dependent turbulence fluctuations for inlet profiles. The slot height of
wall jet is h = 2.7675; and the thickness of the plate separating the two streams
(wake plate) is w = 0.126, h = 0.34983. The inlet Reynolds number based on
the displacement thickness & of external boundary layer is Resy = 2,776. The
Reynolds numbers for slot jet based on slot height are Re, = 5,760 and 17,700, for

Fig. 1 Schematic of the
domain for wall jet and
external stream
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Table. 1 Summary of the Grid Lx/h L}/l’l Lz/l’l NX NV NZ
domain and grid -
Coarse | 80.0 16.0 5.5 512 147 66

Fine 45.0 16.0 5.5 1,026 220 |130

U;j/Us = 0.75 and 2.30, respectively. Two different grids are used in this simulation
and their details are summarised in Table 1.

The maximum grid size for the fine grid is Ax < 47.0 and Az < 38.0 in wall
units. In the wall normal direction first grid point is y*© < 1.0. The mean flow
profiles and Reynolds stresses are compared with the experiments [4] at x = 104 in
Fig. 2. The simulations give same trends as in the experimental data for mean flow
and Reynolds stress. The mean velocity profiles for both jets are in good agreement
with the experimental data numerically. The higher velocity ratio jet simulation give
better agreement for Reynolds stresses (v'v')/U2, and (w'w')/UZ. However, the
peak (u'u’)/UZ2, and (u'v') /U2 are higher than the experimental values. This over-
prediction may be the outcome of the uncertainty at the inlet in the simulation and in
the hot-wire measurements. The Reynolds normal and shear stresses for U;/Uso =
0.75 jet are an order of magnitude smaller than U; /U, = 2.3 jet.
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Fig.2 Comparison of (u)/Usc, (u'u') /U2, (V'V} JUZ,, (w'w') /U2, and (u'v') /U2, profiles at x =
10 i with the experimental data [4]. Top U;/Ux = 0.75, bottom U; /U = 2.3: line simulation,
symbols experiment
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3 Results

In this work the interaction of a wall jet with the outer boundary layer is studied when
the separation between the two streams i.e. w is small. Previous studies, with larger
separation [9, 10], have shown the existence of large scale coherent structures in the
near wake region. Those determine the mixing of momentum and heat between the
wall jet and outer stream.

In current simulation various kind of vortical structures are involved. There are
streamwise near wall structures coming in from the incoming boundary layers and the
slot jet. Apart from these structures, the interaction of the boundary layer with a wall
jet generates further dynamic complexity, instability and more large scale structures.
The coherent structures are visualised through the isosurfaces of the second-invarient
of the velocity gradient tensor Q = —(9(u;)/9x;)(d{u;)/dx;). Figure3 shows the
coherent structures in the near wake region up to x = 4.0 h. The right frames in
the figure show the span wise vorticity at the plane z = 0.0 &, which give the foot
prints of the structures presented through the Q isosurfaces. The span wise structures
generated for the low velocity ratio jet lose the coherence very quickly. However, the
foot prints in the span wise vorticity contours show that structures are similar to von-
Karman type shed vortices in the wake region. The high velocity ratio jet presents
a very different picture. The structures appear like roll structures, resulting from the
jet shear layer Kelvin-Helmbholtz instability. At higher wall jet velocity, shear layer
on the jet side is strong and it drags the shear layer from the boundary layer side of
the wake. The roll structures interact and merge with each other downstream.

This vortical structure evolution in the near field is also confirmed by the mean
flow in the wake as shown in Fig.4. The streamlines for low velocity ratio jet gives
a counter rotating vortex pair in the wake, which is the average outcome of von-
Karman type structures. The high velocity ratio jet gives a single recirculation lobe
in the wake. This single lobe results from the drag of the boundary layer flow along
with the high velocity jet shear layer.

Figure 5 plots the streamwise velocity profiles for the two jets at various stream-
wise locations. To show the development of the flow in the farfield region, wall
co-ordinates are used. Standard log-law profile 2.51log(y™*) + 5.0 and linear profile
(u)™ = y* in the near wall viscous sub-layer region are also added for the compari-
son. The profile for the high velocity ratio jet, close to the inlet, at x = 10.0 , shows
a sharp peak in velocity. Away from the wall, this reduces to outer stream velocity.
Around y*t = 1000.0 there is a narrow wake region. As flow moves downstream
the sharp peak in the velocity profile reduces. The profile becomes flatter with jet
spreading. The profiles generally resemble those for a plane wall jet, but are altered
by the presence of the external stream. The low velocity ratio jet (u)™* profile at
x = 10.0h is quite different to the high velocity ratio. The peak in the jet region
is lower and the wake is wider extending in the range of y*© = 200.0 — 1000.0.
The wake persist up to x = 20h. A comparison with log-law profile suggests that
the velocity profiles for low velocity ratio jet are shifting towards the log-law in the
farfield region i.e. developing towards a boundary layer. However there is an offset
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Fig.3 Coherent structures in the near field region of wall jet and boundary layer interaction, using
Q criteria. Top U; /U = 0.75 and bottom U;/Ux = 2.30. Isosurfaces are coloured with span
wise vorticity §2,
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Fig. 4 Mean stream wise velocity contours and streamlines in the wake region near inlet plane. a
Uj/Uxx =0.75and b U /U = 2.30

due to the low value of wall friction coefficient. The mean velocity profiles for both
jets in the near wall region are in agreement with the (u)™ = y* up to y*© = 8.0.
Hence, in this region the behaviour is identical to that for a classical boundary layer.
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Fig.5 Mean (u) T profiles at various stream wise location, U; /Us = 0.75 (dashdotdot),U; /U =
2.30 (solid), log-law (dash) and y* = (u)* (solid circle)

The U;/Us = 2.3 jet has similarities with the plane wall jet. At large distance
downstream U /Uy = 0.75 jet develops towards a turbulent boundary layer. The
Reynolds stress profiles are compared with the plane wall jet measurements [2] and
also with turbulent boundary layer data of [12] in Fig.6. The Reynolds and shear
stress profiles for low velocity ratio jet in the farfield attains the boundary layer
behaviour. The stresses for high velocity ratio jet in the shear layer region are close
to wall jet measured values. The u}, . for high velocity ratio jet has two peaks one in
shear layer region and one near the wall. The low velocity ratio jet has near wall u}!, |
much higher than shear layer region. The shear stress profiles for high velocity ratio
jet follow wall jet behaviour. For low velocity ratio jet (u'v')* peak in shear layer
region is in opposite direction from high velocity ratio jet. It is the consequence of

shedding type structures.

4 Conclusions and Future Work

The near field coherent structures for wall jet and external boundary layer interaction
with a thin wake plate are different from previous studies [9—11]. The low velocity
ratio jet results in shedding type von-Karman structures, whereas high velocity ratio
jet give rise to Kelvin-Helmholtz instability and roll structures. The low velocity ratio
jet develops towards a zero-pressure gradient boundary layer in the farfield. High
velocity ratio jet behaves like plane wall jet. The velocity and Reynolds stress profiles
in the near wall region scaled with inner or wall variables. In future a comprehensive
study with a wider range of velocity ratios will be performed and detailed scaling
behaviour and heat transfer properties near wall will be discussed.
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Turbulent Boundary Layers in Long
Computational Domains

G. Eitel-Amor, R. Orlii and P. Schlatter

1 Introduction and Numerical Setup

Wall-bounded turbulence emerges e.g. along the surface of moving ships and
airplanes or in pipelines. The prediction of skin friction and drag is directly related to
fuel consumption or the power needed to transport gases through pipelines, thereby
emphasizing the practical relevance of wall turbulence. Canonical wall-bounded
flows are the flat-plate boundary layer, pipe and channel flows. While these flows are
in essence theoretical abstractions and do not appear as such in reality it is necessary
to study them separately by means of experiments, simulations or theory, since they
constitute basic building blocks of more complete, i.e. real, flows.

Simulations of turbulent flows are particularly helpful in identifying physical
processes occurring in near-wall turbulence, as the whole velocity field is available
for analysis. In particular, higher Reynolds numbers (Re) are necessary to obtain
a clear separation of scales related to the near-wall turbulence cycle (i.e. scaling
in wall units) and the mechanisms and structures related to the outer region of the
boundary layer, i.e. living in the logarithmic region and beyond. However, it remains
crucial to properly validate simulation data with corresponding experimental results
to ascertain that the turbulence at high Re has reached its developed state.

In order to contribute to the available simulation data, a new numerical simulation
of a spatially evolving turbulent boundary layers is discussed, reaching up to a high
Re for wall-resolved simulations. To be more precise, we present recent numerical
results obtained from highly resolved large-eddy simulations (LES) of an incom-
pressible, zero-pressure gradient, turbulent boundary layer flow up to Rey = 8,300.
The obtained statistics are compared with numerical and experimental data from
the literature, in particular with former direct numerical simulations (DNS) for
Rey < 4,300 [9] and with experimental data from hot-wire measurements [7]. Fur-
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thermore, the extended Re range allows for an examination of predicted asymptotic
behaviour and provides insight to scale separation and amplitude modulation effects.

Similar as in experiments, the flow enters the domain as an unperturbed laminar
Blasius flow, which is then tripped to transition and turbulence via a trip forcing [9],
thereby avoiding the use of a recycling/rescaling technique to generate turbulent
unsteady inflow conditions. The flow response to tripping is most efficient when
performed at lower Re, i.e. close to the leading edge of the plate. Therefore, our
simulation technique requires very long computational domains, essentially repro-
ducing a wind-tunnel setup. In the present case, the domain starts at a low (laminar)
Rey = 180, directly followed by the tripping location. Transition to turbulence is
assumed to be complete by Rey =~ 700, and a state independent of initial conditions
is reached at Rey ~ 1,500. The outflow of our domain is located at the (computa-
tionally) very high Rey = 8,500. In this single long domain, the boundary layer is
allowed to develop naturally from the tripping location to the higher Re.

However, such domains require a large number of grid points: We employ a grid
with a total of 13,824 x 513 x 1, 152 collocation points in physical space in the
streamwise, wall-normal and spanwise directions. As in our previous studies [9], the
spectral code SIMSON is employed, giving very high accuracy and dispersion prop-
erties, coupled with efficient massive parallelisation. The grid resolution in viscous
units is Ax™ = 18 and AzT = 8 which is good, but not quite as high as for proper
DNS. Therefore, the ADM-RT subgrid-scale model is employed, adding some lim-
ited dissipation only at the smallest scales improving the accuracy of our results. Note
that the chosen resolution in this study corresponds to highly resolved LES, and there
are simulations in the literature with poorer resolution that are denoted DNS. The
simulation was run for sufficiently long time to ascertain statistical convergence of
statistics, including one- and two-dimensional spectra. Efficient parallelisation was
employed, allowing to use 4,096 cores on an Infiniband cluster.

2 Results

In the following analysis, the free-stream velocity UZJ and the local boundary layer
thickness Re; = 8;'9 are re-evaluated using a composite-profile fit proposed by
Nickels [5]. Based on these parameters, integral values like the shape factor Hi,
are computed by evaluating the integrals from the wall up to 8;9. This procedure
eases comparability with other numerical and experimental studies, where vary-
ing boundary conditions or box heights may aggravate a consistent definition of
measured quantities [9]. The relation between the consistently determined, i.e. box-
compensated, Reynolds numbers Reg and Re; is shown in Fig. 1. For comparison,
the same quantities were determined using U™ at the upper domain boundary as
free-stream velocity, illustrating the effect of the employed compensation. The val-
ues agree very well with the DNS of Schlatter and Orlii [9], and from a power-law
fit (Re; = a Reé’) the constants a = 0.596 and b = 0.923 are obtained.
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Fig. 1 Relation between 2500

Reynolds numbers Reg and

Re; = 6;'9. Filled squares 2000

box-compensated LES data;

open squares uncompensated 1500

LES data; circles ép ””””””” :
box-compensated DNS data 1000 |
from Schlatter and Orlii [9]; |
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Fig. 2 Mean streamwise
velocity profiles for
Reg=2500, 3600, 5600, and
7500. Color lines present
LES; gray line log-law. Inset
magnifies wake region and
includes experimental data
from Orlii [7] (symbols)

The present results show good agreement with experiments for the mean velocity
profile as apparent from Fig. 2. The data follows the expected linear and logarithmic
behaviour in the viscous sublayer and overlap region, respectively. Especially in the
wake region, where discrepancies usually show up due to incomplete development
of the flow, the agreement is convincing. The log-law indicator function & closely
follows the correlation proposed by Monkewitz et al. [4] as shown in Fig. 3. A plateau
in & indicating a definite value of « is though not yet reached.

The aforementioned agreement also extends to the variance profile (uu) shown for
Rey = 2,500 in Fig. 4. The profile matches the experimental data in the outer region
and the DNS data is reproduced accurately with a slight attenuation in the buffer layer.
This underestimation can be traced back to spanwise filtering effects as exemplified
in Fig.4 by z-filtered DNS data (Az* = 8) which collapses almost with the LES
result. It appears feasible to use a correction for under-resolved measurements or
simulations as proposed by Segalini et al. [10]. The near-wall peak exhibits the
expected logarithmic increase with increasing Re due to outer layer influences. In
Fig.5 the peak values are compared with data from several numerical studies. A fit
to the present data yields (uu) = 2.307 + 0.799 In(Re;).

ax
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Fig. 3 Log-law indicator
function & = y*‘(jily]—r. Color
lines present LES for

Reg = 1400, 2500, 4400,
6400, and 8200; gray line
Monkewitz et al. [4]. Dashed
lines in inset indicate

k =0.38, 0.4, and 0.42

Fig. 4 Comparison of
streamwise velocity
fluctuations at Reg = 2,500.
Dashed line DNS [9]; solid
line present LES; dot-dashed
line z-filtered DNS data;
symbols experimental

data [7]

Fig. 5 Growth of (uu) .
Squares present LES and fit
(solid line); open circles
DNS [9]; filled circles
z-filtered DNS; diamonds
DNS from Ref. [3]; dashed
line fit to DNS from Ref. [8]
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The skin-friction coefficient ¢ s and shape factor Hi, are compared with literature
data in Figs.6 and 7, respectively, showing a very good agreement. Interestingly,
the power-law behaviour for ¢y at Rey < 2,500 is superseded by the logarith-
mic Coles-Fernholz relation at higher Re [1], while Hy> follows the correlation
by Chauhan et al. [1]. Considering the fluctuations of the wall-pressure p,, and the
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Fig. 6 Skin friction
coefficient c . Squares
present LES; circles

DNS [9]; x experiments [7];
solid/dot-dashed line
Coles-Fernholz relation [1]
with 5 % tolerances;
dashed line low-Re
power-law relation

Fig. 7 Shape factor
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wall-shear stress 7, it is found that the LES follows closely the trends predicted
by DNS studies (cf. Figs.8 and 9). A slight systematic over-prediction is, however,
observed, which is contradictory to the mentioned filtering effect; the source remains

to be clarified.

The downstream development of characteristic spanwise scales is illustrated in
Fig. 10 through the spanwise two-point correlation of the wall-shear stress t,,. For
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Fig. 9 RMS value of 0.5
wall-shear stress t,,. Squares *
present LES; circles
DNS [9]; asterisks DNS by 0.45 . |
Wu and Moin [11]; plus ' el
signs DNS by Jimenez et
al. [3]; line correlation by
Schlatter and Orlii [9]:

7, = 0.298 + 0.018 Re;
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Fig. 10 Spanwise two-point
correlation R;; of wall-shear
stress 1, from the present
LES. Spanwise axis is scaled
by 2Az to show the spanwise
pattern spacing. Solid line
2Az = 0.85899, dashed line
2477 =120

2A 7

Rey > 2,000, two distinct minima can be observed. The first appears at a spacing of
about 120 wall units and is related to the near-wall streak spacing, while the second
scales with 0.85899, thereby evincing the influence of outer-layer structures on t,,,.
Pre-multiplied spanwise energy spectra for the streamwise velocity are shown
in Fig. 11 for Rey = 2,500 and Reg = 8,200. Comparing both Re, an invariant
maximum of the spectral energy distribution is evidenced at the wavelength A1 ~
120 corresponding to the near-wall streaks. A second peak at 1, ~ 899 becomes more
prominent with increasing Re and is the source for the amplitude modulation of the
small-scales near the wall, which is responsible for the aforementioned increase of
(ut) .- Furthermore, the pre-multiplied spectrum at y*© = 15 shows a plateau for the
higher Re; equivalent to a k- ! dependence. This proves the existence of an overlap
region where both inner and outer scaling are valid. A clear observation of a k- !
region has so far only been reported in an experiment by Nickels et al. [6] and very
recently by Pirozzoli and Bernardini in a DNS of a supersonic boundary layer [8].
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Fig. 11 Spanwise power-spectral density of streamwise velocity at Rey = 2,200 and 8,200;
boundary layer thickness g9 (solid lines) and y* = 15 (dashed line)

3 Conclusions

A new highly resolved large-eddy simulation was presented for a spatially developing
turbulent boundary layer, covering in a single domain the range Reg = 180-8,300.
Turbulence statistics and integral values are in close agreement with experiments and
other simulations. The evolution of the large outer-layer structures was examined
using spectra and a k- ! range was observed for the streamwise velocity.
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Investigation of Dual-Source Plume
Interaction in a Turbulent Wall-Bounded
Shear Layer

Shahin N. Oskouie, Bing-Chen Wang and Eugene Yee

1 Introduction

An understanding of mixing and dispersion rates and the characterization of
concentration fluctuations of a passive scalar in a turbulent flow is relevant for a broad
range of scientific and engineering applications of both practical and fundamental
interest. In consequence, a number of theoretical, numerical and experimental studies
of concentration fluctuations in plumes dispersing in turbulent flows have been under-
taken in recent years. Most of these studies have focussed on the plume concentration
statistics from a single source release. Unfortunately, the interaction of passive scalars
emitted from two (or more) sources and the nature of the concomitant joint concen-
tration statistics arising from this interaction has received considerably less attention.

In this regard, Warhaft [1] extended his previous work on scalar mixing in grid
turbulence to investigate the interference of passive thermal wakes generated by two
thermal cross-stream line sources. He determined the correlation coefficient between
the two thermal wakes at eight downstream positions for ten different line source
separations. Tong and Warhaft [2] investigated the mixing characteristics of temper-
ature fluctuations produced by two fine annular sources placed axisymmetrically at
a given downstream position in a turbulent jet. Vrieling and Nieuwstadt [3] applied
direct numerical simulation (DNS) to study the turbulent dispersion from two line
sources in a plane channel flow. Costa-Patry and Mydlarski [4] conducted labora-
tory studies of the interaction of two passive scalars generated by line sources in a
fully-developed high-aspect-ratio turbulent channel flow.
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In spite of these experimental and numerical investigations, high-quality data sets
of concentration fluctuation statistics arising from the interaction of two passive
scalars dispersing in a turbulent flow are still rather limited (and, in particular, there
is a paucity of data concerning higher-order concentration moments and higher-order
correlation functions resulting from the interaction of two passive scalars). In this
paper, we use DNS (in which the entire range of spatial and temporal scales of the
turbulent flow and dispersion are fully resolved) to study the statistical characteristics
of dual-plume interaction generated by two (concentrated) point sources emitting
passive scalars into a neutrally-stratified wall-bounded shear flow.

2 Numerical Methodology

The DNS was performed using an in-house code developed using the FORTRAN
90/95 programming language, and fully parallelized using the message passing inter-
face (MPI) paradigm. The code is based on a fully conservative and fully implicit
second-order finite difference scheme and utilizes a staggered grid arrangement. For
our simulations, we solved the momentum equations for an incompressible flow in an
open channel, together with an advection-diffusion equation for a passive scalar. For
the velocity field, we applied periodic conditions in the streamwise (x) and spanwise
(z) directions and a no-slip condition at the bottom wall (at y = 0, where y is the
vertical direction) of the open channel. For the concentration field, we imposed a
zero concentration at the inlet boundary, and zero Neumann conditions were applied
in the spanwise direction, at the bottom wall and top of the open channel and at the
outlet. The simulations were executed until statistically stationary conditions were
attained for the velocity and concentration fields, after which various statistics of
the instantaneous concentration field were obtained by averaging over a temporal
interval of 5T where T = §/u,, § = 0.04 m is the height of the open channel and
u is the friction velocity.

The computational domain has dimensions 2 7§ x § x 7§ and has been discretized
using 256 x 128 x 192 grid nodes in the x-, y-, and z-directions, respectively. A
Reynolds number was set to Re; = u.8/v = 395. The two sources were located in
the log-law region of the wall shear layer at a normalized vertical height of y* =
yu; /v = 40. The size (radius) of each source is 59 = 0.008 § and the Schmidt number
Sc = v/k (k is the molecular diffusivity) of the scalar is 1.0. In our simulations,
we considered four different spanwise separations d between the two point sources;
namely, d = 0.0494, 0.1156, 0.279 § and 0.541 4.

3 Results and Discussion

Owing to space limitations, we will focus primarily on the scalar correlation coeffi-
cients of order two and three relevant for the study of the interference of the second-
and third-order concentration moment, respectively, arising from the interaction of
plumes from two point sources.
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3.1 Scalar Correlation Coelfficient

If we let c; and ¢, denote the instantaneous concentration from (point) sources 1 and
2, respectively, then the linearity of the advection-diffusion equation implies that
the total instantaneous concentration cr from both sources is linearly superposable
and given by ¢ = ¢ + ¢3. Concentration moments higher than first order (mean
concentration) are not linearly superposable, with the result that higher moments of
the total concentration cannot be obtained from the concentration moments of the
individual instantaneous concentration. The total concentration moments higher than
first order can be obtained only from a knowledge also of the joint statistics of the
individual instantaneous concentration in the form of certain higher-order correlation
functions. To this purpose, we can define the second- and third-order correlations
functions, respectively, as follows:
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where the overbar denotes an ensemble average and ¢; = ¢; —¢; (i = 1,2, T) is
the instantaneous concentration fluctuation about the mean concentration. As dis-
cussed in Yee et al. [5], the correlation coefficients ,0[”1] and ,0[1 12] either enhance or
reduce the second- and third-order total concentration moments, respectively, from
those obtained from the simple linear superposition of the individual concentration
moments.

Figure 1 displays crosswind (spanwise) profiles of the second-order correlation
function pU'!"l obtained from our numerical simulations. The results are shown
at four different downwind locations x /& for the four source separations d men-
tioned previously. Generally, the minimum value of p{!! is found midway between
the two sources (owing to the symmetry in the positioning of the sources in the
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Fig. 1 Spanwise profiles of p!!I'] at four downstream distances from the source corresponding to
(panels from left to right) x /6 = 1, 2, 4, and 6. The dots on each line are drawn at the locations of
the sources, and correspond to source separations of d /8 = 0.049 (solid line); 0.115 (dashed line);
0.279 (dash-dot line); and, 0.541 (dotted line).
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inhomogeneous flow) and the maximum p!!'! values are found at the plume fringes.
For sources that are close enough together, the maximum values in p!!! far from
the centerline where the plume intermittency is large arise from the fact that at these
locations a large eddy can occasionally transport both plumes together causing the
two concentrations to either increase or decrease simultaneously. The minimum in
o1 at the midpoint between the two sources is due to the fact a large eddy at this
location can move one of the plumes over the location, while simultaneously moving
the other off this location (causing the concentration contributed by one plume to
increase and that contributed by the other plume to decrease).

Figure 2 shows spanwise profiles of the third-order correlation function p!!'?! at
four downstream distances. Note that the behavior of p!!?! is very similar to that of
o1 (cf. Fig.1). However, p!!?! contains fine-scale variations (modulations) in z
that are not exhibited in p!!!!], Finally, in comparison to p!!!l, it is seen that p[!I?]
(especially for the larger source separations) tend to exhibit smaller variations in the
spanwise direction at a fixed x and with increasing x at a fixed spanwise location.

Figure 3 exhibits the streamwise (x) development of p!!!!l and p!'?! along the
midpoint between the two sources. At downstream fetches where the mean plume
width o, is much less than the source separation d, a location at the midpoint between

pli)

Fig. 2 Spanwise profiles of p!'?! at four downstream distances from the source corresponding to
(panels from left to right) x /6 = 1,2, 4, and 6. The dots on each line are drawn at the locations of
the sources, and correspond to source separations of d /8 = 0.049 (solid line); 0.115 (dashed line);
0.279 (dash-dot line); and, 0.541 (dotted line).

[y

Fig.3 Streamwise evolution of left panel p!''") and right panel p!"12) at the centerline between two
sources for source separations of d/§ = 0.049 (solid line); 0.115 (dashed line); 0.279 (dash-dot
line); and, 0.541 (dotted line)
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the two sources is rarely exposed to either plume and never to both simultaneously,
so the correlation is effectively zero in this regime of development. At downstream
fetches where o, greatly exceeds d but the instantaneous plume width o, is much
less than d, the meandering of the two plumes by the large eddies causes the con-
centration from one plume to decrease at a location at the midpoint between the
two sources, whilst simultaneously causing the concentration from the other plume
to increase (and vice-versa, as the flapping occurs in the opposite direction). This
physical process leads to negative correlations, corresponding as such to the anti-
correlated fluctuations in the two plumes. Finally, at downwind fetches where o,
is much greater than d, the plumes overlap and mix significantly. At this stage in
the plume development, the two plumes meander together (although the importance
of meandering decreases with increasing downstream distance) and also undergo
internal turbulent mixing with each other (with the importance of the internal turbu-
lent mixing increasing with increasing downstream distance), leading to increasing
positive correlations with increasing downstream fetch. It is noted that both pl!!]
and pl!1?! exhibit similar behavior and can be seen to transition between these three
regimes of plume development. The similar behaviour of the second- and third-order
correlation functions would seem to suggest that there might be some relationship
between the various higher-order moments of the total concentration.

3.2 Relationships Between Higher-Order
Concentration Statistics

Figure4 shows the normalized concentration moment scatterplots of c¢”/¢" (n =
3, 4) plotted against c2/¢> on a double logarithmic scale for a large number of points
in the plume. The scatterplots are plotted for the total concentration as well as for the
individual concentrations. Remarkably, each of these scatterplots is seen to collapse
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Fig. 4 Scatterplots of normalized higher-order concentration moments for a large number of loca-
tions in the plume: left panel third-order moment ¢3 /&> and right panel fourth-order moment ¢4 /&*
plotted against the second-order moment ¢2/2.
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onto a curve which implies that the higher-order moments (for both the individual and
total concentrations) are determined effectively by knowledge of only the two lowest
order moments of the concentration. The observed universal relationships between
the various higher-order concentration moments are the same for the concentration
from a single source or the total concentration from two sources. This observation
has important implications for the modeling of concentration fluctuations. Firstly,
the collapse of the normalized third- and fourth-order concentration moments on
the normalized second-order concentration moment implies that the concentration
probability density function (PDF) can be described adequately by at most two para-
meters. Secondly, this two-parameter concentration PDF appears to be universal in
the sense that it applies to the concentration from a single source or from two (or
more) sources. Thirdly, a knowledge of the first- and second-order concentration
moments for each source along with the second-order correlation function, required
for the prediction of the total concentration variance, is sufficient for the prediction
of all the higher-order moments of the total concentration.

4 Conclusion

Direct numerical simulation has been applied to the study of the interference of
the fluctuating concentration fields from a dual-source release. The interference of
two scalars as manifested in the second and third moment of the total concentration
is investigated through a determination of the second- and third-order correlation
function. The evolution of these two correlation functions as a function of downstream
distance and the variation of the correlation functions in the spanwise direction for
particular downstream distances (from the source) have been extracted from the
numerical simulations of the instantaneous concentration fields for various values of
the transverse source separation. A remarkably robust feature of both the individual
and total concentrations was the observed collapse of the normalized third- and
fourth-order concentration moments on the normalized second-order concentration
moment, with significant implications for the simplification of the modeling of the
interference of two passive scalars in a turbulent flow.

Future work will investigate interference of the concentration statistics for passive
scalars dispersing in turbulent flows at higher Reynolds numbers. Furthermore, we
will consider also source separations in the streamwise and vertical directions, as
well as ground-level source releases.
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LES of the Flow in a Rotating
Rib-Roughened Duct

D. Borello, A. Salvagni, F. Rispoli and K. Hanjalic

1 Introduction

Interior channels of gas-turbine blades are often lined with ribs, which act as
turbulence promoters to enhance heat transfer between the hot blade surface and
the cooling air. The rib orientation to the mainstream flow strongly influences the
ensuing phenomena such as unsteadiness, boundary layer separation, reattachment
and recirculation. To improve the cooling design and especially to detect and pre-
vent possible development of critical hot spots that may lead to material failure, it is
essential to predict accurately the flow field and heat transfer under various operat-
ing conditions. Whilst the flow features inside stationary ribbed channels have been
well researched, the effects of rotation encountered in rotor blades are less known.
Rotation introduces a background vorticity that stabilizes the fluid flow on the suc-
tion side, while destabilizing it on the pressure side. The effect is commonly defined
by the nondimensional Rotation number, Ro = 2D /U, where U is the bulk veloc-
ity, D the hydraulic diameter of the duct and £2 is the angular velocity. Recently,
Coletti and co-workers carried out extensive PIV analysis of flow in a rib-roughened
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channel subjected to rotation [1]. They investigated the influence of rotation in a
rib-roughened channel containing 10 equally spaced ribs. The rotational axis is par-
allel to the rib-roughened surface, aligned with the ribs and placed far upstream of
the first rib. The test section and instrumentation were mounted on a disk rotating
in a direction perpendicular to the main flow. Flow measurement were carried out
while the disk was rotating. Under these conditions the wall-normal pressure gradi-
ent is modified to balance the centrifugal and Coriolis forces. For the configuration
considered, rotation stabilizes the flow adjacent to the ribbed wall in the case of
clockwise rotation and destabilizes it in counter-clockwise rotation. We report here
some results of a well-resolved dynamic Smagorinsky LES of the configuration of
Coletti et al. [1] for the anti-clockwise rotation.

2 Flow Specification and Computational Details

The rectangular channel with ribs placed on the bottom wall has a width-to-hight
aspect ratio of 0.9. The flow blockage due to ribs is #/D = 0.1, h being the rib
height. The Navier-Stokes equations system was solved in dimensionless form using
as reference the duct hydraulic diameter, bulk flow velocity and air properties at
20°C. The ensuing Reynolds number, based on D and bulk velocity is 15,000.
According to Coletti et al. [ 1], after the 6th rib the flow can be considered as periodic.
Thus we considered only one section between two successive ribs subjected to anti-
clockwise rotation with Ro = 0.3. For comparison, we also provide solutions for
the non-rotating configuration. The LES was performed using the unstructured FV
code T-FlowS, used successfully in a number of earlier LES studies, e.g. [2]. The
computational domain was meshed using a block-structured hexahedral orthogonal
grid with about 6.5 M cells. All the wall neighbouring cells have a y™ value lower
than 0.5. A coarser grid with 3 M cells was also considered for comparisons.

A Crank-Nicolson/CDS scheme was used to guarantee a second-order accuracy.
The coupling of the velocity and pressure field was ensured by using the SIMPLE
scheme, while the Preconditioned BiCG solver was applied for solving the linearized
algebraic equation system. Periodic boundary conditions were imposed at the inlet
and outlet surface, while no-slip conditions were set at solid boundaries. The nondi-
mensional time step was set to Se-4 ensuring the maximum CFL number to be smaller
than 0.3 over the whole domain. The computations were performed on the CRESCO
SP5 cluster at Casaccia (ENEA) using 32 processors. On such a computer 25 s are re-
quired for performing one time step for computations on the fine grid. Computations
were performed for 2 flow through times (FTT) before starting to collect statistics.
Table 1 summarizes the time averaging periods.
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Table 1 Time averaging period

Case Coarse grid Refined grid
No rotation 11 FTT 13 FTT
Anti-clockwise rotation 22 FTIT 15 FTT

3 Results

The streamlines obtained by the LES for the rotating and stationary case are shown
in Fig. 1.

Both subfigures show the expected flow pattern with a large recirculation bubble
behind the ribs. However, the anti-clockwise rotation enhances the entrainment into
the separated bubble, leading to a pressure reduction inside the recirculation region.
This stronger pressure gradient causes a streamlines deflection and a reduction in the
length of the separation bubble, as also found by Coletti et al. [1]. The analysis of
the pressure gradient plots (not shown here) confirms these findings. It is noted that,
when using the coarse grid the quality of the predictions deteriorated (Table2).

The Coriolis force also affects the vortical structures in front, around and on the top
of the rib. The downstream corner vortex generated by the large recirculation bubble
is shrank and the upstream corner vortex is enlarged. Furthermore, the recirculation
bubble generated on the top of the rib is affected by the curvature of the streamlines
passing above the rib. Due to the Coriolis effects, the recirculation bubble is thicker
and the streamlines have a lower curvature when passing above the rib. The rib
recirculation bubble becomes thicker than in the non-rotating case and extends over
the whole rib (Fig.2).

Fig. 1 Streamlines for the LES—I/eft rotating case; right non rotating case

Table 2 Length of recirculation bubble
Case Coarse grid (h) Refined grid (h) Exp (h)
No rotation 3.90 3.90 3.85
Anti-clockwise rotation 3.85 3.50 3.45




286 D. Borello et al.

Z

. O U S,
Fig. 2 Vortical structures around the rib—I/eft anti-clockwise rotation; right non-rotating
. 1.!_-0 m»mmr“m

¥h =1 anti-cyclonic rotation. Hh= srti-cyconic rotation

p COLETTI exp COLETTI l wp COLETTI ! |

25, 25 }

LEs — 2 LES — l LEs — |

2} 2 2 / |

S1s . £ . éls 2 |

1 1 1 |

05, 0s 05 !

04 02 0 02 04 06 0B 1 12 04 02 0 02 04 06 08 1 12 ©4 02 O 0Z 04 05 0B 1 12
Umean Umean Umean

Fig. 3 Streamwise velocity downstream from the rib—Ieft x/h = 0; center x/h = 1; right x/h =2
(anti-clockwise rotation case)

Xrh

Fig. 4 Shear stress -uv (anti-clockwise rotation case): left exp, right LES

The plots of the axial velocity downstream from the rib demonstrate that a fair
agreement is obtained between the experiments and LES, especially when consider-
ing the thickness of the recirculation bubble (see Fig. 3).

Figure4 shows that the rib is the main source of the shear stress and the rota-
tion enhances the production of the uv component. Over the rib the shear stress is
suppressed due to the low turbulence level in the slow recirculation bubble.

The influence of the lateral walls on the flow field was out of the scope of the
PIV analysis (performed only in the mid-plane). As such information is available
from LES, we discuss briefly the effect of rotation by considering flow patterns in
planes parallel to the rib-roughened wall. The results are compared qualitatively with
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Fig.5 Streamlines on the rib-roughened wall parallel plane; left 0.05 h; right 0.5 h; up non rotating;
down anti-clockwise rotating
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Fig. 6 Streamlines along pitchwise planes; left mid-pitch; center 0.15 pitch; right 0.05 pitch

those of Casarsa and Arts [3] for a non-rotating rib-roughened channel with a high
blockage ratio. The streamlines plots in two planes: at 0.05 and 0.5 h from the wall are
shown in Fig. 5. In the first plane (0.05 h) one can see the vortical structures discussed
above: an upstream corner vortex (clockwise rotation), a downstream corner vortex
(anti-clockwise) and the recirculation bubble extending for about 0.3 of the space
between two consecutive ribs. In the nonrotating case, when moving towards the
lateral walls, the recirculation bubble length is strongly reduced with its footprint
on this plane having a bow shape. Notably, this effect is less evident in the rotating
case due to the mentioned shrinking of the recirculation bubble that is particularly
visible in the mid-plane. The section at y/h = 0.5 shows some differences: first, the
two small vortices close to the rib disappeared at this distance from the wall (see
also Fig. 2). Furthermore, two vortical structures are present close to the lateral walls
immediately downstream from the rib. Again, the bow shape of the recirculation
bubble is suppressed in the rotating case.

Two Coriolis induced secondary flows extending over the whole section are
present in the rotating case. Such structures push the fluid from the central part
of the duct towards the lateral walls. Therefore the streamlines are swept towards
the rib-roughened wall in the mid-plane and in the opposite direction when moving
close to the lateral walls (see Fig. 6).
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13

Fig. 7 Unsteady streamlines along the mid-pitch plane; left non-rotating; right anti-clockwise
rotation

Finally, in Fig. 7 the instantaneous velocity plots are presented. In the non-rotating
case the velocity is not perturbed by the rib presence for y greater than 2.5. In contrast,
in the rotating case the vortical structures extend for about half of the channel height,
suggesting that a more vigorous heat removal is expected in the rotating case.

4 Conclusions

LES of the flow in a rib-roughened channel subjected to anti-clockwise rotation was
carried out. The turbulent flow structures induced by the geometry and the rotation
were identified and discussed. In particular, we noticed the presence of large Coriolis-
induced secondary flows and the change in the bow shape of the recirculation bubble
when considering an anti-clockwise rotation. The presence of rotation induced a
destabilizing effect increasing the turbulence and flow unsteadiness, which should
enhance heat transfer.
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On the Large-Eddy Simulations
of the Flow Past a Cylinder at Critical
Reynolds Numbers

O. Lehmkuhl, I. Rodriguez, J. Chiva and R. Borrell

1 Introduction

The flow past a circular cylinder is associated with different types of instabilities
which involve the wake, the separated shear layers and the boundary layer. A com-
prehensive description of the flow phenomena at different Reynolds numbers (Re)
can be found in [15]. It is well known that when the Reynolds number approaches
2 x 103 the boundary layer undergoes a transition from laminar to turbulent regime.
The range of Reynolds numbers up to ~3.5 x 10 is characterised by a rapid decrease
of the drag coefficient with the Reynolds number. Another feature which charac-
terises this regime is the presence of asymmetric forces during the transition regime
as reported experimentally [2]. During this transition, the separation point moves
towards the rear end of the cylinder until it reaches a stationary point with a sta-
ble drag coefficient. This marks the transition from the critical to the supercritical
regime [11].

This work aims at shed some light into the complex physics present at these crit-
ical Reynolds numbers. To do this, large-eddy simulations of the flow at Reynolds
numbers in the range of Re = 1.4 x 10°-5.3 x 10° are carried out. Solutions
are compared to experimental measurements available in the literature. One of the
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major outcomes is to understand the physics that characterises the critical regime
and the role of the turbulent transition in the boundary layer on the drag crisis
phenomena.

2 Numerical Method

Large-eddy simulations (LES) of the flow are here performed. The methodology
for solving the filtered Navier-Stokes equations is detailed in [8, 10]. As for the
turbulence model, large-eddy simulations are carried out using the Wall-Adapting
Local Eddy diffusivity model [9] within a Variational Multi-Scale framework (VMS-
WALE subgrid-scale model) [6].

2.1 Definition of the Case: Geometry and Mesh Resolution

The flow past a circular cylinder at critical Reynolds numbers in the range of
Re = Upey D/v = 1.4 x 10°-5.3 x 10° is considered. The Reynolds number
is defined in terms of the free-stream velocity U,.; and the cylinder diameter D. The
cases are solved in a computational domain of dimensions x = [—-16D, 16D]; y =
[-10D, 10D]; z = [0,0.57 D] in the stream-, cross- and span-wise directions
respectively, with a circular cylinder at (0, 0, 0). The boundary conditions at the
inflow consist of uniform velocity (u,v,w) = (1, 0, 0), slip conditions at the top and
bottom boundaries of the domain, while at the outlet a pressure-based condition is
used. At the cylinder surface, no-slip conditions are prescribed. As for the span-wise
direction, periodic boundary conditions are imposed.

The governing equations are discretised on an unstructured mesh generated by
the constant-step extrusion of a two-dimensional unstructured grid. Different grids
up to ~64 million CVs are used, depending on the Reynolds number (see Table 1).
The boundary layer at the cylinder surface is well resolved, i.e. no wall function is
used. Thus, the meshes are designed so as to keep the non-dimensional wall distance
yT < 2. To do this, a prism layer is constructed around the cylinder surface. In the
problem here considered, transition to turbulence occurs in the boundary layer. Thus,

Table 1 Main parameters for the different computations

Re NCV; [MCVs] Ncy plane Nplanes
1.44 x 10° 38.4 299,683 128
2.6 x 10° 38.4 299,683 128
3.8 x 10° 48.6 379,950 128
5.3 % 10° 64 500,516 128

NCV; total number of CVs; Ncy prane number of CVs in the plane; N pjanes number of planes in
the span-wise direction
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it should be stressed that in the present formulation transition to turbulence is well
captured by the model, i.e. no artificial mechanism is imposed for triggering this
phenomenon to occur.

3 Results

For obtaining the numerical results presented, the simulations are started from an
initially homogeneous flow field. Then, simulation is advanced in time until statistical
stationary flow conditions are achieved and the initial transient is completely washed
out. Average statistics are then computed for a sufficient long time span of about
~100tU/ D, in order to assure that the flow is statistically converged.

In order to gain insight into the coherent structures developed in the separated zone,
the Q-criterion is used [7]. Figure 1 shows the isocontours of second invariant of the
velocity gradient tensor (Q) coloured by the velocity magnitude at Reynolds numbers
of 2.5%10%,3.8x10° and 5.3 x 103. While the lower Reynolds number exhibits a flow
topology more similar to that observed in the sub-critical regime, i.e. laminar flow

Fig.1 Wake configuration. Left Q iso-countours coloured by the velocity magnitude; right instan-
taneous vorticity magnitude. From fop to bottom: Re = 2.6 x 10%; Re = 3.8 x 10°; Re = 5.3 x 10°
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separation at about (¢5 ~ 90°) from the stagnation point and transition to turbulence
in the separated shear layers, at the higher Reynolds numbers the flow shows a
narrow wake with the separation point moving towards the rear end of the cylinder
(¢s = 90°). The wake topology obtained at these critical Reynolds number can also
be observed by means of the vorticity contours depicted at the half span-width plane.

Time-averaged statistical features resulting from the simulation are summarized
in Table2. In the table, the drag coefficient (Cp), the base pressure (—Cpyp), the
separation angle measured from the stagnation point (¢s.)), and the angular position
where the pressure reaches a minimum (¢ p,,;,), are given. Experimental data from
the literature are also given. As can be seen, in the range of Reynolds numbers
considered, there is a pronounced decrease in the magnitude of the drag coefficient
accompanied with an increase in the base pressure coefficient. As observed from
the instantaneous flow, separation in the boundary layer is delayed, with increasing
separation angle. The location of the pressure minimum also increases with the
Reynolds number, moving towards the rear end of the cylinder, while its absolute
value decreases (see also Fig.?2).

The variation of the drag coefficient with the Reynolds number is plotted in Fig. 2
together with reference data from the literature. At these Reynolds numbers, the
measured data of the drag coefficient present a large scattering, due to the difficulties

Table 2 Statistical flow features at different Reynolds numbers

Re Cp —Cpp Psep [°] ©pminl°]
1.4 x 10° 1.215 1.3 95.5 68.5
2.6 x 10° 0.83 0.984 95/252 70/280
3.8 x 10° 0.328 0.347 102 83.8
5.3 x 10° 0.247 0.15 121 86
Cantwell and Coles Re = 1.4e5 1.237 1.21 - -
Achenbach Re =2.6e5 - - 94 -
Fig. 2 Variation of the drag .4 5 Tx
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associated with the measurements; i.e. sensitiveness to turbulence intensity, cylinder
end conditions, surface roughness, blockage ratio, etc. In spite of the large scatter-
ing in the reference data, results obtained with the present simulations show a fair
agreement, being in the same range of the measured data.

In addition to the total drag coefficient, the pressure distribution at the cylinder
surface at different Reynolds numbers is depicted in Fig. 3. As can be seen, at Re =
1.44 x 107 it compares very well with that measured by Cantwell and Coles [4] at the
same Reynolds number. As the Reynolds number increases, the pressure distribution
changes with a pronounced decrease in the magnitude of the minimum pressure, and
the position of this minimum moving towards the rear end of the cylinder. At the
same time, the cylinder base pressure rises as was also shown by Achenbach [1] in
his study. This behaviour is characteristic of the critical regime.

One interesting feature observed in the present computations is the presence of
asymmetric forces at the cylinder surface in the regime transition (in the present com-
putations at Re = 2.5 x 10°). Transition to turbulence occurs earlier at one side of the
cylinder boundary layer. Thus, separation in the turbulent side is delayed. This behav-
iour, which causes large fluctuations in the cylinder forces and yields average lift
C; > 0, was also observed experimentally by Bearman [2] and Schewe [12]. As can
be observed, at the Re = 3.8 x 107 the forces at the cylinder recover their symmetry
(see Fig.3), whereas at Re = 5.3 x 10 the drag coefficient reaches its minimum
value (see also Fig.2), but the pressure distribution is again slightly asymmetric.

4 Concluding Remarks

The flow past a circular cylinder at critical Reynolds numbers in the range of
Re = 1.4 x 10°-5.3 x 10° is computed by means of large-eddy simulations. In
the present computations, the mesh used is highly refined in the near-wall, as no wall
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function is used for solving the turbulent boundary layers. Furthermore, it should also
be stressed the capabilities of the current formulation for capturing quite well the
transition to turbulence in the boundary layer without the use of any artificial mecha-
nism which triggers this phenomenon to occur. Results shown are very promising as
they correctly predict the steep drop in the drag coefficient in this range of Reynolds
numbers and the delayed turbulent separation from the cylinder surface, being con-
sistent with the experimental measurements. The presence of asymmetric forces on
the cylinder surface occurring during the critical regime in agreement with previous
experiments is also detected. It should be pointed out that in the present computa-
tions, these asymmetric forces are detected at the Reynolds number of 2.5 x 109,
which is slightly earlier than in experimental measurements. The asymmetries in
the pressure distribution should be interpreted as the starting point of the drag crisis,
with the transition to turbulence occurring earlier at one side of the cylinder boundary
layer, whereas the other side is still laminar. Thus, separation in the turbulent side is
delayed. Last but not the least, mean pressure distributions on the cylinder surface
are computed showing a reasonable agreement with previous experimental results.
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