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Confirmatory Factor Analysis and Structural
Equation Modeling

In this chapter, we discuss structural equation models in R. We show how R can be
used for both covariance-based and partial least squares modeling, and present basic
guidelines for model assessment. We also demonstrate the power of R to simulate
data and to use simulation to inform our expectations.

Structural models are helpful when your modeling needs meet any of these condi-
tions: you need to evaluate interconnections of multiple data points that do not map
neatly to the division between predictors and an outcome variable (as would be the
case in linear modeling); you wish to include unobserved latent variables such as
attitudes and estimate their relationships to one another or to observed data; or you
wish to estimate the overall fit between observed data and a proposed model with
latent variables or complex connections. From this point of view, structural models
are closely related to both linear modeling because they estimate associations and
model fit, and to factor analysis because they use latent variables.

The uses for structural models in marketing follow from those needs. For exam-
ple, the models can be used to determine whether concepts on a survey match as-
sumptions, for instance to assess whether items are in fact related to an underlying
construct as one hopes; this is an extension of factor analysis (see Chap. 8). With re-
gard to latent variables, the models can be used to estimate the association between
outcomes such as purchase behavior and underlying attitudes that influence those,
such as satisfaction and brand perception. An even more complex model would be
one where several latent variables are simultaneously associated with one another
in multiple ways. For example, brand perception, purchase intent, willingness to
pay, and satisfaction all relate to one another as latent constructs, and also relate in
multiple ways to observed consumer behaviors such as purchases.

We assume in this chapter that the reader is familiar with structural models and
primarily wishes to learn the R approach to them. The topic is too complex for a
single chapter although we attempt to present an overview that is understandable
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268 10 Confirmatory Factor Analysis and Structural Equation Modeling

for any analyst. Section 10.1 provides a conceptual introduction for readers new to
the area; experienced analysts may wish to skip to Sect. 10.1.1.

10.1 The Motivation for Structural Models

The real world rarely divides into nicely controlled experiments and marketers are
often interested to test complex models. Consider a consumer’s likelihood to pur-
chase a new product. The likelihood will be influenced by many factors such as prior
product experience, perception of brand and features, price sensitivity, promotional
effects, and so forth.

Imagine that we are brand managers interested in the impact of brand perception
on likelihood to purchase. One approach to assess this might be to collect survey
data on stated likelihood to purchase the product and attitudes about the brand. In
schematic terms, we might model this as a linear relationship (Chap. 7): purchase∼
perception. Yet whether we find an effect or not, our model is open to the challenge
that there are many other possible variables that we didn’t assess. Perhaps an effect
we thought we found was due to prior experience and not to brand; or perhaps we
didn’t find an effect because we failed to account for a promotional campaign that
influences the relationship.

Even imperfect assessment of those additional influences can improve our under-
standing. In a statistical model, any unbiased—even if incomplete—capture of vari-
ance will improve other parts of the model. For instance, we might only care about
the relationship between brand perception on likelihood to purchase; yet if our
model also includes promotion and prior brand experience, it will capture some
of the variance due to those factors and give us a better, more realistic estimate for
the relationship between brand and purchase. Including those influences will make
us and our stakeholders more confident.

A common way to test complex models of this kind in marketing is structural equa-
tion modeling (SEM). It is impossible to model every possible influence in a market,
and we don’t recommend trying. Yet with SEM, it is feasible to do several things
that improve our models: to include multiple influences, to posit unobserved con-
cepts that underlie the observed indicators (i.e., constructs such as brand preference,
likelihood to purchase, and satisfaction), to specify how those concepts influence
one another, to assess the model’s overall congruence to the data, and to determine
whether the model fits the data better than alternative models.

As we will show, this is done by creating a graphical path diagram of influences
and then estimating the strength of relationship for each path in the model. Such
paths often concern two kinds of variables: manifest variables that are observed,
i.e., that have data points, and latent variables that are conceived to underlie the
observed data. For example, in the first model we examine, product involvement is
conceived as a latent factor that underlies several other latent factors such as image
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involvement, and those factors in turn are observed as manifest variables on survey
items. The set of relationships among the latent variables is called the structural
model, while the linkage between those elements and the observed, manifest vari-
ables is the measurement model.

Structural models pose many potential pitfalls and have a great deal of specialized
jargon. We attempt to use a minimum of technical jargon in this chapter, yet we urge
you not to use this chapter as your only guide to such models. Despite that warning,
we believe that the chapter demonstrates the power and importance of such models
and will prepare you to learn more about them.

Structural equation models are similar to linear regression models (Chap. 7) but dif-
fer in three regards. First, they assess the relationships among many variables, with
models that may be more complex than simply predictors and outcomes. Second,
those relationships allow for latent variables that represent underlying constructs
that are thought to be manifested imperfectly in the observed data. Third, the mod-
els allow relationships to have multiple “downstream” effects. For example, experi-
ence with a product (a stated variable on a survey) might relate to brand perception
(a latent construct expressed in several survey items) which then relates to willing-
ness to pay (a latent construct) which relates observed behavior to purchase or not at
a particular price point (perhaps in transaction data or as a stated choice on a survey
item).

Finally, we close this introduction with a warning: with this potential for such con-
nections among latent variables, it is tempting to interpret structural models as being
about causation and many analysts, stakeholders, and even authors of academic pa-
pers do this. We believe that it is possible to use these models as part of causal
modeling but to do so requires attention to issues and models that are well outside
the scope of this book. In general, however, we recommend that you consciously
avoid all discussion of causation, and instead talk about relationships or association
among the latent variables.

10.1.1 Structural Models in This Chapter

In examining R’s capabilities to specify, test, and visualize structural equation mod-
els (SEM), we present two examples: a confirmatory factor analysis (CFA) model
that evaluates an assessment scale for product involvement, and a more general SEM
that models the likelihood to repurchase a product, as related to quality, value, price,
and customer satisfaction of a prior purchase. In each case, we demonstrate how to
simulate data for test purposes, how to specify and fit the proposed model, and how
to assess the proposed model.

We also show two different SEM approaches: the most common but more
demanding covariance based (CB-SEM) approach, and the more flexible par-
tial least squares (PLS-SEM) approach. We start with CB-SEM because it is
virtually synonymous with “SEM” in the literature, especially outside marketing.
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Nevertheless, PLS-SEM is often able to fit models in situations where CB-SEM
fails and has become popular for marketing applications in the past decade, so we
demonstrate it as well.

Several R packages are able to fit SEMs. In this chapter, we demonstrate CB-SEM
using the lavaan package [135] (where lavaan abbreviates “latent variable
analysis”) because of its simplicity for model specification and its rich set of
available tools for data simulation, model comparison, and visualization. Then we
demonstrate PLS-SEM with the semPLS package.

10.2 Scale Assessment: CFA

We start by considering a survey scale that assesses product involvement, using the
survey items shown in Table 10.2 [26]. This survey scale reflects a model in which
product involvement is a hierarchical construct comprising three factors: general
involvement with a product category, involvement with the choices and features of
the product, and involvement with the category in terms of personal image.

On the survey, three subscales reflect those factors and could lead to higher or lower
scores depending on how consumers view a product. For instance, as marketers
we would expect digital cameras to engage consumers in terms of their technical
features and thus to score high on feature involvement. By contrast, clothing is a
key component of personal image, and could be expected to score high on image
involvement. Either category might be high or low on general involvement according
to the interests of a specific respondent. To consider other categories, a generic good
such as paper might show low consumer involvement on all three factors, while
automobiles might be relatively high on all three. This model was proposed as an
alternative to a single factor model of product involvement, where involvement is
simply high or low overall with no differentiation between factors such as feature or
image involvement.

The three-factor model here was named PIES as an abbreviation of the “Product
Involvement and Enthusiasm Scale” [26]. It could be used in many marketing situa-
tions. For instance, if we assess that our product category is high on feature involve-
ment, we might develop communication and positioning strategies that emphasize
technical specifications. It may also be used to inform targeting: if we determine
that a given demographic group views our category as important to their personal
image, then we might target them with campaigns that highlight our product in terms
of personal image.

The PIES structural model proposes four latent (unobserved) constructs that under-
lie product involvement: a general involvement factor (here abbreviated as “Gnr”),
a choice/feature factor (hereafter “Feature” or “Ftr”), an image (“Img”) factor, and a
higher-order PIE factor (product involvement and engagement) that is conceived as
the underlying level of interest underlying the other three factors. This hierarchical
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factor model is shown in Fig. 10.1. The relationships among these are linear relation-
ships of unobserved, latent variables that match a particular theory about product
involvement (and whose relationship we will specify and test below).

Gnr Ftr Img

PIE

Fig. 10.1. PIES latent construct (factor) model, showing three factors of product involvement
(General involvement = Gnr, Feature = Ftr, and Image = Img). These three latent factors
relate to a higher-order, overall latent construct for involvement, PIE. None of these latent

constructs is directly observed; for the observational model, see Fig. 10.2.

The three involvement factors and the higher-order PIE factor are modeled as latent
variables that are not directly observed but are instead conceived to influence the
survey items that manifest them. On the survey, each factor is represented by a
subscale comprising several items, as shown in Table 10.1.

In the hierarchical model, the overall PIE factor does not directly influence any items
on the scale. Rather, it influences the other three factors as a higher order latent
variable. The complete structural model, showing the hierarchical relation of the
latent constructs and the manifest scale items that are observed for each construct,
is shown in Fig. 10.2.

An analyst’s question with PIES—and the question for the PIES authors in the cited
paper—might be this: Is the PIES scheme a good model for some set of survey
responses for the items in Table 10.2? If we confirm that PIES is a good model,
we will be much more confident in using this survey data to draw inferences about
product involvement than if we had not assessed the model. We show how SEM in
R can address that question.

To do this, we use a particular application of SEM known as CFA. In CFA, one
specifies the factor structure and asks, “How well does the proposed model agree
with the structure of the data?” We also address a closely related question, “Is that
model better than some other specified model?”
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Table 10.1. The hierarchical product involvement (PIES) scale, showing the subscales
(factors) and items

Item Text Reversed?
General scale

i1 are not very important to me. Yes
i2 I never think about . Yes
i3 I am very interested in .

Feature scale
i4 In choosing a I would look for some specific features or options.
i5 If I chose a new I would investigate the available choices in depth.
i6 Some are clearly better than others.
i7 If I were choosing a , I would wish to learn about the available

options in detail.
Image scale

i8 When people see someone’s , they form an opinion of that person.
i9 A expresses a lot about the person who owns it.

i10 You can learn a lot about a person by seeing the person’s .
i11 It is important to choose a that matches one’s image.
The survey would be given for a specific product category, filling in the blanks with a

descriptive phrase such as “digital cameras” or “diet soda.” From [26]

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11

Gnr Ftr Img

PIE

Fig. 10.2. The complete PIES model with latent factors and manifest scale items.

10.2.1 Simulating PIES CFA Data

To demonstrate CFA, we create a simulated data set with known factor structure that
corresponds to the PIES model in Table 10.2. We use this data to demonstrate how
to assess a CFA model (which ordinarily would be done with data collected from
respondents). Then we evaluate alternative models and discuss the importance of
model comparison in CFA.
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If you prefer to download the data for the CFA example:

> piesSimData <- read.csv("http://goo.gl/yT0XwJ")
> summary(piesSimData)

i1 i2 i3 i4 i5
Min. :1.000 Min. :1.000 Min. :1.00 Min. :1.000 Min. :1.000
1st Qu.:4.000 1st Qu.:3.000 1st Qu.:3.00 1st Qu.:3.000 1st Qu.:3.000
Median :4.000 Median :4.000 Median :4.00 Median :4.000 Median :4.000
Mean :4.339 Mean :4.104 Mean :4.11 Mean :4.039 Mean :3.999
...

Once you have the data, you may proceed to Sect. 10.2.2. Otherwise, continue here;
data generation for CFA turns out to be rather easy.

We use the lavaan package for core SEM (and CFA) functionality including data
simulation and model fitting [135], and extend its capabilities for model comparison
and visualization using two other packages, semTools [124] and semPlot [43].
Our first step is to install those packages and make them available in R:

> install.packages(c("lavaan", "semTools", "semPlot"))
> library(lavaan)
> library(semTools)
> library(semPlot)

In lavaan, a structural model may be specified using syntax that is rather similar to
R’s linear model formulas (Sect. 7.3). We specify two models here: (1) a structural
model that we fit to the data and whose structure we wish to assess, and (2) a data
model that we use only to generate simulated data for test purposes. The structural
model is specified according to the model as shown in Fig. 10.2, written as a simple
string that lavaan will parse:

> piesModel <- " General =∼ i1 + i2 + i3
+ Feature =∼ i4 + i5 + i6 + i7
+ Image =∼ i8 + i9 + i10 + i11
+ PIES =∼ General + Feature + Image "

In SEM code we read the “=∼” symbol as “is manifested by,” which means that
it is estimated to be a single variable that is a composite of the three items (with
some degree of unreliability or error in each). Each line in this formula defines a
new latent variable—General, Feature, and so forth—that does not appear in
the data set but which lavaan will estimate for us based on the observed items
i1, i2, etc. We can then use these latent variable in other parts of the formula to
express additional relationships. For instance, in this code the latent variable PIES
relates in turn to the other latent variables General, Feature, and Image. Such
relationships of latent variables are a key differentiator between SEM and regular
linear modeling.
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The piesModel formulas say that PIES is manifested by three factors: General,
Feature, and Image. Each of those is manifested by 3 or 4 of the items i1 through
i11 as defined in Table 10.1.1

Next we simulate data similar to what might come from a PIES survey of consumers.
(Of course if you only test a model against real data, then these data generation steps
are not required.) We define our data simulation model using the same SEM syntax,
but add factor loading coefficients for the items and subfactors in order to specify
the structural relationships. We use factor loadings that approximate those reported
by the PIES authors [26]:

> piesDataModel <- " General =∼ 0.9*i1 + 0.7*i2 + 0.5*i3
+ Feature =∼ 0.3*i3 + 0.7*i4 + 0.9*i5 + 0.5*i6 + 0.9*i7
+ Image =∼ 0.2*i3 + 0.8*i8 + 0.9*i9 + 0.8*i10 + 0.7*i11
+ PIES =∼ 0.7*General + 0.8*Feature + 0.8*Image"

We generate a data set with that factor structure by setting a random number seed
and using simulateData(MODEL, sample.nobs), where sample.nobs
is the number of observations, or N. We choose N = 3,600 to approximate data
reported in the PIES paper:

> set.seed(10001) # another island Zip code
> piesSimData.norm <- simulateData(piesDataModel, sample.nobs=3600)
> print(head(piesSimData.norm), digits=2)

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11
1 -0.16 2.07 1.14 -1.746 -1.68 -1.79 -1.46 -0.032 1.82 0.610 -0.032
2 -0.38 2.27 0.79 0.922 0.23 0.35 0.51 0.963 -1.11 -0.037 0.792
3 -0.65 -3.00 0.25 -0.077 -0.35 0.12 -1.63 -0.766 -0.22 -1.220 0.462
...

Each row here represents a set of hypothetical survey responses from one respon-
dent. Note that the generated data is continuous (drawn from a normal distribution
with decimal values), so it is not yet appropriate for PIES; as survey responses, PIES
items are 1–7 Likert-type scores [26].

In order to convert the continuous data to discrete survey data, we use the function
cut(DATA, breaks=K) that divides continuous data into K groups, expressed
as K factor levels (see Sect. 12.4.1 for more on cut()). We could do this separately
for each of the 11 columns of data, but it is more instructive to do it in a way that is
generalizable. That involves a few conceptual steps.

We use cut() to convert a vector of continuous numeric data into seven factors,
using labels=FALSE to keep the result as integers instead of labeled, nominal
values. Then we enclose that in an anonymous function that can be used repeat-
edly by apply(). We apply() that anonymous recoding function to each of the
columns of our data set using the list version of apply (lapply()), and assemble

1 If you are experienced with other SEM software, you may wonder about details such as
the need to fix a path for each factor and to specify error terms. Those are automatically
handled by lavaan with defaults that are appropriate for many situations (for instance,
having uncorrelated errors and fixing the first manifest variable path to 1.0).
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the resulting set of discrete numeric vectors into a new data.frame. That comes
together in amazingly compact R code (you should spend time deconstructing and
tinkering with it to see how this works):

> piesSimData <- data.frame(lapply(piesSimData.norm,
+ function(x) { cut(x, breaks=7, labels=FALSE) } ))

We now perform our usual data quality checks:

> library(car)
> some(piesSimData)

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11
11 3 3 4 2 2 5 3 2 4 3 4
709 3 3 3 5 4 3 3 3 4 4 4
1392 4 3 3 3 4 4 3 4 4 5 4
...
> library(psych)
> describe(piesSimData)

vars n mean sd median trimmed mad min max range skew kurtosis se
i1 1 3600 4.34 1.00 4 4.32 1.48 1 7 6 -0.07 -0.01 0.02
i2 2 3600 4.10 1.05 4 4.09 1.48 1 7 6 -0.01 -0.07 0.02
i3 3 3600 4.11 1.02 4 4.10 1.48 1 7 6 -0.01 -0.13 0.02
...

The data set now comprises discrete values from 1–7, averaging about 4, with good
distribution properties (no skew, sd around 1, and so forth). We visualize the rela-
tionships among the items using scatterplotMatrix() from the car package
[51], selecting a subset of the items—two items from each factor—to make inspec-
tion easier:

> library(car)
> library(RColorBrewer)
> scatterplotMatrix(piesSimData[, c(1, 2, 4, 5, 8, 9)], diag="histogram",
+ col=brewer.pal(3, "Paired"), ellipse=TRUE )

The result is shown in Fig. 10.3. In looking at the scatterplots, we see the situation
as expected: items are discrete (as shown in histograms on the diagonal), and items
have higher correlation within a subscale (as in the off-diagonal plots for i1 vs. i2)
than they do across scales (such as i1 vs. i4).

Because this data reflects a factor model, we may also do a quick inspection of the
apparent factor structure. Although we use CFA later to do a strong test of factor
structure, it is useful to perform a brief check using the factanal() command to
perform an exploratory factor analysis (EFA, see Sect. 8.3):

> factanal(piesSimData, factors=3)
...
Loadings:

Factor1 Factor2 Factor3
i1 0.138 0.119 0.675
i2 0.614
i3 0.277 0.362 0.476
i4 0.151 0.608
i5 0.126 0.715 0.102
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Fig. 10.3. Scatterplot matrix for selected items in the simulated PIES data. Individual items
have discrete values that approximate a normal distribution (in the histograms on the diago-
nal). Items are all positively correlated. Items within a proposed factor, such as i1 and i2,

show stronger association than those in differing factors.

i6 0.519
i7 0.133 0.678 0.154
i8 0.665 0.137 0.128
i9 0.706 0.138 0.130
i10 0.655 0.117 0.145
i11 0.632 0.126
...

We see three plausible factors comprising items i8–i11, i4–i7, and i1–i3, respec-
tively, as we would expect (the factor order is irrelevant). As a reminder, the EFA
model does not test or confirm the PIES model; that is what CFA does. Instead, EFA
reassures us that the data look reasonable before proceeding.

To recap, the simulated data—created using just 4 commands in R—have the kind
of structure that might be expected from a consumer survey using the items in
Table 10.2. We now proceed to the CFA.
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10.2.2 Estimating the PIES CFA Model

CFA assessment begins by defining the model that we wish to evaluate. In this
case, we model the three PIES factors (latent variables), General, Feature, and
Image as manifest in items i1–i11. We then model the overall PIES latent vari-
able as the composite of the other three factors (see Sect. 10.2.1 for an explanation
of the formula syntax here):

> library(lavaan)
> piesModel <- " General =∼ i1 + i2 + i3
+ Feature =∼ i4 + i5 + i6 + i7
+ Image =∼ i8 + i9 + i10 + i11
+ PIES =∼ General + Feature + Image "

We fit this model to data using cfa(MODEL, data=DATA) and inspect the re-
sult with summary(FIT, fit.measures=TRUE). The output of summary
(FIT) is lengthy in this case so we abbreviate it:

> pies.fit <- cfa(piesModel, data=piesSimData)
> summary(pies.fit, fit.measures=TRUE)
lavaan (0.5-17) converged normally after 41 iterations

Number of observations 3600
...

Comparative Fit Index (CFI) 0.975
Tucker-Lewis Index (TLI) 0.966

...
Root Mean Square Error of Approximation:

RMSEA 0.041
90 Percent Confidence Interval 0.036 0.045
P-value RMSEA <= 0.05 1.000

Standardized Root Mean Square Residual:
SRMR 0.030

Parameter estimates:
Estimate Std.err Z-value P(>|z|)

Latent variables:
General =∼

i1 1.000
i2 0.948 0.042 22.415 0.000
i3 1.305 0.052 25.268 0.000

Feature =∼
i4 1.000
i5 1.168 0.037 31.168 0.000
i6 0.822 0.033 25.211 0.000
i7 1.119 0.036 31.022 0.000

Image =∼
i8 1.000
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i9 0.963 0.028 34.657 0.000
i10 0.908 0.027 33.146 0.000
i11 0.850 0.027 31.786 0.000

PIES =∼
General 1.000
Feature 0.875 0.057 15.355 0.000
Image 0.932 0.060 15.628 0.000

...

The CFA output establishes that the three-factor hierarchical model fits the data
well. In the upper portion of the summary, we see that fit indices are strong (e.g.,
CFI = 0.975) and residuals are low (e.g., RMSEA = 0.041). The lower part of the
summary shows that model parameters for the paths of latent variables to items, and
for the upper-level PIES factor to the three subfactors, are all significant (“P(> |z|)”
= 0), are similar to one another in magnitude (ranging 0.822–1.305), and are not far
from 1.0 (a good thing because the items are intended to be used in simple additive
subscales).

If these were real data, the CFA would establish both that the PIES hierarchical
model fits well and—because the factor-item loadings are around 1.0—that it is rea-
sonable to add up the items as a simple sum to form subscale scores, as is common
for such surveys (instead of computing weighted factor scores).

The final model with fitted parameter estimates is plotted with the semPaths()
command from the semPlot package. We use the argument edge.label.cex
to scale the parameter font to be smaller and more readable. Many R packages use
“cex” (character expansion) to rescale the font for some element of the plot (in this
case, edge labels, i.e., parameter estimates). Setting cex > 1.0 enlarges a font; cex
< 1.0 shrinks it. If you’re looking for a way to rescale a font, try searching for “cex”
in a plot routine’s help file. The model is drawn as follows:

> library(semPlot)
> semPaths(pies.fit, what="est", fade=FALSE, residuals=FALSE,
+ edge.label.cex=0.75)

The result is Fig. 10.4. This figure expresses some of the crucial information from
the longer CFA text output above, in a more readable way. The graphical version
makes it easy to see the relationships between the latent and manifest variables and
to browse the coefficient values.

10.2.3 Assessing the PIES CFA Model

The PIES model fits the data extremely well. If this were real data, we’d be done,
right?

No! A common error with SEM is to propose a model, fit the data, and then assert
on the basis of fit indices that the model is “good.” The problem is that some other,
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Fig. 10.4. Coefficients for the PIES structural model, using simulated consumer survey
responses. Dotted lines represent coefficients automatically fixed to 1.00.

and perhaps more reasonable, model might be just as good or even better. Thus,
there is an important second stage: establish that the proposed model fits better than
a reasonable alternative model.

We test the PIES hierarchical model (“PIES 3+ 1”) against two alternatives. The
first is a single factor alternative where one underlying involvement factor manifests
in all items (as in Fig. 10.5), which we call “PIES 1.” PIES 1 is a simpler model that
proposes product involvement to be a single latent factor; if it fits the data as well
as PIES 3+ 1, then we could reject the more complex model and use this simple
one instead. It is a good alternative to the hierarchical model both because it is
simpler and because it focuses on the top level of the hierarchy, assessing whether
it is advantageous to add the complications of the subfactors in PIES 3+ 1.

The second alternative we consider is an uncorrelated three-factor model, where
three independent factors are manifest in the three respective sets of items (shown
in Fig. 10.6), or “PIES 3.” This omits the top level, overall factor from the hierar-
chy and focuses on the three subfactors, asking whether they are better conceived as
being separate instead of relating to a hierarchical model. If the PIES 3 model fits
as well as PIES 3+ 1, we could reject the complication of the hierarchical model
and consider using the subscales as independent, largely unrelated assessment
measures.

We specify and fit a one-factor model for PIES 1 using lavaan as follows:

> piesModelNH1 <- " PIES =∼ i1 + i2 + i3 + i4 + i5 + i6 +
+ i7 + i8 + i9 + i10 + i11 "
> pies.fit.NH1 <- cfa(piesModelNH1, data=piesSimData)

There is a complication in asserting the PIES 3 model. We can see in Fig. 10.6 that
the number of paths and manifest variables in PIES 3 is the same as in the baseline
3+ 1 hierarchical model (Fig. 10.2) because we allow the factors to be associated
with one another. Because it estimates the same number of paths among all the
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i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11

PIE

Fig. 10.5. A one-factor alternative model, PIES 1, in which a single latent factor of product
involvement is manifest in all of the items, with no subfactors. We use this to test a simpler

model than PIES 3+1 and determine whether it fits the data just as well.

variables, the global fit index for PIES 3 would be identical to that of PIES 3+ 1.
To differentiate the models, it is necessary to constrain the PIES 3 model in some
other way.

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11

Gnr Ftr Img

Fig. 10.6. A three-factor alternative, PIES 3. To differentiate this from the PIES 3+1 model,
the latent factor correlations here are constrained to show weak association among the factors.
This allows us to test a model where the factors express largely separate constructs as opposed

to closely related ones.

How should we constrain PIES 3? Because PIES 3 asserts that the 3 factors are
largely independent and not part of a larger hierarchy, it implies that their inter-
correlations should be relatively low. Thus, we could constrain the latent variable
correlations to a small value such that they are not reasonably part of a hierarchy.
A correlation of zero is unreasonable as it implies absolutely no relationship.2 In-
stead of zero, we fix the non-hierarchical model to have correlation of 0.1 between

2 Always be wary of models that assert or test independence; a well-known phenomenon
in human research is that within a given domain, “everything correlates with everything
else.” Paul Meehl referred to this as the “crud” factor in research, and showed that it leads
to research that finds “significant” associations everywhere [112].
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the latent variables; this reflects an expectation of modest association that is too
weak to justify a hierarchical model.

In lavaan we add the fixed relationships to the PIES 3 model syntax as additional
lines and fit the model to the simulated data:

> piesModelNH3 <- " General =∼ i1 + i2 + i3
+ Feature =∼ i4 + i5 + i6 + i7
+ Image =∼ i8 + i9 + i10 + i11
+ General ∼∼ 0.1*Feature
+ General ∼∼ 0.1*Image
+ Feature ∼∼ 0.1*Image "
> pies.fit.NH3 <- cfa(piesModelNH3, data=piesSimData)

In this model specification, the “∼∼” operator specifies a correlation between vari-
ables. By using a fixed value 0.1, we specify that the value of the correlation should
not be estimated but should be constrained to 0.1. The PIES 3 model requires that
correlation be small among the latent factors, so we set the three possible correla-
tions (General∼Feature, General∼Image, and Feature∼Image) to our chosen value
of 0.1.

The semTools package provides a command to compare CB-SEM (and therefore
CFA) models: compareFit(MODEL1, MODEL2, ...). This reports individ-
ual fit measures for each model along with pairwise model comparisons. Our PIES
models are nested, meaning that one might start with the hierarchical model and
then fix some of the paths coefficient to derive the three-factor model (specifically,
constraining the factor correlations to 0.1), and again could fix some paths to derive
the single factor model (specifically, setting the factor correlations to 1.0 so that they
are identical and thus a single factor).

Here is the comparison of all three models:

> library(semTools)
> compareFit(pies.fit.NH1, pies.fit.NH3, pies.fit)
################### Nested Model Comparison #########################

chi df p delta.cfi
pies.fit - pies.fit.NH3 222.43 3 <.001 0.0222
pies.fit.NH3 - pies.fit.NH1 2774.50 0 <.001 0.2812

#################### Fit Indices Summaries ##########################
chisq df pvalue cfi tli aic bic rmsea srmr

pies.fit.NH1 3284.581 44 .000† .672 .589 108812.709 108948.860 .143 .102
pies.fit.NH3 510.078 44 .000† .953 .941 106038.205 106174.356 .054 .078
pies.fit 287.649 41 .000† .975† .966† 105821.776† 105976.494† .041† .030†

We start by inspecting the second half of the report, the “Fit Indices Summaries.”
For the non-hierarchical three-factor model PIES 3 (pies.fit.NH3), the fit was
strong (e.g., CFI = 0.953, RMSEA = 0.054). If that were the only model that
we tested, we would have concluded that it was an excellent fit. Yet when we
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compare the PIES 3+ 1 model, pies.fit, the fit indices are stronger (CFI =
0.975, RMSEA = 0.041). The stronger fit indices are indicated by the dagger
symbol (“†”).

Is PIES 3+1 stronger than PIES 3? We turn to the upper portion of the report to
examine the model comparison. The first line of output (“pies.fit - pies.fit.NH3”) re-
ports the Chi-square test of the difference between the two models: Chisq = 222.43,
d f = 3. This is a strong and statistically significant difference, p < 0.001. We also
see in the results that the one-factor model PIES 1 was a poor fit (CFI = 0.672 in
the fit index summary) and much worse in comparison with PIES 3+ 1 than even
the non-hierarchical PIES 3 model. (In Sect. 11.3.5 we will also see how to interpret
the bic values for model comparison.)

What does this tell us? For our data—which of course were simulated to fit the 3+1
model—the three-factor hierarchical model was an excellent fit in itself and was
better than two reasonable alternative models. If this were the case in real data (as
claimed in [26]), it would establish a strong argument for the model.

What does this mean for us as marketers? It means that, if we saw such results in
a product category of interest to us, we would not assume that product involvement
is a unitary, single factor. Instead, we would wish to use the somewhat more infor-
mative and differentiated hierarchical model that assesses overall product interest
alongside measures of feature and image involvement. Additionally, because the
overall model fits the data well, it tells us that the 3+ 1 model is a good representa-
tion of associations in the data (relative to plausible alternatives). This enhances our
confidence that the survey items really do assess what we intend.

We note two important lessons. First, the simulated data is useful to examine the
likelihood of being able to support a model. Simulated data showed us that the non-
hierarchical PIES 3 model could fit the data well—if interpreted on its own—even
when the PIES 3 + 1 model was “true” given the data simulation process. Such
tests with simulated data inform us about the power needed for model compari-
son.

Second, we see that simply establishing strong fit for a model is not enough; we
also need to establish superiority over alternative models. If we only tested the non-
hierarchical three-factor PIES 3 model, we might have concluded that it was an
excellent model. Yet when we compare it to the PIES 3+ 1 hierarchical model,
we find the latter is a better fit to the data. We will encounter this again when we
consider more general SEM models.

For marketers, there is another implication: when we devise a survey scale, we
should test the assumed factor model to ensure that it meets our expectation. Imag-
ine that we write a survey that asks about product preferences in four areas: perfor-
mance, price, appearance, and quality. If each area has a few survey items and we
add them together—as is common with surveys—then we are implicitly asserting a
four-factor model for our survey. Before we use those added-up scores, we should
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check our assumption about factors. Does our model match the data as we believe it
should? If not, we might draw very misleading conclusions from the data. Test the
model! R and lavaan make it easy to do this in just a few lines of code.

10.3 General Models: Structural Equation Models

We now consider a more general form of structural models, where latent constructs
may influence one another in more complex ways. We consider an example from
Iacobucci [83] concerning customer satisfaction ratings and their effect on stated in-
tention to repurchase HP printers. The data consisted of responses to 15 satisfaction
items, where there were three items each for factors of Quality, Cost (fair pricing),
Value, Customer Satisfaction (CSat), and Repeat purchase intention.

The survey items, the variable names we use for them, and the higher-order latent
factors (Quality, Cost, and so forth) are shown in Table 10.2.

The proposed structural model for the associations among the latent variables is
shown in Fig. 10.7. For brevity, we omit consideration of the measurement model
and the individual items for each factor.

As marketers, if we had collected consumer data from a survey such as this, we
would have two goals. First, as we did with CFA above, we would wish to as-
certain whether our proposed model of influence—for example, that perception of
cost is associated with both perception of value and intent to repurchase, as shown
in Fig. 10.7—is an adequate model for the data we have collected. Second, if the
model fits the data well, we would answer questions about the relationships: how
much does perception of quality relate to satisfaction? Is quality more important
than perceived value? What is the largest determinant of stated intent to purchase
again? And so forth.

To explore how to do this, we follow the same process as with CFA above. Specifi-
cally, we use a covariance-based SEM with four steps:

1. Define the structural model to be tested

2. Create simulated data that we use for illustration and debugging

3. Fit the model to the data

4. Compare the model to a simpler, alternative model

As always, simulating the data in Step 2 is illustrative here; you would use your own
data instead, although we believe additional simulation is useful.
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Table 10.2. A 15-item survey of purchase satisfaction, perceived value, and repurchase intent

Item Text
Quality
q1 The quality of the HP printer I bought is excellent
q2 HP printers are known to be highly reliable
q3 I’m sure my HP printer will last a long time

Cost
c1 The HP printer was reasonably priced
c2 HP sets fair prices for its products
c3 The HP printers are no more expensive than others

Value
v1 I feel like I got good value for this purchase
v2 The quality of the printer is worth its cost
v3 I could tell my boss this purchase was good value

CSat
cs1 I am very satisfied with my newly purchase HP printer
cs2 My printer is better than I expected it would be
cs3 I have no regrets about having bought this printer

Repeat
r1 I would buy another HP if I had to buy another printer
r2 I would buy other HP products
r3 I would tell my friends and coworkers to buy HPs

Item (variable) names are listed in the first column. Each division (Quality, Cost, Value, etc.)
represents a latent factor manifest in the three following items. From Iacobucci [83]

Quality

Cost Value CSat Repeat

Fig. 10.7. A model of re-
peat purchase intent. In this
model, the cost of a product
is associated with both per-
ception of value and intent to
repurchase, while perception
of quality relates to both per-
ceived value and satisfaction,
which is then associated with
repurchase. Adapted from
Iacobucci [83].

10.3.1 The Repeat Purchase Model in R

We begin by specifying the structural model that we wish to assess. This consists
of a left-hand name of each latent factor, followed by the “is manifested by” sym-
bol, “=∼” with the latent variables that it influences and its observed manifest vari-
ables (in this case, the 15 items from the customer survey). For convenience, we
write the latent variables with capitalized names, and manifest items in lowercase.
In lavaan this is:



10.3 General Models: Structural Equation Models 285

> satModel <- " Quality =∼ CSat + Value + q1 + q2 + q3 + 0*Cost
+ Cost =∼ Value + Repeat + c1 + c2 + c3
+ Value =∼ CSat + v1 + v2 + v3
+ CSat =∼ Repeat + cs1 + cs2 + cs3
+ Repeat =∼ r1 + r2 + r3 "

We read the first line as saying, “Quality influences CSat and Value, and is man-
ifested as items q1, q2, and q3.” Notice that we specify a fixed loading of zero
between Cost and Quality. That reflects Iacobucci’s report that those factors had
near zero relationship (specifically, correlation of −0.03, [83] p. 676). Also, we are
not interested in their relationship in this model and constraining the relationship
may prevent spurious model effects.3 Continuing with the model, we read “Cost
influences Value and Repeat purchase intention, and is manifested on items c1, c2,
and c3,” and similarly for the other lines.

Next we obtain simulated data to use. If you prefer to load the data instead of simu-
lating it, you may download it as follows:
> satSimData <- read.csv("http://goo.gl/MhghRq")
> summary(satSimData)

q1 q2 q3 c1 c2
Min. :1.00 Min. :1.000 Min. :1.000 Min. :1.00 Min. :1.000
1st Qu.:3.00 1st Qu.:3.000 1st Qu.:3.000 1st Qu.:3.00 1st Qu.:3.000
Median :4.00 Median :3.000 Median :4.000 Median :4.00 Median :4.000
Mean :3.95 Mean :3.535 Mean :3.805 Mean :4.34 Mean :4.185
...

Once you have the data, you may proceed to Sect. 10.3.2. Otherwise, continue with
the following; once again, data simulation is surprisingly straightforward.

Using the approximate loadings reported by Iacobucci [83, p. 677], we write the
data model as:
> satDataModel <- " Quality =∼ 0.59*CSat + 0.56*Value +
+ 0.9*q1 + 0.9*q2 + 0.9*q3 + 0*Cost
+ Cost =∼ -0.5*Value + -0.29*Repeat +
+ 0.9*c1 + 0.9*c2 + 0.9*c3
+ Value =∼ 0.06*CSat + 0.9*v1 + 0.9*v2 + 0.9*v3
+ CSat =∼ 0.48*Repeat + 0.9*cs1 + 0.9*cs2 + 0.9*cs3
+ Repeat =∼ 0.9*r1 + 0.9*r2 + 0.9*r3 "

Then we simulate the data for N = 200 respondents and convert to Likert type scaled
values using the same approach as in Sect. 10.2.1:
> set.seed(33706) # continuing the island tour
> satData.norm <- simulateData(satDataModel, sample.nobs=200)
> satSimData <- data.frame(lapply(satData.norm,
+ function(x) { as.numeric(cut(x, breaks=7)) } ))

We omit here the data quality checks (see Sect. 10.2.1), but it is a good idea for you
to inspect those.

3 In general, fixing parameters is not recommended; the whole point of SEM is to estimate
parameters. However, in some cases, especially with smaller samples as we consider here,
it may help to focus a model on the influences under consideration if one constrains factors.
It is possible with lavaan to constrain to any value, not just 0.
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10.3.2 Assessing the Repeat Purchase Model

To fit the model, we use sem(MODEL, DATA) and add an argument, std.lv=
TRUE, to standardize the latent variables because we are interested to compare rel-
ative influence strength (the alternative is to treat them in terms of the unit scales of
the observed items, which might be of interest for CFA). In the abbreviated output,
we see a strong model fit (CFI = 0.998 and low residuals):

> sat.fit <- sem(satModel, data= satSimData, std.lv=TRUE)
> summary(sat.fit, fit.measures=TRUE)
lavaan (0.5-17) converged normally after 24 iterations

Number of observations 200

Estimator ML
Minimum Function Test Statistic 85.454
Degrees of freedom 84
P-value (Chi-square) 0.435

...
User model versus baseline model:

Comparative Fit Index (CFI) 0.998
...
Root Mean Square Error of Approximation:

RMSEA 0.009
90 Percent Confidence Interval 0.000 0.040
P-value RMSEA <= 0.05 0.993

Standardized Root Mean Square Residual:
SRMR 0.052

...

We plot the resulting structural coefficients for the proposed model with argu-
ments for structural=TRUE to suppress the loadings for the manifest items and
nCharNodes=7 to put the full factor names in the latent variable circles:

> semPaths(sat.fit, what="est", fade=FALSE, residuals=FALSE,
+ layout="tree", structural=TRUE, nCharNodes=7, edge.label.cex=1)

The result is Fig. 10.8. Not surprisingly, the simulated data show effects close to
what we specified (but not exactly the same, which demonstrates that model recov-
ery is not perfect).

As we have already seen, a great fit in CB-SEM is not enough! We still need to
compare our proposed model to one or more plausible alternative models, in order
to demonstrate that our proposal is superior to other reasonable models.

How do we define an alternative model? It depends on your goal and theory. In some
cases, you might wish to compare to a simpler model, in order to show that rela-
tionships are more complex or to fit a more precise model. In other cases, you could
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Fig. 10.8. Coefficient estimates
for the repeat purchase model,
using simulated data.

compare to an existing model from the literature or previous research. In still others,
you might show that a proposed complex model is too complex, and that a simpler
model is more effective. As a general principle, we prefer to show that a model is
better than a simpler model with fewer paths, and just as good as (i.e., not signifi-
cantly worse than) a more complex model with a larger number of paths.

In the present case, our full model proposes that Quality and Cost do not have
a simple relationship with single variables but are associated with multiple other
variables. For instance, Cost influences not only perception of Value but also the
likelihood of Repeat purchase. An alternative is a simpler, more obvious model,
where each is associated with only a single other variable, such as Cost affecting
Value but not directly influencing Repeat. To support our more complex model,
we wish to show that the simpler model is inadequate. Thus, we define an alternative
model where each latent variable only influences one other variable, giving us a
model with 2 fewer paths as shown in Fig. 10.9. The alternative model specification
in lavaan is:

satAltModel <- " Quality =∼ CSat + q1 + q2 + q3 + 0*Cost
Cost =∼ Value + c1 + c2 + c3
Value =∼ CSat + v1 + v2 + v3
CSat =∼ Repeat + cs1 + cs2 + cs3
Repeat =∼ r1 + r2 + r3 "

Quality

Cost Value CSat Repeat

Fig. 10.9. An alternative struc-
tural model for repeat purchase
influence, omitting the direct
associations of cost with re-
peat purchase and of perceived
quality with value.
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We fit the alternative model to the simulated data with sem() and compare that fit
to the proposed model with compareFit():

> satAlt.fit <- sem(satAltModel, data=satSimData, std.lv=TRUE)
> compareFit(sat.fit, satAlt.fit, nested=TRUE)
################### Nested Model Comparison #########################

chi df p delta.cfi
sat.fit - satAlt.fit 37.51 2 <.001 0.0495

#################### Fit Indices Summaries ##########################
chisq df pvalue cfi tli aic bic rmsea srmr

sat.fit 85.454 84 .435† .998† .997† 9174.942† 9293.681† .009† .052†
satAlt.fit 122.962 86 .006 .949 .937 9208.449 9320.592 .046 .095

Once again we see that—taken on its own—the alternative model appears to be a
good fit to the data (e.g., CFI = 0.95, RMSEA = 0.046) yet the proposed model is
significantly better, showing Chi-square (d f = 2) = 37.51 for the model difference,
p < 0.001, and stronger fit indices with lower residuals.

If these were results from real data, we could draw a few conclusions. First, the
model shows good fit to the observed (in this case, simulated) data, so we are able
to interpret the results. Second, it is better than a simpler alternative model, which
argues that our model is not an arbitrarily good fit but is preferable to a plausible
alternative. Most importantly, we would use the coefficient estimates in the model
to answer our substantive questions about the associations of the latent factors with
the outcomes of interest to us as marketers. However, we omit this step here because
we’ve done this several times for other models and it does not further advance our
knowledge of R; see Iacobucci [83] for conclusions in this case.

10.4 The Partial Least Squares (PLS) Alternative

The first two models we have considered in this chapter exemplify covariance-based
structural equation modeling (CB-SEM). Such models attempt to account for as
much of the total covariance in the data as possible, among all observed and latent
variables. CB-SEM requires that a data set complies with relatively strict assump-
tions about data distributions (continuous data, normally distributed residuals), the
number of indicators per factor (generally three or more), reliability of indicators,
and sample size (some authorities recommend several hundred, although it is pos-
sible that samples of N = 100 or even N = 50 may be adequate when measures are
very reliable; see Iacobucci [84]). When such assumptions are met, CB-SEM is a
powerful tool that tests a model rigorously, assesses overall strength of the model,
and allows for model comparison.

When data do not comply with the assumptions of CB-SEM or come from a modest
sample size with potentially less reliable indicators, an alternative is partial least
squares structural equation modeling (PLS-SEM). PLS-SEM is often able to yield
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estimates of path coefficients in models where CB-SEM would fail. However, PLS-
SEM does not allow one to say much about model fit or comparative strength; there
is no accepted measure of global “goodness of fit” that is comparable across models.
Thus, we recommend CB-SEM when possible; but when CB-SEM fails, PLS-SEM
may still give useful estimates of model coefficients.

In this section, we demonstrate PLS-SEM for the repeat purchase model that we
examined above. We will see that PLS-SEM can estimate parameters with a sample
where CB-SEM fails, but with greater uncertainty about the model’s results.

10.4.1 PLS-SEM for Repeat Purchase

We conduct PLS with the semPLS package; install that for the following examples.
We continue with the example from Iacobucci [83] of the influence of customer
satisfaction and perceived value on intended repeat purchase of a computer printer.
You may review that model—and find steps to create simulated data that we use
here—in Sect. 10.3 above.

Let’s see why PLS-SEM can be useful. Our simulated data set (satSimData) has
N = 200 observations, which was modeled successfully with CB-SEM. What if the
sample were smaller? Let’s take N = 50 rows and try to fit the CB-SEM model to
those:
> set.seed(90704)
> satSimData2 <- satSimData[sample(nrow(satSimData), 50), ]
> describe(satSimData2)

vars n mean sd median trimmed mad min max range skew kurtosis se
q1 1 50 3.80 1.39 4 3.75 1.48 1 7 6 0.26 -0.23 0.20
...

> sat.fit2 <- sem(satModel, data= satSimData2, std.lv=TRUE)
Warning messages:
1: In lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, :

lavaan WARNING: could not compute standard errors!
...

Model estimation with lavaan fails because we do not have enough data.4 If you
inspect the model object, you will see extreme and nonsensical values:

> summary(sat.fit2, fit.measures=TRUE)
lavaan (0.5-17) converged normally after 9043 iterations
...

Estimate Std.err Z-value P(>|z|)
Latent variables:
...

4 The small sample exacerbates another reason for estimation difficulty: our data is highly
collinear due to the factor structure imposed when we simulated it to match the report by
Iacobucci [83].
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Cost =∼
Value -0.003
Repeat -0.011
c1 0.014
c2 57.293

...
Variances:

q1 1.540
...

c1 1.515
c2 -3280.640

...

It is unreasonable to think that one survey item about cost (c1) has nearly zero
relationship while another (c2) is thousands of times more strongly related
(57.29/0.014), or that one has thousands of times as much variance as another.
This indicates model instability as the message from lavaan warned us.

We will try PLS-SEM instead. The first step is to define a measurement model that
links underlying latent variables to their observed manifest variables such as survey
items, and then to define a structural model that links latent variables to one another.
In lavaan these were combined into a single step (cf. Sect. 10.3.1) but with the
semPLS package they are separate.

Whereas lavaan uses a formula syntax to define relationships among variables,
semPLS uses a matrix format. In this format, each row represents one “arrow” in
a model. The first column of the row represents the from variable while the sec-
ond column represents the to variable. Thus, an arrow from Quality to the manifest
variable q1 would be represented as a matrix line ("Quality", "q1").

The matrix definition is not as difficult as it may sound; we need only list the from
and to entries in a simple format. Referring to the model in Sect. 10.3.1, we define
the measurement model (latent to observed variables) model as:

> satPLSmm <- matrix(c(
+ "Quality", "q1",
+ "Quality", "q2",
+ "Quality", "q3",
+ "Cost", "c1",
+ "Cost", "c2",
+ "Cost", "c3",
+ "Value", "v1",
+ "Value", "v2",
+ "Value", "v3",
+ "CSat", "cs1",
+ "CSat", "cs2",
+ "CSat", "cs3",
+ "Repeat", "r1",
+ "Repeat", "r2",
+ "Repeat", "r3" ), ncol=2, byrow=TRUE)
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The structural model presents the latent variable relationships using the same kind
of matrix format. Referring to the model shown in Fig. 10.7 we write:

> satPLSsm <- matrix(c(
+ "Quality", "CSat",
+ "Quality", "Value",
+ "Cost", "Value",
+ "Cost", "Repeat",
+ "Value", "CSat",
+ "CSat", "Repeat" ), ncol=2, byrow=TRUE)

We now fit the PLS model using the simulated 50-respondent data set. We use
plsm(data, strucmod, measuremod) from semPLS to create a PLS
model using the structural and measurement model matrices that we defined.
Then we use sempls(model, data, wscheme) to estimate the model
parameters:

> library(semPLS)

> satPLS.mod <- plsm(data=satSimData2, strucmod=satPLSsm, measuremod=satPLSmm)
> satPLS.fit <- sempls(model=satPLS.mod, data=satSimData2)
All 50 observations are valid.
Converged after 14 iterations.
Tolerance: 1e-07
Scheme: centroid

We can now inspect the results. To begin, we examine the fit between the latent
variables and the manifest observations (items), i.e., the estimated factor structure,
using plsLoadings(MODEL). We see that the items have positive and moderate
to high loadings, and are similar in magnitude within each latent variable:

> plsLoadings(satPLS.fit)
Cost Quality Value CSat Repeat

c1 0.39 . . . .
c2 0.82 . . . .
c3 0.78 . . . .
q1 . 0.54 . . .
...

Each latent variables has a moderate to strong loading with its manifest variables, so
we are reassured that the model reflects those relationships. If a latent variable failed
to load significantly—for example, with factor loadings below 0.3 for any mani-
fest variable, or below 0.5 for all of its manifest variables—then we would be con-
cerned about the model, sample size, or reliability of the measures and would con-
duct further investigation (or, at a minimum, replicate the results, as in Sect. 10.4.3
below).
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We now use pathCoeff(MODEL) to examine the structural coefficients between
latent variables, which is what we most care about:

> pathCoeff(satPLS.fit)
Cost Quality Value CSat Repeat

Cost . . -0.196 . -0.393
Quality . . 0.323 0.400 .
Value . . . 0.062 .
CSat . . . . 0.231
Repeat . . . . .

We see that cost has a negative influence on perceived value and likelihood to
repeat purchase, while customer satisfaction has a positive influence on repeat
purchase.

10.4.2 Visualizing the Fitted PLS Model*

This section is optional because it detours into modest additional requirements and
file handling.

As we have seen, it is convenient to plot the results of structural models and inter-
pret coefficients and models visually. For the PLS model, we can plot the structural
coefficients using pathDiagram(MODEL, FILE, full=FALSE, ...) but
this does not immediately create a plot within R. Instead, it outputs a .dot file that
is then processed by the freely available Graphviz software package to produce a
corresponding image as a PDF file [59]. Graphviz is available at http://www.
graphviz.org.

Once Graphviz is installed, a PDF output file with the paths and coefficients for a
fitted PLS model objected may be created with pathDiagram:

> pathDiagram(satPLS.fit, file = "satPLSstruc", full = FALSE, digits = 2,
+ edge.labels = "values", output.type = "graphics", graphics.fmt = "pdf")

The result is shown in Fig. 10.10. Comparing the values to those obtained from the
full sample with CB-SEM (Fig. 10.8) we see that the coefficients are identical in
direction (positive or negative) and similar in relative magnitude.

Cost

Value

-0.2 Repeat
-0.39

Quality

0.32
CSat

0.4

0.06
0.23

Fig. 10.10. PLS estimate for the repeat purchase model (with N = 50).

http://www.graphviz.org
http://www.graphviz.org
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Because PLS models do not assess global model fit, there is not a general way to
compare CB-SEM and PLS-SEM results apart from interpreting the models and
their implications, so it is not advisable to compare the coefficients directly between
Figs. 10.10 and 10.8.

10.4.3 Assessing the PLS-SEM Model

Unlike CB-SEM, PLS-SEM models do not have a summary metric that allows
global model assessment and comparison [73]. Instead, at a minimum we recom-
mend three steps:

• Examine the model’s coefficients for intelligibility, as we did in Sect. 10.4.1

• Examine the overall R2 for the model, and determine (largely subjectively)
whether sufficient variance is explained to be useful

• Bootstrap the model to examine coefficient stability

It is easy to find R2 for each of the latent variables using the rSquared(MODEL)
function:

> rSquared(satPLS.fit)
R-squared

Cost .
Quality .
Value 0.18
CSat 0.18
Repeat 0.26

A problem with R2 is that there is no general standard for whether the values are ad-
equate. R2 is a measure of overall variance explained within each part of the model,
but its interpretation is dependent on what you might expect for a given type of data
(in other words, it depends on your experience with models in a domain) and it can
be increased simply by adding variables (i.e., overfitting). There are various rules
of thumb for interpreting R2, but they are domain specific. If we use the standards
for interpreting correlation coefficients in behavioral data, where r = 0.3 indicates
a moderately strong correlation (Sect. 4.5), then R2 > 0.09 could be a reasonable
goal for a moderately strong association in the model, assuming that you have been
parsimonious in selecting the number of associated variables.

We recommend a more general approach that does not rely on R2 and instead uses a
bootstrap process to assess coefficient stability. In semPLS, this may be done with
the bootsempls() command. We fit the PLS model object to 500 resampled sets
of observations:



294 10 Confirmatory Factor Analysis and Structural Equation Modeling

> set.seed(04460) #note:some semPLS versions give different results
> satPLS.boot <- bootsempls(satPLS.fit, nboot=500, start="ones")
Resample: 500 Done.
Warning message:
In bootsempls(satPLS.fit, nboot = 500, start = "ones") :

There were 409 apparent convergence failures;
these are discarded from the 500 bootstrap replications returned.

> summary(satPLS.boot, type = "bca", level = 0.9)
Call: bootsempls(object = satPLS.fit, nboot = 500, start = "ones")

Lower and upper limits are for the 90 percent bca confidence interval

Estimate Bias Std.Error Lower Upper
lam_1_1 0.3953 0.00452 0.2268 -0.0796 0.671
lam_1_2 0.8167 -0.00667 0.0926 0.5314 0.897
...
beta_1_3 -0.2061 -0.06158 0.1242 -0.3370 0.271
beta_2_3 0.3159 -0.01384 0.1431 0.1195 0.540
beta_2_4 0.4013 0.04927 0.1036 0.1577 0.514
beta_3_4 0.0627 0.00689 0.1706 -0.3480 0.251
beta_1_5 -0.3873 -0.00942 0.1406 -0.5515 -0.139
beta_4_5 0.2426 0.00496 0.1533 -0.2289 0.442

In examining the results, we see two indications of problems: a warning that ap-
proximately 80 % of the PLS iterations failed to converge, and several model coef-
ficients (such as the beta values that reflect the structural model) whose upper and
lower bounds include 0, and for which we therefore do not have even directional
confidence.

We can see the problems visually using a parallel plot. This plots all bootstrap es-
timates of the structural coefficients so we can see the spread in estimates; we use
reflinesAt=0 to add a reference line at 0 in order to see direction, and include
varnames to label the Y axis with friendly names:
> parallelplot(satPLS.boot, reflinesAt = 0, alpha=0.8,
+ varnames=attr(satPLS.boot$t, "path")[16:21],
+ main="Path coefficients in 500 PLS bootstrap iterations (N=50)")

The resulting plot is shown in Fig. 10.11, where the gray lines represent individ-
ual bootstrap estimates and the red lines show median (solid line) and outer 95 %
observed intervals (dotted lines). The estimates fluctuate widely for most of the
coefficients. We read this by looking at the spread of estimates along each of the
horizontal grid lines representing one model coefficient. For example, the influence
of Cost on Repeat purchase is generally estimated to be strongly negative, but
several of the estimates hold the relationship to be strongly positive. Additionally,
2 of the 6 coefficient ranges straddle the zero line and thus are not significantly
different from zero.

The convergence problems and bootstrap ranges demonstrate that estimates in our
PLS model with N = 50 are unstable. However, whether they are useful in a given
situation is a judgment call. Depending on the question at hand and the risks in-
volved, an analyst might conclude that the estimates are not adequately reliable—or
alternatively might conclude that, although the instability is not ideal, the estimates
are still useful because they are more informative than nothing.
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Path coefficients in 500 PLS bootstrap iterations (N=50)

Cost −> Value

Quality −> Value

Quality −> CSat

Value −> CSat

Cost −> Repeat

CSat −> Repeat

Min Max

Fig. 10.11. Bootstrapped coefficients for the PLS model, showing divergent estimates for
N = 50 observations. Each line plots the six estimated coefficients for one complete bootstrap
iteration. The model is unstable with the small sample and 409 of 500 bootstrap iterations

failed to converge, so these results come from the other 91 iterations.

10.4.4 PLS-SEM with the Larger Sample

Is PLS-SEM more stable with the larger sample? We can examine that quickly for
the full data set from Sect. 10.3.1 with no need to respecify the model. The analysis
is identical, except for using the full data (satSimData) in the modeling com-
mands:

> satPLS.modF <- plsm(data=satSimData, strucmod=satPLSsm, measuremod=satPLSmm)
> satPLS.fitF <- sempls(model=satPLS.mod, data=satSimData)
All 200 observations are valid.
Converged after 7 iterations.
Tolerance: 1e-07
Scheme: centroid

We see that the path coefficients for the N = 200 data are similar to the N = 50
estimates, but the magnitudes are somewhat different:

> pathCoeff(satPLS.fitF)
Cost Quality Value CSat Repeat

Cost . . -0.27 . -0.32
Quality . . 0.30 0.34 .
Value . . . 0.22 .
CSat . . . . 0.29
Repeat . . . . .
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As before, we check PLS-SEM stability with a bootstrap. We repeat the procedure
from Sect. 10.4.3, this time with the model for the full data set:

> set.seed(04460)
> satPLS.bootF <- bootsempls(satPLS.fitF, nboot=500, start="ones")
Resample: 500 Done.
> parallelplot(satPLS.bootF, reflinesAt = 0, alpha=0.8,
+ varnames=attr(satPLS.bootF$t, "path")[16:21],
+ main="Path coefficients in 500 PLS bootstrap iterations (N=200)")

The bootstrap with full N = 200 data converged on all 500 iterations (as opposed
to 80 % failures to converge with N = 50 above). The parallel plot of estimates in
Fig. 10.12 shows bootstrap coefficient values that are grouped much more tightly
(the gray lines) and confidence intervals that do not cross zero (red lines).

These are results that we could use more confidently than we obtained for N = 50.
Either way, PLS-SEM opens up the opportunity for that decision. With the boot-
strap we were able to find instability with the smaller sample but stability for the
larger. With such capability we can make an informed choice about whether to use
imperfect results.

Path coefficients in 500 PLS bootstrap iterations (N=200)

Cost −> Value

Quality −> Value

Quality −> CSat

Value −> CSat

Cost −> Repeat

CSat −> Repeat

Min Max

Fig. 10.12. Bootstrapped coefficients for the PLS model with a larger sample, showing tighter
estimates with N = 200 observations.
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10.5 Learning More*

Structural models are a complex topic, and this chapter is intended primarily to
demonstrate R’s capability for experienced SEM users while inspiring others to
learn more. To use SEM well, you will need substantial background in addition
to this overview. For CB-SEM, an excellent text is Kline’s Principles and Practice
of Structural Equation Modeling [92]. Kline presents a social science perspective
that is similar to many marketing applications, especially for application to survey
data.

A guide to SEM models in R using the lavaan package is Beaujean [9]. The com-
bination of Kline’s Principles [92] for general concepts along with Beaujean’s guide
to implementation in R would provide a thorough grounding in SEM with R.

As you learn more about structural models, you will encounter SEM traditions that
reflect a diversity of statistical foundations and applications. One difference involves
model specification. The Lisrel tradition—named after one of the first SEM software
programs [88, 89]—is exemplified in Iacobucci’s article [83] and presents models
in terms of matrix algebra and Greek lettering. This is a very precise way to specify
models but is difficult for non-specialists. An alternative is the Mplus tradition—also
named after a software program—which uses simpler equation style specifications.
We generally recommend marketers to start with the latter kind of model specifica-
tion, as we did in the present chapter.

PLS-SEM is popular for marketing applications but, unlike the case with CB-SEM,
to date there have been few sources to learn about it. A paper from Hair et al de-
scribes how to do PLS-SEM appropriately [73]. At the time of writing, other gen-
eral references on PLS-SEM included a textbook [72] and a paper presenting an
overview of marketing applications [76].

In R, there are several packages available for SEM. In this chapter we used the
lavaan package [135] for CB-SEM and thesemPLS package [115] for PLS-SEM.
One of the earliest and widely used packages for SEM is the sem package [52],
which has many examples available online for various models and situations (e.g.,
[50]). The OpenMx Project provides a powerful system for SEM in the OpenMx
package [13].

10.6 Key Points

We have seen two examples of complex models in marketing applications: to
examine whether a survey instrument has good factor structure, and to estimate
the relationship in survey data between customer satisfaction and intent to repur-
chase a product. Additionally, we saw how such models may be estimated in both
covariance and partial least squares approaches.
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The following suggestions will help you to succeed at this kind of modeling:

• Learn about structural models and their assumptions; do not fit them blindly.
If you become discouraged by mathematical treatments, keep looking; the con-
cepts can be challenging but there are excellent and readable expositions such
as Kline [92].

• A structural equation model (SEM) relates observed manifest variables—such
as data points or survey responses—to underlying latent variables. It estimates
the strength of associations in a proposed model, as well as the degree to which
the model fits the observed data.

• SEM may be used to check the factor structure of survey items and their rela-
tionships to proposed latent variables; this is known as CFA. A good practice in
survey research is to assess those relationships; do not simply assume that sur-
vey items relate to one another or to latent constructs as expected (Sect. 10.2).

• SEM can also be used to test more complex models, in which latent variables
affect one another and are related to multiple sets of manifest variables.

• Two general approaches to SEM are the covariance-based approach (CB-SEM),
which attempts to model the relationships among the variables at once and thus
is a strong test of the model, and the partial least squares approach (PLS-SEM),
which fits parts of the data sequentially and has less stringent requirements.

• After you specify a CB-SEM model, simulate a data set using
simulateData() from lavaan with reasonable guesses as to variable
loadings. Use the simulated data to determine whether your model is likely to
converge for the sample size you expect.

• Plot your specified model graphically and inspect it carefully to check that it is
the model you intended to estimate.

• Whenever possible, specify one or two alternative models and check
those in addition to your model. Before accepting a CB-SEM model, use
compareFit() to demonstrate that your model fits the data better than
alternatives.

• If you have data of varying quality, nominal categories, small sample, or
problems converging a CB-SEM model, consider partial least squares SEM
(PLS-SEM).

• For PLS-SEM, use a bootstrap procedure (such as bootsempls() in the
semPLS package) to examine the stability of coefficients.
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