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Additional Linear Modeling Topics

As we noted in Chap. 7, the range of applications and methods in linear modeling
and regression is vast. In this chapter, we discuss four additional topics in linear
modeling that often arise in marketing:

• Handling highly correlated observations, which pose a problem known as
collinearity, as mentioned in Sect. 7.2.1. In Sect. 9.1 we examine the problem
in detail, along with ways to detect and remediate collinearity in a data set.

• Fitting models for yes/no, or binary outcomes, such as purchasing a product. In
Sect. 9.2 we introduce logistic regression models to model binary outcomes and
their correlates.

• Finding a model for the preferences and responses of individuals, not only for
the sample as a whole. In marketing, we often wish to understand individual
consumers and the diversity of behavior and product interest among people. In
Sect. 9.3 we consider hierarchical linear models (HLM) for consumer prefer-
ence in ratings-based conjoint analysis data.

• In marketing, hierarchical models of individual preference are most often es-
timated using Bayesian methods. In Sect. 9.4 we continue the discussion of
HLM by introducing hierarchical Bayesian (HB) methods, and we apply HB
for ratings-based conjoint analysis.

Except for the two HLM sections, these topics are not especially closely related to
one another; unlike other chapters in this book, they may be read independently
within this chapter. Still, each section builds on models presented earlier in the
book and will extend your knowledge of issues and applications for linear modeling.
More importantly, each is a foundational part of a compete toolbox for marketing
analysis.
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226 9 Additional Linear Modeling Topics

9.1 Handling Highly Correlated Variables

We have mentioned several times (as in Sect. 7.2.1) that highly correlated explana-
tory variables cause problems with linear models. In this section, we examine why
that is the case and present strategies to address the problem.

We consider a question that might arise with the retail sales data in Chap. 4, which
simulated 12-month online and in-store transactions by customer (see Sect. 4.1).
The question is this: which variables are most predictive of online spending? If
we wished to increase online spending by customers, which factors might we con-
sider?

9.1.1 An Initial Linear Model of Online Spend

Either create the simulated retail sales data (Sect. 4.1) or load it from the book’s
website:

> cust.df <- read.csv("http://goo.gl/PmPkaG")
> summary(cust.df)

cust.id age credit.score email distance.to.store
Min. : 1.0 Min. :19.34 Min. :543.0 no :186 Min. : 0.2136
1st Qu.: 250.8 1st Qu.:31.43 1st Qu.:691.7 yes:814 1st Qu.: 3.3383

...

Now we use lm() to model spend as a function of all other variables (online.
spend ∼ .). We omit customers with zero online spend; having exactly zero
spend is probably related to different factors than positive spend, and we are in-
terested here in the associations for those who spend anything. We also index [ ,
-1] to omit the customer ID column:

> spend.m1 <- lm(online.spend ∼ .,
+ data=subset(cust.df[ , -1], online.spend > 0))
> summary(spend.m1)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.718948 33.537665 0.200 0.8413
...
online.visits -0.072269 0.204061 -0.354 0.7234
online.trans 20.610744 0.667450 30.880 <2e-16 ***
store.trans 0.135018 3.211943 0.042 0.9665
store.spend 0.001796 0.078732 0.023 0.9818
sat.service 5.638769 3.016181 1.870 0.0623 .
...
Multiple R-squared: 0.9831, Adjusted R-squared: 0.9827

We have omitted much of the summary to show a few key points. First, online spend
is closely related to the number of online transactions (coefficient = 20.6) but not
to the number of online visits. That is puzzling. Second, the model accounts for
almost all the available variance, R2 = 0.98. These results should cause concern.
Because online transactions are dependent on visits, shouldn’t those two variables
show a similar pattern? How could we be so lucky as to fit a model that nearly
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perfectly predicts online spending (insofar as it is assessed by R2)? And notice that
the standard error on store.trans is quite large, showing that its estimate is very
uncertain.

If we turn to data visualization using gpairs() (Sect. 7.2.1), we see some prob-
lems:

> library(gpairs)
> gpairs(cust.df)

The result in Fig. 9.1 shows variables with extreme skew and pairs of variables that
are very highly correlated.

Fig. 9.1. Visualization of the customer data using gpairs(). Several variables have extreme
skew and other pairs are nearly perfectly correlated; both situations pose problems for linear

modeling.

Our first step to remediate the situation is to transform the data using a Box–Cox
transformation. Building on the transformation routines we saw in Sect. 4.5.5, we
write a short function that uses BoxCox.lambda() from the forecast pack-
age to select the transformation lambda automatically [82]. At the same time, we
standardize the data with scale() (Sect. 7.3.3):

> autoTransform <- function(x) {
+ library(forecast)
+ return(scale(BoxCox(x, BoxCox.lambda(x))))
+ }
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We select the complete cases from our data frame, dropping the customer ID column
([, -1]) because it is not a predictor. Then we take only the rows with positive
online spend. We create a vector to index all the columns except email (which
is not numeric), and then lapply() the autoTransform() function to each
numeric column:

> cust.df.bc <- cust.df[complete.cases(cust.df), -1]
> cust.df.bc <- subset(cust.df.bc, online.spend > 0)
> numcols <- which(colnames(cust.df.bc) != "email")
> cust.df.bc[ , numcols] <- lapply(cust.df.bc[ , numcols], autoTransform )

The result is a data frame with standardized, more normally distributed values,
which we can check with summary() and gpairs():

> summary(cust.df.bc) # output not shown
> gpairs(cust.df.bc) # output not shown

We refit the model using the transformed data:

> spend.m2 <- lm(online.spend ∼ ., data=cust.df.bc)
> summary(spend.m2)
...
online.visits -0.0003913 0.0126165 -0.031 0.975
online.trans 0.9960378 0.0126687 78.622 <2e-16 ***
..
Multiple R-squared: 0.9925, Adjusted R-squared: 0.9923

The coefficients are smaller now because the data have been standardized. Trans-
forming and standardizing the data, although a good idea, have not changed the
unbelievable estimate that online spend is highly related to transactions yet unrelated
to visits. Indeed, the full model is no better than one that simply predicts spending
from the number of transactions alone (see Sect. 6.5.1 on using anova() to com-
pare models):

> spend.m3 <- lm(online.spend ∼ online.trans, data=cust.df.bc)
> anova(spend.m3, spend.m2)
...
Res.Df RSS Df Sum of Sq F Pr(>F)

1 416 3.1539
2 407 3.1139 9 0.040001 0.5809 0.8129

The small difference between the model fits is reflected in the high p-value (p =
0.8129), and thus the null hypothesis of no difference between the models cannot
be rejected.

The problem here is collinearity: because visits and transactions are so highly
related, and also because a linear model assumes that effects are additive, an effect
attributed to one variable (such as transactions) is not available in the model to be
attributed jointly to another that is highly correlated (visits). This will cause the stan-
dard errors of the predictors to increase, which means that the coefficient estimates
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will be highly uncertain or unstable. As a practical consequence, this may cause
coefficient estimates to differ dramatically from sample to sample due to minor
variations in the data even when underlying relationships are the same.

9.1.2 Remediating Collinearity

The degree of collinearity in data can be assessed as the variance inflation factor
(VIF). This estimates how much the standard error (variance) of a coefficient in a
linear model is increased because of shared variance with other variables, compared
to the situation if the variables were uncorrelated or simple single predictor regres-
sion were performed.

We assess VIF in the spend.m2 model using vif() from the car pack-
age:

> library(car)
> vif(spend.m2)

age credit.score email distance.to.store
1.094949 1.112784 1.046874 1.297978

online.visits online.trans store.trans store.spend
8.675817 8.747756 125.931383 123.435407

...

A common rule of thumb is that V IF > 5.0 indicates the need to mitigate collinear-
ity. In spend.m2, the VIF suggests that collinearity should be addressed for the
online... and store... variables.

There are three general strategies for mitigating collinearity:

• Omit variables that are highly correlated.

• Eliminate correlation by extracting principal components or factors for sets of
highly correlated predictors (see Chap. 8).

• Use a method that is robust to collinearity, i.e., something other than traditional
linear modeling. There are too many options to consider this possibility exhaus-
tively, but one method to consider would be a random forest approach, which
only uses a subset of variables at a time (see Sect. 11.4.2).

Another option for the present data would be to construct a new measure of interest
that combines the collinear variables (such as spend per transaction). For purposes
here, we explore the first two options above and create models spend.m4 and
spend.m5.

We omit highly correlated variables for model spend.m4 by excluding
online.trans and store.trans, using - in the formula:

> spend.m4 <- lm(online.spend ∼ . -online.trans -store.trans,
+ data=cust.df.bc)
> vif(spend.m4)
...
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online.visits store.spend sat.service sat.selection
1.026148 1.215208 1.507866 1.509001

> summary(spend.m4)
...

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.0923395 0.0435047 -2.123 0.0344 *
age -0.0333779 0.0178813 -1.867 0.0627 .
credit.score -0.0084524 0.0180637 -0.468 0.6401
emailyes 0.1099655 0.0476011 2.310 0.0214 *
distance.to.store 0.0001702 0.0189271 0.009 0.9928
online.visits 0.9295374 0.0174184 53.365 <2e-16 ***
store.spend 0.0092463 0.0189552 0.488 0.6260
...
Multiple R-squared: 0.8791, Adjusted R-squared: 0.8767

The VIF is now acceptable and we see that online visits are now the best predictor
of online spend, although email status and age are also slightly related.

Another approach is to use the principal components of the correlated data. As you
will recall from Chap. 8, principal components are uncorrelated (orthogonal). Thus,
PCA provides a way to extract composite variables that are guaranteed to be free of
collinearity with other variables that are included in the same PCA.

We use PCA to extract the first component for the online variables, and then do
this again for the store variables, and add those two initial components to the data
frame:

> pc.online <- prcomp(cust.df.bc[ , c("online.visits", "online.trans")])
> cust.df.bc$online <- pc.online$x[ , 1]
> pc.store <- prcomp(cust.df.bc[ , c("store.trans", "store.spend")])
> cust.df.bc$store <- pc.store$x[ , 1]

Then we fit a new model:

> spend.m5 <- lm(online.spend ∼ email + age + credit.score +
+ distance.to.store + sat.service +
+ sat.selection + online + store,
+ data=cust.df.bc)
> summary(spend.m5)
...

Estimate Std. Error t value Pr(>|t|)
...
(Intercept) -3.928e-02 2.410e-02 -1.630 0.1039
emailyes 4.678e-02 2.638e-02 1.773 0.0769 .
age -1.695e-02 9.882e-03 -1.715 0.0871 .
...
online -7.019e-01 6.933e-03 -101.247 <2e-16 ***
...
Multiple R-squared: 0.9631, Adjusted R-squared: 0.9623

> vif(spend.m5)
email age credit.score distance.to.store

1.039458 1.081430 1.103206 1.224019
sat.service sat.selection online store

1.508487 1.509001 1.032362 1.228073
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VIF poses no problem in this model, and we see that online spend is still associ-
ated primarily with online activity (as captured in the first component of the PCA
model, online) and perhaps slightly with email status and age. One caution when
interpreting results that use principal components as explanatory variables is that the
components have arbitrary numerical direction; the negative coefficient for online
here does not imply that online activity results in lower sales.

Although this result—that online sales relate primarily to online activity—may at
first appear to be uninteresting, it is better to have an obvious result than an incorrect
result. This result might prompt us to collect other data, such as attitudes about
our website or online shopping, to build a more complete understanding of factors
associated with online spending.

9.2 Linear Models for Binary Outcomes: Logistic Regression

Marketers often observe yes/no outcomes: did a customer purchase a product? Did
she take a test drive? Did she sign up for a credit card, or renew her subscription,
or respond to a promotion? All of these kinds of outcomes are binary because they
have only two possible observed states: yes or no.

At first it is tempting to fit such a model with a typical linear regression model as
we saw in Chap. 7, predicting the outcome (1= yes, 0= no) as a linear combination
of the features. That is not incorrect to do, but a more flexible and useful way to fit
such outcomes is with a logistic model (also called a logit model for reasons we’ll
discuss below).

9.2.1 Basics of the Logistic Regression Model

The core feature of a logistic model is this: it relates the probability of an outcome
to an exponential function of a predictor variable. We’ll illustrate that and show
the formula in a moment, but before examining that, let’s consider why those are
desirable properties and are improvements on a basic linear model.

By modeling the probability of an outcome, a logistic model accomplishes two
things. First, it more directly models what we’re interested in, which is a probability
or proportion, such as the likelihood of a given customer to purchase a product, or
the expected proportion of a segment who will respond to a promotion. Second, it
limits the model to the appropriate range for a proportion, which is [0,1]. A basic
linear model as generated with lm() does not have such a limit and could estimate
a nonsensical probability such as 1.05 or −0.04.
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We ask indulgence to consider the formula here because it is instrumental in under-
standing how the model works. The equation for the logistic function is:

logistic : p(y) =
evx

evx +1
(9.1)

In this equation, the outcome of interest is y, and we compute its likelihood p(y)
as a function of vx. We typically estimate vx as a function of the features (x) of
a product, such as price. vx can take any real value, so we are able to treat it as a
continuous function in a linear model. In that case, vx is composed from one or more
coefficients of the model and indicates the importance of the corresponding features
of the product.

This formula gives a value between [0,1]. The likelihood of y is less than 50 %
when vx is negative, is 50 % when vx = 0, and is above 50 % when vx is positive. We
compute this first by hand, and then switch to the equivalent, built-in plogis()
function:

> exp(0) / (exp(0) + 1) # computing logistic by hand; could use plogis()
[1] 0.5
> plogis(-Inf) # infinitely low = likelihood 0
[1] 0
> plogis(2) # moderate probability = 88% chance of outcome
[1] 0.8807971
> plogis(-0.2) # weak likelihood
[1] 0.450166

Such a model is known as a logit model, which determines the value of vx from the
logarithm of the relative probability of occurrence of y:

logit : vx = log

(
p(y)

1− p(y)

)
(9.2)

Again, R includes a built-in function qlogis() for the logit function:

> log(0.88 / (1-0.88)) # moderate high likelihood
[1] 1.99243
> qlogis(0.88) # equivalent to hand computation
[1] 1.99243

In practice, the expressions logit model and logistic regression are used interchange-
ably.

9.2.2 Data for Logistic Regression of Season Passes

We considered an amusement park example in Chap. 7. Suppose that we now have
data on the sales of season tickets to the park. The data consist of a table of season
ticket pass sales (with values of yes or no), on the basis of two factors: the channel
used to extend the offer (email, postal mail, or in-person at the park) and whether
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it was promoted in a bundle offering the season ticket with another feature such as
free parking, or not. The marketing question is this: are customers more likely to
purchase the season pass when it is offered in the bundle (with free parking), or
not?

In this section, we see how to simulate such data, and how to create a full data frame
from tabulated data. If you wish to load the data from the website instead of working
through the data creation, you can retrieve it with:

> pass.df <- read.csv("http://goo.gl/J8MH6A")
> pass.df$Promo <- factor(pass.df$Promo, levels=c("NoBundle", "Bundle"))
> summary(pass.df)
Channel Promo Pass
Email: 633 NoBundle:1482 NoPass :1567
Mail :1328 Bundle :1674 YesPass:1589
Park :1195

Note that the second command above is required for reasons we describe in
Sect. 9.2.5. Be sure to run it after loading the CSV and check that the summary()
matches the above.

We encourage you to read the rest of this simulation section and the R language
lessons it contains. But if you loaded the data and prefer to skip ahead to analysis,
you could continue with Sect. 9.2.6.

9.2.3 Sales Table Data

Suppose that we have been given sales data as shown in Table 9.1.

Table 9.1. Counts of sales of season tickets broken out by promotion status (bundled or not
bundled with a promotion), and channel by which a customer was reached (mail, at the park,

by email)

Bought season pass (count)
Bundle NoBundle

Mail 242 359
Park 639 284

Email 38 27

Did not buy season pass (count)
Bundle NoBundle

Mail 449 278
Park 223 49

Email 83 485

There are several ways to analyze tabular data as shown in Table 9.1, including chi-
square analysis (Sect. 6.2), but a versatile approach when the data set is not too large
is to convert it to long form and recreate a data frame of individual observations.
This lets us use a full range of approaches such as linear modeling with minimal
hassle.
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To convert the data into such format, we first recreate the cross-tab data table in R.
We begin this by reading the values from Table 9.1 one column and row at a time,
putting them into a vector:

> pass.tab <- c(242, 639, 38, 359, 284, 27, 449, 223, 83, 278, 49, 485)

Next we add dimensions to the vector, which reformats it as a 3× 2× 2 array, and
set it to be an object of class "table":

> dim(pass.tab) <- c(3, 2, 2)
> class(pass.tab) <- "table"

We add the marginal labels to the table by setting its dimnames attribute:

> dimnames(pass.tab) <- list(Channel=c("Mail", "Park", "Email"),
+ Promo=c("Bundle", "NoBundle"),
+ Pass=c("YesPass", "NoPass") )

We describe more about class, table, and dimnames in optional Sect. 9.2.4
below. For now, we inspect the resulting table and confirm that it matches
Table 9.1:

> pass.tab
, , Pass = YesPass

Promo
Channel Bundle NoBundle
Mail 242 359
Park 639 284
Email 38 27

...

We now have the data in R and are ready to create a full data frame from the table.
Before that, we take a brief detour into the R language to understand the commands
we just used.

9.2.4 Language Brief: Classes and Attributes of Objects*

In this optional section, we explore how the R language understands data types. If
you just want to continue with the logistic regression model, you could skip ahead
to Sect. 9.2.5.

Every object in R has an associated class, which functions use to determine how
to handle the object. For example, a vector of real numbers has a class of numeric,
while a data frame is a data.frame. The class of an object may be inspected
directly by class():

> class(c(1, pi, exp(1)))
[1] "numeric"
> class(data.frame(1:10))
[1] "data.frame"
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When we examine str(), the first thing listed is the class of the object and its raw
values:

> str(pass.tab)
table [1:3, 1:2, 1:2] 242 639 38 359 284 27 449 223 83 278 ...
- attr(*, "dimnames")=List of 3
..$ Channel: chr [1:3] "Mail" "Park" "Email"
..$ Promo : chr [1:2] "Bundle" "NoBundle"
..$ Pass : chr [1:2] "YesPass" "NoPass"

This code shows that pass.tab is an object of class table that comprises values
242 639 ....

The is.*() set of functions tests whether an object is of some class (abbreviated
here with *). For example:

> is.table(pass.tab)
[1] TRUE
> is.character(pass.tab)
[1] FALSE

Class membership is non-exclusive. For example, tables are composed of counts,
and counts are numeric:

> is.numeric(pass.tab)
[1] TRUE

The as.*() functions attempt to treat (convert, or coerce) objects as other
classes:

> as.numeric(pass.tab)
[1] 242 639 38 359 284 27 449 223 83 278 49 485

> as.character(pass.tab)
[1] "242" "639" "38" "359" "284" "27" "449" "223" "83" "278" "49" "485"

This shows how we could extract the vector of counts from our park table, and how
we might reformat them as character strings for printing, chart labeling, and similar
purposes.

In addition to class, objects can have other attributes. An attribute is a property
of an object other than its data, and typically tells R something important about the
object. Common attributes that we have used throughout the book are names for the
names of columns, dim for the dimensions of a matrix or data frame, and class
to specify the type of object. Each of these can be queried for an object:

> names(pass.tab)
NULL
> dim(pass.tab)
[1] 3 2 2
> class(pass.tab)
[1] "table"
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In this case, the names for pass.tab are NULL because it is not a data frame
or other object for which names are useful. However, we see that it has dim and
class attributes. A table also has names for its rows and columns, which are known
as dimnames:

> dimnames(pass.tab)
$Channel
[1] "Mail" "Park" "Email"
$Promo
[1] "Bundle" "NoBundle"
...

Thus, Channel, the first dimension of the table, has elements "Mail", "Park",
and "Email".

You can see all the attributes of an object with attributes():

> attributes(pass.tab)
$dim
[1] 3 2 2
$class
[1] "table"
...

Attributes may be changed using the assignment operator (<-). We often use this
feature to set names of data frames, using names(DATA) <- c("name1",
"name2", ...). In the code above, we converted pass.tab from a simple
vector to a table by assigning class(pass.tab) <- "table" and setting its
dim attribute. As you might imagine, this must be done very carefully! Setting an
inappropriate class or dimension of an object will render it useless (but you can
usually just change it back to make things work again).

We’ll see another use for classes in Sect. 12.3.3, where we use objects’ classes to de-
termine how to handle multiple data types inside a function. To learn more about the
R class and attribute system, review the R language reference [128] and Wickham’s
Advanced R [163].

9.2.5 Finalizing the Data

We have the data in a table pass.tab, which is suitable for analysis as is. How-
ever, because most data sets come in the form of an extended data frame with one
observation per respondent, we expand it from a table to a complete data frame so
the analysis will match typical data structures.
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We use expand.dft() from the vcdExtra package [56] to expand the table to
a data frame:

> library(vcdExtra) # install if needed
> pass.df <- expand.dft(pass.tab)
> str(pass.df)
’data.frame’: 3156 obs. of 3 variables:
$ Channel: Factor w/ 3 levels "Email","Mail",..: 2 2 2 2 2 2 2 2 2 2 ...
$ Promo : Factor w/ 2 levels "Bundle","NoBundle": 1 1 1 1 1 1 1 1 1 1 ...
$ Pass : Factor w/ 2 levels "NoPass","YesPass": 2 2 2 2 2 2 2 2 2 2 ...

We now have a data frame with 3,156 observations for whether a customer purchases
a Pass, by Channel, with and without promotion (Promo).

We can use table() on this data to create cross-tabs other than those in Ta-
ble 9.1. For example, to see purchases of a pass (Pass) by promotion bundle
(Promo):

> table(pass.df$Pass, pass.df$Promo)
Bundle NoBundle

NoPass 755 812
YesPass 919 670

Statistical modeling is a detail-oriented process, and before building a model from
the data, there is one minor detail to attend to: the factors in pass.df are
alphabetized—which is how R handles factor names by default—but that is counter-
intuitive. We might think that NoBundle should have a lower implicit value (such
as “bundle = 0”) than Bundle (which might be “bundle = 1”). However, in the
table we just saw, NoBundle appears in the second column because it has a higher
value thanks to alphabetic ordering.

In a regression model, that would mean that a positive effect of Bundlewould have
a negative value (think about it). Rather than having to remember such convoluted
logic (“we see a negative effect for no bundle, which really means a positive effect
for bundle after we reverse the signs . . . ”), it is easier just to set the order straight
by reassigning that variable with the factor levels in the order we want:

> pass.df$Promo <- factor(pass.df$Promo, levels=c("NoBundle", "Bundle"))
> table(pass.df$Pass, pass.df$Promo)

NoBundle Bundle
NoPass 812 755
YesPass 670 919

With the data ordered sensibly (Bundle > NoBundle, YesPass > NoPass), we pro-
ceed with modeling.

9.2.6 Fitting a Logistic Regression Model

A logistic regression model in R is fit as a generalized linear model (GLM) using
a process similar to linear regression that we saw in Chap. 7 with lm(), but with
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the difference that a GLM can handle dependent variables that are not normally
distributed. Thus, GLM can be used to model data counts (such as number of pur-
chases) or time intervals (such as time spent on a website) or binary variables (e.g.,
did/didn’t purchase). The common feature of all GLM models is that they relate
normally distributed predictors to a non-normal outcome using a function known as
a link. This means that they are able to fit models for many different distributions
using a single, consistent framework.

In the present case, we model a binary outcome, and the appropriate distribution is a
binomial distribution (see Sect. 6.3). There are multiple functions and packages that
can estimate a GLM in R, but the most common is the glm(...) function. glm()
takes an argument family= that specifies the distribution for the outcome variable.
For a binary outcome, set family=binomial. The default link function for a bi-
nomial model is the logit function that we saw in Sect. 9.2.1, so we do not have
to specify that. (But, as an example, if we wished to use a probit link function in-
stead, we could specify family=binomial(link="probit"), and similarly
for other link functions.)

Our marketing question was, “does the promotion bundle have an effect on sea-
son pass sales?” and we model this initially with a logistic regression of Pass on
Promo, using glm(..., family=binomial) and syntax otherwise identical
to lm():

> pass.m1 <- glm(Pass ∼ Promo, data=pass.df, family=binomial)

The initial model appears to confirm that the bundle is effective:

> summary(pass.m1)
...
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.19222 0.05219 -3.683 0.000231 ***
PromoBundle 0.38879 0.07167 5.425 5.81e-08 ***
...

There is a positive coefficient for the bundle condition, and the effect is statistically
significant.

What does a coefficient of 0.3888 mean? We can use it to calculate the association
of pass sales, as associated with the promotion bundle factor, by examining the ratio
of success (using plogis()) to non-success (1− success). A manual way to do
this is to use plogis() directly:

> plogis(0.3888) / (1-plogis(0.3888)) # ratio of outcome % to alternative %
[1] 1.475209

This shows that the effect of Bundle is an estimated odds ratio of 1.475, meaning
that customers are 1.475 times more likely to purchase the pass when it is offered
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in the bundle. Another way to think about this is that the bundle increases the pur-
chase likelihood by 47.5 %. An easier and equivalent way to calculate this is to
exponentiate the coefficient:

> exp(0.3888) # identical
[1] 1.475209

We can find the odds ratios from the model by extracting the coefficients with
coef() and using exp():

> exp(coef(pass.m1))
(Intercept) PromoBundle
0.8251232 1.4751962

We can obtain a confidence interval for the odds ratio using exp(confint
(model)):

> exp(confint(pass.m1))
2.5 % 97.5 %

(Intercept) 0.744749 0.9138654
PromoBundle 1.282055 1.6979776

The odds ratio for the promotion bundle is estimated to be 1.28–1.70, a significant
positive effect. This demonstrates that the promotion is highly effective, right? Not
necessarily, because the effects are estimated under the assumption that the model
is the one we want to interpret. But is the model Pass ∼ Promo really the one
we should interpret?

9.2.7 Reconsidering the Model

If we explore the data further, we notice something interesting. Consider a table of
season pass purchases by channel:

> table(pass.df$Pass, pass.df$Channel)
Email Mail Park

NoPass 568 727 272
YesPass 65 601 923

The channel that was most successful in selling season tickets was at the park, re-
gardless of whether the promotion was offered.

A good way to visualize tables is with mosaic plots, which lay out “tiles” whose
areas correspond to counts in a table. The vcd package [113] provides several ways
to create mosaic plots (including the rather obvious mosaic() function). We use
a so-called doubledecker plot here as it makes the relationships particularly clear in
the present data:

> library(vcd) # install if needed
> doubledecker(table(pass.df))



240 9 Additional Linear Modeling Topics

The result is shown in Fig. 9.2, where we see that the three channels have some-
what different effects. Sales of season passes are very successful at the park, and
very unsuccessful by email. This implies that our model Pass ∼ Promo may be
inadequate and needs to account for the effect of Channel.

Channel
Promo

Email
NoBundle Bun

Mail
NoBundle Bundle

Park
NoBundle Bundle

YesPass

NoPass

Pass

Fig. 9.2. A mosaic plot created with doubledecker() [113] for sales of season passes
by channel and promotion in simulated amusement park data. Season passes (“YesPass,”
plotted as dark areas) are sold most frequently at the park and least frequently by email.
The promotion bundle (“Bundle,” the second column within each channel) is associated with
higher sales through the email channel, but lower sales in regular mail and at the park, thus

showing an interaction effect.

We model a main effect of channel by adding + Channel to the model
formula:
> pass.m2 <- glm(Pass ∼ Promo + Channel, data=pass.df, family=binomial)
> summary(pass.m2)
...

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.07860 0.13167 -15.787 < 2e-16 ***
PromoBundle -0.56022 0.09031 -6.203 5.54e-10 ***
ChannelMail 2.17617 0.14651 14.854 < 2e-16 ***
ChannelPark 3.72176 0.15964 23.313 < 2e-16 ***
...

The resulting model now estimates a strong negative contribution of the promotion
bundle. We compute the odds ratios and their confidence intervals:

> exp(coef(pass.m2))
(Intercept) PromoBundle ChannelMail ChannelPark
0.1251054 0.5710846 8.8125066 41.3371206

> exp(confint(pass.m2))
...

2.5 % 97.5 %
PromoBundle 0.47793969 0.6810148
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ChannelMail 6.65770550 11.8328173
ChannelPark 30.42959274 56.9295369

In this model, promotion is associated with a 32–53 % lower likelihood of purchas-
ing a season pass. On the other hand, offers in person at the park are associated with
season ticket sales 30–56× higher in this model.

But is this the appropriate model? Should we also consider an interaction effect,
where Promo might have a different effect by Channel? Our data exploration
suggests a possible interaction effect, especially because of the dramatically differ-
ent pattern for the influence of Bundle in the Email channel in Fig. 9.2.

We add an interaction term using the : operator, as noted in Sect. 7.5:

> pass.m3 <- glm(Pass ∼ Promo + Channel + Promo:Channel,
+ data=pass.df, family=binomial)
> summary(pass.m3)
...

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.8883 0.1977 -14.608 < 2e-16 ***
PromoBundle 2.1071 0.2783 7.571 3.71e-14 ***
ChannelMail 3.1440 0.2133 14.743 < 2e-16 ***
ChannelPark 4.6455 0.2510 18.504 < 2e-16 ***
PromoBundle:ChannelMail -2.9808 0.3003 -9.925 < 2e-16 ***
PromoBundle:ChannelPark -2.8115 0.3278 -8.577 < 2e-16 ***
...

The interaction of promotion with channel is statistically significant, and is strongly
negative for the mail and in-park channels, as opposed to the baseline (omitted)
email channel in these simulated data.

In the odds ratios, we see that the promotion is only 2–11 % as effective through the
mail and in-park channels as it is in email:

> exp(confint(pass.m3))
Waiting for profiling to be done...

2.5 % 97.5 %
...
PromoBundle:ChannelMail 0.02795867 0.09102369
PromoBundle:ChannelPark 0.03135437 0.11360965

We now have a much better answer to our question. Is the promotion bundle effec-
tive? It depends on channel. There is good reason to continue the promotion cam-
paign by email, but its success there does not necessarily imply success at the park
or through a regular mail campaign. In case you’re wondering how the statistical
model is advantageous to simply interpreting Fig. 9.2, one answer is that the model
estimates confidence intervals and statistical significance for the effect.
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9.2.8 Additional Discussion

Before moving to the topic of hierarchical models, we have a few observations for
the current section:

• Although we performed logistic regression here with categorical predictors
(factor variables) due to the structure of the amusement park sales data, we
could also use continuous predictors in glm(). Just add those to the right-hand
side of the model formula as we did with lm() in Chap. 7.

• We saw that the estimated effect of promotion in these data was positive when
we estimated one model, yet negative when we estimated another, and this
shows that it is crucial to explore data thoroughly before modeling or interpret-
ing a model. For most marketing data, no model is ever definitive. However,
through careful data exploration and consideration of multiple models, we may
increase our confidence in our models and the inferences drawn from them.

• The data here are an example of Simpson’s paradox, which is when the estimate
of an aggregate effect is misleading and markedly different than the effect seen
in underlying categories. A famous example occurred in graduate admissions
at the University of California at Berkeley, where an apparent bias in admis-
sions was due instead to the fact that different departments had different overall
admission rates and numbers of applicants [12]. In R, the Berkeley data are
available as the table UCBAdmissions in the standard datasets package.

Logistic regression is powerful method and one that is a particularly good fit for
many marketing problems that have binary outcomes. To learn more, see Sect. 9.6.
For modeling product choice among sets of alternatives, we cover choice models in
Chap. 13.

9.3 Hierarchical Linear Models

In Chap. 7 we saw how to estimate a linear model for data for a sample of respon-
dents. What if we want to estimate the values in the model for each respondent? As
marketers, it can be very useful to determine individual-level effects such as which
customers are more interested in a product or service, who among them want which
features, and who are most or less sensitive to price. We can use such information
to see the diversity of preference or for purposes such as customer targeting or seg-
mentation (see Chap. 11).

To estimate both a population-level effect and an individual-level effect, we can use
a hierarchical linear model (HLM). The model is hierarchical because it proposes
that individual effects follow a distribution across the population. There are various
algorithms to fit such models, but the general approach is that the algorithm fits
the overall model to all the data, and then attempts to determine best fit for each
individual within that overall estimate (and repeats as necessary).
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In general, a data set for HLM at an individual level needs multiple observations
per individual. Such observations may come from responses over time (as in trans-
actions or a customer relationship management system (CRM)) or from multiple
responses at one time (as in a survey with repeated measures). We consider the case
of conjoint analysis, where a respondent rates multiple items on a survey at one
time.

How is this different from simply adding the individual, store, or other grouping
variable as a factor variable in the model? The key difference is that a factor vari-
able would add a single term that adjusts the model up or down according to the
individual. In HLM, however, we can estimate every coefficient—or any that we
wish—for each individual.

There are other uses for hierarchical models besides customer-level estimation. For
example, one might wish to estimate differences by a factor such as geographic
region, store, salesperson, product, or promotion campaign. Each of these might
provide many responses that could be grouped and allow estimation of a group-
level effect within an overall hierarchy. We can’t cover every application of HLM
here—hierarchical models are the subject of entire books (e.g., Gelman and Hill
[60])—yet we hope this discussion will help you to understand when and how they
may be useful, and how to begin with them in R.

9.3.1 Some HLM Concepts

A few words of jargon are required. Hierarchical models distinguish two types of
effects. One type is fixed effects, which are effects that are the same for every respon-
dent. In a standard linear model (Chap. 7) all effects are fixed effects. For instance,
in Sect. 9.1.2, we saw that online spend was highly associated with online transac-
tions and slightly associated with age. Both of those estimates are fixed effects that
predict the same pattern of association for everyone in the sample.

An HLM also estimates random effects, which are additional adjustments to the
model coefficients estimated for each individual (or group). These are known as
“random” because they are estimated as random variables that follow a distribution
around the fixed estimates. However, for the estimate of each individual, they are
best estimates according to the model, not random guesses in that sense.

Such models are also known as multilevel models, where individuals and the full
sample are at different levels. They are a subset of models known as mixed effect
models, where mixed reflects the fact that the total effect for each respondent has (at
least) two effects that are combined: the overall fixed effect plus the individual-level
random effect.

A final variation on mixed effects models is a nested model, where a factor of in-
terest might occur only within subgroups of the total sample. For example, if we
consider sales in response to different promotions that each occur at different stores,
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we might model both the effect of store (as a random effect, such that there are dif-
ferent sales intercepts for different stores) and the effect of promotion within store
as a nested effect. We do not examine a nested model here, yet they may also be fit
using the lme4 package used below.

9.3.2 Ratings-Based Conjoint Analysis for the Amusement Park

For a hierarchical model, we return to the fictional amusement park from Sect. 7.1.
The park is now considering designs for a new roller coaster and hopes to find out
which roller coaster features appeal to its customers. They are considering coasters
with various possible levels of maximum speed (40, 50, 60 or 70 mph), height (200,
300, or 400 ft), construction type (wood or steel), and theme (dragon or eagle). The
stakeholders wish to know which combination of features would be most popular
according to customers’ stated preference.

One way to examine this is a survey that asks customers to rate different roller coast-
ers (illustrated with photographs or videos for more realism). For example:

On a 10-point scale, where 10 is the best and 1 is the worst, how would you rate a roller
coaster that is made of wood, is 400 ft high, has a maximum speed of 50 mph, with a
dragon theme?

Customers’ ratings could be analyzed with a linear model where the ratings are
predicted from the different features of the roller coasters. This would tell us the
contribution of each feature to the total rating.

Additionally, we wish to understand these preferences at an individual level, such
that we can see the distribution of preference or identify individuals for potential
marketing actions. To do this, we use a HLM that estimates both the overall fixed
effect and the individual-level random effect.

In the following section we simulate consumers’ ratings for such a survey. The code
is brief and illustrative of the data, but if you wish to skip the simulation, you can
load the data from the book’s website:

> conjoint.df <- read.csv("http://goo.gl/G8knGV")
> conjoint.df$speed <- factor(conjoint.df$speed)
> conjoint.df$height <- factor(conjoint.df$height)
> summary(conjoint.df)

resp.id rating speed height const
Min. : 1.00 Min. : 1.000 40: 800 200:1400 Steel:1400
1st Qu.: 50.75 1st Qu.: 3.000 50:1200 300:1200 Wood :1800

...

Given this data, you may skip to Sect. 9.3.4.
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9.3.3 Simulating Ratings-Based Conjoint Data

In this section we simulate responses for a hypothetical conjoint analysis survey
with 200 respondents who each rate the same set of 16 roller coaster profiles. If you
have worked through the data simulation in previous chapters, this code should be
relatively simple in structure, although a few functions are new.

We set the structure: 200 respondents who rate 16 designs, each with 4 roller coaster
attributes:

> set.seed(12814)
> resp.id <- 1:200 # respondent ids
> nques <- 16 # number of conjoint ratings per respondent
> speed <- sample(as.factor(c("40", "50", "60", "70")), size=nques,
+ replace=TRUE)
> height <- sample(as.factor(c("200", "300", "400")), size=nques, replace=TRUE)
> const <- sample(as.factor(c("Wood", "Steel")), size= nques, replace=TRUE)
> theme <- sample(as.factor(c("Dragon", "Eagle")), size=nques, replace=TRUE)

In this example we assume that all respondents rate the same set of designs. De-
pending on your study’s goal, you might instead want to have a different, random
set for each respondent. A single set of designs is convenient for printed surveys,
while an online study could easily have a different set for every respondent; we will
see an example in Chap. 13.

Next we create a model matrix for the combinations of features to rate. We draw
multivariate random normal values for respondents’ preferences using mvrnorm()
from the MASS package [157]:

> profiles.df <- data.frame(speed, height, const, theme)
> profiles.model <- model.matrix(∼ speed + height + const + theme,
+ data=profiles.df)
> library(MASS) # a standard library in R
> weights <- mvrnorm(length(resp.id),
+ mu=c(-3, 0.5, 1, 3, 2, 1, 0, -0.5),
+ Sigma=diag(c(0.2, 0.1, 0.1, 0.1, 0.2, 0.3, 1, 1)))

model.matrix() converts the list of design attributes (profiles.df) into
coded variables; it is similarly used by functions such as lm() to convert factors
into variables for regression equations. You can compare profiles.model to
profiles.df to see how this works. We use mvrnorm() to draw unique pref-
erence weights for each respondent. Estimating those later is the key feature that
distinguishes a hierarchical model from a standard linear model.

Given the designs to be rated and individuals’ preferences, we compile the simu-
lated individual ratings. For each respondent, we multiply the preference weights
by the design matrix to get the total preference (utility) for each design, adding
some random noise with rnorm(). We convert the utility to a 10-point rating scale
using cut() (see Sect. 12.4.1), and add the respondent’s result to the overall data
frame:
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> conjoint.df <- NULL # make sure there’s no data yet
> for (i in seq_along(resp.id)) {
+ # create one respondent’s ratings of the 16 items, plus error
+ utility <- profiles.model %*% weights[i, ] + rnorm(16) # preference
+ rating <- as.numeric(cut(utility, 10)) # put on a 10-point scale
+ conjoint.resp <- cbind(resp.id=rep(i, nques), rating, profiles.df)
+ conjoint.df <- rbind(conjoint.df, conjoint.resp)
+ }

Building a data frame using rbind() repeatedly instead of preallocating a whole
matrix is not efficient, but it is easy to understand and it is fast enough for this data
set. For large data sets, it would be better to preallocate the data frame for the size
needed and fill in the rows. With a bit of matrix manipulation, one might instead
create the whole data frame at once; but a simple, readable method like the one here
may be more effective overall if it’s easier and more reliable to code.

9.3.4 An Initial Linear Model

We begin as always with a quick summary of our conjoint data to check it (create
or load the data as described in Sect. 9.3.2 if needed):

> summary(conjoint.df)
resp.id rating speed height const

Min. : 1.00 Min. : 1.000 40: 800 200:1400 Steel:1400
1st Qu.: 50.75 1st Qu.: 3.000 50:1200 300:1200 Wood :1800

...

Ratings of the designs range from 1 (strongly disprefer) to 10 (strong prefer). We
also see the counts of the features that were shown in various combinations: speed,
height, const, and theme.

Our goal is to determine how the four features relate to the ratings. At an aggregate
level, we might use by() to find the average rating for levels of each attribute. For
example, the averages by height are:

> by(conjoint.df$rating, conjoint.df$height, mean)
conjoint.df$height: 200
[1] 3.657857
-------------------------------------------------------------
conjoint.df$height: 300
[1] 7.254167
-------------------------------------------------------------
conjoint.df$height: 400
[1] 5.05

The average rating for designs with 300 foot height is 7.25 points on the 10-point
scale, compared to 3.66 and 5.05 for heights of 200 and 400 ft. So, respondents
prefer the middle of our height range.
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We could examine each individual feature in that way, but a more comprehen-
sive linear model considers all of the effects in combination. To start, we’ll
estimate a regular linear model without a hierarchical component using lm()
(Chap. 7):

> ride.lm <- lm(rating ∼ speed + height + const + theme, data=conjoint.df)
> summary(ride.lm)
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.07307 0.08102 37.932 < 2e-16 ***
speed50 0.82077 0.10922 7.515 7.35e-14 ***
speed60 1.57443 0.12774 12.326 < 2e-16 ***
speed70 4.48697 0.15087 29.740 < 2e-16 ***
height300 2.94551 0.09077 32.452 < 2e-16 ***
height400 1.44738 0.12759 11.344 < 2e-16 ***
constWood -0.11826 0.11191 -1.057 0.291
themeEagle -0.75454 0.11186 -6.745 1.81e-11 ***
...

In this abbreviated output, the coefficients indicate the association with preference
(the rating). The highest rated roller coaster on average would have a top speed
of 70 mph, a height of 300 ft, steel construction, and the dragon theme (steel and
dragon because wood and eagle have negative values). We estimate an overall rating
for this most-desired coaster; it would be the intercept + speed70 + height300 (steel
and dragon are included in the intercept), or 3.07+ 4.49+ 2.94 = 10.46 points on
our 10-point rating scale.

But wait! That’s not possible; our scale is capped at 10 points. This shows that
simply interpreting the “average” result can be misleading. The coefficients are es-
timated on the basis of designs that mostly combine both desirable and undesirable
attributes, and are not as reliable at the extremes of preference. Additionally, it could
happen that few people prefer that exact combination even though the individual
features are each best on average.

Consider that the coefficient for constWood is near zero. Are people indifferent
between wood and steel coasters, or do they have strong preferences that cancel
out when averaged? If people are strongly but almost equally divided, that’s im-
portant for us to know as marketers; it might suggest that we construct different
rides that appeal to two different groups. On the other hand, if they are truly in-
different, we could choose between steel and wood on the basis of cost and other
factors.

To understand our respondents better, we turn next to a hierarchical model that will
estimate both the overall average preference level and individual preferences within
the group.
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9.3.5 Hierarchical Linear Model with lme4

The linear model ride.lm has only fixed effects that are estimated at the sample
level. In an HLM, we add one or more individual-level effects to those.

The simplest HLM allows individuals to vary only in terms of the constant inter-
cept. For example, we might expect that individuals vary in their usage of a rating
scale such that some will rate our roller coaster designs higher or lower than the av-
erage respondent. This would be an individual-level random effect for the intercept
term.

To estimate an HLM with fixed effects plus a per-respondent intercept, we change
the lm() model from above in three ways. First, instead of lm(), we use a hierar-
chical estimation function, lmer() from the lme4 package [8].

Second, in the formula for lmer(), we specify the term(s) for which to estimate
random effects. For the intercept, that is signified as simply “1”. Third, we specify
the grouping variable, for which a random effect will be estimated for each unique
group. In our conjoint data, the group in the set of responses for a single respondent,
which is identified in the data frame by respondent number, resp.id. With lme4,
we specify the random effect and grouping variable with syntax using a vertical bar
(“|”) as + (predictors | group), or in this case for the intercept only, +
(1 | resp.id).

We estimate this model using lme4, where the only difference from the call to
lm() above is the addition of a term for random intercept by respondent:

> library(lme4)
> ride.hlm1 <- lmer(rating ∼ speed + height + const + theme + (1 | resp.id),
+ data=conjoint.df)
> summary(ride.hlm1)
...
Scaled residuals:

Min 1Q Median 3Q Max
-3.3970 -0.6963 0.0006 0.6700 3.3689

Random effects:
Groups Name Variance Std.Dev.
resp.id (Intercept) 0.3352 0.5789
Residual 3.5358 1.8804

Number of obs: 3200, groups: resp.id, 200

Fixed effects:
Estimate Std. Error t value

(Intercept) 3.07307 0.08759 35.08
speed50 0.82077 0.10439 7.86
speed60 1.57443 0.12209 12.90
speed70 4.48697 0.14421 31.11
height300 2.94551 0.08676 33.95
height400 1.44738 0.12195 11.87
constWood -0.11826 0.10696 -1.11
themeEagle -0.75454 0.10692 -7.06
...



9.3 Hierarchical Linear Models 249

In this output, we see that the fixed effects are identical to those estimated by lm()
above. But now we have also estimated a unique intercept term adjustment for each
respondent. The output section labeled “Random effects” shows 3,200 total obser-
vations (survey questions) grouped into 200 respondents for which a random effect
was estimated (such as the effect for (Intercept)).

fixef() is an easy way to extract just the fixed (population level) effects:

> fixef(ride.hlm1)
(Intercept) speed50 speed60 speed70 height300 height400 ...
3.0730724 0.8207718 1.5744257 4.4869715 2.9455084 1.4473848 ...

The 200 per-respondent random effect estimates for intercept, which summary
(ride.hlm1) does not display because there could be many of them, are accessed
with ranef() (and we additionally use head() to shorten the output):

> head(ranef(ride.hlm1)$resp.id)
(Intercept)

1 -0.65085634
2 -0.04821158
3 -0.31186866
...

The complete effect for each respondent comprises the overall fixed effects that
apply to everyone, plus the individually varying random effects (in this case, just
the intercept). Those are accessed using coef():

> head(coef(ride.hlm1)$resp.id)
(Intercept) speed50 speed60 speed70 height300 height400 constWood ...

1 2.422216 0.8207718 1.574426 4.486971 2.945508 1.447385 -0.1182553 ...
2 3.024861 0.8207718 1.574426 4.486971 2.945508 1.447385 -0.1182553 ...
3 2.761204 0.8207718 1.574426 4.486971 2.945508 1.447385 -0.1182553 ...
...

It is possible to estimate random effects for multiple grouping factors (hierarchi-
cal levels), so these effects must be extracted for the grouping level of interest by
selecting the coefficient matrix named $resp.id.

In coef(ride.hlm1)$resp.id, each respondent has the overall sample-level
value of the effect on all coefficients except for intercept, and the final intercept
coefficient is the same as the fixed effect plus the random effect. For example, for
respondent 1, the intercept is 3.07(fixef)−0.65(ranef) = 2.42(coef).

9.3.6 The Complete Hierarchical Linear Model

The most common hierarchical model in marketing practice is to estimate a random
effect parameter for every coefficient of interest for every respondent. This is easy
to do with the lme4 syntax; simply add all the variables of interest to the predictors
in the random effects specification (predictors | group).
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For the conjoint data, we write the random effects part of the formula as (speed
+ height + const + theme | resp.id). Before estimating that model,
we should note that this is a much more complex model than the intercept model
above. Whereas the random intercept-only HLM estimated 8 fixed parameters and
200 random effects, the full model will estimate 8 fixed effects plus 8∗200 random
effects. And it will do this for a total data frame of 3,200 observations.

This fact has two implications. First, the estimation can be rather slow, taking sev-
eral minutes for the present model at the time of writing. Second, there are so many
parameters that even 3,200 observations is not a lot, and one can expect some diffi-
culty finding a stable converged model.

With those facts in mind, we estimate the full model as follows (this will take some
time, perhaps several minutes):
> ride.hlm2 <- lmer(rating ∼ speed + height + const + theme +
+ (speed + height + const + theme | resp.id),
+ data=conjoint.df,
+ control=lmerControl(optCtrl=list(maxfun=100000)))

Compared to model ride.hlm1 above, this model has two changes. First, we
added all four roller coaster factors to be estimated for random effects. Second, we
added a control argument to lmer(), which increases the maxfun number of
iterations to attempt convergence from 10,000 iterations (the default) to 100,000.
This allows the model to converge better, although still not completely as we see in
the resulting warnings when it finishes:
Warning messages:
1: In optwrap(optimizer, devfun, getStart(start, rho$lower, rho$pp) ...
2: In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv ...

Despite the warnings, we proceed with data analysis here because it is quite slow
to run the model to convergence and the exact results are for illustration, not for an
important business decision. For a model of importance, we recommend to run to
convergence whenever possible.

If you run into warnings, we suggest five potential remedies. First, increase the
control maxfun argument by a factor of 2, 5, or 10 to see if convergence re-
sults (and repeat that if necessary). Second, check whether the max|grad| (max-
imum absolute value of the gradient in the optimization function; cf. [8]) is small,
such as max < 0.001; if so, you may be okay. Alternatively, if max >> .01, such
as max = 0.10, increase the iterations. Third, do a web search for the warnings you
receive and consider the suggestions offered on R discussion forums. Fourth, con-
sider using a different optimization function (see lme4 documentation [8]). Fifth,
consider collecting more data, or evaluate your data for internal consistency. Again,
we skip these steps now primarily for convenience.

Fixed effects are extracted with fixef():
> fixef(ride.hlm2)
(Intercept) speed50 speed60 speed70 height300 height400 ...
3.0730724 0.8207718 1.5744257 4.4869715 2.9455084 1.4473848 ...
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This part of the ride.hlm2 model is identical to the model estimated for
ride.hlm1 above, so the coefficients are identical.

The random effects now include an estimate for each parameter for each respon-
dent. Again, because we grouped by resp.id and could have had multiple
grouping factors, we request the $resp.id portion of the random effects using
ranef():

> head(ranef(ride.hlm2)$resp.id)
(Intercept) speed50 speed60 speed70 height300

1 -1.1199673 -0.20603467 -0.12507535 0.10294883 0.10742700
2 -1.0104334 0.24975368 -0.08225264 0.16262789 0.05610339
3 -1.0352111 -0.21870984 0.31082035 -0.29288693 0.34166296
...

Notice that the random intercepts are no longer identical to those estimated in model
ride.hlm1, because we added seven explanatory variables and the predicted out-
come rating points are distributed differently across the predictors.

We obtain the total coefficients per respondent with coef():
> head(coef(ride.hlm2)$resp.id)
(Intercept) speed50 speed60 speed70 height300 height400 constWood

1 1.953105 0.6147371 1.449350 4.589920 3.052935 1.4473264 0.1060510
2 2.062639 1.0705254 1.492173 4.649599 3.001612 2.5206374 1.4178018
3 2.037861 0.6020619 1.885246 4.194085 3.287171 1.3337777 0.4858052
...

As a final sanity check to confirm that the model matches expectations, we choose
a respondent (ID 196) and see that the coefficients are indeed the sum of the fixed
and random effects:
> fixef(ride.hlm2) + ranef(ride.hlm2)$resp.id[196, ]

(Intercept) speed50 speed60 speed70 height300 height400 constWood ...
196 2.143063 0.7534565 1.271094 4.594383 2.94959 1.212746 2.580269 ...
> coef(ride.hlm2)$resp.id[196, ]

(Intercept) speed50 speed60 speed70 height300 height400 constWood ...
196 2.143063 0.7534565 1.271094 4.594383 2.94959 1.212746 2.580269 ...

In this code, the random effect and coefficient values for respondent 196 are re-
trieved by indexing that row within the corresponding $resp.id matrix.

9.3.7 Summary of HLM with lme4

This concludes our discussion of classical hierarchical models; in the next section,
we consider the Bayesian approach to HLM, which uses the same general concep-
tual model but a different estimation method.

In this section, we hope to have convinced you that, when you have multiple obser-
vations for an individual or other grouping factor of interest, you should consider a
hierarchical model that estimates both sample-level and individual- or group-level
effects. These models are relatively straightforward to estimate using the lme4
package.
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Besides customer-level models, which are most common in marketing, other factors
for which one might wish to estimate a hierarchical model include store, country,
geographic region, advertising campaign, advertising creative, channel, bundle, and
brand.

If this section has inspired you to consider adding hierarchical modeling to your
toolbox, see “Learning More” (Sect. 9.6) for pointers to other resources.

9.4 Bayesian Hierarchical Linear Models*

This is an optional section that you may skip if you are not interested in the Bayesian
approach to estimate hierarchical models.

Hierarchical models may be fit with classical estimation procedures (such as the
lme4 package we saw above), yet they are particularly well suited to Bayesian
estimation, which gives a best estimate for each individual even when there are few
individual observations.

The method we use here is known as a hierarchical Bayes approach; hierarchical be-
cause it models individuals in relationship to an overarching distribution, and Bayes
because it uses Bayesian estimation techniques to fit the models (see Sects. 6.6.1
and 6.6.2 for an introduction).

In this section, we apply a hierarchical Bayes (HB) method to estimate the HLM for
ratings-based (metric) conjoint analysis, using the same data set that we analyzed
with classical hierarchical models in Sect. 9.3 above. Before continuing this section
you should:

• Review the concepts of Bayesian linear models and MCMC estimation in
Sect. 7.8

• Review the concepts of HLM in Sects. 9.3 and 9.3.1

• Review the description of the amusement park conjoint analysis data in
Sect. 9.3.2

Download the simulated amusement park conjoint analysis data as follows, or see
Sect. 9.3.2:

> conjoint.df <- read.csv("http://goo.gl/G8knGV")
> conjoint.df$speed <- factor(conjoint.df$speed)
> conjoint.df$height <- factor(conjoint.df$height)
> summary(conjoint.df)

resp.id rating speed height const
Min. : 1.00 Min. : 1.000 40: 800 200:1400 Steel:1400
1st Qu.: 50.75 1st Qu.: 3.000 50:1200 300:1200 Wood :1800

...
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9.4.1 Initial Linear Model with MCMCregress()*

We start by estimating a non-hierarchical model, which allows us to check that
our basic estimation procedures are working before we attempt a complex model.
We model respondents’ ratings of roller coaster designs as a function of roller
coaster features using MCMCregress() to fit a simple linear model as we did
in Sect. 7.8:

> library(MCMCpack)
> set.seed(97439)
> ride.mc1 <- MCMCregress(rating ∼ speed + height + const + theme,
+ data=conjoint.df)
> summary(ride.mc1)
...

Mean SD Naive SE Time-series SE
(Intercept) 3.0729 0.08112 0.0008112 0.0008112
speed50 0.8208 0.11061 0.0011061 0.0011126
speed60 1.5754 0.12889 0.0012889 0.0012889
speed70 4.4873 0.15002 0.0015002 0.0015002
height300 2.9444 0.09122 0.0009122 0.0009337
height400 1.4461 0.12934 0.0012934 0.0013367
constWood -0.1187 0.11310 0.0011310 0.0011310
themeEagle -0.7533 0.11308 0.0011308 0.0011308
sigma2 3.8705 0.09737 0.0009737 0.0009737
...

As expected, the overall effects are nearly identical to those estimated by the classi-
cal linear models in Sect. 9.3.5, so we are ready to add the hierarchical component
to the model.

9.4.2 Hierarchical Linear Model with MCMChregress()*

We estimate a hierarchical model using MCMChregress(fixed, random,
group, data, r, R). Note the h for hierarchical buried in that function
name. This is a slightly different syntax than lme4 uses (as we reviewed in
Sect. 9.3.5), as it separates the fixed and random effect specifications. The key argu-
ments we use here are:

fixed : formula for fixed effects at the higher level that are the same for all
respondents

random : formula for random effects that are estimated for each respondent

group : name of the column with identifiers that group observations for the
random effects

data : the data frame with observations

r, R : pooling arguments. We’ll just set them for now; see below for detail
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For fixed effects we specify the primary model to estimate: rating ∼
speed + height + const + theme. For random effects, the most com-
mon models in marketing estimate all parameters of the model for every respon-
dent, so we specify random = ∼ speed + height + const + theme.
Because we are estimating by individual, group is the respondent identifier,
"resp.id".

Estimation of this model may take several minutes to run. Here is the final
code:

> set.seed(97439)
> ride.mc2 <- MCMChregress(fixed = rating ∼ speed + height + const + theme,
+ random = ∼ speed + height + const + theme,
+ group="resp.id", data=conjoint.df, r=8, R=diag(8))

Running the Gibbs sampler. It may be long, keep cool :) ...

While the model runs, let’s examine the two arguments r and R. A hierarchical
model assumes that each respondent has a set of preferences (coefficients) drawn
from a larger distribution that defines the range of possible preferences. The model
is slow because it makes thousands of estimates of both the individuals’ coefficients
and the higher-order distributions that best describe those individuals.

Of course there are only a few observations for each respondent, and a model for a
single person cannot be estimated very well with such limited data. To improve esti-
mation, the MCMC model pools information across respondents, allowing estimates
to be more or less similar to one another based on the data. If several respondents
dislike a feature, it’s more likely (but not certain) that another randomly selected
respondent will also dislike it; this expected similarity is used to improve estimates
given sparse data.

That degree of pooling across respondents is adjusted by the final two arguments r
and R. For most analyses, you can set r equal to the number of parameters in your
model and R equal to a diagonal matrix with values along the diagonal equal to the
number of parameters in your model, and the algorithm will determine the optimal
level of pooling from the data. This can be done with the simple function diag(K),
where K is the same number as r. However, if you plan to run hierarchical Bayesian
models regularly, you will wish to learn more about pooling; check the references
in Sect. 9.6.

By now, MCMChregress() from above should have finished, and we can review
its result:

> str(ride.mc2)
List of 2
$ mcmc : mcmc [1:1000, 1:1674] 3.04 2.87 2.9 3.06 2.98 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:1674] "beta.(Intercept)" "beta.speed50" "beta.speed60" "beta.

speed70" ...
..- attr(*, "mcpar")= num [1:3] 1001 10991 10
$ Y.pred: num [1:3200] 4.94 2.69 5.73 6.24 4.67 ...
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The output of MCMChregress is a list with two items. The first item in this list
is an mcmc object containing the draws from the posterior distribution of the pa-
rameters. A notable thing is that ride.mc2$mcmc contains 1,674 columns. Why
so many? The model estimates a set of 8 coefficients—the preferences for each at-
tribute of our roller coasters—for every one of the 200 respondents. That’s 1,600
parameters plus a few more that describe the overall population distribution. For
each of those parameters, it drew 1,000 estimates from the posterior distribution for
every respondent (see Sect. 6.6.2).

Let’s look at the first 8 columns, estimated coefficients for the overall, population-
level preferences:

> summary(ride.mc2$mcmc[ ,1:8])
...

Mean SD Naive SE Time-series SE
beta.(Intercept) 3.0739 0.1694 0.005356 0.005457
beta.speed50 0.8168 0.1398 0.004422 0.004422
beta.speed60 1.5691 0.1618 0.005117 0.005569
beta.speed70 4.4849 0.1862 0.005889 0.005889
beta.height300 2.9474 0.1235 0.003904 0.003681
beta.height400 1.4578 0.1796 0.005680 0.005680
beta.constWood -0.1128 0.1952 0.006172 0.005615
beta.themeEagle -0.7542 0.1857 0.005871 0.005871
...

These estimates are nearly identical to the result of non-hierarchical MCMCregress
in model ride.mc1 above. speed70 is still preferred and worth 4.5 points on
our rating scale, preference for wood construction is near zero, and so forth. Where
is the difference? Why did we wait several minutes for these results? The answer is
in the coefficients it estimated for individual respondents.

Let’s look at an example respondent; we pull and summarize the posterior draws
for the parameters that are associated with respondent 196. We do this by finding
columns that are named with “196” (the resp.id that we want). We accomplish
that by indexing the columns with the results of the grepl() function that identi-
fies elements of a character vector (in this case, column names) containing a partic-
ular string:

> summary(ride.mc2$mcmc[ , grepl(".196", colnames(ride.mc2$mcmc), fixed=TRUE)])
...

Mean SD Naive SE Time-series SE
b.(Intercept).196 -1.03806 0.6780 0.02144 0.02144
b.speed50.196 0.44049 0.5434 0.01718 0.01718
b.speed60.196 0.10442 0.6335 0.02003 0.02003
b.speed70.196 0.03807 0.7167 0.02266 0.02357
b.height300.196 -0.35414 0.5441 0.01721 0.01797
b.height400.196 -0.55132 0.7357 0.02327 0.02327
b.constWood.196 2.57915 0.8370 0.02647 0.02647
b.themeEagle.196 -1.41955 0.8220 0.02599 0.02599
...
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Respondent 196 strongly prefers wood coasters; her ratings for them are 2.5 points
higher on our 10-point scale than those for steel construction (the default level). On
the other hand, she dislikes the eagle-themed design, rating it −1.4 points lower
on average than the dragon theme. These preferences are rather different than the
population averages above.

How could we use this information? The ideal roller coaster for respondent 196,
according to her responses, would be a dragon-themed wood coaster with a top
speed of 50 mph and a height of 200 ft (the default level not shown). Although in-
dividual customization is impractical for roller coasters, a plausible marketing use
would be to segment respondents’ preferences to determine a mix of coasters (see
Chap. 11). For instance, we might ask which new coaster would maximize prefer-
ence over and above the coasters the park already has; in other words, we could
investigate a product line extension. More immediately, if we have respondents’
contact information, we could tailor marketing communications to this and similar
respondents and tell them about wooden coasters at the park.

The MCMC output also informs our confidence of estimates. One could use the
standard error of the mean estimate, but we recommend instead to use the values
from the Quantiles section of the output. Let’s look at the population estimates
again, but focus on the quantiles::

> summary(ride.mc2$mcmc[ ,1:8])
...
2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
beta.(Intercept) 2.7389 2.9594 3.0764 3.18818 3.4099
beta.speed50 0.5421 0.7251 0.8114 0.91274 1.0801
beta.speed60 1.2604 1.4636 1.5725 1.68365 1.8804
beta.speed70 4.1213 4.3599 4.4834 4.60792 4.8599
beta.height300 2.7114 2.8642 2.9501 3.03263 3.1779
beta.height400 1.0898 1.3429 1.4589 1.58500 1.8017
beta.constWood -0.5219 -0.2464 -0.1105 0.01628 0.2698
beta.themeEagle -1.0999 -0.8745 -0.7571 -0.63284 -0.3609

This tells us that the fixed effect estimate for speed70 had a value between 4.12–
4.86 in 95 % of the draws from the posterior distribution. Thus, we can use these
values to express the credible interval for the parameters we report. An advantage
of Bayesian statistics is that confidence in estimates can be stated directly, without
resorting to discussion of null hypotheses.

9.4.3 Inspecting Distribution of Preference*

We wondered above whether respondents were just indifferent to wooden versus
steel coasters, or had significant differences. To investigate this in the estimated
model, we need to do a bit of work. First, we extract out all the coefficients labeled
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b.constWood, which are the individual-level estimates for preference for wood
construction. There are 200 columns for these coefficients, one for each customer in
our data set.

Those values each represent a difference for the individual relative to the
overall population, so we add the values to the baseline population estimate,
beta.constWood. Because we have 1,000 sets of estimates from the MCMC
draws, we compute the total (individual plus population mean) for each of the
1,000 draws from the posterior distribution, and summarize those totals. (Do not
summarize first and then add.)

Although this process may sound complex, it is accomplished in a single, albeit
cryptic, command:

> ride.constWood <- summary(ride.mc2$mcmc[ , grepl("b.constWood",
+ colnames(ride.mc2$mcmc))]
+ + ride.mc2$mcmc[ , "beta.constWood"])

Deconstructing this code, it finds the columns in mcmc draws with “b.constWood” in
their names; those are the individual differences in preference. It adds the population
value, beta.constWood, to obtain the total preference for each respondent. Then
it summarizes the result. (You might try parts of this code in the R console to see
how this works.)

The result is that ride.constWood contains estimates from the posterior distri-
bution for individual-level preference of wood over steel coasters. We plot these to
see the distribution of individuals’ preferences for wood coasters:

> hist(ride.constWood$statistics[,1],
+ main="Preference for Wood vs. Steel",
+ xlab="Rating points", ylab="Count of Respondents", xlim=c(-4,4))
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Fig. 9.3. Histograms of individual respondent preferences in a ratings-based conjoint analysis
model.
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We compare that to the distribution of preference for 60 mph speed (versus baseline
40mph):

> ride.speed60 <- summary(ride.mc2$mcmc[,grepl("b.speed60",
+ colnames(ride.mc2$mcmc))]
+ + ride.mc2$mcmc[,"beta.speed60"])
> hist(ride.speed60$statistics[,1],
+ main="Preference for 60 vs. 40\,mph",
+ xlab="Rating points", ylab="Count of Respondents", xlim=c(-4,4))

The resulting charts are shown in Fig. 9.3. In the first, we see a wide range across
individuals in preference of wood versus steel construction; some respondents have
negative preference for wood, and thus prefer steel, while others prefer wood. The
magnitude is very strong for some, corresponding to a difference in rating of up to
4 points. By comparison, in the second chart, preference for 60 mph coasters over
40 mph is less diverse; all respondents prefer the faster speed.

This degree of variation among respondents is known as heterogeneity, and in
addition to estimating the parameters (coefficients) for the population (beta.
<predictor name> as we saw above), MCMChregress() also estimates
their variance and covariance across the population of respondents. The results are
named VCV.<predictor name>.<predictor name> in the output, where
“VCV” abbreviates variance covariance. When the two predictor names are the
same, this gives the variance estimate for a single parameter; when they are differ-
ent, it is the covariance of two parameters.

For example, we can find the population mean and variance of the wood and 60 mph
parameters:

> summary(ride.mc2$mcmc[,c("beta.constWood", "VCV.constWood.constWood",
+ "beta.speed60","VCV.speed60.speed60")])
...

Mean SD Naive SE Time-series SE
beta.constWood -0.1128 0.1952 0.006172 0.005615
VCV.constWood.constWood 2.3458 0.3749 0.011855 0.014056
beta.speed60 1.5691 0.1618 0.005117 0.005569
VCV.speed60.speed60 0.5782 0.1351 0.004273 0.004939
...

The estimated variance for constWood is quite large at 2.34, demonstrating that
there is large heterogeneity between respondents in preference for wooden roller
coasters. On the other hand, the variance of the estimates for speed60 is much
smaller at 0.58. This reflects the difference in distributions that we saw in the his-
tograms in Fig. 9.3.

You might wish to predict respondents’ interest in one or more fully specified roller
coaster designs, as opposed to interest in individual features. Such assessment is
typical in conjoint analysis to predict product interest and is often known as mar-
ket simulation. However, there is not yet an appropriate predict() function for
MCMC models as there is for lm(). To obtain estimates of overall preference for a
design, there are two choices. One option is to calculate the net level of interest by
adding the columns of the MCMC draws that match your design (plus the baseline
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population estimates), and then summarize the level of interest for each respondent.
Another option is to use a market simulation routine that compares preference be-
tween choices, such as the relative preference for your design versus some other
design; an example is available in Chapman et al. [25]. We discuss preference share
estimation further in Chap. 13.

One other thing we should mention with regard to this model—as is illustrated in our
data simulation and Fig. 9.3 as well as in the model’s assumptions—is that individ-
uals’ estimates (random coefficients) are assumed to follow a multivariate normal
distribution. This means that the model assumes most people’s preferences are in
the middle of the distribution. If you have reason to suspect that there are separate
groups with divergent and strong preferences, you might consider a mixture or latent
class model, which is outside the scope of this chapter (see [137], Chap. 5).

We hope this introduction to hierarchical Bayesian models has demonstrated their
value in understanding individual customers. Hierarchical modeling has become
widespread in marketing because it allows us both to obtain model estimates at an
individual level and to understand the diversity across customers. We’ll have more
to say about such models for conjoint analysis, in the form of choice-based conjoint
analysis, in Chap. 13. These models are also common in CRM applications, where
the goal is to estimate a likely response or outcome of some sort for individual cus-
tomers. We suggest to consider a Bayesian approach anytime that you are interested
to fit a linear model.

9.5 A Quick Comparison of Frequentist & Bayesian
HLMs*

This is an optional section for those who completed both of the previous sections.
In those sections we modeled the same data set using classical methods (Sect. 9.3)
and Bayesian methods (Sect. 9.4). We saw that the estimates of the fixed effects are
nearly identical in the two models (Sect. 9.4.1). What about the random, individual-
level effects? How similar are they?

Before examining those effects, let’s try to apply a bit of intuition to the problem.
First, we might consider that the fixed effects, even with 3,200 total observations are
not exactly identical between the two methods. Second, we should expect that the
individual-level effects, with only 16 observations per respondent would have much
more variance (because variance is inversely proportional to the square root of the
number of observations). When we consider that we are estimating 8 random effects
per respondent given only 16 observations, we should expect a lot of uncertainty in
the estimates. Third, we should understand that neither model can be regarded as
true, but only expected to be (one hopes) an unbiased estimate.

To compare the models here, you need to fit both the ride.hlm2 and ride.mc2
models as we did above (Sects. 9.3.6 and 9.4.2, respectively).
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We’ve seen that the mean fixed effect estimates are quite similar. We can check that
visually by plotting the eight parameters of each against those from the other model.
First we get the fixed effects from each, then we plot them against one another and
add a 45◦ line to see how closely they align (Fig. 9.4).

> fix.hlm <- fixef(ride.hlm2)
> fix.hb <- colMeans(ride.mc2$mcmc[ , 1:8])
> plot(fix.hlm, fix.hb)
> abline(0,1)

Figure 9.5 shows that the fixed effects are nearly identical in the two models. Note
that we use the abbreviation “HLM” to refer to the model estimated by lme4 in
order to distinguish it from “HB” for the Bayesian model, although both models are
HLM yet estimated with different methods.

The random effects have to be compared within respondent. We’ll do this for just
one respondent, ID 196 whom we considered above. First, let’s just consider the
mean estimates of each random effect. We extract those using ranef() for the
lme4 model (Sect. 9.3.6) and colMeans() to take the mean effect estimated in
the draws of the MCMC model (Sect. 9.4.2):
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Fig. 9.4. Fixed effects from the two hierar-
chical models, classical and Bayesian. The
Bayesian method estimates (y-axis; estimated
using MCMCpack) are nearly identical to the
classical method estimates (x-axis; estimated
using lme4) for these simulated data.

> ranef(ride.hlm2)$resp.id[196, ]
(Intercept) speed50 speed60 speed70 height300 height400

196 -0.9300097 -0.06731524 -0.3033319 0.107412 0.004081423 -0.2346389
constWood themeEagle

196 2.698524 -1.438102
> colMeans(ride.mc2$mcmc[ , grepl(".196", colnames(ride.mc2$mcmc),
+ fixed=TRUE)])
b.(Intercept).196 b.speed50.196 b.speed60.196 b.speed70.196

-1.03806213 0.44049447 0.10441996 0.03807113
b.height300.196 b.height400.196 b.constWood.196 b.themeEagle.196

-0.35414215 -0.55131679 2.57914806 -1.41954714

There are some overall similarities in the two sets of estimates for respondent 196,
such as the strong negative effect for the eagle theme, relative to the same fixed
effect, and strong positive for a wooden roller coasts. However, there are small
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to modest differences in some of the mean estimates. The MCMC process should
prompt you to recall that Bayesian methods estimate not only a point estimate (the
mean effect estimate reported above), but also a posterior distribution that reflects
uncertainty.

One might compare estimates in various ways; in this case, we compare them vi-
sually. We’ll do this by overlaying distribution curves for the two sets of estimates.
In the case of the HB estimates, we have 1,000 MCMC draws for each parameter,
so we plot the density() estimate of those draws. For the HLM estimates, we
construct a similar density estimate in the following way: we obtain the mean effect
from ranef() and the standard deviation of the estimation from the “postVar”
(variance) attribute of the ranef() random effect estimates for one respondent,
and use those parameters to draw random points from that distribution.

Doing this process one time—plotting the density of the MCMC draws and
then adding a distribution plot for the mean and standard deviation of the HLM
estimate—would give us a comparison of one set of parameters such as the prefer-
ence for one speed or design. We iterate that to compare multiple parameters. We do
that for parameters 2–5, the first four non-intercept parameters, as follows:

> par(mfrow=c(2,2)) # make a 2x2 plot surface
> plot.xlim <- c(-3, 3) # define limits for the x-axis
> for (i in 2:5) { # first four parameters only, for convenience
+ # plot the MCMC density for random effect i
+ mcmc.col <- which(grepl(".196", colnames(ride.mc2$mcmc), fixed=TRUE))[i]
+ plot(density(ride.mc2$mcmc[ , mcmc.col]), xlab="",
+ ylim=c(0, 1.4), xlim=plot.xlim,
+ main=paste("HB & lmer density:",
+ colnames(ride.mc2$mcmc)[mcmc.col] ))
+ # add the HLM density for random effect i
+ hlm2.est <- ranef(ride.hlm2)$resp.id[196, i] # mean estimate
+ hlm2.sd <- sqrt(attr(ranef(ride.hlm2, condVar=TRUE)$resp.id,
+ "postVar")[ , , 196][i, i])
+ seq.pts <- seq(from=plot.xlim[1], to=plot.xlim[2], length.out=1000) # range
+ # .. find density at x-axis points using dnorm() and add that to the plot
+ points(seq.pts, dnorm(seq.pts, mean=hlm2.est, sd=hlm2.sd),
+ col="red", pch=20, cex=0.05)
+ legend("topright", legend=c("red = lmer", "black = HB"),
+ text.col=c("red", "black"))
+ }

This code is lengthy but should not be difficult for you to deconstruct by this point.
The two significant new elements here are that it uses attr(..., "postVar")
to obtain the variance of the random effect estimate for the HLM model, and uses
dnorm() to obtain a density estimate for 1,000 points that match the HLM param-
eter distribution estimate, which it adds to the plot with points().

The resulting chart in Fig. 9.5 shows that the density estimates from the two methods
are largely overlapping. It is also congruent with our intuition above, as the results
are different but not enormously so, and there is no reason to suspect either method is
highly discrepant because the distributions are generally similar in range and central
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Fig. 9.5. A comparison of the estimates for four of the model parameters for respondent ID
196 in the MCMC and lmer results. The estimates for each respondent have substantial

uncertainty but the distributions are generally similar and largely overlapping.

tendency, with just slightly higher variance in the MCMC estimates. Of course this
is a comparison of only four parameters for a single respondent.

We could compare similarly across all 200 respondents, either graphically or sta-
tistically, but will leave that as an exercise for the reader. If we did so, what would
we expect to see? Given that the fixed effects are nearly identical, we would expect
that deviations between the models in the random effects would be close to zero
and symmetric around zero. If you want to try this on your own, we can give you
a preview: the median difference between the models’ mean estimates of the ran-
dom effects, across all 200 individuals, for the 8 parameters, ranges from −0.015 to
0.020, with a median of 0.003.

Given that the models are similar but not identical, you might wonder which is
better, the classical or the Bayesian? The models themselves do not answer that;
you would need to consider your assumptions, the degree to which you believe each
model is appropriate (see Sect. 6.6.1), and if possible, which works better for your
situation in regard to other metrics such as external validity. As we have noted, the
models tend to show increasingly similar estimates with larger samples, while the
Bayesian methods may yield more intuitive or useful estimates with small numbers
of observations.
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9.6 Learning More*

The topics in this chapter are drawn from the vast range of topics related to lin-
ear modeling, and the best general recommendation is to learn about those topics
broadly, as in Harrell [74] on strategies and issues for effective regression modeling
and Dobson [34] on GLM. The following notes provide further guidance on specific
topics.

9.6.1 Collinearity

The best way to learn more about collinearity and how to detect and address it is to
become more fluent in linear modeling in general. Good texts for learning broadly
about regression modeling are Harrell [74], and Fox and Weisberg [51].

9.6.2 Logistic Regression

Logistic regression models are especially common in health sciences (modeling im-
provement after treatment, for instance), and much of that literature is approachable
for marketers with modest translation. Hosmer et al. [78] is a standard text on such
models and demonstrates the importance of model building and assessment. Binary
outcomes are also often the subject of models in the machine learning community.
We consider machine learning models in the context of classification in Chap. 11.
A general text on those methods is Kuhn and Johnson [97].

9.6.3 Hierarchical Models

The best overall didactic text on hierarchical models is Gelman and Hill [60], which
provides outstanding conceptual explanation and a breadth of models with detailed
code in R. The one, comparatively minor limitation of Gelman and Hill is that its
level of detail and discussion can make it difficult to determine what to do when
confronted with an immediate modeling need.

Support for hierarchical models (also known as mixed effects models) is an evolving
area in R. Besides the lme4 package that we used, another common package is
nlme, which has a somewhat dated companion book, Pinheiro and Bates [123].
A more up-to-date and didactic text is Galecki and Burzykowski [57].

9.6.4 Bayesian Hierarchical Models

We have provided only an introduction to hierarchical Bayes models and their im-
portance, and have not covered the implementation issues and problems that may
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arise. To learn more about such models, there are technical introductions at vary-
ing levels of mathematical sophistication from Kruschke [94], Gelman et al. [61],
and Rossi et al. [137]. Gelman and Hill [60] discuss hierarchical models from both
Bayesian and non-Bayesian perspectives, with examples in R.

Many Bayesian texts, including several of those noted above, discuss the im-
plementation of MCMC samplers (as in MCMCpack). There is a caveat: they
show how to write an MCMC sampler in detail, such as the internal workings of
MCMChregress(). That is a valuable and reusable skill but a very technical one.
For some readers, it may be similar to having an automotive engineer teach you how
to drive a sedan; it is highly informative but occasionally overwhelming.

MCMCpack includes functions for several other families of Bayesian models. A
general framework that handles both mixed effects and multiple response data, using
the MCMC approach, is available in the MCMCglmm package [68]. If you want to
do hierarchical logistic regression in a Bayesian framework, you could consider
MCMCglmm (see also Chap. 13).

9.7 Key Points

We covered a lot of material in this chapter. Following are some important
lessons.

9.7.1 Collinearity

• Collinearity occurs when two or more variables are highly associated. Including
them in a linear model can result in confusing, nonsensical, or misleading re-
sults, because the model cannot differentiate the contribution from each of them
(Sect. 9.1).

• The VIF provides a measure of shared variance among variables in a model.
A rule of thumb is that collinearity should be addressed for a variable when
V IF > 5 (Sect. 9.1.2).

• Common approaches to fixing collinearity include omitting highly correlated
variables, and using principal components or factor scores (see Chap. 8) instead
of individual items (Sect. 9.1.2).

9.7.2 Logistic Regression

• Logistic regression relates a binary outcome such as purchase to predictors that
may include continuous and factor variables, by modeling the variables’ asso-
ciation with the probability of the outcome (Sect. 9.2.1).
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• A logistic regression model, also known as a logit model, is a mem-
ber of the generalized linear models family, and is fit using glm( ,
family=binomial) (Sect. 9.2.6).

• Coefficients in a logit model can be interpreted in terms of odds ratios, the de-
gree to which they are associated with the increased or decreased likelihood of
an outcome. This is done simply by exponentiating the coefficients with exp()
(Sect. 9.2.6).

• A statistically significant result does not always mean that the model is appro-
priate. It is important to explore data thoroughly and to construct models on the
basis of careful consideration (Sect. 9.2.7).

9.7.3 Hierarchical Linear Models

• In common marketing discussion, a hierarchical model estimates both group
level effects and individual differences in effects. Such models are popular
in marketing because they provide insight into differences among customers
(heterogeneity) and distribution of preference. HLM are exemplified when we
estimate the importance of effects for individuals as well as for an overall pop-
ulation (Sect. 9.3).

• Effects that are associated with all observations are known as fixed effects, and
those that differ across various grouping levels are known as random effects
(Sect. 9.3.1).

• These models are also known as mixed effect models, because the total effect
for each person is composed of the effect for the overall population (the fixed
effect) plus the per-individual (random) effect. We estimated an HLM using
lmer() from the lme4 package (Sect. 9.3.5).

• The difference between estimating hierarchical effects, as opposed to including
the grouping variable as a factor in a standard linear model, is that a hierarchical
model estimates every specified effect for each individual or group, not only a
single adjustment term.

• The formula for a mixed effect model includes a grouping term, + ( ...
| group). Common models have a different intercept by group using (1 |
group) or different intercepts and slopes for predictors within each group us-
ing (predictor | group) (Sects. 9.3.5, 9.3.6). To estimate an individual-
level model, the grouping term is typically the respondent identifier.

• Hierarchical models can be used to group observations at other levels than the
individual level. For example, we might wish to group by store, advertising
campaign, salesperson, or some other factor, if we want to estimate effects that
are specific to such a grouping (Sect. 9.3.7).
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• A common marketing application of HLM is conjoint analysis, to estimate both
overall preference and individual differences in preference. In this chapter, we
demonstrated ratings-based, or metric conjoint analysis (Sect. 9.3.2).

9.7.4 Bayesian Methods for Hierarchical Linear Models

• Hierarchical models in marketing are often estimated with Bayesian methods
that are able to pool information and produce best estimates of both group and
individual effects using potentially sparse data (Sect. 9.4.2).

• A Bayesian HLM can be estimated using MCMChregress() in the
MCMCpack package (Sect. 9.4.2).

• Model coefficients from a hierarchical model are inspected using summaries of
the many estimates that are collected in an mcmc object (Sects. 9.4.2, 9.4.3).
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