
12

Association Rules for Market Basket Analysis

Many firms compile records of customer transactions. These data sets take diverse
forms including products that are purchased together, services that are tracked over
time in a customer relationship management (CRM) system, sequences of visits and
actions on a Web site, and records of customer support calls. These records are very
valuable to marketers and inform us about customers’ purchasing patterns, ways
in which we might optimize pricing or inventory given the purchase patterns, and
relationships between the purchases and other customer information.

Such records may comprise an enormous number of data points yet with relatively
little information in each observation. This means that simple analyses such as cor-
relation and linear regression are not applicable because those methods assume
complete or near-complete measurement for each case. For example, consider the
number of products in a typical supermarket. Most items are not purchased with
most other items in any transaction because there are so many possible combina-
tions.

In this chapter we examine a strategy to extract insight from transactions and co-
occurrence data: association rule mining. Association rule analysis attempts to find
sets of informative patterns from large, sparse data sets. We demonstrate associa-
tion rules using a real data set of more than 80,000 market basket transactions with
16,000 unique items [20]. We then examine how rule mining is potentially useful
with non-transactional data and we use association rules to explore patterns in the
subscription data from Chap. 5.

We develop the methods here from an exploratory point of view, to gain insight and
form hypotheses about relationships in the data. Although it is out of scope for this
chapter, if one is interested to demonstrate that the insights apply to new data or are
stable over time, the same methods might be used with split samples and replication
techniques (see Kuhn and Johnson [97] for an introduction to such approaches in
general).

© Springer International Publishing Switzerland 2015
C. Chapman, E.M. Feit, R for Marketing Research and Analytics, Use R!,
DOI 10.1007/978-3-319-14436-8 12

339

340 12 Association Rules for Market Basket Analysis

12.1 The Basics of Association Rules

The basic idea of association rule mining is this: when events occur together more
often than one would expect from their individual rates of occurrence, such co-
occurrence is an interesting pattern. For example, consider sales of sweet relish and
hot dogs (summertime treats in the USA). Imagine that hot dogs are sold in 5 %
of supermarket transactions during a summer month, while relish is sold in 3 % of
transactions. Are they related?

Suppose we just take the data for every sale that includes hot dogs, which is 5 %
of transactions. If the proportion of those hot dog sales that have relish is 3 %, then
there is no relationship because that is what we would expect for relish from the
overall data, regardless of what else is sold. However, if relish is sold in 25 % of
the transactions that have hot dogs, that is quite different than the base rate and is
evidence of an association.

There are some terms to understand for association rules. An association is simply
the co-occurrence of two or more things. Hot dogs might be positively associated
with relish, hot dog buns, soda, potato chips, and ketchup. An association is not
necessarily strong. In a store such as Costco that sells everything from hot dogs
to (sometimes) grand pianos, everything sold is associated with everything else but
most of those associations are weak. A set of items is a group of one or more items,
and might be written as {item1, item2, . . .}. For instance, a set might be {relish} or
{hot dogs, soda, potato chips}.

A transaction is a set of items that co-occur in an observation. In marketing, a com-
mon transaction unit is the market basket, the set of things that are purchased or
considered for purchase at one time. Any data points that co-occur are considered to
be a transaction, even if using the term “transaction” seems unusual in the context.
For example, the set of web pages that a user visits during a session would be a
transaction in this sense.

A rule expresses the incidence across transactions of one set of items as a condi-
tion of another set of items. The association of relish, conditional on hot dogs, is
expressed in the rule {relish} ⇒ {hot dogs}. Rules may express the relationship of
multiple items; for instance, {relish, ketchup, mustard, potato chips} ⇒ {hot dogs,
hamburger patties, hot dog buns, soda, beer}. A condition in this sense does not
imply a causal relationship, only an association of some strength, whether strong or
weak.

12.1.1 Metrics

Association rules are expressed with a few common metrics that reflect the rules
of conditional probability. The support for a set of items is the proportion of all
transactions that contain the set. If {hot dogs, soda} appears in 10 out of 200

12.2 Retail Transaction Data: Market Baskets 341

transactions, then support({hotdogs,soda}) = 0.05. It does not matter if those 10
transactions contain other items; support is defined separately for every unique set
of items.

Confidence is the support for the co-occurrence of all items in a rule, condi-
tional on the support for the left-hand set alone. Thus, confidence(X ⇒ Y) =
support(X ∩Y)/support(X) (where “∩” means “and”). How does that work? Con-
sider the rule {relish} ⇒ {hot dogs}. If {relish} occurs in 1 % of transactions (in
other words, support({relish}) = 0.01) and {relish, hot dogs} appears in 0.5 %, then
confidence({relish}⇒ {hotdogs}) = 0.005/0.1 = 0.5. In other words, hot dogs ap-
pear alongside relish 50 % of the time that relish appears.

Note that “confidence” in this context carries no implication about hypothesis
testing, confidence intervals, or the like; it is only a measure of conditional as-
sociation. Confidence is also not symmetric; unless support(X) = support(Y),
confidence(X ⇒ Y) �= confidence(Y ⇒ X).

Perhaps the most popular measure is lift, the support of a set conditional on the joint
support of each element, or lift(X ⇒Y) = support(X ∩Y)/(support(X)support(Y)).
To continue the hot dog example, if support({relish})= 0.01, support({hotdogs})=
0.01, and support({relish,hotdogs}) = 0.005, then lift({relish ⇒ hotdogs}) =
0.005/(0.01 ∗ 0.01) = 50. In other words, the combination {relish, hot dogs}
occurs 50 times more often than we would expect if the two items were independent.

These three measures tell us different things. When we search for rules we wish
to exceed a minimum threshold on each: to find item sets that occur relatively fre-
quently in transactions (support), that show strong conditional relationships (con-
fidence), and that are more common than chance (lift). As we will see, in practice
an analyst sets the level of required support to a value such as 0.01, 0.10, 0.20, or
so forth as is meaningful and useful for the business in consideration of the data
characteristics (such as the size of the item set). Similarly, the level of required con-
fidence might be high (such as 0.8) or low (such as 0.2) depending on the data and
business. For lift, higher values are generally better and certainly should be above
1.0, although one must be mindful of outliers with huge lift.

We use the R package arules to illustrate association rules [71]. arules encap-
sulates many popular methods for mining associations and provides extensions for
visualization [69]. Readers who are interested in the algorithms that generate asso-
ciation rules should review the references in the primary arules documentation
[70, 71].

12.2 Retail Transaction Data: Market Baskets

The first two data sets we examine contain supermarket transaction data. We first
examine a small data set that is included with the arules package. This data set
is useful despite its small size because the items are labeled with category names,

342 12 Association Rules for Market Basket Analysis

making them easier to read. Then we turn to a larger data set from a supermarket
chain whose data is disguised but is more typical of large data sets.

12.2.1 Example Data: Groceries

We illustrate the general concepts of association rules with the Groceries data set
in the arules package. This data set comprises lists of items purchased together
(that is, market baskets), where the individual items have been recorded as category
labels instead of product names. You should install the arules and arulesViz
packages before proceeding.

We load the package and data, and then check the data as follows:

> library(arules)
> data("Groceries")
> summary(Groceries)
transactions as itemMatrix in sparse format with
9835 rows (elements/itemsets/transactions) and
169 columns (items) and a density of 0.02609146
...
> inspect(head(Groceries, 3))
items

1 {citrus fruit,
semi-finished bread,
margarine,
ready soups}

2 {tropical fruit,
yogurt,
coffee}

3 {whole milk}

The summary() shows us that the data comprise 9,835 transactions with 169
unique items. Using inspect(head(Groceries)) we see a few examples
from the baskets. For example, the second transaction includes fruit, yogurt, and
coffee, while the third transaction is just a container of milk. In this output, notice
that the item sets are structured with brackets, a visual clue that they reflect a new
“transactions” data type that we examine in more detail below.

We now use apriori(data, parameters=...) to find association rules
with the “apriori” algorithm [17, 71]. At a conceptual level, the apriori algorithm
searches through the item sets that occur frequently in a list of transactions. For
each item set, it evaluates the various possible rules that express associations among
the items at or above a particular level of support, and then retains the rules that
show confidence above some threshold value [16].

To control the extent that apriori() searches, we use the parameter=list()
control to instruct the algorithm to search rules that have a minimum support

12.2 Retail Transaction Data: Market Baskets 343

of 0.01 (1 % of transactions) and extract the ones that further demonstrate
a minimum confidence of 0.3. The resulting rule set is assigned to the
groc.rules object:

> groc.rules <- apriori(Groceries, parameter=list(supp=0.01, conf=0.3,
+ target="rules"))

parameter specification:
confidence minval smax arem aval originalSupport support minlen maxlen target

ext
0.3 0.1 1 none FALSE TRUE 0.01 1 10 rules

FALSE

algorithmic control:
filter tree heap memopt load sort verbose

0.1 TRUE TRUE FALSE TRUE 2 TRUE

apriori - find association rules with the apriori algorithm
version 4.21 (2004.05.09) (c) 1996-2004 Christian Borgelt
set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[169 item(s), 9835 transaction(s)] done [0.01s].
sorting and recoding items ... [88 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 3 4 done [0.00s].
writing ... [125 rule(s)] done [0.00s].
creating S4 object ... done [0.00s].

The rules have been found and saved to an object that we shall inspect in a moment.
Note that the values for the support and confidence parameters are found
largely by experience (in other words, by trial and error) and should be expected
to vary from industry to industry and data set to data set. We arrived at the values
of support=0.01 and confidence=0.3 after finding that they resulted in a
modest number of rules suitable for an example. In real cases, you would adapt those
values to your data and business case (we will say more about this as we examine
additional data sets).

To interpret the results of apriori() above, there are two key things to examine.
First, check the number of items going into the rules, which is shown on the output
line “sorting and recoding items ...” and in this case tells us that the
rules found are using 88 of the total number of items. If this number is too small
(only a tiny set of your items) or too large (almost all of them), then you might wish
to adjust the support and confidence levels.

Next, check the number of rules found, as indicated on the “writing ...” line.
In this case, the algorithm found 125 rules. Once again, if this number is too low,
it suggests the need to lower the support or confidence levels; if it is too high
(such as many more rules than items), you might increase the support or confi-
dence levels.

Once we have a rule set from apriori(), we use inspect(rules) to examine
the association rules. The complete list of 125 from above is too long to examine
here, so we select a subset of them with high lift, lift > 3. We find that five
of the rules in our set have lift greater than 3.0:

344 12 Association Rules for Market Basket Analysis

> inspect(subset(groc.rules, lift > 3))
lhs rhs support confidence lift

1 {beef} => {root vegetables} 0.01738688 0.3313953 3.040367
2 {citrus fruit,

root vegetables} => {other vegetables} 0.01037112 0.5862069 3.029608
3 {citrus fruit,

other vegetables} => {root vegetables} 0.01037112 0.3591549 3.295045
4 {tropical fruit,

root vegetables} => {other vegetables} 0.01230300 0.5845411 3.020999
5 {tropical fruit,

other vegetables} => {root vegetables} 0.01230300 0.3427762 3.144780

The first rule tells us that if a transaction contains {beef} then it is also relatively
more likely to contain {root vegetables}—a category that we assume includes items
such as potatoes and onions. That combination appears in 1.7 % of baskets (“sup-
port”), and the lift tells us that combination is 3× more likely to occur together than
one would expect from the individual rates of incidence alone.

A store might form several ideas on the basis of such information. For instance, the
store might create a display for potatoes and onions near the beef counter to en-
courage shoppers who are examining beef to purchase those vegetables or consider
recipes with them. It might also suggest putting coupons for beef in the root veg-
etable area, or featuring recipe cards somewhere in the store. We will see other ways
to inspect such data and develop ideas later in this chapter.

12.2.2 Supermarket Data

We now investigate associations in a larger set of retail transaction data from a Bel-
gian supermarket chain. This data set comprises market baskets of items purchased
together, where each record includes arbitrarily numbered item numbers without
item descriptions (to protect the chain’s proprietary data). This data set is made
publicly available by Brijs et al. [20].

First we use readLines(url) to get the data from the website where it is
hosted:

> retail.raw <- readLines("http://fimi.ua.ac.be/data/retail.dat")

An alternative location on this book’s website is the following (see Appendix D for
more options):

> retail.raw <- readLines("http://goo.gl/FfjDAO")

As always, we check the head, tail, and summary:

> head(retail.raw)
[1] "0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 ... "
[2] "30 31 32 "
...
> tail(retail.raw)
...

12.2 Retail Transaction Data: Market Baskets 345

[5] "39 48 2528 "
[6] "32 39 205 242 1393 "
> summary(retail.raw)

Length Class Mode
88162 character character

Each row in this object represents a single market basket of items purchased to-
gether. Within each row, the items have been assigned arbitrary numbers that simply
start at 0 in the first transaction and add new item numbers as needed for all later
transactions. The data comprise 88,162 transactions, where the first basket has 30
items (numbered 0–29, some truncated in the output here), the second has 3 items,
and so forth. In the tail(), we see that the last market basket had 5 items, most
of which—items 32, 39, 205, and 242—have low numbers reflecting that those par-
ticular items first appeared in transactions early in the data set.

In this text format, the data are not ready to mine; we must first split each of the
transaction text lines into individual items. To do this, we use strsplit(lines,
" "). This command splits each line wherever there is a blank space character ("
") and saves the results to a list:

> retail.list <- strsplit(retail.raw, " ")

To label the individual transactions, we assign descriptive names using names()
and paste():

> names(retail.list) <- paste("Trans", 1:length(retail.list), sep="")

As usual, we check the data format again. Finally, we remove the retail.raw
object that is no longer needed:

> str(retail.list)
List of 88162
$ Trans1 : chr [1:30] "0" "1" "2" "3" ...
$ Trans2 : chr [1:3] "30" "31" "32"

...
> library(car)
> some(retail.list) # note: random sample; your results may vary
$Trans3742
[1] "488" "1588" "2750" "2832" "4099"
...
> rm(retail.raw)

Using str() we confirm that the list has 88,162 entries and that individual entries
look appropriate. some() samples a few transactions throughout the larger set for
additional confirmation.

The transaction list could be used to find rules at this point, but we take an additional
step to convert it to a formal transactions object, which enhances the ways we can
work with the data and speeds up arules operations. To convert from a list to
transactions, we cast the object using as(..., "transactions"):

> retail.trans <- as(retail.list, "transactions") # takes a few seconds
> summary(retail.trans)

346 12 Association Rules for Market Basket Analysis

transactions as itemMatrix in sparse format with
88162 rows (elements/itemsets/transactions) and
16470 columns (items) and a density of 0.0006257289

most frequent items:
39 48 38 32 41 (Other)

50675 42135 15596 15167 14945 770058

element (itemset/transaction) length distribution:
sizes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3016 5516 6919 7210 6814 6163 5746 5143 4660 4086 3751 3285 2866 2620 2310
...

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 4.00 8.00 10.31 14.00 76.00

...
> rm(retail.list) # no longer needed

Looking at the summary() of the resulting object, we see that the transaction-by-
item matrix is 88,162 rows by 16,470 columns. Of those 1.4 billion intersections,
only 0.06 % have positive data (density) because most items are not purchased in
most transactions. Item 39 appears the most frequently and occurs in 50,675 baskets
or more than half of all transactions. 3,016 of the transactions contain only a single
item (“sizes” = 1) and the median basket size is 8 items.

12.3 Finding and Visualizing Association Rules

With the data in transaction format, we are ready to find rules. As we have
seen briefly already, the apriori(data, parameters=...) command
finds association rules [17]. For the Belgian supermarket data, we specify
parameter=list(...) with values of minimum support = 0.001
and minimum confidence = 0.4. We assign the resulting rules to a
new object:
> retail.rules <- apriori(retail.trans, parameter=list(supp=0.001, conf=0.4))
parameter specification:
confidence minval smax arem aval originalSupport support minlen maxlen target

ext
0.4 0.1 1 none FALSE TRUE 0.001 1 10 rules

FALSE
...
set transactions ...[16470 item(s), 88162 transaction(s)] done [0.12s].
sorting and recoding items ... [2117 item(s)] done [0.02s].
creating transaction tree ... done [0.06s].
checking subsets of size 1 2 3 4 5 6 done [0.16s].
writing ... [5944 rule(s)] done [0.01s]. ...

This finds a set of 5,944 rules that exceed the required levels of support
and confidence.

To get a sense of the rule distribution, we load the arulesViz package and then
plot() the rule set, which charts the rules according to confidence (Y axis) by

12.3 Finding and Visualizing Association Rules 347

support (X axis) and scales the darkness of points to indicate lift. The commands
are simply:

> library(arulesViz)
> plot(retail.rules)

The resulting chart is shown in Fig. 12.1. In that chart, we see that most rules involve
item combinations that occur infrequently (that is, they have low support) while
confidence is relatively smoothly distributed.

Scatter plot for 5944 rules

50

100

150

200

250

300

lift0 0.1 0.2 0.3 0.4 0.5

0.4

0.5

0.6

0.7

0.8

0.9

1

support

co
nf

id
en

ce

Fig. 12.1. Plotting a large set of rules for con-
fidence (Y axis) by support (X axis) and lift
(shade). There are a few rules in the upper left
with exceptionally high confidence and lift.

Simply showing points is not very useful, and a key feature with arulesViz
is interactive plotting. In Fig. 12.1 there are some rules in the upper left with
high lift. We can use interactive plotting to inspect those rules. To do this, add
interactive=TRUE to the plot() command:

> plot(retail.rules, interactive=TRUE)

In interactive mode, you can examine regions of rules. To do so, click once in the
plot window at one corner of the area of interest, and then click again at the opposite
corner. You can use zoom in to magnify that region, or inspect to list the rules
in the region. When finished, click end.

Figure 12.2 shows an interactive plotting session in RStudio where we seek rules
with high lift. To get Fig. 12.2 we previously selected the upper left region as was
shown in Fig. 12.1 and zoomed in on that region. Then we selected a few rules from
the zoomed-in area and clicked inspect to display them in the console. There
were seven rules in that subregion, as shown in the lower left console window. This
revealed one exceptionally high lift rule:

lhs rhs support confidence lift
1 {16431,

48} => {16430} 0.001973639 0.9942857 205.770463

348 12 Association Rules for Market Basket Analysis

This rule tells us that the combination {16431, 48} occurs in about 0.2 % of baskets
(support=0.00197), and when it occurs it almost always includes {16430} (confi-
dence=0.99). The combination occurs 200 times more often than we would expect
from the individual incidence rates of {16431, 48} and {16430} considered sepa-
rately (lift=205).

Such information could be used in various ways. If we pair the transactions with
customer information, we could use this for targeted mailings or email suggestions.
For items often sold together, we could adjust the price and margins together; for in-
stance, to put one item on sale while increasing the price on the other. Or perhaps—
only somewhat facetiously—the cashiers might ask customers, “Would you like a
16,430 with that?”

Fig. 12.2. Using plot(..., interactive=TRUE) to inspect rules of interest in inter-
active mode. In this screenshot from RStudio, we zoomed into a small region to inspect()
a subgroup of the complete rule set. This reveals the selected rules in the console (lower

left window).

12.3.1 Finding and Plotting Subsets of Rules

A common goal in market basket analysis is to find rules with high lift. We can find
such rules easily by sorting the larger set of rules by lift. We extract the 50 rules
with highest lift using sort() to order the rules by lift and taking 50 from the
head():

12.3 Finding and Visualizing Association Rules 349

> retail.hi <- head(sort(retail.rules, by="lift"), 50)
> inspect(retail.hi)

lhs rhs support confidence lift
1 {696} => {699} 0.001032191 0.5833333 338.3410
2 {699} => {696} 0.001032191 0.5986842 338.3410
3 {1818,

3311,
795} => {1819} 0.001088905 0.9056604 318.1069

4 {3402} => {3535} 0.001417844 0.7062147 305.2024
...

Support and lift are identical for an item set regardless of the items’ order within
a rule (left-hand or right-hand side of the rule). Thus the first two rules—which
include the same two items {696} and {699} on opposite sides of the conditional
arrow—are identical for support and lift. However, confidence reflects direction be-
cause it computes occurrence the right-hand set conditional on the left-hand side
set, and differs slightly for the first two rules.

A graph display of rules may be useful to seek higher level themes and pat-
terns. We chart the top 50 rules by lift with plot(..., method="graph")
and display rules as the intersection of items by adding the graph option,
control=list(type="item")):

> plot(retail.hi, method="graph", control=list(type="items"))

The resulting chart is shown in Fig. 12.3. Positioning of items on the graph may
differ for your system, but the item clusters should be similar. Each circle there
represents a rule with inbound arrows coming from items on the left-hand side
of the rule and outbound arrows going to the right-hand side. The size (area) of
the circle represents the rule’s support, and shade represents lift (darker indicates
higher lift).

Figure 12.3 shows several patterns of interest. Items 696 and 699 form a tight set;
there are item clusters for {3402, 3535, 3537}, {309, 1080, 1269, 1378, 1379,
1380}, and so forth; and item 39 appears as a key item in two sets of items that
otherwise do not overlap. By exploring sets of rules with various levels of lift and
support, and with specific subsets of items (see the usage of %in% in arules
help), an analyst may be able to find patterns that suggest interesting hypotheses and
trends. We will see a further example of this for non-transactional data in Sect. 12.4
below.

12.3.2 Using Profit Margin Data with Transactions: An Initial Start

An analyst will often wish to combine market basket transactions and rules with
other data; for instance, one might have information on item profitability (margin) or
purchaser characteristics. In this section, we consider how to combine information
on item cost and margin with transaction data.

350 12 Association Rules for Market Basket Analysis

Graph for 50 rules

1080

1269

1378

1379

1380

1818
1819

309

3311

3402

35353537

39

48

696

699

795

size: support (0.001 − 0.002)
color: lift (232.725 − 338.341)

Fig. 12.3. A graph using
arulesViz of the top 50 as-
sociation rules mined from the retail
market basket data set. There are
four distinct sets of rules (arrows
and circular nodes), each relating
a set of 2–6 items (the integer ID
numbers). These rules have lift of
232× or more in the retail shopping
data.

How can we find the profit for a transaction? The answer may be complex and
depend on the details of a firm and its transaction data. Because the Belgian super-
market data set does not include item price or cost, we simulate margin by items for
illustration purposes. We assume that each item has a single margin value; if we had
access to a firm’s complete data, it would be better to use information about costs
and prices by date, along with discounts and other adjustments to estimate margin
more accurately.

To simulate per-item margin data we first compile a list of the item names that we
need. We do this by converting the complete transaction set to list format and
then using unlist() to gather the individual items from the many transactions
into a single vector. We take the unique() values to remove duplicates, and then
sort() them:

> retail.itemnames <- sort(unique(unlist(as(retail.trans, "list"))))
> head(retail.itemnames); tail(retail.itemnames)
[1] "0" "1" "10" "100" "1000" "10000"
[1] "9994" "9995" "9996" "9997" "9998" "9999"

Items are not in numeric order because the item labels are character data and
sort() orders them alphabetically; this poses no problem here.

Next we generate the simulated margin data with one value for each item, using
rnorm() with a mean and standard deviation of 0.30 currency units (such as
AC 0.30):

> set.seed(03870)
> retail.margin <- data.frame(margin=rnorm(length(retail.itemnames),
+ mean=0.30, sd=0.30))
> quantile(retail.margin$margin)

0% 25% 50% 75% 100%
-1.1090452 0.1045897 0.3026245 0.5050533 1.5542344

12.3 Finding and Visualizing Association Rules 351

We make those values indexable by item name by adding the list of items from
above as the rownames() for the random numbers:

> rownames(retail.margin) <- retail.itemnames
> head(retail.margin); tail(retail.margin)

margin
0 0.88340359
1 0.52964087
...
9999 0.6850124
> library(car); some(retail.margin)

margin
12336 0.18504274
...

In this format, we can look up the margin for an item—or set of items—using the
relevant item names. For example, we find the item margins and then their sum for
the basket {39, 48} as follows:

> retail.margin[c("39", "48"),]
[1] 0.1217833 -0.2125105
> sum(retail.margin[c("39", "48"),])
[1] -0.09072725

Item 39 has margin of 0.12, and the basket {39, 48} has total margin of
−0.09.

To find the margin for a complete transaction—in this case, transaction #3 from the
Belgian data—there is one more step. We have to convert the transaction to list form
to find the items in it using as(..., "list"), at which point we can look up
the margins for those items:

> (basket.items <- as(retail.trans[3], "list")[[1]])
[1] "33" "34" "35"
> retail.margin[basket.items,]
[1] 0.3817115 0.6131403 0.1979879
> sum(retail.margin[basket.items,])
[1] 1.19284

12.3.3 Language Brief: A Function for Margin Using an
Object’s class*

This optional section expands on the margin example by writing a more complex
function. Along the way we will see one way to use objects’ classes and how to
write more error-resistant code. If you do not wish to dive deeply into programming,
you may safely skip this section.

352 12 Association Rules for Market Basket Analysis

12.3.3.1 Motivation

Using a simple index to look up the margin for items as we did above is not very
satisfactory because it depends on the exact format of the data, such as the fact that
it is given in a list format. If we ever change the format or wish to explore margin
for some other kind of data, it is necessary to find any code where data is treated as a
list and alter it. That process would be tedious and likely to introduce errors.

A better solution is to write a function to look up margins. With a function, we
can perform more complex logic such as date lookups and volume or customer
discounts. It also localizes all logic to a single place; if we call the function in each
place that we need a margin lookup, we only need to change the procedure in one
place.

In this section we create an initial working version of a more general lookup func-
tion. We also enhance the simple lookup capability in an important way: we make
it work for transactions and rule sets as well as item names. A user may call the
function with any of those data types and it will handle the data properly.

One way to make a function work for different kinds of input data is to use the R
class system to determine the data type. (More advanced programmers may note
that the approach here is a simple solution; a more complete solution—but well
beyond the scope of this book—is to implement S3 or S4 methods for each data class
that a function supports. For details on the various object-oriented programming
paradigms in R, see [22, 62, 156, 163].)

Our function takes the form retail.margsum(items, itemMargins),
where items may be any of the following:

• A character vector of item names such as c("39", "48"), of class
“character”

• One or more transactions such as retail.trans in our example above, of
class “transactions”

• A set of rules such as retail.hi in our example above, of class “rules”

By checking the class(), our function is able to extract items appropriately from
the data that a user provides, so the user will not have to extract item names from
different kinds of objects.

Before inspecting the retail.margsum() code, we note that it has three key
sections:

1. Convert the data we’re given to a list of item name sets

2. Check that those item names are in our margin data (itemMargins)

3. Look up the margins and sum them

12.3 Finding and Visualizing Association Rules 353

Here is the complete code:

retail.margsum <- function(items, itemMargins) {
Input: "items" == item names, rules or transactions in arules format
"itemMargins", a data frame of profit margin indexed by name
Output: look up the item margins, and return the sum
library(arules)

check the class of "items" and coerce appropriately to an item list
if (class(items) == "rules") {

tmp.items <- as(items(items), "list") # rules ==> item list
} else if (class(items) == "transactions") {

tmp.items <- as(items, "list") # transactions ==> item list
} else if (class(items) == "list") {

tmp.items <- items # it’s already an item list!
} else if (class(items) == "character") {

tmp.items <- list(items) # characters ==> item list
} else {

stop("Don’t know how to handle margin for class ", class(items))
}
make sure the items we found are all present in itemMargins
good.items <- unlist(lapply(tmp.items, function (x)

all(unlist(x) %in% rownames(itemMargins))))

if (!all(good.items)) {
warning("Some items not found in rownames of itemMargins. ",

"Lookup failed for element(s):\n",
which(!good.items), "\nReturning only good values.")

tmp.items <- tmp.items[good.items]
}

and add them up
return(unlist(lapply(tmp.items, function(x) sum(itemMargins[x,]))))

}

We explain the code in detail below, but first let’s see how it works. One way to use
it is to find margin for an item set with simple item names:

> retail.margsum(c("39", "48"), retail.margin)
[1] -0.09072725

Another use is to find margin for each entry in a list with multiple, separate item
sets:

> retail.margsum(list(t1=c("39", "45"), t2=c("31", "32")), retail.margin)
t1 t2

0.9664982 0.2733963

It accepts one or more transaction objects:

> retail.margsum(retail.trans[101:103], retail.margin)
Trans101 Trans102 Trans103

0.7171411 4.8989272 4.9470372

354 12 Association Rules for Market Basket Analysis

It also accepts sets of rules, such as our retail.hi set of the 50 highest list
rules:
> retail.margsum(retail.hi, retail.margin)
[1] 0.9609471 0.9609471 1.9327917 0.7084729 0.7084729 1.9327917 ...

...
[45] 0.1624291 0.5067865 0.5067865 0.5442604 0.5442604 0.6285698

It includes error detection. For instance, it gives an error in case of incorrect item
names:
> retail.margsum(c("hello", "world"), retail.margin) # error!
NULL
Warning message:
In retail.margsum(c("hello", "world"), retail.margin) :
Some items not found in rownames of itemMargins. ...

In the above case, it returns a value of NULL as shown on the first line of the output
because there was nothing valid to look up. However, if some of the data is bad
while other parts are good, it finds whatever is possible:
> retail.margsum(list(a=c("39", "45"), b=c("hello", "world"), c=c("31", "32")),
+ retail.margin) # only the first and third are OK

a c
0.9664982 0.2733963
Warning message:
...

In this case, the second element in the input is bad, so the function omits that and
returns the sums for the other two item sets “a” and “c.”

Now let’s look at the function in detail to see how it works. In the first part of the
code we convert the items input to proper types, by checking the class() and
then applying an appropriate conversion:
[function excerpt, don’t run on its own]
if (class(items) == "rules") {

tmp.items <- as(items(items), "list") # rules ==> item list
} else if (class(items) == "transactions") {

tmp.items <- as(items, "list") # transactions ==> item list
...
} else {

stop("Don’t know how to handle margin for class ", class(items))
}

In this part of the code, we use the if ... else if ... construct in R to
check types successively. It ends with a final else clause in case the data is a type
the function cannot handle. In that case, it calls stop(message) to issue an error
message to the user and exit the function.

The second part of our code checks that the sets of items are present in the
itemMargins data:
[function excerpt, don’t run on its own]
good.items <- unlist(lapply(tmp.items, function (x)

all(unlist(x) %in% rownames(itemMargins))))

12.3 Finding and Visualizing Association Rules 355

if (!all(good.items)) {
warning("Some items not found in rownames of itemMargins. ",

"Lookup failed for element(s):\n",
which(!good.items), "\nReturning only good values.")

tmp.items <- tmp.items[good.items]
}

This short code block has a few crucial elements. First it uses an anony-
mous function to check that item names are present in itemMargins. It uses
%in% to look up each name from a single list element (with the names extracted by
unlist(x)) and then uses all() to make sure that every one of the names is
found successfully (that is, that all of the %in% matches are TRUE). The result of
this is a flag whether a given element of tmp.items is good or not.

Then we use the unlist() function a second time to convert the individual re-
sults from lapply() to a master vector, which indicates whether each individ-
ual element of tmp.items is good or not. Finally, if any of the individual item
sets has an item that was not found (and therefore, using ! for binary negation,
!all(good.items) is TRUE) then we issue a warning() to the user, and
retain only the good items for further processing. Unlike stop(), a function con-
tinues after a warning() to the user.

The third and final part of our code looks up the items and returns the sum of their
margins:

[function excerpt, don’t run on its own]
return(unlist(lapply(tmp.items, function(x) sum(itemMargins[x,]))))

That line unpacks as follows, starting from the innermost part. An anonymous func-
tion looks up rows in itemMargins, and then sums them. Those rows x are de-
termined by the surrounding lapply() that iterates over the individual sets of
items that form the list tmp.items. Each member set of tmp.items has its
items’ margins summed. Finally, the line calls unlist() in order to convert the
lapply() result—which is a list—to a more convenient vector.

But wait! That final, single line effectively delivers the whole purpose of the func-
tion. Why did we have to write so much else in the function? Isn’t that needless
complexity?

The answer depends on the circumstance, but this function exemplifies a common
issue in programming: handling exceptions and doing error-checking is often the
most complex part of a programming task. Just as getting data into shape is often the
bulk of an analyst’s work, much of a programmer’s effort is to anticipate potential
data problems when writing code. It is a good practice to include error-checking
as we’ve done here. Don’t assume your data will always be good; check it! You’ll
avoid many headaches for yourself and your colleagues.

Once the skeleton of a profit margin function is in place, an analyst will find many
uses for it. For example, one might use it on transactions to find the most valuable
customers, to find potential loss-leading items that are associated with other, higher

356 12 Association Rules for Market Basket Analysis

margin items, to find money-losing associations, and so forth. A simple function
of the kind here would be a proof of concept; a next step might be to increase
its precision by including time series data, discounts, and other important factors
specific to a firm and category.

12.4 Rules in Non-Transactional Data: Exploring
Segments Again

There are many uses of association rules beyond retail transactions such as we con-
sidered above. The idea of a “transaction” broadly speaking is simply an observa-
tion of one or more data points that co-occur. For instance, when a user visits one or
more web pages during a browsing session, the pages would constitute a transaction
in this sense.

In the most general sense, one can consider any data points that occur together
in a record—such as any variables observed for a customer, user, or survey
respondent—to be a transaction. This means that association rules can be ap-
plied to other kinds of data such as general data frames (with some limitations that
we’ll discuss). In this section, we examine association rules as a way to explore
consumer segmentation.

We use the simulated consumer segmentation data from Sect. 5.1.4. If you saved
the data in that chapter (page 120), reload it now. We suggested a file destination as
file="∼/segdf-Rintro-Ch5.RData". If you saved there, you can retrieve
the data with:

> load("∼/segdf-Rintro-Ch5.RData")

Alternatively, run the code in that chapter (Sects. 5.1.1–5.1.4) or download the file
from this book’s website:

> seg.df <- read.csv("http://goo.gl/qw303p")

After loading the data, check that it matches expectations:

> summary(seg.df)
age gender income kids ownHome ...

Min. :19.26 Female:157 Min. : -5183 Min. :0.00 ownNo :159 ...
1st Qu.:33.01 Male :143 1st Qu.: 39656 1st Qu.:0.00 ownYes:141 ...

12.4.1 Language Brief: Slicing Continuous Data with cut()

Association rules work with discrete data yet seg.df includes three continu-
ous (or quasi-continuous) variables: age, income, and kids. It’s necessary to
convert those to discrete factors to use with association rules in the arules
package.

12.4 Rules in Non-Transactional Data: Exploring Segments Again 357

We could add factor variables as new columns appended to the original data frame.
However, we use that data frame elsewhere in this book and thus prefer instead to
make a copy and alter it:

> seg.fac <- seg.df

Now we replace age, income, and kids with recoded factors (specifically, us-
ing the ordered factor class to code these data as ordinal values). cut(data,
breaks, labels) transforms numeric data to a factor variable. breaks=...
specifies either the number of bins or specific cut points, and labels=... speci-
fies the text for a factor’s category labels. We transform age as follows:

> seg.fac$age <- cut(seg.fac$age,
+ breaks=c(0,25,35,55,65,100),
+ labels=c("19-24", "25-34", "35-54", "55-64", "65+"),
+ right=FALSE, ordered_result=TRUE)

This recodes age from an integer value into an ordered factor with five levels:
19–24, 25–34, and so forth. The argument right=FALSE ensures that continuous
values have closed intervals on the left, giving us [25− 34) instead of (25− 34].
We set ordered result=TRUE to specify that the resulting factor is ordinal. We
check the data and see that the recode was successful:

> summary(seg.fac$age)
19-24 25-34 35-54 55-64 65+

38 58 152 38 14

Next we convert income and kids similarly:

> seg.fac$income <- cut(seg.fac$income,
+ breaks=c(-100000, 40000, 70000, 1000000),
+ labels=c("Low", "Medium", "High"),
+ right=FALSE, ordered_result=TRUE)
> seg.fac$kids <- cut(seg.fac$kids,
+ breaks=c(0, 1, 2, 3, 100),
+ labels=c("No kids", "1 kid", "2 kids", "3+ kids"),
+ right=FALSE, ordered_result=TRUE)
> summary(seg.fac)

age gender income kids ownHome subscribe
19-24: 38 Female:157 Low : 77 No kids:121 ownNo :159 subNo :260
25-34: 58 Male :143 Medium:183 1 kid : 70 ownYes:141 subYes: 40

...

All variables are now coded as categorical factors and the seg.fac data frame is
suitable for exploring associations.

12.4.2 Exploring Segment Associations

A data frame in suitable discrete (factor) format can be converted to use in arules
by using as(..., "transactions") to code it as transaction data:

358 12 Association Rules for Market Basket Analysis

> library(arules)
> library(arulesViz)
> seg.trans <- as(seg.fac, "transactions")
> summary(seg.trans)
transactions as itemMatrix in sparse format with
300 rows (elements/itemsets/transactions) and
22 columns (items) and a density of 0.3181818

...

Rules are generated in the same way as for market basket data. We use
apriori() and specify support=0.1 and conf=0.4. This finds 579 as-
sociation rules:

> seg.rules <- apriori(seg.trans, parameter=list(support=0.1, conf=0.4,
+ target="rules"))
> summary(seg.rules)
set of 579 rules ...

A default plot of the resulting seg.rules object is:

> plot(seg.rules)

Scatter plot for 579 rules

1

2

3

4

5

6

lift0.2 0.4 0.6 0.8

0.4

0.5

0.6

0.7

0.8

0.9

1

support

co
nf

id
en

ce

Fig. 12.4. The distribution of rules in-
ferred from the segmentation data set.

This products Fig. 12.4, where we see a few rules with high confidence shown in
the upper left region. If we add the interactive=TRUE option for plot() (not
shown; see Sect. 12.3 for an explanation), we could explore those interactively to
find the following rules with both high confidence and high lift:

> plot(seg.rules, interactive=T)
...

lhs rhs support confidence lift
1 {age=19-24} => {Segment=Urban hip} 0.1266667 1.0000000 6.000000
2 {age=19-24,

income=Low} => {Segment=Urban hip} 0.1266667 1.0000000 6.000000
3 {age=19-24,

12.4 Rules in Non-Transactional Data: Exploring Segments Again 359

ownHome=ownNo} => {Segment=Urban hip} 0.1000000 1.0000000 6.000000
4 {age=19-24,

subscribe=subNo} => {Segment=Urban hip} 0.1000000 1.0000000 6.000000
...

These show an association of age and other variables with membership in the Urban
hip segment.

A graph plot visualizes clusters of rules to reveal higher-level patterns. We extract
the top 35 highest-lift rules and visualize them as a graph:

> seg.hi <- head(sort(seg.rules, by="lift"), 35)
> inspect(seg.hi)

lhs rhs support confidence lift
1 {age=19-24} => {Segment=Urban hip} 0.1266667 1.0000000 6.000000
...
> plot(seg.hi, method="graph", control=list(type="items")) # orientation varies

The resulting chart is shown in Fig. 12.5 (orientation of the chart may vary for you).
There are two dominant clusters: a large cluster with many rules and relatively high
lift that involve ages 19–24, no home ownership, lower income, and so forth; and
a smaller cluster involving late middle-age consumers without kids in the travelers
segment.

Graph for 35 rules

age=19−24

age=55−64

gender=Male

income=Low

kids=No kids

ownHome=ownNo

subscribe=subNo

Segment=Travelers

Segment=Urban hip

size: support (0.1 − 0.167)
color: lift (3.75 − 6)

Fig. 12.5. Example of using a
graph plot to explore rule clusters
for the segmentation data set.

One might do further explorations by selecting additional sets of rules beyond the
head() of the sorted rules. To do this, sort() the rules by lift (or other parameter
as desired) and then index the rules you want. To examine the next 25 rules after the
first 35 considered above:

> seg.next <- sort(seg.rules, by="lift")[36:60]
> plot(seg.next, method="graph", control=list(type="items")) # not shown

360 12 Association Rules for Market Basket Analysis

We omit the resulting chart in this case, which shows patterns involving factors such
as the suburban mix segment and home ownership.

The patterns demonstrate that association rules can be useful to seek patterns in such
non-transactional data. A key point is that this is primarily an exploratory exercise.
It is useful if it reveals interesting patterns for further investigation. One should
confirm any such inferences before drawing final conclusions.

12.5 Learning More*

An approachable text for association rules is Tan et al [149]. In that text, Chap. 6 dis-
cusses the fundamental concepts and algorithms of association rules, and Chap. 7
develops more advanced concepts and applications. Vipin Kuman, one of that
text’s authors, has published online materials related to the book and association
rules, at http://www-users.cs.umn.edu/˜kumar/dmbook/index.
php.

The arules package is notable for its rich ecosystem of tools such as the
arulesViz package that we used for charting. Other options include sequence
mining and naive Bayes algorithms in addition to the standard apriori algorithm.
For an overview of the arules ecosystem, see [70] and the vignettes that come
with arules. The latest developments are available from the first author Michael
Hahsler’s site, http://michael.hahsler.net/.

12.6 Key Points

Association rules are a powerful way to explore the relationships in a data set. The
following points summarize some key suggestions from this chapter.

• Association rules are commonly used with sparse data sets that have many ob-
servations but little information per observation. In marketing, this is typical of
market baskets and similar transaction data. (Sect. 12.1)

• The arules package is the standard R package for association rules.
arules provides support for handling sparse data and finding rules and
the arulesViz package provides visualization methods.

• Core metrics for evaluating association rules are support (frequency), confi-
dence (co-occurrence), and lift (co-occurrence above the rate of association by
pure chance). There is no absolute value required of them except that lift should
be somewhat greater than 1.0 (or possibly very much less than 1.0, showing
that the non-association is unexpected, as in fraud detection). Interpretation de-
pends on experience with similar data and the usefulness for a particular busi-
ness question. (Sect. 12.1)

http://www-users.cs.umn.edu/~kumar/dmbook/index.php
http://www-users.cs.umn.edu/~kumar/dmbook/index.php
http://michael.hahsler.net/

12.6 Key Points 361

• A typical workflow for association rules (Sects. 12.2.1 and 12.2.2) is:

– Import the raw data and use as(data, "transactions") to trans-
form it to a transactions object for better performance.

– Use apriori(transactions, support= , confidence= ,
target="rules") to find a set of association rules.

– Plot the resulting rule with plot(..., interactive=TRUE) and in-
spect the rules (Sect. 12.3)

– Look for patterns by selecting subsets of rules, such as those with high-
est lift, and use plot(..., method="graph") for visualization
(Sect. 12.3.1)

• Data such as item profit margin may be used to extend analyses and look at the
potential business impact of acting on particular rules (Sect. 12.3.2)

• Association rule mining can also be a useful exploratory technique for mining
non-transactional data such as consumer segmentation data (Sect. 12.4).

• We used R functions cut() to slice continuous data (Sect. 12.4.1) and
class() to determine an object’s data type (Sect. 12.3.3)

• When you write a custom function, use warning() to report potential issues
and violations of data assumptions (Sect. 12.3.3), and use stop() when a
condition means that the function should not continue.

	12 Association Rules for Market Basket Analysis
	12.1 The Basics of Association Rules
	12.1.1 Metrics

	12.2 Retail Transaction Data: Market Baskets
	12.2.1 Example Data: Groceries
	12.2.2 Supermarket Data

	12.3 Finding and Visualizing Association Rules
	12.3.1 Finding and Plotting Subsets of Rules
	12.3.2 Using Profit Margin Data with Transactions: An Initial Start
	12.3.3 Language Brief: A Function for Margin Using an Object's class*
	12.3.3.1 Motivation

	12.4 Rules in Non-Transactional Data: Exploring Segments Again
	12.4.1 Language Brief: Slicing Continuous Data with cut()
	12.4.2 Exploring Segment Associations

	12.5 Learning More*
	12.6 Key Points

