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Abstract. Binary code learning techniques have recently been actively
studied for hashing based nearest neighbor search in computer vision
applications due to its merit of improving hashing performance. Cur-
rently, hashing based methods can obtain good binary codes but some
data may suffer from the problem of being mapped to inappropriate
Hamming codes. To address this issue, this paper proposes a novel bi-
nary code learning method via iterative distance adjustment to improve
traditional hashing methods, in which we utilize very short additional bi-
nary bits to correct the spatial relationship among data points and thus
enhance the similarity-preserving power of binary codes. We carry out
image retrieval experiments on the well-recognized benchmark datasets
to validate the proposed method. The experimental results have shown
that the proposed method achieves better hashing performance than the
state-of-the-art binary code learning methods.

Keywords: Hashing, nearest neighbor search, binary codes, iterative
distance adjustment.

1 Introduction

Efficient similarity search in large image databases is a significant challenge
in many computer vision applications. Nearest neighbor search(NNS), usually
adopted to find similar objects, is one of the core technical issue involved in
these applications. NNS is also a fundamental problem in data mining, machine
learning and computer vision. However, the traditional way of searching nearest
neighbors by scanning all the data has a linear time complexity, which is very
inefficient and expensive for large databases. Fortunately in many applications, it
is acceptably sufficient to return approximated nearest neighbors(ANN) instead
of the exact ones.

Tree-based methods, such as KD-tree [4], metric tree [19], have been widely
studied and used for NNS. These techniques attempt to decrease the complexity
of nearest neighbor search, but they may degrade into linear search in the worst
case [10]. Unfortunately, these technologies may not be appropriate for high
dimensional data because the construction of tree structure is time-consuming
and requires large memory space. Hence, hashing based techniques have been
actively studied for mapping data to compact binary codes, which are then
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used to establish hash tables for large databases efficiently. Since the Hamming
distance between two binary codes can be computed via exclusive OR operation
which is extremely fast, compact binary codes are particularly appropriate for
approximating nearest neighbor search.

Hashing based methods usually preserve data similarity when mapping data
points to the Hamming space appropriately. Current existing hashing based tech-
niques can be divided into three categories based on their learning strategy:
1)unsupervised, 2)semi-supervised and 3)supervised. For unsupervised methods,
Locality-Sensitive Hashing (LSH) [5] [1], which maps data to a low dimensional
Hamming space via random projection, is a basic but widely used hashing based
technique. After that, many other unsupervised methods have been proposed,
such as Spectral Hashing SH [21], KLSH [9], ITQ [6] and AGH [12]. For semi-
supervised methods, SSH [20] and Weakly-Supervised Hashing [14] are typical
representatives. For supervised hashing including semantic hashing (RBM) [17],
BRE [8], MLH [15] and others, they improve hashing performance by incorporat-
ing supervised information. Recently, a number of optimized hashing methods
have also been proposed, such as Weighted Hamming Ranking [22], Hash Bit
Selection [13] and JSD [2]. These methods further improve hashing performance
based on the pre-existing methods.

In this paper, we present an iterative distance adjusting method to improve the
similarity preserving power of binary codes. Motivated by the optimized meth-
ods, we propose a hashing method by correcting the Hamming spatial relation-
ship between the base codes generated by other hashing methods. Although the
traditional hashing-based method can obtain good hashing performance,there
are still some data mapped to inappropriate Hamming codes. To correct these
errors, we introduce a proper adjustment on the Hamming distance between
the inaccurate binary code pairs. Moreover, aiming to overcome the inefficiency
of building a binary code pool which consists of a number of many unneces-
sary codes, we resort to providing some additional bits for the base codes to
enhance hashing performance, rather than selecting good bits from a binary
code pool [13] [2]. It also guarantees that our method doesn’t need any redun-
dant candidate codes. An iterative distance adjustment step, which shrinks the
Hamming distance of neighboring data and increase the Hamming distance of
non-neighbor data, is adopted to reduce the Hamming approximation error be-
tween the Euclidean space and the Hamming space. Our method achieves good
performance and outperforms several state-of-the-art methods.

The rest of this paper is organized as follows. Section 2 provides a brief intro-
duction to the related work. Section 3 describes the details of our method. The
experimental results are then provided in Section 4. Finally, Section 5 provides
concluding remarks.

2 Related Work

In this sectionwe present some existing studies related to hash-basednearest neigh-
bor search techniques. Given a dataset X = [x1, x2, . . . , xn], xi ∈ R

d, nearest
neighbor search aims to find the nearest neighbors for a query q. The objective of
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hash-based NNS methods is mapping data to the Hamming space while appropri-
ately preserving the relative distances among them.

2.1 Unsupervised Hashing

LSH [5], a basic but widely used hashing technique, maps data to a low dimen-
sional Hamming space via random projection. The main idea of LSH is mapping
similar data to the same hash bucket with a high probability. A typical LSH
function is denoted as:

h(x) = sign(w�x+ b) (1)

where w is a hyperplane and b is a random intercept. w is usually randomly
sampled from a specific distribution, such as p-stable distribution. KLSH (Ker-
nelized LSH) [9]incorporates LSH with kernel learning so that it can generalize
similarity search from standard metric space to kernel space. Since hyperplane
w is independently sampled to data, the number of hash bits may be large in
order to maintain the original distances.

Motivated by spectral graph partition, Spectral Hashing improves perfor-
mance over LSH, especially for compact bit lengths. But it has an assumption
of underlying distribution of data. Iterative Quantization (ITQ) is motivated by
the idea of data rotation to minimize quantization loss. ITQ explains that if

the hyperplane coefficients W is an optimal solution, so is ˜W = WR for any
orthogonal matrix R. The goal of ITQ is to minimize the quantization error of
mapping data to the vertices of a zero-centered binary hypercube.

Anchor Graph Hashing(AGH) [12] utilizes Anchor Graphs to obtain tractable
low-rank adjacency matrices. The hash functions of AGH are learned by thresh-
olding the lower eigenfunctions of the Anchor Graph Laplacian. Meanwhile, a
hierarchical hashing method are further proposed to overcome the issue that
neighboring points close to the boundary are assigned to different bits due to
inappropriate thresholding.

2.2 Supervised Hashing

Supervised hashing methods such as RBM [17], BRE [8] and MLH [15] have
shown higher search accuracy than unsupervised ones, but they are more difficult
to be optimized and slower to be trained. Semantic Hashing (RBM) leverages
Restricted Boltzmann Machines [3] to construct a multi-layer autoencoder to
encode a low dimensional binary code. Binary reconstructive embedding (BRE)
makes a loss function that penalizes the squared error between the original
distances and the reconstructed distances. Since the objective function is non-
convex, a coordinate-descent algorithm is proposed for optimization. Minimal
Loss Hashing (MLH) advocates a loss function similar to hinge loss used in the
SVMs to learn binary hash functions.

2.3 Optimized Hashing

Some hashing methods have been proposed to improve performance of binary
codes by optimizing the pre-existing ones. [22] explained that there are often
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lots of results sharing the same Hamming distance to a query, which makes this
distance measure ambiguous. They proposed a weighted Hamming distance rank-
ing algorithm to rank the generated binary codes so that it can differentiate the
ambiguous codes. The algorithm learns both data-adaptive and query-sensitive
weight for each hash bit. Hash Bit Selection [13] builds a large pool of over-
complete hash bits encoded by various hashing methods with different features.
Then, good hash bits are selected through two criteria: 1)similarity preserving
and 2)independence. JSD [2] seeks a set of hash functions that minimizes the
total probability of Bayes decision errors. A sequential learning algorithm based
on LSH [5] [1] is also provided to obtain the projection minimizing Bayes decision
errors from the candidate projections.

3 Correctional Hashing

3.1 Formulation

It has been well investigated in [13] [2] [22] that some bits learned by the existing
hashing methods usually carry little or redundant information. To deal with this
issue, they either selected good project directions from a candidate projection
pool, or set different weights to different bits [22]. To build a candidate projection
pool, many candidate binary codes are needed to be learned, which is very
inefficient. In this paper, we address this problem in a totally different manner
by investigating whether it is possible to improve the similarity preserving power
of the codes by providing some additional bits.

Learning compact binary codes has been commonly treated as a solution to
similarity-preserving problem, i.e. maping similar data points to similar binary
codes in hashing. But there still exists a gap between the distances among binary
codes in Hamming space and the distances among features in Euclidean space.
In traditional binary learning methods, most data can be mapped to proper
binary codes, but some of them are usually mapped to inappropriate ones, which
are either neighboring data in the original space mapping to distant codes in
Hamming space, or distant data in the original space mapping to neighboring
codes in Hamming space. We design an algorithm to correct such kind of error
via providing very compact additional bits. This adjustment can reduce the
approximating error between Euclidean space and Hamming space, with which,
the learned codes may achieve higher similarity preserving power and the hashing
performance can be consequently improved.

Afterwards, we propose a novel method to correct the spatial relationship
between pairwise binary codes iteratively. At each iteration, additional binary
bits are introduced to minimize the Hamming approximating error. The basic
principle is that the Hamming distance between the points which have been as-
signed to inaccurate base codes can be modified and corrected through additional
bits. In a word, among the inaccurate pairs of binary codes, similar additional
bits are used to shrink the distance between the neighboring pairs in the original
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space, while opposite additional bits are adopted to increase the distance be-
tween the distant pairs in the original space. A Hamming approximating error
function is defined to determine which pair of binary codes is inaccurate. The
Hamming approximating error is minimized iteratively by learning the additional
bits incrementally. Specifically, a few bits are learned for the base codes in each
iteration and they are concatenated as the new base codes in next iteration.

3.2 Iterative Distance Adjustment

Given a dataset of n points, denoted as X = [x1, x2, . . . , xn], xi ∈ R
d, the objec-

tive of hashing method is to learn a hash function family to map X to a binary
matrix B ∈ {−1, 1}n×b, where b denotes the length of a binary code, and kth
hash function of binary bit is defined as

hk(xi) = sgn(w�
k xi + bk). (2)

Let H = [h1, h2, . . . , hk] be a sequence of k hash functions and W = [w1,w2,
. . . ,wk] ∈ Rd×k. Without loss of generality, let X be normalized to have zero
mean. To make hash bit carry as much information as possible, we should balance
the hash function to meet

∑n
i=1 Hk(xi) = 0. Like [11], we denote bk as the

median of {w�
k xi}ni=1. By further choosing a fast alternative to the median, we

calculate the mean as b =
∑n

i=1 w
�
k xi/n. We have b = 0 becauseX is zero-mean.

Given a set of base binary codes Bbase ∈ {−1, 1}n×b, to adjust the Ham-
ming distance between base codes, our objective is to learn the corresponding
additional codes Badd ∈ {−1, 1}n×k. The result of final binary matrix is then
denoted as B ∈ {−1, 1}n×(b+k). We learn t bits at each iteration, thus the num-
ber of iterations is b/t. We use linear projection mentioned earlier as the hash
function for additional codes.

3.3 Learning Additional Binary Codes

First of all, the pairs of base binary codes needed to be corrected should be se-
lected out. Similar to K-means Hashing [7], we choose minimizing the Hamming
approximation error as the objective function,which is defined as:

min
n
∑

i=1

n
∑

j=1

(d(xi,xj)− λdh(xi,xj))
2 (3)

This equation minimizes the difference between two n-by-n affinity matrices
d(xi,xj) and dh(xi,xj), where d(xi,xj) is the original Euclidean distance be-
tween two data points, and dh(xi,xj) is the Hamming distance between two
hashing binary codes. We introduce λ here because the Euclidean distance
d(xi,xj) can be in arbitrary ranges, while the Hamming distance dh(xi,xj)
is constrained in the range of [0,b] for b bits.

Based on the objective function, we define the Hamming approximating error
to distinguish inaccurate pairs which need corrections as:

ErrHa = (d(xi,xj)− dh(xi,xj))
2 (4)
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In our work, λ has been found hard to determine. Therefore we normalize the
two matrices d(xi,xj) and dh(xi,xj) as a compromise. θ is a threshold set to
find the binary codes needing correction.

We adopt an intuitive way to learn additional bits, and update a small num-
ber of bits at each iteration. We split the inaccurate binary code pairs into two
categories: 1) neighbor in the original space, and 2) non-neighbor in the original
space. Specifically, a pair (xi,xj) ∈ N is denoted as a neighboring pair in Eu-
clidean space, and D is the set of non-neighboring pairs in Euclidean space. In
order to correct the spatial relationship of inaccurate binary codes in Hamming
space, the Hamming distance between neighboring pairs should be reduced and
the Hamming distance between non-neighboring pairs should be increased. We
manage to learn a W which provides similar additional bits to the neighbor-
ing pairs and different additional bits to the non-neighbor pairs. An objective
function measuring the empirical accuracy for the additional hashing functions
[h1, h2, . . . , ht] at each iteration can be defined as:

J(H) =
∑

t

{

∑

(xi,xj)∈N
ht(xi)ht(xj)−

∑

(xi,xj)∈D
ht(xi)ht(xj)

}

, (5)

where t is the length of bits updated at each iteration. We need k/s iterations
to learn all the additional projection directions.

Then, we define a matrix S ∈ R
n×n to incorporate pairwise Hamming ap-

proximation error and the original distance as

Sij =

⎧

⎨

⎩

1 : ErrHa > θ, (xi,xj) ∈ N
−1 : ErrHa > θ, (xi,xj) ∈ D
0 : ErrHa ≤ θ

(6)

Suppose H(X) ∈ R
t×n maps the points in X to t-bit hash codes at each itera-

tion. Then the objective function can be presented as

J(H) =
1

2
tr{H(X)SH(X)�} (7)

that is

J(W ) =
1

2
tr{sgn(W�X)Ssgn(W�X)�} (8)

where X = [x1, x2, . . . , xn], xi ∈ R
d. We learn the optimal hyperplane matrix

W by maximizing objective function J(W ). Since J(W ) is nondifferentiable,
the above problem is difficult to be solved. We present an intuitive relaxation
by replacing the sign of projection with its signed magnitude in Eqn.(7).

J(H) =
∑

t

{

∑

(xi,xj)∈N
w�

t xixj
�wt −

∑

(xi,xj)∈�
w�

t xixj
�wt

}

, (9)

The above function J(W ) can be represented in a matrix form:

J(W ) =
1

2
tr{W�XkSX

�W } (10)
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Algorithm 1. Correctional Hashing

Input:
The set of training sample, X = xi ∈ R

dn
i=1; The set of base binary codes of training

set, Bbase ∈ R
n×b; The length of additional correctional bits, k; The length of bits

updated at each iteration, t; The threshold defining ”neighbor” in Euclidean space,
θeu; The threshold defining the Hamming approximating error, θha
for i = 1, . . . , k/t do

Badd ← Bbase

for j = 1, . . . , n do
for l = 1, . . . , n do

ErrHa ⇐ (d(xj,xl)− dh(B
add
j ,Badd

l ))2

if ErrHa ≤ θha then
Sjl ⇐ 0

else
if d(xj ,xk) ≤ θeu then

Sjl ⇐ 1
else

Sjl ⇐ −1
end if

end if
end for

end for
M ← XSX�;
W = [w1,w2, . . . ,wt] ← the eigenvectors corresponding to top-t eigenvalues of
matrix M ;
Bnew ← W�X ;
Badd ← Badd attach Bnew ,Badd ∈ R

n×(b+t);
end for

Output:
n hash codes Badd ∈ R

n×(b+k);

Then, the objective function is solved by using eigenvalue decomposition on
matrix M = XSX�:

max
W

J(W ) =

t
∑

s=1

λs (11)

where [λ1, λ2, . . . , λt] are the top-t eigenvalues ofM , and wk are the correspond-
ing eigenvectors.

4 Experiments

4.1 Datasets and Protocols

We evaluate our method on the well-recognizedMNIST digit dataset and CIFAR-
10 dataset, and make comparisons with several existing state-of-the-art hash-
based method.



90 Z. Ju et al.

24 32 48 64 96 128
0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of bits

M
A

P

 

 

LSH
CH−LSH

(a) MAP with LSH

24 32 48 64 96 128
0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of bits

M
A

P

 

 

SH
CH−SH

(b) MAP with SH

24 32 48 64 96 128
0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of bits

M
A

P

 

 

ITQ
CH−ITQ

(c) MAP with ITQ

24 32 48 64 96 128
0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of bits

M
A

P

 

 

AGH
CH−AGH

(d) MAP with AGH

Fig. 1. Performance comparison of CH with SH, LSH, ITQ and AGH on MNIST
dataset with Euclidean neighbourhood

MNIST is a well-known greyscale image dataset of handwritten digits con-
sisting of 70,000 784-dimension digit samples from ’0’ to ’9’. The original hand-
writing digit image size is 28× 28 . CIFAR-10 dataset is a labeled subset of an
80-million tiny images collection [18]. It consists of 60,000 32× 32 color images
of 10 classes, each of which has 6,000 images. Each image in CIFAR-10 is repre-
sented by a 512-dimension GIST feature vector [16]. We randomly sample 2,000
images for training and 1000 images for testing for each dataset.

We evaluate our Correctional Hashing(CH) method by comparing the gener-
ated base binary codes with those of other four state-of-the-art methods, that
is, LSH [1], SH [21], ITQ [6] and AGH [12]. For LSH, we randomly select projec-
tions from a Gaussian distribution with zero-mean to construct hash functions.
To run AGH, we take the two-layer AGH(2-AGH) and fix the number of an-
chors as 300. The Correctional Hashing codes consists of base binary codes and
additional codes as:
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Fig. 2. Performance comparison of CH with SH, LSH, ITQ and AGH on CIFAR-10
dataset with Euclidean neighbourhood

Base Bits 16 24 32 48 64 96

Additional Bits 8 8 16 16 32 32

CH Bits 24 32 48 64 96 128

4.2 Result

We compare the codes generated by Correctional Hashing and the other four
methods at the same length. The number of iterations is fixed as 2. The per-
formance is measured by Mean Average Precision (MAP) defined as the mean
precision rate of the Top n points in the ranked list of each testing query. All the
points in the testing set are ranked according to the values of their Hamming
distances to the query point, and top-50 points of the ranked list are taken to
calculate MAP. The complexity of Hamming ranking is linear, but it is ade-
quately fast for binary codes. We query all points in the testing set and list the
mean precisions of them.
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Fig. 3. The 30 nearest neighbors of an example digit output by all tested methods on
the MNIST dataset. The images on the left is the query sample. From top to bottom, it
shows the nearest neighbor samplesof AGH, CH-AGH, ITQ, CH-ITQ, LSH, CH-LSH,
SH and CH-SH using 64-bit codes. The digit in red box is the incorrect result of the
query.

Fig.1 and Fig.2 show the Hamming ranking performance measured by MAP
of Correctional Hashing with LSH [1], SH [21], ITQ [6], AGH [12] on MNIST
and CIFAR-10. The number of binary bits varies from 24 to 128. We take top
50 points to obtain the MAP of Hamming Ranking based on Euclidean neigh-
borhood.

Our method adjusts the Hamming distance between inaccurate pairs so that
the similarity preserving power of binary codes is enhanced. As shown in Fig.1
and Fig.2, our method outperforms other methods on generating base codes. But
in some cases with short bits, our method didn’t perform well, which may caused
by the mediocre performance of its base binary codes. Overall, Correctional
Hashing algorithm obtains higher MAP of Hamming ranking in all the tested
methods.

Moreover, our method also obtains sound results when the ground-truth labels
are used to evaluate semantic consistency of binary codes. We choose MNIST
dataset to present the query result for the convenience of observing. The ad-
jacent two rows are base codes learned by other hashing-based techniques and
its corresponding codes learned by Correctional Hashing, respectively. As shown
in Fig.3, our algorithm promotes the semantic consistency of binary code. The
incorrect digits among the top-30 query results, such as digit 7 and 4 at first
row, have been adjusted to latter position of the rank list. It is safe to make
a conclusion that Correctional Hashing retrieves more accurate than the base
methods and is capable of correcting some inaccurate binary codes.

5 Conclusion

This paper presents a novel binary code learning method via iterative distance
adjustment. Considering the existence of inaccurate mapping between the data
and the mapped Hamming positions, we propose to correct Hamming distance
between inaccurate binary pairs to minimize Hamming approximating error.
Experimental results show that the proposed method improves the hashing per-
formance of the state-of-the-art techniques.
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In the future, we will focus on learning the threshold of Hamming approxi-
mating error to achieve better hash performance.
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