3

Describing Data

In this chapter, we tackle our first marketing analytics problem: summarizing and
exploring a data set with descriptive statistics (mean, standard deviation, and so
forth) and visualization methods. Such investigation is the simplest analysis one can
do yet also the most crucial. It is important to describe and explore any data set
before moving on to more complex analysis. This chapter will build your R skills
and provide a set of tools for exploring your own data.

3.1 Simulating Data

We start by creating data to be analyzed in later parts of the chapter. Why simulate
data and not work entirely with real data sets? There are several reasons. The process
of creating data lets us practice and deepen R skills from Chap. 2. It makes the book
less dependent on vagaries of finding and downloading online data sets. And it lets
you manipulate the synthetic data, run analyses again, and examine how the results
change.

Perhaps most importantly, data simulation highlights a strength of R: because it is
easy to simulate data, R analysts often use simulated data to prove that their methods
are working as expected. When we know what the data should say (because we
created it), we can test our analyses to make sure they are working correctly before
applying them to real data. If you have real data sets that you work with regularly,
we encourage you to use those for the same analyses alongside our simulated data
examples. (See Sect. 2.6 for more information on how to load data files.)

We encourage you to create data in this section step-by-step because we teach R
along the way. However, if you are in a hurry to learn how to compute means, stan-
dard deviations, and other summary statistics, you could quickly run the commands

© Springer International Publishing Switzerland 2015 47
C. Chapman, E.M. Feit, R for Marketing Research and Analytics, Use R!,
DOI 10.1007/978-3-319-14436-8_3

48 3 Describing Data

in this section to generate the simulated data. Alternatively, the following will load
the data from the book’s website, and you can then go to Sect. 3.2:

> store.df <- read.csv("http://goo.gl/QPDdM1")

But if you’re new to R, don’t do that! Instead, work through the following section
to create the data from scratch. If you accidentally ran the command above, you can
use rm (store.df) toremove the data before proceeding.

3.1.1 Store Data: Setting the Structure

Our first data set represents observations of total sales by week for two products
at a chain of stores. We begin by creating a data structure that will hold the data, a
simulation of sales for the two products in 20 stores over 2 years, with price and pro-
motion status. We remove most of the R output here to focus on the input commands.
Type the following lines, but feel free to omit the comments (following “#):

> k.stores <- 20 # 20 stores, using "k." for "constant"
> k.weeks <- 104 # 2 years of data each

create a data frame of initially missing values to hold the data

> store.df <- data.frame(matrix(NA, ncol=10, nrow=k.storesxk.weeks))

> names (store.df) <- c("storeNum", "Year", "Week", "plsales", "p2sales",

+ "plprice", "p2price", "plprom", "p2prom", "country")

We see the simplest summary of the data frame using dim () :
> dim(store.df)

[1] 2080 10

As expected, store.df has 2,080 rows and 10 columns. We create two vectors
that will represent the store number and country for each observation:

> store.num <- 101:(100+k.stores)
> (store.cty <- c(rep("UsS", 3), rep("DE", 5), rep("GB", 3), rep("BR", 2),

+ rep ("JP", 4), rep("AU", 1), rep("CN", 2)))

[l] ngg" wyg" "ys" "DE" "DE" "DE" "DE" "DE" "GB" "GRBR" "GB" "BR" "BR" "Jp"
> length(store.cty) # make sure the country list is the right length
[1] 20

Now we replace the appropriate columns in the data frame with those values, using
rep () to expand the vectors to match the number of stores and weeks:

> store.df$storeNum <- rep(store.num, each=k.weeks)
> store.dfS$country <- rep(store.cty, each=k.weeks)
> rm(store.num, store.cty) # clean up

3.1 Simulating Data 49

Next we do the same for the Week and Year columns:

> (store.df$Week <- rep(l:52, times=k.storesx2))
[1] 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 ...

> # try the inner parts of the next line to figure out how we use rep()

> (store.df$Year <- rep(rep(l:2, each=k.weeks/2), times=k.stores))
fr;12111111111111111111111111111111111...

‘We check the overall data structure with stxr () :

> str(store.df)
‘data.frame’: 2080 obs. of 10 variables:

$ storeNum: int 101 101 101 101 101 101 101 101 101 101
S Year :int 1111111111

S Week : int 1 2 3 456 7 8 9 10

S plsales : logi NA NA NA NA NA NA

S p2sales : logi NA NA NA NA NA NA

$ plprice : logi NA NA NA NA NA NA

S p2price : logi NA NA NA NA NA NA

S plprom : logi NA NA NA NA NA NA

$ p2prom : logi NA NA NA NA NA NA ...

$ country : chr "US" "US" "US" "US"

The data frame has the right number of observations and variables, and proper
column names.

R chose types for all of the variables in our data frame. For example, store.df
Scountry is of type chr (character) because we assigned a vector of strings to it.
However, country labels are actually discrete values and not just arbitrary text. So
it is better to represent country explicitly as a categorical variable, known in R as a
factor. Similarly, storeNum is a label, not a number as such. By converting those
variables to factors, R knows to treat them as a categorical in subsequent analyses
such as regression models. It is good practice to set variable types correctly as they
are created; this will help you to avoid errors later.

We redefine store.df$storeNum and store.dfS$country as categorical
using factor ():

> store.df$storeNum <- factor (store.df$storeNum)
> store.df$country <- factor(store.df$country)
> str(store.df)

‘data.frame’: 2080 obs. of 10 variables:

$ storeNum: Factor w/ 20 levels "101","102","103",..: 1 1 11 1 11 1 1 1 ...
[rows omitted]
$ country : Factor w/ 7 levels "AU","BR","CN",..: 7 7 7 7 777777 ...

storeNum and country are now defined as factors with 20 and 7 levels,
respectively.

It is a good idea to inspect data frames in the first and last rows because mistakes
often surface there. You can use head (x=DATA, n=NUMROWS) and tail ()
commands to inspect the beginning and end of the data frame (we omit long output
from the last two commands):

50 3 Describing Data

> head(store.df) # defaults to 6 rows

storeNum Year Week plsales p2sales plprice p2price plprom p2prom country
1 101 1 1 NA NA NA NA NA NA Us
2 101 1 2 NA NA NA NA NA NA Us
3 101 1 3 NA NA NA NA NA NA Us

v | o

head (store.df, 120) # 120 rows is enough to check 2 stores; not shown
> tail (store.df, 120) # make sure end looks OK too; not shown

All of the specific measures (sales, price, promotion) are shown as missing values
(indicated by NA) because we haven’t assigned other values to them yet, while the
store numbers, year counters, week counters, and country assignments look good.
It’s always useful to debug small steps like this as you go.

3.1.2 Store Data: Simulating Data Points

We complete store.df with random data for store-by-week observations of the
sales, price, and promotional status of 2 products.

Before simulating random data, it is important to set the random number generation
seed to make the process replicable. After setting a seed, when you draw random
samples in the same sequence again, you get exactly the same (pseudo-)random
numbers. Pseudorandom number generators (PRNGs) are a complex topic whose
issues are out of scope here. If you are using PRNGs for something important, you
should review the literature; it has been said that whole shelves of journals could be
thrown away due to poor usage of random numbers. (R has support for a wide array
of pseudorandom sequences; see ?set . seed for details. A starting point to learn
more abut PRNGs is Knuth [93].)

If you don’t set a PRNG seed, R will select one for you, but you will get different
random numbers each time you repeat the process. If you set the seed and exe-
cute commands in the order shown in this book, you will get the results that we
show.

> set.seed(98250) # a favorite US postal code

Now we can draw the random data. In each row of data—that is, one week of 1
year, for one store—we set the status of whether each product was promoted (value
1) by drawing from the binomial distribution that counts the number of “heads” in a
collection of coin tosses (where the coin can have any proportion of heads, not just
50 %).

To detail that process: we use the rbinom(n, size, p) (decoded as “random
binomial”) function to draw from the binomial distribution. For every row of the
store data, as noted by n=nrow (store.df), we draw from a distribution repre-
senting the number of heads in a single coin toss (size=1) with a coin that has
probability p=0.1 for product 1 and p=0.15 for product 2. In other words, we
arbitrarily assign a 10 % likelihood of promotion for product 1, and 15 % likelihood
for product 2 and then randomly determine which weeks have promotions.

3.1 Simulating Data 51

> store.dfSplprom <- rbinom(n=nrow(store.df), size=1, p=0.1) # 10% promoted
> store.df$p2prom <- rbinom(n=nrow(store.df), size=1, p=0.15) # 15% promoted
> head(store.df) # how does it look so far? (not shown)

Next we set a price for each product in each row of the data. We suppose that each
product is sold at one of five distinct price points ranging from $2.19 to $3.19 over-
all. We randomly draw a price for each week by defining a vector with the five price
points and using sample (x, size, replace) todraw from it as many times
as we have rows of data (size=nrow (store.df)). The five prices are sampled
many times, so we sample with replacement (replace=TRUE):

> store.df$plprice <- sample(x=c(2.19, 2.29, 2.49, 2.79, 2.99),

+ size=nrow(store.df), replace=TRUE)
> store.df$p2price <- sample(x=c(2.29, 2.49, 2.59, 2.99, 3.19),
+ size=nrow(store.df), replace=TRUE)

> head(store.df) # now how does it look?
storeNum Year Week plsales p2sales plprice p2price plprom p2prom country

1 101 1 1 NA NA 2.29 2.29 0 0 Us
2 101 1 2 NA NA 2.49 2.49 0 0 Us
3 101 1 3 NA NA 2.99 2.99 1 0 Us

Question: if price occurs at five discrete levels, does that make it a factor variable?
That depends on the analytic question, but in general probably not. We often perform
math on price, such as subtracting cost in order to find gross margin, multiplying by
units to find total sales, and so forth. Thus, even though it may have only a few
unique values, price is a number, not a factor.

Our last step is to simulate the sales figures for each week. We calculate sales as a
function of the relative prices of the two products along with the promotional status
of each.

Item sales are in unit counts, so we use the Poisson distribution to generate count
data: rpois (n, lambda), where n is the number of draws and 1ambda is the
mean value of units per week. We draw a random Poisson count for each row
(nrow (store.df), and set the mean sales (Lambda) of Product 1 to be higher
than that of Product 2:

sales data, using poisson (counts) distribution, rpois ()
first, the default sales in the absence of promotion

> tmp.salesl <- rpois (nrow(store.df), lambda=120)

> tmp.sales2 <- rpois(nrow(store.df), lambda=100)

Now we scale those counts up or down according to the relative prices. Price ef-
fects often follow a logarithmic function rather than a linear function, so we use
log (price) here:

scale sales according to the ratio of log (price)

> tmp.salesl <- tmp.salesl * log(store.df$p2price) / log(store.df$plprice)
> tmp.sales2 <- tmp.sales2 x log(store.dfS$plprice) / log(store.df$p2price)

52 3 Describing Data

We have assumed that sales vary as the inverse ratio of prices. That is, sales of
Product 1 go up to the degree that the 1og (price) of Product 1 is lower than the
log (price) of Product 2.

Finally, we assume that sales get a 30 % or 40 % lift when each product is promoted
in store. We simply multiply the promotional status vector (which comprises all
{0, 1} values) by 0.3 or 0.4, respectively, and then multiply the sales vector by that.
We use the £1ooxr () function to drop fractional values and ensure integer counts
for weekly unit sales, and put those values into the data frame:

final sales get a 30% or 40% 1lift when promoted

> store.dfs$plsales <- floor (tmp.salesl * (1 + store.dfS$plprom*0.3))
> store.df$p2sales <- floor(tmp.sales2 % (1 + store.dfS$p2prom%0.4))

Inspecting the data frame, we see that the data look plausible on the surface:

> head(store.df)
storeNum Year Week plsales p2sales plprice p2price plprom p2prom country

1 101 1 1 127 106 2029 2.29 0 0 Us
2 101 1 2 137 105 2.49 2.49 0 0 Us
3 101 1 3 156 97 2.99 2.99 1 0 Us

A final command is useful to inspect data because it selects rows at random and
thus may find problems buried inside a data frame away from the head or tail:
some () from the car package [S1]:

> install.packages ("car") # 1if needed
> library (car)
> some (store.df, 10)
storeNum Year Week plsales p2sales plprice p2price plprom p2prom country

27 101 1 27 135 99 2.29 2.49 0 0 Us
144 102 1 40 123 113 2.79 2.59 0 0 Us
473 105 2 5 127 96 2.99 .19 0 0 DE

Thanks to the power of R, we have created a simulated data set with 20,800 values
(2,080 rows x 10 columns) using a total of 22 assignment commands. In the next
section we explore the data that we created.

3.2 Functions to Summarize a Variable

Observations may comprise either discrete data that occurs at specific levels or con-
tinuous data with many possible values. We look at each type in turn.

3.2.1 Discrete Variables

A basic way to describe discrete data is with frequency counts. The table ()
function will count the observed prevalence of each value that occurs in a variable

3.2 Functions to Summarize a Variable 53

(i.e., a vector or a column in a data frame). In store . df, we may count how many
times Product 1 was observed to be on sale at each price point:

> table(store.dfSplprice)

2.19 2.29 2.49 2.79 2.99
395 444 423 443 375

If your counts vary from those above, that may be due to running commands in a
different order or setting a different random number seed. The counts shown here
assume that the commands have been run in the exact sequence shown in this chap-
ter. There is no problem if your data is modestly different; just remember that it
won’t match the output here, or try Sect. 3.1.1 again.

One of the most useful features of R is that most functions produce an object that
you can save and use for further commands. So, for example, if you want to save
the table that was created by table (), you can just assign the same command to
a named object:

> pl.table <- table(store.dfS$plprice)
> pl.table

2.19 2.29 2.49 2.79 2.99

395 444 423 443 375
> str(pl.table)

‘table’ int [1:5(1d)] 395 444 423 443 375

The str () command shows us that the object produced by table () is a special
type called table. You will find many functions in R produce objects of special
types. We can also easily pass pl.table to the plot () function to produce a
quick plot.

> plot (pl.table)

You can see from the resulting bar plot in Fig. 3.1 that the product was on sale at
each price point roughly the same number of times. R chose a type of plot suitable
for our table object, but it is fairly ugly and the labels could be clearer. Later in
this chapter we show how to modify a plot to get better results.

An analyst might want to know how often each product was promoted at each price
point. The table () command produces two-way cross tabs when a second vari-
able is included:

> table(store.dfSplprice, store.df$Splprom)
0 1

2.19 354 41
2.29 398 46

54 3 Describing Data

300 400
I I

pi.table
200
L

Fig. 3.1. A simple bar plot produced by pass-

ing a table object to plot (). Default charts

are sometimes unattractive, but there are many

° options to make them more attractive and
219 229 2.49 279 2.99 useful.

100
I

2.49 381 42
2.79 396 47
2.99 343 32

At each price level, Product 1 is observed to have been promoted approximately
10 % of the time (as expected, given how we created the data in Sect. 3.1.1). In fact,
we can compute the exact fraction of times product 1 is on promotion at each price
point, if we assign the table to a variable and then divide the second column of the
table by the sum of the first and second columns:

> pl.table2 <- table(store.dfS$plprice, store.dfSplprom)

> pl.table2[, 2] / (pl.table2[, 1] + pl.table2[, 2])
2.19 2 .29 2.49 2079 2098

0.10379747 0.10360360 0.09929078 0.10609481 0.08533333

The second command takes the second column of table pl.table—the column
with counts of how often the product is promoted—and divides by the total count
to get the proportion of times the product was promoted at each price point. R auto-
matically applies math operators + and / across the entire columns.

By combining results in this way, you can easily produce exactly the results you
want along with code that can repeat the analysis on demand. This is very helpful
to marketing analysts who produce weekly or monthly reports for sales, web traffic,
and the like.

3.2.2 Continuous Variables

Counts are useful when we have a small number of categories, but with continuous
data it is more helpful to summarize the data in terms of its distribution. The most
common way to do that is with mathematical functions that describe the range of
the data, its center, the degree to which it is concentrated or dispersed, and specific
points that may be of interest (such as the 90th percentile). Table 3.1 lists some R
functions to calculate statistics for numeric vector data, such as numeric columns in
a data frame.

3.2 Functions to Summarize a Variable 55

Table 3.1. Distribution functions that operate on a numeric vector

Describe Function Value
min (x) Minimum value
Extremes .
max (x) Maximum value
Central tendenc mean (x) Arithmetic mean
y median (x) Median
var (x) Variance around the mean
. . sd (x) Standard deviation
Dispersion
(sgrt (var(x)))
IOR (x) Interquartile range, 75th-25th per-
centile
mad (x) Median absolute deviation (a ro-
bust variance estimator)
Points quantile(x, probs=c(...)) |Percentiles

Following are examples of those common functions:

> min (store.dfS$plsales)

[1] 73

> max (store.dfS$p2sales)

[1] 225

> mean (store.df$plprom)

[1] 0.1

> median (store.df$p2sales)
[1] 96

> var (store.dfSplsales)

[1] 805.0044

> sd(store.dfS$plsales)

[1] 28.3726

> IQR(store.df$plsales)

[1] 37

> mad (store.dfSplsales)

[1] 26.6868

> quantile (store.df$plsales, probs=c(0.25, 0.5, 0.75))
25% 50% 75%

113 129 150

In the case of quantile () we have asked for the 25th, 50th, and 75th percentiles
using the argument probs=c (0.25, 0.5, 0.75), which are also known as
the median (50th percentile, same as the median () function) and the edges of the
interquartile range, the 25th and 75th percentiles.

For skewed and asymmetric distributions that are common in marketing, such as
unit sales or household income, the arithmetic mean () and standard deviation
sd () may be misleading; in those cases, the median () and interquartile range
(IQR (), the range of the middle 50 % of data) are often more useful to summarize
a distribution.

56 3 Describing Data

Change the probs= argument in quantile () to find other quantiles:

> quantile (store.df$plsales, probs=c(0.05, 0.95)) # central 90% of data
5% 95%
93 184
> quantile (store.dfS$plsales, probs=0:10/10)
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
73.0 100.0 109.0 117.0 122.6 129.0 136.0 145.0 156.0 171.0 263.0

The second example here shows that we may use sequences in many places in
R; in this case, we find every 10th percentile by creating a simple sequence of
0:10 and dividing by 10 to yield the vector 0, 0.1, 0.2 ... 1.0.Youcould
also do this using the sequence function (seq (from=0, to=1, by=0.1)),but
0:10/10 is shorter and more commonly used.

Suppose we wanted a summary of the sales for product 1 and product 2 based on
their median and interquartile range. We might assemble these summary statistics
into a data frame that is easer to read than the one-line-at-a-time output above. We
create a data frame to hold our summary statistics and then populate it using func-
tions from Table 3.1. We name the columns and rows, and fill in the cells with
function values:

> mysummary.df <- data.frame (matrix (NA, nrow=2, ncol=2))

> names (mysummary.df) <- c("Median Sales", "IQR")

> rownames (mysummary.df) <- c("Product 1", "Product 2"

> mysummary.df ["Product 1", "Median Sales"] <- median (store.df$plsales)
> mysummary.df ["Product 2", "Median Sales"] <- median(store.df$p2sales)
> mysummary.df ["Product 1", "IQR"] <- IQR(store.df$plsales)

> mysummary.df ["Product 2", "IQR"] <- IQR(store.df$p2sales)

> mysummary.df

Median Sales IQR
Product 1 129 37
Product 2 96 29

With this custom summary we can easily see that median sales are higher for prod-
uct 1 (129 versus 96) and that the variation in sales of product 1 (the IQR across
observations by week) is also higher. Once we have this code, we can easily run
it the next time we have new sales data to produce a revised version of our table
of summary statistics. Such code might be a good candidate for a custom function
you can reuse (see Sects. 2.7 and 11.3.1.1). We’ll see a shorter way to create this
summary in Sect. 3.3.4.

3.3 Summarizing Data Frames

As useful as functions such as mean () and quantile () are, itis tedious to apply
them one at a time to columns of a large data frame, as we did with the summary
table above. R provides a variety of ways to summarize data frames without writing
extensive code. We describe three approaches: the basic summary () command, the
describe () command from the psych package, and the R approach to iterating
over variables with apply ().

3.3 Summarizing Data Frames 57

3.3.1 summary ()

As we saw in Sect. 2.5, summary () is a good way to do a preliminary inspection
of a data frame or other object. When you use summary () on a data frame, it
reports a few descriptive statistics for every variable:

> summary (store.df)

storeNum Year Week plsales p2sales
101 : 104 Min. g, @ Min. : 1.00 Min. g 73 Min. ¢ 51,0
102 : 104 1st Qu.:1.0 1st Qu.:13.75 1st Qu.:113 1st Qu.: 84.0
103 : 104 Median :1.5 Median :26.50 Median :129 Median : 96.0
104 : 104 Mean gl 5 Mean :26.50 Mean :133 Mean :100.2
105 : 104 3rd Qu.:2.0 3rd Qu.:39.25 3rd Qu.:150 3rd Qu.:113.0
106 : 104 Max. :2.0 Max. :52.00 Max. :263 Max. 32425 .0
(Other) :1456

plprice p2price plprom p2prom country
Min. :2.190 Min. :2.29 Min. :0.0 Min. :0.0000 AU:104
1st Qu.:2.290 1st Qu.:2.49 1lst Qu.:0.0 1st Qu.:0.0000 BR:208
Median :2.490 Median :2.59 Median :0.0 Median :0.0000 CN:208
Mean :2.544 Mean :2.70 Mean :0.1 Mean :0.1385 DE:520
3rd Qu.:2.790 3rd Qu.:2.99 3rd Qu.:0.0 3rd Qu.:0.0000 GB:312
Max. :2.990 Max. 53,18 Max. gl @ Max. :1.0000 JP:416

US:312

summary () works similarly for single vectors, with a horizontal rather than verti-
cal display:
> summary (store.dfSYear)

Min. 1st Qu. Median Mean 3rd Qu. Max .
1.0 1.0 1.5 1.5 2.0 2.0

The digits= argument is helpful if you wish to change the precision of the
display:

> summary (store.df, digits=2)

storeNum Year Week plsales p2sales
101 : 104 Min. :1.0 Min. CI 8 Min. g 73 Min. g Bl
102 : 104 lst Qu.:1.0 lst Qu.:14 1st Qu.:113 lst Qu.: 84

plprice p2price plprom p2prom country
Min. :2.2 Min. 8%.3 Min. :0.0 Min. :0.00 AU:104

1st Qu.:2.3 1st Qu.:2.5 1st Qu.:0.0 1st Qu.:0.00 BR:208

R generally uses digits to mean significant digits regardless of absolute magnitude
or the decimal position. Thus, digits=3 does not mean “three decimal places”
but instead “three significant positions.” Output conforming to digits= is not
guaranteed; the format may be different in various cases such as reporting integer
values and for factors.

Perhaps the most important use for summary () is this: after importing data, use
summary () fo do a quick quality check. Check the min and max for outliers or
miskeyed data, and check to see that the mean and median are reasonable and
similar to one another (if you expect them to be similar, of course). This simple
inspection often turns up errors in the data!

58 3 Describing Data

3.3.2 describe()

Another useful command is describe () from the psych package [132]. To use
describe (), install the psych package if you haven’t done so already and make
it available with 1ibrary ():

> install.packages ("psych")
Installing package
> library (psych)

describe () reports a variety of statistics for each variable in a data set, includ-
ing n, the count of observations; trimmed mean, the mean after dropping a small
proportion of extreme values; and statistics such as skew and kurtosis that are useful
when interpreting data with regard to normal distributions.

> describe (store.df)

vars n mean sd median trimmed mad min max range skew
storeNum* 1 2080 10.50 5.77 10.50 10.50 7.41 1.00 20.00 19.0 0.00
Year 2 2080 1.50 0.50 1.50 1.50 0.74 1.00 2.00 1.0 0.00
Week 3 2080 26.50 15.01 26.50 26.50 19.27 1.00 52.00 51.0 0.00
plsales 4 2080 133.05 28.37 129.00 131.08 26.69 73.00 263.00 190.0 0.74
country= 10 2080 4.55 1.72 4.50 4.62 2.22 1.00 7.00 6.0 -0.29
kurtosis se
storeNumx -1.21 0.13
Year -2.00 0.01
Week -1.20 0.33
plsales 0.66 0.62
country= -0.81 0.04

By comparing the trimmed mean to the overall mean, one might discover when out-
liers are skewing the mean with extreme values. describe () is especially recom-
mended for summarizing survey data with discrete values such as 1-7 Likert scale
items from surveys (items that use a scale with ordered values such as “Strongly
disagree (1)” to “Strongly agree (7)” or similar).

Note that there is an » next to the labels for storeNum and country in the output
above. This is a warning; storeNum and country are factors and these summary
statistics may not make sense for them. describe () treats each store number as
an integer and computes statistics based on those integers. This may be useful when
your factors are in a meaningful order. When data include character strings or other
non-numeric data, describe () gives an error, “non-numeric argument.’
These problems may be solved by selecting only the variables (columns) that are
numeric with matrix indices. For example, if we wished to describe only columns 2
and 4 through 9, then we could use the following:

> describe (store.df[, c(2, 4:9)])

vars n mean sd median trimmed mad min max range skew
Year 1 2080 1.50 0.50 1.50 1.50 0.74 1.00 2.00 1.0 0.00
plsales 2 2080 133.05 28.37 129.00 131.08 26.69 73.00 263.00 190.0 0.74

p2sales 3 2080 100.16 24.42 96.00 98.05 22.24 51.00 225.00 174.0 0.99

3.3 Summarizing Data Frames 59

plprice 4 2080 2.54 0.29 2.49 2.53 0.44 2.19 2.99 0.8 0.28
p2price 5 2080 2.70 0.33 2,59 2.69 0.44 2.29 3,48 0.9 0.32

3.3.3 Recommended Approach to Inspecting Data

We can now recommend a general approach to inspecting a data set after com-
piling or importing it; replace “my.data” and “DATA” with the names of your
objects:

1. Import your data with read. csv () or another appropriate function and check
that the importation process gives no errors.

2. Convert it to a data frame if needed (my.data <- data.frame (DATA)
and set column names (names (my.data) <- c(...)) if needed.

3. Examine dim () to check that the data frame has the expected number of rows
and columns.

4. Use head () and tail (my.data) to check the first few and last few rows;
make sure that header rows at the beginning and blank rows at the end were
not included accidentally. Also check that no good rows were skipped at the
beginning.

5. Use some () from the car package to examine a few sets of random rows.

6. Check the data frame structure with str () to ensure that variable types and
values are appropriate. Change the type of variables—especially to factor
types—as necessary.

7. Run summary () and look for unexpected values, especially min and max that
are unexpected.

8. Load the psych library and examine basic descriptives with describe ().
Reconfirm the observation counts by checking that n is the same for each vari-
able, and check trimmed mean and skew (if relevant).

3.3.4 apply() *

An advanced and powerful tool in R is the apply () command. apply (x=DATA,
MARGIN=MARGIN, FUN=FUNCTION) runs any function that you specify on
each of the rows and/or columns of an object. If that sounds cryptic, well... it is.
In R the term margin is a two-dimensional metaphor that denotes which “direc-
tion” you want to do something: either along the rows (MARGIN=1) or columns
(MARGIN=2), or both simultaneously (MARGIN=c (1, 2)).

Here’s an example: suppose we want to find the mean of every column of
store.df, except for store.df$Store, which isn’t a number and so doesn’t

60 3 Describing Data

have a mean. We can apply () the mean () function to the column margin of the
data like this:

> apply(store.df[,2:9], MARGIN=2, FUN=mean)

Year Week plsales p2sales plprice p2price
1.5000000 26.5000000 133.0485577 100.1567308 2.5443750 2.6995192
plprom p2prom

0.1000000 0.1384615

As it happens, colMeans () does the same thing as the command above, but
apply gives you the flexibility to apply any function you like. If we want the row
means instead, we simply change the margin to 1:

> apply(store.df[,2:9], 1, mean)

[1] 29.9475 31.2475 32.9975 29.2725 31.2600 31.7850 27.5225 30.7850 28.0725
[10] 31.5600 30.5975 32.5850 25.6350 29.3225 27.9225 30.5350 31.4475 ...

Although row means make little sense for this data set, they can be useful for other
kinds of data.

Similarly, we might find the sum() or sd() for multiple columns with
margin=2:

> apply(store.df[,2:9], 2, sum)

Year Week plsales p2sales plprice p2price plprom p2prom
3120.0 55120.0 276741.0 208326.0 5292.3 5615.0 208.0 288.0
> apply(store.df[,2:9], 2, sd)
Year Week plsales p2sales plprice p2price

0.5001202 15.0119401 28.3725990 24.4241905 0.2948819 0.3292181

What if we want to know something more complex? In our discussion of functions
in Sect. 2.7, we noted the ability to define an ad hoc anonymous function. Imagine
that we are checking data and wish to know the difference between the mean and
median of each variable, perhaps to flag skew in the data. Anonymous function to
the rescue! We can apply that calculation to multiple columns using an anonymous
function:

> apply(store.df[,2:9], 2, function(x) { mean(x) - median(x) })

Year Week plsales p2sales plprice p2price plprom p2prom
0.0000000 0.0000000 4.0485577 4.1567308 0.0543750 0.1095192 0.1000000 0.1384615

This analysis shows that the mean of plsales and the mean of p2sales are
larger than the median by about four sales per week, which suggests there is a right-
hand tail to the distribution. That is, there are some weeks with very high sales
that pull the mean up. (Note that we only use this to illustrate an anonymous func-
tion; there are better, more specialized tests of skew, such as those in the psych
package.)

Experienced programmers: your first instinct, based on experience with procedural
programming languages, might be to solve the preceding problem with a for ()
loop that iterates the calculation across columns. That is possible in R but less
efficient and less “R-like”. Instead, try to think in terms of functions that are ap-
plied across data as we do here.

3.4 Single Variable Visualization 61

There are specialized versions of apply () that work similarly with lists and
other object types besides data frames. If interested, check ?tapply and
?lapply.

All of these functions, including apply (), summary (), and describe () re-
turn values that can be assigned to an object. For example, using apply, we can
produce our customized summary data frame from Sect. 3.2.2 in five lines of code
rather than seven:

> mysummary2.df <- data.frame(matrix (NA, nrow=2, ncol=2))

> names (mysummary2.df) <- c("Median Sales", "IQR")

> rownames (mysummary2.df) <- names(store.df) [4:5] # names from the data frame
> mysummary2.df [, "Median Sales"] <- apply(store.df[, 4:5], 2, median)

> mysummary2.df [, "IQR"] <- apply(store.df[, 4:5], 2, IQR)

> mysummary2.df

Median Sales IQR
plsales 129 37
p2sales 96 29

If there were many products instead of just two, the code would still work if we
changed the number of allocated rows, and apply () would run automatically
across all of them.

Now that we know how to summarize data with statistics, it is time to visual-
ize it.

3.4 Single Variable Visualization

We start by examining plots that are part of the base R system. We examine
histograms, density plots, and box plots, and take an initial look at more com-
plex graphics including maps. Later chapters build on these foundational plots
and introduce more that are available in other packages. R has many options for
graphics including dedicated plotting packages such as ggplot2 and lattice,
and specialized plots that are optimized for particular data such as correlation
analysis.

3.4.1 Histograms

A fundamental plot for a single continuous variable is the histogram. Such a plot
can be produced in R with the hist () function:

> hist (store.dfSplsales)

The result, which will appear in the graphical display of base R or RStudio, is shown
in Fig. 3.2. It is not a bad start. We see that the weekly sales for product 1 range
from a little less than 100 to a bit more than 250. Because axes should always be
labeled, R tried to provide reasonable labels based on the variables we passed to
hist ().

62 3 Describing Data

Histogram of store.df$p1sales

600
I

500
1

Frequency
200 300
1 1

100
1

0
L

T T T 1 s 3 3 -
100 150 200 250 Fig. 3.2. A basic histogram using
store.df$p1sales hist () .

That plot was easy to make but the visual elements are less than pleasing, so we will
improve it. For future charts, we will show either the basic chart or the final one, and
will not demonstrate the successive steps to build one up. However, we go through
the intermediate steps here so you can see the process of how to evolve a graphic
inR.

As you work through these steps, there are four things you should understand about
graphics in R:

e R graphics are produced through commands that often seem tedious and require
trial and iteration.

e Always use a text editor when working on plot commands; they rapidly become
too long to type, and you will often want to try slight variants and to copy and
paste them for reuse.

e Despite the difficulties, R graphics can be very high quality, portable in format,
and even beautiful.

e Once you have code for a useful graphic, you can reuse it with new data. It is
often helpful to tinker with previous plotting code when building a new plot,
rather than recreating it.

Our first improvement to Fig. 3.2 is to change the title and axis labels. We do that
by adding arguments to the hist () command:

main="..." :sets the main title
xlab="..." :sets the X axis label

ylab="..." :setsthe Y axis label

3.4 Single Variable Visualization 63

We add the title and axis labels to our plot command:

> hist (store.dfSplsales,

+ main="Product 1 Weekly Sales Frequencies, All Stores",
+ xlab="Product 1 Sales (Units)",

+ ylab="Count")

Product 1 Weekly Sales Frequencies, All Stores

Count
200 300 400 500 600
1 1 1 1

100
1

100 150 200 250 Fig. 3.3. The same histogram, with im-
Product 1 Sales (Units) proved labels.

The result is shown in Fig. 3.3 and is improved but not perfect; it would be nice to
have more granularity (more bars) in the histogram. While we’re at it, let’s add a
bit of color. We adjust the graphic by asking for more bins (breaks) and color the
histogram bars light blue. Here are the arguments involved:

breaks=NUM : suggest NUM bars in the result
col="..." :color the bars

When specifying colors, R knows many by name, including the most common ones
in English (“red”, “blue”, “green”, etc.) and less common (such as “coral” and
“burlywood”). Many of these can be modified by adding the prefix “light” or “dark”
(thus “lightgray”, “darkred”, and so forth). For a list of built-in color names, run the
colors () command.

We add breaks= and col= arguments to our code, with the result shown in
Fig. 3.4

> hist (store.dfSplsales,

+ main="Product 1 Weekly Sales Frequencies, All Stores",
+ xlab="Product 1 Sales (Units)",

+ ylab="Count",

+ breaks=30, # more columns

+ col="1lightblue") # color the bars

64 3 Describing Data

Product 1 Weekly Sales Frequencies, All Stores

150
J

Count
100
1

50
1

o - Fig. 3.4. The histogram after adding color
100 150 200 250 and dividing the counts into a larger num-
Product 1 Sales (Units) ber of bins (breaks).

Comparing Figs. 3.4 with 3.3 we notice a new problem: the y-axis value for the
height of the bars changes according to count. The count depends on the number of
bins and on the sample size. We can make it absolute by using relative frequencies
(technically, the density estimate) instead of counts for each point. This makes the
Y axis comparable across different sized samples.

Figure 3.4 also has ugly and oddly centered numbering on the X axis. Instead of
using hist () ’s default tick marks (axis numbers), we remove the axis in order to
replace it with one more to our liking. The arguments for relative frequency and
removing the X axis are:

freg=FALSE : use density instead of counts on Y axis
xaxt="n" : X axis text is set to “none”

Now we need to create the replacement axis. This can be done with axis (side=
MARGIN, at=VECTOR) . Note that axis () is a second command and not an ar-
gumentto hist ();hist () creates the plot and then axis () modifies it.

Here is the amended code. First we call hist () to create a new plot without an X
axis :

> hist (store.df$plsales,

+ main="Product 1 Weekly Sales Frequencies, All Stores",

+ xlab="Product 1 Sales (Units)",

+ ylab="Relative frequency",

+ breaks=30,

+ col="1lightblue",

+ freq=FALSE, # freq=FALSE means plot density, not counts
+ xaxt="n") # xaxt="n" means "x axis tick marks == no"

With axis (), we specify which axis to change using an argument: side=1 alters
the X axis, while side=2 alters the Y axis (the top and right axes are side=3 and
side=4, respectively). We have to tell it where to put the labels, and the argument

3.4 Single Variable Visualization 65

at=VECTOR specifies the new tick marks for the axis. These are easily made with
the seq () function to generate a sequence of numbers:

> axis (side=1, at=seg(60, 300, by=20)) # add "e0", "80",

The updated histogram is shown in Fig. 3.5. It is looking good now!

Product 1 Weekly Sales Frequencies, All Stores

0.015
I

0.010
1
]

Relative frequency

0.005
1

0.000
L

Fig. 3.5. Histogram with relative fre-
T T T T T T T T T T
80 100 120 140 160 180 200 220 240 260 quencies (density estimates) and im-
Product 1 Sales (Units) proved axis tick mark labels.

Finally, we add a smoothed estimation line. To do this, we use the density ()
function to estimate density values for the plsales vector, and add those to the
chart with the 1ines () command. The 1ines () command adds elements to the
current plot in the same way we saw above for the axis command.

> lines (density (store.dfS$plsales, bw=10), # "bw= ..." adjusts the smoothing
+ type="1", col="darkred", lwd=2) # lwd = line width

Figure 3.6 is now very informative. Even someone who is unfamiliar with the data
can easily tell that this plot describes weekly sales for product 1 and that the typical
sales range from about 80 to 200.

The process we have shown to produce this graphic is representative of how analysts
use R for visualization. You start with a default plot, change some of the options,
and use functions like axis () and density () to alter features of the plot with
complete control. Although at first this will seem cumbersome compared to the
drag-and-drop methods of other visualization tools, it really isn’t much more time
consuming if you use a code editor and become familiar with the plotting functions’
examples and help files. It has the great advantage that once you’ve written the code,
you can reuse it with different data.

Exercise: modify the code to create the same histogram for product 2. It requires
only minor change to the code whereas with a drag-and-drop tool, you would
start all over. If you produce a plot often, you could even write it as a custom
function.

66 3 Describing Data

Product 1 Weekly Sales Frequencies, All Stores

o *
S 9
s N
sol I
3 I \
5 ©
o
e
°
2
s 3
L O
T s
o
o
S
o T T T T T T T T T T
80 100 120 140 160 180 200 220 240 260 Fig. 3.6. Final histogram with density
Product 1 Sales (Units) curve.

3.4.2 Boxplots

Boxplots are a compact way to represent a distribution. The R boxplot () com-
mand is straightforward; we add labels and use the option horizontal=TRUE to
rotate the plot 90° to look better:

> boxplot (store.dfS$p2sales, xlab="Weekly sales", ylab="P2",
main="Weekly sales of P2, All stores", horizontal=TRUE)

Figure 3.7 shows the resulting graphic. The boxplot presents the distribution more
compactly than a histogram. The median is the center line while the 25th and 75th
percentiles define the box. The outer lines are whiskers at the points of the most
extreme values that are no more than 1.5 times the width of the box away from the
box. Points beyond the whiskers are outliers drawn as individual circles. This is also
known as a Tukey boxplot (after the statistician, Tukey) or as a box-and-whiskers
plot.

Weekly sales of P2, All stores

P2

50 100 150 200 Fig. 3.7. A simple example
WeeKly sales of boxplot ().

Boxplots are even more useful when you compare distributions by some other fac-
tor. How do different stores compare on sales of product 2? The boxplot () com-
mand makes it easy to compare these by specifying a response formula using tilde
notation, where the tilde (“~") separates the response variable (sometimes called a
dependent variable) from the explanatory variable (sometimes rather misleadingly

3.4 Single Variable Visualization 67

called an independent variable). In this case, our response variable is p2sales and
we want to plot it with regard to the explanatory variable st oreNum. This may be
easiest to understand with the R code:

> boxplot (store.df$p2sales ~ store.dfsSstoreNum, horizontal=TRUE,

+ ylab="Store", xlab="Weekly unit sales", las=1,
+ main="Weekly Sales of P2 by Store")

The first portion of the command may be read as “boxplot p2sales by Store.” For-
mulas like this are pervasive in R and are used both for plotting and for estimating
models. We discuss formulas in detail in Sect. 5.2.1 and Chap. 7.

We added one other argument to the plot: 1as=1. That forces the axes to have text
in the horizontal direction, making the store numbers more readable. The result is
Fig. 3.8, where stores are roughly similar in sales of product 2 (this is not a statistical
test of difference, just a visualization).

Weekly Sales of P2 by Store

Store

‘ ; ‘ ‘ Fig. 3.8. boxplot () of
Weekly unit sales sales by store.

We see in Fig. 3.8 that the stores are similar in unit sales of P2, but do P2 sales differ
in relation to in-store promotion? In this case, our explanatory variable would be the
promotion variable for P2, so we use boxplot () with the response formula again,
replacing storeNum with the promotion variable p2prom.

This is a good time to introduce two shortcut commands that make life easier. Many
commands for statistics and plotting understand the data=DATAFRAME argument,
and will use variables from data without specifying the full name of the data frame.
This makes it easy to repeat analyses on different data sets that include the same
variables. All you have to do is change the argument for data=.

> boxplot (p2sales ~ p2prom, data=store.df, horizontal=TRUE, yaxt="n",

+ ylab="P2 promoted in store?", xlab="Weekly sales",
o

main="Weekly sales of P2 with and without promotion")
axis(side=2, at=c(1,2), labels=c("No", "Yes"))

In this plot we also used axis () to replace the default Y axis with one that is more
informative.The result is shown in Fig. 3.9. There is a clear visual difference in sales
on the basis of in-store promotion!

68 3 Describing Data

To wrap up: boxplots are powerful tools to visualize a distribution and make it easy
to explore how an outcome variable is related to another factor. In Chaps. 4 and 5
we explore many more ways to examine data association and statistical tests of
relationships.

Weekly sales of P2 with and without promotion

Yes
|

P2 promoted in store?

1] ® o
‘ b= Fig. 3.9. Boxplot of prod-
0 100 150 200 uct sales by promotion
Weekly sales status.

3.4.3 QQ Plot to Check Normality*

This is an optional section on a graphical method to evaluate a distribution more for-
mally. You may wish to skip to Sect. 3.4.4 on cumulative distributions or Sect. 3.4.5
that describes how to compute aggregate values in R.

Quantile—quantile (QQ) plots are a good way to check one’s data against a distri-
bution that you think it should come from. Some common statistics such as the
correlation coefficient (to be precise, the Pearson product-moment correlation co-
efficient) are interpreted under an assumption that data are normally distributed.
A QQ plot can confirm that the distribution is, in fact, normal by plotting the ob-
served quantiles of your data against the quantiles that would be expected for a
normal distribution.

To do this, the ggnorm () command compares data vs. a normal distribution; you
can use ggline () to add a diagonal line for easier reading. We check plsales
to see whether it is normally distributed:

> ggnorm(store.df$plsales)
> ggline (store.dfs$plsales)

The QQ plot is shown in Fig. 3.10. The distribution of plsales is far from the line
at the ends, suggesting that the data is not normally distributed. The upward curving
shape is typical of data with high positive skew.

What should you do in this case? If you are using models or statistical functions
that assume normally distributed data, you might wish to transform your data. As
we’ve already noted, a common pattern in marketing data is a logarithmic distribu-
tion. We examine whether plsales is more approximately normal after a 1og ()
transform:

> ggnorm(log(store.dfsplsales))
> ggline (log(store.dfS$plsales))

3.4 Single Variable Visualization 69

Normal Q-Q Plot

s
4
2 8
E
€]
284
3
81 Fig. 3.10. QQ plot to check distribution. The tails
of the distribution bow away from the line that
3 2 1 o 1 2 s represents an exact normal distribution, showing
Theoretical Quantiles that the distribution of plsales is skewed.

The QQ plot for 1log (plsales) is shown in Fig. 3.11. The points are much closer
to the solid line, indicating that the distribution of 1log (store.dfS$plsales)
is more consistent with the normal distribution than the untransformed vari-
able.

Normal Q-Q Plot

5.2 5.4 5.6

5.0

Sample Quantiles
4.8

4.6

Fig. 3.11. QQ plot for the data after 1og()
transformation. The sales figures are now much
better aligned with the solid line that represents
Theoretical Quantiles an exact normal distribution.

44

We recommend that you use ggnorm () (and the more general ggplot () com-
mand) regularly to test assumptions about your data’s distribution. Web search will
reveal further examples of common patterns that appear in QQ plots and how to
interpret them.

3.4.4 Cumulative Distribution*

This is another optional section, but one that can be quite useful. If you wish to skip
ahead to cover just the fundamentals, you should continue with Sect. 3.4.5.

Another useful univariate plot involves the impressively named empirical cumula-
tive distribution function (ECDF). It is less complex than it sounds and is simply a

70 3 Describing Data

plot that shows the cumulative proportion of data values in your sample. This is an
easy way to inspect a distribution and to read off percentile values.

Before that we should explain an important thing to know about the R plot ()
command: plot () can make only a few plot types on its own and otherwise must
be given an object that includes more information such as X and Y values. Many
R functions produce objects automatically that are suitable as input for plot ().
A typical pattern looks like this:

> my.object <- FUNCTION (my.data) # not real code
> plot (my.object)

...or combined into a single line as:

> plot (FUNCTION (my.data)) # not real code

We plot the ECDF of plsales by combining a few steps. First, we use the
ecdf () function to find the ECDF of the data. Then we wrap plot () around
that, adding options such as titles. Next we put some nicer-looking labels on the Y
axis that relabel the proportions as percentiles. The paste () function combines a
number vector (0, 10, 20, ...) with the “%” symbol to make each label.

Suppose we also want to know where we should expect 90 % of sales figures to
occur, i.e., the 90th percentile for weekly sales of P1. We can use the function
abline () to add vertical and horizontal lines at the 90th percentile. We do not
have to tell R the exact value at which to draw a line for the 90th percentile; instead,
we use quantile(, pr=0.9) tofindit:

> plot (ecdf (store.dfS$plsales),

+ main="Cumulative distribution of P1 Weekly Sales",

+ ylab="Cumulative Proportion",

+ xlab=c ("P1 weekly sales, all stores", "90% of weeks sold <= 171 units"),
+ yaxt="n")

> axis(side=2, at=seqg(0, 1, by=0.1), las=1,

+ labels=paste (seq(0,100,by=10), "%", sep=""))

> abline (h=0.9, 1lty=3) # "h=" for horizontal line; "lty=3" for dotted

> abline (v=quantile (store.dfs$plsales, pr=0.9), lty=3) # "v=" for vertical line

The resulting plot is shown in Fig. 3.12. We often use cumulative distribution plots
both for data exploration and for presenting data to others. They are a good way
to highlight data features such as discontinuities in the data, long tails, and specific
points of interest.

3.4.5 Language Brief: by () and aggregate ()

What should we do if we want to break out data by factors and summarize it, a
process you might know as “cross-tabs” or “pivot tables”? For example, how can
we compute the mean sales by store? We have voluminous data (every store by
every week by each product) but many marketing purposes only need an aggregate
figure such as a total or mean. We saw in Sect. 3.3.4 how to summarize data with

3.4 Single Variable Visualization 71

Cumulative distribution of P1 Weekly Sales

100% &333-3 I

90%
c 80%
70%
60% -
50%
40%

umulative Proportiol
w
o
*

© 20%
10%
[— -

T T T T
50 100 150 200 250

P1 weekly sales, all stores
90% of weeks sold <= 171 units
Fig. 3.12. Cumulative distribution plot with lines to emphasize the 90th percentile. The chart
identifies that 90 % of weekly sales are lower than or equal to 171 units. Other values are easy
to read off the chart. For instance, roughly 10 % of weeks sell less than 100 units, and fewer
than 5 % sell more than 200 units.

various statistics and plots, and to summarize across columns with the apply ()
function. Now we will see how to summarize by a factor within the data itself using
the commands by () and aggregate ().

Let’s look firstat by (data=DATA, INDICES=INDICES, FUN=FUNCTION).
by () uses INDICES as grouping factors to divide DATA into subgroups. Then it
applies the function FUN to each subgroup.

This is easier to understand in the context of an example. Suppose we wish to find
the average sales of P1 by store. The DATA would be the weekly sales for each store,
store.df$plsales. We wish to split this by store, so the INDICES (actually,
“index” in this case) would be store . df $storeNum. Finally, we get the average
of each of those groups by using the mean function. Here is the complete command
to break out mean sales of P1 by store:

> by (store.dfS$plsales, store.df$storeNum, mean)
store.df$SstoreNum: 101

[1] 130.5385

store.df$SstoreNum: 102

[1] 134.7404

To group it by more than one factor, use a 1ist () of factors. For instance, we can
obtain the mean of plsales by store and by year:

> by (store.dfsSplsales, list (store.df$storeNum, store.dfsYear), mean)
: 101

g

[1] 127.7885

72 3 Describing Data

g A
[1] 129.7115

A limitation of by () is that the result is easy to read but not structured for
reuse. How can we save the results as data to use for other purposes such as
plotting?

The answer is aggregate () which operates almost identically to by () but re-
turns a nicely formatted data frame. The following computes the total (sum ()) sales
of P1 by country:

> aggregate (store.df$plsales, by=list (country=store.df$country), sum)
country x

AU 14544

BR 27836

CN 27381

DE 68876

GB 40986

JP 55381

US 41737

~N oUW N

How does this work? Just as with by (), aggregate (x=DATA, by=BY,
FUN=FUNCTION) applies a particular function (FUN) according to divisions of
the data specified by a factor (by). We want to find the total sales by country, so we
apply the mean function by store.dfsScountry.

If we want to save the result as a new data frame, we simply assign it somewhere—
as we do now because we will use it in Sect. 3.4.6 to make a map:

> plsales.sum <- aggregate (store.df$plsales,
+ by=1ist (country=store.dfScountry), sum)

> plsales.sum

country X
1 AU 14544
2 BR 27836
3 CN 27381

aggregate () gave us a nicely structured data frame with our summary. We will
see further options for aggregate () in Sect. 5.2.1.

3.4.6 Maps

We often need to plot marketing data on a map. A common variety is a choropleth
map, which uses graphics or color to indicate values of a variable such as income or
sales. We consider how to do this for a world map using the rworldmap package
[146].

Here is a routine example. Suppose that we want to chart the total sales by coun-
try. We use aggregate () as in Sect. 3.4.5 to find the total sales of Pl by
country:

3.4 Single Variable Visualization 73

plsales.sum <- aggregate (store.dfSplsales,
by=1ist (country=store.df$country), sum)

To make a map, we’ll use the rwor1ldmap package for plotting routines [146], plus
the RColorBrewer package [121] to generate some better-looking colors.
> install.packages (c("rworldmap", "RColorBrewer")) # if needed

> library (rworldmap)
> library (RColorBrewer)

First, we have to associate the aggregated data with specific map regions using
the country codes. This can be done with the joinCountryData2Map () func-
tion, which matches country locations (store . df Scountry) for data points with
the corresponding international standard names (ISO names) and returns a map
object:

> plsales.map <- joinCountryData2Map (plsales.sum, joinCode = "ISO2",
nameJoinColumn = "country")

Let’s inspect that command more closely. The data object that we wish to map is
the plsales. sumaggregated data frame. We place that on a map according to the
2-letter country names (joinCode="IS02") which are present in the data object
as the "country" column.

Next we draw the resulting map object using mapCountryData (), selecting
colors from the RColorBrewer package “Greens” palette. We plot the column
named x because that is the default name that the aggregate () function gives in
the aggregated data fame:

> mapCountryData (plsales.map, nameColumnToPlot="x",

+ mapTitle="Total Pl sales by Country",
+ colourPalette=brewer.pal (7, "Greens"),
+ catMethod="fixedWidth", addLegend=FALSE)

The result is shown in Fig. 3.13, known as a choropleth chart.

Although such maps are popular, they can be misleading. In The Wall Street Journal
Guide to Information Graphics, Wong explains that choropleth charts are problem-
atic because they confuse geographic area with scaled quantities [168, p. 90]. For
instance, in Fig. 3.13, China is more prominent than Japan not because it has a
higher value but because it is larger in size. We acknowledge the need for caution
despite the popularity of such maps.

For more complex charts, there are options in ?rworldmap for drawing regional
maps, more granular areas, setting color palettes, using locations other than country
codes, and so forth. For other mapping options, see the suggestions in Sect. 3.5
below.

74 3 Describing Data

Total P1 sales by Country

Fig. 3.13. World map for P1 sales by country, using rworldmap.

3.5 Learning More*

Plotting. We demonstrate plotting in R throughout this book. R has multiple, often
disjoint solutions for plotting and in this text we use plots as appropriate without
going deeply into their details. The base plotting system comes standard in R and
appears in commands such as hist () and plot ().

Two popular and powerful packages that produce more complex graphics are
lattice [141] and ggplot2 [162]. The choice between lattice and
ggplot2 is largely a matter of personal preference and style. We sometimes
suspect that lattice appeals more to scientists and engineers while ggplot?2
appeals to computer scientists and social scientists. Chang’s R Graphics Cookbook
[24] is a single volume overview of many kinds of plots available in R, focused on
the ggplot2 package.

Wong’s The Wall Street Journal Guide to Information Graphics [168] presents fun-
damentals of good style for effective graphics in any business context (not specific
to R).

Maps. Producing maps in R is an especially complex topic. Maps require three
essential components: shape files that define the borders of areas (such as country
or city boundaries); spatial translation of one’s data (for instance, a database to
match Zip codes in your data to the relevant areas on a map); and plotting software
to perform the actual plotting. R packages such as rworldmap usually provide
access to all three of those elements.

As of this writing, the landscape of available packages and tools for mapping in
R was changing rapidly. We use the rworldmap package here for its simplicity.

3.6 Key Points 75

For more complex tasks, the ggplot2 package [162] serves as the basis for a
sophisticated mapping tool, the ggmap package [90].

3.6 Key Points

The following guidelines and pointers will help you to describe data accurately and
quickly:

e Consider simulating data before collecting it, in order to test your assumptions
and develop initial analysis code (Sect. 3.1).

e Always check your data for proper structure and data quality using str (),
head (), summary (), and other basic inspection commands (Sect. 3.3.3).

e Describe discrete (categorical) data with table () (Sect. 3.2.1) and inspect
continuous data with describe () from the psych package (Sect. 3.3.2).

e Histograms (Sect. 3.4.1) and boxplots (Sect. 3.4.2) are good for initial data
visualization.

e Use by () and aggregate () to break out your data by grouping variables
(Sect. 3.4.5).

e Advanced visualization methods include cumulative distribution (Sect. 3.4.4),
normality checks (Sect. 3.4.3), and mapping (Sect. 3.4.6).

	3 Describing Data
	3.1 Simulating Data
	3.1.1 Store Data: Setting the Structure
	3.1.2 Store Data: Simulating Data Points

	3.2 Functions to Summarize a Variable
	3.2.1 Discrete Variables
	3.2.2 Continuous Variables

	3.3 Summarizing Data Frames
	3.3.1 summary()
	3.3.2 describe()
	3.3.3 Recommended Approach to Inspecting Data
	3.3.4 apply()*

	3.4 Single Variable Visualization
	3.4.1 Histograms
	3.4.2 Boxplots
	3.4.3 QQ Plot to Check Normality*
	3.4.4 Cumulative Distribution*
	3.4.5 Language Brief: by() and aggregate()
	3.4.6 Maps

	3.5 Learning More*
	3.6 Key Points

