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Comparing Groups: Statistical Tests

In Chap. 5 we saw how to break out data by groups and inspect it with tables and
charts. In this chapter we continue our discussion and address the question, “It looks
different, but is it really different?” This involves our first inferential statistical pro-
cedures: chi-square, t-tests, and analysis of variance (ANOVA). In the final section,
we introduce a Bayesian approach to compare groups.

6.1 Data for Comparing Groups

In this chapter, we continue with the data from Chap. 5. If you saved it at that time,
you could load it again with a command such as:

> load("∼/segdf-Rintro-Ch5.RData") # modify directory as needed
> summary(seg.df)

age gender income kids ownHome
Min. :19.26 Female:157 Min. : -5183 Min. :0.00 ownNo :159
1st Qu.:33.01 Male :143 1st Qu.: 39656 1st Qu.:0.00 ownYes:141

...

Alternatively, you could create the data following the procedure in Sect. 5.1. Or
download it from this book’s website:

> seg.df <- read.csv("http://goo.gl/qw303p")
> summary(seg.df)

age gender income kids ownHome
Min. :19.26 Female:157 Min. : -5183 Min. :0.00 ownNo :159
1st Qu.:33.01 Male :143 1st Qu.: 39656 1st Qu.:0.00 ownYes:141

...
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136 6 Comparing Groups: Statistical Tests

6.2 Testing Group Frequencies: chisq.test()

Much of the work we do in marketing analytics and marketing research involves
summarizing the differences between groups using group averages and cross tabs as
we described in Sect. 5.2. However, a good analyst is able to use statistical tests to
determine whether differences are real or might instead be due to minor variation
(“noise”) in the data. In the rest of the book, we largely focus on statistical tests that
help to identify real differences.

One of the simplest statistical tests is the chi-square test, which is used with fre-
quency counts such as those produced by table. A chi-square test determines
whether the frequencies in cells are significantly different from what one would
expect on the basis of their total counts.

In our segment data, we might ask whether there are equal numbers of respon-
dents in each segment, given a marginal count of N=300 observations. In R, we
use the chisq.test() command. One thing to remember is that in general
chisq.test() operates on a table (such as produced by table()). To see how
this works, let’s look at the process using simple data before we tackle the question
for our segments. Experimenting with simple data is always a good idea when trying
a new command.

For the first example, we create a table where the data comprises 95 observations of
the numbers 1–4 and where the counts of each are almost, but not quite identical.
We then test this with chisq.test():

> tmp.tab <- table(rep(c(1:4), times=c(25,25,25,20)))
> tmp.tab
1 2 3 4

25 25 25 20

> chisq.test(tmp.tab)

Chi-squared test for given probabilities

data: tmp.tab
X-squared = 0.7895, df = 3, p-value = 0.852

In this code, we generate 95 observations of 1:4, compile those into a table, and
then test that table for chi-square independence. The test evaluates the likelihood
of seeing such a result under the null hypothesis that the data were randomly sam-
pled from a large population where the values 1:4 are equally distributed, given a
marginal count of N = 95 observations. The p-value of 0.852 tells us that there is
an estimated 85 % chance of seeing a data set with differences similar to or greater
than those in our table, if the null hypothesis is true. We conclude that under the
assumptions of the chi-square test, our table does not suggest real differences in
frequency between the four cells. Put another way, this data shows no evidence that
the groups in the population are of unequal size, under the assumption of random
sampling.
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Compare that to the following, which differs from the code above by a single
character—we change the number of observations of “4” from 20 to 10:

> tmp.tab <- table(rep(c(1:4), times=c(25,25,25,10)))
> tmp.tab
1 2 3 4

25 25 25 10

> chisq.test(tmp.tab)

Chi-squared test for given probabilities

data: tmp.tab
X-squared = 7.9412, df = 3, p-value = 0.04724

In this case, we could conclude from the p-value of 0.047 that we can reject the
null hypothesis of no difference between the cells with “95 % confidence.” In other
words, the data in this sample suggests that the distribution of the values 1:4 is likely
to be unequal in the larger population, assuming the data are a random sample. In
general, a p-value less than 0.10 or 0.05 suggests that there is a difference between
groups.

As an aside, there are disagreements among statisticians about the meaning of
null hypotheses and the value of traditional significance testing. We do not ad-
vocate classical significance testing in particular, but report the methods here be-
cause they are widely used in marketing to gauge the strength of evidence in a data
set. We believe the classical methods are imperfect but nevertheless useful and im-
portant to know. For review and discussion of the controversies and alternatives,
see [28, 80, 95]. In Sect. 6.6 we introduce Bayesian methods that do not use this
kind of null hypothesis.

In the results above, if we had a smaller sample we would not get the same result
for the significance test even if the relative proportion of customers in each group
was the same. Significance tests are sensitive to both the observed difference and
the sample size. To see this, we can create data with the same proportions but one
fifth as many observations by dividing tmp.tab by 5.

> tmp.tab <- tmp.tab/5
> tmp.tab

1 2 3 4
5 5 5 2
> chisq.test(tmp.tab)

Chi-squared test for given probabilities

data: tmp.tab
X-squared = 1.5882, df = 3, p-value = 0.6621

Warning message:
In chisq.test(tmp.tab) : Chi-squared approximation may be incorrect

This shows a non-significant result—no evidence of a real difference in group
sizes—even though the proportion of people in the “4” group is the same as in
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the larger sample above where the result was significant. This highlights one of the
cautions about statistical significance testing: it is dependent on sample size as well
as on the real effect.

Returning to our simulated segment data, which has a N = 300 observations, we
ask whether the segment sizes are significantly different from one another (assum-
ing that our 300 customers are a random sample of a larger population). We use
the same procedure as above, combining chisq.test() and table() into one
command:

> chisq.test(table(seg.df$Segment))

Chi-squared test for given probabilities

data: table(seg.df$Segment)
X-squared = 17.3333, df = 3, p-value = 0.0006035

The answer to our question is “yes, there are differences in segment size.” That
is, with p = 0.0006, our sample does not support the hypothesis that there is an
identical number of customers in each segment.

Is subscription status independent from home ownership, as we hypothesized when
we plotted the data in Sect. 5.2? That is, in our simulated data, are respondents just as
likely to subscribe or not, without regard to home ownership status (and conversely,
are they just as likely to own a home or not, independent of subscription status)? We
construct a two-way table and test it:

> table(seg.df$subscribe, seg.df$ownHome)

ownNo ownYes
subNo 137 123
subYes 22 18

> chisq.test(table(seg.df$subscribe, seg.df$ownHome))

Pearson’s Chi-squared test with Yates’ continuity correction

data: table(seg.df$subscribe, seg.df$ownHome)
X-squared = 0.0104, df = 1, p-value = 0.9187

The null hypothesis in this case is that the factors are unrelated, i.e., that the counts
in the cells are as one might expect from the marginal proportions. Based on the
high p-value, we cannot reject the null hypothesis, and conclude that the factors are
unrelated and that home ownership is independent of subscription status in our data.
Although people in general have a low subscription rate—and thus there are many
more non-subscribers than subscribers in both groups—there is no relationship be-
tween subscription rate and home ownership.

We should note two options for chisq.test(). First, for 2 × 2 tables,
chisq.test() defaults to using Yates’ correction, which adjusts the chi-square
statistic in light of the fact that the assumption of continuous data is imperfect when
data comes from a lumpy binomial distribution. If you want the results to match
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traditional values such as calculation by hand or spreadsheet, turn that off with
correct=FALSE:

> chisq.test(table(seg.df$subscribe, seg.df$ownHome), correct=FALSE)

Pearson’s Chi-squared test

data: table(seg.df$subscribe, seg.df$ownHome)
X-squared = 0.0741, df = 1, p-value = 0.7854

Second, chisq.test() can calculate confidence intervals using a simulation
method, where it compares the observed table to thousands of simulated tables with
the same marginal counts. The p-value indicates the proportion of those simulations
with differences between the cell counts and marginal proportions at least as large
as the ones in the observed table. We do that for 10,000 simulations using the sim
and B arguments as follows:

> chisq.test(table(seg.df$subscribe, seg.df$ownHome), sim=TRUE, B=10000)

Pearson’s Chi-squared test with simulated p-value (based on 10000
replicates)

data: table(seg.df$subscribe, seg.df$ownHome)
X-squared = 0.0741, df = NA, p-value = 0.8596

The test statistics and p-values change slightly across these commands, but the over-
all conclusion is the same, namely that the factors are independent.

6.3 Testing Observed Proportions: binom.test()

When we are dealing with observations that have only two values, we can consider
them to be a binomial (two-valued) variable. We illustrate this by taking a brief
break from marketing data. On the day of Superbowl XLVIII in 2014, played in the
New York City area, Chris took a walk in Manhattan and observed 12 groups of
Seattle fans and 8 groups of Denver fans.

Suppose we assume the observations are a random sample of a binomial value (ei-
ther Seattle or Denver fandom). Is the observed value of 60 % Seattle fans sig-
nificantly different from equal representation (which would be 50 % each)? We
use binom.test(successes, trials, probability) to test the likeli-
hood of randomly observing 12 cases out of 20 in one direction, if the true likelihood
is 50 %:

> binom.test(12, 20, p=0.5)

Exact binomial test

data: 12 and 20
number of successes = 12, number of trials = 20, p-value = 0.5034
alternative hypothesis: true probability of success is not equal to 0.5
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95 percent confidence interval:
0.3605426 0.8088099

sample estimates:
probability of success

0.6

Based on our data, the 95 % confidence interval is 36–81 %, which includes the null
hypothesis value of 50 %. Thus, we conclude that observing 60 % Seattle fans in
a sample of 20 does not conclusively demonstrate that there are more Seattle fans
in the larger group of fans roaming New York. We could also interpret the p-value
(p = 0.5034) as being non-significant, i.e., as failing to support the idea that the
results are different from the null hypothesis.

6.3.1 About Confidence Intervals

We have mentioned confidence intervals several times, and should take a moment
to discuss them because they are widely misunderstood. Our definition of a 95 %
confidence interval is this: it is the range of possible estimates that we would expect
to see 95 % of the time if we repeatedly estimate a statistic using random samples
of the same sample size under the assumption that the true value in an infinite or
very large population is the same as our current estimate. In other words, it is the
best guess of the range of possible answers we would expect with repeated random
samples. When the confidence interval excludes the null hypothesis (such as a prob-
ability of 0.5 for equal chances, or a mean difference of 0 for no difference between
groups), then the result is said to be statistically significant.

There are many misunderstandings of confidence intervals and statistical signif-
icance. Confidence intervals (CIs) do not express “how confident we are in the
answer” because they do not reflect the degree of confidence in the assumptions.
For example, true random sampling is rare, so the presumption of random sampling
is usually not completely justified; but that additional uncertainty is not reflected
in the CI. CIs are often misunderstood to imply that “the true value lies in the CI
range,” when in fact it is the other way around; if the true value is what we obtained,
then we would expect additional estimates to fall within this CI 95 % of the time un-
der further rounds of random sampling. The CI is about estimates, not about the
true value. Additionally, statistical significance does not imply practical importance
or the meaningfulness of a result; a tiny difference can be statistically significant
with a large sample even when it is not actionable or interpretable as a business
matter.

In practice, we suggest that before interpreting a result, make sure it is statistically
significant for some level of confidence interval (95 %, or possibly 90 % or 99 %
depending on how sensitive the matter is). If it is not significant, then your evidence
for the result is weak, and you should not interpret it. In that case, either say that,
ignore the result, or collect more data. If the result is significant, then proceed with
your interpretation and reporting (taking care with how you describe “confidence”).
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Interpret results in light of their importance, not their statistical significance (once it
has been established). We recommend to report—and when appropriate, to chart—
confidence intervals whenever feasible rather than reporting single point estimates.
By reporting CIs, one presents a more complete and accurate description to stake-
holders.

Note that this discussion applies to the interpretation of significance in classical
statistics (which covers most of this book, and is what practitioners mostly use). We
briefly review the Bayesian alternative to confidence intervals (known as credible
intervals) in Sect. 6.6.2 below. In general, the cautions expressed above do not di-
rectly apply to Bayesian models (there are different considerations), yet the practical
recommendations about interpretation and reporting are consistent.

There is a general function in R to determine the confidence intervals for a statistical
model (when appropriate): confint(), which we use in the next section.

6.3.2 More About binom.test() and Binomial Distributions

Now that we understand confidence intervals, let’s look at binom.test() again.
What if we had observed 120 out of 200 to be Seattle fans, the same proportion as
before but in a larger sample?
> binom.test(120, 200, p=0.5)
...
number of successes = 120, number of trials = 200, p-value = 0.005685
...
95 percent confidence interval:
0.5285357 0.6684537

With 120/200 cases, the confidence interval no longer includes 50 %. If we had
observed this, it would be evidence for a preponderance of Seattle fans. Corre-
spondingly, the p-value is less than 0.05, indicating a statistically significant dif-
ference.

With R, we can ask much more about the distribution. For example, what are the
odds that we would observe 8–12 Seattle fans out of 20, if the true rate is 50 %? We
use the density estimate for a binomial distribution across the range of interest and
sum the point probabilities:
> sum(dbinom(8:12, 20, 0.5))
[1] 0.736824

If we observe 20 fans, and the true split is 50 %, there is a 73.7 % chance that we
would observe between 8 and 12 fans (and thus a 1− p or 27.3 % chance of observ-
ing fewer than 8 or more than 12).

An “exact” binomial test (the classical method) may be overly conservative
in its estimation of confidence intervals [2]. One alternative method is to use
binom.confint(, method="agresti-coull"), available in the binom
package [35] (you may need to install that package):
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> library(binom)
> binom.confint(12, 20, method="ac") # same as "agresti-coull"

method x n mean lower upper
1 agresti-coull 12 20 0.6 0.3860304 0.7817446

With the Agresti–Coull method, the confidence interval is slightly smaller but still
includes 50 %. The binom package also computes several other variants on bino-
mial tests, including a Bayesian version.

Finally, Chris also observed that among the 20 groups, 0 had a mixture of Seattle
and Denver fans (as inferred from their team clothing). Based on that observation,
what should we conclude is the most likely proportion of groups that comprise mixed
fans? We use the Agresti–Coull method because exact tests have no confidence in-
terval for 0 % or 100 % observations:
> binom.confint(0, 20, method="ac")

method x n mean lower upper
1 agresti-coull 0 20 0 -0.0286844 0.1898096

The negative lower bound may be ignored as an artifact, and we conclude that al-
though Chris observed 0 cases, the occurrence of mixed fandom groups is likely to
be somewhere between 0 and 19 %.

6.4 Testing Group Means: t.test()

A t-test compares the mean of one sample against the mean of another sample (or
against a specific value such as 0). The important point is that it compares the mean
for exactly two sets of data. For instance, in the segment data we might ask whether
household income is different among those who own a home and those who do
not.

Before applying any statistical test or model, it is important to examine the data
and check for skew, discontinuities, and outliers. Many statistical tests assume that
the data follows a normal distribution or some other smooth continuous distribu-
tion; skewness or outliers violate those assumptions and might lead to an inaccurate
test.

One way to check for non-normal distributions is to plot the data with a boxplot or
histogram. We have already plotted income above (Figs. 5.7, 5.8, and 5.9) and thus
skip that step. Additionally, we can check histograms for income overall as well as
by home ownership:
> hist(seg.df$income) # not shown
> with(seg.df, hist(income[ownHome=="ownYes"])) # not shown
> with(seg.df, hist(income[ownHome=="ownNo"])) # not shown

We omit those figures for brevity. Overall, in these histograms and in the boxplots
above, income is approximately normally distributed (as it should be, given the
data generation procedure, Sect. 5.1).
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Now we are ready to test whether home ownership overall is related to differences
in income, across all segments, using t.test(formula, data). We write the
formula using income as the response variable to be modeled on the basis of
ownHome as the explanatory variable:

> t.test(income ∼ ownHome, data=seg.df)

Welch Two Sample t-test

data: income by ownHome
t = -3.2731, df = 285.252, p-value = 0.001195
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-12080.155 -3007.193

sample estimates:
mean in group ownNo mean in group ownYes

47391.01 54934.68

There are several important pieces of information in the output of t.test(). First
we see that the t statistic is −3.2, with a p-value of 0.0012. This means that the
null hypothesis of no difference in income by home ownership is rejected. The data
suggests that people who own their homes have higher income.

Next we see that the 95 % confidence interval for the difference is −3,007 to
−12,080. If these are representative data of a larger population, we can have 95 %
confidence that the group difference is between those values. Finally, we see the
sample means for our data: mean income is $47,391 for the rent (ownNo) condi-
tion, and $54,935 for the ownership condition.

What about the difference within the Travelers segment? In Fig. 5.9, we saw that
household income appeared to have a wider distribution among members of the
Travelers segment who own homes than those who do not. Does that also re-
flect a difference in the mean income for the two groups? We use the filter
data=subset(data, condition) to select just Travelers and repeat the
test:

> t.test(income ∼ ownHome, data=subset(seg.df, Segment=="Travelers"))

Welch Two Sample t-test

data: income by ownHome
t = 0.2656, df = 53.833, p-value = 0.7916
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-8508.993 11107.604

sample estimates:
mean in group ownNo mean in group ownYes

63188.42 61889.12

The confidence interval of −8,508 to 11,107 includes 0, and thus we conclude—as
evidenced in the p-value of 0.79—that there is not a significant difference in mean
income among those Travelers in our data who own homes and who don’t.
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We might be puzzled: we saw in the first t-test that there is a significant difference in
income based on home ownership, but in the second test that there’s no significant
difference within Travelers. Any difference must lie largely outside the Travelers
group.

How can we locate where the difference lies? A t-test across all segments will not
work because there are four segments and a t-test only compares two groups. We
could test income within each segment, one at a time, but this is not a good idea be-
cause multiple tests increase the likelihood of finding a spurious difference (a “Type
I error”). To track down the difference, we need a more robust procedure that han-
dles multiple groups; we turn to that next.

6.5 Testing Multiple Group Means: ANOVA

An ANOVA compares the means of multiple groups. Technically, it does this by
comparing the degree to which groups differ as measured by variance in their
means (from one another), relative to the variance of observations around each mean
(within each group). Hence the importance of variance in the name. More casually,
you can think of it as testing for difference among multiple means, assuming that
the groups have similar variance.

An ANOVA can handle single factors (known as one-way ANOVA), two factors
(two-way), and higher orders including interactions among factors. A complete dis-
cussion of ANOVA would take more space than we have here, yet we use it to
address our question from the previous section: which factors are related to differ-
ences in mean income in the segment data? Specifically, is income related to home
ownership, or to segment membership, or both?

The basic R commands for ANOVA are aov(formula, data) to set up the
model, followed by anova(model) to display a standard ANOVA summary. We
look at income by home ownership first, and assign the aov() model to an object
so we can use it with anova(). aov() uses the standard formula interface to
model income as a response to ownHome:

> seg.aov.own <- aov(income ∼ ownHome, data=seg.df)
> anova(seg.aov.own)
Analysis of Variance Table

Response: income
Df Sum Sq Mean Sq F value Pr(>F)

ownHome 1 4.2527e+09 4252661211 10.832 0.001118 **
Residuals 298 1.1700e+11 392611030
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The value of Pr(>F) for ownHome is the p-value and reflects that there is signifi-
cant variation in income between those who do and do not own their own homes.
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(This is a slightly different test but the same conclusion that we obtained from the
t-test in Sect. 6.4).

What about income by segment? We model that and save the aov object:

> seg.aov.seg <- aov(income ∼ Segment, data=seg.df)
> anova(seg.aov.seg)
Analysis of Variance Table

Response: income
Df Sum Sq Mean Sq F value Pr(>F)

Segment 3 5.4970e+10 1.8323e+10 81.828 < 2.2e-16 ***
Residuals 296 6.6281e+10 2.2392e+08
...

The value of Pr(>F) is very close to zero, confirming that income varies signif-
icantly by segment. (If you’re wondering, 2.2e-16 means 2.2 ∗ 10−16 and is the
smallest non-zero number that R will typically report in Mac OS X. It is the value of
the R constant .Machine$double.eps that expresses the tolerance of floating
point differences.)

If income varies by both home ownership and segment, does that mean that a more
complete model should include both? We can add both factors into the ANOVA
model to test this:

> anova(aov(income ∼ Segment + ownHome, data=seg.df))
Analysis of Variance Table

Response: income
Df Sum Sq Mean Sq F value Pr(>F)

Segment 3 5.4970e+10 1.8323e+10 81.6381 <2e-16 ***
ownHome 1 6.9918e+07 6.9918e+07 0.3115 0.5772
Residuals 295 6.6211e+10 2.2444e+08
...

The results indicate that when we try to explain income differences in income by
both Segment and ownHome, segment is a significant predictor (p � 0.01) but
home ownership is not a significant predictor. Yet the previous results said that it
was significant. What’s the difference? What is happening is that segment and home
ownership are not independent, and the effect is captured sufficiently by segment
membership alone. Home ownership accounts for little more over and above what
can be explained by Segment.

Could it be that home ownership is related to income in some segments but not in
others? This would be represented in our model by an interaction effect. In a model
formula, “+” indicates that variables should be modeled for main effects only. We
can instead write “:” for an interaction or “∗” for both main effect and interaction.
We test main effects and interaction of home ownership and segment:

> anova(aov(income ∼ Segment * ownHome, data=seg.df))
Analysis of Variance Table

Response: income
Df Sum Sq Mean Sq F value Pr(>F)
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Segment 3 5.4970e+10 1.8323e+10 81.1305 <2e-16 ***
ownHome 1 6.9918e+07 6.9918e+07 0.3096 0.5784
Segment:ownHome 3 2.6329e+08 8.7762e+07 0.3886 0.7613
Residuals 292 6.5948e+10 2.2585e+08
...

Again, segment is a significant predictor, while home ownership and the interaction
of segment with home ownership are not significant. In other words, segment mem-
bership is again the best predictor on its own. We discuss interaction effects further
in Chap. 7.

6.5.1 Model Comparison in ANOVA*

Another capability of the anova() command is to compare two or more mod-
els, using the syntax anova(model1, model2, ...) We can compare
the aov() model with segment alone vs. the model with both segment and in-
come:

> anova(aov(income ∼ Segment, data=seg.df),
+ aov(income ∼ Segment + ownHome, data=seg.df))
Analysis of Variance Table

Model 1: income ∼ Segment
Model 2: income ∼ Segment + ownHome
Res.Df RSS Df Sum of Sq F Pr(>F)

1 296 6.6281e+10
2 295 6.6211e+10 1 69918004 0.3115 0.5772

This tells us that Model 2—which includes both segment and home ownership—
is not significantly different in overall fit from Model 1. If it were better, the null
hypothesis of no difference would be rejected, as shown by a p-value (“Pr(>F)”)
less than 0.05.

It is essential to note that model comparison as performed by the anova() com-
mand only makes sense in the case of nested models. In this context, a model
A is nested within another model B when one or more parameters of B can be
fixed or removed to yield model A. In the present case, income ∼ Segment
is nested within income ∼ Segment + ownHome because we can remove
ownHome and arrive at the former model. Because they are nested, the two models
may be compared by anova() or other functions that perform likelihood compar-
isons.

The model income ∼ Segment is not nested within income ∼ subscribe
+ ownHome because no amount of removing or fixing parameters in the latter
model will produce the former. Thus, those two models could not be compared by
anova() in a meaningful way. If you try to compare them, R may produce some
output but it is not generally interpretable.

The question of how to compare non-nested models is one we do not tackle in depth
in this book, although it recurs in our discussion of structural models in Chap. 10.
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If you wish to learn more about the issues and methods for general model com-
parison, a good place to start is to review the literature on the Akaike information
criterion (AIC) and Bayesian information criterion (BIC). We review BIC briefly in
Sect. 11.3.5.

6.5.2 Visualizing Group Confidence Intervals

A good way to visualize the results of an ANOVA is to plot confidence intervals for
the group means. This will reveal more about whether the differences are substantial
in magnitude or not. We use the multcomp (multiple comparison) package and its
glht(model) (general linear hypothesis) command [79]. You may need to install
the “multcomp” package on your system.

Let’s take a look at what glht() does. We assign an aov() to an object and
inspect it with glht():

> library(multcomp)
> seg.aov <- aov(income ∼ Segment, data=seg.df)
> glht(seg.aov)

General Linear Hypotheses

Linear Hypotheses:
Estimate

(Intercept) == 0 53091
SegmentSuburb mix == 0 1943
SegmentTravelers == 0 9123
SegmentUrban hip == 0 -31409

There is a problem: the default aov() model has an intercept term (corresponding
to the Moving up segment) and all other segments are relative to that. This may
be difficult for decision makers or clients to understand, so we find it preferable to
remove the intercept by adding “-1” to the model formula:

> seg.aov <- aov(income ∼ -1 + Segment, data=seg.df)
> glht(seg.aov)

General Linear Hypotheses

Linear Hypotheses:
Estimate

SegmentMoving up == 0 53091
SegmentSuburb mix == 0 55034
SegmentTravelers == 0 62214
SegmentUrban hip == 0 21682

With the intercept removed, glht() gives us the mean value for each segment. We
plot that, using the par(mar=...) command to add some extra margins for large
axis labels:

> par(mar=c(6,10,2,2)) # adjusts margins to preserve axis labels
> plot(glht(seg.aov),
+ xlab="Income", main="Average Income by Segment (95% CI)")



148 6 Comparing Groups: Statistical Tests

The result is Fig. 6.1. The dot shows the mean for each segment, and bars reflect the
confidence interval.

In Fig. 6.1 we see confidence intervals for the mean income of each segment. It is
clear that the average income of Urban hip segment members is substantially lower
than the other three groups.

6.5.3 Variable Selection in ANOVA: Stepwise Modeling*

Building models iteratively by adding and removing variables is a common task
that can be automated with the step(model) command. This performs step-
wise model selection by testing models one at time while changing the variables

Average Income by Segment (95% CI)
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Fig. 6.1. Confidence intervals for income by segment, from an analysis of variance model
with aov() and glht().

in the model to see whether the change improves the model. There are options
for both backward (starting with a larger set of variables and progressively cutting
them) and forward (adding variables) procedures. The step() command uses the
AIC to compare models on the basis of overall fit balanced with model complex-
ity [3].

We perform a backward stepping procedure here (the default direction) by spec-
ifying a complete main effect model using the formula shorthand “response
∼ .” The “.” is shorthand for “all other variables (except the response vari-
able).” By default this models all main effects without interactions. Higher order
effects in this case may be added with superscript notation, such as “.ˆ2” for
two-way interactions, but it is usually good to avoid such indiscriminate interac-
tion modeling.

For our aov() model for income, the command to run the stepwise procedure for
main effects and save the resulting best model is:
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> seg.aov.step <- step(aov(income ∼ ., data=seg.df))
Start: AIC=5779.17
income ∼ age + gender + kids + ownHome + subscribe + Segment

Df Sum of Sq RSS AIC
- age 1 4.7669e+06 6.5661e+10 5777.2
- ownHome 1 1.0337e+08 6.5759e+10 5777.6
- kids 1 1.3408e+08 6.5790e+10 5777.8
- subscribe 1 1.5970e+08 6.5816e+10 5777.9
- gender 1 2.6894e+08 6.5925e+10 5778.4
<none> 6.5656e+10 5779.2
- Segment 3 1.9303e+10 8.4959e+10 5850.5

Step: AIC=5777.19
income ∼ gender + kids + ownHome + subscribe + Segment
... [several steps] ...
Step: AIC=5772.02
income ∼ Segment

Df Sum of Sq RSS AIC
<none> 6.6281e+10 5772.0
- Segment 3 5.497e+10 1.2125e+11 5947.2

We see that step() started by modeling income with all six other variables, went
through several steps of removing variables, and concluded with the “best” model
as income ∼ Segment.

We examine the result of step(), which was saved in a model object, using the
standard anova() command:

> anova(seg.aov.step)
Analysis of Variance Table

Response: income
Df Sum Sq Mean Sq F value Pr(>F)

Segment 3 5.4970e+10 1.8323e+10 81.828 < 2.2e-16 ***
Residuals 296 6.6281e+10 2.2392e+08
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Stepwise procedures are not a panacea and must be used with caution, although they
are sometimes helpful for model exploration. In more general cases—where there
may be dozens, hundreds, or thousands of available variables—variable selection is
better informed by procedures such as a lasso [152] or random forest [19] procedure.
We examine random forest models in Chap. 11.

6.6 Bayesian ANOVA: Getting Started*

This is an advanced section that is primarily recommended for readers who have
some familiarity with the principles of Bayesian analysis and seek an introduction to
Bayesian models in R. We do not provide a comprehensive overview of the methods,
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and assume that the reader is generally familiar with Bayesian concepts such as a
prior, posterior, and posterior sampling.

For other readers, we attempt to give enough context to make the concepts approach-
able. Although this may be insufficient for a real project, it introduces how such
models work and demonstrates the steps involved. We refer you to Sect. 6.7 for ad-
ditional references.

6.6.1 Why Bayes?

We suggest analysts consider Bayesian analyses instead of traditional (“frequen-
tist”) statistical models when possible. Bayesian analysis is often a more direct way
to tackle the questions we usually want to know: “Is this hypothesis likely to be
true?”, “How much confidence should I have?”, and “What are the most likely val-
ues?” A Bayesian analysis does not take refuge in the double and triple negatives
of traditional models (“we failed to reject the null hypothesis that there is no differ-
ence between the models”). Instead, it answers, “Given these data, how likely is the
difference?”

Despite the advantages, there are reasons Bayesian analyses are not more common:
there are fewer Bayesian teachers, texts, and practitioners; many Bayesian texts are
dense with formulas; and the field is rapidly developing and some contentious issues
have not been settled. Perhaps most importantly, available software packages are
designed to make traditional models easy to run and that ease has not yet been
brought to many areas of Bayesian practice. For an analyst, it may be easier and
more productive to use traditional models in day-to-day work. Happily, Bayesian
and traditional methods often lead to the same business conclusions (although not
always).

R is on the forefront of making Bayesian methods more widely available. This is
made possible by the many contributors to R, and by the R language itself which is
well suited for the iterated analyses that Bayesian methods require. In this section,
we demonstrate a starting point for a Bayesian version of ANOVA.

6.6.2 Basics of Bayesian ANOVA*

There are many options in R for Bayesian analyses (see the Bayesian task view on
CRAN: http://cran.r-project.org/web/views/). The MCMCpack
package is a robust, fast, and powerful Bayesian kit. However, we opt here to use
the BayesFactor package for its simplicity. In particular, BayesFactor has
sensible defaults for weakly informative prior probabilities [116, 139] and makes
model comparison easy. You will need to install the BayesFactor package for
the following code.

We use the lmBF(formula, data) command to specify our ANOVA model as
a linear model for income modeled by the Segment factor:

http://cran.r-project.org/web/views/
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> set.seed(96761)
> library(BayesFactor)
> seg.bf1 <- lmBF(income ∼ Segment, data=seg.df)

We set a pseudorandom number seed because this function will take draws from the
posterior distribution. What does that mean? Briefly, a common way to estimate a
Bayesian model is to do repeated assessments of how well a proposed model fits the
data.

To understand this we must consider the concept of a parameter. We have not used
the term yet, but a statistical model estimates one or more parameters that define the
presumed distribution. For example, a t-test compares the mean of two groups, and
the parameter it estimates is the difference between the means. An ANOVA model
can also be used to estimate the mean. It was confidence in the estimation of that
parameter that we plotted in Sect. 6.5.2.

Common Bayesian models operate by selecting initially random values for model
parameters (such as the mean for a segment). The process then retains the parameter
according to the likelihood that it fits the data and prior expectation (an estimated
starting point, if we have one), and iterates that process thousands or even millions
of times. The retained estimates are the draws from the posterior distribution for the
parameters, while the final estimated distribution of them is the posterior distribu-
tion. The end result is a large sample of possible parameters and their likelihoods,
or in other words, an outline of the most likely parameters for a given model. Again,
see Sect. 6.7 for more.

After fitting the model for income ∼ Segment, we might inspect it directly.
However, instead of starting to interpret a model, it is preferable to have a sense that
it is an adequate model. So we first compare it to the alternative we considered in
Sect. 6.5.1, which modeled income ∼ Segment + ownHome. We would then
interpret the Segment-only model if it fits the data better (or fits just as well but is
simpler).

Model comparison in BayesFactor is performed by using the “/” operator to
find the ratio of the models’ Bayes Factors. We have the first model seg.bf1
from above, and now fit the second model with two factors that we wish to
compare:

> seg.bf2 <- lmBF(income ∼ Segment + ownHome, data=seg.df)
============================================================= 100%

> seg.bf1 / seg.bf2
Bayes factor analysis
--------------
[1] Segment : 6.579729 1.62%

Against denominator:
income ∼ Segment + ownHome

---
Bayes factor type: BFlinearModel, JZS
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This tells us that the ratio of Bayes Factors for model 1 (∼ Segment) vs. model
2 (∼ Segment + ownHome) is 6.58. This means that model 1 is the preferable
model by a factor of 6.5.

To find the model parameters and their credible ranges, we use the posterior
(model, index, draws) command to draw 10,000 samples of the possible
parameters from model 1:

> seg.bf.chain <- posterior(seg.bf1, 1, iterations = 10000)
|=============================================================| 100%

The draws are known as a chain because they are estimated by a Markov chain
process; we skip those details (see [61]).

Before we examine the estimates, we should inspect whether the draws converged
to stable values such that the estimates are reliable. In BayesFactor, we simply
call plot() on the chain object. We select columns 1:6 from the draws because
there are six parameters we care about: the population mean and variance (mu and
sigma) and the estimates of means for the four segments:

> plot(seg.bf.chain[, 1:6]) # check console: may need <Return> to see all

The charts for the first three parameters are shown in Fig. 6.2; we omit the other
three charts because they are nearly identical. We interpret the charts as follows.
On the left, we see the estimated parameter values (Y axis) plotted against the draw
sequence (X axis). These form a fat but straight line, which means the estimates
varied around a stable central point; thus, they converged. (If they had not converged,
the plot would show erratic variations up or down, or would spread out increasingly
rather than being straight.)

On the right, we see a density plot of the values. The density shape is approximately
normal, which matches the assumption of the regression model. Thus, the charts
confirm that the model was stable and converged (note that these don’t mean the
model is useful, only that it achieved a stable estimate).

6.6.3 Inspecting the Posterior Draws*

We now examine the parameters as expressed in our posterior draw chain. A simple
summary() of the chain shows us the estimates:

> summary(seg.bf.chain)

Iterations = 1:10000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:
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Fig. 6.2. Trace plot for draws from the posterior distribution of a Bayesian ANOVA for in-
come by segment, for the first three parameters. The left-hand charts show trace convergence;

right-hand charts show the posterior distributions for the parameters.

Mean SD Naive SE Time-series SE
mu 4.806e+04 8.969e+02 8.969e+00 8.804e+00
Segment-Moving up 4.951e+03 1.548e+03 1.548e+01 1.548e+01
Segment-Suburb mix 6.927e+03 1.373e+03 1.373e+01 1.373e+01
Segment-Travelers 1.398e+04 1.487e+03 1.487e+01 1.518e+01
Segment-Urban hip -2.586e+04 1.777e+03 1.777e+01 1.956e+01
sig2 2.259e+08 1.856e+07 1.856e+05 1.856e+05
g_Segment 2.138e+00 3.359e+00 3.359e-02 3.359e-02

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
mu 4.631e+04 4.745e+04 4.805e+04 4.868e+04 4.982e+04
Segment-Moving up 1.925e+03 3.916e+03 4.968e+03 5.961e+03 8.054e+03
Segment-Suburb mix 4.243e+03 5.996e+03 6.934e+03 7.857e+03 9.608e+03
Segment-Travelers 1.104e+04 1.297e+04 1.399e+04 1.499e+04 1.690e+04
Segment-Urban hip -2.934e+04 -2.703e+04 -2.586e+04 -2.466e+04 -2.239e+04
sig2 1.923e+08 2.128e+08 2.249e+08 2.378e+08 2.647e+08
g_Segment 3.765e-01 7.949e-01 1.298e+00 2.284e+00 8.738e+00

The first section of the summary (“1. Empirical mean and ...”) gives arithmetic cen-
tral tendency estimates for the 10,000 draws of each of the parameters in the chain:
the mean of each parameter, the standard deviation of that estimate across the 10,000
draws, and so forth. The second result (“Quantiles ...”) is what we prefer to use in-
stead; it reports the actual observed quantiles for each of the parameters.

Note that the model estimates an overall mu that is the best guess for the population
mean regardless of segment effects, and then estimates each segment as a deviation
from that. However, for many purposes, it is more useful to have direct estimates for
the mean of each segment rather than its deviation. To estimate the direct values for
each segment, we add the population value (mu) to the deviations for each segment.
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However, we cannot simply do that with the aggregate numbers here by adding the
mu row to each of the other rows. Why not? Because the best estimates of segment
totals are found within each draw; we need to compute segment values at that level
and then summarize those estimates. Luckily that is easy to do in R.

To see how, let’s examine the chain object:

> head(seg.bf.chain)
...

mu Segment-Moving up Segment-Suburb mix Segment-Travelers ...
[1,] 48055.75 4964.3105 6909.032 13983.21 ...
[2,] 47706.52 6478.1497 7816.873 12160.32 ...
[3,] 48362.90 5228.0718 6654.030 12565.87 ...
[4,] 49417.43 5300.9543 7249.228 12218.89 ...
...

We see rows (10,000 in all) for the draws, and columns for the estimates for each
segment. By indexing the chain, we confirm that it is arranged as a matrix:

> seg.bf.chain[1:4, 1:5]
mu Segment-Moving up Segment-Suburb mix Segment-Travelers ...

[1,] 48055.75 4964.310 6909.032 13983.21 ...
[2,] 47706.52 6478.150 7816.873 12160.32 ...
[3,] 48362.90 5228.072 6654.030 12565.87 ...
[4,] 49417.43 5300.954 7249.228 12218.89 ...

This means that simple math will work to find within-draw estimates for each row.
We do this by adding column 1, the population estimate, to each of the other columns
2–5. We test this first on rows 1:4 only:

> seg.bf.chain[1:4, 2:5] + seg.bf.chain[1:4, 1]
Segment-Moving up Segment-Suburb mix Segment-Travelers Segment-Urban hip

[1,] 53020.06 54964.78 62038.95 22199.20
[2,] 54184.67 55523.40 59866.84 21251.18
[3,] 53590.97 55016.93 60928.77 23914.93
[4,] 54718.38 56666.66 61636.32 24648.35

It works, so now we compute that total for all rows and assign the result to a new ob-
ject. Then we get quantiles from that object as the overall best estimates of segment
income:

> seg.bf.chain.total <- seg.bf.chain[, 2:5] + seg.bf.chain[, 1]
> seg.bf.ci <- t(apply(seg.bf.chain.total, 2,
+ quantile, pr=c(0.025, 0.5, 0.975)))
> seg.bf.ci

2.5% 50% 97.5%
Segment-Moving up 49582.08 53020.98 56522.05
Segment-Suburb mix 52039.66 54988.99 57867.29
Segment-Travelers 58799.46 62048.33 65355.62
Segment-Urban hip 17992.85 22216.26 26450.56

In the apply() command, we applied the quantile() function to the columns
with the probabilities that we wanted for a 95 % credible interval. Then we
transposed the result with t() to be more readable (treating the segments as
“cases”).
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Those values are the best estimates of the 95 % credible range for the estimate of av-
erage income as modeled by segment, under the assumptions of our model.

6.6.4 Plotting the Bayesian Credible Intervals*

We can plot the credible intervals from the previous section using the capability of
the ggplot2 package to plot error bars. Install the “ggplot2” package if needed.
The ggplot2 commands work best with data frames, so we coerce our credi-
ble interval object seg.bf.ci to a data frame and add a column for segment
names:

> library(ggplot2)
> seg.bf.df <- data.frame(seg.bf.ci)
> seg.bf.df$Segment <- rownames(seg.bf.df)

Now we construct the chart in three steps. We add elements corresponding to the
values of segment quartiles in the summary data frame:

> p <- ggplot(seg.bf.df, aes(x=Segment, y=X50., ymax=X97.5., ymin=X2.5.))

We add points for the y values (the estimated median in this case), and add the
2.5 % and 97.5 % quartiles as “error bars” (which are automatically associated with
the names ymax and ymin as we set above):

> p <- p + geom_point(size=4) + geom_errorbar(width=0.2) + ylab("Income")

Finally we draw that plot object while adding a title and flipping the plot coordinates
so the segments are nicely on the left:

> p + ggtitle("95% CI for Mean Income by Segment") + coord_flip()

The result is Fig. 6.3, a chart that is easy to explain yet comes from a powerful
underlying Bayesian model.
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Fig. 6.3. Using ggplot2 to plot the credible intervals for income by segment from the
Bayesian posterior draws.
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You might notice that the Bayesian results in Fig. 6.3 are not all that different from
the classical results in Fig. 6.1. This is to be expected because they come from the
same data. In fact, if the model is exactly correct and the population is infinite,
then as the sample size approaches infinity, the Bayesian and classical confidence
intervals will be the same.

In that case, why one would want to use the Bayesian approach? One answer will
come in Chaps. 7 and 13 when we introduce hierarchical methods that are more
flexibly modeled in a Bayesian framework. Another answer is that data are never
infinite, and in our opinion Bayesian models more directly address confidence in
models for the data you actually have.

As you can see, R provides powerful capability for Bayesian analysis. R’s open-
source structure has made it easier for the software to keep pace with a rapidly
evolving field. If you run into limitations with existing packages, you can use R’s
programming language to accomplish tasks (as we did here to compute posterior
draws for total segment income).

6.7 Learning More*

t-tests and ANOVA are nothing more than flavors of general linear models, which
we cover in more depth in Chap. 7. In the R domain, there are many books on
linear models. A readable text that focuses on understanding basic models and
getting them right is Fox and Weisberg’s An R Companion to Applied Regression
[51].

For categorical data analysis, which we briefly sampled with our discussion of bino-
mial distribution and chi-square tests, the best starting place—although not specific
to R—is Agresti’s An Introduction to Categorical Data Analysis [1].

Readings on Bayesian data analysis vary tremendously in mathematical prerequi-
sites and authors’ styles. Kruschke’s Doing Bayesian Data Analysis [94] is a text-
book that uses R and builds intuition from the ground up with only high-school
level mathematics. It is a lengthy and thorough exposition of Bayesian thinking. A
standard text that moves faster with more mathematics is Gelman et al., Bayesian
Data Analysis [61]. For advanced marketing applications, especially hierarchical
linear models and choice models, a standard text is Rossi, Allenby, and McCul-
loch’s Bayesian Statistics and Marketing [137].

We presented charts in this chapter using the lattice and ggplot2 packages.
Each of them is described in detail in an eponymous book: Sarkar’s Lattice [141]
and Wickham’s ggplot2 [162].
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6.8 Key Points

This chapter introduced formal statistical tests in R. Following are some of the im-
portant lessons.

To perform statistical tests on differences by group:

• chisq.test() (Sect. 6.2) and binom.test() (Sect. 6.3) find confidence
intervals and perform hypothesis tests on tables and proportion data, respec-
tively. The binom package offers options such as Agresti–Coull and Bayesian
versions of binomial tests that may be more informative and robust than stan-
dard exact binomial tests (Sect. 6.3).

• A t.test() is a common way to test for differences between the means of
two groups (or between one group and a fixed value) (Sect. 6.4).

• ANOVA is a more general way to test for differences in mean among sev-
eral groups that are identified by one or more factors. The basic model is
fit with aov() and common summary statistics are reported with anova()
(Sect. 6.5).

• The anova() command is also useful to compare two or more ANOVA or
other linear models, provided that they are nested models (Sect. 6.5.1).

• Stepwise model selection with step() is one way to evaluate a list of vari-
ables to select a well-fitting model, although we recommend that it be used
with caution as other procedures may be more appropriate (Sect. 6.5.3).

We reviewed a few advanced topics for statistical models and data visualiza-
tion:

• Plotting a glht() object from the multcomp package is a good way to visu-
alize confidence intervals for ANOVA models (Sect. 6.5.2).

• A relatively straightforward starting point for Bayesian ANOVA and other lin-
ear models is the BayesFactor package (Sect. 6.6).

• Bayesian models should be evaluated for the stability and distribution of their
estimated parameters using trace and density plots (Sect. 6.6).

• Credible intervals (and other types of intervals) may be plotted with the
ggplot2 option to add geom errorbar() lines for groups (Sect. 6.6.4).
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