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Choice Modeling

Much of the data we observe in marketing describes customers purchasing products.
For example, as we discussed in Chap. 12, retailers now regularly record the trans-
actions of their customers. In that chapter, we discussed analyzing retail transaction
records to determine which products tend to occur together in the same shopping
basket. In this chapter we discuss how to analyze customers’ product choices within
a category to understand how features and price affect which product a customer will
choose. For example, if a customer comes into the store and purchases a 30 oz. jar of
Hellman’s brand canola mayonnaise for $3.98, we can conceptualize this as the cus-
tomer choosing that particular type of mayonnaise among all the other mayonnaise
available at that store. This data on customers’ choices can be analyzed to determine
which features of a product (e.g., package size, brand, or flavor) are most attractive
to customers and how they trade off desirable features against price.

On the surface, this may sound quite similar to what we discussed in Chap. 7, where
we cover how to use linear models to identify drivers of outcomes. It is similar, ex-
cept that product choice data doesn’t fit well into the linear modeling framework,
because the outcome we observe is not a number or a rating for each product. In-
stead, we observe that the customer makes a choice among several options, each
of which has its own set of attributes. To accommodate this unique data structure,
marketers have adopted choice models, which are well suited to understanding the
relationship between the attributes of products and customers’ choices among sets
of products. In this chapter, we focus on the multinomial logit model, the most fre-
quently used choice model in marketing.

While choice models are often used to analyze retail purchase data, there are some
settings where it is more difficult to collect data on customers’ product choices. For
example, when people shop for a car, they typically gather information from many
sources over several months, so it is more difficult to reconstruct the set of products
that they considered and the features and prices of those products. In these settings,
marketers turn to choice-based conjoint analysis, which is a survey method where
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364 13 Choice Modeling

Which of the following minivans would you buy?
Assume all three minivans are identical other than the features listed below.

Option 1 Option 2 Option 3

6 passengers 8 passengers 6 passengers

2 ft. cargo area 3 ft. cargo area 3 ft. cargo area

gas engine hybrid engine gas engine

$35,000 $30,000 $30,000

I prefer (check one):

Fig. 13.1. An example choice-based conjoint survey question.

customers are asked to make choices among products with varying features and
prices. We analyze these survey choices using the multinomial logit model just as we
might analyze real purchases. In this chapter, our example focuses on choice-based
conjoint analysis, but the methods we describe could be applied to retail purchase
data as well.

13.1 Choice-Based Conjoint Analysis Surveys

Suppose an automotive company such as Toyota or Ford is designing a new line of
minivans and is trying to determine how large the minivan should be and what type
of engine it should have. To inform this decision it would be helpful to understand
how customers value those different features. Do customers like or dislike hybrid
engines? If they like them, how much more would they be willing to pay for a
hybrid engine? Are there segments of customers who like hybrid engines more than
other customers?

Conjoint surveys give marketers information about how customers choose products
by asking respondents to answer survey questions like the one shown in Fig. 13.1.
In this question, respondents are asked to choose from three product profiles, each
with a specific passenger capacity, cargo capacity, engine type, and price. The prod-
uct options in the survey are called alternatives and the product features are called
attributes. This conjoint analysis study has three alternatives in each question, de-
scribed by four attributes. Each attribute occurs at some level. For example, the
possible levels for cargo capacity in our example survey are 2 ft. and 3 ft.

In a typical choice-based conjoint survey, we ask respondents who are likely buy-
ers of minivans to answer a number of questions similar to the one in Fig. 13.1.
Each question has the same structure, but varies the levels of the attributes for the
alternatives.

In the next section, we generate hypothetical data from a conjoint survey where
each respondent answers 15 questions like the one in Fig. 13.1. Each question offers



13.2 Simulating Choice Data* 365

the respondent three alternatives to choose from, so each respondent sees a total of
15× 3 = 45 product profiles. Conjoint surveys often include more attributes, more
questions, and more alternatives in each question; a typical study might have 5–10
attributes and include 10–20 questions for each respondent.

You may recall that we also discussed “conjoint analysis” in Chap. 9. In that chapter
we asked respondents to rate single products instead of having them choose among
sets of products. This is called “ratings-based conjoint” or “metric conjoint” and is
analyzed with linear models as we did in Chap. 9. While asking respondents to give
ratings allows us to use a linear model instead of a choice model, rating profiles
is a more difficult task for the respondent. When was the last time you consid-
ered whether a product was a 7 or an 8 on a 10-point scale? Choosing products as
in Fig. 13.1 is a natural task that consumers do every day. For this reason choice-
based conjoint surveys have become a standard tool in the arsenal of marketing
researchers. When marketers say “conjoint,” they often mean choice-based conjoint
analysis.

The key difference between choice-based conjoint and metric conjoint is the struc-
ture of the data you collect. In the minivan choice-based conjoint survey, each
observation is a choice among three alternatives with varying levels of the prod-
uct attributes. The goal of our analysis is to relate the choice to the product at-
tributes. To do this we use a choice model, which is tailored to this unusual data
structure.

The next section, where we simulate conjoint data, is written for readers who have
some knowledge of choice models already. We encourage those of you who are new
to choice modeling to download the data using the commands below and skip ahead
to Sect. 13.3. Those who are familiar with choice modeling might wish to work
through Sect. 13.2 to see how choice data is structured in R.

> cbc.df <- read.csv("http://goo.gl/5xQObB",
+ colClasses = c(seat = "factor", price = "factor"))
> summary(cbc.df)

resp.id ques alt carpool seat cargo
Min. : 1.00 Min. : 1 Min. :1 no :6345 6:3024 2ft:4501
1st Qu.: 50.75 1st Qu.: 4 1st Qu.:1 yes:2655 7:2993 3ft:4499
Median :100.50 Median : 8 Median :2 8:2983
Mean :100.50 Mean : 8 Mean :2
3rd Qu.:150.25 3rd Qu.:12 3rd Qu.:3
Max. :200.00 Max. :15 Max. :3
...

13.2 Simulating Choice Data*

If you loaded the data above, you can skip this optional section and go to
Sect. 13.3.
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The first step in creating any conjoint survey is to decide on which product attributes
to include in the survey. Since this study focuses on size and engine type, we include
four attributes: number of seats in the minivan, the cargo capacity (measured by the
depth of the cargo area), the engine type, and the price. We create a list in R called
attrib to store the attributes:

> attrib <- list(seat = c("6", "7", "8"),
+ cargo = c("2ft", "3ft"),
+ eng = c("gas", "hyb", "elec"),
+ price = c("30", "35", "40"))

Each element of this list is a character vector indicating levels of the attribute to
include in the survey.

The next step is to generate part worths for the attributes. Part worths are conceived
to be latent values a customer places on levels of an attribute when making choices.
Each attribute in the choice model is treated like a factor in a linear model. As
we discussed in Chap. 7, when we include a factor as a predictor in any model, that
factor has to be coded. In this chapter, we use dummy coding, so that one level of the
factor is considered the base level and the model includes coefficients that describe
the part worth or value of that factor over the base level. If this is puzzling, you
might review Sect. 7.4 on including factors as predictors in a linear model.

We designate the first level of each attribute to be the base level. We create names
for the coefficients by looping over the attribute list, dropping the first level of the
attribute, and then concatenating the name of the attribute and the level designa-
tion:

> coef.names <- NULL
> for (a in seq_along(attrib)) {
+ coef.names <- c(coef.names,
+ paste(names(attrib)[a], attrib[[a]][-1], sep=""))
+ }
> coef.names
[1] "seat7" "seat8" "cargo3ft" "enghyb" "engelec" "price35"
[7] "price40"

Now we have a vector of seven coefficient names.

To generate the simulated data we assume that the average part worths in the popu-
lation are:

> mu <- c(-1, -1, 0.5, -1, -2, -1, -2)
> names(mu) <- coef.names
> mu

seat7 seat8 cargo3ft enghyb engelec price35 price40
-1.0 -1.0 0.5 -1.0 -2.0 -1.0 -2.0

You can see that we’ve given names to the elements of mu. While this isn’t abso-
lutely necessary, by keeping everything labeled using R’s built-in names, the output
is easier to read.
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We assume that each respondent has his or her own unique part worth coefficients
and that these follow a multivariate normal distribution in the population with a
covariance matrix Sigma:

> Sigma <- diag(c(0.3, 1, 0.1, 0.3, 1, 0.2, 0.3))
> dimnames(Sigma) <- list(coef.names, coef.names)
> Sigma["enghyb", "engelec"] <- Sigma["engelec", "enghyb"] <- 0.3

The last line above creates a correlation between the part worth for engelec (elec-
tric engine) and enghyb (hybrid engine), so respondents who have a stronger
preference for engelec over enggas will also have a stronger preference for
enghyb over enggas.

With mu and Sigma in hand, we generate each respondent’s part worth coefficients
using the mvrnorm function from the MASS package. We create a vector of re-
spondent IDs for the 200 respondents (resp.id) and a factor variable indicating
whether each respondent intends to use the minivan to carpool (carpool).

> set.seed(33040)
> resp.id <- 1:200 # respondent ids
> carpool <- sample(c("yes", "no"), size=length(resp.id), replace=TRUE,
+ prob=c(0.3, 0.7))
> library(MASS)
> coefs <- mvrnorm(length(resp.id), mu=mu, Sigma=Sigma)
> colnames(coefs) <- coef.names

Finally, we adjust the part worths for respondents who use the minivan to
carpool:

> coefs[carpool=="yes", "seat8"] <- coefs[carpool=="yes", "seat8"] + 2
> coefs[carpool=="yes", "seat7"] <- coefs[carpool=="yes", "seat7"] + 1.5

coefs is now a matrix where each row contains the part worths for each respon-
dent. To get a better sense of what we have done, you could type head(coefs)
or, better yet, head(cbind(carpool, coefs)). You can also use the by()
command (Sect. 3.4.5) to compute mean part worths for those who do and do not
carpool. Just keep in mind that these coefficients are parameters of the model we
plan to simulate from, not the final observed data.

With coefs in hand, we are ready to generate our survey questions and the ob-
served responses. Our survey includes 15 questions that each ask the respondent to
choose from three alternative minivans. We set the number of questions and alter-
natives as variables (nques and nalt) so that we might easily change the size of
the survey in the future:

> nques <- 15
> nalt <- 3

Next, we create a master list of all possible minivan profiles by passing the attrib
list to expand.grid(), which we discuss below:
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> profiles <- expand.grid(attrib)
> nrow(profiles)
[1] 54
> head(profiles)
seat cargo eng price

1 6 2ft gas 30
2 7 2ft gas 30
3 8 2ft gas 30
4 6 3ft gas 30
5 7 3ft gas 30
6 8 3ft gas 30

As you can see, profiles has 54 rows, representing all possible combinations of
three levels of seating capacity, two levels of cargo capacity, three levels of engine,
and three levels of price (3×2×3×3 = 54). We can convert profiles to dummy
coding using model.matrix().

> profiles.coded <- model.matrix(∼ seat + cargo + eng + price,
+ data=profiles)[ , -1]
> head(profiles.coded)
seat7 seat8 cargo3ft enghyb engelec price35 price40

1 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0
3 0 1 0 0 0 0 0
4 0 0 1 0 0 0 0
5 1 0 1 0 0 0 0
6 0 1 1 0 0 0 0

profiles.coded now contains 54 rows, one for each possible combination of
features, that are coded using the dummy coding scheme.

We haven’t yet reviewed expand.grid() and model.matrix(); they are
utility functions for handling factor variables. They are used under the hood in lin-
ear modeling routines such as lm() and predict() (Chap. 7). Because choice
models are a variant of linear models, we can use these to generate our choice
data. The only adjustment we need to make is to remove the intercept from the
result of model.matrix() because choice models typically do not include
intercepts.

Now that the respondent part worth coefficients are in coefs and the set of all
possible minivan profiles is in profiles.coded, we are ready to generate our
hypothetical survey questions and responses and store them in a data frame called
cbc.df. For each of the 200 respondents, we choose nques*nalt (or 15×3 =
45) profiles at random from the list of all possible profiles in profiles.coded.
The profiles indicated by the vector profiles.i are the profiles that we show
respondent i in the survey: the first three profiles are the alternatives shown in choice
1, the next three profiles are the alternatives for choice 2, and so forth.

We compute each respondent’s expected utility for each profile by multiply-
ing the respondent’s coefs by the coded product profile. (This happens in the
line utility <- profiles.coded[profiles.i, ]%*%coefs[i, ]
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in the code below. We then compute choice probabilities for each alterna-
tive in the question according to the multinomial logit probabilities, com-
puted as probs <- exp(wide.util)/rowSums(exp(wide.util)).
We then take a random draw to determine which of the nalt products
the customer chooses choice <- apply(probs, 1, function(x)
sample(1:nalt, size=1, prob=x)). Finally, we append the choices
and profiles to the cbc.df data frame. All of these steps are repeated for each
respondent.

> cbc.df <- data.frame(NULL)
> for (i in seq_along(resp.id)) {
+ profiles.i <- sample(1:nrow(profiles), size=nques*nalt)
+ utility <- profiles.coded[profiles.i, ] %*% coefs[i, ]
+ wide.util <- matrix(data=utility, ncol=nalt, byrow=TRUE)
+ probs <- exp(wide.util) / rowSums(exp(wide.util))
+ choice <- apply(probs, 1, function(x) sample(1:nalt, size=1, prob=x))
+ choice <- rep(choice, each=nalt)==rep(1:nalt, nques)
+ conjoint.i <- data.frame(resp.id=rep(i, nques),
+ ques = rep(1:nques, each=nalt),
+ alt = rep(1:nalt, nques),
+ carpool = rep(carpool[i], nques),
+ profiles[profiles.i, ],
+ choice = as.numeric(choice))
+ cbc.df <- rbind(cbc.df, conjoint.i)
# Tidy up, keeping only cbc.df and attrib
> rm(a, i, resp.id, carpool, mu, Sigma, coefs, coef.names,
+ conjoint.i, profiles, profiles.i, profiles.coded, utility,
+ wide.util, probs, choice, nalt, nques)
+ }

The code above leverages R’s vector and matrix operations quite extensively. Going
through it carefully and figuring out how each step works may take some time,
but it will help you understand R’s matrix computations and give you a clearer
understanding of the assumptions of the multinomial logit model. At the core, this
model is very similar to a linear model; the equation for utility is, in fact, a linear
model. What makes a choice model distinct is that the utility is not observed
directly; we only observe which product the respondent chooses. This is why we
haven’t stored the utility in our synthetic data in cbc.df.

In the code above, we have generated data from a choice model called a hierarchi-
cal multinomial logit model. Hierarchical refers to the fact that there is a different
set of coefficients for each respondent and that those coefficients follow an “upper
level” model for the population. In our code, the parameters of the upper level model
are mu, Sigma and the adjustments we made for people who use their minivan to
carpool. At the “lower level,” the choices of an individual consumer follow a multi-
nomial logit. The hierarchical multinomial logit model has become the workhorse
of choice-based conjoint and is incorporated into commercial software for conjoint
analysis such as Sawtooth Software. In this chapter, we begin by analyzing the data
using the simpler multinomial logit model in Sect. 13.3, and then estimate the hier-
archical multinomial logit model in Sects. 13.4 and 13.5.
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13.3 Fitting a Choice Model

The simulated choice-based conjoint data is in the cbc.df data frame.

> head(cbc.df)
resp.id ques alt carpool seat cargo eng price choice

19 1 1 1 yes 6 2ft gas 35 0
12 1 1 2 yes 8 3ft hyb 30 0
4 1 1 3 yes 6 3ft gas 30 1
1 1 2 1 yes 6 2ft gas 30 0
23 1 2 2 yes 7 3ft gas 35 1
31 1 2 3 yes 6 2ft elec 35 0

The first three rows in cbc.df describe the first question that was asked of re-
spondent 1, which is the question shown in Fig. 13.1. The choice column shows
that this respondent chose the third alternative, which was a 6-passenger gas engine
minivan with 3 ft of cargo capacity at a price of $30,000 (represented in $1,000s
as “30”). resp.id indicates which respondent answered this question, ques in-
dicates that these first three rows were the profiles in the first question and alt
indicates that the first row was alternative 1, the second was alternative 2, and the
third was alternative 3. (The row numbers all the way to the left in the output are
not very meaningful. They indicate the profile number from our master list of 54
profiles that were used to generate the question; R carried this information over
when we generated the data.) The variable choice indicates which alternative the
respondent chose; it takes the value of 1 for the profile in each choice question that
was indicated as the preferred alternative.

The cbc.df data frame organizes the data in what is sometimes called “long” for-
mat, where each profile is on its own line and there is a column that indicates which
question the profile was displayed in. This is generally our preferred format for
choice data, since it allows you to have a different number of profiles in each ques-
tion by including additional rows. However, there are several other popular formats
including a “wide” format, where each row corresponds to a different question and
another format where the profiles are stored separately from the choices.

Because there is no standard format for choice data, when you work with different
R packages or use data collected with other software systems, you need to pay close
attention to how the package you are using expects the data to be formatted. Fortu-
nately, there are R functions that can be helpful when reformatting data including
base functions such as reshape(). You should never have to resort to tedious
manual reformatting using a spreadsheet tool. Often someone else has written re-
liable R code to do the reformatting. For example, Rcbc [25] provides a helpful
set of utilities for converting from the format used by Sawtooth Software into the
format used by the ChoiceModelR package.
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13.3.1 Inspecting Choice Data

Once you have your data properly formatted, it is tempting to estimate a complete
choice model immediately. Popular choice modeling software packages make it easy
to fit a model without even doing basic descriptives on the data. Don’t fall into this
trap! As with any other modeling, it is important to first get an understanding of the
data using basic descriptives. We start with summary:
> summary(cbc.df)

resp.id ques alt carpool seat cargo
Min. : 1.00 Min. : 1 Min. :1 yes:2655 6:3024 2ft:4501
1st Qu.: 50.75 1st Qu.: 4 1st Qu.:1 no :6345 7:2993 3ft:4499
Median :100.50 Median : 8 Median :2 8:2983
Mean :100.50 Mean : 8 Mean :2
3rd Qu.:150.25 3rd Qu.:12 3rd Qu.:3
Max. :200.00 Max. :15 Max. :3

...

We see how many times each level of each attribute appeared in the questions (about
3,000 times for three-level attributes and about 4,500 times for two-level attributes).
However, a more informative way to summarize choice data is to compute choice
counts, which are cross tabs on the number of times respondents chose an alter-
native at each feature level. We can do this easily using xtabs(), covered in
Chap. 5:

> xtabs(choice ∼ price, data=cbc.df)
price
30 35 40

1486 956 558

Respondents chose a minivan at the $30 K price point much more often than they
chose minivans priced at $35 K or $40 K. If we compute counts for the cargo
attribute, we find that the choices were more balanced between the two options,
suggesting that cargo was not as important to customers as price:

> xtabs(choice ∼ cargo, data=cbc.df)
cargo
2ft 3ft
1312 1688

We encourage you to compute choice counts for each attribute before estimating a
choice model. If you find that your model’s estimates or predicted shares are not
consistent with the raw counts, consider whether there could be a mistake in the
data formatting. Many times, a junior analyst has come to one of us saying, “The
predictions from my choice model don’t make sense to the client,” and our first
question is always,“Have you looked at the raw choice counts?”

Often this reveals a mistake, but when there is no mistake, it can be helpful to show
the clients the raw choice counts to help them understand that your model pre-
dictions are based on how people responded in the survey. With that warning, we
can now estimate our first choice model. By fitting a choice model, we can get a
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precise measurement of how much each attribute is associated with respondents’
choices.

13.3.2 Fitting Choice Models with mlogit()

We use the mlogit package, which you may need to install with install.
packages(). mlogit estimates the most basic and commonly used choice
model, the multinomial logit model. This model is also called the conditional
logit.

mlogit requires the choice data to be in a special data format created using the
mlogit.data() function. You pass your choice data to mlogit.data, along
with a few parameters telling it how the data is organized. mlogit.data accepts
data in either a “long” or a “wide” format and you tell it which you have using
the shape parameter. The choice, varying and id.var parameters indicate
which columns contain the response data, the attributes and the respondent ids,
respectively.
> library(mlogit)
> cbc.mlogit <- mlogit.data(data=cbc.df, choice="choice", shape="long",
+ varying=3:6, alt.levels=paste("pos",1:3),
+ id.var="resp.id")

The resulting cbc.mlogit is an mlogit.data object that can be used to es-
timate a model with mlogit(). The syntax for mlogit uses formula notation
similarly to other functions for regression models in R:

> m1 <- mlogit(choice ∼ 0 + seat + cargo + eng + price, data = cbc.mlogit)

> summary(m1)

...

Frequencies of alternatives:

pos 1 pos 2 pos 3

0.32700 0.33467 0.33833

...

Coefficients :

Estimate Std. Error t-value Pr(>|t|)

seat7 -0.535280 0.062360 -8.5837 < 2.2e-16 ***
seat8 -0.305840 0.061129 -5.0032 5.638e-07 ***
cargo3ft 0.477449 0.050888 9.3824 < 2.2e-16 ***
enghyb -0.811282 0.060130 -13.4921 < 2.2e-16 ***
engelec -1.530762 0.067456 -22.6926 < 2.2e-16 ***
price35 -0.913656 0.060601 -15.0765 < 2.2e-16 ***
price40 -1.725851 0.069631 -24.7856 < 2.2e-16 ***
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Log-Likelihood: -2581.6
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The output also looks quite similar to what we have seen for other models. At the
bottom of the output is a table of the estimated part worth coefficients for the popula-
tion. The Estimate lists the mean values for each level; these must be interpreted
relative to the base levels of each attribute. For example, the estimate for seat7
measures the attractiveness of 7 passenger minivans relative to 6 passenger mini-
vans. The negative sign tells us that, on average, our simulated customers preferred
6 seat minivans to 7 seat minivans. Estimates that are larger in magnitude indicate
stronger preferences, so we can see that customers strongly disliked electric engines
(relative to the base level, which is gas) and disliked the $40 K price (relative to the
base level price of $30). These parameter estimates are on the logit scale (Sect. 9.2.1)
and typically range between −2 and 2.

The Std. Error column gives a sense of how precise the estimate is, given the
data, along with a statistical test of whether the coefficient is different than zero. A
non-significant test result indicates that there is no detectible difference in prefer-
ence for that level relative to the base level. Just as with any statistical model, the
more data you have in you conjoint study (for a given set of attributes), the smaller
the standard errors will be. Similarly, if there are many attributes and levels in a
study (for a fixed number of respondents answering a survey of a given length), the
part worth estimates will be very imprecise. We’ll discuss more what this means for
an analysis in Sect. 13.6.

You may have wondered why we included 0 + in the formula for m1, indicating
that we did not want an intercept included in our model. We could estimate a model
with an intercept:

> m2 <- mlogit(choice ∼ seat + cargo + eng + price, data = cbc.mlogit)
> summary(m2)
...
Coefficients :

Estimate Std. Error t-value Pr(>|t|)
pos 2:(intercept) 0.028980 0.051277 0.5652 0.5720
pos 3:(intercept) 0.041271 0.051384 0.8032 0.4219
seat7 -0.535369 0.062369 -8.5840 < 2.2e-16 ***
seat8 -0.304369 0.061164 -4.9763 6.481e-07 ***
cargo3ft 0.477705 0.050899 9.3854 < 2.2e-16 ***
enghyb -0.811494 0.060130 -13.4956 < 2.2e-16 ***
engelec -1.529423 0.067471 -22.6677 < 2.2e-16 ***
price35 -0.913777 0.060608 -15.0769 < 2.2e-16 ***
price40 -1.726878 0.069654 -24.7922 < 2.2e-16 ***
...
Log-Likelihood: -2581.3
McFadden Rˆ2: 0.21674
Likelihood ratio test : chisq = 1428.5 (p.value = < 2.22e-16)

When we include the intercept, mlogit adds two additional parameters that indi-
cate preference for the different positions in the question (left, right, or middle in
Fig. 13.1): pos2:(intercept) indicates the relative preference of the second
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position in the question (versus the first) and pos3:(intercept) indicates the
preference for the third position (versus the first.) These are sometimes called alter-
native specific constants or ASC’s to differentiate them from the single intercept in
a linear model.

In a typical conjoint analysis study, we don’t expect that people will choose a mini-
van because it is on the left or the right in a survey question! For that reason, we
would not expect the estimated alternative specific constants to differ from zero. If
we found one of these parameters to be significant, that might indicate that some
respondents are simply choosing the first or the last option without considering the
question.

In this model, the intercept parameter estimates are non-significant and close to zero.
This suggests that it was reasonable to leave them out of our first model, but we can
test this formally using lrtest():

> lrtest(m1, m2)
Likelihood ratio test

Model 1: choice ∼ 0 + seat + cargo + eng + price
Model 2: choice ∼ seat + cargo + eng + price
#Df LogLik Df Chisq Pr(>Chisq)

1 7 -2581.6
2 9 -2581.3 2 0.6789 0.7122

This function performs a statistical test called a likelihood ratio test, which can be
used to compare two choice models where one model has a subset of the parameters
of another model. Comparing m1 to m2 results in a p-value (Pr(>Chisq)) of
0.7122. Since the p-value is much greater than 0.05, we can conclude that m1 and
m2 fit the data equally well. This suggests that we don’t need the alternative specific
constants to fit the present data.

There are a few occasions where alternative specific constants do make sense. In
some conjoint studies, the respondent is presented with several “fixed” alternatives.
Option 1 might be a salad, option 2 might be a sandwich, and option 3 might be
a soup. In each question, the attributes of those options vary, but the respondent
is always asked to chose from one salad, one sandwich and one soup. Similarly,
there might be a study of commuters’ choice of transportation alternatives where
alternative 1 is always a bus, alternative 2 is always a train, and alternative 3 is
always driving. In such cases, you should include the alternative specific constants,
but in the majority of conjoint analysis surveys in marketing, alternative specific
constants aren’t used.

You don’t have to treat every attribute in a conjoint study as a factor. As with
linear models, some predictors may be factors while others are numeric. For ex-
ample, we can include price as a numeric predictor with a simple change to
the model formula. In the model formula, we convert price to character vec-
tor using as.character and then to a number using as.numeric. (If you
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use as.numeric without as.character first, price will be converted to the
values 1, 2, and 3 due to the way R stores factors internally. Converting to a char-
acter first results in values of 30, 35, and 40.)

> m3 <- mlogit(choice ∼ 0 + seat + cargo + eng
+ + as.numeric(as.character(price)),
+ data = cbc.mlogit)
> summary(m3)
...
Coefficients :

Estimate Std. Error t-value Pr(>|t|)
seat7 -0.5345392 0.0623518 -8.5730 < 2.2e-16 ***
seat8 -0.3061074 0.0611184 -5.0084 5.488e-07 ***
cargo3ft 0.4766936 0.0508632 9.3721 < 2.2e-16 ***
enghyb -0.8107339 0.0601149 -13.4864 < 2.2e-16 ***
engelec -1.5291247 0.0673982 -22.6879 < 2.2e-16 ***
as.numeric(as.character(price)) -0.1733053 0.0069398 -24.9726 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’0.1 ‘ ’ 1

Log-Likelihood: -2582.1

The output now shows a single parameter for price. The estimate is negative indi-
cating that people prefer lower prices to higher prices. A quick likelihood ratio test
suggests that the model with a single price parameter fits just as well as our first
model.

> lrtest(m1, m3)
Likelihood ratio test

Model 1: choice ∼ 0 + seat + cargo + eng + price
Model 2: choice ∼ 0 + seat + cargo + eng + as.numeric(as.character(price))
#Df LogLik Df Chisq Pr(>Chisq)

1 7 -2581.6
2 6 -2582.1 -1 0.9054 0.3413

Given this finding, we choose m3 as our preferred model because it has fewer pa-
rameters.

13.3.3 Reporting Choice Model Findings

It is often difficult, even for those with training in choice models, to interpret choice
model part worth estimates directly. The coefficients are on an unfamiliar scale and
they measure relative preference for the levels, which can make them difficult to
understand. So, instead of presenting the coefficients, most choice modelers pre-
fer to focus on using the model to make choice share predictions or to compute
willingness-to-pay for each attribute.
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13.3.3.1 Willingness-to-Pay

In a model like m3 where we estimate a single parameter for price, we can compute
the average willingness-to-pay for a particular level of an attribute by dividing the
coefficient for that level by the price coefficient.

> coef(m3)["cargo3ft"]/(-coef(m3)["as.numeric(as.character(price))"]/1000)
cargo3ft
2750.601

The result is a number measured in dollars, $2750.60 in this case. (We divide by
1000 because our prices were recorded in 1,000s of dollars.) Willingness-to-pay is
a bit of a misnomer; the proper interpretation of this number is that, on average,
customers would be equally divided between a minivan with 2 ft of cargo space and
a minivan with 3 ft of cargo space that costs $2750.60 more. Another way to think
of it is that $2750.60 is the price at which customers become indifferent between the
two cargo capacity options. This same willingness to pay value can be computed for
every attribute in the study and reported to decision makers to help them understand
how much customers value various features.

13.3.3.2 Simulating Choice Shares

While willingness-to-pay is more interpretable than attribute coefficients, it can still
be difficult to understand. Many analysts prefer to focus exclusively on using the
model to make share predictions. A share simulator allows you to define a number
of different alternatives and then use the model to predict how customers would
choose among those new alternatives. For example, you could use the model to
predict choice share for the company’s new minivan design against a set of key
competitors. By varying the attributes of the planned minivan design, you can see
how changes in the design affect the choice share.

Unfortunately, there isn’t a handy predict() function for mlogit model ob-
jects, as there are for many other types of model objects. Luckily, it isn’t too difficult
to write our own:

> # Predicting shares
> predict.mnl <- function(model, data) {
+ # Function for predicting shares from a multinomial logit model
+ # model: mlogit object returned by mlogit()
+ # data: a data frame containing the set of designs for which you want to
+ # predict shares. Same format as the data used to estimate model.
+ data.model <- model.matrix(update(model$formula, 0 ∼ .), data = data)[,-1]
+ utility <- data.model%*%model$coef
+ share <- exp(utility)/sum(exp(utility))
+ cbind(share, data)
+ }

In a moment, we’ll walk through this code more carefully, but first let’s see how
it works. The comments tell us that the function takes two inputs: a model object
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returned from mlogit() and a data frame containing the set of designs for which
you want to predict shares. We already have several model objects, so all we need to
do is create new data. One way to do this is to create the full set of possible designs
using expand.grid() and select the designs we want by row number:

> (new.data <- expand.grid(attrib)[c(8, 1, 3, 41, 49, 26), ])
seat cargo eng price

8 7 2ft hyb 30
1 6 2ft gas 30
3 8 2ft gas 30
41 7 3ft gas 40
49 6 2ft elec 40
26 7 2ft hyb 35

We then pass these designs to predict.mnl() to determine what customers
would choose if they had to pick among these six minivan alternatives:

> predict.mnl(m3, new.data)
share seat cargo eng price

8 0.11268892 7 2ft hyb 30
1 0.43263922 6 2ft gas 30
3 0.31855551 8 2ft gas 30
41 0.07216867 7 3ft gas 40
49 0.01657221 6 2ft elec 40
26 0.04737548 7 2ft hyb 35

The model-predicted shares are shown in the column labeled share and we can see
that among this set of products, we would expect respondents to choose the 7-seat
hybrid engine minivan with 2 ft of cargo space at $30 K a little more than 11 % of
the time. If a company was planning to launch a minivan like this, they could use
the model to see how changing the attributes of this product would affect the choice
shares. Note that these share predictions are always made relative to a particular set
of competitors; the share for the first minivan would change if the competitive set
were different.

For those who are new to choice models, we should caution against using share
predictions based on survey data as a market share forecast. While these share pre-
dictions are typically a good representation of how respondents would behave if
they were asked to choose among these six minivans in a new survey, that predicted
survey response might not translate directly to sales in the marketplace. Customers
might not be able to find the product in stores or they may react differently to the
features when they see them in the showroom. We generally recommend that the
analyst be careful to communicate this by labeling the predicted shares as “survey
shares” or “preference shares” to alert others to this distinction. If you estimate a
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multinomial logit model using retail purchase data, as we discussed earlier, you
would not need to make this caveat, as your predictions would be based on real-
world purchases.

We could compute shares using model m1, which treated price as a factor rather
than a continuous variable:

> predict.mnl(m1, new.data)
share seat cargo eng price

8 0.11273356 7 2ft hyb 30
1 0.43336911 6 2ft gas 30
3 0.31917819 8 2ft gas 30
41 0.07281396 7 3ft gas 40
49 0.01669280 6 2ft elec 40
26 0.04521237 7 2ft hyb 35

We see that the predicted shares are almost identical, confirming our previous con-
clusion that m3 is very similar to m1. (Comparing predicted shares is not the best
way to compare two models. For a formal comparison of models, we recommend
lrtest().)

Now that we have seen how predict.mnl() works, let’s take a closer look at the
code for the function. Ignoring the comments, the code is just four lines. We repeat
them here so that we can discuss each line, but you don’t need to type them into the
console again. On the first line, we convert the data, which is stored as factors, to a
coded matrix:

data.model <- model.matrix(update(model$formula, 0 ∼ .), data = data)[,-1]

We do this using two functions from base R for working with formulas. The func-
tion model.matrix, which we saw earlier in the chapter, converts the data from
factors to coded effects. It requires the right-hand side of the formula from model,
which we obtain using the update function for formulas. We also have to remove
the first column of the result of model.matrix, because our choice model doesn’t
have an intercept. On the next line, we compute the utility for each product by multi-
plying the coded data by the model coefficients using matrix multiplication:

utility <- data.model %*% model$coef

The result is a utility value for each product in the set based on its attributes. Finally,
we convert that to shares using the multinomial logit equation:

share <- exp(utility) / sum(exp(utility))

The function then returns the shares along with the product design data. (Experi-
enced choice modelers will notice that we are slightly abusing terminology when we
call this utility. More precisely this should be called the deterministic portion
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of the utility, since it doesn’t include the error term. We do not include a stochastic
component in the share simulator, because we want to report the expected average
shares across many choices.)

13.3.3.3 Sensitivity Plots

Often a product design team has a particular product design in mind and wants to
know how share would change if they were to change their design. For example,
suppose the minivan designers plan to build a 7-passenger hybrid minivan with 2 ft.
of cargo space and sell it at $30 K. The model can be used to predict how share
would change if different levels of the attributes were included (while keeping the
competitive set fixed.) The plot in Fig. 13.2 shows how share would change if we
changed each of the attributes of the design, one at a time. We see that changing
the planned 7-seat design to a 6-seat design would increase share by just under
0.07. Increasing the price to $35 K would decrease share by about 0.06. This gives
the design team an at-a-glance picture of how changes in their design affect choice
share.
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Fig. 13.2. Sensitivity plot showing
how share for the planned design
changes as we change each attribute,
relative to a set of competing designs.
The planned design is a 7-passenger
hybrid minivan with 2 ft. of cargo
space offered at $30,000.

Producing this plot using R is relatively simple: we just need to loop through all
the attribute levels, compute a share prediction, and save the predicted share for
the target design. Since this is an analysis we do regularly, we wrote a function to
do it.

> sensitivity.mnl <- function(model, attrib, base.data, competitor.data) {
+ # Function for creating data for a share-sensitivity chart
+ # model: mlogit object returned by mlogit() function
+ # attrib: list of vectors with attribute levels to be used in sensitivity
+ # base.data: data frame containing baseline design of target product
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+ # competitor.data: data frame containing design of competitive set
+ data <- rbind(base.data, competitor.data)
+ base.share <- predict.mnl(model, data)[1,1]
+ share <- NULL
+ for (a in seq_along(attrib)) {
+ for (i in attrib[[a]]) {
+ data[1,] <- base.data
+ data[1,a] <- i
+ share <- c(share, predict.mnl(model, data)[1,1])
+ }
+ }
+ data.frame(level=unlist(attrib), share=share, increase=share-base.share)
+ }

Using sensitivity.mnl, we create the plot in Fig. 13.2 with four com-
mands:

> base.data <- expand.grid(attrib)[c(8), ]
> competitor.data <- expand.grid(attrib)[c(1, 3, 41, 49, 26), ]
> (tradeoff <- sensitivity.mnl(m1, attrib, base.data, competitor.data))

level share increase
seat1 6 0.17831027 0.06557671
seat2 7 0.11273356 0.00000000
...
price3 40 0.02211862 -0.09061494
> barplot(tradeoff$increase, horiz=FALSE, names.arg=tradeoff$level,
+ ylab="Change in Share for Baseline Product")

13.3.4 Share Predictions for Identical Alternatives

Occasionally, you may want to predict shares for two designs that are identical in
terms of the attributes that you’ve included in your conjoint study. For example, you
might be planning to offer a design that is the same as a competitor. A naive analyst
might include both designs in a set to estimate with predict.mnl() and there is
nothing to stop one from doing that:

> new.data.2 <- expand.grid(attrib)[c(8, 8, 1, 3, 41, 49, 26), ]
> predict.mnl(m1, new.data.2)

share seat cargo eng price
8 0.10131227 7 2ft hyb 30
8.1 0.10131227 7 2ft hyb 30
1 0.38946350 6 2ft gas 30
3 0.28684152 8 2ft gas 30
41 0.06543701 7 3ft gas 40
49 0.01500162 6 2ft elec 40
26 0.04063181 7 2ft hyb 35
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However, these share predictions may be considered unrealistic. When we estimate
shares from m1 with just one copy of design 8, we get a share of about 0.113. With
two copies of the same design, each alternative is predicted to get a share of about
0.101 for a total of 0.202 between the two of them. It seems quite unreasonable
that people would be more likely to choose a 7-passenger, 2 ft., hybrid at $30 K just
because there are two of them in the choice set. Beyond that, the relative shares of all
the other vehicles have remained the same, including the higher-priced 7-passenger
hybrid (design 26 in the last row). Why wouldn’t design 8 steal more share from
design 26 than from the other non-hybrid vehicles?

While this is confusing, multinomial logit models make predictions in this way.
Much has been written about this property of the multinomial logit model and there
are many arguments about whether it is desirable. In fact, the property has been
given a name: the independence of irrelevant alternatives or IIA property. It is also
sometimes called the “red bus/blue bus problem” based on a classic example that
involves predicting share for two different color buses that have otherwise identical
features. Predictions from the multinomial logit model for two identical alternatives
or even two nearly identical alternatives will exhibit this property.

More sophisticated hierarchical models, which we discuss in Sect. 13.5, relax this
property somewhat, although they still may make predictions for similar or identi-
cal alternatives that seem unreasonable [36]. There are a number of proposed meth-
ods to estimate choice models that do not have the IIA property including nested
logit, generalized logit, and multinomial probit. If you need to predict shares for
nearly identical designs, we encourage you to review those alternatives. However,
the majority of marketers today use either the multinomial logit or the hierarchical
multinomial logit model, and—we hope—try to avoid including identical or nearly
identical designs when estimating shares.

13.3.5 Planning the Sample Size for a Conjoint Study

A crucial issue in planning a successful conjoint analysis study is to decide how
many respondents should complete the survey. To see how sample size affects
the model estimates and share predictions, let’s estimate a model using just the
data from the first 25 respondents. We do this by creating small.conjoint,
which is an mlogit.data object with just the first 25× 15× 3 = 1125 rows of
our original cbc.df data, corresponding to the survey responses for the first 25
respondents.
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> small.cbc <- mlogit.data(data=cbc.df[1:(25*15*3),],
+ choice="choice", shape="long",
+ varying=3:6, alt.levels=paste("pos", 1:3),
+ id.var="resp.id")
> m4 <- mlogit(choice ∼ 0 + seat + cargo + eng + price, data = small.cbc)

If we take a look at the coefficient estimates for m4 and compare them to the coeffi-
cient estimates for m1 (above), we can see that the estimated coefficients for m4 are
similar, but the standard errors for the coefficients are more than three times as big,
reflecting the fact that with less data, our estimates of the model coefficients are less
precise.

> summary(m4) # larger standard errors
...

Estimate Std. Error t-value Pr(>|t|)
seat7 -0.74326 0.17767 -4.1833 2.873e-05 ***
seat8 -0.15180 0.16859 -0.9004 0.3679142
cargo3ft 0.45613 0.14459 3.1546 0.0016071 **
enghyb -0.59674 0.16838 -3.5440 0.0003941 ***
engelec -1.62677 0.19764 -8.2311 2.220e-16 ***
price35 -0.81508 0.17304 -4.7105 2.471e-06 ***
price40 -1.71390 0.20304 -8.4410 < 2.2e-16 ***
...

The standard errors are also higher for the attribute-levels that are least often cho-
sen, including the engelec and price40 coefficients. In general, standard er-
rors for less-frequently chosen attributes will be higher. One method for planning
sample sizes focuses on reducing the standard errors of the estimates to acceptable
levels. We discuss this further when we discuss the design of conjoint surveys in
Sect. 13.6.

We can also compare predictions between m1 and m4:

> cbind(predict.mnl(m4, new.data), predict.mnl(m1, new.data))
share seat cargo eng price share seat cargo eng price

8 0.10876219 7 2ft hyb 30 0.11273356 7 2ft hyb 30
1 0.41536666 6 2ft gas 30 0.43336911 6 2ft gas 30
3 0.35686673 8 2ft gas 30 0.31917819 8 2ft gas 30
41 0.05615650 7 3ft gas 40 0.07281396 7 3ft gas 40
49 0.01470947 6 2ft elec 40 0.01669280 6 2ft elec 40
26 0.04813846 7 2ft hyb 35 0.04521237 7 2ft hyb 35

Here we find that the two models make similar share predictions. This illustrates the
fact that comparing share predictions is not the ideal way to compare two different
conjoint survey designs. When we look at the standard errors for the coefficients,
we see the difference between m1 and m4 more clearly.

If we looked at the standard errors of the share predictions, they would be more pre-
cise for m1, but we can’t see that here because there are no standard errors reported
for shares. While it is possible to compute standard errors for share predictions, it
requires using the “delta method” or a bootstrapping strategy, both of which are dif-
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ficult to do outside of a programming environment like R. So, among those who do
not use R, it is uncommon to report standard errors or estimates of uncertainty for
share predictions.

This is unfortunate; decision makers often see only the point estimates for share
predictions and are not informed about the confidence intervals of those shares.
An ambitious reader might write code to produce intervals for share predictions
from the multinomial logit model, but we will hold off on estimating intervals
for share predictions until we review choice models in a Bayesian framework in
Sect. 13.5.

13.4 Adding Consumer Heterogeneity to Choice Models

Up to this point, we have focused on the multinomial logit model, which estimates
a single set of part worth coefficients for a whole sample. In this section, we look
at a model that allows for each respondent to have his or her own coefficients. Dif-
ferent people have different preferences, and models that estimate individual-level
coefficients can fit data better and make more accurate predictions than sample-level
models (see [137]).

To estimate a model where each respondent has his or her own part worths, it is
helpful to have multiple observations for each respondent. This is not a problem in a
typical conjoint analysis study because each respondent answers multiple question.
However, it can be a problem when estimating choice models using retail purchase
data, because many people only make a single purchase. Most conjoint analysis
practitioners routinely estimate heterogeneous choice models with conjoint survey
data and it is easy to do this in R. In this section, we show how to do it using
mlogit, which uses traditional frequentist statistical methods. In Sect. 13.5, we
show how to estimate heterogeneous choice models using Bayesian methods. For
either section, if you are not familiar with hierarchical models, you should review
the basics in Sect. 9.3.

13.4.1 Estimating Mixed Logit Models with mlogit()

The statistical term for coefficients that vary across respondents (or customers) is
random coefficients or random effects (see Sect. 9.3.1). To estimate a multinomial
logit model with random coefficients using mlogit, we define a vector indicat-
ing which coefficients should vary across customers. mlogit requires a character
vector the same length as the coefficient vector with a letter code indicating what
distribution the random coefficients should follow across the respondents: ‘n’ for
normal, ‘l’ for log normal, ‘t’ for truncated normal, and ‘u’ for uniform. For this
analysis, we assume that all the coefficients are normally distributed across the pop-
ulation and call our vector m1.rpar.
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> m1.rpar <- rep("n", length=length(m1$coef))
> names(m1.rpar) <- names(m1$coef)
> m1.rpar

seat7 seat8 cargo3ft enghyb engelec price35 price40
"n" "n" "n" "n" "n" "n" "n"

We pass this vector to mlogit as the rpar parameter, which is short for “random
parameters”. In addition, we tell mlogit that we have multiple choice observations
for each respondent (panel=TRUE) and whether we want to allow the random
parameters to be correlated with each other. For this first run, we assume that we do
not want random parameters to be correlated (correlation=FALSE), a setting
we reconsider below.

> m1.hier <- mlogit(choice ∼ 0 + seat + eng + cargo + price,
+ data = cbc.mlogit,
+ panel=TRUE, rpar = m1.rpar, correlation = FALSE)

The algorithm to estimate the heterogeneous logit model is computationally inten-
sive, so it may take a few seconds to run. Once it finishes, you can look at the
parameter estimates using summary():

> summary(m1.hier)
...
Coefficients :

Estimate Std. Error t-value Pr(>|t|)
seat7 -0.642241 0.070893 -9.0593 < 2.2e-16 ***
seat8 -0.390021 0.070460 -5.5353 3.106e-08 ***
enghyb -0.926145 0.067456 -13.7296 < 2.2e-16 ***
engelec -1.831864 0.083439 -21.9544 < 2.2e-16 ***
cargo3ft 0.550838 0.058459 9.4226 < 2.2e-16 ***
price35 -1.081310 0.070874 -15.2567 < 2.2e-16 ***
price40 -1.991787 0.085312 -23.3471 < 2.2e-16 ***
sd.seat7 -0.651807 0.101906 -6.3961 1.594e-10 ***
sd.seat8 0.995007 0.093397 10.6535 < 2.2e-16 ***
sd.enghyb 0.159495 0.137950 1.1562 0.247607
sd.engelec 0.973303 0.099850 9.7476 < 2.2e-16 ***
sd.cargo3ft 0.307194 0.131109 2.3430 0.019127 *
sd.price35 -0.260907 0.121369 -2.1497 0.031579 *
sd.price40 0.418148 0.128104 3.2641 0.001098 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Log-Likelihood: -2498.5

random coefficients
Min. 1st Qu. Median Mean 3rd Qu. Max.

seat7 -Inf -1.0818780 -0.6422410 -0.6422410 -0.2026039 Inf
seat8 -Inf -1.0611428 -0.3900209 -0.3900209 0.2811010 Inf
cargo3ft -Inf 0.3436387 0.5508377 0.5508377 0.7580366 Inf
enghyb -Inf -1.0337226 -0.9261449 -0.9261449 -0.8185673 Inf
engelec -Inf -2.4883466 -1.8318636 -1.8318636 -1.1753805 Inf
price35 -Inf -1.2572890 -1.0813097 -1.0813097 -0.9053304 Inf
price40 -Inf -2.2738236 -1.9917870 -1.9917870 -1.7097505 Inf
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The results show 14 estimated parameters, which is twice as many as we had in m1.
These parameters describe the average part worth coefficients across the popula-
tion of respondents (labeled seat7, seat8, etc.) as well as how those parameters
vary across the population (reported as standard deviations and labeled sd.seat7,
sd.seat8, etc.)

The standard deviation parameter estimates indicate that there is a lot of hetero-
geneity in preference for 7 or 8 seats over 6 seats. For example, the estimate of
sd.seat8 is about 0.995 larger than the mean estimate for the level of 0.39 which
suggests that some people prefer 6 seats to 8, while others prefer 8. Another way to
see this is in the output section labeled random coefficients, which shows
the range of respondent-level coefficients. For seat8, the first quartile is −1.06
(indicating a preference for 6 seats) and the third quartile is 0.281 (indicating a
preference for 8 seats). Because we specified the random coefficients as normally
distributed, the model assumes that the majority of respondents are in the middle,
slightly preferring 6 seats to 8. Given that there is a large fraction of respondents
who prefer 8 seats, it may make sense for the company to offer a minivan with 6
seats and a minivan with 8 seats. To tell that for certain, you could make several
share predictions and compare the potential increase in market share to the costs of
offering both options.

There is one additional feature we can add to the random coefficients model using
mlogit(). Model m1 assumed that there were no correlations between the random
coefficients, meaning that if one person prefers 8 seats over 6, we would not expect
that they also prefer 7 seats over 6. Including correlations in the random coefficients
allows us to determine, based on the data, whether people who like one attribute
also tend to like another attribute. This is easily done by including correlations
= TRUE as a parameter in the call to mlogit or by using the update function
provided by mlogit.

> m2.hier <- update(m1.hier, correlation = TRUE)
> summary(m2.hier)
...
Coefficients :

Estimate Std. Error t-value Pr(>|t|)
seat7 -0.6571127 0.0730592 -8.9942 < 2.2e-16 ***
seat8 -0.4336405 0.0754669 -5.7461 9.132e-09 ***
enghyb -0.9913358 0.0731532 -13.5515 < 2.2e-16 ***
engelec -1.8613750 0.0855809 -21.7499 < 2.2e-16 ***
cargo3ft 0.6021314 0.0623728 9.6537 < 2.2e-16 ***
price35 -1.1819210 0.0770295 -15.3437 < 2.2e-16 ***
price40 -2.1749326 0.0960858 -22.6353 < 2.2e-16 ***
seat7.seat7 0.6830318 0.1046707 6.5255 6.776e-11 ***
seat7.seat8 1.0089934 0.1092730 9.2337 < 2.2e-16 ***
seat7.cargo3ft -0.0624345 0.0962322 -0.6488 0.5164737
seat7.enghyb -0.3517319 0.1146392 -3.0682 0.0021538 **
seat7.engelec -0.1946944 0.0859581 -2.2650 0.0235131 *
seat7.price35 0.1318172 0.0973219 1.3544 0.1755947
...
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Model m2.hier now includes many more parameters, so many that we have
truncated the output. The additional parameters are the variance and covariance
parameters between the random coefficients. seat7.seat7 is the variance of the
seat7 random coefficient and seat7.seat8 is our estimate of the covariance
between preference for 7 seats and preference for 8 seats. The estimate is significant
and positive, indicating that people who prefer 7 seats also tend to prefer 8 seats.
To get a better sense of the strength of this association, we can extract the covari-
ance matrix using cov.mlogit and then convert it to a correlation matrix using
cov2cor from base R.

> cov2cor(cov.mlogit(m2.hier))
seat7 seat8 cargo3ft enghyb engelec price35

seat7 1.0000000 0.774540837 -0.1116303 -0.313095351 -0.4886197 0.24366546
seat8 0.7745408 1.000000000 0.1364164 -0.001877182 -0.2351177 -0.07335863
cargo3ft -0.1116303 0.136416377 1.0000000 0.498038677 -0.6257625 -0.03750020
enghyb -0.3130954 -0.001877182 0.4980387 1.000000000 0.1096523 0.16249428
engelec -0.4886197 -0.235117662 -0.6257625 0.109652292 1.0000000 -0.24671982
price35 0.2436655 -0.073358628 -0.0375002 0.162494277 -0.2467198 1.00000000
price40 0.1318966 0.034897989 0.3074710 -0.026541375 -0.4260211 0.54721196
...

This matrix shows that the correlation between the part worth for 7 seats and the
part worth for 8 seats is 0.77, a strong association. In real data, it is common to find
correlations between levels of the same attribute; if an attribute is important to a
respondent, then he or she will likely have parameters with larger absolute values
for all the levels of that attribute. For this reason, we strongly recommend that you
include correlations in all random coefficients choice models. When you review the
estimates of those models, you should review both the mean part worth coefficients,
which represent the average value that respondents place on each attribute, and the
variance and covariances in preferences across the population.

13.4.2 Share Prediction for Heterogeneous Choice Models

Reporting share predictions for heterogeneous choice models is largely the same as
for standard choice models. The key difference is in how those share predictions are
computed. The model assumes that there is a population of respondents, each with
different part worth coefficients. So, when we compute shares, we need to compute
the choice shares for many different respondents and then average over those to
get our overall share predictions. You can see how we do this by comparing our
prediction function for the hierarchical multinomial logit model to the prediction
function we had for the standard multinomial logit.

> predict.hier.mnl <- function(model, data, nresp=1000) {
+ # Function for predicting shares of a hierarchical multinomial logit model
+ # model: mlogit object returned by mlogit()
+ # data: a data frame containing the set of designs for which you want to
+ # predict shares. Same format at the data used to estimate model.
+ # Note that this code assumes all model parameters are random
+ data.model <- model.matrix(update(model$formula, 0 ∼ .), data = data)[,-1]
+ coef.Sigma <- cov.mlogit(model)
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+ coef.mu <- m2.hier$coef[1:dim(coef.Sigma)[1]]
+ draws <- mvrnorm(n=nresp, coef.mu, coef.Sigma)
+ shares <- matrix(NA, nrow=nresp, ncol=nrow(data))
+ for (i in 1:nresp) {
+ utility <- data.model%*%draws[i,]
+ share = exp(utility)/sum(exp(utility))
+ shares[i,] <- share
+ }
+ cbind(colMeans(shares), data)
+ }

The key difference is that we now compute the shares for each of nresp=1000
newly sampled, representative respondents. The part worths for these respondents
are drawn from a multivariate normal distribution with mean set at our estimated
value of mu and covariance equal to our estimated value of Sigma (draws <-
mvrnorm(n=nresp, coef.mu, coef.Sigma). The computation for each
respondent is exactly the same as our computation in predict.mnl. Once we
have the shares for all of the representative respondents, we average across respon-
dents to get our overall share predictions.

We compute shares using predict.hier.mnl just as we did before with
predict.mnl. It may take a moment, because we are doing 1,000 times more
computation.

> predict.hier.mnl(m2.hier, data=new.data)
colMeans(shares) seat cargo eng price

8 0.08959674 7 2ft hyb 30
1 0.46390066 6 2ft gas 30
3 0.34231092 8 2ft gas 30
41 0.05370156 7 3ft gas 40
49 0.01797406 6 2ft elec 40
26 0.03251606 7 2ft hyb 35

If you compare these share predictions to those we got with predict.mnl(m1,
data=new.data), you will see that they are similar, but not quite the same. For
example, the electric minivan in the second-to-last row gets slightly more share
with the heterogeneous model. Models that account for heterogeneity often pre-
dict that “niche” products attract a slightly larger share because the model accounts
for the fact that there are a small number of respondents who find those “niche”
designs very attractive. These models do not strictly follow the IIA property (see
Sect. 13.3.4); if two similar products appeal to the same subset of customers, they
will compete more closely with each other than with other products.

The share predictions produced by predict.hier.mnl are still based on the
point estimates of coef.Sigma and coef.mu. So, while we have accounted
for consumer heterogeneity in these predictions, we still haven’t accounted for our
uncertainty in the parameter estimates. This makes it difficult to determine what
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would be a (statistically) meaningful difference in share for two alternative de-
signs. While it is possible to estimate prediction intervals for these models in the
frequentist framework, it is easier to do so in a Bayesian framework. We address
prediction intervals for shares in the next section where we review Bayesian choice
models.

13.5 Hierarchical Bayes Choice Models

In this section, we show how to estimate choice models with heterogeneity us-
ing Bayesian methods and point out advantages (and some disadvantages) of the
Bayesian approach.

Moving into the Bayesian framework can be somewhat confusing, both because
the Bayesian approach to estimation is different and because Bayesians often use
different language to describe the same thing. Those who use the classical meth-
ods often refer to the model we estimated in the previous section as the “random-
coefficients multinomial logit” or “mixed logit” model. Bayesians tend to refer to
these same models (and some extensions of them) as hierarchical Bayes multinomial
logit.

There are several available packages for estimating choice models using Bayesian
methods. The MCMCpack package we used in Chap. 7 includes a function called
MCMCmnl to estimate non-hierarchical multinomial choice models [109]. To es-
timate the hierarchical choice model here, we use the ChoiceModelR package
[143], which builds on the bayesm package [136].

13.5.1 Estimating Hierarchical Bayes Choice Models with
ChoiceModelR

Unfortunately, there isn’t a universal standard for how choice data is stored and
we have to reorganize our data slightly to use ChoiceModelR. ChoiceModelR
requires the data to be stored in a “long” data frame where each row is an alternative
(as we have already in cbc.df), but it requires the selected alternative to be stored
as an integer number on the first row of each choice task, with zeros in the remaining
rows. It turns out that it takes just a few lines of code to create the new choice
data.
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> choice <- rep(0, nrow(cbc.df))
> choice[cbc.df[,"alt"]==1] <- cbc.df[cbc.df[,"choice"]==1,"alt"]
> head(choice)
[1] 3 0 0 2 0 0

Since there are three alternatives in each question, the first element of choice in-
dicates that the respondent chose the third alternative in the first choice task; the
second and third elements for choice are left as zeros. Similarly, the fourth ele-
ments indicates that the respondent chose the second alternative in the second choice
task, and the next two elements are zeros.

ChoiceModelR automatically codes factors but it uses a different scheme than
mlogit. To be consistent with the models we’ve run before, we’ll go ahead and
code the factors manually ourselves using model.matrix.

> cbc.coded <- model.matrix(∼ seat + eng + cargo + price, data = cbc.df)
> cbc.coded <- cbc.coded[, -1] # remove the intercept

Finally, we can create a new data frame that combines the coded attributes and the
choice back together with the resp.id, ques and alt (which are the first three
columns in cbc.df).

> choicemodelr.data <- cbind(cbc.df[,1:3], cbc.coded, choice)
> head(choicemodelr.data)

resp.id ques alt seat8 enghyb engelec cargo3ft price35 price40 choice
19 1 1 1 0 0 0 0 1 0 3
12 1 1 2 1 1 0 1 0 0 0
4 1 1 3 0 0 0 1 0 0 0
1 1 2 1 0 0 0 0 0 0 2
23 1 2 2 0 0 0 1 1 0 0
31 1 2 3 0 0 1 0 1 0 0

The function we use to estimate the hierarchical Bayes choice model is
choicemodelr(), which requires the data to be organized in exactly the format
above: a number indicating which respondent answered the question, a number
indicating which question the profile belongs to, and a number indicating which
alternative this was, and then the attributes followed by the choice. The choice is
stored as an integer number in the first row of each question.

A key advantage of the hierarchical Bayes framework is that it allows you relate a
customer’s part worths for the attributes to characteristics of the customer (some-
times called “demographics,” although this is a very poor name as we discuss later.)
In our data set, we happen to know whether each customer uses his or her car to
carpool and it seems quite reasonable that people who carpool might have different
part worths than people who don’t carpool. To figure out whether this is true, we
estimate a model where the part worths are a function of the respondent character-
istics, following a linear model. Of course, this means we need to pass the data on
the respondent characteristics to choicemodelr(), which expects this data to be
formatted as a matrix with one row for each respondent and one column for each
respondent characteristic.
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> carpool <- cbc.df$carpool[cbc.df$ques==1 & cbc.df$alt==1]=="yes"
> carpool <- as.numeric(carpool)
> choicemodelr.demos <- as.matrix(carpool, nrow=length(carpool))
> str(choicemodelr.demos)
num [1:200, 1] 1 0 0 0 1 0 0 1 0 0 ...

Note that each row in choicemodelr.demos represents a respondent and not
a question or an alternative, and so we have 200 rows. A value of 1 indicates that
the respondent does use their car to carpool and a value of 0 indicates that they
don’t.

With this bit of data re-organization done, we can call choicemodelr():

> library(ChoiceModelR)
> hb.post <- choicemodelr(data=choicemodelr.data, xcoding=rep(1, 7),
+ demos=choicemodelr.demos,
+ mcmc=list(R=20000, use=10000),
+ options=list(save=TRUE))

In addition to the data and the demos, there are a couple of additional parameters
of choicemodelr that control the estimation routine. The xcoding parameter
tells choicemodelr how you want the attributes coded; by setting this to a vector
of 1s, we indicate that we’ve already done the coding. The mcmc and options
parameters control several aspects of the algorithm, which we discuss below. You
can always type ?choicemodelr for more details, although the help files might
be more helpful to experienced Bayesian modelers than to novices.

While we recommend ChoiceModelR, there are a few aspects that make it less
“R-like” than some packages. For example, choicemodelr() does not use R’s
formula notation or the base functions for coding factors. It relies on the order of
the columns in the data frame, rather than using column names. The package does
not include common utility functions like summary() and predict(). Because
R is open source, it is up to each package development team to decide how they
want to structure their functions and how consistent the package is with other R
functions. While it sometimes requires a bit of work to figure out how a particular
package works, it is difficult to complain too much, since the package was donated
by the developers. If there is some functionality you’d like to see in a package, you
can always write it yourself and then suggest to the package developers that they
include your extension in their next release. (The name and email address of every
package’s maintainer are available in the package listing on CRAN.)

If you ran the code above, you probably noticed that it took a long time to run
and produced a lot of output about its process. We omitted that output here. In the
graphics window, you might have noticed something similar to Fig. 13.3.
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What is Fig. 13.3? The focus of Bayesian inference is on generating a posterior dis-
tribution for the parameters of a model. The posterior distribution samples the likely
values of a model’s parameters, given the observed data. Most Bayesian routines
like choicemodelr produce a set of random draws from the posterior distribu-
tion. Figure 13.3 is called a trace plot and it shows the posterior draws that have
been produced so far by the estimation routine.
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Fig. 13.3. Trace plot of posterior draws for a hierarchical Bayes choice model produced by
choicemodelr().

Without getting into the details of how and why these algorithms work, it is im-
portant to know that they don’t always start out producing posterior draws. There is
typically a burn-in period, where the algorithm settles into the posterior distribution.
Before we use draws from the distribution, we have to throw out these initial burn-in
draws. The trace plot allows us to see where the burn-in period ends. Judging from
Fig. 13.3 the algorithm seems to have settled in after the first 1,000 draws, because
that is where the lines plotting the estimated values settle into a stable, horizontal
pattern (apart from noise).

We used two other arguments with choicemodelr(). The mcmc=list
(R=20000, use=10000) argument tells choicemodelr that we want to
produce 20,000 posterior draws and that we want to use only the last 10,000 (giving
us a wide margin on the burn-in). The options=list(save=TRUE) argument
tells choicemodelr() to save those last 10,000 posterior draws. By default,
choicemodelr() saves every tenth draw, so it actually stores 1,000 posterior
draws.
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When choicemodelr() finishes, the posterior draws are saved to the object we
specified, hb.post, which becomes a list with four elements:

> names(hb.post)
[1] "betadraw" "deltadraw" "compdraw" "loglike"

The key parameters of the model are the average and the variance of the part
worths across the population. We can access one posterior draw of these parame-
ters by selecting an element of hb.post$compdraw. We arbitrarily look at draw
567.

> hb.post$compdraw[[567]]$mu
[1] -0.6565015 -0.4263809 -1.1496282 -1.8733265 0.5620929 -1.2089470
[7] -2.5772394

These are the average population part worths and you can compare them to the pa-
rameters we estimated with mlogit(). The parameters above come in the same
order as the first seven parameters estimated by mlogit(). For example, the aver-
age part worth for seat7 was -0.642 when we estimated it with mlogit() and
for this posterior draw we get a value of -0.657 from choicemodelr().

There is one key difference between this model and the model we estimated with
mlogit(). The parameters above represent the average part worth parameters
among respondents who do not use their car to carpool. The hierarchical Bayes
model also includes a set of “adjustments” for people who carpool; we can look
at the 567th draw of these adjustment factors by looking at the appropriate row of
hb.post$deltadraw.

> hb.post$deltadraw[567,]
[1] 1.63415698 1.78079508 -0.04400289 -0.12966126 0.02713614 -0.21926035
[7] -0.19518696

You can see that there are huge adjustments in the part worths for the first two
parameters: seat7 and seat8. The average part worth for 7 seats (versus the base
level of 6) for people who carpool is −0.657+ 1.634 = 0.977. This means that on
average people who carpool actually prefer 7 over 6 seats while people who don’t
carpool prefer 6 seats on average. This is a potentially critical insight for product
designers that we completely missed when we used the mixed logit model with
mlogit. You may not see a major difference in share predictions between these
two models, but the insight you get from reviewing the parameters can be quite
valuable.

We caution readers that this potential insight comes at a cost. We had to estimate
seven additional parameters to describe the population. Adding a large number of
additional parameters can make the burn-in period longer and it can add to uncer-
tainty to the parameter estimates. We suggest you only include respondent character-
istics that you believe should be related to the part worths. In this case, it seems rea-
sonable that minivan preferences should be different for people who carpool.
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In general, covariates that are directly related to product usage are ideal. There are
also potential issues with the scaling of these respondent characteristics; binary indi-
cators tend to work well as they avoid these scaling issues. It is generally a bad idea
to include general demographic variables like age, race, or gender, just because you
have them. Often demographic variables are not associated with product preferences
[47]. For this reason, we avoid referring to covariates as “demographics.”

We also have a set of parameters that describe the variance in part worths across the
population. We can pull out the 567th draw from hb.post:

> hb.post$compdraw[[567]]$rooti
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1.011972 -0.04367931 -0.045915749 0.1129225 0.005337426 -0.081773492
[2,] 0.000000 0.81711384 0.003180727 0.1535246 0.161135551 -0.192515134
[3,] 0.000000 0.00000000 1.011131267 -0.6173136 0.216005822 -0.011914137
[4,] 0.000000 0.00000000 0.000000000 0.8302175 -0.018093331 -0.002099283
[5,] 0.000000 0.00000000 0.000000000 0.0000000 1.146767704 -0.023986760
[6,] 0.000000 0.00000000 0.000000000 0.0000000 0.000000000 1.332875325
[7,] 0.000000 0.00000000 0.000000000 0.0000000 0.000000000 0.000000000
...

This set of parameters is actually stored as the Cholesky root of the covariance ma-
trix. This is the matrix equivalent of a square root and we can recover the covariance
matrix by “squaring” rooti with crossprod():

> crossprod(hb.post$compdraw[[567]]$rooti)
[,1] [,2] [,3] [,4] [,5]

[1,] 1.024087812 -0.044202250 -0.046465463 0.11427448 0.005401327
[2,] -0.044202250 0.669582906 0.004604584 0.12051469 0.131432954
[3,] -0.046465463 0.004604584 1.024504812 -0.62888172 0.218677697
[4,] 0.114274477 0.120514688 -0.628881721 1.10665848 -0.123023753
[5,] 0.005401327 0.131432954 0.218677697 -0.12302375 1.388055204
[6,] -0.082752504 -0.153734971 -0.008904404 -0.03317798 -0.061500274
[7,] 0.014590162 0.073588053 -0.233576644 0.47484770 0.281647756
...

The diagonals of this matrix describe the variance across the population in the part
worths and if you compare them to the estimates we got with mlogit, you will
find that variation across the population is generally smaller, particularly for the first
two parameters that describe preferences for number of seats. The reason for this is
that the new model accounts for some of the differences between individuals who
carpool versus not, so the remaining unexplained variation between respondents is
smaller.

In addition to population level parameters, we look at posterior draws of the
individual-level parameters:

> head(hb.post$betadraw[,,567])
[,1] [,2] [,3] [,4] [,5] [,6] ...

[1,] 1.0112255 0.6282393 -0.2210578 -0.01774596 0.8777881 -0.8889406 ...
[2,] -2.1737290 1.2036846 -2.2063721 -3.21025972 0.3277637 -2.8757266 ...
[3,] -2.4349625 -1.5172192 -0.7548992 -0.76935985 -0.2273173 -1.2754315 ...
...
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Each row of this output represents the part worths for each person, which you can
see vary widely. For example, for this posterior draw the first respondent really likes
7 seats over 6 or 8, since 1.011 is larger than 0 or 0.628. The second respondent
prefers 8 seats over 6 or 7. You could plot histograms of these part worth values to
get a sense for how preferences vary across the population (Sec. 9.4.3).

Up to this point, we’ve been talking about a single draw from the posterior (number
567). But if you look at hb.post$betadraw, you can see that there are 1,000
posterior draws of the seven part worths for each of 200 respondents.

> str(hb.post$betadraw)
num [1:200, 1:7, 1:1000] 0.816 -1.083 -2.306 -0.91 2.043 ...

To fully characterize the posterior and our uncertainty about these parameters, we
need summarize all of the posterior draws. Unfortunately, choicemodelr does
not provide convenient summaries, but for the respondent-level betadraws, we
can find the posterior means using apply.

> beta.post.mean <- apply(hb.post$betadraw, 1:2, mean)
> head(beta.post.mean)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.6333957 0.26137739 -0.4483550 -1.426702 1.1568186 -0.4751817
[2,] -2.1134244 0.64602926 -1.0926311 -1.916450 0.9893599 -1.4853397
[3,] -1.9297260 -2.10100104 -0.9827285 -1.413800 0.4395638 -1.4189584
...

The values in beta.post.mean show our best estimate for each individual’s
part worths. While it is possible to obtain individual-level estimates using classi-
cal methods, it is much more common for Bayesian choice modelers to focus on
individual-level parameters.

It is also important to recognize that with just 15 choice questions for each respon-
dent, there is still a great deal of uncertainty about those individual-level part worths.
We can get a sense for how much uncertainty there is by looking at the posterior
quantiles of the part worths for each respondent. We compute the fifth and 95th
quantiles of the individual betadraws, then display the mean and quantiles for the
first respondent:

> beta.post.q05 <- apply(hb.post$betadraw, 1:2, quantile, probs=c(0.05))
> beta.post.q95 <- apply(hb.post$betadraw, 1:2, quantile, probs=c(0.95))
> rbind(q05=beta.post.q05[1,], mean=beta.post.mean[1,], q95=beta.post.q95[1,])

[,1] [,2] [,3] [,4] [,5] [,6]
q05 -0.5380902 -1.1223590 -1.5063476 -2.876466010 0.05096963 -1.5266892
mean 0.6333957 0.2613774 -0.4483550 -1.426702290 1.15681862 -0.4751817
q95 1.8404189 1.5819603 0.6093953 0.001986669 2.36650000 0.6431527
...

These numbers represent how much uncertainty we have in our estimates of the first
respondent’s part worth estimates. Roughly, the range of likely values for respon-
dent 1’s preference for 7 seats over 6 (the first parameter) is about −0.538 to 1.840.
In other words, given this data, we can say that our best guess is that respondent
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1 prefers 7 seats (i.e., has a positive coefficient), but it is quite possible that the
respondent prefers 6 (i.e., has a negative coefficient). This is a huge amount of un-
certainty that we need to account for when making share predictions.

13.5.2 Share Prediction for Hierarchical Bayes Choice Models

The 1,000 posterior draws in hb.post$betadraw give us a sense of the range
of part worth values that each respondent might have and we can use these draws
to figure out the likely range of shares that we might get for new vehicle designs.
For each posterior draw, we can compute the shares for a new set of product designs
based on the values of the part worth coefficients for that draw. Each time we do
this, the shares we obtain represent a posterior draw for the shares. (Being able
to compute posterior draws for any function of the parameters in this way is one
of the great advantages of Bayesian MCMC.) We can compute the shares for a
number of different posterior draws (selected at random from the draws that we
produced when we called choicemodelr) and then analyze the range of shares
that we get.

We create a function for computing shares that loops over both the respondents and
the posterior draws:

> predict.hb.mnl <- function(betadraws, data) {
+ # Function for predicting shares from a hierarchical multinomial logit

model
+ # betadraws: matrix of betadraws returned by ChoiceModelIR
+ # data: a data frame containing the set of designs for which you want to
+ # predict shares. Same format at the data used to estimate model.
+ data.model <- model.matrix(∼ seat + eng + cargo + price, data = data)
+ data.model <- data.model[,-1] # remove the intercept
+ nresp <- dim(betadraws)[1]
+ ndraws <- dim(hb.post$betadraw)[3]
+ shares <- array(dim=c(nresp, nrow(data), ndraws))
+ for (d in 1:ndraws) {
+ for (i in 1:nresp) {
+ utility <- data.model%*%betadraws[i,,d]
+ shares[i,,d] = exp(utility)/sum(exp(utility))
+ }
+ }
+ shares.agg <- apply(shares, 2:3, mean)
+ cbind(share=apply(shares.agg, 1, mean),
+ pct=t(apply(shares.agg, 1, quantile, probs=c(0.05, 0.95))),
+ data)
+ }

The inner loop in this function for i in 1:nresp computes the shares for each
respondent for a given posterior draw. The outer loop for d in 1:ndraws loops
over the posterior draws. (If there were too many posterior draws, we could also use
a random subset of them.) The function stores the share estimates for each user for
each draw in shares. In the last few lines, the function averages the shares across
respondents resulting in an estimate of the shares for each posterior draw. We then
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compute the mean as well as the quantiles of those posterior draws to get a sense for
the likely range of shares.

When we compute the shares in this function, we use the estimated individual-level
part worths for the respondents in our data, which is what most analysts do in prac-
tice. In contrast, when we computed share predictions in the previous section using
the output from mlogit(), we sampled new representative respondents based on
our estimates of the population mean and covariance. We should point out that it is
possible to use the same approach with a Bayesian choice model, using the poste-
rior draws of mu, delta, and rooti and sampling a new set of respondents from
the multivariate normal distribution. This would require a relatively small change to
predict.hb.mnl.

When we apply predict.hb.mnl to the designs in new.data, we get both
point estimates and ranges of potential shares for each design:

> predict.hb.mnl(hb.post$betadraw, new.data)
share pct.5% pct.95% seat cargo eng price

8 0.09920353 0.086505556 0.11352010 7 2ft hyb 30
1 0.45300946 0.428510287 0.47765666 6 2ft gas 30
3 0.32986260 0.305608282 0.35368987 8 2ft gas 30
41 0.06947448 0.056391010 0.08434871 7 3ft gas 40
49 0.01357954 0.009832746 0.01800444 6 2ft elec 40
26 0.03487038 0.028179167 0.04215179 7 2ft hyb 35

There is quite a bit of uncertainty in these share predictions. Our “best guess” esti-
mate of the shares for the 6-passenger base engine minivan (number 1 in the second
row) is 45.3 %, but it could be as low as 42.9 % or as high as 47.8 %. Understanding
the uncertainty in our model predictions helps in interpreting differences in share.
For example, if we make a minor change such that 6-passenger gas minivan share
increases to 46.0 %, we would recognize that this change in share is well within the
prediction error of our model, and we probably shouldn’t make strong statements
that one design will do better than the other in the marketplace. But if we change the
seating to 7 passenger for that vehicle, the predicted share is 30.2 % with a range of
28.2 % to 32.1 %. Because the prediction intervals do not overlap, we can say that
the 7-passenger version of the design has significantly lower share, knowing that we
are not over-interpreting the limited data that we have.

Given how easy it is to compute these share prediction ranges, we think it is sur-
prising how rarely practitioners report prediction intervals of choice model shares.
Many conjoint analysis studies unfortunately report only point estimates of share
predictions. This leaves decision makers blind to the possibility that the share pre-
dictions they are relying on may not be very accurate. In extreme cases, when there
are many attributes in the model and very few choice questions, one may find that
the prediction intervals are extremely wide. This is an indication that there isn’t suf-
ficient data to make precise predictions and suggests that one might wish to collect
more or different data. In the next section, we discuss the design of choice-based
conjoint surveys.
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13.6 Design of Choice-Based Conjoint Surveys*

Once you start looking at parameter estimates and share predictions for your choice
models, you may start to wonder how you can make your parameter estimates and
prediction intervals tighter. The easiest way to do this is to increase the amount of
data you collect, either by increasing the number of respondents or by increasing
the number of questions that you ask each respondent. If you were to recreate data
as we’ve used in this chapter with 1,000 respondents instead of 200, you would see
that the standard deviations for the parameter estimates and the prediction intervals
would be smaller (as is true for any model).

A good way to assess sample sizes before fielding a conjoint analysis project is
to simulate data from known parameters, estimate the model from the synthetic
data, and examine the resulting prediction intervals. This would only require a few
changes to the code presented in this chapter. Such analysis can help you determine
how many respondents you need for a given number of attributes and levels, or, as
is more often the case, how many attribute and levels you can afford given your
available budget for collecting data.

Beyond getting more data, choosing the right questions to ask can also result in more
precise parameter estimates and share predictions. The selection of questions to
include in the conjoint survey is example of an experimental design problem.

If you review the code in Sect. 13.2, you will notice that when we generated the con-
joint questions we selected a different set of minivan profiles at random to create
the choice questions for each respondent. This approach works well and is robust, as
long as you can give a different set of questions to each respondent. If your survey
platform is limited so that every respondent must answer the same questions, a ran-
dom design will not be very efficient. There are several other approaches you can use
that can improve upon selecting questions randomly. The main design approaches
are the following.

• Random designs use a randomly selected set of profiles in each question.

• Fractional factorial designs are based on the assumption that there are no in-
teractions between different attributes (e.g., there isn’t some additional boost
to having 8-seats combined with 3 ft of cargo space). Many of the advantages
of fractional factorial designs, such as orthogonality, are only beneficial in the
context of linear models and not choice models. However, fractional factorial
designs are occasionally used in practice because they are readily available and
were once the standard approach for conjoint analysis surveys. These designs
are often constrained so that every respondent answers the same questions, or
such that there are only a few survey versions.

• Optimal designs are created by selecting a set of questions that minimizes the
standard error of the estimated parameters (called D-Optimal designs) or mini-
mizes the standard error of share predictions (called G-Optimal designs). These
designs are created by starting with an arbitrary design and then iteratively
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changing questions and assessing whether those changes make the sampling
error or posterior intervals smaller. The routines may not always produce the
true optimal design, but they can often improve substantially on the starting de-
sign. These designs may also be constrained so that every respondent answers
the same question.

• There are a number of heuristic conjoint design strategies that aren’t based
on a formal theory, but have produced good quality predictions in the past.

• Adaptive designs select successive choice questions based on the respondent’s
answers as he or she takes the survey. For instance, a survey might ask about
preferred options and then focus on the features that a respondent identifies as
important. One approach is called fast-polyhedral conjoint design [154]. An-
other method is Adaptive Choice-Based Conjoint (ACBC) from Sawtooth Soft-
ware [142].

There is much debate in the conjoint analysis community about which of these meth-
ods is the best. While we can’t answer that, we can say that each has worked well in
at least some conditions. A common mistake when comparing these conjoint design
methods is to look at whether different methods result in different point estimates
of the share predictions (either in-sample or for holdout questions). Since many
of these methods produce similar point estimates for shares, that is a poor way to
compare different experimental design strategies. A better approach is to compare
the prediction range between approaches. Better designs produce smaller prediction
ranges, meaning that there will be less uncertainty in predictions.

Unfortunately, there aren’t yet readily available tools for the design of choice exper-
iments in R. The AlgDesign package can produce fractional factorial and optimal
designs, but it isn’t customized for choice models and the package is no longer be-
ing maintained. For our own work, we tend to use random designs (which are easy
to produce in R) or use other software to create designs. JMP includes routines for
creating D-Optimal designs for choice models. Sawtooth Software offers a variety
of heuristic and adaptive design strategies for choice models.

13.7 Learning More*

In this chapter, we have given a brief overview of choice modeling in the context
of conjoint analysis surveys, with examples of how to estimate choice models in R.
For those who want to learn more about choice modeling, there are many additional
resources, although no single text covers everything of importance.

For those who are interested strictly in conjoint surveys, Orme’s Getting Started with
Conjoint Analysis [122] offers an accessible introduction to how conjoint surveys
are constructed and analyzed in practice while Louvier, Hensher, and Swait’s Stated
Choice Methods [106] provides a more extensive (but slightly dated) overview of
the topic, including coverage of several variations on non-hierarchical multinomial
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logit models and how to create fractional factorial designs. Rossi, Allenby, McCul-
loch’s Bayesian Statistics and Marketing provides technical coverage of the multi-
nomial and hierarchical multinomial logit model from the Bayesian perspective and
describes the bayesm package that ChoiceModelR uses heavily.

As we mentioned in the introduction, there are uses of choice models other than
choice-based conjoint analysis surveys. One broad application area is the model-
ing of consumers’ transportation choices. Kenneth Train (2009) offers a clear and
concise overview of discrete choice methods [155] and their use in transportation
economics, including coverage of both the mixed logit and hierarchical Bayes logit
models; it is an ideal introduction for those using hierarchical choice models in
nearly any context. Train also covers a number of alternative choice models includ-
ing the nested logit model and the multinomial probit model. While there are ad-
vantages and disadvantages to each of these models, they are all based on the same
premise that customers choose among a set of products based on part worths of the
attributes of those products.

Another major application for choice models in marketing is to understand how
consumers choose products in retail stores, such as grocery stores. Using data col-
lected by grocery store scanners where customers are tracked over multiple visits
(called scanner panel data), one can assemble observations that are nearly identi-
cal in structure to conjoint data [67]. Many marketing academics have used choice
models with such data to assess the relationship between marketing actions such as
price, promotion, and in-store display, and customers’ product and brand choices.
Much work has been published on extending these models to accommodate differ-
ent types of consumer behavior such as stockpiling goods, learning about products,
strategically trying new products, and changes in preferences over time.

13.8 Key Points

• Choice models are used to understand how product attributes drive customers’
choices. The most popular choice model in practice is the multinomial logit
model. This model can be estimated using frequentist methods with mlogit
or using Bayesian methods with MCMCmnl (Sect. 13.3).

• Choice data can be stored in “long” or “wide” formats and there is no universal
standard for how the data should be organized. Before you use any choice mod-
eling package, read the documentation carefully to understand how the package
expects the data to be formatted (Sect. 13.3).

• Before analyzing any choice data, it is useful to compute raw choice counts for
each attribute. This can be done very easily using xtabs. (Sect. 13.3.1)

• Estimating a choice model is similar to estimating simpler linear models. The
key output of the estimation is a set of parameters that describe how much each
attribute is associated with the observed choices.
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• Choice models can include both factors and numeric attributes in the choice
alternatives. When you use a factor as a predictor, the factor has to be dummy
coded, just as it would for a linear model. With dummy coding, the estimates
are interpreted as the preference for a particular level of the attribute relative to
the base level of the attribute (Sect. 13.3).

• Most choice models do not include intercepts. When a choice models does in-
clude intercepts, there is an intercept for each alternative in the choice questions;
these are called alternative specific constants or ASCs (Sect. 13.3).

• When reporting choice models, it is best to focus on reporting share predic-
tions from the model because parameter estimates are difficult for non-experts
to interpret. If you model price as a numeric predictor, you can also report the
willingness to pay for each attribute (Sect. 13.3.3).

• Heterogeneous choice models allow each respondent to have individually esti-
mated part worths. This may result in share predictions that are slightly (and
appropriately) higher for “niche” products (Sect. 13.4.2).

• Hierarchical choice models can be estimated using frequentist methods with
mlogit and with Bayesian methods using choicemodelr (Sects. 13.4
and 13.5).

• Bayesian methods produce draws from the posterior distribution of the param-
eters. To understand the uncertainty in the parameters (given the data), examine
the range of the posterior draws. To find the uncertainty in predicted shares,
compute the share values for each posterior draw of the estimated parame-
ters. The range of share estimates indicates the uncertainty in share predictions
(Sect. 13.5).

• Bayesian methods allow you to incorporate an upper level model that relates
respondent characteristics to attribute preferences. Good candidates for respon-
dent characteristics are binary variables that describe product usage. (Sect. 13.5)

• In general, if you collect more data, your estimates of the parameters will be
more precise and your prediction intervals will be smaller. Prediction intervals
can also be made smaller by selecting better choice questions. There are sev-
eral alternative approaches to choosing profiles to include in choice questions
(Sect. 13.6).
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