7

Identifying Drivers of Outcomes: Linear Models

In this chapter we investigate linear models, which are often used in marketing to
explore the relationship between an outcome of interest and other variables. A com-
mon application in survey analysis is to model satisfaction with a product in relation
to specific elements of the product and its delivery; this is called “satisfaction drivers
analysis.” Linear models are also used to understand how price and advertising are
related to sales, and this is called “marketing mix modeling.” There are many other
situations in which it is helpful to model an outcome, known formally as a response
or dependent variable, as a function of predictor variables (also known as explana-
tory or independent variables). Once a relationship is estimated, one can use the
model to make predictions or forecasts of the likely outcome for other values of the
predictors.

In this chapter, we illustrate linear modeling with a satisfaction drivers analysis us-
ing survey data for customers who have visited an amusement park. In the survey,
respondents report their levels of satisfaction with different aspects of their expe-
rience, and their overall satisfaction. Marketers frequently use this type of data to
figure out what aspects of the experience drive overall satisfaction, asking questions
such as, “Are people who are more satisfied with the rides also more satisfied with
their experience overall?” If the answer to this question is “no,” then the company
will know to invest in improving other aspects of the experience.

An important thing to understand is that driver does not imply causation. A linear
model only assumes an association among variables. Consider a survey of auto-
mobile purchasers that finds a positive association between satisfaction and price
paid. If a brand manager wants customers to be more satisfied, does this imply that
she should raise prices? Probably not. It is more likely that price is associated with
higher quality, which then leads to higher satisfaction. Results should be interpreted
cautiously and considered in the context of domain knowledge.

© Springer International Publishing Switzerland 2015 159
C. Chapman, E.M. Feit, R for Marketing Research and Analytics, Use R!,
DOI 10.1007/978-3-319-14436-8_7

160 7 Identifying Drivers of Outcomes: Linear Models

Linear models are a core tool in statistics, and R provides an excellent set of func-
tions for estimating them. As in other chapters, we review the basics and demon-
strate how to conduct linear modeling in R, yet the chapter does not review ev-
erything that one would wish to know in practice. We encourage readers who are
unfamiliar with linear modeling to supplement this chapter with a review of linear
modeling in a statistics or marketing research textbook, where it might appear under
aname such as regression analysis, linear regression, or least-squares fitting.

7.1 Amusement Park Data

In this section, we simulate data for a hypothetical survey of visitors to an
amusement park. This data set comprises a few objective measures: whether the
respondent visited on a weekend (which will be the variable weekend in the data
frame), the number of children brought (num. child), and distance traveled to the
park (distance). There are also subjective measures of satisfaction: expressed
satisfaction overall (overall) and satisfaction with the rides, games, waiting time,
and cleanliness (rides, games, wait, and clean, respectively).

Unlike earlier chapters, in this one we recommend that you skip the simulation sec-
tion and download the data. There is no new R syntax, and this will allow you
to review the models without knowing the outcome in advance. To download and
check:

> sat.df <- read.csv("http://goo.gl/HKnl74")

> str(sat.df)

‘data.frame’: 500 obs. of 8 variables:
$ weekend : Factor w/ 2 levels "no","yes": 2 212 112112 ...
$ num.child: int 02 104 5100 3 ...
$ distance : num 114.6 27 63.3 25.9 54.7 ...

If you have the data, skip to Sect. 7.2 for now, and return later to review the simula-
tion code.

7.1.1 Simulating the Amusement Park Data

To start the data simulation, we set the random number seed to make the process
repeatable and declare a variable for the number of observations:

> set.seed(08226)
> nresp <- 500 # number of survey respondents

Our hypothetical survey includes four questions about a customer’s satisfaction
with different dimensions of a visit to the amusement park: satisfaction with rides
(rides), games (games), waiting times (wait), and cleanliness (clean), along

7.1 Amusement Park Data 161

with a rating of overall satisfaction (overall). In such surveys, respondents
often answer similarly on all satisfaction questions; this is known as the halo

effect.

We simulate a satisfaction halo with a random variable for each customer, halo,
that does not appear in the final data but is used to influence the other ratings:

> halo <- rnorm(n=nresp, mean=0, sd=5)

We generate responses for the satisfaction ratings by adding each respondent’s halo
to the value of another random variable that is specific to the survey item (satisfac-
tion with rides, cleanliness, and so forth).

We add a constant just to adjust the range slightly, and convert the continuous values
to integers using £1ooxr (). This gives us a final value for each satisfaction item on
a 100-point scale. Although scales rating 1-5, 1-7, or 1-11 may be more common in
practice, such discrete scales introduce complications that we discuss in 7.9; those
would detract from our presentation here. So we assume that the data comes from
a 100-point scale. Such near-continuous values might be obtained by measuring
where respondents mark levels of satisfaction along a line on paper or by touching
a screen.

Creating the nresp responses can be done in just one line per variable:

rides <- floor (halo + rnorm(n=nresp, mean=80, sd=3)+1)
games <- floor (halo + rnorm(n=nresp, mean=70, sd=7)+5)
wait <- floor (halo + rnorm(n=nresp, mean=65, sd=10)+9)
clean <- floor (halo + rnorm(n=nresp, mean=85, sd=2)+1)

V V. V V

By adding halo to the response for each question, we create positive correlation
between the responses. The constants 41, +5, and +9 are arbitrary to adjust the
ranges just for appearance. You can verify the correlation between variables that
share the halo by using cor () :

> cor (rides, games)
[1] 0.4551851

Satisfaction surveys often include other questions related to the customer experi-
ence. For the amusement park data, we include whether the visit was on a weekend,
how far the customer traveled to the park in miles, and the number of children in
the party. We generate this data using two functions: rlnorm(n, meanlog,
sdlog) to sample a lognormal distribution for distance, and sample (x,
size, replace) to sample discrete distributions for weekend and number of
children (num.child):

> distance <- rlnorm(n=nresp, meanlog=3, sdlog=1)

> num.child <- sample (x=0:5, size=nresp, replace=TRUE,

+ prob=c(0.3, 0.15, 0.25, 0.15, 0.1, 0.05))

> weekend <- as.factor (sample(x=c("yes", "no"), size=nresp, replace=TRUE,
+ prob=c(0.5,0.5)))

162 7 Identifying Drivers of Outcomes: Linear Models

We create the overall satisfaction rating as a function of ratings for the various as-
pects of the visit (satisfaction with rides, cleanliness, and so forth), distance traveled,
and the number of children:

> overall <- floor(halo + 0.5xrides + O0.lxgames + 0.3xwait + 0.2xclean +
+ 0.03xdistance + 5 (num.child==0) + 0.3xwait+(num.child>0) +
+ rnorm (n=nresp, mean=0, sd=7) - 51)

Although this is a lengthy formula, it is relatively simple with five parts:

1. Itincludes halo to capture the latent satisfaction (also included in rides and
the other ratings)

2. It adds the satisfaction variables (rides, games, wait, and clean) with a
weight for each one

3. It includes weighted contributions for other influences such as distance
4. There is random normal variation using rnorm ()

5. Tt uses £loor () to produce an integer, with a constant —51 that adjusts the
total to be 100-points or less

When a variable like overall is a linear combination of other variables plus ran-
dom noise, we say that it follows a linear model. Although these ratings are not a
model of real amusement parks, the structure exemplifies the kind of linear model
one might propose. With real data, one would wish to discover the contributions
from the various elements, which are the weights associated with the various pre-
dictors. In the next section, we examine how to fit such a linear model.

Before proceeding, we combine the data points into a data frame and remove un-
needed objects from the workspace:

> sat.df <- data.frame(weekend, num.child, distance, rides, games, wait, clean,
+ overall)

> rm(nresp, weekend, distance, num.child, halo, rides, games, wait, clean,
+ overall)

7.2 Fitting Linear Models with 1m ()

Every modeling effort should begin with an inspection of the data, so we start with
a summary () of the data:

> summary (sat.df)

weekend num.child distance rides games

no :259 Min. :0.000 Min. : 0.5267 Min. : 72.00 Min. : 57.00
yes:241 1st Qu.:0.000 1st Qu.: 10.3181 1st Qu.: 82.00 1st Qu.: 73.00

Max. :5.000 Max. :239.1921 Max. :100.00 Max. :100.00
wait clean overall
Min. : 40.0 Min. : 74.0 Min. : 6.00
1st Qu.: 62.0 1st Qu.: 84.0 1st Qu.: 40.00

Max. :100.0 Max. :100.0 Max. :100.00

7.2 Fitting Linear Models with 1m () 163

The data comprise eight variables from a survey of satisfaction with a recent visit to
an amusement park. The first three variables describe features of the visit: weekend
is a factor with two levels, no and yes; num.child is the number of children in
the party, 0-5; and distance is the distance traveled to the park. The remain-
ing five variables are satisfaction ratings for the customers’ experience of the rides,
games, wait times, cleanliness, and overall experience of the park, on a 100 point
scale.

7.2.1 Preliminary Data Inspection

Before modeling, there are two important things to check: that each individual vari-
able has a reasonable distribution, and that joint relationships among the variables
are appropriate for modeling.

We do an initial check of the variable distributions and relationships in sat .df
using gpairs () as described in Sect. 4.4.2:

> gpairs(sat.df)

The result is Fig. 7.1, where we see from the histograms that all of the satisfaction
ratings are close to normally distributed, but distance has a highly skewed dis-
tribution. For most purposes it is a good idea to transform such a variable to a more
normal distribution. As we discussed in Sect. 4.5.4, a common transformation for
such data is a logarithmic transform; we take the 1og () of distance and add
that to the data frame:

> sat.df$logdist <- log(sat.dfsdistance)

We could thenrungpairs (sat.df) again(orrunhist (sat.dfslogdist))
to confirm that the new variable 1logdist is more normally distributed.

To check the relationships among variables, we examine the bivariate scatterplots
shown in Fig. 7.1. They show few concerns apart from the need to transform
distance. For example, the pairwise scatterplots of our continuous measures are
generally elliptical in shape, which is a good indication that they are appropriate to
use in a linear model. One question, however, concerns the fact that the variables in
the lower right of Fig. 7.1 are positively correlated.

Why is this a concern? A common issue with marketing data and especially satisfac-
tion surveys is that variables may be highly correlated with one another. Although
we as marketers care about individual elements of customers’ experiences such as
their amusement park experience with rides and games, when completing a survey,
the respondents might not give independent ratings to each of those items. They may
instead form an overall halo rating and rate individual elements of the experience in
light of that overall feeling.

When variables are strongly related in this way, it is difficult to assess their individ-
ual effects with statistical models. As we will see in Sect. 9.1, the effect can be so

164 7 Identifying Drivers of Outcomes: Linear Models
012345 75 85 95 40 60 80 100 20406080
111 L1 1111) T O O | | T |

il | o || .ol N ol

0000 O s || i omm— 1 | (o — | | o

I
il "z" T

weekend

arfre———

e— ——

[} oo a[T}

T}
{I

AT -4 -
o

100 7- . ®
80 4 !
ESjE,B =
0.1 1

=~

o
S O T |
050 150 6070 8090 75 85 95

5 e e
no yes

Fig. 7.1. An inspection of data using gpairs () before we perform further modeling. This

reveals that distance has a highly skewed distribution and should be transformed before

modeling. Additionally, several variables are positively associated and should be examined
further for the strength of association.

severe that the relationships become uninterpretable without taking some action to
handle the high correlations.

Given the positive associations shown in Fig. 7.1, we investigate the corre-
lation structure further using cor () and corrplot () as demonstrated in
Sect. 4.5.2:

> corrplot.mixed(cor(sat.df[, c(2, 4:9)]), upper="ellipse")

We selected columns c (2, 4:9) to exclude the categorical variable weekend
and the raw variable distance that we transformed as 1ogdist. The result is
the correlation plot shown in Fig. 7.2. We see that the satisfaction items are mod-
erately to strongly associated with one another. However, none of the items appear
to be nearly identical, as would be indicated by correlations exceeding r > 0.8 for

7.2 Fitting Linear Models with 1m () 165

several of them, or r > 0.9 for particular pairs. Thus, on an initial inspection, it
appears to be acceptable to proceed with modeling the relationships among these
variables.

num.child

20

games

Fig. 7.2. A correlation plot for the amuse-

0 ment park data. Inspection of the item

associations is always recommended be-

fore linear modeling, in order to check

-4 for extremely high correlations between

s items (such as r > 0.9). In the present

data, rides and clean are highly re-

logst ’ lated (r = 0.79) but not so strongly that
- remediation is strictly required.

wait

0.79 clean

[4
o

0.59 0.57 0.64 overall

In Chap. 9 we discuss how to assess this question in more detail and what to do when
high correlations pose a more significant problem. In Chap. 8 we discuss strategies
to find underlying dimensions that appear in highly correlated data.

7.2.2 Recap: Bivariate Association

The goal of a satisfaction drivers analysis is to discover relationships between cus-
tomers’ satisfaction with features of the service (or product) and their overall ex-
perience. For example, to what extent is satisfaction with the park’s rides related to
overall experience? Is the relationship strong or weak? One way to assess this is to
plot those two variables against each other as we did in Chap. 4:

> plot (overall~rides, data=sat.df,
+ xlab="Satisfaction with Rides", ylab="Overall Satisfaction")

This creates a plot similar to the one in Fig. 7.3, except that it does not include the
blue line (but we’ll get to that soon). The points on the plot show that there is a
tendency for people with higher satisfaction with rides to also have higher overall
satisfaction.

7.2.3 Linear Model with a Single Predictor

A linear model estimates a best fit line through the cloud of points. The function to
estimate a linear model is 1m (formula, data), where data is a data frame

166 7 Identifying Drivers of Outcomes: Linear Models

Overall Satisfaction
60 80 100
! ! 1
o

40

20
L

Fig. 7.3. Scatterplot comparing satisfac-

8 o tion with rides to overall satisfaction
T T T T T T .« .
75 80 85 %0 95 100 among recent visitors to an amusement
Satisfaction with Rides park.

containing the data and formula is an R formula, as we saw in Sect. 6.5 for
anova (). To estimate a linear model relating overall satisfaction to satisfaction
with rides, we write:

> Ilm(overall ~ rides, data=sat.df)

Coefficients:

(Intercept) rides
-94.962 1.703

The formula above can be read as “overall varies with rides.” When we
call Im(), R finds a line that best fits the relationship of sat .df$rides and
sat.dfSoverall. In the output, R repeats the model for reference and reports
two coefficients, which are the intercept and the slope of the fitted line. Those
can be used to determine the best estimate for any respondent’s report of overall
based on knowing his or her value for rides. For example, from this model we
would expect that a customer who gives a rating of 95 for satisfaction with rides
would give an overall rating of:

> -94.962 + 1.703%95
[1] 66.823

Using coefficients manually is not very efficient. This brings us to our next topic,
1m objects.

7.2.4 1m Objects

Like most other R functions, 1m () returns an object that we can save and use for
other purposes. Typically, we assign the result of 1m () to an object that is used in
subsequent lines of code. For example, we can assign the result of 1m () to a new
object m1:

> ml <- lm(overall ~ rides, data=sat.df)

7.2 Fitting Linear Models with 1m () 167

We can then reuse the model by accessing m1. If we redraw the scatterplot for
overall ~ rides, we can add the linear fit line using abline (ml):

> plot (overall ~ rides, data=sat.df,
+ xlab="Satisfaction with Rides", ylab="Overall Satisfaction")
> abline(ml, col='blue’)

The result is shown in Fig. 7.3. abline () recognizes that it is dealing with an 1m
object and uses the slope and the intercept from m1 to draw the line.

We can also inspect the m1 object:

> str(ml)
List of 12
$ coefficients : Named num [1:2] -95 1.7
..- attr(x, "names")= chr [1:2] " (Intercept)" "rides"
$ residuals : Named num [1:500] -6.22 11.78 11.18 -17.93 19.89 ...

This shows us that the m1 object is a list with 12 specific members that con-
tain everything 1m () knows about the model. (To refresh yourself on list objects,
see Chap. 2.) The first element of this list is Scoefficients, which you can
inspect:

> mlScoefficients
(Intercept) rides
-94.962246 1.703285

You don’t have to use the full name m1$coefficients. In many places in R, it
works to abbreviate long names, such as m1$coef.

As with other types of R objects, there is a summary () function for 1m objects
that summarizes features of the fitted model, reporting much more than the short
output we saw from 1m () above:

> summary (ml)
Residuals:

Min 1Q Median 3Q Max
-33.597 -10.048 0.425 8.694 34.699

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -94.9622 9.0790 -10.46 <2e-16 ***
rides 1.7033 0.1055 16.14 <2e-16 **x*x

Signif. codes: *%xx 0 *%x 0.001 %% 0.01 = 0.05 . 0.1 1

Residual standard error: 12.88 on 498 degrees of freedom
Multiple R-squared: 0.3434, Adjusted R-squared: 0.3421
F-statistic: 260.4 on 1 and 498 DF, p-value: < 2.2e-16

168 7 Identifying Drivers of Outcomes: Linear Models

This summarizes the principal information to review for a linear model. More ad-
vanced models are reported similarly, so it is useful to become familiar with this
format. In addition to listing the model that was estimated, we get information about
coefficients, residuals, and the overall fit.

The most important section is labeled Coefficients and shows the model coef-
ficients in the Estimate column. The coefficient for rides is 1.70, so each ad-
ditional rating point for rides is estimated to result in an increase of 1.7 points of
overall rating. (In case you’re wondering, the coefficient for the (Intercept)
shows where the linear model line crosses the y-axis, but this is usually not inter-
pretable in a satisfaction drivers analysis—for instance, there is no such thing as
a possible negative rating on our scale—so it is generally ignored by marketing
analysts.)

The Std. Error column indicates uncertainty in the coefficient estimate, un-
der the assumption that the data are a random sample of a larger population.
The “t value”, p-value (“Pr (>|t|)”), and significance codes indicate a Wald
test, which assesses whether the coefficient is significantly different than zero. A
traditional estimate of a 95 % confidence interval for the coefficient estimate is
that it will fall within +1.96 x std.error. In this case, 1.7033 +1.96 x 0.1055 =
(1.495,1.910). So we are confident—assuming the model is appropriate and the
data are representative—that the coefficient for ride is 1.495-1.910.

Once again, R does not make you compute things by hand. confint () reports
confidence intervals:

> confint (ml)

2.5 % 97.5 %
(Intercept) -112.800120 -77.124371
rides 1.495915 1.910656

This confirms our computation by hand that the best estimate for the relationship
overall ~ rides is 1.496-1.911 (with slight differences due to rounding).
It is a best practice to report the range of an estimate, not just the single best
point.

The Residuals section in the summary (m1l) output tells us how closely the
data follow the best fit line. A residual is the difference between the model-predicted
value of a point and its actual value. In Fig. 7.3, this is the vertical distance between
a plotted point (actual value) and the blue line (predicted value).

In the summary of m1, we see that the residuals are quite wide, ranging from
—33.597 to 34.699, which means our predictions can be quite a bit off for any given
data point (more than 30 points on the rating scale). The quartiles of the residuals
suggest that they are fairly symmetric around 0. As we discuss in Sect. 7.2.5, that is
a good sign that the model is unbiased (although perhaps imprecise).

In the last section of the output, summary (ml) provides measures of how well
the model fits the data. The first is the residual standard error, an estimate of the

7.2 Fitting Linear Models with 1m () 169

standard error of the residuals. Like the residuals, this is a measure of how close the
data points are to the best estimate line. (You can directly check this by examining
the standard deviation of the residuals using sd (ml1$residuals), which will be
similar.)

The second line reports the estimate of R-squared, a measure of how much varia-
tion in the dependent variable is captured by the model. In this case, the R-squared
is 0.3434, indicating that about a third of the variation in overall satisfaction is ex-
plained by variation in satisfaction with rides. When a model includes only a single
predictor, R-squared is equal to the square of the correlation coefficient r between
the predictor and the outcome:

> cor (sat.dfSoverall, sat.dfSrides) "2
[1] 0.3433799

Finally, the line labeled F-statistic: provides a statistical test of whether the
model predicts the data better than simply taking the average of the outcome vari-
able and using that as the single prediction for all the observations. In essence, this
test tells whether our model is better than a model that predicts overall satisfaction
using no predictors. (For reasons we will not describe in detail, this is the same test
reported by the anova () function that we saw in Chap. 5; you could find the same
value with anova (m1) . Check a statistics textbook for a description of the F-fest
in more detail.) In the present case, the F-statistic shows a p-value << .05,
so we reject the null hypothesis that a model without predictors performs as well as
model m1.

7.2.5 Checking Model Fit

Because it is easy to fit linear models, too many analysts fit models and report results
without considering whether the models are reasonable. However, there are a variety
of ways to assess model fit and adequacy that are easy to perform in R. While we
can’t possibly cover this material comprehensively, we would like to give you a few
pointers that will help you assess model adequacy.

There are several assumptions when a linear model is fitted to data. The first is that
the relationship between the predictors and the outcomes is linear. If the relationship
is not linear, then the model will make systematic errors. For example, if we generate
data where y is a function of the square of x and then fit a linear model y ~ x,
this will draw a straight line through a cloud of points that is curved.

> X <- rnorm(500)
>y <- x"2 + rnorm(500)
> toy.model <- 1lm(y~x)

If you inspect the model by typing summary (toy.model), you will see that
the fitted coefficient for x is —0.01159 and the Wald significance test indicates that
the coefficient is not significantly different from zero. Without model checking, a

170 7 Identifying Drivers of Outcomes: Linear Models

sloppy analyst might conclude that x is not related to y. However, if we plot x
versus y and then draw our fitted line on the plot, we can see more clearly what is
going on.

> plot (y~x)

> abline (toy.model)

The resulting plot is shown on the left side of Fig. 7.4. The plot shows that our fitted
linear model (illustrated with a blue line) completely misses the curvature in the
relationship between x and y.

Another assumption of a linear model is that prediction errors—the parts of the data
that do not exactly fit the model—are normally distributed and look like random
noise with no pattern. One way to examine this is to plot the model’s fitted values
(the predictions) versus the residuals (the prediction errors).

> plot (toy.modelsfitted.values, toy.modelSresiduals)

10
!

toy.model$residuals

-3 -2 -1 0 1 2 3 0.94 0.96 0.98 1.00

X toy.model$fitted.values

Fig. 7.4. Fitting a linear model when the true relationship is nonlinear (as shown on the left)
results in unusual residual patterns (shown on the right).

This results in the plot on the right side of Fig. 7.4 and you can see from the plot
that there is a clear pattern in the residuals: our model under-predicts the value of
y near zero and over-predicts far from zero. When you come across this problem in
real data, the solution is usually to transform x; you can use the methods described
in Sect. 4.5.4 to find a transformation that is suitable. If you begin by inspecting
scatterplots as we recommend in Sect. 7.2.1, you will be unlikely to commit such
a simple error. Still, it is good to know that later checks can help prevent errors
as well.

We can look at this same diagnostic plot for our satisfaction drivers data. R suggests
four specific plots to assess the fit of linear model objects and you can look at all
four simply by using plot () with any 1m object. To see all four plots at once, we
type par (mfrow=c (2, 2)) first:

7.2 Fitting Linear Models with 1m () 171

> par (mfrow=c(2,2))
> plot (ml)

In Fig. 7.5, the first plot (in the upper left corner) shows the fitted values versus
residuals for m1, just as we produced manually for our toy y ~ x model. In Fig. 7.5
there is no obvious pattern between the fitted values for overall satisfaction and the
residuals; this is consistent with the idea that the residuals are due to random error,
and supports the notion that the model is adequate.

The second plot in the lower left of Fig. 7.5 is similar to the first, except that in-
stead of plotting the raw residual value, it plots the square root of the standardized
residual. Again, there should be no clear pattern; if there were it might indicate a
nonlinear relationship. Observations with high residuals are flagged as potential out-
liers, and R labels them with row numbers in case we wish to inspect them in the
data frame.

A common pattern in residual plots is a cone or funnel, where the range of errors
gets progressively larger for larger fitted values. This is called heteroskedasticity and
is a violation of linear model assumptions. A linear model tries to maximize fit to
the line; when values in one part of the range have a much larger spread than those
in another area, they have undue influence on the estimation of the line. Sometimes
a transformation of the predictor or outcome variable will resolve heteroskedasticity
(see Sect. 4.5.3).

The third result of plot () for 1m objects is a Normal QQ plot, as in the upper right
of Fig. 7.5. A QQ plot helps you see whether the residuals follow a normal distribu-
tion, another key assumption (see Sect. 3.4.3). It compares the values that residuals
would be expected to take if they are normally distributed, versus their actual values.
When the model is appropriate, these points are similar and fall close to a diagonal
line; when the relationship between the variables is nonlinear or otherwise does not
match the assumption, the points deviate from the diagonal line. In the present case,
the QQ plot suggests that the data fits the assumption of the model.

The final plot in the lower right panel of Fig. 7.5 again helps to identify potential
outliers, observations that may come from a different distribution than the others.
Outliers are a problem because, if they are far from other points, they unduly influ-
ence the fitted line. We do not want one or a very few observations to have a large
effect on the coefficients. The lower right plot in Fig. 7.5 plots the leverage of each
point, a measure of how much influence the point has on the model coefficients.
When a point has a high residual and high leverage, it indicates that the point has
both a different pattern (residual) and undue influence (leverage). One measure of
the leverage of a data point is Cook’s distance, an estimate of how much predicted
(y) values would change if the model were re-estimated with that point eliminated
from the data. If you have observations with high Cook’s distance, this chart would
show dotted lines for the distances; in the present case, there are none.

Still, in the lower right of Fig. 7.5, three points are automatically labeled with row
numbers because they are potentially problematic outliers based on high standard-
ized residual distance and leverage on the model. We do not recommend routinely

172 7 Identifying Drivers of Outcomes: Linear Models

Residuals vs Fitted Normal Q-Q
o] —
~ @ 1030
1]
T N o
o _| >
« e}
[
E g
g e g o
« E
o e} -
R g
%) (\I,] _
0277
| T T T T T T T T T T T T
30 40 50 60 70 -3 -2 -1 0 1 2 3
Fitted values Theoretical Quantiles
Scale-Location Residuals vs Leverage
_ o 7 o
s 2 o 5 %8 570
=] S
S =] 8 8 o °
2 o D - o o o °
e] 9] o
3 " 3 g F
N 8 27 9%g o o
2 o i ° ®© 8¢
kel v o OOOO O 5984 [‘I_ — o
S T|o © o _Z66985,806 2 6
5 §°0985 ggo5c808o08 © © 5o %08 °
€D 00y 088 L © N 1 o 0o By 2950
o | o % g ® _| -~ Cooi8distance
e T T T T T T T T T
30 40 50 60 70 0.000 0.005 0.010 0.015
Fitted values Leverage

Fig. 7.5. Diagnostic plots for the model relating overall satisfaction to satisfaction with rides.

removing outliers, yet we do recommend to inspect them and determine whether
there is a problem with the data. We inspect the identified points by selecting those
rOwWS:

> sat.df [c(57, 129, 295),]
weekend num.child distance rides games wait clean overall logdist

57 yes 2 63.29248 98 87 89 100 100 4.147767
129 yes 0 11.89550 76 77 51 77 6 2.476161
295 no 0 11.74474 98 83 63 92 45 2.463406

In this case, none of the data points is obviously invalid (for instance, with values be-
low 1 or greater than 100), although row 129 might be checked for input correctness;
an overall rating of 6 on the survey would be unusual although perhaps accurate. We
generally do not omit outliers except when they represent obvious errors in the data.
In the present case, we would keep all of the observations.

Overall, Fig. 7.5 looks good and suggests that the model relating overall satisfaction
to satisfaction with rides is reasonable.

7.3 Fitting Linear Models with Multiple Predictors 173

But we’ve only examined a single variable so far. In the next section, we consider
multiple predictors. For brevity, in the following sections we omit the checks of
model adequacy that were shown in this section, but we encourage you to check and
interpret plot () for the models.

7.3 Fitting Linear Models with Multiple Predictors

Now that we’ve covered the basics of linear models using just one predictor, we
turn to the problem of assessing multiple drivers of satisfaction. Our goal is to sort
through all of the features of the park—rides, games, wait times, and cleanliness—to
determine which ones are most closely related to overall satisfaction.

To estimate our first multiple variable model, we call 1m with a formula describing
the model:

> m2 <- lm(overall ~ rides + games + wait + clean, data=sat.df)
> summary (m2)

Residuals:
Min 1Q Median 30 Max
-29.944 -6.841 1.072 7.167 28.618

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) -131.40919 8.33377 -15.768 < 2e-16 x*x
rides 0.52908 0.14207 3.724 0.000219 *xx*
games 0.15334 0.06908 2.220 0.026903 =

wait ©,55333 0.04781 11.573 < 2e-16 *xx*
clean 0.98421 0.15987 6.156 1.54e-09 #*xx

Signif. codes: 0 *%* 0.001 %+ 0.01 %= 0.05 . 0.1 1

Residual standard error: 10.59 on 495 degrees of freedom
Multiple R-squared: 0.5586, Adjusted R-squared: 0.5551
F-statistic: 156.6 on 4 and 495 DF, p-value: < 2.2e-16

Looking first at the model fit statistics at the bottom of the output, we see that our
prediction was improved by including all the satisfaction items in the model. The
R-squared increased to 0.5586, meaning that about half of the variation in overall
ratings is explained by the ratings for specific features. The residual standard error
is now 10.59, meaning that the predictions are more accurate. Our residuals also
appear to be symmetric. As noted above, we recommend also to inspect the model
using plot () to confirm that there are no patterns in the residuals indicative of
nonlinearity or outliers, although we omit that step here.

Next we examine the model coefficients. Each coefficient represents the strength
of the relationship between satisfaction with that feature and overall satisfaction,
conditional on the values of the other predictors. All four features are identified
as being statistically significant (p-value, shown as Pr (>|t|), < .05). Rather
than just comparing the numbers in the output, it can be helpful to visualize the

174 7 Identifying Drivers of Outcomes: Linear Models

coefficients. We use the coefplot package [99] to do this, calling coefplot ()
for our model, and adding intercept=FALSE to plot just the individual item
coefficients:

> library (coefplot) # install if necessary

> coefplot (m2, intercept=FALSE, outerCI=1.96, lwdOuter=1.5,
+ ylab="Rating of Feature",

+ xlab="Association with Overall Satisfaction")

We use coefplot () arguments to set the outer confidence interval to a width
of 1.96 standard errors (using outerCI=1.96, which corresponds to a 95 %
confidence interval) and to increase the size of the plotted lines slightly with
lwdOuter=1.5.

The result is shown in Fig. 7.6 where we see that satisfaction with cleanliness is esti-
mated to be the most important feature associated with overall satisfaction, followed
by satisfaction with the rides and wait times. Satisfaction with games is estimated
to be relatively less important.

A plot of coefficients is often a key output from a satisfaction drivers analysis. Sort-
ing the plot so that the coefficients are in order based on their estimated coefficient
may make it easier to quickly identify the features that are most closely related to
overall satisfaction if you have a large number of predictors.

Coefficient Plot

clean -

g

5 wait - —_—

©

()

w

k]

(=2}

£

© games - ———

o

rides -
i ! !
0.0 0.5 1.0

Association with Overall Satisfaction

Fig. 7.6. A coefficient plot produced with coefplot () for an initial multivariate 1m ()

model of satisfaction in the amusement park data. In the model, satisfaction with cleanli-

ness is most strongly associated with overall satisfaction, and rides and wait times are also
associated.

7.3 Fitting Linear Models with Multiple Predictors 175

7.3.1 Comparing Models

Now that we have two model objects, m1 and m2 we might ask which one is better.
One way to evaluate models is to compare their R-squared values.

> summary (ml) Sr.squared
[1] 0.3433799
> summary (m2) Sr.squared
[1] 0.558621

Based on the R-squared values we can say that m2 explains more of the variation in
satisfaction than m1. However, a model with more predictors usually has a higher
R?, so we could instead compare adjusted R-squared values, which control for the
number of predictors in the model.

> summary (ml) $adj.r.squared
[1] 0.3420614
> summary (m2) $Sadj.r.squared
[1] 0.5550543

The adjusted R-squared still suggests that the m2 explains more of the vari-
ation in overall satisfaction, even accounting for the fact that m2 uses more
predictors.

To compare the predictions of the models visually, we plot the fitted versus actual
values for each:

plot (sat.dfSoverall, fitted(ml), col='red’,
x1lim=c(0,100), ylim=c(0,100),
xlab="Actual Overall Satisfaction", ylab="Fitted Overall Satisfaction")
points (sat.dfsoverall, fitted(m2), col='blue’)
legend ("topleft", legend=c("model 1", "model 2"),
col=c("red", "blue"), pch=1)

+ Vv VvV + + v

If the model fits the data perfectly, it would fall along a 45° line in this plot, but, of
course, it is nearly impossible to fit customer satisfaction data perfectly. By com-
paring the red and the blue points in the resulting plot in Fig. 7.7, you can see that
the blue cloud of points is more tightly clustered along a diagonal line, which shows
that m2 explains more of the variation in the data than m1.

For a more formal test, which is possible because the models here are nested (see
Sect. 6.5.1), we can use anova () function to determine whether m2 explains more
of the variation than m1:

> anova(ml, m2)
Analysis of Variance Table

Model 1: overall ~ rides

Model 2: overall ~ rides + games + wait + clean
Res.Df RSS Df Sum of Sqg F Pr (>F)

1 498 82612

2 495 55532 3 27080 80.463 < 2.2e-16 x*%*

176 7 Identifying Drivers of Outcomes: Linear Models

The low p-value indicates that the additional predictors in m2 significantly improve
the fit of the model. If these two models were the only ones under consideration, we
would interpret m2 instead of m1.

— © model 1
o model 2

60 80 100
1 1

Fitted Overall Satisfaction
40
|

000 g o

° Fig. 7.7. Comparison of fitted versus

T .
0 20 40 60 80 100 actual values for linear models m1
Actual Overall Satisfaction and m2.

We should also point out that the coefficient for rides changed from m1 to m2. The
value inm1 was 1.70 x rides, while in m2 it is 0.529 X rides. Why is this happening?
The reason is because rides is not independent of all the other variables; Fig. 7.1
shows that customers who are more satisfied with the rides tend to be more satisfied
with the wait times and games. When those variables are added as predictors in
model m2, they now perform some of the work in predicting the overall rating, and
the contribution of rides is a smaller share of the total model.

Neither coefficient nor rides is more correct in itself because a coefficient is not
right or wrong but part of a larger model. Which model is preferable? Because model
m2 has better overall fit, we would interpret its coefficient for rides, but only in
the context of the total model. In the sections below, we see that as the structure of
a model changes, the coefficients generally change as well (unless the variables are
entirely uncorrelated).

7.3.2 Using a Model to Make Predictions

As we saw for the single variable case, we could use the model coefficients to predict
the overall outcome for different combinations of the explanatory variables. For
example, if we wanted to predict the overall rating for a customer who rated the
four separate aspects as 100 points each, we could multiply those ratings by the
coefficients and add the intercept:

> coef (m2) [" (Intercept)"] + coef(m2) ["rides"]*100 + coef (m2) ["games"]*100 +
+ coef (m2) ["wait"] 100 + coef (m2) ["clean"]*100

7.3 Fitting Linear Models with Multiple Predictors 177

(Intercept)
90.58612

The best estimate is 90.586 using model m2. Because coef (m2) is a named vector,
we access the individual coefficients here using their names.

The prediction equation above is clunky to type, and there are more efficient ways
to compute model predictions. One way is to use matrix operations to multiply co-
efficients by a vector of predictor values:

> coef (m2)%+%c (1, 100, 100, 100, 100)
[,1]
[1,] 90.58612

We could also use predict (object, newdata) where newdata is a data
frame with the same column names as the data that was used to estimate the model.
For example, if we want to find the predictions for the first ten customers in our data
set, we would pass the first ten rows of sat .df to predict:

> predict (m2, sat.df[1:10,])

1 2 3 4 5 6 7 oo
46.60864 54.26012 51.17289 50.30434 52.94625 27.87214 36.27435 ...

This predicts satisfaction for the first ten customers. The predictions for observations
used to estimate the model are also stored in the model object, and can be accessed
with fitted ():
> fitted(m2) [1:10]

1 2 3 4 5 6 7 coo
46.60864 54.26012 51.17289 50.30434 52.94625 27.87214 36.27435 ...

7.3.3 Standardizing the Predictors

Thus far, we have interpreted raw coefficients in order to evaluate the contributions
of ratings on the shared 100-point scale. However, if the variables have different
scales, such as a survey where rides is rated on a 1-10 scale while cleanliness is
rated 1-5 scale, then their coefficient values would not be directly comparable. In
the present data, this occurs with the distance and logdist variables, which
are not on a 100-point scale.

When you wish to compare coefficients, it can be helpful to standardize data on a
common scale before fitting a model (and affer transforming any variables to a more
normal scale). The most common standardization converts values to zero-centered
units of standard deviation. This subtracts a variable’s mean from each observation
and then divides by the standard deviation (sd ()). This could be done using math,
such as:

> (sat.dfSrides - mean(sat.dfSrides)) / sd(sat.dfSrides)
[1] 0.21124774 0.21124774 -0.15486620 0.39430471 -0.33792317

178 7 Identifying Drivers of Outcomes: Linear Models

This process is so common that R includes the scale () function to perform
it:

> scale(sat.dfsrides)
[,1]
[1,] 0.21124774
[2,] 0.21124774
[3,] -0.15486620

In the remainder of the chapter, we do not want to worry about the scale of our
variables, only their relative contributions, so we create a scaled version of sat .df
called sat.std:

> sat.std <- sat.df[, -3] # sat but remove distance
> sat.std[, 3:8] <- scale(sat.std[, 3:8])
> head(sat.std)

weekend num.child rides games wait clean overall
1 ves 0 0.2112477 -0.69750817 -0.918784090 0.21544189 -0.2681587
2 yes 2 0.2112477 -0.08198737 0.566719693 -0.17555973 0.8654385
3 no 1 -0.1548662 0.16422095 0.009655775 0.01994108 0.6135280

In this code, we first copied sat .df to the new data frame sat . std, dropping
the untransformed values of distance with [, -3] because we use logdist
instead. Then we standardized each of the numeric columns. We do not standardize
weekend because it is a factor variable rather than numeric. We leave num.child
as is for now because we have not yet analyzed it.

Note that we do not alter the original data frame sat .df when standardizing it.
Instead, we copy it to a new data frame and alter the new one. This process makes
it easier to recover from errors; if anything goes wrong with sat . std, we can just
run these few commands again to recreate it.

The question of standardizing values depends primarily on how you want to use a
model’s coefficients. If you want to interpret coefficients in terms of the original
scales, then you would not standardize data first. However, in driver analysis we
are usually more concerned with the relative contribution of different predictors
and wish to compare them, and standardization assists with this. Additionally, we
often transform variables before analysis such that they are no longer on the original
scale.

After standardizing, you should check the results. A standardized variable should
have a mean of 0 and values within a few units of the mean. Checking the
summary ():

> summary (sat.std)

weekend num.child rides.V1 games.V1

no :259 Min. :0.000 Min. :-2.5346068 Min. :-2.6671747
yes:241 1st Qu.:0.000 1st Qu.:-0.7040371 1st Qu.:-0.6975082
Median :2.000 Median : 0.0281908 Median :-0.0819874
Mean 1.738 Mean : 0.0000000 Mean : 0.0000000

7.4 Using Factors as Predictors 179

We see that sat.std matches expectation. Note that the column names from
summary () have an extra .V1 in the output; this indicates that the column has
a more complex data type than a simple vector. Specifically, scale () converts ob-
jects to one-dimensional matrices (instead of vectors). This has no significance for
our model fitting; we just have to be aware of the occasionally confusing addition to
the names.

There is a technical point we should mention when standardizing variables. If the
outcome and predictors are all standardized, their means will be zero and thus the
intercept will be zero. However, that does not imply that the intercept could be
removed from the model. The model is estimated to minimize error in the overall
fit, which includes error for the intercept. This implies that the intercept should
remain in a model after standardization if it would be there otherwise (as it usually
should be; see Sect. 7.5.1).

7.4 Using Factors as Predictors

While m2 above was reasonable, we can continue to improve it. It is typical to try
many models before arriving at a final one.

For the next step, we wonder whether satisfaction is different for customers who
come on the weekend, travel farther, or have more children. We add these predictors
to the model using the standardized data:

> m3 <- lm(overall ~ rides + games + wait + clean +

+ weekend + logdist + num.child, data = sat.std)
> summary (m3)

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) -0.37271 0.04653 -8.009 8.41e-15 *xx*
rides 0.21288 0.04197 5.073 5.57e-07 #***
games 0.07066 0.03026 2,335 0.0199 «
wait 0.38138 0.02777 13.734 < 2e-16 xxx
clean 0.29690 0.04415 6.725 4.89e-11 *x+*
weekendyes -0.04589 0.05141 -0.893 0.3725
logdist 0.06470 0.02572 2.516 0.0122 =«
num.child 0.22717 0.01711 13.274 < 2e-16 *xx*

Multiple R-squared: 0.6786, Adjusted R-squared: 0.674
F-statistic: 148.4 on 7 and 492 DF, p-value: < 2.2e-16

The model summary shows a substantial improvement in fit (R-squared of 0.6786)
and the coefficients for logdist and num.child are significantly greater than
zero, suggesting that people who travel further and have more children have higher
overall satisfaction ratings.

Notice that the coefficient for weekend is labeled weekendyes, which seems a
bit unusual. Recall that weekend is a factor variable, but a factor doesn’t fit nat-
urally in our linear model; you can’t multiply yes by a number. R handles this by

180 7 Identifying Drivers of Outcomes: Linear Models

converting the data to a numeric value where 1 is assigned to the value of yes and 0
to no. It labels the output so that we know which direction the coefficient applies to.
So, we can interpret the coefficient as meaning that on average those who come on
the weekend rate their overall satisfaction —0.046 standard units (standard devia-
tions) lower than those who come on a weekday. A convenient feature of R is that it
does this automatically for factor variables, which are common in marketing.

In fact, we used a linear model with a factor as a predictor in Chap. 5, when we
compared groups using ANOVA. An ANOVA model is a linear model with a factor
as a predictor, and the command we learned in Chap. 5, aov (), internally calls
Im() to fit the model. aov (overall ~ weekend, data=sat.std) and
Im(overall ~ weekend, data=sat.std) fit the same model, although
the result is reported differently because of tradition.

If they are the same, which should one use? We generally prefer to use 1m because
it is a more flexible method and allows us to include both numeric and factor pre-
dictors in the same model. (For those of you who were wondering, this explains
why we used the linear modeling function 1mBF to fit a Bayesian ANOVA model
in Chap. 5.)

When your data includes factors, you must be careful about the data type. For ex-
ample, num.child is a numeric variable, ranging 0-5, but it doesn’t necessarily
make sense to treat it as a number, as we did in m3. In doing so, we implicitly assume
that satisfaction goes up or down linearly as a function of the number of children,
and that the effect is the same for each additional child. (Anyone who has taken a
group of children to an amusement park might guess that this is an unreasonable
assumption.)

We correct this by converting num.child to a factor and re-estimating the
model:

sat.std$num.child.factor <- factor(sat.std$num.child)

m4 <- Ilm(overall ~ rides + games + wait + clean +

>
>
+ weekend + logdist + num.child.factor, data=sat.std)
> summary (m4)

Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) -0.69100 0.04488 -15.396 < 2e-16 #*xx
rides 0.22313 0.03541 6.301 6.61e-10 x*x=*
num.child.factorl 1.01610 0.07130 14.250 < 2e-16 #**%*
num.child.factor2 1.03732 0.05640 18.393 < 2e-16 **x*
num.child.factor3 0.98000 0.07022 13.955 < 2e-16 #*x*x*
num.child.factor4 0.93154 0.08032 11.598 < 2e-16 *xx
num.child.factor5 1.00193 0.10369 9.663 < 2e-16 *x*
Multiple R-squared: 0.7751, Adjusted R-squared: 0.77

F-statistic: 152.9 on 11 and 488 DF, p-value: < 2.2e-16

We now see that there are five fitted coefficients for num.child. factor: one
for parties with one child, one for parties with two children, etc. There is not a

7.4 Using Factors as Predictors 181

coefficient for num.child. factor0, because it is the baseline level to which
the other coefficients are added when they apply. We interpret each coefficient as
the difference between that level of the factor and the baseline level. So, parties with
1 child rate their overall satisfaction on average 1.016 standard deviations higher
than parties without children.

Internally, R has created a new variable num.child. factorl thatis equal to 1
for those cases where num.child. factor represents one child (a factor level of
“17), and is O otherwise. Similarly, num.child. factor2 is 1 for cases with two
children, and O otherwise, and so forth. The coefficient for num.child. factor2
is 1.037, meaning that people with two children rate their overall satisfaction on
average a full standard deviation higher than those with no children.

A striking thing about m4 is that the increase in overall satisfaction is about the
same regardless of how many children there are in the party—about one standard
deviation higher for any number of children. This suggests that we don’t actually
need to estimate a different increase for each number of children. In fact, if the
increase is the same for one child as for five children, attempting to fit a model that
scales increasingly per child would result in a less accurate estimate.

Instead, we declare a new variable called has . child that is TRUE when the party
has children in it and FALSE when the party does not have children. We then
estimate the model using that new factor variable. We also drop weekend from the
model because it doesn’t seem to be a significant predictor:

sat.stdShas.child <- factor(sat.std$num.child > 0)

m5 <- lm(overall ~ rides + games + wait + clean + logdist + has.child,

>
>
+ data=sat.std)
> summary (m5)

Coefficients:

Estimate Std. Error t value Pr(s|t])
(Intercept) -0.70195 0.03906 -17.969 < 2e-16 *x*xx*
rides 0.22272 0.03512 6.342 5.12e-10 ***
has.childTRUE 1.00565 0.04683 21.472 < 2e-16 *xxx*

Multiple R-squared: 0.7741, Adjusted R-squared: 0.7713
F-statistic: 281.5 on 6 and 493 DF, p-value: < 2.2e-16

Is this still a good model? The change in R-squared between model m4 and
m5 is negligible, suggesting that our simplification did not deteriorate the
model fit.

Model m5 estimates overall satisfaction to be about one standard deviation higher
for parties with children. However, one might now wonder how children influence
other aspects of the ratings. For instance, is the relationship between satisfaction
and waiting times different for parties with and without children? One might guess
from experience that wait time would be more important to parties with children. To
explore this question, we need to incorporate interactions into the model.

182 7 Identifying Drivers of Outcomes: Linear Models

7.5 Interaction Terms

We can include an interaction of two terms by using the : operator between vari-
ables in a formula. For instance, to estimate overall as a function of rides plus
the interaction of wait and has.child, we could write the formula as overall
~ rides + wait:no.child. There are other ways in R to write interaction
terms (see Sect. 7.5.1) but we prefer to specify them explicitly in this way.

We create a new model with interactions between the satisfaction ratings and two
variables that describe the visit: no.child and weekend:

> m6 <- lm(overall ~ rides + games + wait + clean +

+ weekend + logdist + has.child +

+ rides:has.child + games:has.child + wait:has.child +
+ clean:has.child + rides:weekend + games:weekend +

+ wait:weekend + clean:weekend, data=sat.std)

> summary (mé)

Coefficients:
Estimate Std. Error t value Pr(>|t])
rides:has.childTRUE 0.057837

games:has.childTRUE -0.064043
wait:has.childTRUE 0.350649

.073070 0.792 0.42902
.052797 -1.213 0.22572
.047241 7.423 5.21e-13 x%*

0

0

0
clean:has.childTRUE -0.001854 0.079710 -0.023 0.98146
rides:weekendyes 0.061784 0.067750 0.912 0.36225
games : weekendyes 0.018511 0.049036 0.377 0.70597
wait:weekendyes 0.035168 0.044463 0.791 0.42936
clean:weekendyes -0.027305 0.071005 -0.385 0.70074

The model object mé6 now includes eight interaction terms between ratings for fea-
tures of the park and no.child and weekend. Only one of these interactions
is significant: the wait :no.child interaction. This suggests we could drop the
non-significant interactions to create a new model m7:

> m7 <- lm(overall ~ rides + games + wait + clean + logdist + has.child +
+ wait:has.child, data=sat.std)
> summary (m7)

Coefficients:

Estimate Std. Error t value Pr(s|t])
(Intercept) -0.69316 0.03684 -18.814 < 2e-16 *x*x*
rides 0.21264 0.03313 6.419 3.24e-10 #**%
games 0.04870 0.02394 2.034 0.0425 =«
wait 0, 15095 0.03688 4.093 4.98e-05 **%*
clean 0.30244 0.03485 8.678 < 2e-16 x**
logdist 0.02919 0.02027 1.440 0.1504
has.childTRUE 0.99830 0.04416 22.606 < 2e-16 *xx*
wait:has.childTRUE 0.34688 0.04380 7.920 1.59e-14 x**

Multiple R-squared: 0.7996, Adjusted R-squared: 0.7968
F-statistic: 280.5 on 7 and 492 DF, p-value: < 2.2e-16

In these results, we see that attending the park with children is a predictor of higher
satisfaction, and waiting time is more important predictor among those with children

7.5 Interaction Terms 183

(wait :has.childTRUE) than those without children. We don’t know the reason
for this, but perhaps children go on more rides and their parents are therefore more
influenced by wait times.

One might further tune the model by considering whether 1logdist is still needed;
we’ll leave that to the reader and assume that model m7 is the final model.

What do we do with these results as marketers? We identify several possible mar-
keting interventions. If we want to increase satisfaction overall, we could perhaps
do so by trying to increase the number of visitors with children. Alternatively, if
we want to appeal to visitors without children, we might engage in further research
to understand why their ratings are lower. If we are allocating budget to personnel,
the importance of cleanliness suggests continuing to allocate resources there (as
opposed, say, to games). We might also want to learn more about the association be-
tween children and waiting time, and whether there are things we could do to make
waiting less frequent or more enjoyable.

There are many more such questions one could pose from results like these; a cru-
cial step in analysis is to think carefully about the implications and where one might
be able to make a product or market intervention. When considering actions to take,
it is especially important to remember that the model assesses association, not cau-
sation. Possible changes in outcome should be viewed as hypotheses suggested by
the model, to be confirmed separately.

To share these results with others, it is helpful to create a new satisfaction drivers
plot using coefplot ():

> library (coefplot) # install if needed
> coefplot (m7, intercept=FALSE, outerCI=1.96, lwdOuter=1.5,
+ ylab="Rating of Feature",

+ xlab="Association with Overall Satisfaction")

The result is Fig. 7.8 summarizing the relative contribution of each element on over-
all satisfaction.

When including interaction terms in a model, there are two important points. First,
it is especially important to consider standardizing the predictors when modeling
interactions in order to have an interpretable and comparable scale for coefficients.
Second, one should always include main effects (such as x + y) when including
an interaction effect (x:y). If you don’t estimate the main effects, you won’t know
whether a purported interaction is in fact due to an interaction, or is instead due to
one of the individual variables’ unestimated main effects.

7.5.1 Language Brief: Advanced Formula Syntax*

This section is optional for those who wish to construct more complex formulas
with interaction effects. As in the examples above, we generally write formulas

184 7 Identifying Drivers of Outcomes: Linear Models

Coefficient Plot

wait:has.childTRUE - ———
has.childTRUE - ———
< logdist - ——
=
o
()
w
5 clean - ——
(=2}
£
E wait - ——
games - —_——
rides - —_—C——
i 1 1 1
0.0 0.3 0.6 0.9

Association with Overall Satisfaction

Fig. 7.8. Satisfaction drivers for visitors to an amusement park (simulated). The model reveals

that the variable most strongly (and positively) associated with satisfaction is visiting the park

with children. Satisfaction with waiting time is a stronger predictor of overall satisfaction

among visitors with children than those without, as shown in the wait :has.childTRUE

interaction. Of the individual park features, satisfaction with cleanliness is most associated
with overall satisfaction.

using only + (for main effects) and : (specific interactions), but the following
may help create more compact formulas when you have many variables or inter-
actions.

As we’ve seen, you can include an interaction between x and z by including x : z in
the formula. If you want to include two variables along with their interaction, you
can use x*z, which is the equivalent to writingx + z + X:z.

To include all of the predictors in your data frame in the model, use a . , writing
write y ~ .. You can also omit any variable using -x. Thus,y ~ . - xmeans
“include all the variables except x.”

The intercept can be removed from a model by including -1 in the formula. This
is ill-advised in general linear models with continuous predictors, because it forces
the line to go through the origin (0, 0), which alters the other coefficients. However,
it can be helpful in some kinds of models, such as those with purely categorical
predictors.

Table 7.1 summarizes the common options for formula syntax and their interpreta-
tion in terms of a linear equation (where B is a model coefficient with By for the
intercept, B; for the first predictor, and so forth; € is the error term).

7.6 Caution! Overfitting 185

Table 7.1. Syntax for including interactions in model formulas

R formula Linear model Description

syntax

Yy ~ X vi = Bo+ Bixi + & y is a linear function of x

y ~x -1 |yi=Bixi+Bzite Omit the intercept

Vv ~ X vi = Bo+ Bixi + Pozi + & y is a linear combination of x and z

Yy ~ X: vi = Bo + Bixizi + & Include the interaction between x
and z

Y o~ X*Z vi = Bo + Bixi + Bazi + Baxizi€i Include x, z and the interaction be-
tween them

y ~ (u + v |yi = Bo+ Biui + Bovi + Bsw; +|Include u, v, and w, and all interac-

+ w)"3 Bauivi + Bsujw; + Peviwi +|tions among them up to three-way

Bruiviw; + & (u:v:w)

y ~ vi = Bo + Biui + Bovi + +B3w; +|Include these variables and all inter-

(u+v+w) "3 - |Bsuiw; + Beviwi + Bruiviw; + & actions up to three-way, but remove

u:v the u : v interaction

7.6 Caution! Overfitting

Now that we’ve seen the complete process of creating a model, from initial data
inspection to the potential implications, we have a caution about linear models. As
you become more comfortable with linear models, you may want to put more and
more predictors into your equation. Be careful about that.

A typical satisfaction drivers survey might include dozens of different features. As
you add predictors to a model, estimates of the coefficients become less precise due
to both the number of effects and associations among the variables. This shows up
in the 1m () output as larger standard errors of the coefficients, indicating lower
confidence in the estimates. This is one reason we like to plot confidence intervals
for coefficients, as in Fig. 7.8.

Despite the potentially low confidence in estimates, as you add variables to a model,
the value of R? will become higher and higher. On a first impression, that might
seem as if the model is getting better and better. However, if the estimates of the
coefficients are imprecise, then the utility of the model will be poor; it could lead to
making the wrong inferences about relationships in your data.

This process of adding too many variables and ending up with a less precise or in-
appropriate model is called overfitting. One way to avoid it is to keep a close eye
on the standard errors for the coefficients; small standard errors are an indicator that
there is sufficient data to estimate the model. Another approach is to select a subset
of the data to hold out and not use to estimate the model. After fitting the model, use
predict () on the hold out data and see how well it performs. Overfitted models
will perform poorly when predicting outcomes for holdout data. Stepwise model

186 7 Identifying Drivers of Outcomes: Linear Models

selection is a traditional approach to select variables while attempting to avoid over-
fitting; the step () function we saw in Sect. 6.5.3 works for 1m objects the same
as for aov models.

We recommend to keep models as parsimonious as possible. Although it is tempt-
ing to create large, impressive, omnibus models, it is usually more valuable in
marketing practice to identify a few interventions with clear and confident inter-
pretations.

7.7 Recommended Procedure for Linear Model Fitting

We followed a lengthy process to arrive at the final model m7, and it is helpful to
recount the general steps we recommend in creating such a linear model.

1. Inspect the data to make sure it is clean and has the structure you expect, fol-
lowing the outline in Sect. 3.3.3.

2. Check the distributions of the variables to make sure they are not highly skewed
(Sect. 7.2.1). If one is skewed, consider transforming it (Sect. 4.5.4).

3. Examine the bivariate scatterplots and correlation matrix (Sect. 7.2.1) to see
whether there are any extremely correlated variables (such as r > 0.9, or sev-
eral with r > 0.8). If so, omit some variables or consider transforming them if
needed; see Sect. 9.1 for further discussion.

4. If you wish to estimate coefficients on a consistent scale, standardize the data
with scale () (Sect. 7.3.3).

5. After fitting a model, check the residual quantiles in the output. The residuals
show how well the model accounts for the individual observations (Sect. 7.2.4).

6. Check the standard model plots using plot (), which will help you judge
whether a linear model is appropriate or whether there is nonlinearity, and will
identify potential outliers in the data (Sect. 7.2.4).

7. Try several models and compare them for overall interpretability and model fit
by inspecting the residuals’ spread and overall R> (Sect. 7.3.1). If the models
are nested, you could also use anova () for comparison (Sect. 6.5.1) .

8. Report the confidence intervals of the estimates with your interpretation and
recommendations (Sect. 7.3).

7.8 Bayesian Linear Models with MCMCregress () *

In this section, we review how the satisfaction analysis could be performed with
Bayesian methods. This is an optional section; if you’re not familiar with Bayesian
methods, you could skip this section or review the basics in Sect. 6.6.

7.8 Bayesian Linear Models with MCMCregress () * 187

Like 1m () above, Bayesian inference for a linear model attempts to estimate the
most likely coefficients relating the outcome to the explanatory variables. However,
the Bayesian method does this by sampling the posterior distribution of estimated
model parameters (Sect. 6.6.2), using a procedure known as Markov-chain Monte
Carlo (MCMC).

The package MCMCpack includes MCMCregress (), which estimates Bayesian
linear models using samples from the posterior distribution; it makes a Bayesian
estimation of the model as easy as calling 1m (). We call MCMCregress () to
estimate the model m7 from above, supplying an identical formula and data frame
as we used earlier with 1m () (Sect. 7.5):

> library (MCMCpack)

> m7.bayes <- MCMCregress (overall ~ rides + games + wait + clean + logdist +
+ has.child + wait:has.child, data=sat.std)
> summary (m7.bayes)

Iterations = 1001:11000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
(Intercept) -0.69331 0.03702 0.0003702 0.0003702
rides 0.21262 0.03351 0.0003351 0.0003301
games 0.04885 0.02400 0.0002400 0.0002400
wait 0.15096 0.03683 0.0003683 0.0003683
clean 0.30205 0.03515 0.0003515 0.0003515
logdist 0.02891 0.02029 0.0002029 0.0002029
has.childTRUE 0.99837 0.04441 0.0004441 0.0004441
wait:has.childTRUE 0.34733 0.04358 0.0004358 0.0004358
sigma2 0.20374 0.01306 0.0001306 0.0001306

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
(Intercept) -0.764177 -0.71841 -0.69345 -0.66861 -0.62004
rides 0.145773 0.19015 0.21290 0.23499 0.27833
games 0.001507 0.03285 0.04876 0.06453 0.09668
wait 0.079481 0.12629 0.15060 0.17602 0.22353
clean 0.233243 0.27832 0.30218 0.32581 0.37076
logdist -0.010923 0.01539 0.02885 0.04262 0.06869
has.childTRUE 0.910071 0.96896 0.99857 1.02800 1.084098
wait:has.childTRUE 0.261291 0.31780 0.34720 0.37724 0.43211
sigma2 0.179781 0.19454 0.20311 0.21213 0.23094

What does this tell us? The important thing to understand is that MCMCregress ()
has drawn 10,000 samples from the estimated distribution of possible coefficients
for model m7. It then describes those 10,000 sets of estimates in two ways: using
central tendency statistics (mean and standard deviation, in the output section la-
beled “1.”), and again using distribution quantiles (in output section “2.”).

188 7 Identifying Drivers of Outcomes: Linear Models

We can compare the values to those from 1m () in Sect. 7.5 above. There, we
saw that rides had an estimated coefficient of 0.2126; here, the mean of the
Bayesian estimates is 0.2126 and the median is 0.2129. Similarly, 1m () estimated
wait:has.child as 0.9983; the mean Bayesian estimate is 0.9984 and the me-
dian is 0.9986. The coefficients estimated by the classical and Bayesian models are
nearly identical.

Despite the similar model coefficients, there are two notable differences between
this output and the output from 1m (). First, it includes 2. Quantiles
because the Bayesian posterior distribution may be asymmetric; the distribution of
estimates could be skewed if that provided a better fit to the data.

Second, the Bayesian output does not include statistical tests or p-values; null
hypothesis tests are not emphasized in the Bayesian paradigm. Instead, to de-
termine whether a parameter is likely to be non-zero (or to compare it to any
other value), check the 2.5 and 97.5 %’iles and directly interpret the credible in-
terval. For instance, in the quantiles above, the 2.5-97.5 %’iles for Logdist range
(—0.01092,0.06869) and we conclude that the coefficient for 1ogdi st is not cred-
ibly different from O at a level of 95 % confidence. However, all of the other coeffi-
cients are different from zero.

Note that MCMCregress () is similar to 1mBF () in the BayesFactor pack-
age that we used in Sect. 6.6. Both functions produce draws from the posterior
of a linear model, which you can then summarize using the summary (). We used
MCMCregress () here because 1mBF () does not estimate interaction coefficients
(at the time of writing). It is common in R that different packages do similar things,
yet may be better or worse for a specific problem.

If the Bayesian estimates are so similar to those from 1m (), what is the advantage?
The results here are similar for two reasons. First, we have plenty of data and a
well-behaved model. Second, classical methods such as 1m () are eminently suited
to estimation of linear models. In Chap. 9 we examine hierarchical Bayesian models,
in which more advantages of the Bayesian approach emerge; we later continue that
investigation with choice models in Chap. 13.

We also believe, as noted in Sect. 6.6.1, that inferences such as hypothesis testing
are clearer and more interpretable in the Bayesian approach. In fitting models, it is
not always the case that classical and Bayesian estimates are so similar, and when
they differ, we are more inclined to trust the Bayesian estimates.

7.9 Learning More*

In this chapter we’ve given an overview of linear modeling in R and its application
to satisfaction drivers analysis. The same modeling approach could be applied to
many other marketing applications, such as advertising response (or marketing mix)
modeling [18], customer retention (or churn) modeling, and pricing analysis.

7.9 Learning More* 189

We covered traditional normal linear models in this chapter, which relate continuous
or near-continuous outcomes to predictors. Other models apply in cases where the
variables are different in structure, such as binary outcomes or counts. However, the
process of estimating those is similar to the steps here. Such models include pois-
son and binomial regression model for outcomes that are counts, hazard regression
for event occurrence (also known as timing regression or survival modeling), and
logistic regression for binary outcomes (see Sect. 9.2). R covers all of these models
with the generalized linear model (GLM) framework, an elegant way of represent-
ing many families of models, and such models can be estimated with the glm ()
function. To learn more about generalized models, consult an introduction to GLM
such as Dobson [34].

In our synthetic satisfaction drivers data, hypothetical customers rated satisfaction
on a 100-point scale, making it reasonable for us to analyze the data as if the ratings
were continuous. However, many survey studies collect ratings on a 5- or 7-point
scale, which may be questionable to fit with a linear model. Although many analysts
use 1m () for outcomes on 5- or 7-point scales, an alternative is a cut-point model,
such as an ordered logit or probit model. Such a model will fit the data better and
won’t make nonsensical predictions like a rating of 6.32 on a 5-point scale (as 1m ()
might). These models can be fit with the polr () function from the MASS package
[157].

A more sophisticated model for ordinal ratings data is a Bayesian scale-usage het-
erogeneity model, as described by Rossi, Allenby, and McCullough [137]. This
models that different customers (and cultures) may use scales in different ways;
some customers may give systematically higher or lower scores than others due to
differences in interpreting the rating scale. When this is modeled, it is possible to
find a better estimate of the underlying satisfaction levels. A Bayesian estimation
procedure for such models is implemented in the bayesm package [136].

In this chapter, we used models in which an effect has uniform influence. For exam-
ple, we assumed that the effect of satisfaction with cleanliness is a single influence
that is the same for every respondent (or, more precisely, whose average influence
is the same, apart from random individual variation). You might instead consider a
model in which the effect varies for different people, with both a group-level and
an individual-level effect, known as a hierarchical model. We examine ways to es-
timate individual-level effects using hierarchical models in Chap. 9.

Finally, many data sets have variables that are highly correlated (known as collinear-
ity), and this can affect the stability and trustworthiness of linear modeling. In
Sect. 9.1 we introduce additional ways to check for collinearity and strategies to
mitigate it. One approach is to reduce the number of dimensions under considera-
tion by extracting underlying patterns from the correlated variables; we review such
principal component and factor analytic procedures in Chap. 8.

190 7 Identifying Drivers of Outcomes: Linear Models

7.10 Key Points

There are many applications for linear models in marketing: satisfaction drivers
analysis, advertising response modeling, customer churn modeling, and so forth.
Although these use different kinds of data, they are all implemented in similar ways
in R. The following points are some of the important considerations for such analy-
ses. We also summarized the basic process of linear modeling in Sect. 7.7.

e Linear models relate continuous scale outcome variables to predictors by find-
ing a straight line that best fits the points. A basic linear model function in
Ris Im(formula, data).lm() produces an object that can be used with
plot (), summary (), predict (), and other functions to inspect the model
fit and estimates of the coefficients.

e Before modeling, it is important to check the data quality and the distribution
of values on each variable. For distributions, approximately normal distribu-
tions are generally preferred, and data such as counts and revenue often need
to be transformed. Also check that variables do not have excessive correlation
(Sect. 7.2.1).

e To interpret coefficients on a standardized scale, such that they are comparable
to one another, you will either need predictors that are on identical scales or that
have been standardized to be on a uniform scale. The most common standard-
ization is conversion to units of standard deviation, performed by scale ()
(Sect. 7.3.3).

o A linear model assumes that the relationship between predictors and an outcome
is linear and that errors in fit are symmetric with similar variability across their
range (a property known as homoskedasticity). Results may be misleading when
these assumptions do not match the data. plot () of a model can help you
assess whether these assumptions are reasonable for your data (Sect. 7.2.5).

e The summary () function for 1m objects provides output that analysts review
most frequently, reporting model coefficients along with their standard errors
and p-values for hypothesis tests assessing whether the coefficients differ from
zero (Sect. 7.2.4).

e Factor variables may be included in a model simply by adding the name of the
factor to the model formula. R automatically converts the factor into dummy-
coded 0/1 values for each level. You must check the direction shown in the
output to ensure you interpret these correctly (Sect. 7.4).

e An interaction is a predictor that is the product of two other predictors, and thus
assesses the degree to which the predictors reinforce (or cancel) one another.
You can model an interaction between x and y by including x:y in a model
formula (Sect. 7.5).

7.10 Key Points 191

e Model building is the process of adding and removing predictors from a model
to find a set of predictors that fits the data well. We can compare the fit of dif-
ferent models using the R-squared value or, if models are nested (see Sect. 6.5)
by using the more formal ANOVA test (anova ()) (Sect. 7.3.1).

e You can fit a Bayesian version of a linear model using MCMCregress ()
from the MCMCpack package. The usage is nearly identical to 1m (). The re-
sulting coefficient estimates are assessed as expressing the most likely values
(known as credible intervals) under the assumption that the model is appropri-
ate (Sect. 7.8).

e We recommend to interpret coefficients in terms of their estimated ranges, such
as confidence intervals in the case of 1m () (Sect. 7.2.4) or credible intervals
from Bayesian estimates (Sect. 7.8). A plot of the coefficient ranges for 1m
objects can be created with the coefplot package (Sect. 7.3).

	7 Identifying Drivers of Outcomes: Linear Models
	7.1 Amusement Park Data
	7.1.1 Simulating the Amusement Park Data

	7.2 Fitting Linear Models with lm()
	7.2.1 Preliminary Data Inspection
	7.2.2 Recap: Bivariate Association
	7.2.3 Linear Model with a Single Predictor
	7.2.4 lm Objects
	7.2.5 Checking Model Fit

	7.3 Fitting Linear Models with Multiple Predictors
	7.3.1 Comparing Models
	7.3.2 Using a Model to Make Predictions
	7.3.3 Standardizing the Predictors

	7.4 Using Factors as Predictors
	7.5 Interaction Terms
	7.5.1 Language Brief: Advanced Formula Syntax*

	7.6 Caution! Overfitting
	7.7 Recommended Procedure for Linear Model Fitting
	7.8 Bayesian Linear Models with MCMCregress()*
	7.9 Learning More*
	7.10 Key Points

