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Relationships Between Continuous Variables

Experienced analysts understand that the most important insights in marketing
analysis often come from understanding relationships between variables. While it
is helpful to understand single variables, such as how many products are sold at
a store, more valuable insight emerges when we understand relationships such as
“Customers who live closer to our store visit more often than those who live farther
away,” or “Customers of our online shop buy as much in person at the retail shop as
do customers who do not purchase online.”

Identifying these kinds of relationships helps marketers to understand how to reach
customers more effectively. For example, if people who live closer to a store visit
more frequently and buy more, then an obvious strategy would be to send advertise-
ments to people who live in the area.

In this chapter we focus on understanding the relationships between pairs of vari-
ables in multivariate data, and examine how to visualize the relationships and com-
pute statistics that describe their associations (correlation coefficients). These are the
most important ways to assess relationships between continuous variables. While it
might seem appealing to go straight into building regression models (see Chap. 7),
we caution against that. The first step in any analysis is to explore the data and its ba-
sic properties. This chapter continues the data exploration and visualization process
that we reviewed for single variables in Chap. 3. It often saves time and heartache to
begin by examining the relationships among pairs of variables before building more
complex models.

4.1 Retailer Data

We simulate a data set that describes customers of a multi-channel retailer and their
transactions for 1 year. This data includes a subset of customers for whom we have
survey data on product satisfaction.
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78 4 Relationships Between Continuous Variables

As in Chap. 3, we present the code that generates this data as a way to teach more
about R syntax. However, if you prefer to jump right into the analysis, you could
quickly run all the commands in Sect. 4.1.1 and then continue with Sect. 4.2 where
we begin plotting the data.

Alternatively, the following will load the data from this book’s website:

> cust.df <- read.csv("http://goo.gl/PmPkaG")

However, you will learn more about R if you work through the simulation code
instead of downloading the data.

4.1.1 Simulating Customer Data

In this section, we create a data set for 1,000 customers of a retailer who sells prod-
ucts in stores and online. This data is typical of what one might sample from a
company’s customer relationship management (CRM) system. We begin by setting
a random number seed to make the process repeatable (as described in Sect. 3.1.2)
and creating a data frame to store the data:

> set.seed(21821)
> ncust <- 1000
> cust.df <- data.frame(cust.id=as.factor(c(l:ncust)))

We declare a variable ncust for the number of customers in the synthetic data
set and use that variable wherever we need to refer to the number of customers.
This is a good practice, as it allows you to change ncust in just one place in your
code and then re-run the code to generate a new data set with a different number of
customers.

Next we create a number of variables describing the customers, add those variables
to the cust . df data frame, and inspect them with summary ():

cust.df$age <- rnorm(n=ncust, mean=35, sd=5)

cust.dfS$credit.score <- rnorm(n=ncust, mean=3xcust.dfSage+620, sd=50)

cust.df$email <- factor (sample(c("yes", "no"), size=ncust, replace=TRUE,
prob=c (0.8, 0.2)))

cust.df$distance.to.store <- exp(rnorm(n=ncust, mean=2, sd=1.2))

v + VvV VvV Vv

> summary (cust.df)

cust.id age credit.score email distance.to.store

1 1 Min. :19.34 Min. :543.0 no :186 Min. 8 0.2136
2 1 1st Qu.:31.43 1st Qu.:691.7 yes:814 Ist Qu.: 3.3383
3 1 Median :35.10 Median :725.5 Median : 7.1317
4 1 Mean :34.92 Mean 3725.5 Mean : 14.6553
5 1 3rd Qu.:38.20 3rd Qu.:757.2 3rd Qu.: 16.6589
6 1 Max. :51.86 Max. :880.8 Max. :267.0864
(

Other) : 994
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We add new variables to cust . df data frame using simple assignment (<-) to a
name with $ notation. Columns in data frames can be easily created or replaced in
this way, as long as the vector has the appropriate length (or is recycled to fit the
length).

The customers’ ages (age) are drawn from a normal distribution with mean
35 and standard deviation 5 using rnorm(n, mean, sd). Credit scores
(credit.score) are also simulated with a normal distribution, but in that case we
specify that the mean of the distribution is related to the customer’s age, with older
customers having higher credit scores on average. We create a variable (email)
indicating whether the customer has an email on file, using the sample function
that was covered in Chap. 3.

Our final variable for the basic CRM data is distance.to.store, which
we assume follows the exponential of the normal distribution. That gives dis-
tances that are all positive, with many distances that are relatively close to the
nearest store and fewer that are far from a store. To see the distribution for
yourself, try hist (cust.df$distance.to.store). Formally, we say that
distance.to.store follows a lognormal distribution. (This is sufficiently
common that there is a built-in function called r1norm(n, meanlog, sdlog)
that does the same thing as taking the exponential of rnorm () .)

4.1.2 Simulating Online and In-Store Sales Data

Our next step is to create data for the online store: 1 year totals for each customer for
online visits and transactions, plus total spending. We simulate the number of visits
with a negative binomial distribution, a discrete distribution often used to model
counts of events over time. Like the lognormal distribution, the negative binomial
distribution generates positive values and has a long right-hand tail, meaning that
in our data most customers make relatively few visits and a few customers make
many visits. Data from the negative binomial distribution can be generated using
rnbinom () :

> cust.dfsonline.visits <- rnbinom(ncust, size=0.3,

+ mu = 15 + ifelse(cust.df$email=="yes", 15, 0)
+ - 0.7 * (cust.df$age-median (cust.dfsage)))

We model the mean (mu) of the negative binomial with a baseline value of 15. The
size argument sets the degree of dispersion (variation) for the samples. We add an
average 15 online visits for customers who have an email on file, using ifelse ()
to generate a vector of 0 or 15 as appropriate. Finally, we add or subtract visits
from the target mean based on the customer’s age relative to the sample median;
customers who are younger are simulated to make more online visits. To see ex-
actly how this works, try cutting and pasting pieces of the code above into the R
console.
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For each online visit that a customer makes, we assume there is a 30 % chance
of placing an order and use rbinom() to create the variable online.trans.
We assume that amounts spent in those orders (the variable online. spend) are
lognormally distributed:

> cust.df$online.trans <- rbinom(ncust, size=cust.df$online.visits, prob=0.3)

> cust.df$online.spend <- exp(rnorm(ncust, mean=3, sd=0.1)) =*
+ cust.dfSonline.trans

The random value for amount spent per transaction—sampled with exp (rnorm() )
is multiplied by the variable for number of transactions to get the total amount
spent.

Next we generate in-store sales data similarly, except that we don’t generate a count
of store visits; few customers visit a physical store without making a purchase and
even if customers did visit without buying, the company probably couldn’t track
the visit. We assume that transactions follow a negative binomial distribution, with
lower average numbers of visits for customers who live farther away. We model
in-store spending as a lognormally distributed variable simply multiplied by the
number of transactions:
cust.dfS$store.trans <- rnbinom(ncust, size=5,
mu=3 / sqgrt(cust.df$distance.to.store))

>

+

> cust.df$store.spend <- exp(rnorm(ncust, mean=3.5, sd=0.4)) =*
+ cust.dfsstore.trans

As always, we check the data along the way:

> summary (cust.df)

cust.id age credit.score email distance.to.store
1 8 1 Min. :19.34 Min. :543.0 no :186 Min. 8 0.2136
2 3 1 1st Qu.:31.43 1st Qu.:691.7 yes:814 1st Qu.: 3.3383
online.spend store.trans store.spend
Min. 3 0.00 Min. : 0.000 Min. 3 0.00
1st Qu.: 0.00 1st Qu.: 0.000 lst Qu.: 0.00
Median : 37.03 Median : 1.000 Median : 30.05

4.1.3 Simulating Satisfaction Survey Responses

It is common for retailers to survey their customers and record responses in the
CRM system. Our last simulation step is to create survey data for a subset of the
customers.

To simulate survey responses, we assume that each customer has an unobserved
overall satisfaction with the brand. We generate this overall satisfaction from a nor-
mal distribution:

> sat.overall <- rnorm(ncust, mean=3.1, sd=0.7)
> summary (sat.overall)



4.1 Retailer Data 81

Min. 1lst Qu. Median Mean 3rd Qu. Max.
0.617 2.632 3.087 3.100 3.569 5.293

We assume that overall satisfaction is a psychological construct that is not directly
observable. Instead, the survey collects information on two items: satisfaction with
service, and satisfaction with the selection of products. We assume that customers’
responses to the survey items are based on unobserved levels of satisfaction overall
(sometimes called the “halo” in survey response) plus the specific levels of satisfac-
tion with the service and product selection.

To create such a score from a halo variable, we add sat.overall (the halo)
to a random value specific to the item, drawn using rnorm (). Because survey
responses are typically given on a discrete, ordinal scale (i.e., “very unsatisfied”,
“unsatisfied”, etc.), we convert our continuous random values to discrete integers
using the £1oor () function.
> sat.service <- floor(sat.overall + rnorm(ncust, mean=0.5, sd=0.4))
> sat.selection <- floor (sat.overall + rnorm(ncust, mean=-0.2, sd=0.6))
> summary (cbind (sat.service, sat.selection))

sat.service sat.selection

Min. :0.000 Min. :-1.000
1st Qu.:3.000 1st Qu.: 2.000

Max. :6.000 Max. : 5.000

Note that we use cbind () to temporarily combine our two vectors of data into a
matrix, so that we can get a combined summary with a single line of code. The sum-
mary shows that our data now ranges from —1 to 6. However, a typical satisfaction
item might be given on a 5-point scale. To fit that, we replace values that are greater
than 5 with 5, and values that are less than 1 with 1. This enforces the floor and
ceiling effects often noted in survey response literature.

We set the ceiling by indexing with a vector that tests whether each element of
sat.service is greater than 5): sat .service[sat.service > 5]. This
might be read as “sat.service, where sat.service is greater than 5.” For the elements
that are selected—which means that the expression evaluates as TRUE—we replace
the current values with the ceiling value of 5. We do the same for the floor effects
(< 1, replacing with 1) and likewise for the ceiling and floor of sat . selection.
While this sounds quite complicated, the code is simple:

sat.service[sat.service > 5] <- 5
sat.service[sat.service < 1] <- 1
sat.selection[sat.selection > 5] <- 5
sat.selection[sat.selection < 1] <- 1
summary (cbind (sat.service, sat.selection))
sat.service sat.selection

Min. :1.000 Min. :1.000

V V.V V V

Max. :5.000 Max. :5.000
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Using this type of syntax to replace values in a vector or matrix is common in R,
and we recommend that you try out some variations (being careful not to overwrite
the cust . df data, of course).

4.1.4 Simulating Non-Response Data

Because some customers do not respond to surveys, we eliminate the simulated an-
swers for a subset of respondents who are modeled as not answering. We do this by
creating a variable of TRUE and FALSE values called no . response and then as-
signing a value of NA for the survey response for customers whose no . response
is TRUE. As we have discussed, NA is R’s built-in constant for missing data.

‘We model non-response as a function of age, with higher likelihood of not respond-
ing to the survey for older customers:

> no.response <- as.logical (rbinom(ncust, size=1, prob=cust.dfs$age/100))

> sat.service[no.response] <- NA

> sat.selection[no.response] <- NA

> summary (cbind (sat.service, sat.selection))
sat.service sat.selection

Min. :1.00 Min. :1.000

1st Qu.:3.00 1st Qu.:2.000

Median :3.00 Median :2.000

Mean :3.07 Mean :2.401

3rd Qu.:4.00 3rd Qu.:3.000

Max. :5.00 Max. 5.000

NA’s :341 NA’s 341

summary () recognizes the 341 customers with NA values and excludes them from
the statistics.

Finally, we add the survey responses to cust . df and clean up the workspace:

> cust.df$sat.service <- sat.service
> cust.df$sat.selection <- sat.selection
> summary (cust.df)

cust.id age credit.score email distance.to.store
1 S8 Min. :19.34 Min. :543.0 no :186 Min. : 0.2136
2 8 1 1st Qu.:31.43 1st Qu.:691.7 yes:814 1st Qu.: 3.3383
store.spend sat.service sat.selection
Min. 3 0.00 Min. :1.000 Min. :1.000
Max. :705.66 Max. :5.000 Max. :5.000
NA’s :341 NA’s :341

> rm(ncust, sat.overall, sat.service, sat.selection, no.response)

The data set is now complete and ready for analysis.
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4.2 Exploring Associations Between Variables
with Scatterplots

Our analysis begins by checking the data with str () to review its structure:

> str(cust.df)
‘data.frame’: 1000 obs. of 12 variables:

$ cust.id : Factor w/ 1000 levels "1", "2m" n3m wgn . 1 2 3 ...
$ age : num 22.9 28 35.9 30.5 38.7 ...

$ credit.score : num 631 749 733 830 734 ...

S email : Factor w/ 2 levels "no","yes": 2 2 22 122211 ...
$ distance.to.store: num 2.58 48.18 1.29 5.25 25.04 ...

S online.visits : num 20 121 39 1 35 1 1 48 0 14 ...

$ online.trans : int 3 39 14 0 11 11 13 0 6 ...

$ online.spend : num 58.4 756.9 250.3 0 204.7 ...

$ store.trans :num 4 002002403 ...

$ store.spend : num 140.3 0 0 95.9 0 ...

$ sat.service :num 3 3 NA 4 1 NA 3 2 4 3 ...

$ sat.selection :num 3 3 NA 2 1 NA 3 322 ...

As we noted above, in this data frame each row represents a different customer. For
each, there is a flag indicating whether the customer has an email address on file
(email), along with the customer’s age, credit.score, and distance to the
nearest physical store (distance.to.store).

Additional variables report 1-year total visits to the online site (online.visits)
as well as online and in-store transaction counts (online.trans and store.
trans) plus l-year total spending online and in store (online.spend and
store.spend). Finally, the data contains survey ratings of satisfaction with
the service and product selection at the retail stores (sat.service and
sat.selection). Some of the survey values are NA for customers without
survey responses. All values are numeric, except that cust .df$Scust.id and
cust.dfSemail are factors (categorical). We’ll say more shortly about why the
details of the data structure are so important.

4.2.1 Creating a Basic Scatterplot with plot ()

We begin by exploring the relationship between each customer’s age and credit score
using plot (x, y), where x is the x-coordinate vector for the points and y is the
y-coordinate vector:

> plot (x=cust.dfsage, y=cust.dfScredit.score)

The code above produces the graphic shown in the left panel of Fig. 4.1, a fairly
typical scatterplot. There is a large mass of customers in the center of the plot with
age around 35 and credit score around 725, and fewer customers at the margins.
There are not many younger customers with very high credit scores, nor older cus-
tomers with very low scores, which suggests an association between age and credit
score.
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Fig. 4.1. Basic scatterplot of customer age versus credit score using default settings in
plot () function (/eff), and a properly labeled version of the same plot (right).

The default settings in plot () produce a quick plot that is useful when you are
exploring the data for yourself; plot () adjusts the x- and y-axes to accommodate
the range of the data and labels the axes using variable names. But if we present the
plot to others, we ought to provide more informative labels for the axes and chart
title:

> plot (cust.df$age, cust.dfS$credit.score,

+ col="blue",

+ xlim=c (15, 55), ylim=c (500, 900),

+ main="Active Customers as of June 2014",

+ xlab="Customer Age (years)", ylab="Customer Credit Score ")

> abline (h=mean (cust.df$credit.score), col="dark blue", lty="dotted")
> abline (v=mean (cust.dfsage), col="dark blue", lty="dotted")

We do not specifically name x= and y= here because, when names of arguments
are omitted, a function such as plot () assumes that they line up in order as listed
in a function’s definition (and shown in help). We use the argument col to color
the points blue. x1im and y1im set a range for each axis. main, x1lab, and ylab
provide a descriptive title and axis labels for the chart. The result on the right side of
Fig. 4.1 is labeled well enough that someone viewing the chart can easily understand
what it depicts.

After creating the plot, we use abline () to add lines to the plot, to indicate
the average age and average credit score in the data. We add a horizontal line at
mean (cust.dfscredit.score) using abline (h=), and a vertical line at
the mean age with abline (v=).

Often, plots are built up using a series of commands like this. The first step is to use
plot () to set up the basic graphics; then add features with other graphics com-
mands. Some of the most useful functions are points () to add specific points,
abline () to add a line by slope and intercept, 1ines () to add a set of lines by
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coordinates, and 1egend () to add a legend (see Sect. 4.2.3). Each of these adds
elements to a plot that has already been created using plot ().

Before we move on, we should make an important note about how the plot ()
command works in R. When you type plot () into the console, R looks at what
type of data you are trying to plot and, based on the data type, R will choose a spe-
cific lower-level plotting function, known as a method, that is appropriate to the data
you are trying to plot. When we call plot () with vectors of x and y coordinates,
R uses the plot.default () function. However, there are many other plotting
functions for different data types. For example, if you plot the cust . df data frame
by typing plot (cust .df) into the console, R will use plot .data.frame ()
instead of plot .default (). This produces one of several plot types depending
on the number of dimensions in the data frame; in this case, it produces a scatterplot
matrix, which we review in Sect. 4.4.2.

While this may seem like an obtuse detail of the language, it is important to general
R users for two reasons. First, help files for generic functions like plot () and
summary () may be rather unhelpful because they describe the generic methods;
often you need to navigate to the help file for the specific method that you are using.
For instance, to learn more about the plotting function we are using in this chapter,
you should type ?plot .default into the console.

Second, when plot () produces something unexpected, it may be because R has
selected a different method than you expect. If so, check the data types of the vari-
ables you’re sending to plot () because R uses those to select a plot method.
Despite this complexity, generic functions are convenient because you only have
to remember one function name such as plot () instead of many. When you need
to figure out more, you can check the methods available for plot (), depending on
the packages you are using, by typing methods (plot).

We next turn to an important marketing question: in our data, do customers who
buy more online buy less in stores? We start by plotting online sales against in-store
sales:

> plot (cust.df$store.spend, cust.dfSonline.spend,
+ main="Customers as of June 2014",

+ xlab="Prior 12 months in-store sales (S)",
+ ylab="Prior 12 months online sales ($)",

+ cex=0.7)

The resulting plot in Fig. 4.2 is typical of the skewed distributions that are common
in behavioral data such as sales or transaction counts; most customers purchase
rarely so the data is dense near zero. The resulting plot has a lot of points along the
axes; we use the cex option, which scales down the plotted points to 0.7 of their
default size so that we can see the points a bit more clearly. The plot shows that
there are a large number of customers who didn’t buy anything on one of the two
channels (the points along the axes), along with a smaller number of customers who
purchase fairly large amounts on one of the channels.
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Because of the skewed data, Fig. 4.2 does not yet give a good answer to our question
about the relationship between online and in-store sales. We investigate further with
a histogram of just the in-store sales (see Sect. 3.4 for hist ()):

hist (cust.dfsstore.spend,
breaks=(0:ceiling (max (cust.dfsSstore.spend) /10)) *10,
main="Customers as of June 2014",
xlab="Prior 12 months online sales ($)",
ylab="Count of customers")

+ o+ o+ +

The histogram in Fig. 4.3 shows clearly that a large number of customers bought
nothing in the online store (about 400 out of 1,000). The distribution of sales among
those who do buy has a mode around $20 and a long right-hand tail with a few
customers whose 12-month spending was high. Such distributions are typical of
spending and transaction counts in customer data.

4.2.2 Color-Coding Points on a Scatterplot

Another question is whether the propensity to buy online versus in store is related
to our email efforts (as reflected by whether or not a customer has an email address
on file). We can add the email dimension to the plot in Fig. 4.2 by coloring in
the points for customers whose email address is known to us. To do this, we use
plot () arguments that allow us to draw different colors (col=) and symbols for
the points (pch=). Each argument takes a vector that specifies the option—the color
or symbol—that you want for each individual point. Thus, if we provide a vector
of colors of the same length as the vectors of x and y values, col= will use the
corresponding colors for each point. Constructing such vectors can be tricky, so we
will build them up slowly.
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To begin, we first declare vectors for the color and point types that we want to use:

> my.col <- c("black", "green3")
> my.pch <- c(1, 19) # R’s symbols for solid and open circles (see ?points)

We use green3 as a slightly darker shade of green. It is often helpful to review all
the color names in colors () to find such options.

With these defined, we can select the appropriate color and plotting symbol for each
customer simply by using cust .dfSemail to index them. How does this work?
The factor email is converted to a numeric value under the hood (1 for no and 2
for yes) and then that value is used to select colors.

Let’s see how that works (using just the head () of the data for brevity). First we
see that email is a factor, which we could coerce to numeric values:

> head(cust.dfSemail)

[1] yes yes yes yes no yes
Levels: no yes

> as.numeric (head (cust.dfSemail))
[1] 2 22 2 12

If we use those numbers to index my . col, then we get the matching color for each
value of email:

> my.col [as.numeric (head (cust.df$email) )]
[1] "green3" "green3" "green3" "green3" "black" "green3"

However, it’s tedious (although error-resistant) to write as.numeric () all
the time, and R understands what we want just by indexing with the factor
directly:

> my.col [head (cust.dfSemail) ]
[1] "green3" "green3" "green3" "green3" "black" "green3"
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Now that we have a vector of colors, we can pass it as the col option in plot ()
to get a plot where customers with emails on file are plotted in green and customers
without email addresses on file are plotted in black. We use a similar strategy for
setting the point styles using the pch option, such that customers without email
addresses have open circles instead of solid. The complete code is:

> plot (cust.df$store.spend, cust.df$Sonline.spend,

+ cex=0.7,

+ col=my.col [cust.df$Semail] , pch=my.pch[cust.dfS$emaill],
+ main="Customers as of June 2014",

+ xlab="Prior 12 months in-store sales (S)",

+ ylab="Prior 12 months online sales ($)" )

The resulting plot appears in the left panel of Fig. 4.4.

When we created Fig. 4.1 earlier, we used an option col="blue" and it turned
all of the points blue. This is because if the vector you pass for col is shorter than
the length of x and y, then R recycles the values. Thus, if your col vector has
one element, all the points will be that single color. Similarly, if you were to pass
the vector ¢ ("black", "green3"),thenplot would simply make alternating
points black or green, which might not be what you want. Usually what you’ll want
is to create a vector that exactly matches the length of your data by starting with a
shorter vector as we did here, and then indexing it with [] such that you extract a
value for each one of your data points. That can be difficult to get right in practice,
SO we encourage you to experiment with these examples until you understand how
it works.

4.2.3 Adding a Legend to a Plot

Given that we’ve colored some points in our chart, it would be helpful to add a
legend that explains the colors. We can do this using legend ().

> legend (x="topright", legend=paste("email on file:", levels(cust.dfsemail)),
+ col=my.col, pch=my.pch)

The legend () function can be frustrating, but the idea is relatively simple. The
first input to legend () is x=LOCATION, which sets the location of the legend
on the plot. Then you specify the 1egend argument, which is a vector of labels
that you want to include in the legend. In the present case, we use paste () to
create the labels "email on file: no" and "email on file: yes" by
adding the constant string "email on file:" to the factor levels of email.
Next, you define the markers to associate with those labels in the legend. Because
we defined these with my . col and my . pch, we reuse those here.

Although the code to create the legend is compact, it is a hassle to track the details
of labels, colors, and symbols. Our recommendation is to define the argument values
in a reusable way as we have done here using definition vectors such as my . col
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and my . pch. An alternative would be to invest in learning a specialized graphics
package such as lattice or ggplot2. Those packages handle legends in more
sophisticated ways that we do not explore in depth here (see Sect. 3.5).

4.2.4 Plotting on a Log Scale

With raw values as plotted in the left panel of Fig. 4.4, it is still difficult to see
whether there is a different relationship between in-store and online purchases for
those with and without emails on file, because of the heavy skew in sales fig-
ures. A common solution for such scatterplots with skewed data is to plot the data
on a logarithmic scale. This is easy to do with the 1og= argument of plot ():
set log="x" to plot the x-axis on the log scale, log="y" for the y-axis, or
log="xy" for both axes.
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Fig. 4.4. Scatterplots of online sales vs. in-store sales by customer. On the /eft, we see a typical

extremely skewed plot using raw sales values; data is grouped along the x and y axes because

many customers purchase nothing. On the right, plotting the 1og () of sales separates zero

and non-zero values more clearly, and reveals the association among those who purchase in
the two channels (see Sect. 4.2.4).

For cust . df, because both online and in-store sales are skewed, we use a log scale
for both axes:

> plot (cust.df$store.spend + 1, cust.dfSonline.spend + 1,

+ log="xy", cex=0.7,

+ col=my.col [cust.df$email], pch=my.pch[cust.df$emaill,

+ main="Customers as of June 2014",

+ xlab="Prior 12 months in-store sales ($)",

+ ylab="Prior 12 months online sales ($)" )

> legend (x="topright", legend=paste("email on file:", levels(cust.df$email)),
col=my.col, pch=my.pch)
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In this code, we plot ...spend + 1 to avoid an error due to the fact that 1og (0)
is not defined. In the right-hand side of Fig. 4.4, the axes are now logarithmic; for
instance, the distance from 1 to 10 is the same as 10-100.

On the right-hand panel of Fig. 4.4, it is easy to see a large number of customers
with no sales (the points at x = 1 or y = 1, which correspond to zero sales because
we added 1). It now appears that there is little or no association between online
and in-store sales; the scatterplot among customers who purchase in both channels
shows no pattern. Thus, there is no evidence here to suggest that online sales have
cannibalized in-store sales (a formal test of that would be complex, but the present
data do not argue for such an effect in any obvious way).

We also see in Fig. 4.4 that customers with no email address on file show slightly
lower online sales than those with addresses; there are somewhat more black circles
in the lower half of the plot than the upper half. If we have been sending email
promotions to customers, then this suggests that the promotions might be working.
An experiment to confirm that hypothesis could be an appropriate next step.

Did it take work to produce the final plot on the right side of Fig. 4.4? Yes, but the
result shows how a well-crafted scatterplot can present a lot of information about
relationships in data. Looking at the right-hand panel of Fig. 4.4, we have a much
better understanding of how online and offline sales are related to each other, and
whether each relates to having customers’ email on-file.

4.3 Combining Plots in a Single Graphics Object

Sometimes we want to visualize several relationships at once. For instance, suppose
we wish to examine whether customers who live closer to stores spend more in
store, and whether those who live further away spend more online. Those involve
different spending variables and thus need separate plots. If we plot several such
things individually, we end up with many individual charts. Luckily, R can produce
a single graphic that consists of multiple plots. You do this by telling R that you want
multiple plots in a single graphical object with the par (mfrow=. ..) command;
then simply plot each one with plot () as usual.

It is easiest to see how this works with an example:

> par (mfrow=c (2, 2))

plot (cust.dfsdistance.to.store, cust.df$store.spend, main="store")

plot (cust.df$distance.to.store, cust.dfsSonline.spend, main="online")

plot (cust.dfsdistance.to.store, cust.dfSstore.spend+l, log="xy",
main="store, log")

plot (cust.df$distance.to.store, cust.dfsonline.spend+l, log="xy",
main="online, log")

+ Vv + v v Vv

Instead of four separate plots from the individual plot () commands, this code
produces a single graphic with four panels as shown in Fig. 4.5. The first line sets
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the graphical parameter mfrow to ¢ (2, 2), which instructs R to create a single
graphic comprising a two-by-two arrangement of plots, which begins on the first
row and moves from left to right.
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Fig. 4.5. A single graphic object consisting of multiple plots shows that distance to store is

related to in-store spending, but seems to be unrelated to online spending. The relationships

are easier to see when spending and distance are plotted on a log scale using log="xy" in
the two lower panels.

Although the plots in Fig. 4.5 are not completely labelled, we see in the lower left
panel that there may be a negative relationship between customers’ distances to the
nearest store and in-store spending. Customers who live further from their nearest
store spend less in store. However, on the lower right, we don’t see an obvious
relationship between distance and online spending.

After using par (mfrow=), you can return to a single plot layout with
par (mfrow=c(1,1)).
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4.4 Scatterplot Matrices

4.4.1 pairs()

In our customer data, we have a number of variables that might be associated with
each other; age, distance.to.store, and email all might be related to on-
line and offline transactions and to spending. When you have several variables such
as these, it is good practice to examine scatterplots between all pairs of variables
before moving on to more complex analyses.

To do this, R provides the convenient function pairs (formula, data), which
makes a separate scatterplot for every combination of variables:

> pairs(formula = ~ age + credit.score + email +

+ distance.to.store + online.visits + online.trans +
+ online.spend + store.trans + store.spend,
+ data=cust.df)

The first input to pairs is a formula listing the variables to include from a data
frame. Formulas are used in many R functions and we describe more about them
in Chaps. 5, 7. For now it is sufficient to know that in pairs (), the formula is
composed with a ~ followed by the variables to include, separated by +. If you
want to transform a variable, include the math in the formula. For example, to plot
the 1og () of online. spend, you would include 1og (online.spend) in
the formula.

The second input is data=cust . d£, which tells pairs that we want to use the
cust . df data frame as the source of data for the plot.

The resulting plot is shown in Fig. 4.6 and is called a scatterplot matrix. Each
position in this matrix shows a scatterplot between two variables as noted
in the diagonal for each row and column. For example, the plot in the first
row and forth column is a scatterplot of cust.dfsage on the y-axis versus
cust.dfs$distance.to.store on the x-axis.

We can see relationships between variables quickly in a scatterplot matrix.
In the fifth row and sixth column we see a strong linear association between
online.visits and online.trans; customers who visit the website more
frequently make more online transactions. Looking quickly over the plot, we also
see that customers with a higher number of online transactions have higher to-
tal online spending (not a surprise), and similarly, customers with more in-store
transactions also spend more in-store. This simple command produced a lot of
information to consider.

In addition to using the formula notation above, it is also possible to pass a data
frame directly to pairs and when you do that, pairs () creates a scatterplot
matrix including all the columns in your data frame. In the code below, we select
columns 2-10 from cust .df and pass the resulting data frame to pairs, which
gives us the same plot as shown in Fig. 4.6:

> pairs(cust.df[ , c(2:10)1) # output not repeated; same as above
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Fig. 4.6. A scatterplot matrix for the customer data set produced using pairs ().

While this results in compact code, we recommend instead to use the formula ver-
sion as shown above; it is robust to future changes in cust . df that might re-order
the columns. Over time, it becomes a habit to think about how your R code might
be re-used in the future.

44.2 scatterplotMatrix()

Scatterplot matrices are so useful for data exploration that several add-on packages
offer additional versions them. We want to point out two other scatterplot matrix
functions that we find valuable. The scatterplotMatrix () function in the
car package (abbreviating “companion to applied regression” [51]) adds a number
of features over pairs (), including adding smoothed lines on scatterplots and
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univariate histograms on the diagonal. The syntax for scatterplotMatrix ()
is similar to pairs ():

> library (car) # install if needed

> scatterplotMatrix (formula = ~ age + credit.score + email +

+ distance.to.store + online.visits + online.trans +
+ online.spend + store.trans + store.spend,

+ data=cust.df, diagonal="histogram")

Warning messages:
1: In smoother(x, y, col = col[2], log.x = FALSE, log.y = FALSE,

This produces warnings because the factor variable email cannot be smoothed.

In Fig. 4.7, we have histograms on the diagonal that show us the distribution of
each variable, where it is easy to see that all of the variables except age and
credit.score are highly left skewed. The green lines show linear fit lines (see
Chap. 7), while the red lines show smoothed fit lines and their confidence inter-
vals. The smoothed lines on the bivariate scatterplots suggest the extent to which
associations are linear. For instance, the smoothed line on the plot of age versus
distance.to.store is nearly flat and shows that there is no linear association
between those variables.

A limitation of Figs. 4.6 and 4.7 concerns the display of the email variable. email
is a binary factor with values yes and no, and a scatterplot is not ideal to vi-
sualize a discrete variable. For such variables, the gpairs, or Generalized Pair
Plots, package [41] provides a function called gpairs () that produces a scat-
terplot matrix that includes better visualizations for both discrete and continuous
variables. For example, if we want to look more closely at the relationship between
email and online.visits, online.trans and online.spend, we can
use gpairs () as follows:

> install.packages ("gpairs") # only run once
> library(gpairs)
> gpairs(cust.df[ , c(2:10)1)

Unfortunately gpairs () does not accept formula input, so we select the columns
to include by number. The resulting scatterplot matrix is shown in Fig. 4.8.

Like pairs () and scatterplotMatrix (), gpairs () produces scatterplots
for pairs of continuous variables. However, for the factor email, gpairs includes
a boxplot that compares the distribution of continuous variables for those who do
and do not have email addresses in the data. A boxplot shows that the distributions of
visits, transactions, and spending have longer tails among customers who have email
addresses on file than those who don’t. We discuss boxplots in depth in Chap. 5,
which focuses on comparisons between groups.

Because it selects individual plots to fit the data types, gpairs () is useful for mar-
keting data sets that include continuous and discrete variables. Note that gpairs ()
relies on the data types in R to determine how to construct its plots; if we had stored
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Fig. 4.7. A scatterplot matrix for the customer data set produced using
scatterplotMatrix ().

cust.dfSemail as a numerical code rather than as a factor, gpairs ()
would have produced xy scatterplots instead of boxplots by factor. This is yet an-
other reason why it is useful to set variable types appropriately.

4.5 Correlation Coefficients

Although scatterplots provide a lot of visual information, when there are more than
a few variables, it can be helpful to assess the relationship between each pair with a
single number. One measure of the relationship between two variables is the covari-
ance, which can be computed for any two variables using the cov function:

> cov(cust.dfSage, cust.dfScredit.score)
[1] 63.23443
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Fig. 4.8. A scatterplot matrix for the customer data set produced using gpairs ().

If values x; and y; tend to go in the same direction—to be both higher or both lower
than their respective means—across observations, then they have a positive covari-
ance. If cov(x,y) is zero, then there is no (linear) association between x; and y;.
Negative covariance means that the variables go in opposite directions relative to
their means: when x; is lower, y; tends to be higher.

However, it is difficult to interpret the magnitude of covariance because the scale
depends on the variables involved. Covariance will be different if the variables are
measured in cents versus dollars or in inches versus centimeters. So, it is helpful to
scale the covariance by the standard deviation for each variable, which results in a
standardized, rescaled correlation coefficient known as the Pearson product-moment
correlation coefficient, often abbreviated as the symbol r.

Pearson’s r is a continuous metric that falls in the range [—1, +1]. It is +1 in the
case of a perfect positive linear association between the two variables, and —1 for
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perfect negative linear association. If there is little or no linear association, r will be
near 0. On a scatterplot, data with » = 1 or » = —1 would have all points along a
straight line (up or down, respectively). This makes r an easily interpreted metric to
assess whether two variables have a close linear association or not.

In R, we compute correlation coefficient r with the cor () function:

> cor (cust.dfSage, cust.dfScredit.score)
[1] 0.2545045

r is identical to rescaling the covariance by the joint standard deviations (but more
convenient):

> cov(cust.df$age, cust.dfScredit.score) /
+ (sd(cust.dfSage) xsd(cust.dfscredit.score))
[1] 0.2545045

What value of r signifies an important correlation between two variables in mar-
keting? In engineering and physical sciences, physical measurements may demon-
strate extremely high correlations; for instance, r between the lengths and weights
of pieces of steel rod might be 0.9, 0.95, or even 0.999, depending on the unifor-
mity of the rods and the precision of measurement. However, in social sciences
such as marketing, we are concerned with human behavior, which is less consistent
and more difficult to measure. This results in lower correlations, but they are still
important.

We often use Cohen’s Rules of Thumb, which come out of the psychology tradi-
tion [27]. Cohen proposed that for correlations between variables describing peo-
ple, r = 0.1 should be considered a small or weak association, r = 0.3 might be
considered to be medium in strength, and r = 0.5 or higher could be considered to
be large or strong. Cohen’s interpretation of a large effect was that such an asso-
ciation would be easily noticed by casual observers. A small effect would require
careful measurement to detect yet might be important to our understanding and to
statistical models.

Importantly, interpretation of r according to Cohen’s rules of thumb depends on the
assumption that the variables are normally distributed (also known as Gaussian)
or are approximately so. If the variables are not normal, but instead follow a log-
arithmic or other distribution that is skewed or strongly non-normal in shape, then
these thresholds do not apply. In those cases, it can be helpful to transform your
variables to normal distributions before interpreting, as we discuss in Sect. 4.5.3
below.

4.5.1 Correlation Tests

In the code above, cor (age, credit.score) shows r = 0.25, a medium-
sized effect by Cohen’s standard. Is this also statistically significant? We can use the
function cor.test () to find out:
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> cor.test (cust.dfSage, cust.df$credit.score)
Pearson’s product-moment correlation

data: cust.dfSage and cust.dfsScredit.score
t = 8.3138, df = 998, p-value = 4.441le-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.1955974 0.3115816
sample estimates:
cor
0.2545045

This tells us that » = 0.25 and the 95 % confidence interval is r = 0.196 — 0.312.
Because the confidence interval for r does not include O (and thus has p-value of
p < 0.05), the association is statistically significant. Such a correlation, showing a
medium-sized effect and statistical significance, probably should not be ignored in
subsequent analyses.

4.5.2 Correlation Matrices

For more than two variables, you can compute the correlations between all pairs x,y
at once as a correlation matrix. Such a matrix shows r = 1.0 on the diagonal because
cor(x,x) = 1. It is also symmetric; cor(x,y) = cor(y,x). We compute a correlation
matrix by passing multiple variables to cor () :

> cor(cust.df[, c(2, 3, 5:12)1)
age credit.score distance.to.store online.visits

age 1.000000000 0.254504457 0.00198741 -0.06138107
credit.score 0.254504457 1.000000000 -0.02326418 -0.01081827
distance.to.store 0.001987410 -0.023264183 1.00000000 -0.01460036
online.visits -0.061381070 -0.010818272 -0.01460036 1.00000000
online.trans -0.063019935 -0.005018400 -0.01955166 0.98732805
online.spend -0.060685729 -0.006079881 -0.02040533 0.98240684
store.trans 0.024229708 0.040424158 -0.27673229 -0.03666932
store.spend 0.003841953 0.042298123 -0.24149487 -0.05068554
sat.service NA NA NA NA
sat.selection NA NA NA NA
online.trans online.spend store.trans store.spend
age -0.06301994 -0.060685729 0.02422971 0.003841953
credit.score -0.00501840 -0.006079881 0.04042416 0.042298123

In the second column of the first row, we see that cor (age, credit.store)
= 0.254 as above. We can easily scan to find other large correlations; for
instance, the correlation between store.trans, distance.to.store =
—0.277, showing that people who live further from a store tend to have fewer
in-store transactions. cor () did not compute correlations for sat .selection
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and sat.service because they have some NA values. The argument use=
"complete.obs" would instruct R to use only cases without NA values; try it
for practice.

Rather than requiring one to scan a matrix of numbers, the corrplot package
charts correlation matrices nicely with corrplot () and corrplot.mixed ():
> library (corrplot) # for correlation plot, install if needed

> library (gplots) # color interpolation, install if needed

> corrplot.mixed (corr=cor(cust.df[ , c(2, 3, 5:12)], use="complete.obs"),

+ upper="ellipse", tl.pos="1t",

+ col = colorpanel (50, "red", "gray60", "blue4"))

The resulting graphic is shown in Fig. 4.9. We will explain the code and features
of the plot. The main argument to corrplot .mixed is a correlation matrix and
weuse cor (..., use="complete.obs") to provide this, excluding the NA
values.

distance.to.store
online.visits
online.trans
online.spend
store.trans
store.spend
sat.service
sat.selection

age

. credit score

age

Fig. 4.9. A correlation plot produced
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In Fig. 4.9, numeric values of r are shown in the lower triangle of the ma-
trix. The upper triangle displays ellipses (because we used the argument
upper="ellipse"). These ellipses are tighter, progressively closer to being
lines, for larger values of r, and are rounder, more like circles for r near zero.
They are also shaded blue for positive direction, and red for negative (and show
corresponding positive or negative slope).

This makes it easy to find the larger correlations in the data: age is positively cor-
related with credit.score; distance.to.store is negatively correlated
with store.trans and store.spend;online.visits,online.trans,
and online. spend are all strongly correlated with one another, as are store.
trans and store. spend. In the survey items, sat . service is positively cor-
related with sat .selection.
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corrplot.mixed () has numerous options that let you customize a chart. For
this plot, we use the options upper="ellipse" to visualize the correlations as
ellipses and t1.pos="1t" to place the variable name labels on the left and top
of the matrix. The correlations in this case are mostly small in magnitude, which
produces a very light chart with the default colors. We use colorpanel () from
the gplots package to generate a set of colors anchored at three points (“red”,
“gray60”, and “blue4”) and tell corrplot.mixed () to use that set of colors
instead of its default. You could try other colors and see how the plot is affected; the
colors () command will list all the names of colors that R understands.

While it is impossible to draw strong conclusions based on associations such as
Fig. 4.9, finding large correlations should inform subsequent analysis or suggest
hypotheses.

4.5.3 Transforming Variables before Computing Correlations

Correlation coefficient r measures the linear association between two variables. If
the relationship between two variables is not linear, it would be misleading to inter-
pret r. For example, if we create a random variable that falls in the range [—10, 10]—
using runif () to sample random uniform values—and then compute the correla-
tion between that variable and its square, we get a correlation close to zero:

> set.seed(49931)

> X <- runif (1000, min=-10, max=10)
> cor(x, x72)

[1] -0.003674254

r is near zero despite the fact that there is a perfect nonlinear relationship between
x and x%. So, it is important that we consider transformations before assessing the
correlation between two variables. (It might be helpful to plot x and x> by typing
plot (x, x72), so that you can see the relationship.)

Many relationships in marketing data are nonlinear. For example, as we see in the
cust .df data, the number of trips a customer makes to a store may be inversely
related to distance from the store. When we compute the correlation between the raw
values ofdistance.to.store and store. spend, we get a modest negative
correlation:

> cor (cust.df$distance.to.store, cust.dfS$store.spend)

[1] -0.2414949

However, if we transform distance.to.store to its inverse (1/distance), we
find a much stronger association:

> cor(l/cust.dfsdistance.to.store, cust.df$Sstore.spend)
[1] 0.4329997
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In fact, the inverse square root of distance shows an even greater association:

> cor (1/sgrt (cust.df$distance.to.store),
[1] 0.4843334

cust.df$store. spend)

How do we interpret this? Because of the inverse square root relationship, someone
who lives 1 mile from the nearest store will spend quite a bit more than someone
who lives 5 miles away, yet someone who lives 20 miles away will only buy a little
bit more than someone who lives 30 miles away.

These transformations are important when creating scatterplots between vari-
ables as well. For example, examine the scatterplots in Fig.4.10 for raw
distance.to.store versus store.spend, as compared to the inverse
square root of distance.to.store versus store.spend. We create those
two charts as follows:

> plot (cust.df$distance.to.store, cust.df$store.trans)
> plot (1/sgrt (cust.dfSdistance.to.store), cust.df$store.trans)

The association between distance and spending is much clearer with the transformed
data as shown in the right-hand panel of Fig. 4.10.

To review, it is important to consider transforming variables to approximate nor-
mality before computing correlations or creating scatterplots; the appropriate
transformation may help you to see associations more clearly. As we noted in
Sect. 4.5, interpretation of r with rules of thumb requires data to be approximately
normal.
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Fig. 4.10. A transformation of distance.to. store to its inverse square root makes the
association with store . trans more apparent in the right-hand chart, as compared to the
original values on the left.
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4.5.4 Typical Marketing Data Transformations

Considering all the possible transforms may seem impossible, but because market-
ing data often concerns the same kinds of data in different data sets—counts, sales,
revenue, and so forth—there are a few common transformations that often apply.
For example, as we discussed when simulating the data for Chap. 3, unit sales are
often related to the logarithm of price.

In Table 4.1, we list common transformations that are often helpful with different
types of marketing variables.

Table 4.1. Common transformations of variables in marketing

Variable Common transform

Unit sales, revenue, household income, |log(x)

price

Distance 1/x, 1/x%, log(x)

Market or preference share based on a| ,«

utility value (Sect. 9.2.1) T+et

Right-tailed distributions (generally) |+/x or log(x) (watch out for log(x < 0))
Left-tailed distributions (generally) X2

For most purposes, these standard transformations are appropriate and theoretically
sound. However, when these transformations don’t work or you want to determine
the very best transformation, there is a general-purpose transformation function that
can be used instead, and we describe that next.

4.5.5 Box-Cox Transformations*

The remaining sections in the chapter are optional, although important. If you're
new to this material, you might skip to the Key Points at the end of this chapter
(Sect. 4.8). Remember to return to these sections later and learn more about corre-
lation analysis!

Many of the transformations in Table 4.1 involve taking a power of x: x?, 1/x =
x~1, and \/x = x~ 0. The Box—Cox transformation generalizes this use of power
functions and is defined as:

4.1)

1

ylambda _1 .
(lambda) = W if lambda 7é 0
=log(y;) iflambda=0

where lambda can take any value and log is the natural logarithm. One could try dif-
ferent values of lambda to see which transformation makes the distribution best fit
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the normal distribution. (We will see in Chap. 7 that it is also common to use trans-
formed data that makes a linear regression have normally distributed residuals.) Be-
cause transformed data is more approximately normal, it is more suitable to assess
the strength of association using the rules of thumb for r (Sect. 4.5).

Instead of trying values of lambda by hand, there is an automatic way to find
the optimal value: use the powerTransform(object=DATA) function.
We find the best Box—Cox transformation for distance.to.store using
powerTransform () as follows:

> library (car)
> powerTransform(cust.df$Sdistance.to.store)
Estimated transformation parameters
cust.dfSdistance.to.store

-0.003696395

This tells us that the value of lambda to make distance as similar as possible to
a normal distribution is —0.003696. We extract that value of lambda using the
coef () function and create the transformed variable using bcPower (U=DATA,
lambda):
> lambda <- coef (powerTransform(l/cust.df$distance.to.store))
> bcPower (cust.df$distance.to.store, lambda)

[1] 0.950421270 3.902743543 0.251429693 1.664085284 3.239908993

[6] 2.931485684 2.243992143 1.940984081 2.565290889 1.896458754
[11] 1.898262423 0.411047042 4.101597125 1.359172873 3.8973383223

To see how this changes cust.df$distance.to.store, we plot two his-
tograms comparing the transformed and untransformed variables:

> par (mfrow=c (1, 2)
> hist (cust.df$distance.to.store,

+ xlab="Distance to Nearest Store", ylab="Count of Customers",

+ main="Original Distribution")

> hist (bcPower (cust.dfsdistance.to.store, lambda),

+ xlab="Box-Cox Transform of Distance", ylab="Count of Customers",
+ main="Transformed Distribution")

The resulting graphs in Fig. 4.11 show the highly skewed original distribution on
the left and the transformed distribution on the right, which is much approximately
normally distributed.

If you attempt to transform a variable that is already close to normally distributed,
powerTransform () will report a value of 1lambda that is close to 1. For ex-
ample, if we find the Box—Cox transform for age, we get 1ambda very close to 1,
suggesting that a transformation is not required:

> powerTransform(cust.dfsage)
Estimated transformation parameters
cust.dfsage

1.036142
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Fig. 4.11. A Box—Cox transformation of distance.to.store makes the distribution
closer to Normal.

Finally, we can compute correlations for the transformed variable. These correla-
tions will often be larger in magnitude than correlations among raw, untransformed
data points. We check r between distance and in-store spending, transforming both
of them first:

1.dist <- coef (powerTransform(cust.df$distance.to.store))
1.spend <- coef (powerTransform(cust.dfS$Sstore.spend+1))

cor (bcPower (cust .dfSdistance.to.store, 1l.dist),
bcPower (cust.df$Sstore.spend+1, 1.spend))
1] -0.4683126

— + V V V V

The relationship between distance to the store and spending can be interpreted as
strong and negative.

In practice, you could consider Box—Cox transformations on all variables with
skewed distributions before computing correlations or creating scatterplots. This
will increase the chances that you will find and interpret important associations be-
tween variables.

4.6 Exploring Associations in Survey Responses®

Many marketing data sets include variables where customers provide ratings on a
discrete scale, such as a 5- or 7-point rating scale. These are ordinal (ranked) vari-
ables and it can be a bit tricky to assess associations among them. For instance, in the
cust . df data, we have response on a 5-point scale for two satisfaction items, sat-
isfaction with the retailer’s service and with the retailer’s product selection.

What is the problem? Consider a simple plot () of the two 5-point items:

> plot (cust.df$sat.service, cust.dfSsat.selection,
+ xlab="Customer Satisfaction with Service",

+ ylab="Customer Satisfaction with Selection",
+ main="Customers as of June 2014")
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The resulting plot shown in the left-hand panel of Fig. 4.12 is not very informative.
Because cust .df$sat.service and cust.dfs$sat.selection only take
integer values from 1 to 5, the points for customers who gave the same responses are
drawn on top of each other. The main thing we learn from this plot is that customers
reported most of the possible pairs of values, except that ratings rarely showed a
difference between the two items of 3 or more points (there were no pairs for (1, 4),
(1, 5), (5, 2), or a few other combinations).

Customers as of June 2014 Customers as of June 2014

0 - o o o,

s

Customer Satisfaction with Selection
3
L
°
o
o
o
Customer Satisfaction with Selection
3

T T T T T
1 2 3 4 5

T T T T
2 3 4 5
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- . . . %Y fws o &
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1

Customer Satisfaction with Service Customer Satisfaction with Service

Fig. 4.12. A scatterplot of responses on a survey scale (left) is not very informative. Using
jitter (right) makes the plot more informative and reveals the number of observations for each
pair of response values.

This poses a problem both for visualization and, as it turns out, for assessing the
strength of association. We’ll see next how to improve the visualization.

4.6.1 jitter ()*

One way to make a plot of ordinal values more informative is to jitter each variable,
adding a small amount of random noise to each response. This moves the points
away from each other and reveals how many responses occur at each combination
of (x,y) values.

R provides the function jitter () to do this:

> plot (jitter(cust.df$sat.service), jitter(cust.df$sat.selection),
+ xlab="Customer Satisfaction with Service",

+ ylab="Customer Satisfaction with Selection",

+ main="Customers as of June 2014")
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The result is shown in the right-hand panel of Fig. 4.12, where it is easier to see that
the ratings (3, 2) and (3, 3) were the most common responses. It is now clear that
there is a positive relationship between the two satisfaction variables. People who
are more satisfied with selection tend to be more satisfied with service.

4.6.2 polychoric()*

The constrained observations from ratings scales affect assessment of correlation
with metrics such as Pearson’s r because the number of available scale points con-
strains the potential range and specificity of r. An alternative to the simple compu-
tation of r is a polychoric correlation coefficient, which is designed specifically for
ordinal responses.

The concept of a polychoric correlation is that respondents have continuous values
in mind when they answer on a rating scale. However, because the scales are limited
to a small number of points, respondents must select discrete values and choose
points on the scale that are closest to the unobserved latent continuous values. The
polychoric estimate attempts to recover the correlations between the hypothetical
latent (unobserved) continuous variables.

We examine whether the sat.service survey item is associated with
sat.selection. Because we have responses for only some customers, we
set an index vector resp to identify the customers with responses to examine.
Then we look at the r correlation coefficient from coxr () :

> resp <- !is.na(cust.df$sat.service)
> cor (cust.dfS$sat.service[resp], cust.df$sat.selection[resp])
[1] 0.5878558

To compute the polychoric correlation coefficient, we use polychoric () from
the psych package:

> library (psych)
> polychoric (cbind(cust.df$sat.service [resp],
+ cust.df$sat.selection[resp]l))
Call: polychoric(x = cbind(cust.df$sat.service[resp], cust.df$sat.selection[resp]))
Polychoric correlations
C1l c2
R1 1.00
R2 0.67 1.00

with tau of

1 2 2 4
[1,] -1.83 -0.72 0.54 1.7
[2,] -0.99 0.12 1.26 2.4

# warnings omitted (caused by simulated data’s lack of error)

This is somewhat more complex information than the simple output of cor (). At
the top of the output, polychoric () reports the polychoric correlation matrix.
The values range [—1, 1] and are interpreted in the same way as Pearson’s r. (In fact,
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they are the values of Pearson’s r between the estimated latent continuous variables.)
In our satisfaction data, we can see that the polychoric correlation is quite high at
rho = 0.67. Like cor (), polychoric () can produce a correlation matrix for
multiple variables.

The second output section under “with a tau of” describes how the estimated
latent scores are mapped to the discrete item values. For each variable (in our case
just two), there are four cut points: if a customer’s latent satisfaction is below the
first cut point, the survey response is the first value on the scale (i.e., 1). For latent
scores between the first and second cut points, the survey response is the second
value (2), and so forth. Reviewing the cut points can be informative about how the
scale is performing and whether it has adequate discrimination of responses versus
the estimated latent scores.

4.7 Learning More*

Plotting. As we mentioned at the end of Chap. 3, plotting in R is a complete topic
and the subject of several books. We’ve demonstrated fundamental plotting meth-
ods that work for many analyses. Those who do a great deal of plotting or need to
produce high-quality graphics for presentation might consider learning ggplot2
[162] or lattice [141].

Correlation analysis. The analysis of variable associations is important for sev-
eral reasons: it often reveals interesting patterns, it is relatively straightforward to
interpret, and it is the simplest case of multivariate analysis. Despite the apparent
simplicity there are numerous issues to consider, some of which we have consid-
ered here. A classic text for learning about correlation analysis in depth and how
to perform it well while avoiding pitfalls is Cohen, Cohen and West [29], Applied
Multiple Regression/Correlation Analysis for the Behavioral Sciences, although it
is not specific to R.

Analyzing survey scale responses. Much of the data in that we analyze in mar-
keting involves customers’ responses to survey ratings scales, and in Sect. 4.6.2
we mentioned some of the challenges with such ordinal response data. Although
polychor () is a useful tool when analyzing survey data, there are other ad-
vanced options. For example, the bayesm package [136] provides the function
rscaleUsage (), which estimates differences in how each customer uses a scale
(see also the material on scale usage in Rossi, Allenby and McCulloch [137]).
Using bayesm requires knowledge of Bayesian methods, which we introduce in
Chap. 5.
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4.8 Key Points

Following are some of the important points to consider when analyzing relationships
between variables.

Visualization

e plot (x, V) creates scatterplots where x is a vector of x-values to be plotted
and y is a vector of the same length with y-values (Sect. 4.2.1).

e When preparing a plot for others, the plot should be labeled carefully using
arguments such as x1ab, ylab, and main, so that the reader can easily under-
stand the graphic (Sect. 4.2.1).

e You can color-code a plot by passing a vector of color names or color numbers
as the col parameter in plot () (Sect. 4.2.2).

e Use the 1egend () command to add a legend so that readers will know what
your color coding means (Sect. 4.2.3).

e The cex= argument is helpful to adjust point sizes on a scatterplot (Sect. 4.2.1).

e A scatterplot matrix is a good way to visualize associations among several
variables at once; options include pairs () (Sect. 4.4.1), scatterplot
Matrix () from the cars package, and gpairs () from the gpairs pack-
age (Sect. 4.4.2).

e Many functions such as plot () call a generic function that determines what
to do based on the type of data. When a plotting function does something
unexpected, checking data types with str () will often reveal the problem
(Sect. 4.2.1).

e When variables are highly skewed, it is often helpful to draw the axes on a
logarithmic scale by setting the 1og argument of the plot () function to
log="x", log="y",or log="xy" (Sect. 4.2.4). Alternatively, the variables
might be transformed to a more interpretable distribution (Sect. 4.5.3).

Statistics

e cor (x, y) computes the Pearson correlation coefficient r between variables
x and y. This measures the strength of the linear relationship between the vari-
ables (Sect. 4.5).

e cor () will produce a correlation matrix when it is passed several or many
variables. A handy way to visualize these is with the corrplot package
(Sect. 4.5.2).

e cor.test () assesses statistical significance and reports the confidence inter-
val for r (Sect. 4.5.1).
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For many kinds of marketing data, the magnitude of » may be interpreted by
Cohen’s rules of thumb (r = 0.1 is a weak association, r = 0.3 is medium, and
r = 0.5 is strong), although this assumes that the data are approximately normal
in distribution (Sect. 4.5).

When the relationship between two variables is nonlinear, r does not give an
accurate assessment of the association. Computing r between transformed vari-
ables may make associations more apparent (Sect. 4.5.3).

There are common distributions that often occur in marketing, such as unit sales
being related to log(price). Before modeling associations, plot histograms of
your variables and assess potential transformations of them (Sect. 4.5.4).

An automated way to select an optimal transformation is to use a Box—Cox
transform (Sect. 4.5.5).

The function polychor () from the psych package is useful to compute
correlations between survey responses on ordinal ratings scales (Sect. 4.6.2).
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