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Reducing Data Complexity

Marketing data sets often have many variables—many dimensions—and it is ad-
vantageous to reduce these to smaller sets of variables to consider. For instance,
we might have many items on a consumer survey that reflect a smaller number of
underlying concepts such as customer satisfaction with a service, category leader-
ship for a brand, or luxury for a product. If we can reduce the data to its underlying
dimensions, we can more clearly identify the relationships among concepts.

In this chapter we consider three common methods to reduce complexity by re-
ducing the number of dimensions in the data. Principal component analysis (PCA)
attempts to find uncorrelated linear dimensions that capture maximal variance in
the data. Exploratory factor analysis (EFA) also attempts to capture variance with a
small number of dimensions while seeking to make the dimensions interpretable in
terms of the original variables. Multidimensional scaling (MDS) maps similarities
among observations in terms of a low-dimension space such as a two-dimensional
plot. MDS can work with metric data and with non-metric data such as categorical
or ordinal data.

In marketing, PCA is often associated with perceptual maps, which are visualiza-
tions of respondents’ associations among brands or products. In this chapter we
demonstrate perceptual maps for brands using PCA. We then look at ways to draw
similar perceptual inferences from factor analysis and MDS.

8.1 Consumer Brand Rating Data

We investigate dimensionality using a simulated data set that is typical of con-
sumer brand perception surveys. This data reflects consumer ratings of brands
with regard to perceptual adjectives as expressed on survey items with the follow-
ing form:
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196 8 Reducing Data Complexity

On a scale from 1 to 10—where 1 is least and 10 is most—how [ADJEC-
TIVE] is [BRAND A]?

In this data, an observation is one respondent’s rating of a brand on one of the
adjectives. Two such items might be:

1. How trendy is Intelligentsia Coffee?

2. How much of a category leader is Blue Bottle Coffee?

Such ratings are collected for all the combinations of adjectives and brands of
interest.

The data here comprise simulated ratings of 10 brands (“a” to “j”) on 9 adjectives
(“performance,” “leader,” “latest,” “fun,” and so forth), for N = 100 simulated re-
spondents. The data set is provided on this book’s website. We start by loading and
checking the data:

> brand.ratings <- read.csv("http://goo.gl/IQl8nc")
> head(brand.ratings)
perform leader latest fun serious bargain value trendy rebuy brand

1 2 4 8 8 2 9 7 4 6 a
2 1 1 4 7 1 1 1 2 2 a
...
> tail(brand.ratings)
...
999 1 1 7 5 1 1 2 5 1 j
1000 7 4 7 8 4 1 2 5 1 j

Each of the 100 simulated respondents has observations on each of the 10 brands,
so there are 1,000 total rows. We inspect the summary() and str() to check the
data quality and structure:

> summary(brand.ratings)
perform leader latest fun

Min. : 1.000 Min. : 1.000 Min. : 1.000 Min. : 1.000
1st Qu.: 1.000 1st Qu.: 2.000 1st Qu.: 4.000 1st Qu.: 4.000
Median : 4.000 Median : 4.000 Median : 7.000 Median : 6.000

...
> str(brand.ratings)
’data.frame’: 1000 obs. of 10 variables:
...
$ rebuy : int 6 2 6 1 1 2 1 1 1 1 ...
$ brand : Factor w/ 10 levels "a","b","c","d",..: 1 1 1 1 1 1 1 1 1 1 ...

We see in summary() that the ranges of the ratings for each adjective are 1–10. In
str(), we see that the ratings were read as numeric while the brand labels were
properly interpreted as factors. In short, the data appear to be clean and formatted
appropriately.

There are nine perceptual adjectives in this data set. Table 8.1 lists the adjectives
and the kind of survey text that they might reflect.
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Table 8.1. Adjectives in the brand.rating data and examples of survey text that might
be used to collect rating data

Perceptual adjective (column name) Example survey text
perform Brand has strong performance
leader Brand is a leader in the field
latest Brand has the latest products
fun Brand is fun
serious Brand is serious
bargain Brand products are a bargain
value Brand products are a good value
trendy Brand is trendy
rebuy I would buy from Brand again

8.1.1 Rescaling the Data

It is often good practice to rescale raw data. This makes data more comparable
across individuals and samples. A common procedure is to center each variable by
subtracting its mean from every observation, and then rescale those centered values
as units of standard deviation. This is commonly called standardizing, normalizing,
or Z scoring the data (Sect. 7.3.3).

In R, data could be standardized in this way with a mathematical expression using
mean() and sd():

> x <- 1:1000
> x.sc <- (x - mean(x)) / sd(x)
> summary(x.sc)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.7290 -0.8647 0.0000 0.0000 0.8647 1.7290

As we saw in Sect. 7.3.3, a simpler way is to use scale() to rescale all variables
at once. We never want to alter raw data, so we assign the raw values first to a new
data frame brand.sc and alter that:

> brand.sc <- brand.ratings
> brand.sc[, 1:9] <- scale(brand.ratings[, 1:9])
> summary(brand.sc)

perform leader latest fun
Min. :-1.0888 Min. :-1.3100 Min. :-1.6878 Min. :-1.84677
1st Qu.:-1.0888 1st Qu.:-0.9266 1st Qu.:-0.7131 1st Qu.:-0.75358
Median :-0.1523 Median :-0.1599 Median : 0.2615 Median :-0.02478
Mean : 0.0000 Mean : 0.0000 Mean : 0.0000 Mean : 0.00000
3rd Qu.: 0.7842 3rd Qu.: 0.6069 3rd Qu.: 0.9113 3rd Qu.: 0.70402
Max. : 1.7206 Max. : 2.1404 Max. : 1.2362 Max. : 1.43281

...

In this code we name the new data frame with extension “.sc” to remind ourselves
that observations have been scaled. We operate on columns 1–9 because the 10th
column is a factor variable for brand. We see that the mean of each adjective is
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correctly 0.00 across all brands because the data is rescaled. Observations on the
adjectives have a spread (difference between min and max) of roughly 3 standard
deviation units. This means the distributions are platykurtic, flatter than a standard
normal distribution, because we would expect a range of more than 4 standard devi-
ation units for a sample of this size. (Platykurtosis is a common property of survey
data, due to floor and ceiling effects.)

We use corrplot() for initial inspection of bivariate relationships among the
variables:

> library(corrplot)
> corrplot(cor(brand.sc[, 1:9]), order="hclust")

As before, we plot columns 1–9 because the 10th column is the non-numeric brand
label. In corrplot(), the argument order="hclust" reorders the rows and
columns according to variables’ similarity in a hierarchical cluster solution (see
Sect. 11.3.2 for more on hierarchical clustering). The result is shown in Fig. 8.1,
where we see that the ratings seem to group into three clusters of similar variables,
a hypothesis we examine in detail in this chapter.
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Fig. 8.1. Correlation plot for the
simulated consumer brand ratings.
This visualization of the basic data
appears to show three general clus-
ters that comprise fun/latest/trendy,
rebuy/bargain/value, and perfor-
m/leader/serious, respectively.

8.1.2 Aggregate Mean Ratings by Brand

Perhaps the simplest business question in these data is: “What is the average
(mean) position of the brand on each adjective?” We can use aggregate() (see
Sects. 3.4.5 and 5.2.1) to find the mean of each variable by brand:
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> brand.mean <- aggregate(. ∼ brand, data=brand.sc, mean)
> brand.mean

brand perform leader latest fun serious bargain
1 a -0.88591874 -0.5279035 0.4109732 0.6566458 -0.91894067 0.21409609
2 b 0.93087022 1.0707584 0.7261069 -0.9722147 1.18314061 0.04161938
...

Before proceeding, we perform a bit of housekeeping on the new brand.mean
object. We name the rows with the brand labels that aggregate() put into the
brand column, and then we remove that column as redundant:

> rownames(brand.mean) <- brand.mean[, 1] # use brand for the row names
> brand.mean <- brand.mean[, -1] # remove brand name column

The resulting matrix is now nicely formatted with brands by row and adjective
means in the columns:

> brand.mean
perform leader latest fun serious bargain

a -0.88591874 -0.5279035 0.4109732 0.6566458 -0.91894067 0.21409609
b 0.93087022 1.0707584 0.7261069 -0.9722147 1.18314061 0.04161938
...

A heatmap is a useful way to examine such results because it colors data points by
the intensities of their values. We use heatmap.2() from the gplots package
[158] with colors from the RColorBrewer package [121] (install those if you
need them):

> library(gplots)
> library(RColorBrewer)
> heatmap.2(as.matrix(brand.mean),
+ col=brewer.pal(9, "GnBu"), trace="none", key=FALSE, dend="none",
+ main="\n\n\n\n\nBrand attributes")

heatmap.2() is a complex function. In the code above, we coerce brand.mean
to be a matrix as heatmap.2() expects. We color the map using greens and blues
from RColorBrewer’s “GnBu” palette and turn off a few options that otherwise
clutter the heatmap (trace, key, and dendrogram). We improve title alignment
by adding blank lines with \n before the title text.

The resulting heatmap is shown in Fig. 8.2. In this chart’s green-to-blue ("GnBu")
palette a green color indicates a low value and dark blue indicates a high value;
lighter colors are for values in the middle of the range. The brands are clearly
perceived differently with some brands rated high on performance and leadership
(brands b and c) and others rated high for value and intention to rebuy (brands f and
g). By default, heatmap.2() sorts the columns and rows in order to emphasize
similarities and patterns in the data, which is why the rows and columns in Fig. 8.2
are ordered in an unexpected way. It does this using a form of hierarchical clustering
(see Sect. 11.3.2).
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Fig. 8.2. A heatmap for the mean of
each adjective by brand. Brands f and
g are similar—with high ratings for re-
buy and value but low ratings for latest
and fun. Other groups of similar brands
are b/c, i/h/d, and a/j.

Looking at Figs. 8.1 and 8.2 we could guess at the groupings and relationships of
adjectives and brands. For example, there is similarity in the color pattern across
columns for the bargain/value/rebuy; a brand that is high on one tends to be high on
another. But it is better to formalize such insight, and the remainder of this chapter
discusses how to do so.

8.2 Principal Component Analysis and Perceptual Maps

PCA recomputes a set of variables in terms of linear equations, known as compo-
nents, that capture linear relationships in the data [87]. The first component captures
as much of the variance as possible from all variables as a single linear function. The
second component captures as much variance as possible that remains after the first
component. This continues until there are as many components as there are vari-
ables. We can use this process to reduce data complexity by retaining and analyzing
only a subset of those components—such as the first one or two components—that
explain a large proportion of the variation in the data.

8.2.1 PCA Example

We explore PCA first with a simple data set to see and develop intuition about what
is happening. We create highly correlated data by copying a random vector xvar
to a new vector yvar while replacing half of the data points. Then we repeat that
procedure to create zvar from yvar:

> set.seed(98286)
> xvar <- sample(1:10, 100, replace=TRUE)
> yvar <- xvar
> yvar[sample(1:length(yvar), 50)] <- sample(1:10, 50, replace=TRUE)
> zvar <- yvar
> zvar[sample(1:length(zvar), 50)] <- sample(1:10, 50, replace=TRUE)
> my.vars <- cbind(xvar, yvar, zvar)
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yvar will be correlated with xvar because 50 of the observations are identical
while 50 are newly sampled random values. Similarly, zvar keeps 50 values from
yvar (and thus also inherits some from xvar, but fewer). We compile those three
vectors into a matrix.

We check one of the three possible bivariate plots along with the correlation matrix.
If we simply plotted the raw data, there would be many overlapping values because
the responses are discrete (integers 1–10). To separate and visualize multiple points
with the same values, we jitter() them (Sect. 4.6.1):

> plot(yvar ∼ xvar, data=jitter(my.vars))
> cor(my.vars)

xvar yvar zvar
xvar 1.0000000 0.5969717 0.2496469
yvar 0.5969717 1.0000000 0.5231468
zvar 0.2496469 0.5231468 1.0000000

The bivariate plot in Fig. 8.3 shows a clear linear trend for yvar vs. xvar on the
diagonal. In the correlation matrix, xvar correlates highly with yvar and less so
with zvar, as expected, and yvar has strong correlation with zvar (using the
rules of thumb from Sect. 4.5).

Using intuition, what would we expect the components to be from this data? First,
there is shared variance across all three variables because they are positively corre-
lated. So we expect to see one component that picks up that association of all three
variables. After that, we expect to see a component that shows that xvar and zvar
are more differentiated from one another than either is from yvar. That implies
that yvar has a unique position in the data set as the only variable to correlate
highly with both of the others, so we expect one of the components to reflect this
uniqueness of yvar.
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Fig. 8.3. Scatterplot of correlated data with
discrete values, using jitter() to sep-
arate the values slightly for greater visual
impact of overlapping points.
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Let’s check the intuition. We use prcomp() to perform PCA:

> my.pca <- prcomp(my.vars)
> summary(my.pca)
Importance of components:

PC1 PC2 PC3
Standard deviation 3.9992 2.4381 1.6269
Proportion of Variance 0.6505 0.2418 0.1077
Cumulative Proportion 0.6505 0.8923 1.0000

There are three components because we have three variables. The first component
accounts for 65 % of the explainable linear variance, while the second accounts for
24 %, leaving 11 % for the third component. How are those components related to
the variables? We check the rotation matrix, which is helpfully printed by default
for a PCA object:

> my.pca
Standard deviations:
[1] 3.999154 2.438079 1.626894

Rotation:
PC1 PC2 PC3

xvar -0.6156755 0.63704774 0.4638037
yvar -0.6532994 -0.08354009 -0.7524766
zvar -0.4406173 -0.76628404 0.4676165

Interpreting PCA rotation loadings is difficult because of the multivariate nature—
factor analysis is a better procedure for interpretation, as we will see later in this
chapter—but we examine the loadings here for illustration and comparison to our
expectations. In component 1 (PC1) we see loading on all 3 variables as expected
from their overall shared variance (the negative direction is not important; the key
is that they are all in the same direction).

In component two, we see that xvar and zvar are differentiated from one an-
other as expected, with loadings in opposite directions. Finally, in component 3, we
see residual variance that differentiates yvar from the other two variables and is
consistent with our intuition about yvar being unique.

In addition to the loading matrix, PCA has computed scores for each of the principal
components that express the underlying data in terms of its loadings on those com-
ponents. Those are present in the PCA object as the $x matrix, where the columns
([ , 1], [ , 2], and so forth) may be used to obtain the values of the compo-
nents for each observation. We can use a small number of those columns in place of
the original data to obtain a set of observations that captures much of the variation
in the data.

A less obvious feature of PCA, but implicit in the definition, is that extracted PCA
components are uncorrelated with one another, because otherwise there would be
more linear variance that could have been captured. We see this in the scores
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returned for observations in a PCA model, where the off-diagonal correlations are
effectively zero (approximately 10−15 as shown in R’s scientific notation):

> cor(my.pca$x) # components have zero correlation
PC1 PC2 PC3

PC1 1.000000e+00 4.808932e-16 1.768720e-15
PC2 4.808932e-16 1.000000e+00 -1.174441e-15
PC3 1.768720e-15 -1.174441e-15 1.000000e+00

8.2.2 Visualizing PCA

A good way to examine the results of PCA is to map the first few components,
which allows us to visualize the data in a lower-dimensional space. A common
visualization is a biplot, a two-dimensional plot of data points with respect to the first
two PCA components, overlaid with a projection of the variables on the components.
We use biplot() to generate this:

> biplot(my.pca)

The result is Fig. 8.4, where every data point is plotted (and labeled by row number)
according to its values on the first two components. Such plots are especially helpful
when there are a smaller number of points (as we will see below for brands) or when
there are clusters (as we see in Chap. 11).
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Fig. 8.4. A biplot() of a PCA solu-
tion for the simple, constructed example,
showing data points plotted on the first
two components.

In Fig. 8.4, there are arrows that show the best fit of each of the variables on the prin-
cipal components—a projection of the variables onto the two-dimensional space of
the first two PCA components, which explain a large part of the variation in the data.
These are useful to inspect because the direction and angle of the arrows reflect
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the relationship of the variables; a closer angle indicates higher positive associa-
tion, while the relative direction indicates positive or negative association of the
variables.

In the present case, we see in the variable projections (arrows) that yvar is closely
aligned with the first component (X axis). In the relationships among the variables
themselves, we see that xvar and zvar are more associated with yvar, relative to
the principal components, than either is with the other. Thus, this visually matches
our interpretation of the correlation matrix and loadings above.

By plotting against principal components, a biplot benefits from the fact that com-
ponents are uncorrelated; this helps to disperse data on the chart because the x- and
y-axes are independent. When there are several components that account for sub-
stantial variance, it is also useful to plot components beyond the first and second.
This can be done with the choices argument to biplot().

8.2.3 PCA for Brand Ratings

Let’s look at the principal components for the brand rating data (refer to Sect. 8.1
above if you need to load the data). We find the components with prcomp(), se-
lecting just the rating columns 1–9:

> brand.pc <- prcomp(brand.sc[, 1:9])
> summary(brand.pc)
Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7
Standard deviation 1.726 1.4479 1.0389 0.8528 0.79846 0.73133 0.62458 ...
Proportion of Variance 0.331 0.2329 0.1199 0.0808 0.07084 0.05943 0.04334 ...
Cumulative Proportion 0.331 0.5640 0.6839 0.7647 0.83554 0.89497 0.93831 ...

The default plot() for a PCA is a scree plot, which shows the successive propor-
tion of additional variance that each component adds. We plot this as a line chart
using type="l" (lower case “L” for line):

> plot(brand.pc, type="l")

The result is Fig. 8.5. A scree plot is often interpreted as indicating where additional
components are not worth the complexity; this occurs where the line has an elbow,
a kink in the angle of bending, a somewhat subjective determination. In Fig. 8.5, the
elbow occurs at either component three or four, depending on interpretation; and
this suggests that the first two or three components explain most of the variation in
the observed brand ratings.

A biplot() of the first two principal components—which biplot() selects by
default for a PCA object—reveals how the rating adjectives are associated:

> biplot(brand.pc)
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We see the result in Fig. 8.6, where adjectives map in four regions: category
leadership (“serious,” “leader,” and “perform” in the upper right), value (“rebuy,”
“value,” and “bargain”), trendiness (“trendy” and “latest”), and finally “fun” on
its own.

−0.05 0.00 0.05

−
0.
05

0.
00

0.
05

PC1

P
C
2

1
2

3

4

5

6

7

8

9

10
11 12

13
14

15

16

17

18

1920

2122

23
24

25

26

27
28

29

30

31

32

33

34

35

36

37

38 39

40
41

42

43

44

45

46

47

48

49

50

5152
53

54

55

56

57

58

59
60

61
62

63

6465

66

67

68

69

70

71

72 73

74

75

76
77

78

79

80

81

82

83

84

85

86
87

88

89

90

91

92
93

94

95

96

97
98

99

100

101

102

103

104
105

106

107

108
109

110

111

112

113

114
115

116

117

118

119

120

121

122

123
124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146
147

148

149

150

151

152

153

154

155

156
157

158

159

160

161

162

163

164165

166
167

168

169

170

171

172 173
174

175

176
177
178

179

180

181

182

183

184

185

186
187

188

189

190
191

192

193194

195

196
197

198

199

200

201

202

203
204

205

206

207

208

209

210

211

212

213

214215216

217

218

219

220
221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238
239

240

241

242

243

244

245

246
247

248249250

251

252

253

254

255

256
257

258

259

260

261

262

263264

265
266

267

268

269

270

271
272

273 274 275
276

277

278

279

280
281

282
283284

285

286

287

288

289

290

291

292

293
294

295

296

297

298

299

300

301

302

303

304

305

306

307

308
309

310

311

312

313

314315

316
317

318

319
320

321

322

323

324

325326

327

328

329

330

331

332

333

334

335

336

337

338
339

340341

342

343

344
345346

347

348
349350
351

352

353
354

355

356
357

358

359

360

361

362363

364365

366

367

368

369

370371

372

373

374375

376

377

378

379
380

381

382

383

384

385

386
387

388

389

390

391392

393

394

395

396

397

398

399

400
401

402

403

404

405

406 407

408

409
410

411

412

413

414

415

416

417
418

419

420

421

422

423

424
425

426

427

428

429

430

431432

433

434

435
436 437

438

439440

441

442

443

444

445

446
447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473
474

475

476 477

478

479

480
481

482

483
484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508 509

510511

512

513

514515
516

517

518

519

520

521

522

523

524

525

526

527

528

529
530

531

532

533

534

535

536

537
538

539

540

541

542

543

544

545

546

547

548

549

550551

552

553

554

555

556

557

558

559

560

561

562

563

564

565 566

567

568

569

570

571
572

573574

575

576

577

578

579

580

581

582
583

584585586

587 588

589590

591

592

593

594595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622
623

624

625

626

627

628

629

630

631

632

633634

635

636

637638

639

640

641

642

643

644

645

646

647

648

649

650 651

652

653

654

655

656

657

658 659

660

661 662

663

664

665

666

667
668

669

670

671

672

673
674

675
676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700
701

702
703

704

705

706707

708

709

710

711
712

713

714

715

716

717

718

719

720
721

722

723

724
725

726

727728

729

730

731

732

733

734

735

736

737

738

739
740

741742

743

744

745

746

747
748

749750

751752

753

754

755

756

757

758

759

760

761

762

763

764
765766

767

768

769

770

771

772

773

774

775

776
777

778

779780

781

782

783

784

785

786

787

788

789

790

791

792793

794

795

796
797

798

799

800

801

802803

804

805

806

807

808

809
810

811

812
813

814

815

816

817
818

819

820

821

822 823

824825

826

827

828

829

830

831
832

833

834

835

836

837

838
839

840

841

842

843
844

845

846

847

848

849

850

851

852

853

854

855

856

857

858
859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875 876

877

878
879

880

881
882

883

884

885

886

887

888 889

890
891

892

893

894

895

896

897 898

899

900

901

902

903

904

905

906

907

908

909

910

911
912

913

914
915

916

917

918

919

920

921
922

923

924

925

926

927

928

929

930931932

933

934 935

936

937

938

939
940

941

942
943

944

945

946

947
948

949

950

951

952

953
954

955

956

957

958

959
960

961
962

963

964

965

966

967

968

969

970971 972

973

974

975

976

977

978

979
980981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

−20 −10 0 10 20

−
20

−
10

0
10

20perform

leader

latest

fun

serious

bargain
value

trendy

rebuy

Fig. 8.6. A biplot of an initial attempt
at PCA for consumer brand ratings. Al-
though we see adjective groupings on the
variable loading arrows in red, and gain
some insight into the areas where rat-
ings cluster (as dense areas of observa-
tion points), the chart would be more use-
ful if the data were first aggregated by
brand.

But there is a problem: the plot of individual respondents’ ratings is too dense
and it does not tell us about the brand positions! A better solution is to perform
PCA using aggregated ratings by brand. First we remind ourselves of the data
that compiled the mean rating of each adjective by brand as we found above using
aggregate()(see Sect. 8.1). Then we extract the principal components:

> brand.mean
perform leader latest fun serious bargain

a -0.88591874 -0.5279035 0.4109732 0.6566458 -0.91894067 0.21409609
b 0.93087022 1.0707584 0.7261069 -0.9722147 1.18314061 0.04161938
...
> brand.mu.pc <- prcomp(brand.mean, scale=TRUE)
> summary(brand.mu.pc)
Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7
Standard deviation 2.1345 1.7349 0.7690 0.61498 0.50983 0.36662 0.21506
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Proportion of Variance 0.5062 0.3345 0.0657 0.04202 0.02888 0.01493 0.00514
Cumulative Proportion 0.5062 0.8407 0.9064 0.94842 0.97730 0.99223 0.99737
...

In the call to prcomp(), we added scale=TRUE in order to rescale the data; even
though the raw data was already rescaled, the aggregated means have a somewhat
different scale than the standardized data itself. The results show that the first two
components account for 84 % of the explainable variance in the mean ratings, so we
focus on interpreting results with regard to them.

8.2.4 Perceptual Map of the Brands

A biplot of the PCA solution for the mean ratings gives an interpretable percep-
tual map, showing where the brands are placed with respect to the first two princi-
pal components. We use biplot() on the PCA solution for the mean rating by
brand:
> biplot(brand.mu.pc, main="Brand positioning", cex=c(1.5, 1))

We plot the brand labels with a 50 % larger font using the character expansion
argument cex=c(1.5, 1). The result is Fig. 8.7.

Before interpreting the new map, we first check that using mean data did not greatly
alter the structure. Figure 8.7 shows a different spatial rotation of the adjectives,
compared to Fig. 8.6, but the spatial position is arbitrary and the new map has the
same overall grouping of adjectives and relational structure (for instance, seeing
as in Fig. 8.6 that “serious” and “leader” are closely related while “fun” is rather
distant from other adjectives). Thus the variable positions on the components are
consistent with PCA on the full set of observations, and we go ahead to interpret the
graphic.
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Fig. 8.7. A perceptual map of con-
sumer brands with biplot() for
aggregate mean rating by brand. This
shows components almost identical
to those in Fig. 8.6 (although spa-
tially rotated) but the mean brand po-
sitions are clear.
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What does the map tell us? First we interpret the adjective clusters and relationships
and see four areas with well differentiated sets of adjectives and brands that are
positioned in proximity. Brands f and g are high on “value,” for instance, while a
and j are relatively high on “fun,” which is opposite in direction from leadership
adjectives (“leader” and “serious”).

With such a map, one might form questions and then refer to the underlying data
to answer them. For instance, suppose that you are the brand manager for brand e.
What does the map tell you? For one thing, your brand is in the center and thus
appears not to be well-differentiated on any of the dimensions. That could be good
or bad, depending on your strategic goals. If your goal is to be a safe brand that ap-
peals to many consumers, then a relatively undifferentiated position like e could be
desirable. On the other hand, if you wish your brand to have a strong, differentiated
perception, this finding would be unwanted (but important to know).

What should you do about the position of your brand e? Again, it depends on the
strategic goals. If you wish to increase differentiation, one possibility would be to
take action to shift your brand in some direction on the map. Suppose you wanted
to move in the direction of brand c. You could look at the specific differences from
c in the data:
> brand.mean["c", ] - brand.mean["e", ]

perform leader latest fun serious bargain value ...
c 1.214314 0.9699315 -0.5587936 -1.140567 1.180621 -1.158594 -0.8588416 ...

This shows you that e is relatively stronger than c on “value” and “fun”, which
suggests dialing down messaging or other attributes that reinforce those (assuming,
of course, that you truly want to move in the direction of c). Similarly, c is stronger
on “perform” and “serious,” so those could be aspects of the product or message for
e to strengthen.

Another option would be not to follow another brand but to aim for differentiated
space where no brand is positioned. In Fig. 8.7, there is a large gap between the
group b and c on the bottom of the chart, versus f and g on the upper right. This area
might be described as the “value leader” area or similar.

How do we find out how to position there? Let’s assume that the gap reflects ap-
proximately the average of those four brands (see Sect. 8.2.5 for some of the risks
with this assumption). We can find that average using colMeans() on the brands’
rows, and then take the difference of e from that average:
> colMeans(brand.mean[c("b", "c", "f", "g"), ]) - brand.mean["e", ]

perform leader latest fun serious bargain value
e 1.174513 0.3910396 -0.9372789 -0.9337707 0.5732131 -0.2502787 0.07921355
...

This suggests that brand e could target the gap by increasing its emphasis on perfor-
mance while reducing emphasis on “latest” and “fun.”

To summarize, when you wish to compare several brands across many dimensions,
it can be helpful to focus on just the first two or three principal components that
explain variation in the data. You can select how many components to focus on



208 8 Reducing Data Complexity

using a scree plot, which shows how much variation in the data is explained by each
principal component. A perceptual map plots the brands on the first two principal
components, revealing how the observations relate to the underlying dimensions
(the components).

PCA may be performed using survey ratings of the brands (as we have done here) or
with objective data such as price and physical measurements, or with a combination
of the two. In any case, when you are confronted with multidimensional data on
brands or products, PCA visualization is a useful tool for understanding differences
in the market.

8.2.5 Cautions with Perceptual Maps

There are three important caveats in interpreting perceptual maps. First, you must
choose the level and type of aggregation carefully. We demonstrated the maps using
mean rating by brand, but depending on the data and question at hand, it might be
more suitable to use median (for ordinal data) or even modal response (for categor-
ical data). You should check that the dimensions are similar for the full data and
aggregated data before interpreting aggregate maps. You can do this by examining
the variable positions and relationships in biplots of both aggregated data (such as
means) and raw data (or a random subset of it), as we did above.

Second, the relationships are strictly relative to the product category and the brands
and adjectives that are tested. In a different product category, or with different
brands, adjectives such as “fun” and “leader” could have a very different relation-
ship. Sometimes simply adding or dropping a brand can change the resulting map
significantly because the positions are relative. In other words, if a new brand enters
the market (or one’s analysis), the other positions may change substantially. One
must also be confident that all of the key perceptions (adjectives, in this example)
have been assessed. One way to assess sensitivity here is to run PCA and biplot on
a few different samples from your data, such as 80 % of your observations, and per-
haps dropping an adjective each time. If the maps are similar across those samples,
you may feel more confident in their stability.

Third, it is frequently misunderstood that the positions of brands in such a map
depend on their relative positioning in terms of the principal components, which are
constructed composites of all dimensions. This means that the strength of a brand
on a single adjective cannot be read directly from the chart. For instance, in Fig. 8.7,
it might appear that brands b and c are weaker than d, h, and i on “latest” but are
similar to one another. In fact, b is the single strongest brand on “latest” while c is
weak on that adjective. Overall, b and c are quite similar to one another in terms of
their scores on the two components that aggregate all of the variables (adjectives),
but they are not necessarily similar on any single variable. Another way to look at
this is that when we use PCA to focus on the first one or two dimensions in the data,
we are looking at the largest-magnitude similarities, which may obscure smaller
differences that do not show up strongly in the first one or two dimensions.
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This last point is a common area of confusion with analysts and stakeholders who
want to read adjective positions directly from a biplot. We recommend to explain
that positions are not absolute but are relative. We often explain positions with
language such as, “compared to its position on other attributes, brand X is rela-
tively differentiated by perceptions of strength (or weakness) on such-and-such at-
tribute.”

Despite these caveats, perceptual maps can be a valuable tool. We use them primar-
ily to form hypotheses and to provide material to inform strategic analyses of brand
and product positioning. If they are used in that way—rather than as absolute as-
sessments of position—they can contribute to engaging discussions about position
and potential strategy.

Although we illustrated PCA with brand position, the same kind of analysis could
be performed for product ratings, position of consumer segments, ratings of political
candidates, evaluations of advertisements, or any other area where you have metric
data on multiple dimensions that is aggregated for a modest number of discrete
entities of interest.

In Chap. 9 we will see the usefulness of PCA for highly correlated data. By extract-
ing components, one can derive a reduced set of variables that captures as much
of the variance as desired, yet where each of the measures is independent of the
others.

8.3 Exploratory Factor Analysis

EFA is a family of techniques to assess the relationship of constructs (concepts) in
surveys and psychological assessments. Factors are regarded as latent variables that
cannot be observed directly, but are imperfectly assessed through their relationship
to other variables.

In psychometrics, canonical examples of factors occur in psychological and educa-
tional testing. For example, “intelligence,” “knowledge of mathematics,” and “anx-
iety” are all abstract concepts (constructs) that are not directly observable in them-
selves. Instead, they are observed empirically through multiple behaviors, each one
of which is an imperfect indicator of the underlying latent variable. These observed
values are known as manifest variables and include indicators such as test scores,
survey responses, and other empirical behaviors. EFA attempts to find the degree to
which latent, composite factors account for the observed variance of those manifest
variables.

In marketing, we often observe a large number of variables that we believe should
be related to a smaller set of underlying constructs. For example, we cannot directly
observe customer satisfaction but we might observe responses on a survey that asks
about different aspects of a customer’s experience, jointly representing different
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facets of the underlying construct satisfaction. Similarly, we cannot directly ob-
serve purchase intent, price sensitivity, or category involvement but we can observe
multiple behaviors that are related to them.

In this section, we use EFA to examine respondents’ attitudes about brands, using
the brand rating data from above (Sect. 8.1) to uncover the latent dimensions in the
data. Then we assess the brands in terms of those estimated latent factors.

8.3.1 Basic EFA Concepts

The result of EFA is similar to PCA: a matrix of factors (similar to PCA compo-
nents) and their relationship to the original variables (loadings of the factors on the
variables). Unlike PCA, EFA attempts to find solutions that are maximally inter-
pretable in terms of the manifest variables. In general, it attempts to find solutions
in which a small number of loadings for each factor are very high, while other load-
ings for that factor are low. When this is possible, that factor can be interpreted in
terms of that small set of variables.

To accomplish this, EFA uses rotations that start with an uncorrelated (orthogonal)
mathematical solution and then mathematically alter the solution to explain identical
variance but with different loadings on the original variables. There are many such
rotations available, and they typically share the goals of maximizing the loadings on
a few variables while making factors as distinct as possible from one another.

Instead of reviewing that mathematically (see [119]), let’s consider a loose analogy.
One might think about EFA in terms of a pizza topped with large items such as
tomato slices and mushrooms that will be cut into a certain number of slices. The
pizza could be rotated and cut in an infinite number of ways that are all mathemati-
cally equivalent insofar as they divide up the same underlying structure.

However, some rotations are more useful than others because they fall in-between
the large items rather than dividing them. When this occurs, one might have a
“tomato slice,” a “mushroom slice,” a “half-and-half tomato and mushroom slice,”
and so forth. By rotating and cutting differently, one makes the underlying sub-
stance more interpretable relative to one’s goals (such as having differentiated pizza
slices). No rotation is inherently better or worse, but some are more useful than
others. Similarly, the manifest variables in EFA can be sliced in many ways accord-
ing to one’s goals for interpreting the latent factors. We will see how this works in
Sect. 8.3.3.

Because EFA produces results that are interpretable in terms of the original vari-
ables, an analyst may be able to interpret and act on the results in ways that would
be difficult with PCA. For instance, EFA can be used to refine a survey by keep-
ing items with high loading on factors of interest while cutting items that do not
load highly. EFA is also useful to investigate whether a survey’s items actually go
together in a way that is consistent with expectations.
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For example, if we have a 10-item survey that is supposed to assess the single con-
struct customer satisfaction, it is important to know whether those items in fact go
together in a way that can be interpreted as a single factor, or whether they instead
reflect multiple dimensions that we might not have considered. Before interpret-
ing multiple items as assessing a single concept, one might wish to test that it is
appropriate to do so. In this chapter, we use EFA to investigate such structure. In
Chap. 10, we will see how to test whether one’s data are in fact consistent with an
asserted structure.

EFA serves as a data reduction technique in three broad senses:

1. In the technical sense of dimensional reduction, we can use factor scores instead
of a larger set of items. For instance, if we are assessing satisfaction, we could
use a single satisfaction score instead of several separate items. (In Sect. 9.1.2
we review how this is also useful when observations are correlated.)

2. We can reduce uncertainty. If we believe satisfaction is imperfectly manifest in
several measures, the combination of those will have less noise than the set of
individual items.

3. We might also reduce data collection by focusing on items that are known to
have high contribution to factors of interest. If we discover that some items are
not important for a factor of interest, we can discard them from data collection
efforts.

In this chapter we use the brand rating data to ask the following questions: How
many latent factors are there? How do the survey items map to the factors?
How are the brands positioned on the factors? What are the respondents’ factor
scores?

8.3.2 Finding an EFA Solution

The first step in EFA is to determine the number of factors to estimate. There are var-
ious ways to do this, and two traditional methods are to use a scree plot (Sect. 8.2.3),
and to retain factors where the eigenvalue (a metric for proportion of variance ex-
plained) is greater than 1.0. An eigenvalue of 1.0 corresponds to the amount of vari-
ance that might be attributed to a single independent variable; a factor that captures
less variance than such an item may be considered relatively uninteresting.

As we saw in Sect. 8.2.3, a scree plot of the brand rating data suggests two or three
components. The nFactors package [130] (install if necessary) formalizes this
analysis with nScree():
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> library(nFactors)
> nScree(brand.sc[, 1:9])
noc naf nparallel nkaiser

1 3 2 3 3

nScree() applies several methods to estimate the number of factors from scree
tests, and in the present case three of the four methods suggest that the data set
has 3 factors. We can examine the eigenvalues using eigen() on a correlation
matrix:

> eigen(cor(brand.sc[, 1:9]))
$values
[1] 2.9792956 2.0965517 1.0792549 0.7272110 0.6375459 0.5348432 0.3901044
...

The first three eigenvalues are greater than 1.0, although barely so for the third value.
This again suggests 3—or possibly 2—factors.

The final choice of a model depends on whether it is useful. For EFA, a best practice
is to check a few factor solutions, including the ones suggested by the scree and
eigenvalue results. Thus, we test a 3-factor solution and a 2-factor solution to see
which one is more useful.

An EFA model is estimated with factanal(x, factors=K), where K is the
number of factors to fit. For a 2-factor solution, we write:

> factanal(brand.sc[, 1:9], factors=2)
...
Loadings:

Factor1 Factor2
perform 0.600
leader 0.818
latest -0.451
fun -0.137 -0.382
serious 0.686
bargain 0.803
value 0.873 0.117
trendy -0.534
rebuy 0.569 0.303
...

We have removed all of the information except for the loadings because those are
the most important to interpret (see “Learning More” in this chapter for material
that explains much more about EFA and the output of such procedures). Some of
the factor loadings are near zero, and are not shown; this makes EFA potentially
easier to interpret than PCA.

In the 2-factor solution, factor 1 loads strongly on “bargain” and “value,” and there-
fore might be interpreted as a “value” factor while factor 2 loads on “leader” and
“serious” and thus might be regarded as a “category leader” factor.
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This is not a bad interpretation, but let’s compare it to a 3-factor solution:

> factanal(brand.sc[, 1:9], factors=3)
...
Loadings:

Factor1 Factor2 Factor3
perform 0.607
leader 0.810 0.106
latest -0.163 0.981
fun -0.398 0.205
serious 0.682
bargain 0.826 -0.122
value 0.867 -0.198
trendy -0.356 0.586
rebuy 0.499 0.296 -0.298

The 3-factor solution retains the “value” and “leader” factors and adds a clear “lat-
est” factor that loads strongly on “latest” and “trendy.” This adds a clearly inter-
pretable concept to our understanding of the data. It also aligns with the bulk of
suggestions from the scree and eigen tests, and fits well with the perceptual maps
we saw in Sect. 8.2.4, where those adjectives were in a differentiated space. So we
regard the 3-factor model as superior to the 2-factor model because the factors are
more interpretable.

8.3.3 EFA Rotations

As we described earlier, a factor analysis solution can be rotated to have new load-
ings that account for the same proportion of variance. Although a full consideration
of rotations is out of scope for this book, there is one issue worth considering in
any EFA: do you wish to allow the factors to be correlated with one another or
not?

You might think that one should let the data decide. However, the question of
whether to allow correlated factors is less a question about the data than it is about
your concept of the underlying latent factors. Do you think the factors should be
conceptually independent, or does it make more sense to consider them to be re-
lated? An EFA rotation can be obtained under either assumption.

The default in factanal() is to find factors that have zero correlation (using a
varimax rotation). In case you’re wondering how this differs from PCA, it differs
mathematically because EFA finds latent variables that may be observed with error
(see [119]) whereas PCA simply recomputes transformations of the observed data.
In other words, EFA focuses on the underlying latent dimensions, whereas PCA
focuses on transforming the dimensionality of the data.

Returning to our present data, we might judge that value and leader are reason-
ably expected to be related; in many categories, the leader can command a price
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premium, and thus we might expect those two latent constructs to be negatively cor-
related rather than independent of one another. This suggests that we could allow
correlated factors in our solution. This is known as an oblique rotation (“oblique”
because the dimensional axes are not perpendicular but are skewed by the correla-
tion between factors).

A common oblique rotation is the “oblimin” rotation from the GPArotation
package [11] (install if necessary). We add that to our 3-factor model with
rotation="oblimin":

> library(GPArotation)
> (brand.fa.ob <- factanal(brand.sc[, 1:9], factors=3, rotation="oblimin"))
...
Loadings:

Factor1 Factor2 Factor3
perform 0.601
leader 0.816
latest 1.009
fun -0.381 0.229
serious 0.689
bargain 0.859
value 0.880
trendy -0.267 0.128 0.538
rebuy 0.448 0.255 -0.226
...
Factor Correlations:

Factor1 Factor2 Factor3
Factor1 1.0000 -0.388 0.0368
Factor2 -0.3884 1.000 -0.1091
Factor3 0.0368 -0.109 1.0000
...

When we compare this oblimin result to the default varimax rotation above, there are
two main differences. First, the loadings are slightly different for the relationships
of the factors to the adjectives. However, the loadings are similar enough in this case
that there is no substantial change in how we would interpret the factors. There are
still factors for “value,” “leader,” and “latest.”

Second, the result includes a factor correlation matrix showing the relationships
between the estimated latent factors. Factor 1 (value) is negatively correlated with
Factor 2 (leader), r = −0.39, and is essentially uncorrelated with Factor 3 (latest),
r = 0.037.

The negative correlation between factors 1 and 2 is consistent with our theory that
brands that are leaders are less likely to be value brands, and thus we think this
is a more interpretable result. However, in other cases a correlated rotation may
or may not be a better solution than an orthogonal one; that is largely an issue to
be decided on the basis of domain knowledge and interpretive utility rather than
statistics.

In the output above, the item-to-factor loadings are displayed. In the returned model
object, those are present as the $loadings element. We can the visualize item-
factor relationships with a heatmap of $loadings:
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> library(gplots)
> library(RColorBrewer)
> heatmap.2(brand.fa.ob$loadings,
+ col=brewer.pal(9, "Greens"), trace="none", key=FALSE, dend="none",
+ Colv=FALSE, cexCol = 1.2,
+ main="\n\n\n\n\nFactor loadings for brand adjectives")

The result is Fig. 8.8, which shows a distinct separation of items into 3 factors,
which are roughly interpretable as value, leader, and latest. Note that the item
rebuy, which reflects stated intention to repurchase, loads on both Factor1 (value)
and Factor2 (leader). This suggests that in our simulated data, consumers say they
would rebuy a brand for either reason, because it is a good value or because it is a
leader.

F
ac

to
r1

F
ac

to
r2

F
ac

to
r3

fun

trendy

latest

leader

perform

serious

rebuy

bargain

value

Factor loadings for brand adjectives

Fig. 8.8. A heatmap of item-factor loadings.

Another useful graphic for factor analysis models is a path diagram, which shows
latent variables and the individual items that load on them.

The semPlot package (install if needed) will draw a visual representation of a
factor analysis model. We use the procedure semPaths() to draw the paths. It is
a complex command and we add several arguments as explained below:

> library(semPlot)
> semPaths(brand.fa.ob, what="est", residuals=FALSE,
+ cut=0.3, posCol=c("white", "darkgreen"), negCol=c("white", "red"),
+ edge.label.cex=0.75, nCharNodes=7)

First we will explain the semPaths() call. We plotted the brand.fa.ob model
as fit above. To draw the loading estimates, we requested what="est". We omit
the residual estimates for manifest variables (an advanced topic we don’t cover
in this book) using residuals=FALSE. Then we cut loadings with absolute
magnitude < 0.3 by adding cut=0.3 and the options posCol=c("white",
"darkgreen") and negCol=c("white", "red"). The posCol argument
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says that positive loadings < 0.3 should be colored white (and thus not appear in
the output), while loadings > 0.3 should be darkgreen. The negCol argument
similarly excludes or colors red the loadings < 0. We adjust the loadings’ text size
with edge.label.cex, and create room to spell out full variable names with
nCharNodes.

bargain value rebuy perform leader fun serious latest trendy

Factor1 Factor2 Factor3

0.450.86 0.88 −0.380.60 0.690.82 0.541.01 Fig. 8.9. A path diagram for the factor
analysis solution, which clearly displays
the three factors and their item loadings
(|loadings| < 0.3 are excluded). The
graphic is generated with semPaths()
from the semPlot package.

The result is shown in Fig. 8.9. Luckily, interpreting the path diagram is easier than
the code to create it! Latent variables are shown at the top and are traditionally
drawn with circles; these correspond to the three factors. Manifest variables appear
in squares at the bottom; these are the observed variables that load on the factors.
The strength of loading is shown on the path from each factor to its manifest vari-
ables, with positive loading in green and negative loading in red (and with a negative
sign).

We will see many more examples of path diagrams when we explore confirmatory
factor analysis (CFA) and structural equation models in Chap. 10.

Overall, the result of the EFA for this data set is that instead of using 9 distinct
variables, we might instead represent the data with 3 underlying latent factors. We
have seen that each factor maps to 2–4 of the manifest variables. However, this
only tells us about the relationships of the rating variables among themselves in
our data; in the next section, we use the estimated factor scores to learn about the
brands.

8.3.4 Using Factor Scores for Brands

In addition to estimating the factor structure, EFA will also estimate latent factor
scores for each observation. In the present case, this gives us the best estimates of
each respondent’s latent ratings for the “value,” “leader,” and “latest” factors. We can
then use the factor scores to determine brands’ positions on the factors. Interpreting
factors eliminates the separate dimensions associated with the manifest variables,
allowing us to concentrate on a smaller, more reliable set of dimensions that map to
theoretical constructs instead of individual items.
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Factor scores are requested from factanal() by adding the scores=... ar-
gument. We request Bartlett scores (see ?factanal), and extract them from
the factanal() object using $scores, storing them as a separate data
frame:
> brand.fa.ob <- factanal(brand.sc[, 1:9], factors=3, rotation="oblimin",
+ scores="Bartlett")
> brand.scores <- data.frame(brand.fa.ob$scores) # get the factor scores
> brand.scores$brand <- brand.sc$brand # get the matching brands
> head(brand.scores)

Factor1 Factor2 Factor3 brand
1 1.6521364 -0.6886749 0.5256104 a
2 -1.4005333 -1.6681901 -0.6764121 a
...

The result is an estimated score for each respondent on each factor and brand. If we
wish to investigate individual-level correlates of the factors, such as their relation-
ship to demographics or purchase behavior, we could use these estimates of factor
scores. This can be very helpful in analyses such as regression and segmentation
because it reduces the model complexity (number of dimensions) and uses more
reliable estimates (factor scores that reflect several manifest variables). Instead of
nine items, we have three factors.

To find the overall position for a brand, we aggregate() the individual scores
by brand as usual:
> brand.fa.mean <- aggregate(. ∼ brand, data=brand.scores, mean)

We clean this up by assigning names for the rows (brands) and columns
(factors):
> rownames(brand.fa.mean) <- brand.fa.mean[, 1] # brand names
> brand.fa.mean <- brand.fa.mean[, -1]
> names(brand.fa.mean) <- c("Leader", "Value", "Latest") # factor names
> brand.fa.mean

Leader Value Latest
a 0.23158792 -1.06993703 0.39326652
b 0.09686823 1.51913070 0.72391174
...

Finally, a heatmap graphs the scores by brand:
> heatmap.2(as.matrix(brand.fa.mean),
+ col=brewer.pal(9, "GnBu"), trace="none", key=FALSE, dend="none",
+ cexCol=1.2, main="\n\n\n\n\n\nMean factor score by brand")

The result is Fig. 8.10. When we compare this to the chart of brand by adjective in
Fig. 8.2, we see that the chart of factor scores is significantly simpler than the full
adjective matrix. The brand similarities are evident again in the factor scores, for
instance that f and g are similar, as are b and c, and so forth.

We conclude that EFA is a valuable way to examine the underlying structure and
relationship of variables. When items are related to underlying constructs, EFA re-
duces data complexity by aggregating variables to create simpler, more interpretable
latent variables.
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Fig. 8.10. A heatmap of the latent factor scores for
consumer brand ratings, by brand.

In this exposition, we have only explored a small number of the possibilities for
factor analysis; to learn more, see Sect. 8.5. You will also want to review Chap. 10,
which considers the closely related topic of CFA. CFA does not attempt to find a
factor structure as EFA does, but rather assesses how well a proposed structure fits
one’s data.

8.4 Multidimensional Scaling

MDS is a family of procedures that can also be used to find lower-dimensional rep-
resentations of data. Instead of extracting underlying components or latent factors,
MDS works instead with distances (also known as similarities). MDS attempts to
find a lower-dimensional map that best preserves all the observed similarities be-
tween items.

If you have similarity data already, such as ratings of whether one product is like an-
other, you can apply MDS directly to the data. If you have other kinds of data, such
as the brand rating data we’ve considered in this chapter, then you must compute
the distances between points before applying MDS. If you have metric data—where
you consider the units of measurement to have interval or ratio properties—then you
might simply calculate euclidian distances with the default dist() command, as
we do for the mean ratings computed above:

> brand.dist <- dist(brand.mean)

A procedure to find an MDS solution for a distance matrix from metric data is
cmdscale():

> (brand.mds <- cmdscale(brand.dist))
[,1] [,2]
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a -7.570113e-01 1.4619032
b 5.586301e-01 -2.1698618
...

The result of cmdscale() is a list of X and Y dimensions indicating two-
dimensional estimated plot coordinates for entities (in this case, brands). We see
the plot locations for brands a and b in the output above. Given those coordinates,
we can simply plot() the values and label them:

> plot(brand.mds, type="n")
> text(brand.mds, rownames(brand.mds), cex=2)

In this code, plot(..., type="n") tells R not to plot symbols. Instead, we
add the brand labels to the plot with text(x, labels). The result is Fig. 8.11.
The brand positions are grouped nearly identically to what we saw in the perceptual
map in Fig. 8.7.
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Fig. 8.11. A metric MDS chart
for mean brand rating, using
cmdscale(). The brand posi-
tions are quite similar to those seen
in the biplot() in Fig. 8.7.

8.4.1 Non-metric MDS

For non-metric data such as rankings or categorical variables, you would use a dif-
ferent method to compute distance and an MDS algorithm that does not assume
metric distances.

For purposes of illustration, let’s convert the mean ratings to rankings instead of
raw values; this will be non-metric, ordinal data. We apply rank() to the columns
using lapply() and code each resulting column as an ordinal factor variable using
ordered():
> brand.rank <- data.frame(lapply(brand.mean, function(x) ordered(rank(x))))
> str(brand.rank)
’data.frame’: 10 obs. of 9 variables:
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$ perform: Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 1 10 8 2 4 5 9 6 7 3
$ leader : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 3 9 10 2 7 8 6 5 4 1
...

To find distances between the ranks, we use an alternative to dist(), daisy()
from the cluster package (see Sect. 11.3.2), which can handle non-metric data
such as rank ordering. In daisy(), we compute distance with the gower metric,
which handles mixed numeric, ordinal, and nominal data:

> library(cluster)
> brand.dist.r <- daisy(brand.rank, metric="gower")

Now that we have a distance matrix we apply the non-metric MDS function
isoMDS() to scale the data. Then we plot the result:

> brand.mds.r <- isoMDS(brand.dist.r)
initial value 9.063777
...
converged
> plot(brand.mds.r$points, type="n")
> text(brand.mds.r$points, levels(brand.sc$brand), cex=2)

The plot() and text() commands are slightly different than those we saw
above for cmdscale(), because isoMDS() returns coordinates in the $points
matrix within its object.

The resulting chart is shown in Fig. 8.12. Compared to Fig. 8.11, we see that brand
positions in the non-metric solution are more diffuse. The X axis is arbitrarily re-
versed, which is not important. Still, the nearest neighbors of brands are largely
consistent with the exception of brands h and i, which are separated quite a bit more
than in the metric solution. (This occurs because the rank-order procedure loses
some of the information that is present in the original metric data solution, resulting
in a slightly different map.)

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−
0.
2

−
0.
1

0.
0

0.
1

0.
2

brand.mds.r$points[,1]

br
an

d.
m
ds

.r
$p

oi
nt
s[
,2
]

a

b c

d
e

f

g

h

i

j

Fig. 8.12. A non-metric MDS chart
for mean brand ratings expressed
as ordinal ranks, obtained using
daisy() to find distances and
isoMDS() for non-metric scaling.
The brand groupings are similar
to but more diffuse than those in
Fig. 8.11.
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We generally recommend PCA as a more informative procedure than MDS for typ-
ical metric or near-metric (e.g., survey Likert scale) data. However, PCA will not
work with non-metric data. In those cases, MDS is a valuable alternative.

MDS may be of particular interest when handling text data such as consumers’ feed-
back, comments, and online product reviews, where text frequencies can be con-
verted to distance scores. For example, if you are interested in similarities between
brands in online reviews, you could count how many times various pairs of brands
occur together in consumers’ postings. The co-occurrence matrix of counts—brand
A mentioned with brand B, with brand C, and so forth—could be used as a mea-
sure of similarity between the two brands and serve as the distance metric in MDS
(see [120]).

8.5 Learning More*

8.5.1 Principal Component Analysis

There is a large literature describing many procedures, options, and applications for
each of the analyses in this chapter. With perceptual mapping, a valuable resource
is Gower et al. [64] which describes common problems and best practices for per-
ceptual maps. Jolliffe [87] provides a comprehensive text on the mathematics and
applications of PCA.

8.5.2 Factor Analysis

The literature on factor analysis is particularly voluminous although it often refer-
ences statistics packages other than R. A good conceptual overview of EFA with
procedural notes (but not R specific) is Fabrigar and Wegener [45], Exploratory
Factor Analysis. A modestly more technical volume that covers exploratory and
confirmatory models together, with a social science (psychology) point of view, is
Thompson [151], Exploratory and Confirmatory Factor Analysis. For examination
of the mathematical bases and procedures of factor analysis, a standard text is Mu-
laik [119], Foundations of Factor Analysis.

The psych package [132] presents many additional tools and methods for factor
analysis, especially in the context of traditional psychometric instruments such as
surveys in general and tests of aptitude or personality. The fa() function in psych
offers an alternative to the standard factanal() procedure with more options and
more complete assessment of EFA models.

A companion to exploratory factor analysis is confirmatory factor analysis, which
we discuss in Chap. 10. Whereas EFA infers factor structure from a data set, CFA
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tests a proposed model to see whether it corresponds well to observed data. A com-
mon use of EFA is to select items that load highly on underlying dimensions of
interest. CFA allows you to confirm that the relationships between items and factors
are maintained in new data sets.

8.5.3 Multidimensional Scaling

There are many uses and options for MDS beyond those considered in this chapter.
A readable introduction to the methods and applications is Borg et al. [15], Applied
Multidimensional Scaling. The statistical foundations and methods are detailed in
Borg and Groenen [14], Modern Multidimensional Scaling.

8.6 Key Points

Investigation of data complexity has several benefits. It allows inspection of the
underlying dimensional relationships among variables, investigation of how obser-
vations such as brands or people vary on those dimensions, and estimation of a
smaller number of more reliable dimensional scores. The following key points will
assist you to investigate the underlying dimensions of your data.

8.6.1 Principal Component Analysis

• PCA finds linear functions that explain maximal variance in observed data. A
key concept is that such components are orthogonal (uncorrelated). The basic
R command is prcomp() (Sect. 8.2.1).

• A common use for PCA is a biplot of aggregate scores for brands or people
to visualize relationships. When this is done for attitudinal data such as brand
ratings it is called a perceptual map. This is created by aggregating the statistic
of interest by entity and charting with biplot() (Sect. 8.2.2).

• Because PCA components often load on many variables, the results must be
inspected cautiously and in terms of relative position. It is particularly difficult
to read the status of individual items from a PCA biplot (Sect. 8.2.5).

8.6.2 Exploratory Factor Analysis

• EFA models latent variables (factors) that are not observed directly but appear
indirectly as observed manifest variables. A key procedure is factanal()
(Sect. 8.3.1).
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• A fundamental decision in EFA is the number of factors to extract. Common
criteria involve inspection of a scree plot and extraction of factors such that all
eigenvalues are greater than 1.0. There are useful tools to determine the number
of factors in nFactors, but the final determination depends on one’s theory
and the utility of results (Sect. 8.3.2).

• EFA uses rotation to adjust an initial solution to one that is mathematically
equivalent but more interpretable according to one’s aims. Another key deci-
sion in EFA is whether one believes the underlying latent variables should be
uncorrelated (calling for an orthogonal rotation such as varimax) or corre-
lated (calling for an oblique rotation such as oblimin) (Sect. 8.3.3).

• After performing EFA, you can extract factor scores that are the best esti-
mates for each observation (respondent) on each factor. These are present as
$scores in factanal() objects if you request them with the scores ar-
gument (Sect. 8.3.4).

8.6.3 Multidimensional Scaling

• MDS is similar to PCA but is able to work with both metric and non-metric
data. MDS requires a distance score obtained from dist() for metric data
or a procedure such as daisy() for non-metric data. MDS scaling is then
performed by cmdscale() for metric data or isoMDS() (or other options)
for non-metric data (Sect. 8.4).
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