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Segmentation: Clustering and Classification

In this chapter, we tackle a canonical marketing research problem: finding,
assessing, and predicting customer segments. In previous chapters we’ve seen how
to assess relationships in the data (Chap. 4), compare groups (Chap. 5), and assess
complex multivariate models (Chap. 10). In a real segmentation project, one would
use those methods to ensure that data has appropriate multivariate structure, and
then begin segmentation analysis.

Segmentation is not a well-defined process and analysts vary in their definitions of
segmentation as well as their approaches and philosophy. The model in this chap-
ter demonstrates our approach using basic models in R. As always, this should be
supplemented by readings that we suggest at the end of the chapter.

We start with a warning: we have definite opinions about segmentation and what we
believe are common misunderstandings and poor practices. We hope you’ll be con-
vinced by our views—but even if not, the methods here will be useful to you.

11.1 Segmentation Philosophy

The general goal of market segmentation is to find groups of customers that differ in
important ways associated with product interest, market participation, or response
to marketing efforts. By understanding the differences among groups, a marketer
can make better strategic choices about opportunities, product definition, and posi-
tioning, and can engage in more effective promotion.

11.1.1 The Difficulty of Segmentation

The definition of segmentation above is a textbook description and does not
reflect what is most difficult in a segmentation project: finding actionable business
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outcomes. It is not particularly difficult to find groups within consumer data; indeed,
in this chapter we see several ways to do this, all of which “succeed” according to
one statistical criterion or another. Rather, the difficulty is to ensure that the outcome
is meaningful for a particular business need.

It is outside the range of this book to address the question of business need in gen-
eral. However, we suggest that you ask a few questions along the following lines.
If you were to find segments, what would you do about them? Would anyone in
your organization use them? Why and how? Are the differences found large enough
to be meaningful for your business? Among various solutions you might find, are
there organizational efforts or politics that would make one solution more or less
influential than another?

There is no magic bullet to find the “right” answer. In computer science the no free
lunch theorem says that “for both static and time-dependent optimization problems,
the average performance of any pair of algorithms across all possible problems is
identical” [167]. For segmentation this means that there is no all-purpose method or
algorithm that is a priori preferable to others. This does not mean that the choice of a
method is irrelevant or arbitrary; rather, one cannot necessarily determine in advance
which approach will work best for a novel problem. As a form of optimization,
segmentation is likely to require an iterative approach that successively tests and
improves its answer to a business need.

Segmentation is like slicing a pie, and any pie might be sliced in an infinite number
of ways. Your task as an analyst is to consider the infinity of possible data that
might be gathered, the infinity of possible groupings of that data, and the infinity of
possible business questions that might be addressed. Your goal is to find a solution
within those infinities that represents real differences in the data and that informs
and influences real business decisions.

Statistical methods are only part of the answer. It often happens that a “stronger”
statistical solution poses complexity that makes it impossible to implement in a
business context while a slightly “weaker” solution illuminates the data with a clear
story and fits the business context so well that it can have broad influence.

To maximize chances of finding such a model, we recommend that an analyst
expects—and prepares management to understand—the need to iterate analyses.
A segmentation project is not a matter of “running a segmentation study” or “doing
segmentation analysis on the data.” Rather, it is likely to take multiple rounds of data
collection and analysis to determine the important data that should be collected in
the first place, to refine and test the solutions, and to conduct rounds of interpretation
with business stakeholders to ensure that the results are actionable.

11.1.2 Segmentation as Clustering and Classification

In this chapter, we demonstrate several methods in R that will help you start
with segmentation analysis. We explore two distinct yet related areas of statistics:
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clustering or cluster analysis and classification. These are the primary branches of
what is sometimes called statistical learning, i.e., learning from data through statis-
tical model fitting.

A key distinction in statistical learning is whether the method is supervised or unsu-
pervised. In supervised learning, a model is presented with observations whose out-
come status (dependent variable) is known, with a goal to predict that outcome from
the independent variables. For example, we might use data from previous direct mar-
keting campaigns—with a known outcome of whether each target responded or not,
plus other predictor variables—to fit a model that predicts likelihood of response in
a new campaign. We refer to this process as classification.

In unsupervised learning we do not know the outcome groupings but attempt to
discover them from structure in the data. For instance, we might explore a direct
marketing campaign and ask, “Are there groups that differ in how and when they
respond to offers? If so, what are the characteristics of those groups?” We use the
term clustering for this approach.

Clustering and classification are both useful in segmentation projects. Stakeholders
often view segmentation as discovering groups in the data in order to derive new
insight about customers. This obviously suggests clustering approaches because the
possible customer groups are unknown. Still, classification approaches are also use-
ful in such projects for at least two reasons: there may be outcome variables of inter-
est that are known (such as observed in-market response) that one wishes to predict
from segment membership, and if you use clustering to discover groups you will
probably want to predict (i.e., classify) future responses into those groups. Thus, we
view clustering and classification as complementary approaches.

A topic we do not address is how to determine what data to use for clustering, the
observed basis variables that go into the model. That is primarily a choice based
on business need, strategy, and data availability. Still, you can use the methods here
to evaluate different sets of such variables. If you have a large number of measures
available and need to determine which ones are most important, the variable impor-
tance assessment method we review in Sect. 11.4.3 might assist. Aside from that,
we assume in this chapter that the basis variables have been determined (and we use
the customer relationship data from Chap. 5).

There are hundreds of books, thousands of articles, and scores of R packages for
clustering and classification methods, all of which propose hundreds of approaches
with—as we noted above—no single “best” method. This chapter cannot cover clus-
tering or classification in a comprehensive way, but we can give an introduction that
will get you started, teach you the basics, accelerate your learning, and help you
avoid some traps. As you will see, in most cases the process of fitting such models
in R is extremely similar from model to model.
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11.2 Segmentation Data

We use the segmentation data (object seg.df) from Chap. 5. If you saved that data
in Sect. 5.1.4, you can reload it:
> load("∼/segdf-Rintro-Ch5.RData")
> seg.raw <- seg.df
> seg.df <- seg.raw[ , -7] # remove the known segment assignments

Otherwise, you could download the data set from the book website:
> seg.raw <- read.csv("http://goo.gl/qw303p")
> seg.df <- seg.raw[ , -7] # remove the known segment assignments

As you may recall from Chap. 5, this is a simulated data set with four identified seg-
ments of customers for a subscription product, and contains a few variables that are
similar to data from typical consumer surveys. Each observation has the simulated
respondent’s age, gender, household income, number of kids, home ownership, sub-
scription status, and assigned segment membership. In Chap. 5, we saw how to sim-
ulate this data and how to examine group differences within it. Other data sources
that are often used for segmentation are customer relationship management (CRM)
records, attitudinal surveys, product purchase and usage, and more generally, any
data set with observations about customers.

The original data seg.raw contains “known” segment assignments that have been
provided for the data from some other source (as might occur from some human
coding process). Because our task here is to discover segments, we create a copy
seg.df that omits those assignments (omitting column 7), so we don’t accidentally
include the known values when exploring applying segmentation methods. (Later,
in the classification section, we will use the correct assignments because they are
needed to train the classification models.)

We check the data after loading:
> summary(seg.df)

age gender income kids ownHome ...
Min. :19.26 Female:157 Min. : -5183 Min. :0.00 ownNo :159 ...
1st Qu.:33.01 Male :143 1st Qu.: 39656 1st Qu.:0.00 ownYes:141 ...

We use the subscription segment data in this chapter for two purposes: to exam-
ine clustering methods that find intrinsic groupings (unsupervised learning), and to
show how classification methods learn to predict group membership from known
cases (supervised learning).

11.3 Clustering

We examine four clustering procedures that are illustrative of the hundreds of avail-
able methods. You’ll see that the general procedure for finding and evaluating clus-
ters in R is similar across the methods.
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To begin, we review two distance-based clustering methods, hclust() and
kmeans(). Distance-based methods attempt to find groups that minimize the dis-
tance between members within the group, while maximizing the distance of mem-
bers from other groups. hclust() does this by modeling the data in a tree struc-
ture, while kmeans() uses group centroids (central points).

Then we examine model-based clustering methods, Mclust() and poLCA().
Model-based methods view the data as a mixture of groups sampled from different
distributions, but whose original distribution and group membership has been “lost”
(i.e., is unknown). These methods attempt to model the data such that the observed
variance can be best represented by a small number of groups with specific distri-
bution characteristics such as different means and standard deviations. Mclust()
models the data as a mixture of Gaussian (normal) variables, while poLCA() uses
a latent class model with categorical (nominal) variables.

11.3.1 The Steps of Clustering

Clustering analysis requires two stages: finding a proposed cluster solution and eval-
uating that solution for one’s business needs. For each method we go through the
following steps:

• Transform the data if needed for a particular clustering method; for instance,
some methods require all numeric data (e.g., kmeans(), mclust()) or all
categorical data (e.g., poLCA()).

• Compute a distance matrix if needed; some methods require a precomputed
matrix of similarity in order to group observations (e.g., hclust()) .

• Apply the clustering method and save its result to an object. For some methods
this requires specifying the number (K) of groups desired (e.g., kmeans(),
poLCA()).

• For some methods, further parse the object to obtain a solution with K groups
(e.g., hclust()).

• Examine the solution in the model object with regard to the underlying data,
and consider whether it answers a business question.

As we’ve already argued, the most difficult part of that process is the last step: estab-
lishing whether a proposed statistical solution answers a business need. Ultimately,
a cluster solution is largely just a vector of purported group assignments for each
observation, such as “1, 1, 4, 3, 2, 3, 2, 2, 4, 1, 4 . . ..” It is up to you to figure out
whether that tells a meaningful story for your data.
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11.3.1.1 A Quick Check Function

We recommend that you think hard about how you would know whether the
solution—assignments of observations to groups—that is proposed by a clustering
method is useful for your business problem. Just because some grouping is proposed
by an algorithm does not mean that it will help your business. One way we often ap-
proach this is to write a simple function that summarizes the data and allows quick
inspection of the high-level differences between groups.

A segment inspection function may be complex depending on the business need and
might even include plotting as well as data summarization. For purposes here we use
a simple function that reports the mean by group. We use mean here instead of a
more robust metric such as median because we have several binary variables and
mean() easily shows the mixture proportion for them (i.e., 1.5 means a 50 % mix
of 1 and 2). A very simple function is:

> seg.summ <- function(data, groups) {
+ aggregate(data, list(groups), function(x) mean(as.numeric(x)))
+ }

This function first splits the data by reported group (aggregate(. . ., list
(groups), . . .)). An anonymous function (function(x) . . . ) then converts
all of a group’s data to numeric (as.numeric(x)) and computes its mean().
Here’s an example using the known segments from seg.raw:

> seg.summ(seg.df, seg.raw$Segment)
Group.1 age gender income kids ownHome subscribe

1 Moving up 36.33114 1.30 53090.97 1.914286 1.328571 1.200
2 Suburb mix 39.92815 1.52 55033.82 1.920000 1.480000 1.060
3 Travelers 57.87088 1.50 62213.94 0.000000 1.750000 1.125
4 Urban hip 23.88459 1.60 21681.93 1.100000 1.200000 1.200

This simple function will help us to inspect cluster solutions efficiently. It is not
intended to be a substitute for detailed analysis—and it takes shortcuts such as treat-
ing categorical variables as numbers, which is inadvisable except for analysts who
understand what they’re doing—yet it provides a quick first check of whether there
is something interesting (or uninteresting) occurring in a solution.

With a summary function of this kind we are easily able to answer the following
questions related to the business value of a proposed solution:

• Are there obvious differences in group means?

• Does the differentiation point to some underlying story to tell?

• Do we see immediately odd results such as a mean equal to the value of one
data level?
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Why not just use a standard R function such as by() or aggregate()? There are
several reasons. Writing our own function allows us to minimize typing by providing
a short command. By providing a consistent and simple interface, it reduces risk of
error. And it is extensible; as an analysis proceeds, we might decide to add to the
function, expanding it to report variance metrics or to plot results, without needing
to change how we invoke it.

11.3.2 Hierarchical Clustering: hclust() Basics

Hierarchical clustering is a popular method that groups observations according to
their similarity. The hclust() method is one way to perform this analysis in R.
hclust() is a distance-based algorithm that operates on a dissimilarity matrix, an
N-by-N matrix that reports a metric for the distance between each pair of observa-
tions.

The hierarchical clustering method begins with each observation in its own cluster.
It then successively joins neighboring observations or clusters one at a time accord-
ing to their distances from one another, and continues this until all observations
are linked. This process of repeatedly joining observations and groups is known as
an agglomerative method. Because it is both very popular and exemplary of other
methods, we present hierarchical clustering in more detail than the other clustering
algorithms.

The primary information in hierarchical clustering is the distance between obser-
vations. There are many ways to compute distance, and we start by examining the
best-known method, the Euclidean distance. For two observations (vectors) X and
Y , the Euclidean distance d is:

d =
√

∑(X −Y )2. (11.1)

For single pairs of observations, such as X = {1,2,3} and Y = {2,3,2} we can
compute the distance easily in R:

> c(1,2,3) - c(2,3,2) # vector of differences
[1] -1 -1 1
> sum((c(1,2,3) - c(2,3,2))ˆ2) # the sum of squared differences
[1] 3
> sqrt(sum((c(1,2,3) - c(2,3,2))ˆ2)) # root sum of squares
[1] 1.732051

When there are many pairs, this can be done with the dist() function. Let’s check
it first for the simple X ,Y example, using rbind() to group these vectors as ob-
servations (rows):
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> dist(rbind(c(1,2,3), c(2,3,2)))
1

2 1.732051

The row and column labels tell us that dist() is returning a matrix for observation
1 (column) by observation 2 (row).

A limitation is that Euclidean distance is only defined when observations are nu-
meric. In our data seg.df it is impossible to compute the distance between Male
and Female (a fact many people suspect even before studying statistics). If we did
not care about the factor variables, then we could compute Euclidean distance using
only the numeric columns.

For example, we can select the three numeric columns in seg.df, calculate the dis-
tances, and then look at a matrix for just the first five observations as follows:

> d <- dist(seg.df[, c("age", "income", "kids")])
> as.matrix(d)[1:5, 1:5]

1 2 3 4 5
1 0.000 13936.531 5313.626 31559.178 29870.205
2 13936.531 0.000 8622.906 45495.698 43806.727
3 5313.626 8622.906 0.000 36872.800 35183.828
4 31559.178 45495.698 36872.800 0.000 1688.977
5 29870.205 43806.727 35183.828 1688.977 0.000

As expected, the distance matrix is symmetric, and the distance of an observation
from itself is 0.

For seg.df we cannot assume that factor variables are irrelevant to our cluster
definitions; it is better to use all the data. The daisy() function in the cluster
package [108] works with mixed data types by rescaling the values, so we use that
instead of Euclidean distance:

> library(cluster) # daisy works with mixed data types

> seg.dist <- daisy(seg.df)

We inspect the distances computed by daisy() by coercing the resulting object to
a matrix and selecting the first few rows and columns:

> as.matrix(seg.dist)[1:5, 1:5]
1 2 3 4 5

1 0.0000000 0.2532815 0.2329028 0.2617250 0.4161338
2 0.2532815 0.0000000 0.0679978 0.4129493 0.3014468
3 0.2329028 0.0679978 0.0000000 0.4246012 0.2932957
4 0.2617250 0.4129493 0.4246012 0.0000000 0.2265436
5 0.4161338 0.3014468 0.2932957 0.2265436 0.0000000



11.3 Clustering 307

The distances look reasonable (zeroes on the diagonal, symmetric, scaled [0, 1]) so
we proceed to the hierarchical cluster method itself, invoking hclust() on the
dissimilarity matrix:

> seg.hc <- hclust(seg.dist, method="complete")

We use the complete linkage method, which evaluates the distance between every
member when combining observations and groups.

A simple call to plot() will draw the hclust object:

> plot(seg.hc)

The resulting tree for all N = 300 observations of seg.df is shown in
Fig. 11.1.
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Fig. 11.1. Complete dendrogram for the segmentation data, using hclust().

A hierarchical dendrogram is interpreted primarily by height and where observa-
tions are joined. The height represents the dissimilarity between elements that are
joined. At the lowest level of the tree in Fig. 11.1 we see that elements are com-
bined into small groups of 2–10 that are relatively similar, and then those groups are
successively combined with less similar groups moving up the tree. The horizon-
tal ordering of branches is not important; branches could exchange places with no
change in interpretation.

Figure 11.1 is difficult to read, so it is helpful to zoom in on one section of the chart.
We can cut it at a specified location and plot just one branch as follows. We coerce it
to a dendrogram object (as.dendrogram(. . .)), cut it at a certain height (h=. . . ),
and select the resulting branch that we want (. . .$lower[[1]]).

> plot(cut(as.dendrogram(seg.hc), h=0.5)$lower[[1]])
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The result is shown in Fig. 11.2, where we are now able to read the observation la-
bels (which defaults to the row names—usually the row numbers—of observations
in the data frame). Each node at the bottom represents one customer, and the brack-
ets show how each has been grouped progressively with other customers.
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Fig. 11.2. A close up view of the left-most branch from Fig. 11.1.

We can check the similarity of observations by selecting a few rows listed in
Fig. 11.2. Observations 101 and 107 are represented as being quite similar because
they are linked at a very low height, as are observations 278 and 294. On the other
hand, observations 173 and 141 are only joined at the highest level of this branch
and thus should be relatively dissimilar. We can check those directly:

> seg.df[c(101, 107), ] # similar
age gender income kids ownHome subscribe

101 24.73796 Male 18457.85 1 ownNo subYes
107 23.19013 Male 17510.28 1 ownNo subYes
> seg.df[c(278, 294), ] # similar

age gender income kids ownHome subscribe
278 36.23860 Female 46540.88 1 ownNo subYes
294 35.79961 Female 52352.69 1 ownNo subYes
> seg.df[c(173, 141), ] # less similar

age gender income kids ownHome subscribe
173 64.70641 Male 45517.15 0 ownNo subYes
141 25.17703 Female 20125.80 2 ownNo subYes

The first two sets—observations that are neighbors in the dendrogram—are similar
on all variables (age, gender, income, etc.). The third set—observations taken from
widely separated branches—differs substantially on the first four variables.

Finally, we might check one of the goodness-of-fit metrics for a hierarchical clus-
ter solution. One method is the cophenetic correlation coefficient (CPCC), which
assesses how well a dendrogram (in this case seg.hc) matches the true distance
metric (seg.dist) [145]. We use cophenetic() to get the distances from the
dendrogram, and compare it to the dist() metrics with cor():
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> cor(cophenetic(seg.hc), seg.dist)
[1] 0.7682436

CPCC is interpreted similarly to Pearson’s r. In this case, CPCC > 0.7 indicates
a relatively strong fit, meaning that the hierarchical tree represents the distances
between customers well.

11.3.3 Hierarchical Clustering Continued: Groups from hclust()

How do we get specific segment assignments? A dendrogram can be cut into clus-
ters at any height desired, resulting in different numbers of groups. For instance, if
Fig. 11.1 is cut at a height of 0.7, there are K = 2 groups (draw a horizontal line at
0.7 and count how many branches it intersects; each cluster below is a group), while
cutting at height of 0.4 defines K = 7 groups.

Because a dendrogram can be cut at any point, the analyst must specify the number
of groups desired. We can see where the dendrogram would be cut by overlaying
its plot() with rect.hclust(), specifying the number of groups we want
(k=. . . ):

> plot(seg.hc)
> rect.hclust(seg.hc, k=4, border="red")

The K = 4 solution is shown in Fig. 11.3.
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Fig. 11.3. The result of cutting Fig. 11.1 into K = 4 groups.
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We obtain the assignment vector for observations using cutree():

> seg.hc.segment <- cutree(seg.hc, k=4) # membership vector for 4 groups
> table(seg.hc.segment)
seg.hc.segment
1 2 3 4

124 136 18 22

We see that groups 1 and 2 dominate the assignment. Note that the class la-
bels (1, 2, 3, 4) are in arbitrary order and are not meaningful in themselves.
seg.hc.segment is the vector of group assignments.

We use our custom summary function seg.summ(), defined above, to inspect the
variables in seg.df with reference to the four clusters:

> seg.summ(seg.df, seg.hc.segment)
Group.1 age gender income kids ownHome subscribe

1 1 40.78456 2.000000 49454.08 1.314516 1.467742 1
2 2 42.03492 1.000000 53759.62 1.235294 1.477941 1
3 3 44.31194 1.388889 52628.42 1.388889 2.000000 2
4 4 35.82935 1.545455 40456.14 1.136364 1.000000 2

We see that groups 1 and 2 are distinct from 3 and 4 due to subscription sta-
tus. Among those who do not subscribe, group 1 is all male (gender=2 as in
levels(seg.df$gender)) while group 1 is all female. Subscribers are differ-
entiated into those who own a home (group 3) or not (group 4).

Is this interesting from a business point of view? Probably not. Imagine describing
the results to a set of executives: “Our advanced hierarchical analysis in R examined
consumers who don’t yet subscribe and found two segments to target! The segments
are known as ‘Men’ and ‘Women.”’ Such insight is unlikely to win the analyst a
promotion.

We confirm this with a quick plot of gender by subscribe with all of the obser-
vations colored by segment membership. To do this, we use a trick: we convert the
factor variables to numeric, and call the jitter() function to add a bit of noise
and prevent all the cases from being plotted at the same positions (namely at exactly
four points: (1,1), (1,2), (2,1), and (2,2)). We color the points by segment with
col=seg.hc.segment, and label the axes with more meaningful labels:

> plot(jitter(as.numeric(seg.df$gender)) ∼
+ jitter(as.numeric(seg.df$subscribe)),
+ col=seg.hc.segment, yaxt="n", xaxt="n", ylab="", xlab="")
> axis(1, at=c(1, 2), labels=c("Subscribe: No", "Subscribe: Yes"))
> axis(2, at=c(1, 2), labels=levels(seg.df$gender))

The resulting plot is shown in Fig. 11.4, where we see clearly that the non-
subscribers are broken into two segments (colored red and black) that are perfectly
correlated with gender. We should point out that such a plot is a quick hack, which
we suggest only for rapid inspection and debugging purposes.
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Fig. 11.4. Plotting the 4-segment solution from hclust() by gender and subscription sta-
tus, with color representing segment membership. We see the uninteresting result that non-

subscribers are simply divided into two segments purely on the basis of gender.

Why did hclust() find a result that is so uninteresting? That may be answered
in several ways. For one thing, machine learning techniques often take the path of
least resistance and serve up obvious results. In this specific case, the scaling in
daisy() rescales variables to [0,1] and this will make two-category factors (gen-
der, subscription status, home ownership) more influential. Overall, this demon-
strates why you should expect to try several methods and iterate in order to find
something useful.

11.3.4 Mean-Based Clustering: kmeans()

K-means clustering attempts to find groups that are most compact, in terms of the
mean sum-of-squares deviation of each observation from the multivariate center
(centroid) of its assigned group. Like hierarchical clustering, k-means is a very pop-
ular approach.

Because it explicitly computes a mean deviation, k-means clustering relies on Eu-
clidean distance. Thus it is only appropriate for numeric data or data that can be
reasonably coerced to numeric. In our seg.df data, we have a mix of numeric
and binary factors. Unlike higher-order categorical variables, binary factors can be
coerced to numeric with no alteration of meaning.

Although it is not optimal to cluster binary values with k-means, given that we have
a mixture of binary and numeric data, we might attempt it. Our first step is to create
a variant of seg.df that is recoded to numeric. We make a copy of seg.df and
use ifelse() to recode the binary factors:

> seg.df.num <- seg.df
> seg.df.num$gender <- ifelse(seg.df$gender=="Male", 0, 1)
> seg.df.num$ownHome <- ifelse(seg.df$ownHome=="ownNo", 0, 1)
> seg.df.num$subscribe <- ifelse(seg.df$subscribe=="subNo", 0, 1)
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> summary(seg.df.num)
age gender income kids ownHome

Min. :19.26 Min. :0.0000 Min. : -5183 Min. :0.00 Min. :0.00
1st Qu.:33.01 1st Qu.:0.0000 1st Qu.: 39656 1st Qu.:0.00 1st Qu.:0.00
Median :39.49 Median :0.0000 Median : 52014 Median :1.00 Median :0.00
...

There are several ways to recode data, but ifelse() is simple and explicit for
binary data.

We now run the kmeans() algorithm, which specifically requires specifying the
number of clusters to find. We ask for four clusters with centers=4:

> set.seed(96743)
> seg.k <- kmeans(seg.df.num, centers=4)

We use our custom function seg.summ() to do a quick check of the data by pro-
posed group, where cluster assignments are found in the $cluster vector inside
the seg.k model:

> seg.summ(seg.df, seg.k$cluster)
Group.1 age gender income kids ownHome subscribe

1 1 56.37245 1.428571 92287.07 0.4285714 1.857143 1.142857
2 2 29.58704 1.571429 21631.79 1.0634921 1.301587 1.158730
3 3 44.42051 1.452632 64703.76 1.2947368 1.421053 1.073684
4 4 42.08381 1.454545 48208.86 1.5041322 1.528926 1.165289

Unlike with hclust()we now see some interesting differences; the groups appear
to vary by age, gender, kids, income, and home ownership. For example, we can
visually check the distribution of income according to segment (which kmeans()
stored in seg.k$cluster) using boxplot():

> boxplot(seg.df.num$income ∼ seg.k$cluster, ylab="Income", xlab="Cluster")

The result is Fig. 11.5, which shows substantial differences in income by segment.
Note that in clustering models, the group labels are in arbitrary order, so don’t worry
if your solution shows the same pattern with different labels.

We visualize the clusters by plotting them against a dimensional plot.
clusplot() will perform dimensional reduction with principal components or
multidimensional scaling as the data warrant, and then plot the observations with
cluster membership identified (see Chap. 8 to review principal component analysis
and plotting.) We use clusplot from the cluster package with arguments to
color the groups, shade the ellipses for group membership, label only the groups
(not the individual points) with labels=4, and omit distance lines between groups
(lines=0):

> library(cluster)
> clusplot(seg.df, seg.k$cluster, color=TRUE, shade=TRUE,
+ labels=4, lines=0, main="K-means cluster plot")
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Fig. 11.5. Boxplot of income by cluster
as found with kmeans().

The code produces the plot in Fig. 11.6, which plots cluster assignment by color and
ellipses against the first two principal components of the predictors (see Sect. 8.2.2).
Groups 3 and 4 are largely overlapping (in this dimensional reduction) while group
1 and especially group 2 are modestly differentiated.
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These two components explain 48.49 % of the point variability.
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Fig. 11.6. Cluster plot created with
clusplot() for the four group so-
lution from kmeans(). This shows
the observations on a multidimensional
scaling plot with group membership
identified by the ellipses.

Overall, this is a far more interesting cluster solution for our segmentation data than
the hclust() proposal. The groups here are clearly differentiated on key variables
such as age and income. With this information, an analyst might cross-reference the
group membership with key variables (as we did using our seg.summ() function
and then look at the relative differentiation of the groups (as in Fig. 11.6).



314 11 Segmentation: Clustering and Classification

This may suggest a business strategy. In the present case, for instance, we see
that group 1 is modestly well differentiated, and has the highest average income.
That may make it a good target for a potential campaign. Many other strategies
are possible, too; the key point is that the analysis provides interesting options to
consider.

A limitation of k-means analysis is that it requires specifying the number of clusters,
and it can be difficult to determine whether one solution is better than another. If we
were to use k-means for the present problem, we would repeat the analysis for k = 3,
4, 5, and so forth, and determine which solution gives the most useful result for our
business goals.

One might wonder whether the algorithm itself can suggest how many clusters are
in the data. Yes! To see that, we turn next to model-based clustering.

11.3.5 Model-Based Clustering: Mclust()

The key idea for model-based clustering is that observations come from groups
with different statistical distributions (such as different means and variances). The
algorithms try to find the best set of such underlying distributions to explain the
observed data. We use the mclust package [53, 54] to demonstrate this.

Such models are also known as “mixture models” because it is assumed that the
data reflect a mixture of observations drawn from different populations, although we
don’t know which population each observation was drawn from. We are trying to
estimate the underlying population parameters and the mixture proportion. mclust
models such clusters as being drawn from a mixture of normal (also known as Gaus-
sian) distributions.

As you might guess, because mclustmodels data with normal distributions, it uses
only numeric data. We use the numeric data frame seg.df.num that we adapted
for kmeans() in Sect. 11.3.4; see that section for the code if needed. The model is
estimated with Mclust() (note the capital letter for the fitting function, as opposed
to the package name):

> library(mclust)
> seg.mc <- Mclust(seg.df.num)
> summary(seg.mc)
----------------------------------------------------
Gaussian finite mixture model fitted by EM algorithm
----------------------------------------------------

Mclust EEV (ellipsoidal, equal volume and shape) model with 3 components:

log.likelihood n df BIC ICL
-5256.222 300 71 -10917.41 -10955.48

Clustering table:
1 2 3

111 115 74
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This tells us that the data are estimated to have three clusters (components) with
the sizes as shown in the table. Mclust() compared a variety of different mixture
shapes and concluded that an ellipsoidal model (modeling the data as multivariate
ellipses) fit best.

We also see log-likelihood information, which we can use to compare models. We
try a 4-cluster solution by telling Mclust() the number of clusters we want with
the G=4 argument:

> seg.mc4 <- Mclust(seg.df.num, G=4)
> summary(seg.mc4)
...
Mclust EEI (diagonal, equal volume and shape) model with 4 components:

log.likelihood n df BIC ICL
-5455.346 300 33 -11098.92 -11131.54

Clustering table:
1 2 3 4
45 54 23 178

Forcing it to find four clusters resulted in quite a different model, with lower log-
likelihood, a different multivariate pattern (diagonal), and no obvious correspon-
dence in the cluster table (for instance, it’s not simply that one of the groups in the
3-cluster solution was split into two).

11.3.6 Comparing Models with BIC()

We compare the 3-cluster and 4-cluster models using the Bayesian information cri-
terion (BIC) [129] with BIC(model1, model2):

> BIC(seg.mc, seg.mc4)
df BIC

seg.mc 71 10917.41
seg.mc4 33 11098.92

The difference between the models is 181. The key point to interpreting BIC is to
remember this: the lower the value of BIC, on an infinite number line, the better. BIC
of −1,000 is better than BIC of −990; and BIC of 60 is better than BIC of 90.

There is one important note when interpreting BIC in R: unfortunately, some func-
tions return the negative of BIC, which would then have to be interpreted in the op-
posite direction. We see above that BIC() reports positive values while Mclust()
returns the same values in the negative direction. If you are ever unsure of the di-
rection to interpret, use the BIC() function and interpret as noted (lower values are
better). Alternatively, you could also check the log-likelihood values, where higher
log-likelihood values are better (e.g., −1,000 is better than −1,100).
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With that in mind, differences in BIC may be interpreted as shown in Table 11.1.
Comparing the present models, we see that the Mclust() solution with three clus-
ters (BIC = 10,917) is a much stronger fit than the model with 4 clusters (BIC =
11,098) because it is lower by 181. That doesn’t mean that the 3-cluster model is
correct; there’s no absolute standard for such a statement. Rather, it means that be-
tween just these two models, as found by Mclust(), the 3-cluster solution has
much stronger evidence in the data.

Table 11.1. Interpretation of the Bayesian information criterion (BIC) when comparing two
models

BIC difference Odds of model superiority (%) Strength of the evidence
0–2 50–75 Weak
2–6 75–95 Positive
6–10 95–99 Strong
>10 >99 Very strong

Lower BIC is better, and the difference in BIC indicates the strength of evidence. Adapted
from Raftery [129, p. 139]

Will the 3-cluster solution provide useful insight for the business? We check the
quick summary and plot the clusters:

> seg.summ(seg.df, seg.mc$class)
Group.1 age gender income kids ownHome subscribe

1 1 37.11167 1.405405 53142.71 1.747748 1.099099 1.270270
2 2 33.67599 1.530435 41315.55 1.626087 1.634783 1.000000
3 3 59.02380 1.500000 62578.80 0.000000 1.770270 1.135135
> library(cluster)
> clusplot(seg.df, seg.mc$class, color=TRUE, shade=TRUE,
+ labels=4, lines=0, main="Model-based cluster plot")

The plot is shown in Fig. 11.7.
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Fig. 11.7. A cluster plot using
clusplot() for the 3-cluster
model from Mclust(). Group 3 is
highly differentiated on the first two
multivariate dimensional components
(X and Y axes).
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When we compare the Mclust() solution to the one found by kmeans(), there
are arguments for and against each. The 4-cluster k-means solution had much
crisper differentiation on demographics (Sect. 11.3.4). On the other hand, the most
clearly differentiated segment (segment 2; cf. Fig. 11.6) had the lowest income and
thus might be more difficult to sell to (or not—it depends on the product or ser-
vice).

Looking closely at the Mclust() solution, we see that one of the groups is nicely
differentiated (group 3), but the demographic differences reported in seg.summ()
are not particularly interesting. Everyone in Group 2 is a non-subscriber, Group 3
has no kids, and Group 1 mixes everyone else. As always, the ultimate value depends
more on one’e strategy, business case, and modes available to target respondents
than it does on the statistical solution in itself. The statistics provide information
about how customers are similar and different, not a definitive answer.

11.3.7 Latent Class Analysis: poLCA()

Latent class analysis (LCA) is similar to mixture modeling in the assumption that
differences are attributable to unobserved groups that one wishes to uncover. In
this section we take a look at the poLCA package for polytomous (i.e., categorical)
LCA [105].

Whereas mclust and kmeans() work with numeric data, and hclust() de-
pends on the distance measure, poLCA uses only categorical variables. To demon-
strate it here, we adopt an opposite strategy from our procedure with k-means
and mclust and convert our data seg.df to be all categorical data before
analyzing it.

There are several approaches to convert numeric data to factors, but for purposes
here we simply recode everything as binary with regard to a specified cutting point
(for instance, to recode as 1 for income below some cutoff and 2 above that). In the
present case, we split each variable at the median() and recode using ifelse()
and factor() (we’ll see a more general approach to recoding numeric values with
cut() in Sect. 12.4.1):

> seg.df.cut <- seg.df
> seg.df.cut$age <- factor(ifelse(seg.df$age < median(seg.df$age), 1, 2))
> seg.df.cut$income <- factor(ifelse(seg.df$income < median(seg.df$income),
+ 1, 2))
> seg.df.cut$kids <- factor(ifelse(seg.df$kids < median(seg.df$kids), 1, 2))
> summary(seg.df.cut)
age gender income kids ownHome subscribe
1:150 Female:157 1:150 1:121 ownNo :159 subNo :260
2:150 Male :143 2:150 2:179 ownYes:141 subYes: 40

With the data in place, we specify the model that we want to fit. poLCA can es-
timate complex models with covariates, but for the present analysis we only wish
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to examine the effect of cluster membership alone. Thus, we model the dependent
variables (all the observed columns) with respect to the model intercepts (i.e., the
cluster positions). We use with() to save typing, and ∼1 to specify a formula with
intercepts only:

> seg.f <- with(seg.df.cut,
+ cbind(age, gender, income, kids, ownHome, subscribe)∼1)

Next we fit poLCA models for K = 3 and K = 4 clusters using poLCA(formula,
data, nclass=K):

> library(poLCA)
> set.seed(02807)
> seg.LCA3 <- poLCA(seg.f, data=seg.df.cut, nclass=3)
...
> seg.LCA4 <- poLCA(seg.f, data=seg.df.cut, nclass=4)
...

poLCA() displays voluminous information by default, which we have omit-
ted.

Which model is better? We use str(seg.LCA3) to discover the bic value within
the object (as shown in the printed output from poLCA()). Comparing the two
models:

> seg.LCA4$bic
[1] 2330.043
> seg.LCA3$bic
[1] 2298.767

The 3-cluster model shows a lower BIC by 32 and thus a substantially stronger fit
to the data (see Table 11.1). As we’ve seen, that is not entirely conclusive as to busi-
ness utility, so we also examine some other indicators such as the quick summary
function and cluster plots:

> seg.summ(seg.df, seg.LCA3$predclass)
Group.1 age gender income kids ownHome subscribe

1 1 28.22385 1.685714 30075.32 1.1285714 1.285714 1.271429
2 2 54.44407 1.576923 60082.47 0.3846154 1.769231 1.105769
3 3 37.47652 1.277778 54977.08 2.0793651 1.325397 1.079365
> table(seg.LCA3$predclass)
1 2 3
70 104 126

> clusplot(seg.df, seg.LCA3$predclass, color=TRUE, shade=TRUE,
+ labels=4, lines=0, main="LCA plot (K=3)")

> seg.summ(seg.df, seg.LCA4$predclass)
Group.1 age gender income kids ownHome subscribe

1 1 36.62554 1.349593 52080.13 2.1951220 1.349593 1.113821
2 2 53.64073 1.535714 60534.17 0.5178571 1.785714 1.098214
3 3 30.22575 1.050000 41361.81 0.0000000 1.350000 1.000000
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4 4 27.61506 1.866667 28178.70 1.1777778 1.066667 1.333333
> table(seg.LCA4$predclass)
1 2 3 4

123 112 20 45
> clusplot(seg.df, seg.LCA4$predclass, color=TRUE, shade=TRUE,
+ labels=4, lines=0, main="LCA plot (K=4)")

The resulting plots from clusplot() are shown in Fig. 11.8.

We interpret the LCA results by looking first at the cluster plots (Fig. 11.8). At a high
level, it appears that “Group 2” is similar in both solutions. The primary difference is
that “Group 3” buried inside the overlapping ellipses in the 4-cluster solution could
be viewed as being largely carved out of two larger groups (Groups “2” and “3” as
labeled in the 3-cluster solution). This is an approximate interpretation of the data
visualization, not a perfect correspondence.

Does the additional group in the 4-cluster solution add anything to our interpre-
tation? Turning to the quick summary from seg.summ() in the code block, we
see good differentiation of groups in both models. One argument in favor of the
4-cluster solution is that Group 3 has no subscribers (as shown by the mean in the
seg.summ() results) and is relatively well identified (mostly younger women with
no kids); that might make it an appealing group either for targeting or exclusion, de-
pending on one’s strategy.

As a final note on model-based clustering (and many other clustering methods such
as kmeans()), the solutions are partially dependent on the random number seed. It
can be useful to run the models with different random seeds and compare the results.
This brings us to our next topic: comparing cluster solutions.
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These two components explain 48.49 % of the point variability.
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Fig. 11.8. 3-cluster and 4-cluster latent class solutions for seg.df found by poLCA().
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11.3.8 Comparing Cluster Solutions

One question we’ve avoided until now is this: given that we know the real group
membership in seg.df, how does it compare to the clustering methods’ results?
The question is not as simple as counting agreement for two reasons. First, it is not
obvious how to match one cluster solution to another because the order of group
labels is arbitrary. “Group 1” in one solution might well be called “Group 2” or
“Group C” in another solution.

Second, if we solve the matching problem we still need to adjust for chance agree-
ment. Is an agreement rate of 90 % good? It depends on the base rate. If you are
attempting to predict the gender of each person in a random sample of Japanese
citizens, then 90 % accuracy is much better than chance (which would be roughly
51 %, the proportion of women). On the other hand, if you are attempting to predict
whether each respondent speaks Japanese, then 90 % accuracy is terrible (just as-
signing everyone to “Yes” would achieve nearly perfect prediction, because the true
rate is over 99 %).

The mclust package provides tools to solve both issues. mapClass() solves
the matching problem. It examines all permutations of how two sets of class as-
signments might be related and selects a mapping that maximizes agreement be-
tween the two assignment schemes. adjustedRandIndex() likewise matches
two assignment schemes and then computes the degree of agreement over and above
what might be attributed to “chance” by simply assigning all observations to the
largest group [81, 131]. Its magnitude may be interpreted similarly to a standard r
correlation coefficient.

We use table() to look at the cross-tabs between the LCA 3-cluster and 4-cluster
solutions found above:

> table(seg.LCA3$predclass, seg.LCA4$predclass)

1 2 3 4
1 13 0 12 45
2 0 104 0 0
3 110 8 8 0

It would appear that observations assigned to “Group 1” in the 3-cluster
solution are split between Groups 1, 3, and 4 in the 4-cluster solution, while
“Group 3” maps closely to “Group 1” (in the 4 class solution) and “Group
2” is predominantly the same in both. However, matching groups manually
is sometimes unclear and generally error-prone. Instead, we use mapClass
(a, b) and adjustedRandIndex(a, b) to compare agreement between the
two solutions:

> library(mclust)
> mapClass(seg.LCA3$predclass, seg.LCA4$predclass)
$aTOb
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$aTOb$‘1‘
[1] 4
$aTOb$‘2‘
[1] 2
$aTOb$‘3‘
[1] 1
... # [similarly for mapping b to a, omitted]
> adjustedRandIndex(seg.LCA3$predclass, seg.LCA4$predclass)
[1] 0.7288822

This tells us that “1” in the LCA3 model (a) maps best to “4” in the LCA4 model
(b), and so forth. The adjusted Rand index of 0.729 indicates that the match between
the two assignment lists is much better than chance. From a business perspective, it
also tells us that the 3-cluster and 4-cluster differ modestly from one another, which
provides another perspective on choosing between them.

By comparison, R makes it easy to see what happens if we were to test a random
assignment scheme:

> set.seed(11021)
> random.data <- sample(4, length(seg.LCA4$predclass),

replace=TRUE)
> adjustedRandIndex(random.data, seg.LCA4$predclass)
[1] 0.002292031

In this case, the adjusted Rand index is near zero, because the match between the
clusters is no better than random chance.

Finally we compare the LCA 4-cluster solution to the true segments in
seg.raw:

> table(seg.raw$Segment, seg.LCA4$predclass)
1 2 3 4

Moving up 50 4 8 8
Suburb mix 62 29 2 7
Travelers 0 79 1 0
Urban hip 11 0 9 30

> adjustedRandIndex(seg.raw$Segment, seg.LCA4$predclass)
[1] 0.3513031

With a Rand index of 0.35, the LCA solution matches the true segment assignments
moderately better than chance alone. In many cases, of course, one would not have
identified clusters for comparison; but when they are available from other projects
or previous efforts, it is helpful to examine correspondence in this way.
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11.3.9 Recap of Clustering

We’ve covered four statistical methods to identify potential groups of observations
in a data set. In the next section we examine the problem of how to predict (classify)
observations into groups after those groups have been defined. Before we move
to that problem, there are two points that are crucial for success in segmentation
projects:

• Different methods are likely to yield different solutions, and in general there is
no absolute “right” answer. We recommend to try multiple clustering methods
with different potential numbers of clusters.

• The results of segmentation are primarily about business value, and solutions
should be evaluated in terms of both model fit (e.g., using BIC()) and busi-
ness utility. Although model fit is an important criterion and should not be over-
looked, it is ultimately necessary that an answer can be communicated to and
used by stakeholders.

11.4 Classification

Whereas clustering is the process of discovering group membership, classification
is the prediction of membership. In this section we look at two examples of classi-
fication: predicting segment membership, and predicting who is likely to subscribe
to a service.

Classification uses observations whose status is known to derive predictors, and then
applies those predictors to new observations. When working with a single data set it
is typically split into a training set that is used to develop the classification model,
and a test set that is used to determine performance. It is crucial not to assess per-
formance on the same observations that were used to develop the model.

A classification project typically includes the following steps at a minimum:

• A data set is collected in which group membership for each observation is
known or assigned (e.g., assigned by behavioral observation, expert rating, or
clustering procedures).

• The data set is split into a training set and a test set. A common pattern is
to select 50–80 % of the observations for the training set (67 % seems to be
particularly common), and to assign the remaining observations to the test set.

• A prediction model is built, with a goal to predict membership in the training
data as well as possible.
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• The resulting model is then assessed for performance using the test data. Per-
formance is assessed to see that it exceeds chance (base rate). Additionally one
might assess whether the method performs better than a reasonable alternative
(and simpler or better-known) model.

Classification is an even more complex area than clustering, with hundreds of
methods and hundreds of R packages, thousands of academic papers each year,
and enormous interest with technology and data analytics firms. Our goal is not to
cover all of that but to demonstrate the common patterns in R using two of the best-
known and most useful classification methods, the naive Bayes and random forest
classifiers.

11.4.1 Naive Bayes Classification: naiveBayes()

A simple yet powerful classification method is the Naive Bayes (NB) classifier.
Naive Bayes uses training data to learn the probability of class membership as a
function of each predictor variable considered independently (hence “naive”). When
applied to new data, class membership is assigned to the category considered to be
most likely according to the joint probabilities assigned by the combination of pre-
dictors. Several R packages provide NB methods; we use the e1071 package from
the Vienna University of Technology (TU Wien) [114].

The first step in training a classifier is to split the data into training and test data,
which will allow one to check whether the model works on the test data (or is in-
stead overfitted to the training data). We select 65 % of the data to use for training
with the sample() function, and keep the unselected cases as holdout (test) data.
Note that we select the training and test cases not from seg.df, which omitted
the previously known segment assignments, but from the full seg.raw data frame.
Classification requires known segment assignments in order to learn how to assign
new values.

> set.seed(04625)
> train.prop <- 0.65
> train.cases <- sample(nrow(seg.raw), nrow(seg.raw)*train.prop)
> seg.df.train <- seg.raw[train.cases, ]
> seg.df.test <- seg.raw[-train.cases, ]

We then train a naive Bayes classifier to predict Segment membership from all
other variables in the training data. This is a very simple command:

> library(e1071)
> (seg.nb <- naiveBayes(Segment ∼ ., data=seg.df.train))
...
Y
Moving up Suburb mix Travelers Urban hip
0.2512821 0.3025641 0.2615385 0.1846154
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Conditional probabilities:
...

gender
Y Female Male
Moving up 0.6530612 0.3469388
Suburb mix 0.4576271 0.5423729
Travelers 0.4705882 0.5294118
Urban hip 0.3333333 0.6666667

...

Examining the summary of the model object seg.nb, we see how the NB model
works. First, the a priori likelihood of segment membership—i.e., the estimated
odds of membership before any other information is added—is 25.1 % for the Mov-
ing up segment, 30.2 % for the Suburb mix segment, and so forth. Next we see the
probabilities conditional on each predictor. In the code above, we show the proba-
bilities for gender conditional on segment. A member of the Moving up segment
has a 65.3 % probability of being female in the training data.

The NB classifier starts with the observed probabilities of gender, age, etc., con-
ditional on segment found in the training data. It then uses Bayes’ Rule to com-
pute the probability of segment, conditional on gender, age, etc. This can then be
used to estimate segment membership in new observations such as the test data.
You have likely seen a description of how Bayes’ Rule works, and we will not
repeat it here. For details, refer to a general text on Bayesian methods such as
Kruschke [94].

Using the classifier model object seg.nb we can predict segment membership in
the test data seg.df.test with predict():

> (seg.nb.class <- predict(seg.nb, seg.df.test))

[1] Suburb mix Travelers Suburb mix Suburb mix Suburb mix Suburb mix

[7] Moving up Suburb mix Suburb mix Suburb mix Travelers Moving up

...

We examine the frequencies of predicted membership using table() and
prop.table():

> prop.table(table(seg.nb.class))
seg.nb.class
Moving up Suburb mix Travelers Urban hip
0.2285714 0.3047619 0.3428571 0.1238095

A cluster plot of these segments against their principal components is created with
the following code and shown in Fig. 11.9. In this case we remove the known seg-
ment assignments from the data using [ , -7] because we are using the NB clas-
sifications:

> clusplot(seg.df.test[, -7], seg.nb.class, color=TRUE, shade=TRUE,
+ labels=4, lines=0,
+ main="Naive Bayes classification, holdout data")
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Fig. 11.9. A cluster plot for the naive
Bayes classifier for segment member-
ship predicted in holdout (test) data.

How well did the model perform? We compare the predicted membership to the
known segments for the 35 % holdout (test) data. First we see the raw agreement
rate, which is 80 % agreement between predicted and actual segment member-
ship:

> mean(seg.df.test$Segment==seg.nb.class)
[1] 0.8

As we saw in Sect. 11.3.8, instead of raw agreement, one should assess performance
above chance. In this case, we see that NB was able to recover the segments in the
test data imperfectly but substantially better than chance:

> library(mclust)
> adjustedRandIndex(seg.nb.class, seg.df.test$Segment)
[1] 0.5626787

We compare performance for each category using table(). The resulting table is
known in machine learning as a confusion matrix:

> table(seg.nb.class, seg.df.test$Segment)

seg.nb.class Moving up Suburb mix Travelers Urban hip
Moving up 13 10 0 1
Suburb mix 3 29 0 0
Travelers 5 2 29 0
Urban hip 0 0 0 13

The NB prediction (shown in the rows) was correct for a majority of observations
in each segment, as shown in the diagonal. When we examine individual categories,
we see that NB was correct for every proposed member of the Urban hip segment
(13 correct out of 13 proposed), and for nearly 90 % of the Suburb mix proposals
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(29 correct out of 32). However, it incorrectly classified 12 of the actual 41 Suburb
mix respondents into other segments, and similarly failed to identify 1 of the true
Urban hip segment.

This demonstrates the asymmetry of positive prediction (making a correct claim
of inclusion) vs. negative prediction (making a correct claim of exclusion). There is
likely to be a different business gain for identifying true positives and true negatives,
versus the costs of false positives and false negatives. If you have estimates of these
costs, you can use the confusion matrix to compute a custom metric for evaluating
your classification results.

As we did for clustering, we check the predicted segments’ summary values using
our summary function. However, because we now have labeled test data, we can
also compare that to the summary values using the true membership:

> # summary data for proposed segments in the test data
> seg.summ(seg.df.test, seg.nb.class)

Group.1 age gender income kids ownHome subscribe Segment
1 Moving up 34.29258 1.125000 51369.52 2.2916667 1.416667 1.250000 1.541667
2 Suburb mix 41.24653 1.562500 58095.10 2.1875000 1.562500 1.000000 1.906250
3 Travelers 55.08669 1.444444 58634.10 0.0000000 1.666667 1.166667 2.666667
4 Urban hip 23.36047 1.461538 22039.69 0.8461538 1.307692 1.153846 4.000000

> seg.summ(seg.df.test, seg.df.test$Segment)
Group.1 age gender income kids ownHome subscribe Segment

1 Moving up 36.88989 1.190476 53582.16 1.4761905 1.333333 1.190476 1
2 Suburb mix 39.61984 1.487805 56341.99 2.2439024 1.585366 1.048780 2
3 Travelers 58.57245 1.448276 59869.24 0.0000000 1.689655 1.206897 3
4 Urban hip 23.71537 1.428571 22700.06 0.9285714 1.357143 1.142857 4

Overall, we see that the summary of demographics for the proposed segments (the
first summary above) is very similar to the values in the true segments (the second
summary). Thus, although NB assigned some observations to the wrong segments,
its overall model of the segment descriptive values—at least at the mean values—is
similar for the proposed and true segments. By making such a comparison using the
test data, we gain confidence that although assignment is not perfect on a case-by-
case basis, the overall group definitions are quite similar.

For naive Bayes models, predict() can estimate not only the most likely seg-
ment but also the odds of membership in each segment, using the type="raw"
argument:

> predict(seg.nb, seg.df.test, type="raw")
Moving up Suburb mix Travelers Urban hip

[1,] 4.070780e-01 5.928052e-01 4.848358e-05 6.832328e-05
[2,] 2.715183e-04 2.422066e-03 9.973064e-01 6.143554e-32
[3,] 2.671393e-01 7.326897e-01 1.710510e-04 2.844967e-40
[4,] 2.237216e-01 7.746457e-01 1.632613e-03 7.568258e-37
[5,] 2.255663e-01 7.740280e-01 4.057610e-04 9.030641e-11

...
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This tells us that Respondent 1 is estimated to be about 59 % likely to be a member of
Suburb mix, yet 40 % likely to be in Moving up. Respondent 2 is estimated nearly
100 % likely to be in Travelers. This kind of individual-level detail can suggest
which individuals to target according to the difficulty of targeting and the degree of
certainty. For high-cost campaigns, we might target only those most certain to be in
a segment; whereas for low-cost campaigns, we might target people for second-best
segment membership in addition to primary segment assignment.

We conclude that the naive Bayes model works well for the data analyzed here,
with performance much better than chance, overall 80 % accuracy in segment as-
signment, and demographics that are similar between the proposed and actual seg-
ments. It also provides interpretable individual-level estimation of membership like-
lihood.

Of course there are times when naive Bayes may not perform well, and it’s always
a good idea to try multiple methods. For an alternative, we next examine random
forest models.

11.4.2 Random Forest Classification: randomForest()

A random forest (RF) classifier does not attempt to fit a single model to data but
instead builds an ensemble of models that jointly classify the data [19, 104]. RF
does this by fitting a large number of classification trees. In order to find an assort-
ment of models, each tree is optimized to fit only some of the observations (in our
case, customers) using only some of the predictors. The ensemble of all trees is the
forest.

When a new case is predicted, it is predicted by every tree and the final decision is
awarded to the consensus value that receives the most votes. In this way, a random
forest avoids dependencies on precise model specification while remaining resilient
in the face of difficult data conditions, such as data that are collinear or wide (more
columns than rows). Random forest models perform well across a wide variety of
data sets and problems [48].

In R, a random forest may be created with code very similar to that for naive Bayes
models. We use the same seg.df.train training data as in Sect. 11.4.1, and
call randomForest() from the (surprise!) randomForest package to fit the
classifier:

> library(randomForest)
> set.seed(98040)
> (seg.rf <- randomForest(Segment ∼ ., data=seg.df.train, ntree=3000)

)
...

OOB estimate of error rate: 24.1%
Confusion matrix:

Moving up Suburb mix Travelers Urban hip class.error
Moving up 29 19 0 1 0.40816327
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Suburb mix 20 35 3 1 0.40677966
Travelers 0 3 48 0 0.05882353
Urban hip 0 0 0 36 0.00000000

There are two things to note about the call to randomForest(). First, random
forests are random to some extent, as the name says. They select variables and sub-
sets of data probabilistically. Thus, we use set.seed() before modeling. Second,
we added an argument ntree=3000 to specify the number of trees to create in the
forest. It is sometimes suggested to have 5–10 trees per observation for small data
sets like the present one.

randomForest() returns a confusion matrix of its own based on the training
data. How can it do that? Remember that RF fits many trees, where each tree is
optimized for a portion of the data. It uses the remainder of the data—known as
“out of bag” or OOB data—to assess the tree’s performance more generally. In the
confusion matrix, we see that the Travelers and Urban hip segments fit well, while
the Moving up and Suburb mix segments had 40 % error rates in the OOB data. This
is an indicator that we may see similar patterns in our holdout data.
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Example: Tree 1245
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Fig. 11.10. Two examples among the 3,000 trees in the ensemble found by
randomForest() for segment prediction in seg.df. The trees differ substantially in
structure and variable usage. No single tree is expected to be a particularly good predictor in
itself, yet the ensemble of all trees may predict well in aggregate by voting on the assignment

of observations to outcome groups.

What does a random forest look like? Figure 11.10 shows two trees among those
we fit above (using visualization code from Caldon [21]). The complete forest com-
prises 3,000 such trees that differ in structure and the predictors used. When an
observation is classified, it is assigned to the group that is predicted by the greatest
number of trees within the ensemble.
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A cluster plot of predicted segment membership is shown in Fig. 11.11, where we
omit the known segment assignments in column 7 of seg.df.test because we
want to see the differences on the baseline variables on the basis of segments iden-
tified in the RF model:

> library(cluster)

> clusplot(seg.df.test[, -7], seg.rf.class, color=TRUE, shade=TRUE,

+ labels=4, lines=0, main="Random Forest classification, holdout data"

+ )

The RF clusters in Fig. 11.11 are quite similar in shape to those found by naive
Bayes in Fig. 11.9, with respect to the principal components axes.
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These two components explain 45.71 % of the point variability.
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Fig. 11.11. A cluster plot for the ran-
dom forest solution for segment mem-
bership predicted in holdout (test) data.

It is possible to inspect the distribution of predictions for individual cases. Add the
predict.all=TRUE argument to the predict() call to get the estimate of
every tree for every case in the test data. We then apply() the table() function
to summarize a few of these:

> seg.rf.class.all <- predict(seg.rf, seg.df.test, predict.all=TRUE)
> apply(seg.rf.class.all$individual[1:5, ], 1, table) / 3000

2 3 4 6 7
Moving up 0.42066667 0.076333333 0.1886667 0.1223333 0.217
Suburb mix 0.47266667 0.485000000 0.6930000 0.8526667 0.340
Travelers 0.02966667 0.436333333 0.1173333 0.0240000 0.050
Urban hip 0.07700000 0.002333333 0.0010000 0.0010000 0.393

We divide the results of table() by 3,000 to get the percentage of votes across
all trees. Cases 2, 3, 4, and 6 are each assigned to the Suburb mix segment as the
most likely class (by tiny margins for cases 2 and 3), although only cases 4 and
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6 are assigned with an overall majority of the votes. Case 7 would be assigned to
the Urban hip segment as the most likely, although with only an estimated 39 %
likelihood of that being its true class.

The proposed and actual segments are quite similar in the mean values of the vari-
ables in our summary function:

> seg.summ(seg.df.test, seg.rf.class) # proposed segments
Group.1 age gender income kids ownHome subscribe Segment

1 Moving up 34.60317 1.130435 52288.38 2.39130435 1.434783 1.260870 1.608696
2 Suburb mix 40.83221 1.500000 57652.19 1.65000000 1.550000 1.000000 1.850000
3 Travelers 59.26118 1.464286 59812.04 0.03571429 1.714286 1.214286 2.892857
4 Urban hip 24.37450 1.500000 21842.73 1.00000000 1.285714 1.142857 3.857143

> seg.summ(seg.df.test, seg.df.test$Segment) # actual segments
Group.1 age gender income kids ownHome subscribe Segment

1 Moving up 36.88989 1.190476 53582.16 1.4761905 1.333333 1.190476 1
2 Suburb mix 39.61984 1.487805 56341.99 2.2439024 1.585366 1.048780 2
3 Travelers 58.57245 1.448276 59869.24 0.0000000 1.689655 1.206897 3
4 Urban hip 23.71537 1.428571 22700.06 0.9285714 1.357143 1.142857 4

As suggested by the OOB assessment we saw above for the training data, a confu-
sion matrix reveals which segments were predicted more accurately:

> mean(seg.df.test$Segment==seg.rf.class)
[1] 0.7428571
> table(seg.df.test$Segment, seg.rf.class)

seg.rf.class
Moving up Suburb mix Travelers Urban hip

Moving up 11 9 1 0
Suburb mix 11 28 1 1
Travelers 0 3 26 0
Urban hip 1 0 0 13

The segment comparison using mean(.. == ..) calculates that RF correctly
assigned 72 % of cases to their segments, and the confusion matrix using table()
shows that incorrect assignments were mostly in the Moving up and Suburb mix
segments.

Finally, we note that the RF model performed substantially better than
chance:

> library(mclust)
> adjustedRandIndex(seg.df.test$Segment, seg.rf.class)
[1] 0.4659346

11.4.3 Random Forest Variable Importance

Random forest models are particularly good for one common marketing prob-
lem: estimating the importance of classification variables. Because each tree
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uses only a subset of variables, RF models are able to handle very wide data
where there are more—even many, many more—predictor variables than there are
observations.

An RF model assesses the importance of a variable in a simple yet powerful way:
for each variable, it randomly permutes (sorts) the variable’s values, computes the
model accuracy in OOB data using the permuted values, and compares that to the
accuracy with the real data. If the variable is important, then its performance will
degrade when its observed values are randomly permuted. If, however, the model
remains just as accurate as it is with real data, then the variable in question is not
very important [19].

To estimate importance, run randomForest() with the importance=TRUE
argument. We reset the random seed and run RF again:

> set.seed(98040)
> (seg.rf <- randomForest(Segment ∼ ., data=seg.df.train, ntree=3000,

importance=TRUE))
...

> importance(seg.rf)
Moving up Suburb mix Travelers Urban hip

age 61.386693 44.653251 121.9187436 86.345025
gender 13.065763 -4.266584 -1.6609796 8.409029
income 23.712016 17.428848 15.9978527 77.258853
kids 18.476067 14.248174 53.8039237 6.308172
ownHome 5.212246 -11.539183 23.5491524 20.667305
subscribe 16.625874 9.118376 0.8989833 -3.194460

MeanDecreaseAccuracy MeanDecreaseGini
age 130.712724 62.399834
gender 7.382935 3.354667
income 68.809768 36.439804
kids 52.404913 20.081438
ownHome 16.063356 4.898022
subscribe 16.023871 2.965571

The upper block shows the variable importance by segment. We see, for exam-
ple, that age is important for all segments, while gender is not very important.
The lower block shows two overall measures of variable importance, the permu-
tation measure of impact on accuracy (MeanDecreaseAccuracy), and an assess-
ment of the variable’s ability to assist classification better than chance labeling
(MeanDecreaseGini, a measure of Gini impurity [19]).

The randomForest package includes varImpPlot() to plot variable impor-
tance:

> varImpPlot(seg.rf, main="Variable importance by segment")

The result is Fig. 11.12. The most important variables in this data set are age,
income, and kids.
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We plot the importance for variables by segment with information from
importance(MODEL). The variable-by-segment data are in the first four
columns of that object (as shown in the code output above). We transpose it to put
segments on the rows and use heatmap.2() to plot the values with color:

> library(gplots)
> library(RColorBrewer)
> heatmap.2(t(importance(seg.rf)[ , 1:4]),
+ col=brewer.pal(9, "Blues"),
+ dend="none", trace="none", key=FALSE,
+ margins=c(10, 10),
+ main="Variable importance by segment"
+ )
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Fig. 11.12. Variable importance
for segment classification from
randomForest().

The result is Fig. 11.13. We used the gplots package for heatmap.2(),
and RColorBrewer to get a color palette. In the call to heatmap.2(),
we specified col=brewer.pal(9, "Blues") to get nine shades of blue,
dend="none", trace="none", key=FALSE to turn off some plot options
we didn’t want (dendrograms and a legend), and margins=c(10, 10) to adjust
the margins and make the axes more readable.
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Fig. 11.13. A heatmap of vari-
able importance by segment, pro-
duced with randomForest() and
heatmap.2(). Darker shades sig-
nify higher importance for the vari-
able (column) in differentiating a
segment (row).



11.5 Prediction: Identifying Potential Customers* 333

Figure 11.13 highlights the importance of age in predicting all of the segments, the
importance of income to predict Urban hip, of kids to predict Travelers, and the
relatively low importance of the other predictors.

11.5 Prediction: Identifying Potential Customers*

We now turn to another use for classification: to predict potential customers. An
important business question—especially in high-churn categories such as mobile
subscriptions—is how to reach new customers. If we have data on past prospects
that includes potential predictors such as demographics, and an outcome such as
purchase, we can develop a model to identify customers for whom the outcome is
most likely among new prospects. In this section, we use a random forest model and
attempt to predict subscription status from our data set seg.df.

As usual with classification problems, we split the data into a training sample and a
test sample:

> set.seed(92118)
> train.prop <- 0.65
> train.cases <- sample(nrow(seg.df), nrow(seg.df)*train.prop)
> sub.df.train <- seg.df[train.cases, ]
> sub.df.test <- seg.df[-train.cases, ]

Next, we wonder how difficult it will be to identify potential subscribers. Are
subscribers in the training set well differentiated from non-subscribers? We use
clusplot() to check the differentiation, removing subscribe from the data
with [, -6] and using it instead as the cluster identifier:

> clusplot(sub.df.train[, -6], sub.df.train$subscribe, color=TRUE, shade=TRUE,
+ labels=4, lines=0, main="Subscriber clusters, training data")

The result in Fig. 11.14 shows that the subscribers and non-subscribers are not well
differentiated when plotted against principal components (which reflect almost 56 %
of the variance in the data). This suggests that the problem will be difficult!

We fit an initial RF model to predict subscribe:

> library(randomForest)
> set.seed(11954)
> (sub.rf <- randomForest(subscribe ∼ ., data=sub.df.train,
+ ntree=3000))
...

OOB estimate of error rate: 14.87%
Confusion matrix:

subNo subYes class.error
subNo 166 4 0.02352941
subYes 25 0 1.00000000
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Fig. 11.14. Cluster plot for the
subscribers and non-subscribers.
The two groups show little dif-
ferentiation on the principal
components, which suggests that
classifying respondents into the
groups and predicting subscribers
could be difficult.

The results are not encouraging. Although the error rate might initially sound good
at 14.9 %, we have 100 % error in predicting subscribers (subYes) with all 25
misclassified in the OOB data.

Why? This demonstrates the class imbalance problem in machine learning. When
one category dominates the data, it is very difficult to learn to predict other groups.
This frequently arises with small-proportion problems, such as predicting the com-
paratively rare individuals who will purchase a product, who have a medical condi-
tion, who are security threats, and so forth.

A general solution is to balance the classes by sampling more from the small group.
In RF models, this can be accomplished by telling the classifier to use a balanced
group when it samples data to fit each tree. We use sampsize=c(25, 25) to
draw an equal number of subscribers and non-subscribers when fitting each tree
(selecting N = 25 each because we have that many subscribers in the training data;
these are sampled with replacement so trees are not all identical):

> set.seed(11954)
> (sub.rf <- randomForest(subscribe ∼ ., data=sub.df.train, ntree=3000,
+ sampsize=c(25, 25)) )

Call:
randomForest(formula = subscribe ∼ ., data = sub.df.train, ntree

= 3000, sampsize = c(25, 25))
Type of random forest: classification

Number of trees: 3000
No. of variables tried at each split: 2

OOB estimate of error rate: 30.77%
Confusion matrix:

subNo subYes class.error
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subNo 127 43 0.2529412
subYes 17 8 0.6800000

Although our overall error rate is substantially higher at 31.79 %, we are success-
fully predicting 32 % (i.e., 1− 0.68) of the subscribers in the OOB data, which is
greatly improved over zero.

We use predict() to apply the RF model to the holdout data and examine the
confusion matrix:

> sub.rf.sub <- predict(sub.rf, sub.df.test)
> table(sub.rf.sub, sub.df.test$subscribe)
sub.rf.sub subNo subYes

subNo 79 9
subYes 11 6

The model correctly predicts 6 of the 15 subscribers in the holdout data, at a cost
of incorrectly predicting 11 others as subscribers who are not. That may be an ac-
ceptable tradeoff if we are trying to identify prospects who are worth an effort to
reach. For instance, in the present case, calling all prospects would result in 15/105
successes (14 % success rate), while calling the suggested ones would result in 6/17
successes (35 %). The ultimate value of each strategy—to call of them or not—
depends on the cost of calling vs. the value of successful conversion.

Another way to look at the result is this: those that the model said were non-
subscribers were almost 90 % correct (79 correct out of 88). If the cost to target
customers is high, it may be very useful to predict those not to target with high
accuracy.

Is the model predicting better than chance? We use adjustedRandIndex()
to find that performance is modestly better than chance, and we confirm this
with cohen.kappa() in the psych package, which provides confidence inter-
vals:

> adjustedRandIndex(sub.rf.sub, sub.df.test$subscribe)
[1] 0.1928668

> library(psych)
> cohen.kappa(cbind(sub.rf.sub, sub.df.test$subscribe))
Call: cohen.kappa1(x = x, w = w, n.obs = n.obs, alpha = alpha)

Cohen Kappa and Weighted Kappa correlation coefficients and confidence
boundaries

lower estimate upper
unweighted kappa 0.025 0.26 0.5
weighted kappa 0.025 0.26 0.5



336 11 Segmentation: Clustering and Classification

With an adjusted Rand Index = 0.19 and Cohen’s kappa = 0.26 (confidence interval
0.025–0.50), the model identifies subscribers in the test data modestly better than
chance.

How could we further improve prediction? We would expect to improve predictive
ability if we had more data: additional observations of the subscriber group and
additional predictor variables. We have described prediction using a random forest
model, but there are many other approaches such as logistic regression (Sect. 9.2)
and other machine learning algorithms (see Sect. 11.6).

With a difficult problem—predicting a low incidence group, in data where the
groups are not well-differentiated, and with a small sample—the random forest
model performs modestly yet perhaps surprisingly well. There are no magic bullets
in predictive modeling, but if you use the many tools available in R, avoid pitfalls
such as class imbalance, and interpret results in terms of the business action, you
will have good odds to achieve positive results.

11.6 Learning More*

We covered the basics of clustering and classification in this chapter. There are many
places to learn more about those methods and related statistical models. A recom-
mended introduction to the field of statistical learning is James et al., An Introduc-
tion to Statistical Learning (ISL) [86]. A more advanced treatment of the topics in
ISL is Hastie et al., The Elements of Statistical Learning [75].

For cluster analysis, a readable text is Everitt et al., Cluster Analysis [44]. An in-
troduction to latent class analysis is Collins and Lanza, Latent Class and Latent
Transition Analysis [30].

R has support for a vast number of clustering algorithms that we cannot cover here,
but a few are worth mentioning. Mixture modeling is an area with active and exciting
work. In addition to mclust that we covered above, another package of note is
flexmix [66, 102], which fits more generalized models, and which finds mixtures
using a variety of models (normal, Poisson, multinomial, Markov, and others). For
very large data sets, the clara algorithm in the standard cluster package is a
good starting point.

For classification and especially prediction, in addition to ISL noted above, an ap-
plied, practitioner-friendly text is Kuhn and Johnson’s Applied Predictive Modeling.
If you do classification in R, you owe it to yourself and your stakeholders to examine
the caret package from Kuhn et al [98]. caret provides a uniform interface to
149 machine learning and classification algorithms (as of writing time) along with
tools to assess performance and streamline other common tasks.

A resource for data when practicing clustering and classification is the mlbench
package [103]. mlbench provides data sets from a variety of applications in
agriculture, forensics, politics, economics, genomics, engineering, and other areas
(although not marketing).
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Marketing segmentation has developed approaches and nuances that differ from the
typical description in statistics texts. For instance, in addition to the static, cross-
sectional models considered in this chapter (where segmentation examines data at
just one point in time), one might wish to consider dynamic models that take into
account customer lifestyle changes over time. An overview of diverse approaches in
marketing is Wedel and Kamakura, Market Segmentation: Conceptual and Method-
ological Foundations [160].

There are various ways to model changes in class membership over time. One ap-
proach is latent transition analysis (LTA), described in Collins and Lanza [30]. At
the time of writing, LTA was not supported by a specific package in R. Another
approach is a finite state model such as Markov chain model (cf. Ross [134]). An
alternative when change over time is metric (i.e., is conceptualized as change in a
dimension rather than change between groups) is to use longitudinal structural equa-
tion modeling or latent growth curve models. A starting point is the growth()
function in the lavaan package that we examined in Chap. 10.

Finally, a generalized approach that is popular for clustering is cluster ensemble
analysis. An ensemble method creates multiple solutions and determines group
membership by likelihood or consensus among the solutions. Cluster ensembles are
conceptually similar to random forest models for classification that we examined in
this chapter. A package for cluster ensemble analysis is clue [77].

11.7 Key Points

We addressed segmentation through the lenses of clustering and classification, each
of which is a large area of statistics with active research. We examined several vari-
eties of clustering methods and compared them. Once segments or groups are iden-
tified, classification methods can help to predict group membership status for new
observations.

• The most crucial question in a segmentation project is the business aspect: will
the results be useful for the purpose at hand? Will they inspire new strategies
for marketing to customers? It is important to try multiple methods and evaluate
the utility of their results (cf. Sect. 11.1.1).

• Distance-based clustering methods attempt to group similar observations. We
examined hclust() for hierarchical clustering (Sect. 11.3.2) and kmeans()
for k-means grouping (Sect. 11.3.4). Distance-based measures rely on having a
way to express metric distance, which is a challenge for categorical data.
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• Model-based clustering methods attempt to model an underlying distribution
that the data express. We examined mclust for model-based clustering of
data assumed to be a mix of normal distributions (Sect. 11.3.5), and poLCA
for latent-class analysis with categorical data (Sect. 11.3.7).

• A feature of some model-based methods is that they propose the number of
clusters, unlike distance-based measures in which the analyst must choose a
number. We saw how to estimate the number of groups using the mclust pro-
cedure (Sect. 11.3.5).

• BIC can compare models with the best statistical fit (Sect. 11.3.5). We rec-
ommend that the ultimate decision to use a model’s solution be made on the
grounds of both statistics (i.e., excellent fit) and the business applicability of the
solution (i.e., actionable implications).

• With classification models, data should be split into training and test groups,
and models validated on the test (holdout) data (Sect. 11.4).

• We examined naive Bayes models (naiveBayes(), Sect. 11.4.1) and ran-
dom forest models (randomForest(), Sect. 11.4.2). These—and many other
classification methods—have quite similar syntax, making it easy to try and
compare models.

• A useful feature of random forest models is their ability to determine variable
importance for prediction, even when there are a large number of variables
(Sect. 11.4.3).

• A common problem in classification is class imbalance, where one group dom-
inates the observations and makes it difficult to predict the other group. We saw
how to correct this for random forest models with the sampsize argument,
resulting in a more successful predictive model (Sect. 11.5).
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