
Extracting Event Data from Databases
to Unleash Process Mining

Wil M.P. van der Aalst

Abstract

Increasingly organizations are using process mining to understand the way that

operational processes are executed. Process mining can be used to systematically

drive innovation in a digitalized world. Next to the automated discovery of the

real underlying process, there are process-mining techniques to analyze

bottlenecks, to uncover hidden inefficiencies, to check compliance, to explain

deviations, to predict performance, and to guide users towards “better” pro-

cesses. Dozens (if not hundreds) of process-mining techniques are available and

their value has been proven in many case studies. However, process mining

stands or falls with the availability of event logs. Existing techniques assume that

events are clearly defined and refer to precisely one case (i.e. process instance)

and one activity (i.e., step in the process). Although there are systems that

directly generate such event logs (e.g., BPM/WFM systems), most information

systems do not record events explicitly. Cases and activities only exist implic-

itly. However, when creating or using process models “raw data” need to be

linked to cases and activities. This paper uses a novel perspective to conceptual-

ize a database view on event data. Starting from a class model and

corresponding object models it is shown that events correspond to the creation,

deletion, or modification of objects and relations. The key idea is that events
leave footprints by changing the underlying database. Based on this an approach
is described that scopes, binds, and classifies data to create “flat” event logs that
can be analyzed using traditional process-mining techniques.

W.M.P. van der Aalst (*)

Architecture of Information Systems, Eindhoven University of Technology, P.O. Box 513, 5600

MB Eindhoven, The Netherlands

International Laboratory of Process-Aware Information Systems, National Research University

Higher School of Economics (HSE), 33 Kirpichnaya Street, Moscow, Russia

e-mail: w.m.p.v.d.aalst@tue.nl

Springer International Publishing Switzerland 2015

J. vom Brocke, T. Schmiedel (eds.), BPM – Driving Innovation in a Digital World,
Management for Professionals, DOI 10.1007/978-3-319-14430-6_8

105

mailto:w.m.p.v.d.aalst@tue.nl

1 Introduction

The spectacular growth of event data is rapidly changing the Business Process

Management (BPM) discipline (Aalst, 2013a; Aalst & Stahl, 2011; Brocke &

Rosemann, 2010; Dumas, Rosa, Mendling, & Reijers, 2013; Hofstede, Aalst,

Adams, & Russell, 2010; Reichert & Weber, 2012; Weske, 2007). It makes no

sense to focus on modeling, model-based analysis and model-based implementation

without using the valuable information hidden in information systems (Aalst,

2011). Organizations are competing on analytics and only organizations that intel-

ligently use the vast amounts of data available will survive (Aalst, 2014).

Today’s main innovations are intelligently exploiting the sudden availability of

event data. Out of the blue, “Big Data” has become a topic in board-level

discussions. The abundance of data will change many jobs across all industries.

Just like computer science emerged as a new discipline from mathematics when

computers became abundantly available, we now see the birth of data science as a
new discipline driven by the torrents of data available in our increasingly

digitalized world.1 The demand for data scientists is rapidly increasing. However,

the focus on data analysis should not obscure process-orientation. In the end, good

processes are more important than information systems and data analysis. The old

phrase “It’s the process stupid” is still valid. Hence, we advocate the need for

process scientists that will drive process innovations while exploiting the Internet
of Events (IoE). The IoE is composed of:

• The Internet of Content (IoC): all information created by humans to increase

knowledge on particular subjects. The IoC includes traditional web pages,

articles, encyclopedia like Wikipedia, YouTube, e-books, newsfeeds, etc.

• The Internet of People (IoP): all data related to social interaction. The IoP

includes e-mail, facebook, twitter, forums, LinkedIn, etc.

• The Internet of Things (IoT): all physical objects connected to the network. The

IoT includes all things that have a unique id and a presence in an internet-like

structure. Things may have an internet connection or be tagged using Radio-

Frequency Identification (RFID), Near Field Communication (NFC), etc.

• The Internet of Locations (IoL): refers to all data that have a spatial dimension.

With the uptake of mobile devices (e.g., smartphones) more and more events

have geospatial attributes.

Note that the IoC, the IoP, the IoT, and the IoL partially overlap. For example, a

place name on a webpage or the location from which a tweet was sent. See also

Foursquare as a mixture of the IoP and the IoL.

It is not sufficient to just collect event data. The challenge is to exploit it for

process improvements. Process mining is a new discipline aiming to address this

challenge. Process-mining techniques form the toolbox of tomorrow’s process

1We use the term “digitalize” to emphasize the transformational character of digitized data.

106 W.M.P. van der Aalst

scientist. Process mining connects process models and data analytics. It can be

used:

• to automatically discover processes without any modeling (not just the control-

flow, but also other perspectives such as the data-flow, work distribution, etc.),

• to find bottlenecks and understand the factors causing these bottlenecks,

• to detect and understand deviations, to measure their severity and to assess the

overall level of compliance,

• to predict costs, risks, and delays,

• to recommend actions to avoid inefficiencies, and

• to support redesign (e.g., in combination with simulation).

Today, there are many mature process-mining techniques that can be directly

used in everyday practice (Aalst, 2011). The uptake of process mining is not only

illustrated by the growing number of papers and plug-ins of the open source tool

ProM, there are also a growing number of commercial analysis tools providing

process mining capabilities, cf. Disco (Fluxicon), Perceptive Process Mining (Per-

ceptive Software, before Futura Reflect and BPMone by Pallas Athena), ARIS
Process Performance Manager (Software AG), Celonis Process Mining (Celonis

GmbH), ProcessAnalyzer (QPR), Interstage Process Discovery (Fujitsu), Discov-
ery Analyst (StereoLOGIC), and XMAnalyzer (XMPro).

Despite the abundance of powerful process-mining techniques and success

stories in a variety of application domains,2 a limiting factor is the preparation of

event data. The Internet of Events (IoE) mentioned earlier provides a wealth of data.

However, these data are a not in a form that can be analyzed easily, and need to be

extracted, refined, filtered, and converted to event logs first.

The starting point for process mining is an event log. Each event in such a log

refers to an activity (i.e., a well-defined step in some process) and is related to a

particular case (i.e., a process instance). The events belonging to a case are ordered
and can be seen as one “run” of the process. Event logs may store additional

information about events. In fact, whenever possible, process-mining techniques

use extra information such as the resource (i.e., person or device) executing or

initiating the activity, the timestamp of the event, or data elements recorded with the
event (e.g., the size of an order).

If a BPM system or some other process-aware information system is used, then it

is trivial to get event logs, i.e., typically the audit trail provided by the system can

directly be used as input for process mining. However, in most organizations one

encounters information systems built on top of database technology. The IoE

depends on a variety of databases (classical relational DBMSs or new “noSQL”

technologies). Therefore, we provide a database view on event data and assume that

events leave footprints by changing the underlying database. Fortunately, database

2 For example, http://www.win.tue.nl/ieeetfpm/doku.php?id¼shared:process_mining_case_stud

ies lists over 20 successful case studies in industry.

Extracting Event Data from Databases to Unleash Process Mining 107

http://www.win.tue.nl/ieeetfpm/doku.php?id=shared:process_mining_case_studies
http://www.win.tue.nl/ieeetfpm/doku.php?id=shared:process_mining_case_studies
http://www.win.tue.nl/ieeetfpm/doku.php?id=shared:process_mining_case_studies

technology often provides so called “redo logs” that can be used to reconstruct the

history of database updates. This is what we would like to exploit systematically.

Although the underlying databases are loaded with data, there are no explicit
references to events, cases, and activities. Instead, there are tables containing

records and these tables are connected through key relationships. Hence, the

challenge is to convert tables and records into event logs. Obviously, this cannot

be done in an automated manner.

To understand why process-mining techniques need “flat event logs” (i.e., event

logs with ordered events that explicitly refer to cases and activities) as input,

consider any process model in one of the mainstream process modeling notations

(e.g., BPMN models, BPEL specifications, UML activity diagrams, and workflow

nets). All of these notations present a diagram describing the life-cycle of an

instance of the process (i.e., case) in terms of activities. Hence, all mainstream

notations require the choice of a single process instance (i.e., case) notion. Notable

exceptions are proclets (Aalst, Barthelmess, Ellis, & Wainer, 2001) and artifacts

(Cohn & Hull, 2009), but these are rarely used and difficult to understand by

end-users. Therefore, we need to relate raw event data to process instances using

a single well-defined view on the process. This explains the requirements imposed

on event logs.

In this paper, we focus on the problem of extracting “flat event logs” from

databases. First, we introduce process mining in a somewhat more detailed form

(Sect. 2). Section 3 presents twelve guidelines for logging. They point to typical

problems related to event logs and can be used to improve the recording of relevant

events. Although it is vital to improve the quality of logging, this paper aims to

exploit the events hidden in existing databases. We use database-centric view on

processes: the state of a process is reflected by the database content. Hence, events

are merely changes of the database. In the remainder we assume that data is stored

in a database management system and that we can see all updates of the underlying

database. This assumption is realistic (see e.g. the redo logs of Oracle). However,

how to systematically approach the problem of converting database updates into

event logs? Section 4 introduces class and object models as a basis to reason about

the problem. In Sect. 5 we show that class models can be extended with a so-called

event model. The event model is used to capture changes of the underlying

database. Section 6 describes a three-step approach (Scope, Bind, and Classify) to
create a collection of flat event logs. The results serve as input for conventional

process-mining techniques. Section 7 discusses related work and Sect. 8 concludes

this paper.

2 Process Mining

Process mining aims to discover, monitor and improve real processes by extracting
knowledge from event logs readily available in today’s information systems (Aalst,

2011).

108 W.M.P. van der Aalst

Normally, “flat” event logs serve as the starting point for process mining. These

logs are created with a particular process and a set of questions in mind. An event

log can be viewed as a multiset of traces. Each trace describes the life-cycle of a

particular case (i.e., a process instance) in terms of the activities executed. Often
event logs store additional information about events. For example, many process-

mining techniques use extra information such as the resource (i.e., person or

device) executing or initiating the activity, the timestamp of the event, or data
elements recorded with the event (e.g., the size of an order). Table 1 shows a small

fragment of a larger event log. Each row corresponds to an event. The events refer

to two cases (654423 and 655526) and have additional properties, e.g., the registra-

tion for case 654423 was done by John at two past 11 on April 30th 2014 and the

cost was 300 euro. An event may also contain transactional information, i.e., it may

refer to an “assign”, “start”, “complete”, “suspend”, “resume”, “abort”, etc. action.

For example, to measure the duration of an activity it is important to have a start

event and a complete event. We refer to the XES standard (IEEE Task Force on

Process Mining, 2013b) for more information on the data possibly available in

event logs.

Flat event logs such as the one shown in Table 1 can be used to conduct four

types of process mining (Aalst, 2011).

• The first type of process mining is discovery. A discovery technique takes an

event log and produces a model without using any a priori information. Process

discovery is the most prominent process-mining technique. For many

organizations it is surprising to see that existing techniques are indeed able to

discover real processes merely based on example behaviors stored in event logs.

• The second type of process mining is conformance. Here, an existing process

model is compared with an event log of the same process. Conformance

checking can be used to check if reality, as recorded in the log, conforms to

the model and vice versa.

• The third type of process mining is enhancement. Here, the idea is to extend or

improve an existing process model by directly using information about the actual

process recorded in some event log. Whereas conformance checking measures

the alignment between model and reality, this third type of process mining aims

at changing or extending the a priori model. For instance, by using timestamps in

the event log one can extend the model to show bottlenecks, service levels, and

throughput times.

• The fourth type of process mining is operational support. The key difference

with the former three types is that analysis is not done off-line, but used to

influence the running process and its cases in some way. Based on process

models, either discovered through process mining or (partly) made by hand,

one can check, predict, or recommend activities for running cases in an online

setting. For example, based on the discovered model one can predict that a

particular case will be late and propose counter-measures.

Extracting Event Data from Databases to Unleash Process Mining 109

The ProM framework provides an open source process-mining infrastructure.

Over the last decade hundreds of plug-ins have been developed covering the whole

process-mining spectrum. ProM is intended for process-mining experts.

Non-experts may have difficulties using the tool due to its extensive functionality.

Commercial process-mining tools such as Disco, Perceptive Process Mining, ARIS
Process Performance Manager, Celonis Process Mining, QPR ProcessAnalyzer,
Fujitsu Interstage Process Discovery, StereoLOGIC Discovery Analyst, and

XMAnalyzer are typically easier to use because of their restricted functionality.

These tools have been developed for practitioners, but provide only a fraction of the

functionality offered by ProM. Figure 1 shows four screenshots of process-mining

tools analyzing the same event log.

In this paper, we neither elaborate on the different process-mining techniques

nor do we discuss specific process-mining tools. Instead, we focus on the event data

used for process mining.

3 Guidelines for Logging

The focus of this paper is on the input side of process mining: event data. Often we
need to work with the event logs that happen to be available, and there is no way to

influence what events are recorded and how they are recorded. There can be various

problems related to the structure and quality of data (Aalst, 2011; Jagadeesh

Chandra Bose, Mans, & Aalst, 2013). For example, timestamps may be missing

or too coarse (only dates). Therefore, this paper focuses on the “input side of

process mining”. Before we present our database-centric approach, we introduce

twelve guidelines for logging. These guidelines make no assumptions on the

underlying technology used to record event data.

In this section, we use a rather loose definition of event data: events simply refer

to “things that happen” and that they are described by references and attributes.
References have a reference name and an identifier that refers to some object

(person, case, ticket, machine, room, etc.) in the universe of discourse. Attributes

Table 1 A fragment of an event log: each line corresponds to an event

Case id Timestamp Activity Resource Cost

654423 30-04-2014:11.02 Register request John 300

654423 30-04-2014:11.06 Check completeness of documents Ann 400

655526 30-04-2014:16.10 Register request John 200

655526 30-04-2014:16.14 Make appointment Ann 450

654423 30-04-2014:11.12 Ask for second opinion Pete 100

654423 30-04-2014:11.18 Prepare decision Pete 400

654423 30-04-2014:11.19 Pay fine Pete 400

655526 30-04-2014:16.26 Check completeness of documents Sue 150

655526 30-04-2014:16.36 Reject claim Sue 100

.

110 W.M.P. van der Aalst

have a name and a value, e.g., age¼ 48 or time¼ “28-6-2014 03:14:0”. Based on

these concepts we define our 12 guidelines. To create an event log from such “raw

events” (1) we need to select the events relevant for the process at hand, (2) events

need to be correlated to form process instances, (3) events need to be ordered using

timestamp information, and (4) event attributes need to be selected or computed

based on the raw data (resource, cost, etc.). Such an event log can be used as input

for a wealth of process-mining techniques.

The guidelines for logging (GL1–GL12) aim to create a good starting point for

process mining.

GL1: Reference and variable names should have clear semantics, i.e., they
should have the same meaning for all people involved in creating and analyzing
event data. Different stakeholders should interpret event data in the same way.

GL2: There should be a structured and managed collection of reference and
variable names. Ideally, names are grouped hierarchically (like a taxonomy or

ontology). A new reference and variable name can only be added after there is

consensus on its value and meaning. Also consider adding domain or organization

a b

c d

Fig. 1 Four screenshots of different tools analyzing the same event log. (a) ProM; (b) Disco

(Fluxicon); (c) perceptive process mining (Perceptive Software); (d) Celonis process mining

(Celonis GmbH) (Color figure online)

Extracting Event Data from Databases to Unleash Process Mining 111

specific extensions (see for example the extension mechanism of XES (IEEE Task

Force on Process Mining, 2013b)).

GL3: References should be stable (e.g., identifiers should not be reused or rely
on the context). For example, references should not be time, region, or language

dependent. Some systems create different logs depending on the language settings.

This is unnecessarily complicating analysis.

GL4: Attribute values should be as precise as possible. If the value does not
have the desired precision, this should be indicated explicitly (e.g., through a
qualifier). For example, if for some events only the date is known but not the

exact timestamp, then this should be stated explicitly.

GL5: Uncertainty with respect to the occurrence of the event or its references or
attributes should be captured through appropriate qualifiers. For example, due to

communication errors, some values may be less reliable than usual. Note that

uncertainty is different from imprecision.

GL6: Events should be at least partially ordered. The ordering of events may be
stored explicitly (e.g., using a list) or implicitly through a variable denoting the
event’s timestamp. If the recording of timestamps is unreliable or imprecise, there

may still be ways to order events based on observed causalities (e.g., usage of data).

GL7: If possible, also store transactional information about the event (start,
complete, abort, schedule, assign, suspend, resume, withdraw, etc.). Having start

and complete events allows for the computation of activity durations. It is

recommended to store activity references to be able to relate events belonging to

the same activity instance. Without activity references it may not always be clear

which events belong together, which start event corresponds to which complete

event.

GL8: Perform regularly automated consistency and correctness checks to
ensure the syntactical correctness of the event log. Check for missing references

or attributes, and reference/attribute names not agreed upon. Event quality assur-

ance is a continuous process (to avoid degradation of log quality over time).

GL9: Ensure comparability of event logs over time and different groups of cases
or process variants. The logging itself should not change over time (without being

reported). For comparative process mining, it is vital that the same logging

principles are used. If for some groups of cases, some events are not recorded

even though they occur, then this may suggest differences that do not actually exist.

GL10: Do not aggregate events in the event log used as input for the analysis
process.Aggregation should be done during analysis and not before (since it cannot
be undone). Event data should be as “raw” as possible.

GL11: Do not remove events and ensure provenance. Reproducibility is key for
process mining. For example, do not remove a student from the database after he

dropped out since this may lead to misleading analysis results. Mark objects as not

relevant (a so-called “soft delete”) rather than deleting them: concerts are not

deleted—they are canceled, employees are not deleted—they are fired, etc.

GL12: Ensure privacy without losing meaningful correlations. Sensitive or

private data should be removed as early as possible (i.e., before analysis). However,

if possible, one should avoid removing correlations. For example, it is often not

112 W.M.P. van der Aalst

useful to know the name of a student, but it may be important to still be able to use

his high school marks and know what other courses he failed. Hashing can be a

powerful tool in the trade-off between privacy and analysis.

The above guidelines are very general and aim to improve the logging itself. The

main purpose of the guidelines is to point to problems related to the input of process

mining. They can be used to better instrument software.

After these general guidelines, we now change our viewpoint. We aim to exploit

the hidden event data already present in databases. The content of the database can

be seen as the current state of one or more processes. Updates of the database are

therefore considered as the primary events. This database-centric view on event

logs is orthogonal to the above guidelines.

4 Class and Object Models

Most information systems do not record events explicitly. Only process-aware

information systems (e.g., BPM/WFM systems) record event data in the format

shown in Table 1. To create an event log, we often need to gather data from

different data sources where events exist only implicitly. In fact, for most

process-mining projects event data need to be extracted from conventional

databases. This is often done in an ad-hoc manner. Tools such as XESame (Verbeek,
Buijs, van Dongen, & Aalst, 2010) and ProMimport (Günther & Aalst, 2006)

provide some support, but still the event logs need to be constructed by querying

the database and converting database records (row in tables) into events.

Moreover, the “regular tables” in a database only provide the current state of the
information system. It may be impossible to see when a record was created or

updated. Moreover, deleted records are generally invisible.3 Taking the viewpoint
that the database reflects the current state of one or more processes, we define all
changes of the database to be events. Below we conceptualize this viewpoint.

Building upon standard class and object models, we define the notion of an event
model. The event model relates coherent set of changes to the underlying database

to events used for process mining.

Section 5 defines the notion of an event model. To formalize event models, we

first introduce and define class and object models.

A class model defines a set of classes that may be connected through

relationships. UML class models (OMG, 2009), Entity-Relationship (ER) models

(Chen, 1976), Object-Role Modeling (ORM) models, etc. provide concrete

notations for the basic class model used in this paper.

3 Increasingly systems mark deleted objects as not relevant (a so-called soft delete) rather than

deleting them. In this way all intermediate states of the database can be reconstructed. Moreover,

marking objects as deleted instead of completely removing them from the database is often more

natural, e.g., concerts are not deleted—they are canceled, employees are not deleted—they are

fired, etc.

Extracting Event Data from Databases to Unleash Process Mining 113

Definition 1 (Unconstrained Class Model) Assume V to be some universe of

values (strings, numbers, etc.). An unconstrained class model is a tuple UCM ¼
C;A;R; val; key; attr; relð Þ such that

• C is a set of class names,

• A is a set of attribute names,

• R is a set of relationship names (C \ R ¼ =0),

• val∈A ! P Vð Þ is a function mapping each attribute onto a set of values.4 Va

¼ val að Þ is a shorthand and denotes the set of possible values of attribute a∈A,
• key∈C ! P Að Þ is a function describing the set of key attributes of each class,

• attr∈C ! P Að Þ is a function describing the set of additional attributes of each

class (key cð Þ \ attr cð Þ ¼ =0 for any class c∈C),
• rel∈R ! C� Cð Þ is a function describing the two classes involved in a relation.

Let rel rð Þ ¼ c1; c2ð Þ for relationship r∈R : rel1 rð Þ ¼ c1 and rel2 rð Þ ¼ c2 are

shorthand forms to obtain the two individual classes involved in the relationship.

Figure 2 shows a class model with classesC ¼ c1; c2; . . . ; c8f g and relationships
R ¼ r1; r2; . . . ; r8f g. Classes and relationships also have longer names, e.g., c1 is
the class “concert hall”. We will use the shorter names for a more compact

discussion. In this example, each class has a singleton key, i.e., a single column

serves as primary key. The keys are highlighted in Fig. 2 (darker color). For

example, key c1ð Þ ¼ hall idf g and attr c1ð Þ ¼ name of hall, addressf g are the two

additional (non-key) attributes of class c1. rel r4ð Þ ¼ c5; c2ð Þ, i.e., relation r4 relates
tickets (c5) to concerts (c2). Figure 2 also shows cardinality constraints. These are

not part of the unconstrained class model. Later we will define constrained class

models (Definition 4). However, before doing so, we need to introduce some more

notations.

Definition 2 (Notations) Let CM ¼ C;A;R; val; key; attr; relð Þ be an (uncon-

strained) class model.

• MCM ¼ map∈A =! V
��8a∈ dom mapð Þ map að Þ∈Va

� �
is the set of mappings,5

• KCM ¼ c,mapkð Þ∈C�MCM
��dom mapkð Þ ¼ key cð Þ� �

is the set of possible key

values per class,

• ACM ¼ c,mapað Þ∈C�MCM
��dom mapað Þ ¼ attr cð Þ� �

is the set of possible

additional attribute values per class,

4P Xð Þ is the powerset of X, i.e., Y∈P Xð Þ if Y � X.
5 f ∈X =! Y is a partial function, i.e., the domain of f may be any subset of X: dom fð Þ � X.

114 W.M.P. van der Aalst

• OCM ¼ c,mapk,mapað Þ∈C � MCM � MCM
� �� c,mapkð Þ∈KCM ^ c,mapað Þ

∈ ACMg is the set of objects,

• RCM ¼ r, map1, map2ð Þ∈ R � MCM � MCM
��∃c1, c2 ∈ C rel

�
rð Þ ¼ c1; c2ð Þ ^

c1, map1ð Þ; c2, map2ð Þf g � KCMg is the set of potential relations.

A class model implicitly defines a collection of possible object models. Each
class c∈Cmay have multiple objects and each relationship r∈Rmay hold multiple

concrete object-to-object relations.

Definition 3 (Object Model) Let CM ¼ C;A;R; val; key; attr; relð Þ be an (uncon-

strained) class model. An object model of CM is a tuple OM ¼ Obj;Relð Þ where

Obj � OCM is a set of objects and Rel � RCM is a set of relations. UOM CMð Þ
¼ Obj,Relð Þ��Obj � OCM ^ Rel � RCM

� �
is the set of all object models of CM.

The cardinality constraints in Fig. 2 impose restrictions on object models. For

example, a ticket corresponds to precisely one concert and each concert

corresponds to any number of tickets (see annotations “1” and “0..*” next to r4).
Each ticket corresponds to precisely one booking and each booking refers to at least

band

booking

1 0..*

active_since : Date

booking_id : Booking_ID

band_name : Name

concert

concert_date : Date

concert hall

name_of_hall : Name

seat

row_no : Num

seat_no : Num

ticket

customer

customer_name : Name

address : Address

address : Address

address : Address

hall_id : Hall_ID

customer_id : Cust_ID

band_id : Band_IDconcert_id : Con_ID

seat_id : Seat_ID

start_time : Time

price : Euro

total_price : Euro

payment

amount : Euro

1..*0..*

1

1..*

1

0..*

1 0..*

1

1..*

1 0..* 0..1 0..*

ticket_id : Ticket_ID

0..*

payment_id : Pay_ID

r1
(loca�on)

c1

birth_date : Date

c2 c3

c4 c5

c6 c7 c8

r3
(belongs_to)

r2
(playing)

r5
(belongs_to)

r4
(for_concert)

r6
(belongs_to)

r8
(for_booking)

r7
(booking_by)

addi�onal constraint:
there cannot be two

�ckets for the same seat
and same concert

addi�onal constraint: the
total price of a booking
equals the sum of the

individual �ckets

addi�onal constraint:
there cannot be two
concerts on the same

day in the same concert
hall

Fig. 2 Example of a constrained class model (Color figure online)

Extracting Event Data from Databases to Unleash Process Mining 115

one ticket (see annotations “1” and “1..*” next to r6). In our formalizations we

abstract from the actual notation used to specify constraints. Instead, we assume a

given set VOM of valid object models satisfying all requirements (including

cardinality constraints).

Definition 4 (Constrained Class Model) A constrained class model is a tuple CM
¼ C;A;R; val; key; attr; rel;VOMð Þ such that UCM ¼ C;A;R; val; key; attr; relð Þ is
an unconstrained class model and VOM � UOM UCMð Þ is the set of valid object
models. A valid object model OM ¼ Obj;Relð Þ∈VOM satisfies all (cardinality)

constraints including the following general requirements:

• for any r,mapk1,mapk2ð Þ∈Rel there exist c1, c2, mapa1, and mapa2 such that

rel rð Þ ¼ c1; c2ð Þ and c1,mapk1,mapa1ð Þ; c2,mapk2,mapa2ð Þf g � Obj, i.e., the
referenced objects exist,

• for any c,mapk,mapa1ð Þ; c,mapk,mapa2ð Þf g � Obj : mapa1 ¼ mapa2, i.e.,

keys are indeed unique.

All notations defined for unconstrained class models are also defined for

constrained class models. For any valid object model OM∈VOM it is ensured

that relations refer to existing objects and that there are not two objects in the same

class that have the same key values. Moreover, all cardinality constraints are

satisfied if OM∈VOM.

Definition 4 abstracts from the concrete realization of object and class models

in a database. However, it is easy to map any class model onto a set of related

tables in a conventional relational database system. To do this foreign keys need

to be added to the tables or additional tables need to be added to store the

relationships. For example, one may add three extra columns to the table for c5
(“ticket”): concert _ id (for the foreign key relating the ticket to a concert),

seat _ id (for the foreign key relating the ticket to a seat), and booking _ id (for

the foreign key relating the ticket to a booking). These columns realize respec-

tively r4, r5, and r6. In the case of a many-to-many relationship an additional table

needs to be added to encode the relations. In the remainder we abstract from the

actual table structure, but it is obvious that the conceptualization agrees with

standard database technology.

5 Events and Their Effect on the Object Model

Examples of widely used DataBase Management Systems (DBMSs) are Oracle
RDBMS (Oracle), SQL server (Microsoft), DB2 (IBM), Sybase (SAP), and

PostgreSQL (PostgreSQL Global Development Group). All of these systems can

store and manage the data structure described in Definition 4. Moreover, all of these

systems have facilities to record changes to the database. For example, in the

Oracle RDBMS environment, redo logs comprise files in a proprietary format

116 W.M.P. van der Aalst

which log a history of all changes made to the database. Oracle LogMiner, a
utility provided by Oracle, provides methods of querying logged changes made

to an Oracle database. Every Microsoft SQL Server database has a transaction
log that records all database modifications. Sybase IQ also provides a transac-

tion log. Such redo/transaction logs can be used to recover from a system

failure. The redo/transaction logs will grow significantly if there are frequent

changes to the database. In such cases, the redo/transaction logs need to be

truncated regularly.

This paper does not focus on a particular DBMS. However, we assume that

through redo/transaction logs we can monitor changes to the database. In particular,

we assume that we can see when a record is inserted, updated, or deleted.

Conceptually, we assume that we can see the creation of objects and relations

(denoted by�), the deletion of objects and relations (denoted by�), and updates of
objects (denoted by �). Based on this we define the set of atomic and composite
event types.

Definition 5 (Event Types) Let CM ¼ C;A;R; val; key; attr; rel;VOMð Þ be a

constrained class model. ETatomic ¼ ETadd,obj [ETadd, rel [ETdel,obj [ETdel, rel [
ETupd,obj is the set of atomic event types composed of the following pairwise

disjoint sets:

• ETadd,obj ¼ �; cð Þ��c∈C
� �

are the event types for adding objects,

• ETadd, rel ¼ �; rð Þ��r∈R
� �

are the event types for adding relations,

• ETdel,obj ¼ �; cð Þ��c∈C
� �

are the event types for deleting objects,

• ETdel, rel ¼ �; rð Þ��r∈R
� �

are the event types for deleting relations, and

• ETupd,obj ¼ �; cð Þ��c∈C
� �

are the event types for updating objects.

ETcomposite CMð Þ ¼ P ETatomicð Þ\ =0f g is the set of all possible composite event types
of CM.

The atomic event type �; c5ð Þ denotes the creation of a ticket and �; r8ð Þ denotes
the linking of a payment to a booking. When updating the address of a customer, the

atomic event type �; c6ð Þ is expected to occur. When preparing for a new concert of

an existing band in an existing concert hall, we may observe the composite event

type �; c2ð Þ; �; r1ð Þ; �; r2ð Þf g, i.e., creating a new object for the concert and

relating it to the existing concert hall and band.

The notion of atomic/composite event types naturally extends to concrete

atomic/composite events. For an object creation event �; cð Þ we need to specify

(mapk,mapa), i.e., the new key and additional attribute values. For deleting a

relation �; rð Þ we need to specify (map1,map2), i.e., the key values of each of the

two objects involved in the relation.

Extracting Event Data from Databases to Unleash Process Mining 117

Definition 6 (Events) Let CM ¼ C;A;R; val; key; attr; rel;VOMð Þ be a

constrained class model. Eatomic ¼ Eadd,obj [Eadd, rel [Edel,obj [Edel, rel [Eupd,obj

is the set of atomic events composed of the following pairwise disjoint sets:

• Eadd,obj ¼ �; c; mapk,mapað Þð Þ�� c,mapk,mapað Þ∈OCM
� �

;

• Eadd, rel ¼ �; r; map1,map2ð Þð Þ�� r,map1,map2ð Þ∈RCM
� �

;

• Edel,obj ¼ �, c,mapkð Þ�� c,mapkð Þ∈KCM
� �

;

• Edel, rel ¼ �; r; map1,map2ð Þð Þ�� r,map1,map2ð Þ∈RCM
� �

, and

• Eupd,obj ¼ �; c; mapk,mapað Þð Þ�� c,mapk,mapað Þ∈OCM
� �

:

Ecomposite CMð Þ ¼ P Eatomicð Þ\ =0f g is the set of all possible composite events of CM.

fprt∈Eatomic ! ETatomic is a function computing the footprint of an atomic event:

fprt x; y; zð Þð Þ ¼ x; yð Þmaps an atomic event x; y; zð Þ∈Eatomic onto its corresponding

type x; yð Þ∈ETatomic:The footprint function is generalized to composite events, i.e.,

fprt∈Ecomposite ! ETcomposite such that fprt CEð Þ ¼ x; yð Þ�� x; y; zð Þ∈CE
� �

for com-

posite event CE.

Eatomic is the set of atomic events. Ecomposite(CM) is the set of non-empty

composite events. fprt transforms atomic/composite events into the corresponding

types. For example, fprt �; r; map1,map2ð Þð Þð Þ ¼ �; rð Þ.
An event model annotates a constrained class model with event types that refer to

composite events. Figure 3 shows an event model that has seven events. Event en3
models the deletion of a customer. The corresponding composite event type is

�; c6ð Þf g. Event en4 models the adding of a concert. The corresponding composite

event type is �; c2ð Þ; �; r1ð Þ; �; r2ð Þf g.

Definition 7 (Event Model) Let CM ¼ C;A;R; val; key; attr; rel;VOMð Þ be a

constrained class model. An event model is a tuple EM ¼ EN; type;VEð Þ where

• EN is a set of event names,

• type∈EN ! ETcomposite CMð Þ is a function mapping each event name onto its

composite event type,

• VE � EN � Ecomposite CMð Þ is the set of valid events such that for any

en;CEð Þ∈VE : fprt CEð Þ ¼ type enð Þ. Moreover, for any en∈EN there exists

a CE such that en;CEð Þ∈VE.

Events should be of the right type and for each event name there is at least one

valid event. Note that events may have varying cardinalities, e.g., one event may

create five objects of the same class.

In Definition 7, we require fprt CEð Þ ¼ type enð Þ. Alternatively, one could

weaken this requirements to =0 6¼ fprt CEð Þ � type enð Þ. This would allow for the

omission of certain events, e.g., in case the object already exists it does not need to

be created. Consider for example a new event en8 with

type en8ð Þ ¼ �; c6ð Þ; �; c7ð Þ; �; r7ð Þf g that creates a booking and the corresponding

118 W.M.P. van der Aalst

customer. If the customer is already in the database, the composite event cannot

contain the creation of the customer object c6. Instead of defining two variants of

the same events (with or without creating a c6 object), it may be convenient to

define one event that allows for both variations. Case studies should show which

requirement is more natural (strong versus weak event typing).

Here, we assume an event model to be given. The event model may be created by

the analyst or extracted from the redo/transaction log of the DBMS.We also assume

that event occurrences (defined next) can be related to events in the event model.

Future work aims at providing support for the semi-automatic creation of event

models and further investigating the relation with the redo/transaction logs in

concrete systems like Oracle.

An event occurrence is specified by an event name en, a composite event CE,
and a timestamp ts. A change log is a sequence of such event occurrences.

Definition 8 (Event Occurrence, Change Log) Let CM ¼ C;A;R; val; key; attr;ð
rel;VOMÞ be a constrained class model and EM ¼ EN; type;VEð Þ an event model.

Assume some universe of timestamps TS. e ¼ en;CEð Þ, tsð Þ∈VE� TS is an event
occurrence.EO CM;EMð Þ ¼ VE� TS is the set of all possible event occurrences. A
change log L ¼ e1; e2; . . . ; enh i is a sequence of event occurrences such that time is

non-decreasing, i.e., L ¼ e1; e2; . . . ; enh i∈ EO CM;EMð Þð Þ� and tsi � tsj for any ei
¼ eni,CEið Þ, tsið Þ and ej ¼ enj,CEj

� �
, tsj

� �
with 1 � i < j � n.

band

booking

1 0..*

active_since : Date

booking_id : Booking_ID

band_name : Name

concert

concert_date : Date

concert hall

name_of_hall : Name

seat

row_no : Num

seat_no : Num

ticket

customer

customer_name : Name

address : Address

address : Address

address : Address

hall_id : Hall_ID

customer_id : Cust_ID

band_id : Band_IDconcert_id : Con_ID

seat_id : Seat_ID

start_time : Time

price : Euro

total_price : Euro

payment

amount : Euro

1..*0..*

1

1..*

1

0..*

1 0..*

1

1..*

1 0..* 0..1 0..*

ticket_id : Ticket_ID

0..*

payment_id : Pay_ID

r1

(location)

c1

birth_date : Date

c2 c3

c4 c5

c6 c7 c8

r3

(belongs_to)

r2

(playing)

r5

(belongs_to)

r4

(for_concert)

r6

(belongs_to)

r8

(for_booking)

r7

(booking_by)

additional constraint:
there cannot be two

tickets for the same seat
and same concert

additional constraint: the
total price of a booking
equals the sum of the

individual tickets

additional constraint:
there cannot be two
concerts on the same

day in the same concert
hall

1

1..*1

en5

create tickets

en4

organize concert

en3

remove customer

en1

add customer

en2

update customer
information

1

1

1..*
1

1

1

en6

make booking

en7

handle payment

1

1

1..*

1..*

1..*

Fig. 3 Example of an event model (Color figure online)

Extracting Event Data from Databases to Unleash Process Mining 119

Next we define the effect of an event occurrence, i.e., the resulting object model.

If an event is not permissible, e.g., inserting an object for which an object with the

same key already exists, the object model does not change.

Definition 9 (Effect of an Event) LetCM ¼ C;A;R; val; key; attr; rel;VOMð Þbe a
constrained class model and EM ¼ EN; type;VEð Þ an event model. For any two

object models OM1 ¼ Obj1,Rel1ð Þ and OM2 ¼ Obj2,Rel2ð Þ of CM and event

occurrence e ¼ en;CEð Þ, tsð Þ∈EO CM,EMð Þ, we denote OM1 !e OM2 if and

only if

• Obj2 ¼
�
c,mapk,mapað Þ∈Obj1

�� �, c,mapkð Þ =∈CE ^ 8map0 ,
�� , c,

�
mapk,

map0
��

=∈CE
� [� c,mapk,mapað Þ∈OCM

�� �; c; mapk,mapað Þð Þ∈
CE ∨ �; c; mapk,mapað Þð Þ∈CE

�
;

• Rel2 ¼ r,map1,map2ð Þ∈Rel1
�� �; r; map1,map2ð Þð Þ =∈CE

� � [��
r,map1,

map2
�
∈RCM

�� �; r; map1,map2ð Þð Þ∈CE
�
, and

• OM1,OM2f g � VOM:

Event e is permissible in object model OM, notation OM1 !e , if and only if there

exists an OM0 such that OM!e OM0. If this is not the case, we denote OM =!
e

, i.e.,

e is not permissible in OM. If an event is not permissible, it will fail and the object

model will remain unchanged. Relation)e denotes the effect of event e. It is the

smallest relation such that (a) OM)e OM0 if OM!e OM0 and (b) OM)e OM if

OM =!
e

.

The event occurrence e ¼ en;CEð Þ, tsð Þas a whole is successful or not. IfOM =!
e

,

then nothing changes. The current definition of OM1 !e is rather forgiving, e.g., it

allows for the deletion of an object that does not exist. It only ensures that the result

is a valid object model, but relations!e and)e can be made stricter if desired. Note

that the atomic events in CE occur concurrently if e is successful, i.e., the events do
not depend on each other.

Relation)e is deterministic, i.e., OM1)
e
OM2 and OM1)

e
OM3 implies

OM2 ¼ OM3.

Definition 10 (Effect of a Change Log) LetCM¼ C;A;R;val;key;attr;rel;VOMð Þ
be a constrained class model, EM¼ EN; type;VEð Þ an event model, and OM0∈VO

M the initial valid object model. Let L¼ e1;e2; . . . ;enh i∈ EO CM;EMð Þð Þ� be a

change log. There exist object models OM1,OM2, . . . ,OMn∈VOM such that

OM0)
e1

OM1)
e2

OM2 . . .)
en

OMn

Hence, change log L results in object model OMn when starting in OM0. This is

denoted by OM0)
L
OMn.

120 W.M.P. van der Aalst

The formalizations above provide operational semantics for an abstract database

system that processes a sequence of events. However, the goal is not to model a

database system. Instead, we aim to relate database updates to event logs that can be

used for process mining. Subsequently, we assume that we can witness a change log

L ¼ e1; e2; . . . ; enh i. It is easy to see atomic events. Moreover, various heuristics

can be used to group events into composite events (e.g., based on time, session id,

and/or user id). Definition 3 shows that this assumption allows us to reconstruct the

state of the database system after each event, i.e., the object model OMi resulting

from ei can be computed.

6 Approach: Scope, Bind, and Classify

Process-mining techniques require as input a “flat” event log and not a change log

as described in Definition 10. Table 1 shows the kind of input data that process-

mining techniques expect. Such a conventional flat event log is a collection of

events where each event has the following properties:

• Case id: each event should refer to a case (i.e., process instance). If an event is

relevant for multiple cases, it should be replicated when creating event logs.

• Activity: each event should be related to an activity. Events refer to activity

instances, i.e., occurrences of activities in the corresponding process model.

• Timestamp: events within a case should be ordered. Moreover, timestamps are

not just needed for the temporal order: they are also vital for measuring

performance.

• Next to these mandatory attributes there may be all kinds of optional event
attributes. For example:

– Resource: the person, machine or software component executing the event.

– Type: the transaction type of the event (start, complete, suspend, resume,

etc.).

– Costs: the costs associated with the event.

– Customer: information about the person or organization for whom or which

the event is executed.

– Etc.

Dedicated process-mining formats like XES or MXML allow for the storage of

such event data. To be able to use existing process-mining techniques we need to be

able to extract flat event logs and not a change log as defined in the previous section.

Let CM ¼ C;A;R; val; key; attr; rel;VOMð Þ be a constrained class model, EM
¼ EN; type;VEð Þ an event model, and OM0 ∈VOM the initial valid object model.

In the remainder we focus on the problem of converting a change log

L ¼ e1; e2; . . . ; enh i∈ EO CM;EMð Þð Þ� into a collection of conventional events
logs that serve as input for existing process-mining techniques. Given an event

occurrence ei ¼ eni,CEið Þ, tsið Þ, one may convert it into a conventional event by

Extracting Event Data from Databases to Unleash Process Mining 121

taking tsi as timestamp and eni as activity. However, an event occurrence needs to

be related to zero or more cases and the change log may contain information about

multiple processes. Hence, several decisions need to be made in the conversion

process. We propose a three-step approach: (1) scope the event data, (2) bind the

events to process instances (i.e., cases), and (3) classify the process instances.

6.1 Scope: Determine the Relevant Events

The first step in converting a change log into a collection of conventional events

logs is to scope the event data. Which of the event occurrences in

L ¼ e1; e2; . . . ; enh i are relevant for the questions one aims to answer? One way

to scope the event data is to consider a subset of event namesENs � EN. Recall that
EN are all event names in an event model. In Fig. 3, EN ¼ en1, en2, . . . , en7f g.
Events may also be selected based on a time window (e.g., “all events executed

after May 21st” or “all events belonging to cases that were complete in 2013”) or

the classes involved (e.g., “all events related to Metallica concerts”).

6.2 Bind: Relate Events to Process Instances

Process models always describe lifecycles of instances. For example, when looking

at any BPMN, EPC, or UML activity model there is the implicit notion of a process

instance (i.e., case). The process model is instantiated once for each case, e.g., for

an order handling process the activities always operate on a specific purchase order.

The notion of process instances is made explicit in process-aware information

systems, e.g., Business Process Management (BPM) and Workflow Management

(WfM) systems. However, in most other systems the instance notion is implicit.

Moreover, the instance notion selected may depend on the questions one would like

to answer. Consider for example Fig. 3. Possible instance notions are concert,

ticket, booking, customer, band, concert hall, seat, and payment. One could con-

struct a process describing the lifecycle of tickets. Such a lifecycle is different from

the lifecycle of a concert or booking. One could even consider discovering the

lifecycle of chairs in a concert hall by taking seat IDs as process instances.

Technically, we need to define a set of process instances PI (cases) and relate

events to these instances: bind � VEs � PIwithVEs ¼ en;CEð Þ∈VE
��en∈ENs

� �

the subset of the valid events selected (without timestamps). Let pi∈PI be a

process instance and ei ¼ eni,CEið Þ, tsið Þ an event occurrence: event ei belongs to
case pi if eni,CEið Þ; pið Þ∈ bind. Note that bind is a relation and not a function. This
way the same event occurrence may yield events in different process instances. For

example, the cancelation of a concert may influence many bookings.

Relation bind allows us to associate events to cases. This, combined with the

timestamps and activity names, enables the construction of event logs.

122 W.M.P. van der Aalst

6.3 Classify: Relate Process Instances to Processes

After scoping and binding, we have a set of events related to process instances.

Since we can reconstruct the object model before and after each event occurrence,

we can add all kinds of optional element attributes. Hence, we can create a

conventional event log with a rich set of attributes. However, as process-mining

techniques mature it becomes interesting to compare different groups of process

instances (Aalst, 2013b). Instead of creating one event log, it is often insightful to

create multiple event logs. For example, to compare the booking process for two

concerts we create two event logs and compare the process-mining results.

To allow for comparative process mining, process instances are classified using

a relation class � PI � CL with CL the set of classes. Consider for example the

study process of students taking a particular course. Rather than creating one

process model for all students, one could create (1) a process model for students

that passed and a process model for students that failed, (2) a process model for

male students and a process model for female students, or (3) a process model for

Dutch students and a process model for international students. Note that class � PI
�CL does not require a strict partitioning of the process instances, e.g., a case may

belong to multiple classes.

In (Aalst, 2013b), the notion of process cubes was proposed to allow for

comparative process mining. In a process cube events are organized using different

dimensions. Each cell in the process cube corresponds to a set of events that can be

used to discover a process model, to check conformance, or to discover bottlenecks.

Process cubes are inspired by the well-known OLAP (Online Analytical

Processing) data cubes and associated operations such as slice, dice, roll-up, and

drill-down (Chaudhuri & Dayal, 1997). However, there are also significant

differences because of the process-related nature of event data. For example,

process discovery based on events is incomparable to computing the average or

sum over a set of numerical values. Moreover, dimensions related to process

instances (e.g. male versus female students), subprocesses (e.g. group assignments

versus individual assignments), organizational entities (e.g. students versus

lecturers), and time (e.g. years or semesters) are semantically different and it is

challenging to slice, dice, roll-up, and drill-down process-mining results efficiently.

As mentioned before, we deliberately remain at the conceptual level and do not

focus on a particular DBMS. However, the “scope, bind, and classify” approach

allows for the transformation of database updates into events populating process

cubes that can be used for a variety of process-mining analyses.

7 Related Work

The reader is referred to (Aalst, 2011) for an introduction to process mining.

Alternatively, one can consult the Process Mining Manifesto (IEEE Task Force

on Process Mining, 2011) for best practices and the main challenges in process

mining. Next to the automated discovery of the underlying process based on raw

Extracting Event Data from Databases to Unleash Process Mining 123

event data, there are process-mining techniques to analyze bottlenecks, to uncover

hidden inefficiencies, to check compliance, to explain deviations, to predict perfor-

mance, and to guide users towards “better” processes. Dozens (if not hundreds) of

process-mining techniques are available and their value has been proven in many

case studies. For example, dozens of process discovery (Aalst, 2011; Aalst et al.,

2010; Aalst, Weijters, & Maruster, 2004; Agrawal, Gunopulos, & Leymann, 1998;

Gaaloul, Gaaloul, Bhiri, Haller, & Hauswirth, 2009; Bergenthum, Desel, Lorenz, &

Mauser, 2007; Carmona & Cortadella, 2010; Carmona, Cortadella, & Kishinevsky,

2008; Cook & Wolf, 1998; Goedertier, Martens, Vanthienen, & Baesens, 2009;

Medeiros, Weijters, & Aalst, 2007; Sole & Carmona, 2010; Weijters & Aalst, 2003;

Werf, Dongen, Hurkens, & Serebrenik, 2010) and conformance checking (Aalst,

Adriansyah, & Dongen, 2012; Adriansyah, Dongen, & Aalst, 2011a, 2011b;

Adriansyah, Sidorova, & Dongen, 2011c; Calders, Guenther, Pechenizkiy, &

Rozinat, 2009; Cook & Wolf, 1999; Goedertier et al., 2009; Munoz-Gama &

Carmona, 2010; Munoz-Gama & Carmona, 2011; Rozinat & Aalst, 2008; Weerdt,

De Backer, Vanthienen, & Baesens, 2011) approaches have been proposed in

literature. However, this paper is not about new process-mining techniques but

about getting the event data needed for all of these techniques. We are not aware of

any work systematically transforming database updates into event logs. Probably,

there are process-mining case-studies using redo/transaction logs from database

management systems like Oracle RDBMS, Microsoft SQL server, IBM DB2, or

Sybase IQ. However, systematic tool support seems to be missing.

The binding step in our approach is related to topic of event correlation which

has been investigated in the (web) services (Aalst, 2013c). In Aalst, Mooij, Stahl,

and Wolf (2009) and Barros, Decker, Dumas, and Weber (2007) various interaction

and correlation patterns are described. In Pauw et al. (2005) a technique is presented

for correlating messages with the goal to visualize the execution of web services.

Also Montahari-Nezhad, Saint-Paul, Casati, & Benatallah (2011) developed

techniques for event correlation and process discovery from web service

interaction logs.

Most closely related seem to be the work on artifact-centric process mining

(ACSI, 2013; Fahland, Leoni, Dongen, & Aalst, 2011a; 2011b), process model

repositories (Rosa et al., 2011), event log extraction (Verbeek et al., 2010; Günther

& Aalst, 2006), and process cubes (Aalst, 2013b). However, none of these

approaches define an event model on top of a class model.

8 Conclusion

To drive innovation in an increasingly digitalized world, the “process scientist”

needs to have powerful tools. Recent advances in process mining provide such

tools, but cannot be applied easily to selections of the Internet of Events (IoE)

where data is heterogeneous and distributed. Process mining seeks the “confronta-

tion” between real event data and process models (automatically discovered or

hand-made). The 15 case studies listed on the web page of the IEEE Task Force on

124 W.M.P. van der Aalst

Process Mining (IEEE Task Force on Process Mining, 2013a) illustrate the appli-

cability of process mining. Process mining can be used to check conformance,

detect bottlenecks, and suggest process improvements. However, the most time-

consuming part of process mining is not the actual analysis. Most time is spent on

locating, selecting, converting, and filtering the event data. The twelve guidelines
for logging presented in this paper show that the input-side of process mining

deserves much more attention. Logging can be improved by better instrumenting

systems. However, we can also try to better use what is already there and widely

uses: database systems. This paper focused on supporting the systematic extraction
of event data from database systems.

Regular tables in a database provide a view of the actual state of the information

system. For process mining, however, it is interesting to know when a record was

created, updated, or deleted. Taking the viewpoint that the database reflects the
current state of one or more processes, we define all changes of the database to be
events. In this paper, we conceptualized this viewpoint. Building upon class and

object models, we defined the notion of an event model. The event model relates

changes to the underlying database to events used for process mining. Based on

such an event model, we defined the “scope, bind, and classify” approach that

creates a collection of event logs that can be used for comparative process mining.

In this paper we only conceptualized the different ideas. A logical next step is to

develop tool support for specific database management systems. Moreover, we

would like to relate this to our work on process cubes (Aalst, 2013b) for compara-

tive process mining.

Acknowledgements This work was supported by the Basic Research Program of the National

Research University Higher School of Economics (HSE) in Moscow.

References

Aalst, W. van der (2011). Process mining: Discovery, conformance and enhancement of business
processes. Berlin: Springer.

Aalst, W. van der (2013a). Business process management: A comprehensive survey. ISRN
Software Engineering, 1–37. doi:10.1155/2013/507984

Aalst, W. van der (2013b). Process cubes: Slicing, dicing, rolling up and drilling down event data

for process mining. In M. Song, M.Wynn, & J. Liu (Eds.), Asia Pacific Conference on Business
Process Management (AP-BPM 2013) (Lecture Notes in Business Information Processing,

Vol. 159, pp. 1–22). Berlin: Springer.

Aalst, W. van der (2013c). Service mining: Using process mining to discover, check, and improve

service behavior. IEEE Transactions on Services Computing, 6(4), 525–535.
Aalst, W. van der (2014). Data scientist: The engineer of the future. In K. Mertins, F. Benaben,

R. Poler, & J. Bourrieres (Eds.), Proceedings of the I-ESA Conference (Enterprise Interopera-
bility, Vol. 6, pp. 13–28). Berlin: Springer.

Aalst, W. van der, Adriansyah, A., & Dongen, B. van (2012). Replaying history on process models

for conformance checking and performance analysis. WIREs Data Mining and Knowledge
Discovery, 2(2), 182–192.

Extracting Event Data from Databases to Unleash Process Mining 125

http://dx.doi.org/10.1155/2013/507984

Aalst, W. van der, Barthelmess, P., Ellis, C., & Wainer, J. (2001). Proclets: A framework for

lightweight interacting workflow processes. International Journal of Cooperative Information
Systems, 10(4), 443–482.

Aalst, W. van der, Mooij, A., Stahl, C., & Wolf, K. (2009). Service interaction: Patterns,

formalization, and analysis. In M. Bernardo, L. Padovani, & G. Zavattaro (Eds.), Formal
methods for web services (Lecture Notes in Computer Science, Vol. 5569, pp. 42–88). Berlin:

Springer.

Aalst, W. van der, Rubin, V., Verbeek, H., Dongen, B. van, Kindler, E., & Günther, C. (2010).

Process mining: A two-step approach to balance between underfitting and overfitting. Software
and Systems Modeling, 9(1), 87–111.

Aalst, W. van der, & Stahl, C. (2011).Modeling business processes: A petri net oriented approach.
Cambridge, MA: MIT Press.

Aalst, W. van der, Weijters, A., & Maruster, L. (2004). Workflow mining: Discovering process

models from event logs. IEEE Transactions on Knowledge and Data Engineering, 16(9),
1128–1142.

ACSI. (2013). Artifact-centric service interoperation (ACSI) project home page. Retrieved from

www.acsi-project.eu

Adriansyah, A., Dongen, B. van, & Aalst, W. van der (2011a). Conformance checking using cost-

based fitness analysis. In C. Chi & P. Johnson (Eds.), IEEE International Enterprise Comput-
ing Conference (EDOC 2011) (pp. 55–64). IEEE Computer Society Washington, DC, USA.

Adriansyah, A., Dongen, B., & Aalst, W. van der (2011b). Towards robust conformance checking.

In M. Muehlen & J. Su (Eds.), BPM 2010 Workshops, Proceedings of the Sixth Workshop on
Business Process Intelligence (BPI2010) (Lecture Notes in Business Information Processing,

Vol. 66, pp. 122–133). Berlin: Springer.

Adriansyah, A., Sidorova, N., & Dongen, B. van (2011c). Cost-based fitness in conformance

checking. In International Conference on Application of Concurrency to System Design
(ACSD 2011) (pp. 57–66). IEEE Computer Society Washington, DC, USA.

Agrawal, R., Gunopulos, D., & Leymann, F. (1998). Mining process models from workflow logs.

In Sixth International Conference on Extending Database Technology (Lecture Notes in

Computer Science, Vol. 1377, pp. 469–483). Berlin: Springer.

Ana Karla Alves de Medeiros, Weijters, A., & Aalst, W. van der (2007). Genetic process mining:

An experimental evaluation. Data Mining and Knowledge Discovery, 14(2), 245–304.
Barros, A., Decker, G., Dumas, M., & Weber, F. (2007). Correlation patterns in service-oriented

architectures. In M. Dwyer & A. Lopes (Eds.), Proceedings of the 10th International Confer-
ence on Fundamental Approaches to Software Engineering (FASE 2007) (Lecture Notes in

Computer Science, Vol. 4422, pp. 245–259). Berlin: Springer.

Bergenthum, R., Desel, J., Lorenz, R., & Mauser, S. (2007). Process mining based on regions of

languages. In G. Alonso, P. Dadam, & M. Rosemann (Eds.), International Conference on
Business Process Management (BPM 2007) (Lecture Notes in Computer Science, Vol. 4714,

pp. 375–383). Berlin: Springer.

Brocke, J., & Rosemann, M. (Eds.). (2010). Handbook on business process management, interna-
tional handbooks on information systems. Berlin: Springer.

Calders, T., Guenther, C., Pechenizkiy, M., & Rozinat, A. (2009). Using minimum description

length for process mining. In ACM Symposium on Applied Computing (SAC 2009) (pp. 1451–
1455). New York, NY: ACM Press.

Carmona, J., & Cortadella, J. (2010). Process mining meets abstract interpretation. In J. Balcazar

(Ed.), ECML/PKDD 210 (Lecture Notes in Artificial Intelligence, Vol. 6321, pp. 184–199).

Berlin: Springer.

Carmona, J., Cortadella, J., & Kishinevsky, M. (2008). A region-based algorithm for discovering

petri nets from event logs. In Business Process Management (BPM2008) (pp. 358–373).

Berlin: Springer.

Chaudhuri, S., & Dayal, U. (1997). An overview of data warehousing and OLAP technology. ACM
Sigmod Record, 26(1), 65–74.

126 W.M.P. van der Aalst

http://www.acsi-project.eu/

Chen, P. (1976). The entity-relationship model: Towards a unified view of data. ACM
Transactions on Database Systems, 1, 9–36.

Cohn, D., & Hull, R. (2009). Business artifacts: A data-centric approach to modeling business

operations and processes. IEEE Data Engineering Bulletin, 32(3), 3–9.
Cook, J., & Wolf, A. (1998). Discovering models of software processes from event-based data.

ACM Transactions on Software Engineering and Methodology, 7(3), 215–249.
Cook, J., & Wolf, A. (1999). Software process validation: Quantitatively measuring the corre-

spondence of a process to a model. ACM Transactions on Software Engineering and Method-
ology, 8(2), 147–176.

Dumas, M., Marcello La Rosa, M., Mendling, J., & Reijers, H. (2013). Fundamentals of business
process management. Berlin: Springer.

Fahland, D., Massimiliano de Leoni, Dongen, B. van, & Aalst, W. van der (2011a). Behavioral

conformance of artifact-centric process models. In A. Abramowicz (Ed.), Business Information
Systems (BIS 2011) (Lecture Notes in Business Information Processing, Vol. 87, pp. 37–49).

Berlin: Springer.

Fahland, D., Massimiliano de Leoni, Dongen, B. van, & Aalst, W. van der (2011b). Many-to-

many: Some observations on interactions in artifact choreographies. In D. Eichhorn,

A. Koschmider, & H. Zhang (Eds.), Proceedings of the 3rd Central-European Workshop on
Services and their Composition (ZEUS 2011), CEUR-WS.org, CEUR Workshop Proceedings
(pp. 9–15).

Gaaloul, W., Gaaloul, K., Bhiri, S., Haller, A., & Hauswirth, M. (2009). Log-based transactional

workflow mining. Distributed and Parallel Databases, 25(3), 193–240.
Goedertier, S., Martens, D., Vanthienen, J., & Baesens, B. (2009). Robust process discovery with

artificial negative events. Journal of Machine Learning Research, 10, 1305–1340.
Günther, C., & Aalst, W. van der (2006). A generic import framework for process event logs. In

J. Eder & S. Dustdar (Eds.), Business Process Management Workshops, Workshop on Business
Process Intelligence (BPI 2006) (Lecture Notes in Computer Science, Vol. 4103, pp. 81–92).

Berlin: Springer.

Hofstede, A. ter, Aalst, W. van der, Adams, M., & Russell, N. (2010). Modern business process
automation: YAWL and its support environment. Berlin: Springer.

IEEE Task Force on Process Mining. (2011). Process mining manifesto. In BPM Workshops
(Lecture Notes in Business Information Processing, Vol. 99). Berlin: Springer.

IEEE Task Force on Process Mining. (2013a). Process mining case studies. Retrieved from http://

www.win.tue.nl/ieeetfpm/doku.php?id¼shared:process_mining_case_studies

IEEE Task Force on Process Mining. (2013b). XES standard definition. Retrieved from www.xes-

standard.org

Jagadeesh Chandra Bose, R.P., Mans, R., & Aalst, W. van der (2013). Wanna improve process

mining results? It’s high time we consider data quality issues seriously. In B. Hammer,

Z. Zhou, L. Wang, & N. Chawla (Eds.), IEEE Symposium on Computational Intelligence
and Data Mining (CIDM 2013) (pp. 127–134). Singapore: IEEE.

Montahari-Nezhad, H., Saint-Paul, R., Casati, F., & Benatallah, B. (2011). Event correlation for

process discovery from web service interaction logs. VLBD Journal, 20(3), 417–444.
Munoz-Gama, J., & Carmona, J. (2010). A fresh look at precision in process conformance. In

R. Hull, J. Mendling, & S. Tai (Eds.), Business Process Management (BPM 2010) (Lecture
Notes in Computer Science, Vol. 6336, pp. 211–226). Berlin: Springer.

Munoz-Gama, J., & Carmona, J. (2011). Enhancing precision in process conformance: Stability,

confidence and severity. In N. Chawla, I. King, & A. Sperduti (Eds.), IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2011) (pp. 184–191). Paris: IEEE.

OMG. (2009). Unified modeling language, infrastructure and superstructure (Version 2.2, OMG
final adopted specification). http://www.omg.org/spec/UML/2.2/

Pauw, W., Lei, M., Pring, E., Villard, L., Arnold, M., & Morar, J. (2005). Web services navigator:

Visualizing the execution of web services. IBM Systems Journal, 44(4), 821–845.

Extracting Event Data from Databases to Unleash Process Mining 127

http://www.win.tue.nl/ieeetfpm/doku.php?id=shared:process_mining_case_studies
http://www.win.tue.nl/ieeetfpm/doku.php?id=shared:process_mining_case_studies
http://www.win.tue.nl/ieeetfpm/doku.php?id=shared:process_mining_case_studies
http://www.xes-standard.org/
http://www.xes-standard.org/
http://www.omg.org/spec/UML/2.2/

Reichert, M., & Weber, B. (2012). Enabling flexibility in process-aware information systems:
Challenges, methods, technologies. Berlin: Springer.

Rosa, M. La, Reijers, H., Aalst, W. van der, Dijkman, R., Mendling, J., Dumas, M., et al. (2011).

APROMORE: An advanced process model repository. Expert Systems with Applications, 38
(6), 7029–7040.

Rozinat, A., & Aalst, W. van der (2008). Conformance checking of processes based on monitoring

real behavior. Information Systems, 33(1), 64–95.
Sole, M., & Carmona, J. (2010). Process mining from a basis of regions. In J. Lilius &W. Penczek

(Eds.), Applications and Theory of Petri Nets 2010 (Lecture Notes in Computer Science, Vol.

6128, pp. 226–245). Berlin: Springer.

Verbeek, H., Buijs, J., Dongen, B. van, & Aalst, W. van der (2010). XES, XESame, and ProM 6. In

P. Soffer & E. Proper (Eds.), Information systems evolution (Lecture Notes in Business

Information Processing, Vol. 72, pp. 60–75). Berlin: Springer.

Weerdt, J., De Backer, M., Vanthienen, J., & Baesens, B. (2011). A robust f-measure for

evaluating discovered process models. In N. Chawla, I. King, & A. Sperduti (Eds.), IEEE
Symposium on Computational Intelligence and Data Mining (CIDM 2011) (pp. 148–155).
Paris: IEEE.

Weijters, A., & Aalst, W. van der (2003). Rediscovering workflow models from event-based data

using little thumb. Integrated Computer-Aided Engineering, 10(2), 151–162.
Werf, J., Dongen, B. van, Hurkens, C., & Serebrenik, A. (2010). Process discovery using integer

linear programming. Fundamenta Informaticae, 94, 387–412.
Weske, M. (2007). Business process management: Concepts, languages, architectures. Berlin:

Springer.

128 W.M.P. van der Aalst

	Extracting Event Data from Databases to Unleash Process Mining
	1 Introduction
	2 Process Mining
	3 Guidelines for Logging
	4 Class and Object Models
	5 Events and Their Effect on the Object Model
	6 Approach: Scope, Bind, and Classify
	6.1 Scope: Determine the Relevant Events
	6.2 Bind: Relate Events to Process Instances
	6.3 Classify: Relate Process Instances to Processes

	7 Related Work
	8 Conclusion
	References

