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Comparing Groups: Tables and Visualizations

Marketing analysts often investigate differences between groups of people. Do men
or women subscribe to our service at a higher rate? Which demographic segment can
best afford our product? Does the product appeal more to homeowners or renters?
The answers help us to understand the market, to target customers effectively, and
to evaluate the outcome of marketing activities such as promotions.

Such questions are not confined to differences among people; similar questions are
asked of many other kinds of groups. One might be interested to group data by
geography: does Region A perform better than Region B? Or time period: did same-
store sales increase after a promotion such as a mailer or a sale? In all such cases,
we are comparing one group of data to another to identify an effect.

In this chapter, we examine the kinds of comparisons that often arise in market-
ing, with data that illustrates a consumer segmentation project. We review R proce-
dures to find descriptive summaries by groups, and then visualize the data in several
ways.

5.1 Simulating Consumer Segment Data

We begin by creating a data set that exemplifies a consumer segmentation project.
For this example, we are offering a subscription-based service (such as cable tele-
vision or membership in a warehouse club) and have collected data from N = 300
respondents on age, gender, income, number of children, whether they own or rent
their homes, and whether they currently subscribe to the offered service or not. We
use this data in several later chapters as well.

In this data, each respondent has been assigned to one of four consumer segments:
“Suburb mix,” “Urban hip,” “Travelers,” or “Moving up.” (In this chapter we do not
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address how such segments might be created; we just presume to know them. We
look at how to cluster respondents in Chap. 11.)

Segmentation data is moderately complex and we separate our code into three
parts:

1. Definition of the data structure: the demographic variables (age, gender, and so
forth) plus the segment names and sizes.

2. Parameters for the distributions of demographic variables, such as the mean and
variance of each.

3. Code that iterates over the segments and variables to draw random values ac-
cording to those definitions and parameters.

By organizing the code this way, it becomes easy to change some aspect of the
simulation to draw data again. For instance, if we wanted to add a segment or change
the mean of one of the demographic variables, only minor change to the code would
be required. We also use this structure to teach new R commands that appear in the
third step to generate the data.

If you wish to load the data directly, it is available from the book’s website:

> seg.df <- read.csv("http://goo.gl/qw303p")
> summary(seg.df)

age gender income kids ownHome
Min. :19.26 Female:157 Min. : -5183 Min. :0.00 ownNo :159
1st Qu.:33.01 Male :143 1st Qu.: 39656 1st Qu.:0.00 ownYes:141

...

However, we recommend that you at least read the data generation sections. We
teach important R language skills—looping and if() statements—in Sects. 5.1.2
and 5.1.3.

5.1.1 Segment Data Definition

Our first step is to define general characteristics of the data set: the variable names,
data types, segment names, and sample size for each segment:

> segVars <- c("age", "gender", "income", "kids", "ownHome", "subscribe")
> segVarType <- c("norm", "binom", "norm", "pois", "binom", "binom")
> segNames <- c("Suburb mix", "Urban hip", "Travelers", "Moving up")
> segSize <- c(100, 50, 80, 70)

The first variable segVars specifies and names the variables to create.
segVarType defines what kind of data will be present in each of those vari-
ables: normal data (continuous), binomial (yes/no), or Poisson (counts). Next we
name the four segments with the variable segNames and specify the number of
observations to generate in each segment (segSize). For instance, looking at the
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first entry in segNames and segSize, the code says that we will create N = 100
observations (as specified by segSize[1]) for the “Suburb mix” segment (named
by segNames[1]).

Although those variables are enough to determine the structure of the data set—the
number of rows (observations) and columns (demographic variables and segment
assignment)—they do not yet describe the values of the data. The second step is to
define those values. We do this by specifying distributional parameters such as the
mean for each variable within each segment.

There are four segments and six demographic variables, so we create a 4×6 matrix
to hold the mean of each. The first row holds the mean values of each of the six
variables for the first segment; the second row holds the mean values for the second
segment, and so forth. We do this as follows:

> segMeans <- matrix( c(
+ 40, 0.5, 55000, 2, 0.5, 0.1,
+ 24, 0.7, 21000, 1, 0.2, 0.2,
+ 58, 0.5, 64000, 0, 0.7, 0.05,
+ 36, 0.3, 52000, 2, 0.3, 0.2 ), ncol=length(segVars), byrow=TRUE)

How does this work? It specifies, for example, that the first variable (which we
defined above as age) will have a mean of 40 for the first segment, 24 for the
second segment, and so forth. When we draw the random data later in this section,
our routine will look up values in this matrix and sample data from distributions
with those parameters.

In the case of binomial and Poisson variables, we only need to specify the mean.
In these data gender, ownHome, and subscribe will be simulated as binomial
(yes/no) variables, which requires specifying the probability for each draw. kids
is represented as a Poisson (count) variable, whose distribution is specified by its
mean. (Note that we use these distributions for simplicity and do not mean to im-
ply that they are necessarily the best distributions to fit real observations of these
variables. For example, real observations of income are better represented with a
skewed distribution.)

However, for normal variables—in this case, age and income, the first and third
variables—we additionally need to specify the variance of the distribution, the de-
gree of dispersion around the mean. So we create a second 4×6 matrix that defines
the standard deviation for the variables that require it:

> # standard deviations for each segment (NA = not applicable for the variable)
> segSDs <- matrix( c(
+ 5, NA, 12000, NA, NA, NA,
+ 2, NA, 5000, NA, NA, NA,
+ 8, NA, 21000, NA, NA, NA,
+ 4, NA, 10000, NA, NA, NA ), ncol=length(segVars), byrow=TRUE)

Putting those two matrices together, we have fully defined the distributions of the
segments. For instance, look at the third line of each matrix, which corresponds
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to the “Travelers” segment. The matrices specify that the mean age of that seg-
ment will be 58 years (looking at the first matrix) and that it will have a stan-
dard deviation of 8 years (second matrix). Also it will be approximately 50 % male
(looking at the second column), with an average income of $64,000 and $21,000
standard deviation. By storing values in look-up tables this way, we can easily
change the definitions for future purposes without digging through detailed code.
Such separation between data definition and procedural code is a good programming
practice.

With these data definitions in place, we are ready to generate data. This uses for()
loops and if() blocks, so we review those before continuing with the simulation
process in Sect. 5.1.4.

5.1.2 Language Brief: for() Loops

Our data set involves six random variables for age, gender, and so forth, and four
segments. So, we need to draw random numbers from 6×4 = 24 different distribu-
tions. Luckily, the structure of each of those random number draws is very similar,
and we can use for() loops to iterate over the variables and the segments.

The for() command iterates over a vector of values such as 1:10, assigning suc-
cessive values to an index variable and running a statement block on each iteration.
Here is a simple example:

> for (i in 1:10) { print(i) }
[1] 1
[1] 2
[1] 3
...
[1] 10

The value of i takes on the values from 1 to 10, and the loop executes 10 times in
all, running the print() command for each successive value of i.

If you’ve programmed before, this will be quite familiar—but there are a couple of
twists. The index variable in R for() loops can take on any scalar value, not just
integers, and it can operate on any vector including those that are defined elsewhere
or are unordered. Consider the following where we define a vector of real numbers,
i.seq, and iterate over its values:

> (i.seq <- rep(sqrt(seq(from=2.1, to=6.2, by=1.7)), 3))
[1] 1.449138 1.949359 2.345208 1.449138 1.949359 2.345208 1.449138 1.949359 ...
> for (i in i.seq ) { print(i) }
[1] 1.449138
[1] 1.949359
...
[1] 2.345208
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An index vector may comprise character elements instead of numeric:

> for (i in c("Hello ","world, ","welcome to R!")) { cat(i) }
Hello world, welcome to R!

We use the cat() command for output here instead of print() because of its
greater flexibility.

The brackets (“{” and “}”) enclose the statements that you want to loop over and
are only strictly required when a loop executes a block of more than one statement.
However, we recommend for clarity to use brackets with all loops and control struc-
tures as we’ve done here.

By tradition the most common index variable is named “i” (and inner loops com-
monly use “j”) but you may use any legal variable name. It is a nice practice to give
your index variable a descriptive-but-short name like seg for segments or cust for
customers.

There is one thing to avoid with for() loops in R: indexing on 1:length
(someVariable). Suppose for the example above, we wanted not the value of
each element in i.seq but its position (1, 2, 3, etc.). It would seem natural to write
something like this:

> for (i in 1:length(i.seq)) { cat("Entry", i, "=", i.seq[i], "\n") }
Entry 1 = 1.449138
Entry 2 = 1.949359
...

Don’t! This works in many cases but R has a better solution: seq along
(someVariable), which gives a vector of 1, 2, 3, etc. of the same length as
someVariable. Write the following instead:

> for (i in seq_along(i.seq)) { cat("Entry", i, "=", i.seq[i], "\n") }
Entry 1 = 1.449138
Entry 2 = 1.949359
...

Why? Because seq along() protects against common errors when the index vec-
tor has zero length or is inadvertently reversed. To see what happens when for()
has a zero-length vector, look at the following buggy code:

> i.seq <- NULL
> # maybe we have a bunch of other code, and then ...
> for (i in 1:length(i.seq)) { print (i) }
[1] 1
[1] 0

What happened? If i.seq is NULL, why does it appear to have length 2? The
answer is that it doesn’t. We told R to do this: start a for() loop with the value of
1, and then continue until you reach an index value that matches the length of the
vector i.seq, which happens to be 0. R complied precisely and iterated over the
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vector 1:0. That is, it started with 1 on the first iteration, and then 0 on the second
iteration, which then matched the length of i.seq.

The proper way to write this is to use seq along():

> i.seq <- NULL
> for (i in seq_along(NULL)) { print (i) } # better
>

This time the index vector has zero length, so nothing is printed. Whenever you
find yourself or a colleague writing “for (i in 1:length ...),” stop right
there and fix it. One day this will save you from a hard-to-find bug . . . and every day
you’ll be writing better R!

Many R and functional language programmers prefer to avoid for() loops and
instead use apply() functions and the like (Sect. 3.3.4), which automatically work
across vector or list objects. We suggest a mixed approach: do whichever makes
more sense to you. For many R newcomers, the logic of a for() loop is obvious
and easier to write reliably than an equivalent such as a list apply (lapply()). As
you gain experience in R and become comfortable with functions, we recommend
to reduce the reliance on for().

5.1.3 Language Brief: if() Blocks

Like most programming languages, R provides if() statements to handle condi-
tional code execution. The formal syntax is if (statement1) statement2
else statement3 but we suggest the following code template:

# dummy code, not executed
if (condition1) {
statements

} else if (condition2) {
statements

} else {
statements

}

A condition is the part that evaluates to be TRUE or FALSE, and it goes inside
parentheses. For example, we might write if (segment==1) { ... } to do
something when the value of segment is 1. (Advanced note: An if() condi-
tion may in fact be any R statement and will be coerced to a logical value but you
should take care to make sure it resolves to be a single, logical TRUE or FALSE
value.)

The else if() blocks and final else block in the template are optional and are
evaluated only when the preceding if() statement evaluates as FALSE. The else
if() blocks are just sequenced if() statements and may be chained indefinitely.
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In case you’re wondering, there is no requirement for an else block to handle
cases that if() does not match; there is an implicit “else do nothing and just
continue.”

We strongly encourage to use brackets (“{” and “}”) around all conditional state-
ment blocks as we’ve done in the template above. This makes code more read-
able, avoids syntactical ambiguities, and helps prevent bugs when lines are added
or deleted in code. Note that when brackets are followed by an else block, the
closing bracket (“}”) generally must be on the same line as else.

There is a common error with if() statements: accidentally or mistakenly using a
logical vector instead of a single logical value for the condition. Consider:
> x <- 1:5
> if (x > 1) {
+ print ("hi")
+ } else {
+ print ("bye")
+ }
[1] "bye"
Warning message:
In if (x > 1) { :
the condition has length > 1 and only the first element will be used

R warns us that the condition is not a single value. It then evaluates x[1] > 1 as
FALSE, so it skips to the else statement and evaluates that. This is probably not
what the programmer intended with this code. There are two possibilities that are
likely responsible for this code problem. First, the programmer might have forgotten
that x is a vector instead of a single value. The warning about “length > 1” tells us
to examine our code for that problem.

A second possibility is that the programmer wanted to evaluate all of the values
of x and act on each one of them. However, the if() statement is about program
flow—in R jargon, it is not vectorized—and thus it evaluates only a single condi-
tion per if(). To perform conditional evaluation on every element of a vector, use
ifelse(test, yes, no) instead:

> ifelse(x > 1, "hi", "bye")
[1] "bye" "hi" "hi" "hi" "hi"

In this case, the condition x > 1 is evaluated for each element of x. That is, it tests
whether x[1] > 1 and then x[2] > 1 and so forth. When a test evaluates as
TRUE, the function returns the first (“yes”) value; for others it returns the second
(“no”) value. The “yes” and “no” values may be functions as needed. For instance,
in a silly case:

> fn.hi <- function() { "hi" }
> fn.bye <- function() { "bye" }
> ifelse(x > 1, fn.hi(), fn.bye() )
[1] "bye" "hi" "hi" "hi" "hi"
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Experienced programmers: applying functions conditionally along a vector in this
way is one way to avoid for() loops in R as we mentioned in Sect. 5.1.2.

5.1.4 Final Segment Data Generation

Armed with for() and if() and the data definitions above, we are ready to gen-
erate the segment data. The logic we follow is to use nested for() loops, one
for the segments and another within that for the set of variables. (As mentioned in
Sects. 5.1.2 and 5.1.3, one could do this without for() loops in keeping with the
functional programming paradigm of R. However, we use for() loops here for
clarity and simplicity, and recommend that you code similarly; write whatever code
is clearest and easiest to maintain.)

To outline how this will work, consider the following pseudocode (sentences orga-
nized like code):

Set up data frame "seg.df" and pseudorandom number sequence
For each SEGMENT i in "segNames" {
Set up a temporary data frame "this.seg" for this SEGMENT’s data
For each VARIABLE j in "segVars" {

Use nested if() on "segVarType[j]" to determine data type for VARIABLE
Use segMeans[i, j] and segSDs[i, j] to
... Draw random data for VARIABLE (within SEGMENT) with
... "segSize[i]" observations

}
Add this SEGMENT’s data ("this.seg") to the overall data ("seg.df")

}

Pseudocode is a good way to outline and debug code conceptually before you actu-
ally write it. In this case, you can compare the pseudocode to the actual R code to
see how we accomplish each step. Translating the outline into R, we write:

> seg.df <- NULL
> set.seed(02554)

> # iterate over segments and create data for each
> for (i in seq_along(segNames)) {
+ cat(i, segNames[i], "\n")
+
+ # empty matrix to hold this particular segment’s data
+ this.seg <- data.frame(matrix(NA, nrow=segSize[i], ncol=length(segVars)))
+
+ # within segment, iterate over variables and draw appropriate random data
+ for (j in seq_along(segVars)) { # and iterate over each variable
+ if (segVarType[j] == "norm") { # draw random normals
+ this.seg[,j] <- rnorm(segSize[i], mean=segMeans[i,j], sd=segSDs[i,j])
+ } else if (segVarType[j] == "pois") { # draw counts
+ this.seg[, j] <- rpois(segSize[i], lambda=segMeans[i, j])
+ } else if (segVarType[j] == "binom") { # draw binomials
+ this.seg[, j] <- rbinom(segSize[i], size=1, prob=segMeans[i, j])
+ } else {
+ stop("Bad segment data type: ", segVarType[j])
+ }
+ }
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+ # add this segment to the total dataset
+ seg.df <- rbind(seg.df, this.seg)
+ }

The core commands occur inside the if() statements: according to the data type
we want (“norm”[al], “pois”[son], or “binom”[ial]), use the appropriate pseudoran-
dom function to draw data (the function rnorm(n, mean, sd), rpois(n,
lambda), or rbinom(n, size, prob), respectively). We draw all of the val-
ues for a given variable within a given segment with a single command (drawing all
the observations at once, with length specified by segSize[i]).

There are a few things to note about this code. As in Sect. 5.1.2 we use
seq along() to set up the for() loops. To see that the code is working
and to show progress, we use cat("some output message", counter,
"\n") inside the loop (\n ends a line so the next iteration will be on a new line of
output). That results in the following output as the code runs:

1 Suburb mix
2 Urban hip
3 Travelers
4 Moving up

Inside the first loop (the i loop), we predefine this.seg as a data frame with
the desired number of rows and columns, but full of missing values (NA). Why?
Whenever R grows an object in memory—such as adding a row—it makes a copy
of the object. This uses twice the memory and slows things down; by preallocating,
we avoid that. In small data sets like this one, it hardly matters, but with larger data
sets, it can make a huge difference in speed. Also, R can easily draw random values
for all respondents in a segment at once and this makes it easier to do so. Finally, it
adds a bit of error checking: if a result doesn’t fit into the data frame where it should
fit, we will get a warning or error.

By filling temporary and placeholder objects with missing values (NA) instead of 0
or blank values, we add another layer of error-checking: if we describe() the
object and discover missing values where we expect data, we know there is a code
error.

We finish the if() blocks in our code with a stop() command that executes in
the case that a proposed data type doesn’t match what we expect. There are three
if() tests for the expected data types, and a final else block in case none of the
ifs matches. This protects us in the case that we mistype a data type or if we try to
use a distribution that hasn’t been defined in the random draw code, such as a gamma
distribution. This stop() condition would cause the code to exit immediately and
print an error string.

Notice that we are doing a lot of thinking ahead about how our code might change
and potentially break in the future to ensure that we would get a warning when
something goes wrong. Our code also has another advantage that you may not notice
right away: we call each random data function such as rnorm in exactly one place.



120 5 Comparing Groups: Tables and Visualizations

If we discover that there was something wrong with that call—say we wanted to
change one of the parameters of the call—we only need to make the correction in
one place. This sort of planning is a hallmark of good programming in R or any
other language. While it might seem overly complex at first, many of these ideas
will become habitual as you write more programs.

To finish up the data set, we perform a few housekeeping tasks: we name the
columns, add segment membership, and convert each binomial variable to a labeled
factor:

# make the data frame names match what we defined
names(seg.df) <- segVars
# add segment membership for each row
seg.df$Segment <- factor(rep(segNames, times=segSize))
# convert the binomial variables to nicely labeled factors
seg.df$ownHome <- factor(seg.df$ownHome, labels=c("ownNo", "ownYes"))
seg.df$gender <- factor(seg.df$gender, labels=c("Female", "Male"))
seg.df$subscribe <- factor(seg.df$subscribe, labels=c("subNo", "subYes"))

We may now inspect the data. As always, we recommend a data inspection plan as
noted in Sect. 3.6, although we only show one of those steps here:

> summary(seg.df)
age gender income kids ownHome

Min. :19.26 Female:157 Min. : -5183 Min. :0.00 ownNo :159
1st Qu.:33.01 Male :143 1st Qu.: 39656 1st Qu.:0.00 ownYes:141
Median :39.49 Median : 52014 Median :1.00
Mean :41.20 Mean : 50937 Mean :1.27
3rd Qu.:47.90 3rd Qu.: 61403 3rd Qu.:2.00
Max. :80.49 Max. :114278 Max. :7.00

...

The data frame is now suitable for exploration. And we have reusable code: we
could create data with more observations, different segment sizes, or segments with
different distributions or means by simply adjusting the matrices that define the
segments and running the code again.

As a final step we save the data frame as a backup and to use again in later chapters
(Sects. 11.2 and 12.4). Change the destination if you have created a folder for this
book or prefer a different location:

> save(seg.df, file="∼/segdf-Rintro-Ch5.RData")

5.2 Finding Descriptives by Group

For our consumer segmentation data, we are interested in how measures such as
household income and gender vary for the different segments. With this insight, a
firm might develop tailored offerings for the segments or engage in different ways
to reach them.
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An ad hoc way to do this is with data frame indexing: find the rows that match
some criterion, and then take the mean (or some other statistic) for the matching
observations on a variable of interest. For example, to find the mean income for the
“Moving up” segment:

> mean(seg.df$income[seg.df$Segment == "Moving up"])
[1] 53090.97

This says “from the income observations, take all cases where the Segment column
is ‘Moving up’ and calculate their mean.” We could further narrow the cases to
“Moving up” respondents who also do not subscribe using Boolean logic:

> mean(seg.df$income[seg.df$Segment == "Moving up" &
+ seg.df$subscribe=="subNo"])
[1] 53633.73

This quickly becomes tedious when you wish to find values for multiple
groups.

As we saw briefly in Sect. 3.4.5, a more general way to do this is with by(data,
INDICES, FUN). The result of by() is to divide data into groups for each
of the unique values in INDICES and then apply the FUN function to each
group:

> by(seg.df$income, seg.df$Segment, mean)
seg.df$Segment: Moving up
[1] 53090.97
-------------------------------------------------
seg.df$Segment: Suburb mix
[1] 55033.82
...

With by(), keep in mind that data is the first argument and the splitting factors
INDICES come second. You can break out the results by multiple factors if you
supply factors in a list(). For example, we can break out by segment and sub-
scription status:
> by(seg.df$income, list(seg.df$Segment, seg.df$subscribe), mean)
: Moving up
: subNo
[1] 53633.73
---------------------------------------------------------------
: Suburb mix
: subNo
[1] 54942.69
...
---------------------------------------------------------------
: Urban hip
: subYes
[1] 20081.19

Our favorite command for this is aggregate() as we introduced in Sect. 3.4.5.
aggregate() works almost identically to by in its list form (we’ll see another
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form of aggregate() momentarily), except that it takes a list for even a single
factor:

> aggregate(seg.df$income, list(seg.df$Segment), mean)
Group.1 x

1 Moving up 53090.97
2 Suburb mix 55033.82
3 Travelers 62213.94
4 Urban hip 21681.93

A first advantage of aggregate() is this: the result is a data frame. As we saw
in Sect. 3.4.5, you can save the results of aggregate() to an object, which you
can then index, subject to further computation, write to a file, or manipulate in other
ways.

Here’s an example: suppose we wish to add a “segment mean” column to our data
set, a new observation for each respondent that contains the mean income for their
respective segment so we can compare respondents’ incomes to those typical for
their segments. We can do this by first aggregating the mean incomes into a table,
and then indexing that by segment to look up the appropriate value for each row of
our data:

> seg.income.mean <- aggregate(seg.df$income, list(seg.df$Segment), mean)
> seg.df$segIncome <- seg.income.mean[seg.df$Segment, 2]

When we check the data, we see that each row has an observation that matches
its segment mean (some() does a random sample of rows, so your output may
vary):

> library(car)
> some(seg.df)

age gender income kids ownHome subscribe Segment segIncome
58 34.46528 Male 60971.76 2 ownNo subNo Suburb mix 55033.82
79 42.31337 Male 49674.79 0 ownYes subNo Suburb mix 55033.82
124 22.30333 Female 24541.24 1 ownNo subNo Urban hip 21681.93
136 23.08861 Male 33909.50 3 ownNo subNo Urban hip 21681.93
158 43.35230 Male 51787.88 0 ownNo subNo Travelers 62213.94
...

It is worth thinking about how this works. In the following command:

> seg.df$segIncome <- seg.income.mean[seg.df$Segment, 2]

. . . we see this index for the rows: seg.df$Segment. If we evaluate that on its
own, we see that it is a vector with one entry for each row of seg.df:

> seg.df$Segment
[1] Suburb mix Suburb mix Suburb mix Suburb mix Suburb mix Suburb mix Suburb

mix
...
[295] Moving up Moving up Moving up Moving up Moving up Moving up
Levels: Moving up Suburb mix Travelers Urban hip
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Now let’s see what happens when we index seg.income.mean with that
vector:

> seg.income.mean[seg.df$Segment, ]
Group.1 x

2 Suburb mix 55033.82
2.1 Suburb mix 55033.82
...
1.68 Moving up 53090.97
1.69 Moving up 53090.97

The result is a data frame in which each row of seg.income.mean occurs many
times in the order requested.

Finally, selecting the second column of that gives us the value to add for each row
of seg.df:

> seg.income.mean[seg.df$Segment, 2]
[1] 55033.82 55033.82 55033.82 55033.82 55033.82 55033.82 55033.82 55033.82

...
[297] 53090.97 53090.97 53090.97 53090.97

We generally do not like adding derived columns to primary data because we like to
separate data from subsequent computation, but we did so here for illustration. We
now remove that column by setting its value to NULL:

> seg.df$segIncome <- NULL

This use of aggregate() exemplifies the power of R to extract and manipulate
data with simple and concise commands. You may recall that we said this was the
first advantage of aggregate(). The second advantage is even more important
and we describe it next.

5.2.1 Language Brief: Basic Formula Syntax

R provides a standard way to describe relationships among variables through for-
mula specification. A formula uses the tilde (∼) operator to separate response vari-
ables on the left from explanatory variables on the right. The basic form is:

y ∼ x (Simple formula)

This is used in many contexts in R, where the meaning of response and explana-
tory depend on the situation. For example, in linear regression, the simple formula
above would model y as a linear function of x. In the case of the aggregate()
command, the effect is to aggregate y according to the levels of x.



124 5 Comparing Groups: Tables and Visualizations

Let’s see that in practice. Instead of aggregate(seg.df$income, list
(seg.df$Segment), mean) we can write:

> aggregate(income ∼ Segment, data=seg.df, mean)
Segment income

1 Moving up 53090.97
...

The general form is aggregate(formula, data, FUN). In our example, we
tell R to “take income by Segment within the data set seg.df, and apply mean
to each group.”

The formula “y ∼ x” might be pronounced in various contexts as “y in response
to x,” “y is modeled by x,” “y varies with x,” and so forth. R programmers often
become so accustomed to this syntax that they just say “y tilde x.” This syntax may
seem like nothing special at first, but formulas are used in many different contexts
throughout R. We will encounter many uses for formulas later in this book, and
discuss additional forms of them in Sect. 7.5.1.

5.2.2 Descriptives for Two-Way Groups

A common task in marketing is cross-tabulating, separating customers into groups
according to two (or more) factors. Formula syntax makes it easy to compute a cross
tab just by specifying multiple explanatory variables:

y ∼ x1+ x2+ · · · (Multiple variable formula)

Using this format with aggregate(), we write:

> aggregate(income ∼ Segment + ownHome, data=seg.df, mean)
Segment ownHome income

1 Moving up ownNo 54497.68
2 Suburb mix ownNo 54932.83
...
7 Travelers ownYes 61889.12
8 Urban hip ownYes 23059.27

We now have a separate group for each combination of Segment and ownHome
and can begin to see how income is related to both the Segment and the
ownHome variables.

A formula can be extended to include as many grouping variables as needed:
> aggregate(income ∼ Segment + ownHome + subscribe, data=seg.df, mean)

Segment ownHome subscribe income
1 Moving up ownNo subNo 55402.89
...
8 Urban hip ownYes subNo 23993.93
9 Moving up ownNo subYes 50675.70
...
16 Urban hip ownYes subYes 19320.64
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As we saw for one-way aggregate, the result can be assigned to a data frame object
and indexed:

> agg.data <- aggregate(income ∼ Segment + ownHome, data=seg.df, mean)
> agg.data[2, ]

Segment ownHome income
2 Suburb mix ownNo 54932.83
> agg.data[2, 3]
[1] 54932.83

The aggregate command allows us to compute functions of continuous variables,
such as the mean of income or age) for any combination of factors (Segment,
ownHome and so forth). This is such a common task in marketing research that
there are entire companies who specialize in producing cross tabs. As we’ve just
seen, these are not difficult to compute in R.

We might also want to know the frequency with which different combina-
tions of Segment and ownHome occur. We can compute frequencies us-
ing table(factor1, factor2, ...) to obtain one-way or multi-way
counts:

> with(seg.df, table(Segment, ownHome))
ownHome

Segment ownNo ownYes
Moving up 47 23
Suburb mix 52 48
Travelers 20 60
Urban hip 40 10

There are 10 observed customers in the “Urban hip” segment who own their own
homes, and 60 in the “Travelers” segment.

Suppose we want a breakdown of the number of kids in each household (kids) by
segment:

> with(seg.df, table(kids, Segment))
Segment

kids Moving up Suburb mix Travelers Urban hip
0 13 11 80 17
1 17 36 0 17
2 18 22 0 11
3 13 19 0 4
4 5 7 0 1
5 3 3 0 0
6 0 2 0 0
7 1 0 0 0

This tells us that we have 17 “Urban hip” respondents with 0 kids, 22 “Suburb mix”
respondents with 2 kids, and so forth. It represents purely the count of incidence for
each crossing point between the two factors, kids and Segment. In this case we
are treating kids as a factor and not a number.
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However, kids is actually a count variable; if a respondent reported 3 kids, that is a
count of 3 and we could add together the counts to get the total number of children
reported in each segment. xtabs(formula, data) provides a handy way to
do this. It works with counts to find their total:

> xtabs(kids ∼ Segment, data=seg.df)
Segment
Moving up Suburb mix Travelers Urban hip

134 192 0 55

Now we know that our “Urban hip” respondents reported a total of 55 kids, while
the “Travelers” reported none. You might think of other ways this could be done in
R as well. One alternative is aggregate( ..., sum):

> aggregate(kids ∼ Segment, data=seg.df, sum)
Segment kids

1 Moving up 134
2 Suburb mix 192
3 Travelers 0
4 Urban hip 55

Another option is to multiply the frequency table by marginal number of kids and
add it up:

> seg.tab <- with(seg.df, table(kids, Segment))
> apply(seg.tab*0:7, 2, sum)
Moving up Suburb mix Travelers Urban hip

134 192 0 55

apply( , 2, sum) is better expressed using colSums():

> seg.tab <- with(seg.df, table(kids, Segment))
> colSums(seg.tab*0:7)
Moving up Suburb mix Travelers Urban hip

134 192 0 55

We have belabored this in order to show that R typically has many ways to arrive at
the same result. This may seem overly complex, yet it is a good thing. One reason is
that there are multiple options to match your style and situation. Each method pro-
duces results in a different format, and one format might work better in some situa-
tion than another. For instance, we’ve argued that the format from aggregate()
is often more useful than by(). Another reason is that you can do the same thing
in two different ways and compare the answers, thus testing your analyses and un-
covering potential errors.

5.2.3 Visualization by Group: Frequencies and Proportions

Suppose we plot the proportion of subscribers for each segment to understand bet-
ter which segments use the subscription service. Apart from making four separate
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plots, it isn’t obvious how to do this with the tools we have learned so far. We
could use table() along with barplot() (from Sect. 3.2.1) to get a plot show-
ing the number of subscribers and non subscribers overall, but breaking this out
by segment would require lots of work to separate the data and label the plots
correctly.

Happily, the lattice package provides a useful solution: histogram
(formula, data, type) is similar to hist() but understands formula
notation including conditioning on a factor, which means to separate the plot into
multiple panes based on that factor. Conditioning is indicated with the symbol “|”.
This is easiest to understand in an example:

> require(lattice)
> histogram(∼subscribe | Segment, data=seg.df)

You will notice that there is no response variable before the tilde (∼) in this formula,
only the explanatory variable (subscribe) after it. histogram() automatically
assumes that we want to plot the proportion of people at each level of subscribe.
We condition the plot on Segment, telling histogram to produce a separate
histogram for each segment. The result is shown in Fig. 5.1.
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Fig. 5.1. Conditional histogram for pro-
portion of subscribers within each seg-
ment, using lattice.

In Fig. 5.1, we see that the “Suburban mix” segment is least likely to subscribe to
our service. While this data doesn’t tell us why that might be, it does suggest that
the company might investigate and perhaps either improve the product to make it
more appealing to this group or else stop marketing to them.

The default in histogram() is to plot proportions within each group so that the
values are relative to the group size. If we wanted actual counts instead, we could
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include the argument type="count". We do that, adding options for color and
changing the layout to 4 columns and 1 row:

> histogram(∼subscribe | Segment, data=seg.df, type="count",
+ layout=c(4,1), col=c("burlywood", "darkolivegreen"))

This produces Fig. 5.2. By plotting the counts, we can see which segments are larger,
but it is difficult and potentially misleading to compare the count of subscribers
across groups of different sizes.
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Fig. 5.2. Conditional histogram
for count of subscribers within
each segment.

You can condition on more than one factor; just include it in the conditioning
part of the formula with “+”. For example, what is the proportion of subscribers
within each segment, by home ownership? We add ownHome to the formula in
histogram():

> histogram(∼subscribe | Segment + ownHome, data=seg.df)

The result is Fig. 5.3. In this plot, the top and bottom rows of Fig. 5.3 are similar,
and we conclude that differences in subscription rate according to home ownership
within segment are small. An implication is that the company should continue to
market to both homeowners and non-homeowners.

Finally, we could plot just “yes” proportions instead of both “yes” and “no” bars.
There are several ways to do this; we’ll do so by introducing the prop.table
(table, margin) command. If you wrap prop.table(..., margin=
...) around a regular table() command, it will give you the proportions for
each cell with respect to the entire table (by default), or just the rows (margin=1),
or the columns (margin=2).

We would like to know the proportion of subscribers within each segment,
which are the columns in table(...$subscribe, $Segment), so we
use prop.table(..., margin=2) as follows:
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> prop.table(table(seg.df$subscribe, seg.df$Segment), margin=2)

Moving up Suburb mix Travelers Urban hip
subNo 0.800 0.940 0.875 0.800
subYes 0.200 0.060 0.125 0.200

To plot just the “yes” values, we use barchart() and select only the second row
of the prop.table() result:

> barchart(prop.table(table(seg.df$subscribe, seg.df$Segment), margin=2)[2, ],
+ xlab="Subscriber proportion by Segment", col="darkolivegreen")
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Fig. 5.3. Conditional histogram for
subscribers, broken out by segment
(in the four columns) and home
ownership (in the two rows).

The result is Fig. 5.4, which strongly communicates that the Suburb mix segment
has an apparent low subscription rate. Note that this visual impression is amplified
by the fact that barchart() started the X axis at 0.05, not at 0, which is rather
misleading. In practice, you might adjust that using the xlim=c(low, high)
argument to barchart(); we leave that as an exercise. We will see more examples
of barcharts in the next section.

5.2.4 Visualization by Group: Continuous Data

In the previous section we saw how to plot counts and proportions. What about
continuous data? How would we plot income by segment in our data? A simple
way is to use aggregate() to find the mean income, and then use barchart()
from the lattice package to plot the computed values:
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Subscriber proportion by Segment
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Fig. 5.4. Proportion of subscribers
by segment using prop.table and
barchart.

> seg.mean <- aggregate(income ∼ Segment, data=seg.df, mean)
> library(lattice)
> barchart(income∼Segment, data=seg.mean, col="grey")

The result is Fig. 5.5.
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Fig. 5.5. Average income by seg-
ment using prop.table and
barchart.

How do we split this out further by home ownership? First we have to aggregate
the data to include both factors in the formula. Then we tell barchart() to use
ownHome as a grouping variable by adding the argument groups=factor. Do-
ing that, and also adding a simpleTheme option to improve the chart colors, we
have:

> seg.income.agg <- aggregate(income ∼ Segment + ownHome, data=seg.df, mean)
> barchart(income ∼ Segment, data=seg.income.agg,
+ groups=ownHome, auto.key=TRUE,
+ par.settings = simpleTheme(col=terrain.colors(2)) )

This produces a passable graphic as shown in Fig. 5.6 although it still looks as if it
came from a spreadsheet program. We can do better in R.

A more informative plot for comparing values of continuous data, like income for
different groups is a box-and-whiskers plot or boxplot, which we first encountered
in Sect. 3.4.2. A boxplot is better than a barchart because it shows more about the
distributions of values.
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Fig. 5.6. Average income by seg-
ment and home ownership, using
aggregate and barchart.

boxplot() works with formula syntax to plot a box-and-whiskers plot by factor.
Adding improved labels for the Y axis (see Sect. 3.4), we write:
> boxplot(income ∼ Segment, data=seg.df, yaxt="n", ylab="Income ($k)")
> ax.seq <- seq(from=0, to=120000, by=20000)
> axis(side=2, at=ax.seq, labels=paste(ax.seq/1000, "k", sep=""), las=1)
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Fig. 5.7. Box-and-whiskers plot for income by segment using boxplot.

We can now see in Fig. 5.7 that the income for “Travelers” is higher and also has
a greater range, with a few “Travelers” reporting very low incomes. The range of
income for “Urban hip” is much lower and tighter. Although box-and-whisker plots
are not common in business reporting, we think they should be. They are fairly
simple to understand and encode a lot more information than the averages shown in
Fig. 5.4.

An even better option for box-and-whiskers plots is the bwplot() command from
the lattice package, which produces better looking charts and allows multi-
factor conditioning. One point of caution is that bwplot() uses the model formula
in a direction opposite than you might expect; you write Segment ∼ income.
We plot a horizontal box-and-whiskers for income by segment as follows:
> bwplot(Segment ∼ income, data=seg.df, horizontal=TRUE, xlab = "Income")



132 5 Comparing Groups: Tables and Visualizations

The lattice box-and-whiskers is shown in Fig. 5.8.

We can break out home ownership as a conditioning variable using “ | ownHome”
in the formula:

> bwplot(Segment ∼ income | ownHome, data=seg.df, horizontal=TRUE,
+ xlab="Income")

The conditioned plot for income by segment and home ownership is shown in
Fig. 5.9. In this chart we discover—among other things—that in our simulated data
the Travelers segment has a much wider distribution of income among those who
own their homes than those who don’t.

5.3 Learning More*

The topics in this chapter are foundational both for programming skills in R and for
applied statistics. To gain skill in aspects of R programming that we introduce in
this chapter, we recommend Matloff’s The Art of R Programming [110].
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Fig. 5.8. Box-and-whiskers plot for income by segment using bwplot.

In Chap. 6 we continue our investigation with methods that formalize group com-
parisons and estimate the statistical strength of differences between groups.
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Fig. 5.9. Box-and-whiskers plot for income by segment and home ownership using bwplot.

5.4 Key Points

This was a crucial chapter for doing everyday analytics with R. Following are some
of the lessons.

In R code in general:

• When writing for() loops, use seq along() instead of 1:length()
(Sect. 5.1.2)

• For if() and for() blocks, always use brackets (“{” and “}”) for improved
readability and reliability (Sect. 5.1.3)

• When creating a data object from scratch, pre-populate it with missing data (NA)
and then fill it in, for speed and reliability (Sect. 5.1.1)

When describing and visualizing data for groups:

• The by() command can split up data and automatically apply functions such
as mean() and summary() (Sect. 5.2)

• aggregate() is even more powerful: it understands formula models and pro-
duces a reusable, indexable object with its results (Sects. 5.2 and 5.2.1)

• Frequency of occurrence can be found with table(). For count data, espe-
cially when using formulas, xtabs() is useful (Sect. 5.2.2)

• Charts of proportions and occurrence by a factor are well suited to the
lattice package histogram() command (Sect. 5.2.2)

• Plots for continuous data by factor may use barchart(), or even better, box-
and-whiskers plots with boxplot(). The lattice package extends such
plots to multiple factors using formula specification and the bwplot() com-
mand (Sect. 5.2.4)


	5 Comparing Groups: Tables and Visualizations
	5.1 Simulating Consumer Segment Data
	5.1.1 Segment Data Definition
	5.1.2 Language Brief: for() Loops
	5.1.3 Language Brief: if() Blocks
	5.1.4 Final Segment Data Generation

	5.2 Finding Descriptives by Group
	5.2.1 Language Brief: Basic Formula Syntax
	5.2.2 Descriptives for Two-Way Groups
	5.2.3 Visualization by Group: Frequencies and Proportions
	5.2.4 Visualization by Group: Continuous Data

	5.3 Learning More*
	5.4 Key Points


